
Lecture Notes: Introduction to Hidden
Markov Models

Introduction

A Hidden Markov Model (HMM), as the name suggests, is a Markov model in which the
states cannot be observed but symbols that are consumed or produced by transition are
observable. A speech generation system might, for example, be implemented as a HMM
and speak a word as it transitions from one state to another. Similarly a speech
understanding system might “recognize” a word on a transition. In this sense HMM’s
can be thought of as generative or as interpretative. The HMM is the same but in one
case the transitions emit symbols (such as words) and in the other case consumes
symbols. We will therefore treat observations and actions interchangeably in the
foregoing.

Hidden Markov Models and simple extensions of them are very popular in a variety of
fields including computer vision, natural language understanding, and speech recognition
and synthesis (to name a few). Often HMM’s are a natural way of modeling a system
and in other cases they are “force-fit” to a problem to which they are not quite ideal. The
immense popularity of HMM’s is that very fast, linear time, algorithms exist for some of
the most important HMM problems. This allows, for example, speech recognition
systems to operate in real-time.

A HMM is defined as the four tuple <s1,S,W,E> where s1 is the start state, S is the set of
states, W is the set of observation symbols, and E is the set of transitions. A transition is
also a four tuple such as <s2,”had”, s3, 0.3>. This example described a transition from
state s2 to s3 in which the word “had” is either emitted or consumed and the probability of
taking the transition is 0.3. We will usually write a transition as T(s2,”had”, s3, 0.3) or as:

3.0)(3

""

2 =→ ssP
had

Sometimes we do not know the starting state but we have a pdf for the starting state. We
can therefore, with improved generality replace s1 with a starting state pdf. We will
continue to assume that we know the starting state for the remainder of this discussion in
order to simplify examples but generalizing the starting condition to a pdf adds no
additional complexity to the algorithms presented.

a b

“1” 0.48

“0” 0.48

“0” 0.04

“1” 1.0

a b

“1” 0.48

“0” 0.48

“0” 0.04

“1” 1.0
Consider the, very simple, example below:
The transitions are depicted as arcs that indicate the symbol that is consumed or emitted,
in quotes, as the transition is taken and a number that indicates the probability that a
transition is taken.

A couple of points are worth noting at this point. First, the probabilities of all transitions
from a state must sum to 1.0 and second, multiple transitions out of a state can occur with
the same symbol. Looking at state “a” in the figure above shows that the symbol “0” can
be consumed by two different transitions. One of them changes the state to “b” while the
other leaves the system in state “a”. It is because of this that the states cannot be known
deterministically. If transitions could be uniquely identified by the symbol they
produce/consume we would track, with certainty, the current state of the system.

The above example can be described as <s1, S, W, E>

Where:

S1 = a
S = { a, b }
W = { 0, 1 }
E = { <a, “1”, a, 0.48> <a, “0”, a, 0.48> <a, “0”, b, 0.04> <b, “1”, a, 1.0> }

A sentence parsing example

Let’s look at a more interesting example.

0.5

s1 s2 s3 s4 s5 s6“Mary” “Had” “A” “Little” “Lamb”

“A”

s8“.”

s7

“Curry” “.”

“And”

“Big” “Dog”

“And”

“Hot”

0.4 0.4

“Roger”
0.3

“Ordered”
0.3

0.5

0.5

0.4

0.1

0.5

0.5

0.5

0.3

0.4

0.3

0.5

“Cooked”
0.3

“John”
0.3

0.5

s1 s2 s3 s4 s5 s6“Mary” “Had” “A” “Little” “Lamb”

“A”

s8“.”

s7

“Curry” “.”

“And”

“Big” “Dog”

“And”

“Hot”

0.4 0.4

“Roger”
0.3

“Ordered”
0.3

0.5

0.5

0.4

0.1

0.5

0.5

0.5

0.3

0.4

0.3

0.5

“Cooked”
0.3

“John”
0.3

The HMM depicted above defines a very simple sentence generator. Notice that from
state s3 there are two transitions that emit the word “A”. Imagine that, starting from state
s1 the words “Roger Ordered A” had been emitted. We know that the first state was s1,
the second state was s2, and the third state was s3 because given the emitted words there is
no ambiguity. After the word “A” has been emitted however we do not know whether
the system is in state s4 or s5 and, given the transition probabilities, would rationally
assign equal likelihood to each of those states. As it happens the ambiguity is resolved as
soon as the next word is emitted. If the next word is “Hot” we know that the current state
is S5 and the preceding state that had formerly been ambiguous must have been S4.

Examples of some of the sentences that can be produced by this model are:

S1: Mary had a little Lamb and a big dog.
S2: Roger ordered a lamb curry and a hot dog.
S3: John cooked a hot dog curry.

We can calculate the probability that a word sequence, such as S3, be emitted by this
HMM by multiplying the probabilities of the transitions taken in order to produce the
sentence.

P(S3)=0.3*0.3*0.5*0.5*0.3*0.5=0.003375
We can do this because we know that the transitions are conditionally independent. This
is the Markovian assumption. S3 is a six word sequence and we will often refer to an n
symbol sequence as w1,n. 1

1 W is used to denote ‘observation’ because the Greek lowercase Omega (for Observation) looks like a “w”.

Finding out the probability of a sequence of transitions is sometimes a useful thing to do,
as we will soon see, but it is by no means the only thing that we wish to do. Finding the
probability of a sequence of observations or actions is referred to as Evaluation and can
be computed in both the forward and the reverse direction (i.e. working forward from the
first observation, or working back from the last observation). We will shortly introduce
algorithms for doing this but first let consider some other things that we wish to compute.

We have already alluded to the problem of inferring the state sequence from the
observation. In general we cannot know for sure what sequence of states will be taken
for a given sequence of observations although sometimes, such as in the above example,
we can. In general the best that we can do is to estimate the most likely state trajectory
for a given sequence of observations. This problem is often referred to as Decoding.

Another common requirement is to learn the probabilities associated with transitions in
the system by being given a representative training sequence rather than being given the
transition probabilities directly. The idea is to find the set of transition probabilities that
maximizes the likelihood of the training sequence. Not surprisingly this is the Learning
problem.

HMM Decoding - Finding the most likely pathWe begin
with the decoding problem by introducing the Viterbi algorithm for finding the most
likely sequence of states given a set of observations.

)|(maxarg)(1,1,1
,1

−= tt

s
wsPt

t
σ

A sequence of t-1 observations will result in a sequence of t states. In the foregoing we
represent the most likely sequence of t states given a sequence of observations w1,t-1 as
σ(t). We will use the operator o to concatenate new states onto an existing state
sequence. So for example, if σ(3) is the state sequence s1 s2 s3, σ(3) o s4 is the sequence
s1 s2 s3 s4.
To illustrate the Viterbi algorithm we will use the HMM depicted in the figure below.

a b

“0” 0.3

“1” 0.1

“0” 0.2

“1” 0.1

“0” 0.2

“1” 0.5“0” 0.4

“1” 0.2

a b

“0” 0.3

“1” 0.1

“0” 0.2

“1” 0.1

“0” 0.2

“1” 0.5“0” 0.4

“1” 0.2

Given the known starting state a we know that before any observations are made that
P(a)=1.0 and P(b)=0.0. After the first observation the state sequence must therefore be

either aa or ab. At each state a state might transition to one of many different states one
might therefore naively assume that the algorithm would be exponential because there is
a branching factor involved at each observation. Surprisingly and delightfully this is not
the case this is not the case and the algorithm is, as we advertised earlier, linear! The
reasoning is as follows:

We are not interested in finding all possible state sequences—just the most likely state
sequence. At an arbitrary point before all of the observations have been seen we cannot
know what is the most likely sequence. What is currently the most likely sequence might
be eliminated completely when the next observations comes along if there is no transition
that extends the previously most likely sequence with the observation. Consequently the
currently most promising sequence might seem very unlikely if the latest transition has a
very low probability or impossible if there is no such transition. Imaging the case where
the only transition that could possibly account for the latest observation is from one state.
We will need to have maintained, in our algorithm, a sequence that ends in that state so
that we can extend it with the latest observation. We must therefore maintain for every
state the most likely sequence that ends in that state. There may of course be many other
ways of ending in that state but since we are looking for the most likely sequence there is
nothing to be gained by maintaining anything but the one that has the highest probability.
The Viterbi algorithm therefore works by maintaining for each state:

1. The most likely sequence of states that ends in that state, and
2. The probability of that sequence. Sometimes the probability will be zero.

 The table below shows the steps of the Viterbi algorithm as it processes the observations
(starting from ε the empty sequence of observations). At each step, for each state, we
calculate the probability of extending the previous state sequences so as to end in the
state in question. So we can get from state b to state b with an observation of “1” using
the transition T(b,”1”,b,0.5) but since the probability of the state sequence b was 0.0 the
probability of the sequence bb is also 0.0 whereas the probability of the sequence ab is
1.0*0.1=0.1. As you can see the table grows linearly with the number of observations
and only the previous time step needs to be stored between iterations so the space utilized

is constant and the time grows linearly with observations.

0.0050.0250.050.10.0Probability

abbbbabbbabbabbSequenceb
0.0050.0080.040.21.0Probability

abbbaaaaaaaaaaaSequencea
1110111111εStates

0.0050.0250.050.10.0Probability

abbbbabbbabbabbSequenceb
0.0050.0080.040.21.0Probability

abbbaaaaaaaaaaaSequencea
1110111111εStates

Formally, we can describe the Viterbi algorithm as follows:

For a sequence of T visible actions WT and a HMM with c hidden states.
Let σι(t) be the maximum likelihood path that accounts for the observation/action
sequence WT and which ends in state si.Below is the pseudo code for the Viterbi

algorithm.

)())((maxarg,)()1(

)1(

1 i

w

k
k

c

ki
ji

i
i

ssPtPjstt

s
t

→==+

=

=
σσσ

σ

o

HMM Evaluation - HMM forward probabilities
Using the same HMM as before, repeated below for convenience, consider the
observation sequence “1110”. We wish to calculate the probability of that sequence
being generated by the HMM.
We begin by considering the observations in the order that they are observed—the so-
called forward probabilities. In this algorithm we are not concerned with a sequence of
states. Instead, we want to know the sum of the probabilities of all paths that account for
the sequence of observations. In principle the final state can be any of the states. Let αι
(t) be the probability P(w1,t-1,st=si. Clearly if we know αι(t) for all states i we can
calculate the probabilities of αι (t+1) for all states i by simply extending computing and
summing all extensions of the previous states. This is precisely what we do for the
forward-probabilities algorithm. To get P(w1,t) therefore we simply sum the probabilities
of all sequences ending in each of the states.
The table below shows the steps of the forward-probabilities algorithm for the sequence
of observations “1110”.

Consider the entry for αi (3)=0.07. This is calculated by extending the path that ends in
state a with the transition “1” with probability 0.1 hence 0.2*0.1=0.02 and extending the

path that ends in state b with the transition “1” with probability 0.5 hence 0.1*0.5=0.05.
Summing these two routes yields 0.02+0.05=0.07.
More formally we can describe this algorithm as follows:

Let αi(t) be the probability P(w1,t-1,st=si).

∑
=

== +

c

i
isSwPwP TTT

1
),()(1,1,1

The base case for our recursive definition is the starting state before any observations are

seen. We must start in the start state so:

∑
=

+=
c

i

iT TwP
1

,1)1()(α

⎩
⎨
⎧

→
→=

===
0

0.11
),()1(10,1

otherwise
i

sswP i
iα

and the recursive step extends it

∑
=

−+ →====+
c

i
j

w

ii
tt

j
ttj ssPsswPsswPt

t

1

1,11,1)(),(),()1(α

The pseudo code for the forward probabilities is very given below:For a sequence of T
visible actions VT and a HMM with c hidden states where tprob(a,b,c) is the transition
probability for transitioning from state a to state b with observation/action c

Backward Probabilities
Backward probabilities work in exactly the same way as forward probabilities but we
start from the final observation and work backwards. You may be wondering why we

would ever want to do such a thing. It turns out that it is useful for solving the training
problem, which we will describe next.

We can define βi(t) just as we did for α

i (t) but starting from the end.

)|()(,
i

tTti sswPt =≡β
Notice that it is the starting state that is constrained to be si and not, as it was for αi(t), the
ending state.
It is interesting to note that

)(

)|()1(
,1

1
1,11

T

T

wP

sswP

=

==β

which follows because a sequence of one state must be the start state.

The base case of our recursive definition is similar to before but starts, as we would
expect, from the end.

1)|()1(1 ===+ +
i

Ti ssPT εβ

The starting state of the entire sequence is, by definition, the start state. W can work back
with our recursive definition just as we did before. Notice that we are using state sj, the
target state of the transitions, rather than si in this definition.

)|()()()()1(,

11

11

j
tTt

c

j
j

w

i
j

c

j
j

w

i
j sswPssPtssPt

tt

=→=→=− ∑∑
==

−−

ββ

The pseudo code for backward-probabilities is very similar to that of forward-
probabilities so we will leave it as an exercise for the reader.

HMM Training - (Baum-Welch Algorithm)
We now have enough apparatus to attack the learning problem. In the learning problem
we start out with the HMM definition without the transition probabilities. Our goal is to
find the set of transition probabilities that maximize the likelihood of the training
sequence provided. It should be noted from the outset that the algorithm described, the
Baum-Welch algorithm also known as the forward-backward algorithm does not
guarantee to find the global maximum. It finds the local maximum and as such its
usefulness depends upon the HMM being trained.

Consider a very simple case of an HMM with a single state and three transitions. Such an
HMM is depicted below left without transition probabilities.

a

“0” “1”

“2”

Training Sequence: 01010210

a 8

“0” 4 “1” 3

“2” 1

a

“0” 0.5 “1” 0.375

“2” 0.125

a

“0” “1”

“2”

a

“0” “1”

“2”

Training Sequence: 01010210

a 8

“0” 4 “1” 3

“2” 1

a 8

“0” 4 “1” 3

“2” 1

a

“0” 0.5 “1” 0.375

“2” 0.125

a

“0” 0.5 “1” 0.375

“2” 0.125

Given a training sequence such as “01010210” we can play the observations through the
model counting the number of times each transition is taken and the number of times
each state takes a transition. The result of this that with our trivial example is that state a
takes 8 transitions, the transition “0” is taken four times, the transition “1” is taken three
times, and the transition “2” is taken just once (left). We can obtain from these counts a
consistent set of transition probabilities by dividing the number of times a transition is
taken by the number of transitions taken by the state from which the transition transitions
(right).

More formally, If C is a function that counts the number of times that a transition is taken
when the training sequence is run through the model, we can estimate the transition
probabilities as follows:

∑∑
= =

→

→
=→ c

l m
l

w

i

j

w

i
j

w

ie

ssC

ssC
ssP

m

k

k

1 1
)(

)(
)(ω

It is fun to show prove that the transition probabilities resulting from the above algorithm
do in fact maximize the likelihood of the training sequence. That proof is left as an
exercise for the reader.

If we could deterministically follow transitions in this way we would be done but we
cannot because there may be, as we discussed earlier, multiple transitions out of a state
that have the same observation/action.

a

“0”

“0”
c

b
0.7

0.3

a

“0”

“0”
c

b
0.7

0.3

Consider the example above. There are two transitions out of state a for the observation
“0”. One has probability 0.7 and the other 0.3. This suggests a solution. Instead of
counting the number of times a transition is taken count instead the prorated amount of
transitions taken. So in this case we would count 0.7 for the transition to state b and 0.3
for the transition to state c. We would count 0.7+0.3=1.0 for the number of transitions
taken out of a (instead of 2).

This solves our problem of ambiguous transitions but one small problem remains: We
don’t know the transition probabilities because they are what we are trying to learn!

It turns out that if we guess a set of transition values and then count the transitions using
the prorated scheme described above the resulting transition probabilities will have
improved somewhat towards a local maximum and so by iterating as long as an
improvement occurs we can find the local maximum.

1.Guess a set of transition probabilities.
2.while (improving) {
3. propagate-training-sequences
4.}

There are two obvious ways of calculating “improving” in the pseudo code above. The
conceptually easiest way is to scan through the old and new transition probabilities to see
which has changed the most. When the maximum change of any transition drops below a
predefined accuracy θ the training loop can be exited. The problem with this approach is
that it involves scanning through all transition probabilities—of which there may be a
very large number. An alternative, and computationally less expensive approach, is to
calculate the cross-entropy after each iteration. When the cross-entropy decreases by less
than θ we are done.

Cross entropy is:

∑ −−
Tw

TMTM wPwP
n ,1

)(log)(1 ,1
2

,11

Where PM-1 is the probability as estimated by the previous iteration’s model and PM is the
probability as estimated by the current iteration’s model. Cross-entropy is a common
measure used to compare models and avoids the cost of scanning through all of the
transitions.

All that remains then is to formalize the calculation of the transition counts for the
training sequence.

Consider a training sequence consisting of T observations. There will be T+1 states
chained together by T transitions. The prorated count of a transition is the number of
times that the transition was taken during the training sequence. We can calculate the
probability of the entire sequence P(w1,T) as the backward-probability βi(1). In order to
consider the transitions imagine that we cut the chain of transitions at some point t at
which a transitions takes the system from state si to sj. The probability of the sequence
can now be written as the product of the probability of the part preceding the transition
αi(t), the probability of the transition itself, and the probability of the rest of the sequence
βj(t+1). This probability is not the same as βi(1) because it picks a particular transition at
time t. If we summed over all possible transitions at time t we would get P(w1,T)= βi(1).
We can divide by P(w1,T) to get the probability of that particular transition happening at
time step t and we can get the prorated transition count for that transition by summing
over all possible places in the sequence where that transition had an opportunity to
happen.

∑
=

+→=→
T

t

j
j

w

i
i

ij

w

i tssPtssC
kk

1
)1()()(

)1(
1

)(βα
β

We can use this simple equation to calculate the counts used in the equation

∑∑
= =

→

→
=→ c

l m
l

w

i

j

w

i
j

w

ie

ssC

ssC
ssP

m

k

k

1 1
)(

)(
)(ω

(repeated from above for convenience). Notice that the 1/βi(1) occurs in both the
numerator and the denominator and can thus be dropped from the count calculation.

Baum-Welch Pseudo Code
The pseudo code for this algorithm is shown below followed by a hand worked example.

Baum-Welch example

Consider the following, very simple, example consisting of two states and four transitions
with the training sequence “01011”. The probabilities on the transitions are our “starting
guess”.

a b

“1” 0.48

“0” 0.48

“0” 0.04

“1” 1.0

a b

“1” 0.48

“0” 0.48

“0” 0.04

“1” 1.0

First we calculate α for all of our states (a and b) for all of the steps of our training
sequence as follows (all hand calculated numbers have been rounded for readability):

000.0100.040αb(t)

0.0350.0720.130.270.481αa(t)

11010ε

654321

000.0100.040αb(t)

0.0350.0720.130.270.481αa(t)

11010ε

654321

Next we calculate β for all of our states (a and b) for all of the steps of our training
sequence as follows:

ow, for all of our (four) transitions, we estimate the transition probabilities at each time

he numerator is the count for the specific transition whose probability is being estimated

110.2800.130βb(t)

10.480.230.130.0620.035βa(t)

11010ε

654321

110.2800.130βb(t)

10.480.230.130.0620.035βa(t)

11010ε

654321

N
step and then sum them to produce the total (see the total column in the table below). We
can avoid the step of normalizing the transition counts (total column) because the
normalization factor cancels out. The new probability P(T(a,0,b)) is calculates as:

T
and the denominator is the sum of all transitions out of the starting state for that
transition.

0.580.0950.0350.0300.030T(a,1,a)

0.360.06000.0300.030T(a,0,a)

10.0100.004800.00520T(b,1,a)

0.060.01000.005200.0052T(a,0,b)

New PTotal11010

0.580.0950.0350.0300.030T(a,1,a)

0.360.06000.0300.030T(a,0,a)

10.0100.004800.00520T(b,1,a)

0.060.01000.005200.0052T(a,0,b)

New PTotal11010

06.0
165.0
01.0

095.006.001.0
01.0

),1,(),0,(),0,(
),0,(

==
++

=
++ aaCaaCbaC

baC

	Introduction
	S = { a, b }

	A sentence parsing example
	HMM Decoding - Finding the most likely pathW
	HMM Evaluation - HMM forward probabilities
	Backward Probabilities
	HMM Training - (Baum-Welch Algorithm)

