Show simple item record

dc.contributor.authorJiang, Yinjie
dc.contributor.authorYu, Yemin
dc.contributor.authorKong, Ming
dc.contributor.authorMei, Yu
dc.contributor.authorYuan, Luotian
dc.contributor.authorHuang, Zhengxing
dc.contributor.authorKuang, Kun
dc.contributor.authorWang, Zhihua
dc.contributor.authorYao, Huaxiu
dc.contributor.authorZou, James
dc.contributor.authorColey, Connor W
dc.contributor.authorWei, Ying
dc.date.accessioned2025-02-10T15:00:54Z
dc.date.available2025-02-10T15:00:54Z
dc.date.issued2023-06
dc.identifier.urihttps://hdl-handle-net.ezproxyberklee.flo.org/1721.1/158188
dc.description.abstractIn recent years, there has been a dramatic rise in interest in retrosynthesis prediction with artificial intelligence (AI) techniques. Unlike conventional retrosynthesis prediction performed by chemists and by rule-based expert systems, AI-driven retrosynthesis prediction automatically learns chemistry knowledge from off-the-shelf experimental datasets to predict reactions and retrosynthesis routes. This provides an opportunity to address many conventional challenges, including heavy reliance on extensive expertise, the sub-optimality of routes, and prohibitive computational cost. This review describes the current landscape of AI-driven retrosynthesis prediction. We first discuss formal definitions of the retrosynthesis problem and review the outstanding research challenges therein. We then review the related AI techniques and recent progress that enable retrosynthesis prediction. Moreover, we propose a novel landscape that provides a comprehensive categorization of different retrosynthesis prediction components and survey how AI reshapes each component. We conclude by discussing promising areas for future research.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/j.eng.2022.04.021en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivativesen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevier BVen_US
dc.titleArtificial Intelligence for Retrosynthesis Predictionen_US
dc.typeArticleen_US
dc.identifier.citationJiang, Yinjie, Yu, Yemin, Kong, Ming, Mei, Yu, Yuan, Luotian et al. 2023. "Artificial Intelligence for Retrosynthesis Prediction." Engineering, 25.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalEngineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2025-02-07T20:22:18Z
dspace.orderedauthorsJiang, Y; Yu, Y; Kong, M; Mei, Y; Yuan, L; Huang, Z; Kuang, K; Wang, Z; Yao, H; Zou, J; Coley, CW; Wei, Yen_US
dspace.date.submission2025-02-07T20:22:20Z
mit.journal.volume25en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record