Show simple item record

dc.contributor.authorLevi, Retsef
dc.contributor.authorPerakis, Georgia
dc.contributor.authorUichanco, Joline
dc.date.accessioned2017-08-31T19:43:15Z
dc.date.available2017-08-31T19:43:15Z
dc.date.issued2015-10
dc.date.submitted2010-08
dc.identifier.issn0030-364X
dc.identifier.issn1526-5463
dc.identifier.urihttp://hdl.handle.net.ezproxyberklee.flo.org/1721.1/111091
dc.description.abstractConsider the newsvendor model, but under the assumption that the underlying demand distribution is not known as part of the input. Instead, the only information available is a random, independent sample drawn from the demand distribution. This paper analyzes the sample average approximation (SAA) approach for the data-driven newsvendor problem. We obtain a new analytical bound on the probability that the relative regret of the SAA solution exceeds a threshold. This bound is significantly tighter than existing bounds, and it matches the empirical accuracy of the SAA solution observed in extensive computational experiments. This bound reveals that the demand distribution’s weighted mean spread affects the accuracy of the SAA heuristic.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0732175)en_US
dc.description.sponsorshipNational Science Foundation (Grant CMMI-0846554)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA9550-08-1-0369)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Award FA9550-11-1-0150)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI- 0824674)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-0758061)en_US
dc.language.isoen_US
dc.publisherInstitute for Operations Research and the Management Sciences (INFORMS)en_US
dc.relation.isversionofhttp://dx.doi.org.ezproxyberklee.flo.org/10.1287/opre.2015.1422en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceShikha Sharmaen_US
dc.titleThe Data-Driven Newsvendor Problem: New Bounds and Insightsen_US
dc.typeArticleen_US
dc.identifier.citationLevi, Retsef, et al. “The Data-Driven Newsvendor Problem: New Bounds and Insights.” Operations Research 63, 6 (December 2015): 1294–1306 © 2015 Institute for Operations Research and the Management Sciences (INFORMS)en_US
dc.contributor.departmentSloan School of Management
dc.contributor.mitauthorLevi, Retsef
dc.contributor.mitauthorPerakis, Georgia
dc.relation.journalOperations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLevi, Retsef; Perakis, Georgia; Uichanco, Jolineen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1994-4875
dc.identifier.orcidhttps://orcid.org/0000-0002-0888-9030
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record