dc.contributor.advisor | Michael R. Watts. | en_US |
dc.contributor.author | Notaros, Jelena. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2020-09-03T17:42:46Z | |
dc.date.available | 2020-09-03T17:42:46Z | |
dc.date.copyright | 2020 | en_US |
dc.date.issued | 2020 | en_US |
dc.identifier.uri | https://hdl-handle-net.ezproxyberklee.flo.org/1721.1/127027 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020 | en_US |
dc.description | Cataloged from the official PDF of thesis. | en_US |
dc.description | Includes bibliographical references (pages 129-139). | en_US |
dc.description.abstract | Integrated optical phased arrays, fabricated in advanced silicon-photonics platforms, enable manipulation and dynamic control of free-space light in a compact form factor, at low costs, and in a non-mechanical way. As such, integrated optical phased arrays have emerged as a promising technology for many wide-reaching applications, including LiDAR sensors and augmented-reality displays. In this thesis, novel integrated-optical-phased-array devices, systems, results, and applications are presented. First, beam-steering optical phased arrays for LiDAR are shown, including the first beam-steering optical phased arrays powered by monolithically-integrated on-chip rare-earth-doped lasers, the first beam-steering optical phased arrays controlled using heterogeneously-integrated CMOS driving electronics, and the first single-chip coherent LiDAR with integrated optical phased arrays and CMOS receiver electronics. | en_US |
dc.description.abstract | These demonstrations are important steps towards practical commercialization of low-cost and high-performance integrated LiDAR sensors for autonomous vehicles. Next, integrated optical phased arrays for optical manipulation in the near field are developed, including the first near-field-focusing integrated optical phased arrays, the first quasi-Bessel-beam-generating integrated optical phased arrays, and a novel active butterfly architecture for independent amplitude and phase control. These near-field modalities have the potential to advance a number of application areas, such as optical trapping for biological characterization, trapped-ion quantum computing, and laser-based 3D printing. | en_US |
dc.description.abstract | Finally, a novel transparent integrated-phased-array-based holographic display is proposed as a highly-discreet and fully-holographic solution for the next generation of augmented-reality head-mounted displays; novel passive near-eye displays that generate holograms, the first integrated visible-light liquid-crystal-based phase and amplitude modulators, and the first actively-tunable visible-light integrated optical phased arrays are presented. | en_US |
dc.description.statementofresponsibility | by Jelena Notaros. | en_US |
dc.format.extent | 139 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. | en_US |
dc.rights.uri | http://dspace.mit.edu.ezproxyberklee.flo.org/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Integrated optical phased arrays : augmented reality, LiDAR, and beyond | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1191625413 | en_US |
dc.description.collection | Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2020-09-03T17:42:45Z | en_US |
mit.thesis.degree | Doctoral | en_US |
mit.thesis.department | EECS | en_US |