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Abstract

Cellular signaling and regulatory networks underlie fundamental biological processes
such as growth, differentiation, and response to the environment. Although there
are now various high-throughput methods for studying these processes, knowledge of
them remains fragmentary. Typically, the majority of hits identified by transcrip-
tional, proteomic, and genetic assays lie outside of the expected pathways. In addi-
tion, not all components in the regulatory networks can be exposed in one experiment
because of systematic biases in the assays. These unexpected and hidden components
of the cellular response are often the most interesting, because they can provide new
insights into biological processes and potentially reveal new therapeutic approaches.
However, they are also the most difficult to interpret. We present a technique, based
on the Steiner tree problem, that uses a probabilistic protein-protein interaction net-
work and high confidence measurement and prediction of protein-DNA interactions,
to determine how these hits are organized into functionally coherent pathways, re-
vealing many components of the cellular response that are not readily apparent in the
original data. We report the results of applying this method to (1) phosphoproteomic
and transcriptional data from the pheromone response in yeast, and (2) phospho-
proteomic, DNaseI hypersensitivity sequencing and mRNA profiling data from the
U87MG glioblastoma cell lines over-expressing the variant III mutant of the epider-
mal growth factor receptor (EGFRvIII). In both cases the method identifies changes
in diverse cellular processes that extend far beyond the expected pathways. Anal-
ysis of the EGFRVIII network connectivity property and transcriptional regulators
that link observed changes in protein phosphorylation and differential expression sug-
gest a few intriguing hypotheses that may lead to improved therapeutic strategy for
glioblastoma.

Thesis Supervisor: Ernest Fraenkel
Title: Associate Professor of Biological Engineering
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Chapter 1

Introduction

1.1 Overview

Cellular signaling and transcription are tightly integrated processes that underlie

many cellular responses to the environment. A network of signaling events, often me-

diated by post-translational modification on proteins, can lead to long-term changes

in cellular behavior by altering the activity of specific transcriptional regulators and

consequently the expression level of their downstream targets. Dysregulation of these

molecular events have been implicated in many disease conditions such as neurode-

generation (Gil and Rego, 2008; Imarisio et al., 2008), metabolic disorder (Schinner

et al., 2005), and every stage of tumor development and growth (Hanahan and Wein-

berg, 2011, 2000). The discovery of these events by molecular biology techniques has

greatly enhanced the understanding of the causes of these diseases and subsequently

the therapeutic strategies. This objective of my thesis is to link together global mea-

surements of signaling and transcription to elucidate how specific signaling events

lead to changes in transcription that determine the long-term behavior of the cell.

The first part of this chapter outlines the technologies and resources that enable

systematic profiling of signaling and transcription events at the global level, emphasiz-

ing the discovery nature of these techniques. These approaches are complementary to

hypothesis-driven experiments, many of which have been adopted to be run in high-

throughput format but for characterizing pre-defined sets of targets. Since methods



focused on discovery are not required to select what to measure a priori, there is

potential to find novel events and assign new relevance to previously observed events.

The application of computational methods to biological signaling pathways is able

to reveal behaviors of systems that cannot be presented by its individual components

(Bhalla and Iyengar, 1999), known as the "emergent property". The ability to mea-

sure the network components and their connections at the global level, often in a

high-throughput format, has created a wealth of data and sparked the development

of many computational algorithms in order to gain biological insight. These methods

can be generic or specific for the particular type of experimental technique. They

represent a spectrum of abstraction of biological entities for which different compu-

tational approaches are appropriate with different objectives of modeling outcome

(Ideker and Lauffenburger, 2003). The second part of this chapter gives examples of

several methodologies that are either popular with the kind of datasets used in this

project, or are conceptually similar to the core computational ideas presented in this

thesis but used for different kinds of data sets.

The review of current methods is not intended to be exhaustive. Instead, I focused

on the unbiased property of the experimental assays, and selected examples that

represent major algorithmic approaches for analyzing signaling and gene expression

data but are inherently different from my proposed framework. It is with this context

that I summarize the motivation and innovation behind this work, where I highlight

the distinct features of my method and the unique perspective that it might bring to

complement the existing methodologies.

1.2 Datasets for interrogating signaling and tran-

scription at the global level

1.2.1 Phosphoproteomics mass spectrometry

Post-translational modification on proteins is a major mechanism by which the func-

tions and activities of proteins are regulated in response to environmental cues. In



particular, phosphorylation on amino acid residues serine, threonine and tyrosine

regulates a variety of functions of the affected proteins such as protein-protein inter-

action (Yaffe, 2002), enzymatic activity (Cole et al., 2003), protein stability (Sears

et al., 2000), and also higher level processes such as proliferation (Iyer et al., 2006),

apoptosis (Yousefi et al., 1994) and metabolism (Boura-Halfon and Zick, 2009). Al-

though phosphorylation on tyrosine is relatively rare compared to that on serine and

threonine (Olsen et al., 2006), it has been linked to many critical cellular functions

and appears to display more dynamics than serine and threonine phosphorylation

in response to growth factor signaling (Olsen et al., 2006, and Figure 1-1). There-

fore, profiling tyrosine phosphorylation on multiple proteins may provide information

about the activities of many molecular processes and the components in those pro-

cesses.

The ability of phospho-specific antibodies to recognize phosphorylated residues

but not the non-phosphorylated counterparts (Mandell, 2003; Blaydes et al., 2000)

makes it possible to study protein phosphorylation by several experimental tech-

niques. For instance, using an antibody that recognizes a specific phosphorylated

residue on a cell surface receptor, one can use western blot to detect the presence of

this phosphorylation site in protein lysate transferred to a nitrocellulose membrane

(Kurien and Scofield, 2009), or use flow cytometry to isolate single cells that express

this phospho-form of the receptor (Oberprieler and Taskn, 2011; Krutzik et al., 2004).

There are also antibody microarrays (Chaga, 2008) where a collection of antibodies

are conjugated to glass slides and then incubated with cell lysate. In these assays the

identities of the phosphorylated proteins are pre-determined and limited by the avail-

ability and quality of phospho-specific antibodies. In contrast, phosphoproteomics by

mass spectrometry (MS) offers clear advantage in its ability to find phosphorylation

sites in the whole proteome in an unbiased manner.

Large-scale quantification of in vivo phosphorylation sites at the global level is

made possible by recent technological development in key steps of the experimen-

tal protocol: enrichment of phosphorylated peptides from complex protein mixtures,

separation of the peptide mixture by liquid chromatography (LC) , tandem mass spec-
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trometry (MS/MS) for peptide sequence identification, and isotope labeling strategies

for peptide quantification (Grimsrud et al., 2010). In particular, the input dataset for

the computational modeling in this thesis was collected by our collaborator in For-

est White's group that employs immunoprecipitation and immobilized metal affinity

chromatography (IMAC) to enrich for tyrosine phosphorylated peptides and iTRAQ

(isobaric tags for relative and absolute quantitation) labeling to quantify these pep-

tides in four- or eight-plex format (Zhang et al., 2007b, and Figure 1-2). The resulting

dataset is in the form of peptide sequences containing phosphorylated tyrosine and

the relative levels of each peptide in the four or eight input samples.

The unbiased approach of mass spectrometry has led to novel insights into the

global state of signaling networks. For instance, in the EGFRvIII glioblastoma

dataset that I will describe in Section 1.4, the expression EGFRvIII, an oncogenic

mutant of EGFR, was found to induce the phosphorylation of an activating tyrosine

residue on the c-MET receptor, and combined inhibition of c-MET and EGFR re-

sults in enhanced cytotoxicity (Huang et al., 2007). With mounting evidence for the

prevalence and functional significance of interconnections between pathways (Bauer-

Mehren et al., 2009), the value of this technology will become increasingly appreciated.

As with many systems level datasets, there are many challenges in making inter-

pretation of the phosphoproteomic data, especially in deriving biological meanings

beyond validating the top hits. The EGFRvIII dataset mentioned above contains

phosphorylated peptides that can be mapped to 85 genes, but only twelve (14%)

appear in the human ErbB signaling pathway in the April 11, 2011 version of the

KEGG PATHWAY database (Kanehisa et al., 2010), five (5.8%) are in the MAPK

signaling pathway, eight (9.4%) are in the phosphatidylinositol signaling system, and

31 (36%) are not found in any of the KEGG pathways. In terms of connecting to

transcription, three genes (3.5%) are annotated to have transcription factor activity.

These statistics simultaneously show the opportunity for discovery but also the urgent

need for new analysis approaches.
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1.2.2 Transcriptome profiling

Identification of proteins in vivo presents many challenges due to the need to design

antibodies that are capable of targeting the specific three-dimensional configuration

of the protein of interest. As such, identifying mRNA levels by sequence as a proxy for

protein abundance has become increasingly popular (Lockhart and Winzeler, 2000).

During the course of this project several transcriptome profiling technologies have

become widely available with different options in terms of cost, sensitivity, and the

ability to study transcript isoforms.

An expression microarray (Figure 1-3) consists of thousands to millions of DNA

sequences spotted onto glass slides. The sequence at each spot ("probes") may cor-

respond a gene transcript or a short section on the transcript ("targets"). Gene

transcripts in a sample are first reversed transcribed to cDNA and labeled. After

incubating the array with the cDNA and washing, the signal from the labeled tran-

scripts hybridized to a spot gives a quantitative measure of the abundance of target

transcripts complementary to the probe sequence. The format of detection can be in

two-channel or one-channel. In two-channel detection, two samples of cDNA, each

labeled with a different fluorophore, are hybridized to the same array and the relative

signal intensity from the two fluorophores at the same spot represents the relative ex-

pression level of the target transcript (Schena et al., 1995). In one-channel detection

such as the commercially available Affymetrix GeneChip platform (Lipshutz et al.,

1999), one transcriptome sample is labeled with biotin, hybridized to the array and

hybridization is detected by fluorophore-conjugated streptavidin that binds to biotin.

Relative quantifications of gene transcripts are obtained by downstream processing

that performs normalization between arrays and assesses differential expression.

RNA-seq utilizes the ability of next-generation sequencing to sequence millions

of short nucleotide pieces in parallel to quantify transcript abundance and detect

alternative splicing. Nucleotide sequences in the reversed transcribed cDNA library

are sequenced at the end for a fixed number of base pairs. These millions of sequence

"tags" can be aligned to a reference transcriptome or used in novel transcriptome
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Figure 1-3: Procedure of mRNA expression profiling on DNA microarrays. There are two

major technical platforms. Both are based on the principle of complementary base pair-
ing between the nucleic acid sequences attached to the array (probes) and the transcript
sequences in the sample (targets). In the glass slide array platform, the sequences on the

array are usually complementary DNA (cDNA) or long oligonucleotide sequences. Purified
RNA from two samples are reversed transcribed to make cDNA libraries, which undergo in
vitro transcription (IVT) reactions with fluorescence labeled nucleotides (Cy3 dye that emits
green for one sample and Cy5 dye that emits red for a second sample). The two samples are

mixed and hybridized to the glass slide array. The array is washed and scanned in a laser
scanner. The relative intensity between red fluorescence and green fluorescence channels
at each spot gives the relative abundance of the gene at that spot between the two sam-

ples. In the Affymetrix GeneChip platform, the spots on the array are short oligonucleotide

sequences that match part of a gene, and usually one gene is represented by multiple se-

quences. The purified RNA sample is reversed transcribed into cDNA library, which is used
in an IVT reaction with biotinylated ribonucleotides to generate biotin labeled cRNA. The
cRNA is fragmented and hybridized to the array. After washing away unbound sequences,
the array is stained with phycorerythrin (PE) conjugated streptavidin and scanned in a laser
scanner. The intensity at each spot represent an absolute expression value for that gene,
but downstream computational processing is required to normalize between multiple arrays
or conditions and identify differential expression. Reprinted by permission from Macmillan
Publishers Ltd: Leukemia (Staal et al., 2003), copyright 2003.

Glass slide array



assembly and differential expression analysis (Trapnell et al., 2010). Furthermore,

the sequencing depth achieved is sufficient to identify many novel splicing events

(Trapnell et al., 2009). Unlike microarrays, transcript quantification in RNA-seq has

a digital readout. And since the actual sequences of transcripts are obtained, it is not

limited to detecting targets that complement probe sequences on the array, which are

usually designed from known and predicted gene models. As a result RNA-seq has

great potential for discovery of novel transcripts and transcript isoforms.

Compared to mass spectrometry techniques, microarray protocols are relatively

easy to perform and be standardized. Due to the early demonstration that global tran-

script level can represent cell states in response to perturbation of signaling pathways

(Roberts et al., 2000), and that such a representation can discover and predict cancer

subtypes of clinical relevance (Golub et al., 1999), microarrays have become a pri-

mary choice for large scale expression profiling projects such as The Cancer Genome

Atlas (TCGA) (Verhaak et al., 2010; Cancer Genome Atlas Research Network, 2008).

The establishment of central data repository Gene Expression Omnibus (GEO) (Bar-

rett et al., 2011) makes large amount of data easily accessible and has encouraged

development of many data analysis methods. In Section 1.3 I will discuss a few

techniques that share our goal of finding regulatory relationships from data but use

mRNA expression profiling. An obvious drawback of this technique is the inability

to investigate regulatory processes outside of transcription, and an obvious solution

is to apply these algorithms to proteomic data. I will explain why this remedy is

overly simplistic given the reality of the datasets, and therefore a new computational

approach is necessary.

1.2.3 Next-generation sequencing technology for transcrip-

tional regulation

In addition to RNA-seq, next-generation sequencing technology has been applied to

investigate the many different stages at which gene expression can be regulated (Nat

Rev Genet Article Series, 2011). Here we focus on methods that capture interactions



between trans-acting protein factors and the DNA genome: chromatin immunopre-

cipitation sequencing (ChIP-seq) (Park, 2009; Johnson et al., 2007) and DNaseI

hypersensitive site sequencing (DNase-seq) (Song and Crawford, 2010; Hesselberth

et al., 2009).

ChIP is an experimental technique for investigating interactions between proteins

and DNA in the cell (Collas, 2010; Carey et al., 2009). It has been used to identify the

localization of transcription factors, co-regulators, and post-translationally modified

histones in the genome or to a specific locus. In a ChIP experiment (Figure 1-

4), protein and DNA interactions are temporarily fixed, the chromatin is sheared

and protein-DNA complexes are selectively immunoprecipitated by an antibody to

obtain the DNA fragments associated with the protein. Downstream sequencing or

polymerase chain reaction (PCR) amplification of the DNA fragments reveals the in

vivo binding locations of the protein factor to the genome.

While ChIP-seq finds binding locations of specific proteins, DNase-seq is a general

assay for open chromatin regions that may be bound by different protein factors (Fig-

ure 1-5). In traditional DNase footprinting assays, protection of DNA regions from

digestion by a non-sequence specific endonuclease DNaseI is used as evidence for pro-

tein binding (Brenowitz et al., 1986; Galas and Schmitz, 1978). In a genome wide

format, the DNase-digested fragments are purified and sequenced. Mapping the se-

quences back to the reference genome reveals genomic regions that are hypersensitive

to digestion. Interestingly, it was observed in the sequencing results that the DNaseI

footprints display a distinct cleavage pattern where regions immediately surrounding

the protection sites have more aligned reads, indicative of increased sensitivity (Boyle

et al., 2011). This is probably due to the disruption of regular histone organization as

a result of binding of protein factors. Therefore, searching for regions in the genome

that have significantly more reads from the DNaseI treated chromatin compared to

naked genomic DNA control gives us a way to identify open chromatin regions.

Protein signaling networks rely on protein-DNA interactions to transmit infor-

mation to the transcriptional machinery, where these signals are integrated with in-

structions encoded by the genome and epigenome to create a global transcriptional
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Figure 1-4: Overview of ChIP procedure for locating binding sites of specific proteins in the
genome. In the first step, in vivo protein-DNA interactions are fixed by formaldehyde treat-
ment that cross-links proteins and DNA in close contact. The chromatin is then sonicated
into short fragments and immunoprecipitated with an antibody that recognizes a protein
of interest, for instance, transcription factors, co-regulators, or modifications on histones.
The antibody has been pre-bound to protein-A or protein-G conjugated magnetic beads,
so applying a magnetic field to the mixture extracts the antibody along with the protein-
DNA complexes that contain the protein of interest and the bound fragments of DNA. The
crosslinks are reversed by incubation at high temperature and the DNA fragments are pu-
rified. These DNA fragments, now enriched in sequences bound by the protein factor, can
be analyzed by PCR amplifying a known locus (ChIP-PCR), hybridization to tiling DNA
microarrays (ChIP-chip) or direct sequencing (ChIP-seq). In particular, ChIP-seq gener-
ates an unbiased and genome-wide readout of the bound sequences. Mapping the sequence
reads back to the genome reveals the binding locations of the protein factor. Reprinted with
kind permission from Springer Science+-Business Media: Molecular Biotechnology (2010)
45:87-100, Figure 2 (Collas, 2010).
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Figure 1-5: Methods for detecting DNaseI hypersensitive regions. Purified nuclei are treated
with DNaseI enzyme for a short time so only the most sensitive regions are cleaved by the
enzyme ("hypersensitive"), and the cleaved fragments are identified in southern blot or by
sequencing. In the southern blot format of the assay, the DNaseI treated chromatin is
separated by size in gel electrophoresis and transferred to a membrane. Probe sequence
complementary to a genomic region of interest is hybridized to the membrane to detect
cleavage of that region by DNasel. Two alternative protocols exist for downstream sequenc-
ing application. In the first method (Song and Crawford, 2010; Boyle et al., 2008), the
cleaved ends of DNA are ligated to a biotinylated linker (green squares), the genomic DNA
are sheared and the tagged fragments are isolated by binding to streptavidin. The second
method relies on a "two hit" assumption that short fragments produced by DNaseI cutting
at both ends are more likely from accessible chromatin regions than due to random shearing
during sample processing. DNaseI digested chromatin is separated by molecular weight in a
sucrose gradient, and DNA fragments from fractions of small molecular weight are purified
and sequenced. Adapted by permission from Macmillan Publishers Ltd: Nature Methods
(Giresi and Lieb, 2006), copyright 2006.



program. Signaling pathways can target multiple transcription factors (Chang et al.,

2003), and transcription factors can respond to multiple activation pathways and

carry out a variety of biological functions (Desrivires et al., 2006). Adding to the

complexity is the phosphorylation of a transcription factor on the same amino acid

residue can both activate and inhibit its activity (Lim and Cao, 1999; Decker and

Kovarik, 2000). Therefore, ChIP is still the gold-standard method to determine the

in vivo targets of transcription factors and consequently their condition-specific func-

tions. However, the assay requires large amount of input material and good quality

antibodies to specific proteins, so with few exceptions it is impractical to apply it

exhaustively to all the transcriptional regulators of an organism in all cell types and

conditions. On the contrary, one DNase-seq experiment, with replicate, can report

condition-specific open chromatin genome-wide. Integrating this information with

known sequence specificity of transcription factors has enabled accurate predictions

of transcription factor binding (Boyle et al., 2011; Pique-Regi et al., 2011). The level

of accuracy appears to be dependent on the transcription factor, and not all the

factors have known sequence specificity, so DNase-seq and ChIP-seq are two com-

plementary techniques in our quest to characterize transcriptional regulation at the

global level.

An often cited limitation of ChIP is that it is not a functional assay and does

not directly provide information about the functional significance of observed bind-

ing sites (see a list of examples cited in Carey et al., 2009). Correlating binding with

transcriptome profiling may establish this connection (Ouyang et al., 2009) and is an

area under active research. In my algorithm I adopted this idea with modification

for DNase-seq and transcription profiling data, and I reasoned that adding the phos-

phoproteomic data should be able to further narrow down the search for biological

functions.

1.2.4 Protein-protein interactome

While protein-DNA interactions are essential in the regulation of gene expression

(Maston et al., 2006), protein-protein interactions are the building blocks of signaling



pathways (Pawson and Nash, 2003). Together they define a global regulatory network

of the cell. Large collections of protein-protein interactions have been utilized to gain

biological insights, starting from the level of individual gene functions and up to the

global properties of the entire regulatory network (Bader et al., 2008; Cusick et al.,

2005). To be compatible with the discovery nature of the phosphoproteomic and

transcriptome datasets, we turn to sources of protein-protein interaction data that are

not exclusive to pre-defined protein targets or expected pathways: high-throughput

experimental mapping and databases of protein interactions.

Yeast two hybrid (Y2H) and affinity purification mass spectrometry (AP/MS) are

two popular experimental methods for large scale mapping of protein interactions

(Berggrd et al., 2007). Y2H measures direct physical interaction between pairs of

proteins (Uetz et al., 2000; Ito et al., 2001) and AP/MS (Gavin et al., 2002; Ho et al.,

2002) identifies protein complexes in which the components may or may not directly

interact. When carried out under carefully controlled experimental conditions, these

techniques have been shown to generate interaction data of high quality (Yu et al.,

2008; Dreze et al., 2010).

Many databases of protein-protein interactions are publicly available. The IntAct

molecular interaction database (Kerrien et al., 2007), the Database of Interacting

Proteins (DIP) (Salwinski et al., 2004), the Molecular Interaction database (MINT)

(Chatr-aryamontri et al., 2007) and the Biological General Repository for Interaction

Datasets (BioGRID) (Stark et al., 2011) are examples of independent ongoing efforts

to curate interactions from published literature and they recently formed the Interna-

tional Molecular Exchange Consortium (IMEx) to unify curation rules and to coordi-

nate curation to avoid redundancy (Salwinski et al., 2009). There are other databases

which focus on signaling and metabolic pathways such as the KEGG PATHWAY

(Kanehisa et al., 2010) and Reactome (Matthews et al., 2009) databases, and also

"meta" databases, such as the Agile Protein Interaction DataAnalyzer (APID) (Pri-

eto and Rivas, 2006), the Michigan Molecular Interactions database (MiMI) (Tarcea

et al., 2009) and the Unified Human Interactome database (UniHI) (Chaurasia et al.,

2007), that aim to consolidate interactions from individual databases to provide a



comprehensive resource.

Even with the combination of large experimental efforts and curated databases

we are still far from a complete mapping of all possible protein-protein interactions,

and thus many computational methods have been developed to predict possible in-

teractions. These methods make use of features such as gene neighborhood (Huynen

et al., 2000), gene fusion (Marcotte et al., 1999), sequence co-evolution (Goh et al.,

2000), and may incorporate multiple such features in a Bayesian framework (von

Mering et al., 2005; Jansen et al., 2003). Predictions of kinase-substrate relationships

by NetworKIN (Linding et al., 2007) and the binding interactions by ScanSite (Obe-

nauer et al., 2003) are particularly valuable to complement the curated databases for

interpretation of our datasets.

While it is appealing to place the signaling and transcription datasets on the pro-

tein interaction network for novel biological insights, care must be taken so the results

are interpretable, reliable and biologically relevant. First of all, since not all signaling

and regulatory events are mediated by events reported in the phosphoproteomic data,

in building a network for these hits we have to consider proteins that they interact

with directly and indirectly. Despite being incomplete, the amount of interaction data

is still large, so the size of the network explodes exponentially and quickly becomes

non-interpretable, as pointed out by previous data integration efforts (Hwang et al.,

2005). Secondly, interaction records in databases come from thousands of laboratories

and many experimental techniques, so overall the data quality is heterogeneous and

should not be treated non-discriminantly. Lastly, pooling these interactions together

risks losing the specific context under which they were detected. It is with these issues

in mind that I designed my constraint optimization approach, where the interactome

edges are weighted probabilistically by confidence, biological contexts are provided by

constraining the network to edges that include signaling and transcriptional events,

and a simple set of interactions that connect the data is selected by an optimization

procedure.



1.2.5 Transcription factor binding motifs

The binding specificity of trans-acting factors to cis-regulatory elements in the genome

is determined by the three-dimensional structure of these factors and may be used

to predict new binding sites. Commonly used quantitative representation of such

binding patterns, also known as sequence motifs, include position weight matri-

ces (PWM)/position specific scoring matrices (PSSM) (D'haeseleer, 2006; Stormo,

2000) with an information theoretic perspective, and position specific affinity ma-

trices (PSAM) with a statistical mechanics perspective (Figure 1-6 and Foat et al.,

2006, 2005; Manke et al., 2008; Roider et al., 2007). Experimentally, in vivo binding

patterns can be determined by applying various motif discovery tools to the DNA se-

quences obtained from the ChIP-seq datasets discussed above. In vitro techniques are

also available that take an enrichment then sequencing approach (SELEX - systematic

evolution of ligands by exponential enrichment - followed by conventional sequenc-

ing or next-generation sequencing; Stoltenburg et al., 2007; Jolma et al., 2010) or by

microarray hybridization (PBM - protein binding microarrays; Berger et al., 2006).

TRANSFAC (Wingender, 2008; Matys et al., 2006) and JASPAR (Sandelin et al.,

2004; Bryne et al., 2008) are two major databases that collect published transcription

factor binding motifs from literature that can be used for prediction of regulatory

elements.

The sequence motifs are useful for predicting binding of specific factors to ge-

nomic regions and associating these factors to nearby genes as their downstream

targets. Since the motifs are short and degenerate, scanning for matches in genome

sequences, even limited to promoter regions, results in numerous hits, most of which

are non-functional in vivo (Wasserman and Sandelin, 2004). Restricting the search

space to evolutionarily conserved regions can significantly reduce false predictions

(Wasserman and Sandelin, 2004) at the expense of missing species-specific binding

events that are very prevalent (Odom et al., 2007). Another approach is to search

for enriched motifs in the promoter region of differentially expressed genes (Sui et al.,

2007; Tavazoie et al., 1999). Neither case takes into account the chromatin acces-
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sibility of the predicted binding locations or captures distant regulatory elements.

The DNase-seq technique (Section 1.2.3) may represent an adequate solution to these

problems.

1.3 Computational methods for finding molecular

regulatory networks

Choice of computational methods for analysis of biological data is defined by the goal

of the modeling and the characteristics of the data. We want to connect signaling

events to differential mRNA expression, using measurements of tens of protein phos-

phorylation sites and thousands of gene transcripts from a handful of experimental

conditions. In this section I summarize methods for inferring molecular regulatory

relationships that aim for the same goal but start from different data sources. I will

explain why these methods may appear to be applicable to our problem but in closer

inspection are not suitable for our datasets.

1.3.1 de novo learning of regulatory relationships

Many computational algorithms have been created to infer regulatory relationships

between genes. A vast number of these construct transcriptional regulatory networks

from mRNA profiling data that recently have become widely available. The cen-

tral premise of these methods is that correlated expression of genes is indicative of

co-regulation, and the observed correlation between genes can be explained by the

presence of other genes, all measured on the microarrays. Here I adopt the concep-

tual framework presented in Markowetz and Spang (2007) to organize an overview of

current methods and incorporate the review by Bansal et al. (2007) to give examples

of publicly available software packages tailored to the properties of input datasets.

In the notation from Markowetz and Spang (2007), let V be a set of p network

components, which are genes on the microarrays in this context but can be proteins.

The measurements on v E V are modeled as a random variable X, and so all the p



components in the network form a random vector X = (X 1, X 2,..., X,). Measure-

ments of X in N experiments result in data vectors xi, x2, ... , N. The goal is to

build a network T = (V, E) where an edge eij E E represents the dependency struc-

ture between network components i and j. To draw an edge between i and j, the

computational methods ask the question "is Xi independent of X given Z?", and

the identity of Z defines the specific statistical model. Xi and Xj are conditionally

independent given Z, i.e. Xi _L Xj I Z, if and only if

P(Xi = xi, X3 = x | Z = z) = P(Xi = xi | Z = z)P(X. = xj | Z = z). (1.3.1)

Table 1.1 summarizes a few different definitions of Z, the corresponding methodologies

and example applications.

While these methods are capable of discovering new connections between genes

without prior knowledge of the network topology, there are a few shortcomings: the

cause-effect directions are often unclear, and only transcription regulation is modeled

but not other parts of the biologically relevant networks. Key to resolving these issues

are introducing controlled perturbations and making protein level measurements, as

demonstrated in analysis of data from flow cytometry (Sachs et al., 2005) and microw-

estern arrays (Ciaccio et al., 2010). Interestingly, in one simulation study Bayesian

network models are comparable to simpler correlation networks when applied to ob-

servational data but they achieve better performance in interventional data (Werhli

et al., 2006). Continuing improvement in the throughput of making precise pertur-

bations and measuring the outcome will realize more potential of Bayesian networks.

Given we have unbiased measurements of the phosphoproteome and transcrip-

tome, it may be possible to apply these statistical inference methods that infer de

novo relationships, but we encounter three major limitations. First, it is difficult to

achieve statistical significance with four samples and hundreds of variables. Secondly,

the numerical correlations give little hint for mechanistic relationships. Lastly, as

mentioned above, we must account for intermediate signaling nodes not reported in



Z Meaning of Xi 7K Xj I Z Method and representative references

0 Xi and Xj are not marginally independent Co-expression clustering (Eisen et al., 1998; Spellman et al.,
1998)

Xs for S = V\{i, j} Correlation between i and j cannot be ex- Markov random field; special case Gaussian graphical models
plained by all the other genes (Schfer and Strimmer, 2005)

Dependency networks from sparse regression (Bonneau et al.,
2006; Soinov et al., 2003; Rogers and Girolami, 2005)
Ordinary differential equation models from regression (Gard-
ner et al., 2003; di Bernardo et al., 2005; Bansal et al., 2006)

Xk for all k E V\{i, j} No third gene can explain the correlation be- First order conditional independence: Gaussian (Wille and
tween i and j Bhlmann, 2006; Wille et al., 2004; Magwene and Kim, 2004)

and mutual information (Margolin et al., 2006; Carro et al.,
2010)

Xs for all S C V\{i, j} No subset of all other genes can explain the Bayesian networks (Segal et al., 2005; Friedman, 2004; Fried-
correlation between i and j man et al., 2000)

Dynamic Bayesian networks (Zou and Conzen, 2005; Perrin
et al., 2003; Murphy and Mian, 1999)

Table 1.1: In the conceptual framework by Markowetz and Spang (2007) for inferring genetic regulatory network from gene expression
data, an edge is drawn between network components i and j if and only if Xi ) Xj | Z, and many current methods of network inference
can be grouped by the definition of Z. Detailed notations are defined on page 34. This table is a compilation of reviews by Markowetz
and Spang (2007); Bansal et al. (2007).



the tyrosine phosphorylation MS, but learning Bayesian network with hidden vari-

ables is a theoretically challenging and computationally intensive problem (Chickering

and Heckerman, 1996; Friedman, 1997). These factors point to a direction that in-

corporates prior biological knowledge.

1.3.2 Finding relevant connections from the interactome

One alternative to learning connections between molecules from data de novo is to

start with a pre-defined network structure from interaction datasets and extract

relevant interactions that can explain the data. The interaction datasets are rich

in mechanistic information but fall short in context. For instance, the BioGRID

database contains entries for protein complexes and phosphorylation reactions, and

the TRANSFAC database contains entries for binding of transcription factor to pro-

moter region of a gene. These interactions may define a pathway in the cell types

where the experiments were performed, but they may not be applicable in other

biological contexts. The predicted protein-protein interactions and transcription fac-

tor binding are additionally plagued by false positives (Nguyen and Goodrich, 2006;

Wasserman and Sandelin, 2004). Supplementing the interaction data by biological

context from high throughput experiments has successfully led to many interesting

discoveries. For example, using the yeast protein interactome, Ideker et al. (2002) pre-

sented a simulated annealing algorithm to find connected subnetworks of genes that

showed unexpectedly high degree of differential expression under a subset of condi-

tions. The resulting subnetworks were consistent with known regulatory circuits and

signaling pathways. Yeang et al. (2004) inferred models of transcriptional regulation

in yeast by searching for paths of protein-protein and protein-DNA interactions that

are consistent with knock-out effects. They were able to provide mechanistic expla-

nations for some knock-out effects and accurately predict the knock-out responses in

cross-validation. Scott et al. (2005) found subnetworks that connected a distinguished

set of genes (for example, a set of genes differentially regulated under a certain condi-

tion) in the most compact way by solving a node-weighted Steiner tree problem, and

they argued the resulting subnetworks were likely to contain regulators of the genes in



the distinguished set. The algorithm recovered regulatory elements in yeast metabolic

pathways. Interestingly, Djebbari and Quackenbush (2008) observed improved per-

formance of Bayesian network learning by starting from a seeded network structure

derived from previously known interaction data. However, as the majority of the

interactome-based methods till this day have been applied to transcription profiling

data in yeast, and to human data in very few cases, there is little evidence to demon-

strate the capability of this approach for handling proteomic data from mammalian

regulatory networks.

1.4 Biology of EGFRvIII in human glioblastoma

The epidermal growth factor receptor (EGFR; ERBB1; HERI in human) is a trans-

membrane protein that is a member of the ErbB family of receptor tyrosine kinases.

It is the cell surface receptor for the epidermal growth factor (EGF) protein and other

growth factor ligands (Linggi and Carpenter, 2006). Binding of the ligand induces

dimerization of the receptor and activation of its tyrosine kinase activity that leads

to auto-phosphorylation of several tyrosine residues in the C-terminal domain (Linggi

and Carpenter, 2006). These phosphotyrosine residues associate with other signaling

proteins to activate downstream pathways such as mitogen activated protein kinase

(MAPK), phosphoinositide 3-kinase (P13K)-Akt, and c-Jun N-terminal kinases (JNK)

pathways (Citri and Yarden, 2006; Oda et al., 2005; Yarden and Sliwkowski, 2001),

and cellular processes such as DNA synthesis (Roche et al., 1994), cell proliferation

(Honegger et al., 1988), apoptosis (Boerner et al., 2004), and cell adhesion (Xie et al.,

1998) and migration (Andl et al., 2003). Aberrant signaling by EGFR due to recep-

tor over-expression or mutations has been implicated in many cancers, resulting in

poor prognosis and decreased survival (Herbst, 2004; Nicholson et al., 2001). These

discoveries have led to active development of anti-cancer therapies targeting EGFR

(Modjtahedi and Essapen, 2009; Zhang et al., 2007a; Zandi et al., 2007).

EGFRvIII is a truncated, constitutively active mutant of EGFR (Pedersen et al.,

2001). Deletion of exons 2-7 removes most of the extracellular ligand binding domain,



so it is unable to bind EGF or other EGFR-binding ligands (Huang et al., 1997). How-

ever, this mutant receptor is constitutively phosphorylated (Nishikawa et al., 1994).

The receptor is capable of activating downstream signaling pathways, but the low level

of phosphorylation appears insufficient to trigger receptor-mediated down-regulation,

contributing to the transforming ability of this mutant (Huang et al., 1997). It is

the most common deletion mutant of EGFR in human cancer (Pedersen et al., 2001)

and is highly correlated with and poor prognosis in glioblastoma multiforme (Pelloski

et al., 2007; Heimberger et al., 2005; Feldkamp et al., 1999).

The relevance of EGFRvIII in human cancer has motivated much work to eluci-

date the downstream signaling events activated by this receptor but many questions

remain. The mutant receptor displays signaling properties different from the ligand-

activated EGFR, with a largely inactive MAPK pathway (Moscatello et al., 1996) and

a highly active P13K pathway (Moscatello et al., 1998). Few report the consequences

of these signals on the activity of the transcription factors and the regulated genes,

and the results are often contradictory. A microarray experiment on mouse fibroblasts

expressing EGFRvIII reports that a group of interferon response genes is up-regulated

by EGF stimulus but not by EGFRvIII expression, and the up-regulation is corre-

lated with the activation of STAT3 and STAT5 transcription factors (Pedersen et al.,

2005). In the U87 human glioblastoma cell line, STAT3 is persistently active to bind

DNA but this binding is negatively regulated by the PI3K-Akt pathway (Ghosh et al.,

2005). Finally, activated STAT3 is significantly correlated with EGFRvIII in gliomas

(Mizoguchi et al., 2006). While the inconsistencies may be due to cell-type differ-

ences, it is possible that the few phosphorylation sites measured on selected signaling

molecules cannot fully represent the activation state of the molecules or the pathway.

Therefore, systematic measurements and modeling are necessary to provide a clearer

picture of the signaling events and transcriptional responses.

The model system in this study is the U87 human glioblastoma cell line engineered

to express titrated levels of EGFRvIII and the tumorigenicity is correlated with the

expression level of the mutant receptor (Huang et al., 1997; Nishikawa et al., 1994).

It is a good starting point for methodology development. The wild-type EGFR sig-



naling network is very well established, but the events and connections downstream

of EGFRvIII are poorly characterized. So comparing our results to the wild-type

network will give insights to the oncogenic mechanism of this mutant. Mechanisms

like the activation of distinct transcription factors by EGFR and EGFRvIII (Fromm

et al., 2008) will be informative in design of therapeutics.

1.5 Motivation and innovation

In this thesis I present a computational method for joint analysis of phosphopro-

teomic and transcriptome data and argue that this conceptual framework provides

an intuitive approach that brings together multiple heterogeneous data sources. I will

show how we can bridge the gap between signaling and transcription to gain better

understanding of an important problem in cancer biology, that is, the long term con-

sequence of aberrant signaling in cancer. From an algorithmic perspective we aim

to fill the need of connecting de novo discovery of network topology and detailed

modeling of regulatory dynamics. Lastly I propose that this framework is especially

suitable for generating novel hypotheses given our current experimental capability of

measuring many things under few numbers of conditions.

As described above, recent technological advances make it possible for the first

time to develop an unbiased and systematic view of the proteomic and transcriptional

changes that occur during oncogenesis. Analysis of these two kinds of datasets in-

dividually have provided novel insights into the regulatory dynamics at the level of

the proteome (Wolf-Yadlin et al., 2006; Zhang et al., 2005) and transcriptome (Amit

et al., 2007). Despite these advances, knowledge of the connections between phos-

phoproteomic signaling changes and transcriptional networks remains fragmentary.

Significant uncertainties remain even for some pathways that have been very well

characterized. The STAT DNA-binding proteins, for example, are a well studied part

of the EGF pathway. At least twelve distinct STAT isoforms are present in humans,

which can be activated by kinases from the JAK, STAT or EGFR families (Lim and

Cao, 2006; Quesnelle et al., 2007). There are a multitude of potential interactions



among all these proteins that may have distinct roles in signaling and transcriptional

regulation. Undoubtedly, there are also many other connections between proteomic

and transcriptional changes mediated by pathways that remain to be discovered.

Jointly analyzing the transcriptional and proteomic data may provide new insights

into these questions.

Integrating transcriptional and proteomic data will require novel computational

approaches. In particular, because not all regulatory events are mediated by pro-

tein phosphorylation, even the most comprehensive phosphoproteomics technologies

cannot capture all these events. Computational techniques are needed to discover pro-

teins that participate in the signaling networks but are undetected in the experiments.

One approach may be to fill in the paths between phosphorylated proteins by known

pathway models. However, using this approach with currently curated pathways ig-

nores the information encoded in a large fraction of the phosphoproteomic data that

do not map to the curated pathways. In fact, when these proteomic technologies are

applied to well-characterized responses, it is clear that overlap between the data and

the components of the known pathways is poor. Many important signaling proteins

are absent from the data; at same time, many of the proteins that show proteomic

changes have no obvious connection to the process under study. We have observed

this in data from yeast (Huang and Fraenkel, 2009) and human (Section 1.2.1).

A recent review by Hyduke and Palsson (2010) for global reconstruction of sig-

naling networks recognizes that methods for filling the missing information in sig-

naling network models are less established compared to metabolic network models

and proposes that interactome datasets represent a promising direction for progress

in this area. In the context of finding connections between signaling and transcrip-

tion changes, we start with a collection of protein-protein and protein-DNA interac-

tions, which represent known or experimentally determined signaling and regulatory

connections, and consider the observed phosphorylation events and differential gene

expression as connectivity constraints that the reconstructed network must satisfy.

Additionally, we take into account the different confidence levels among the interac-

tion data sources by preferentially selecting the more reliable interactions. We show



that these objectives can be formulated as a constraint network optimization problem,

in particular, as a prize collecting Steiner tree (PCST) problem on the interactome

network. Since the interactions are not limited to known pathways and the phospho-

rylation events and differential expressed genes are not limited to known players in

these pathways, there is great potential for novel discoveries. On the other hand, all

the interactions were experimentally determined and therefore have mechanistic basis

that might become relevant in the current context. I believe that these two features

of the method strike a good balance between finding novel connections and revealing

the relevance of known connections.

The challenge of making sensible interpretation of the vast amount of genomic

and proteomic data is such a growing concern that warranted coverage by a special

issue of Science in February 2011. In general these high-throughput technologies have

become very good at measuring many molecules at very few number of conditions.

Therefore, with the exception of the strongest hits, each of these assays is a source of

abundant, weak evidence of regulatory events. The core computational method de-

veloped in this thesis is an example of how we can take advantage of the heterogeneity

of the datasets, including phosphoproteomic MS, ChIP-seq, DNase-seq, transcription

profiling and interactions. As each of these techniques provides a different view of the

molecular regulatory network, by putting them together we can generate high con-

fidence hypotheses that have biological relevance and can be tested experimentally.

This framework may represent a direction in which to organize the data and enhance

our understanding of the cell at the systems level.
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Chapter 2

Integrating proteomic, transcriptional,

and interactome data reveals hidden

components of signaling and regulatory

networks: case study of the yeast

pheromone response network

2.1 Summary

This chapter presents a test case where the PCST approach was applied to the phos-

phoproteomic and transcriptional data from yeast pheromone response. We chose

this system because there is good coverage of the protein-protein and protein-DNA

interactions in yeast compared to mammalian systems, and the signaling and tran-

scriptional components of the pheromone response network are well characterized.

Nonetheless, the results are still very interesting, especially considering the fact that

many of the hits from these datasets do not fall into annotated signaling pathways.
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Abstract
Cellular signaling and regulatory networks underlie fundamental biological processes such as
growth, differentiation, and response to the environment. Although there are now various high-
throughput methods for studying these processes, knowledge of them remains fragmentary.
Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie
outside of the expected pathways. These unexpected components of the cellular response are often
the most interesting, because they can provide new insights into biological processes and potentially
reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present
a technique, based on the Steiner tree problem, that uses previously reported protein-protein and
protein-DNA interactions to determine how these hits are organized into functionally coherent
pathways, revealing many components of the cellular response that are not readily apparent in the
original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast
pheromone response, it identifies changes in diverse cellular processes that extend far beyond the
expected pathways.

INTRODUCTION
High-throughput experimental techniques provide unprecedented views of the molecular
changes that occur in cells as they respond to stimuli. Because many of these techniques are
not dependent on prior knowledge of the relevant pathways, they provide a systematic view of
signaling and regulatory changes that can uncover previously unrecognized components of
these responses (1-4). For example, high-throughput genetic screening identifies sets of genes
whose expression changes lead to altered phenotype and, therefore, the products of these genes
are likely to be involved in the regulatory pathways (4,5). Mass-spectrometry techniques can
provide quantitative measurements of signaling events in the form of peptide or
phosphopeptide abundance (6-9). At the level of transcription, changes in the expression of
thousands of genes are readily obtained by microarrays. At the interface of protein and
transcription, chromatin immunoprecipitation (ChIP) followed by array hybridization or
sequencing reports whole genome protein-DNA binding interactions (10,11).

These system-wide datasets often reveal that our current understanding of regulatory networks
at the systems level remains incomplete, even in extremely well-characterized systems. For
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example, the mitogen-activated protein kinase (MAPK) cascade in the yeast Saccharomyces
cerevisiae that responds to mating pheromone has been extensively studied and the most
important transcription factors regulated by this process are known (12). However, when cells
are exposed to pheromone, differentially phosphorylated sites are detected on more than 100
proteins (7), only about 10% of which are known components in the MAPK cascade, and more
than 70% are not present in any of the yeast pathways annotated in the KEGG Pathway database
(13). Of the hundreds of genes that are differentially transcribed (3), a majority of them are not
known to be regulated by the transcription factors included in the MAPK cascade.

The number of unexpected components of the cellular response even in such a well-studied
system presents both a challenge and an opportunity for systems biology approaches.
Computational methods that can give context to these observations have the potential to reveal
more comprehensive views of cellular responses. Any computational approach for this purpose
must overcome the fact that not all components in the regulatory networks can be exposed in
one experiment due to systematic biases in the assays. For example, compensatory mechanisms
can mask the consequences of genetic manipulations. Thus, despite their important roles in
mating type signaling, the yeast MAPK-encoding genes FUS3 and KSS1 are not detected in
genetic screens for mating defects, because they are functionally redundant (14). Similarly,
due to many posttranslational regulation mechanisms that do not affect protein concentrations,
changes in many important components of signaling pathways escape detection by even the
most comprehensive proteomic technologies. For instance, after stimulation by the pheromone
alpha-factor (a-factor), the yeast a-factor receptor STE2 activates the trimeric G protein
(composed of the subunits GPA1, STE4, and STE18) through conformational changes, so it
was not surprising that these proteins were not detected by a mass-spectrometry experiment
(7). Although not reported by the assays, these "hidden" components are critical for
understanding the cellular response of interest.

We present a method for constructing a network of protein-protein and protein-DNA
interactions, including hidden components, that explains the functional context of genes and
proteins detected in these assays. This approach takes advantage of the large number of reported
protein-protein and protein-DNA interactions present in the interactome. An interactome-based
method is attractive, because it not only contains molecular pathways known to be relevant,
but also expands beyond these pathways for novel biological insights. Clearly, reconstructing
response pathways in the cell from the interactome is more complicated than simply assembling
all the interactions that link the proteins or genes reported by the experiments. Because not all
molecules in the regulatory networks are detected, the hits identified may be connected by
direct or indirect interactions. The "hidden nodes" that were not experimentally detected but
that link the proteins or genes detected are often critical for interpreting the functional
significance of the data. However, allowing for such indirect connections between proteins and
genes in the interactome quickly leads to a combinatorial explosion of potential paths that are
not informative.

To discover meaningful regulatory networks linking the identified genes, a few previous
studies combine information from phenotypic or expression experiments with a protein-protein
interaction network and search for regions that are enriched for the phenotype or differential
expression (15-19). Methods interested in transcriptional regulation search for paths less than
a predefined length from the stimulus to transcription factor binding activity (20,21). However,
most of these techniques do not explicitly consider the dramatically different reliability of the
interaction data, which is especially problematic when the interactome is built from multiple
databases or experimental sources. In addition to the varying quality of interaction datasets,
we recognize that some of the input proteins or genes should not be connected either because
they are false positives or because the true pathways that link them to the rest of the dataset
are not present in the currently known interactome.
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These two issues were taken into account previously in the context of connecting genetic data
and differentially transcribed genes by starting from the interactome and applying a flow-based
approach (4,22) or building a physical network model (21). The flow-based approach is
designed to find connections linking a set of differentially transcribed genes to a second set of
genetic hits that represent the upstream signal. However, applying this approach to
phosphoproteomic and transcriptional data is likely to miss many functionally relevant
connections within the proteomic data because these connections lack a direct link to
transcriptional changes. The physical network model algorithm requires the phenotypic and
transcriptional response of the genetic knockouts as input, so it cannot be applied when such
data is not available or to other types of signaling data.

Here, we propose to address the problems outlined above by taking a constrained optimization
view of the overall objective (Fig. 1). The proteins and genes that are detected in the
experiments should guide the selection of relevant pathways from the interactome. To avoid
forcing a solution that integrates false positives from the experiments and to preferentially
include the most reliable interactions, we treat the goal of connecting the data as a constraint
that we attempt to satisfy through an optimization procedure. We show that this problem can
be modeled as a prize-collecting variant of the Steiner tree problem.

The Steiner tree problem begins with a weighted graph and a set of "terminal" nodes in the
graph. The algorithm constrains the solution to link these termini directly or indirectly through
the edges of the graph. The prize-collecting variant of the Steiner tree problem relaxes these
constraints so that not all the termini are required to be included in the solution. Rather, the
algorithm balances two costs: (i) It pays a penalty for leaving a terminal out of the network;
(ii) it pays a price for using edges to include a terminal in the network. In addition, we control
the size of the solution network by introducing a single parameter P that weights the penalties
of excluding terminal nodes relative to the cost of including edges. We define the cost of the
edges so that more reliable edges have lower cost than less reliable ones and we define penalties
for excluding each terminal node to reflect the relative importance of that terminal in the
experimental data. The solution to the prize-collecting Steiner tree (PCST) problem is a
minimum-weighted subtree that connects a subset of the termini to each other through the edges
of the interactome graph and additional nodes not in the terminal set.

We demonstrate the utility of our approach by relating mRNA expression changes to two
classes of upstream regulatory data from S. cerevisiae: One is derived from curated genetic
interactors (23) and the other is from phosphoproteomics mass-spectrometry (7). We show that
our method reports compact networks that connect the experimental data through high-
confidence interactions. We present evidence that the proteins in the networks predicted by the
algorithm are functionally relevant, provide a clear context to interpret the experimental
observations, and uncover diverse pathways not obvious from the input.

RESULTS
Linking genetic and transcriptional data recovers relevant biological processes

The results of genetic screens generally share very little overlap with genes differentially
expressed in response to the same perturbations (4). One strategy to address this gap is a flow-
based algorithm that links the genetic hits and differentially transcribed genes (4). We evaluated
our approach by applying the Steiner tree algorithm to the same problem. We tested solving
the PCST on five sets of genetic hits and the associated mRNA profiles: Four were from genetic
interactors of a few components in well-characterized signaling pathways, such as MAPK
signaling (23,24) and the DNA damage response (25-27), and one was from overexpression
screen of alpha-synuclein (a-syn) (4), a protein implicated in Parkinson's disease. In order to
derive connections between the genetic hits and differentially expressed genes, we followed
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the approach of the flow-based algorithm and supplemented the protein-protein interactome
(28,29) with protein-DNA interaction data (30,31). In this interactome, each protein and the
transcript that encodes it are represented as separate nodes. The nodes representing transcripts
are only linked to DNA-binding proteins that have been shown to bind the corresponding
promoter (Fig. 1).

In all four input datasets for the known signaling pathways, the nodes discovered by the network
are highly enriched in the relevant biological processes (Fig. 2). As expected, putting heavier
weights on the node penalties (larger p) forces more terminal nodes to be included and produces
larger solution networks. In some cases, this leads to marked decrease in the fraction of nodes
in the solution that have the expected annotation [the STE12 deletion (STE1 2A) and STE2
deletion (STE2A) datasets] and even results in the loss of significant enrichment (STE2A),
demonstrating the benefit gained by the exclusion of terminal nodes by the PCST. We then
compared our method to the flow-based approach and to two simpler methods of building
networks: (i) assembling the shortest paths between all pairs of nodes in the set of the genetic
hits and differentially transcribed genes, and (ii) expanding from the genetic hits to the nodes
that directly interact with them (first neighbors). Because the PCST algorithm excludes some
genetic hits and differentially expressed genes, we used solutions from the flow-based approach
that contain approximately equal number of nonterminal nodes and constructed the networks
for the other two methods with those terminal nodes included in the PCST solution. Although
all these methods predict hidden nodes that are significantly enriched for the relevant biological
process, the PCST solutions contain higher fraction of nodes with the expected annotation and
the networks are much smaller than the shortest path and first neighbor networks (Fig. 2). And
by these two measures the PCST solutions are comparable to the networks reported by the
flow-based algorithm. This suggests that the PCST approach reconstructs compact networks
that nevertheless retain the functionally relevant connections.

For the a-syn overexpression dataset, we compared our results to the reported cellular pathways
implicated in Parkinson's disease and additional processes uncovered by the flow-based
approach. We observed that the solution network partitions into clusters that are biologically
coherent. To formally evaluate this observation, we used a previously reported algorithm for
partitioning a network into local clusters (32,33) and tested the Gene Ontology (GO) (34)
enrichment of each cluster (fig. S1). The most enriched biological process GO terms from the
clusters include vesicle trafficking [FDR (False Discovery Rate)-corrected P-value<1E-09]
and ubiquitin-dependent protein degradation (FDR-corrected P-value<3E-06). Both of these
processes have been associated with Parkinson's disease (4). In addition, the network contains
smaller clusters of genes in the heat shock response and the target of rapamycin pathways (fig.
Sl), two biological processes first identified in the flow-based approach as responsive to a-
syn expression and subsequently validated by biological experiments (4). This shows that the
PCST approach can uncover new mechanisms when applied to connect genetic data and
transcriptional data.

The pheromone response network linking proteomic and transcriptional data reveals diverse
biological processes

Having demonstrated that the PCST approach can identify relevant interactions from regulatory
proteins that may not directly interact, we tested whether it could be applied to find regulatory
networks from phosphoproteomic and transcriptional data. We used published mass-
spectrometry (7) and mRNA profiling (3) datasets for yeast responding to the mating
pheromone a-factor. As noted above, only a small fraction of the proteins with differentially
phosphorylated sites are mapped to the MAPK pathway or any annotated signaling pathways
in yeast. Among them only four proteins are annotated to have transcription factor activity. Of
the 201 genes differentially expressed by more than threefold at the mRNA level, only six
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encode proteins in the MAPK pathway and ten encode proteins in the cell cycle pathway in
the KEGG database.

We asked whether the PCST approach could provide a functional context for the many proteins
that lie outside of the expected pathways. We used the same interactome presented above that
contains protein-protein interactions with added transcription factor to target gene
relationships, and we defined the terminal nodes to include the proteins with differentially
phosphorylated sites in the protein-protein interaction layer and the genes with differentially
expressed mRNA transcripts in the transcription factor to target gene layer (Fig. 1). The
penalties reflected the magnitudes of the changes in phosphorylation or mRNA expression (see
Materials and Methods).

The resulting network (Fig. 3) reveals that the algorithm recovers the expected pathways, as
well as many other components of the cellular response that are not immediately apparent from
the input. The algorithm connects 56 of the 112 proteins with a-factor-responsive
phosphorylation sites and 100 of the 201 differentially expressed genes through 94 intermediate
proteins. The solution contains a subnetwork that resembles the known pheromone-induced
MAPK pathway (labeled "pheromone core" in Fig. 3). It is noteworthy that those components
in this pathway that were not detected by mass-spectrometry, GPA1, STEl 1, and BEM1, are
correctly recovered. We confirmed that the solution is relatively stable for a wide range of p
values (fig. S2) and is robust to noise in the interactome (fig. S3).

One of the principal benefits of our approach is that by placing the data in a functional context
it reveals broad changes in cellular processes beyond those that might have been expected. For
example, the solution features two other yeast MAPK pathways: the protein kinase C (PKC)
pathway and the filamentous growth pathway. The PKC pathway is activated during
pheromone induction to promote polarized cell growth for mating projection formation (35,
36). In the PCST solution, it is represented by the MAPK SLT2, the transcription factor RLM1
and the SWI4/SWI6 transcription factor complex. SLT2 is activated by PKC (37), and RLM1
and the SWI4/SWI6 complex are activated by SLT2 (38,39). Components of the filamentous
growth pathway appear alongside the pheromone core in Fig. 3, which is not surprising as
filamentous growth and pheromone MAPK pathways are known to share multiple signaling
components (40). SHOl is an osmosensor in the high-osmolarity glycerol (HOG) pathway
(41) that also activates the filamentous growth pathway through the STEl 1 MAPKKK (42,
43), leading to the phosphorylation and inhibition of transcription factors DIGI and DIG2 and
subsequently the activation of the transcription factors STE12 and TEC1 (44,45). In the PCST
solution, the proteins STEI 1, DIG 1, DIG2, and STE 12 are common between the pheromone-
induced MAPK pathway and the filamentous growth pathway, as expected (40). The decrease
in phosphorylation on SHOl suggests a mechanism by which the specificity of mating signal
is achieved in response to pheromone. This may be similar to the situation where the HOG
pathway shares a few components with the mating response pathway and inhibiting SHOI
prevents the crosstalk between them (43).

Outside of the core pheromone signaling pathway, a diverse array of mating-related biological
functions are apparent, including regulation of cell cycle, transcription control, cellular
polarization, and cellular transport. The nonterminal nodes in the PCST solution provide
mechanistic insights into these processes. For instance, the algorithm included two proteins
that did not contain differentially phosphorylated sites, CDC5 (a protein kinase) and DBF4
(the regulatory subunit for the protein kinase CDC7), in a subnetwork related to DNA
replication that contains several phosphorylated proteins. CDC5 is a CDC28 substrate (46) and
is recruited to origin of replication by DBF4. DBF4 acts to initiate DNA replication in late G1
phase (47), the point at which pheromone-stimulated cells arrest their cell cycle (48). In the
shmoo (mating projection) formation subnetwork, the algorithm highlights the involvement of
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AFRI, a protein required for forming pheromone-induced projections, in regulating the septin
proteins through interaction with the septin protein CDC 12, which is not phosphorylated
[reviewed in (49)]. The role of the molecular chaperone HSP82 is also made clear by its
interactors in the protein folding subnetwork. Differentially phosphorylated heat shock proteins
SIS1 and SSB2 are connected to HSP82, which is required for pheromone signaling (50), and
to the HSP82 co-chaperone SSEL. Neither HSP82 nor SSE1 has pheromone-responsive
phosphorylation sites that were detected in the mass-spectrometry experiment. These
observations demonstrate the rich range of biological knowledge represented by the hidden
nodes that are not present in the experimental datasets.

Similar to the results obtained from the a-syn datasets, the network can be partitioned into
functionally coherent clusters by an automated procedure (Table 1, and fig. S4) (32), and these
clusters represent many of the biological functions altered in response to mating factor.

L

The reconstructed network is enriched in genes implicated in mating defects
To further assess the relevance of the genes in the reconstructed network to pheromone
response, we asked whether the network was enriched in genes reported to display mating
defects in two whole-genome deletion screens (51,52) (Fig. 4). The sets of genes encoding the
protein nodes in the PCST solution network, excluding terminal nodes, are significantly
enriched in genes that are involved in the mating-specific transcriptional response (51) or in
changes in cellular morphology induced by pheromone (52). The PCST solution is smaller and
has a higher fraction of the genes implicated in these mating defects compared to the network
constructed by three other approaches: the flow-based approach, the network composed of
pairwise shortest paths between the terminal nodes, as well as the network of the set of
immediate neighbors of the phosphorylated proteins. Because these two screens are
independent of the data sources incorporated in the algorithm, the fact that the PCST solution
includes a high percentage of genes necessary to produce a normal mating phenotype is strong

evidence that our method identifies signaling nodes that are perturbed in pheromone response.

Targets of transcription factors in the solution show significant expression coherence
L The transcription factors in the solution network are included because of constraints from both

the upstream phosphorylation events and the downstream target genes that are differentially
expressed. Many of the transcription factors in the solution are indeed known to be induced by
pheromone, such as DIG 1, DIG2, MCM 1, and STE 12, or have functions in mating related-
processes, such as the cell cycle regulators SW14, SW16 and MBP1, but the algorithm also
includes many others that are not previously known to be involved in pheromone response. To
quantitatively assess the relevance of these transcription factors, we computed the expression
coherence scores under different conditions (53) for targets of each transcription factor and
used these scores as a condition-specific measure of the similarity of the mRNA expression
profiles of the targets. After stimulus by a-factor, the previously reported targets (30,31) of the
transcription factors included in the PCST solution are more likely to show significant
expression coherence than the transcription factors that were excluded. In addition, we show
that such coherence, as expected, is specific to pheromone signaling but not to unrelated
conditions, such as when yeast cells undergo metabolic shift from fermentation to respiration
(diauxic shift) (Fig. 5). Additionally, some transcription factors that function cooperatively are

placed in close proximity to the expected upstream signaling pathways. Examples include the
DIG1/DIG2/STE12 complex in the core pheromone signaling pathway and the SW14/SW16
and SWI6/MBP1 complexes in the PKC pathway (Fig. 3).

Most proteins in the network are not coordinately expressed
It has been proposed that genes in regulatory pathways tend to be coordinately expressed, and
this has been evaluated by several techniques, including the expression coherence score (53)
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and the expression activity score (18). This rationale inspires many of the network inference
algorithms to search for local neighborhoods in the interactome that have this property. Because
our network was constructed from phosphoproteomic data and represents proteins and
transcripts separately, it provides an opportunity to examine these assumptions in an unbiased
way. Overall, the proteins identified by our approach do not have significantly correlated
expression as measured by the significance of the expression coherence score or the
significance of the expression activity score (Table 1). We then examined the individual
clusters in our network produced by the clustering algorithm (33). Despite the high degree of
functional coherence, these clusters show a large variability in the significance of expression
coherence score and the significance of expression activity score (Table 1). For example,
although the cell cycle-related cluster (cluster 9) has a significant expression activity score, the
score for the cellular transport cluster (cluster 1) is not significant, and therefore this cluster
would not have been recovered by expression-based methods. These observations are
consistent with the fact that many biological processes are regulated posttranscriptionally and
highlight the critical role of proteomic data in revealing the full extent of the proteins involved
in biological responses.

DISCUSSION
We describe a computational method based on constrained optimization for discovery of
regulatory networks from high-throughput data and apply it to reconstruct pathways linking
transcriptional data with proteomic or genetic data. The objective of finding relevant
mechanistic connections is formulated as solving a PCST problem on the weighted interactome
graph. We reasoned that this approach would be well-suited to overcome noise in the input
data and in the interactome. Because the algorithm does not require all terminal nodes to be
included in the solution, it should handle false positives in the input data well. False positives
in the interactome correspond to reported interactions that do not occur in the cell. These may
be eliminated by choosing a cost function that penalizes edges based on the probability that
they represent real interactions (4).

Application of the algorithm to yeast genetic, phosphoproteomics, and transcription profiling
datasets reveals highly coherent, global views of the many cellular processes involved in
creating the response of interest, and identifies transcription factors that connect differentially
expressed genes to upstream regulatory events. In the reconstructed networks, the hidden
nodes, which are not present in the genetic, mass-spectrometry or transcriptional datasets, give
biological context for understanding the functions of the terminal nodes, while providing a
systematic view of the biological processes at the global level. Many of the functionally
coherent clusters that we identified are not coordinately expressed, and so could not have been
recovered by mapping mRNA expression data onto the interactome.

We note that our method is distinct from many existing computational techniques that are
typically applied to discover regulatory relationships from high-throughput signaling and
expression measurements. Approaches such as probabilistic graphical models (54) and partial
least-squares regression (55) can reveal the presence of correlated events across diverse
datasets, but it is often difficult to discern why these events are correlated. The biological
interaction network provides valuable context for interpretation of these events.

Previous studies using the Steiner tree formulation to analyze biological networks mapped the
mRNA abundance onto the protein-protein interaction network and searched for regions that
show high degree of differential mRNA expression (16,19). Despite the Steiner tree
formulation, this problem is inherently different from our objective of connecting signaling
and expression through intermediate nodes in the interactome. In addition to the distinct
objectives, the input data are also treated differently in these prior studies. Differential mRNA
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expression was used as a proxy for subsequent changes at the protein level. Here, we provided
evidence that mRNA expression measurements alone are insufficient to capture many of the
relevant cellular processes. In contrast, by modeling proteins and transcripts as separate
entities, our approach uses the mRNA data as evidence of upstream changes in signaling and
reveals biological processes not captured by measurable changes in mRNA abundance.
Furthermore, the optimization functions in these two studies (16,19) include only the weights
on the nodes but not the reliability of the edges in the interactome graph.

Another computational method that takes a constrained optimization approach constructs
functional protein networks from genetic hits by finding optimal paths on an interactome
weighted by interaction reliability (56). Our results are consistent with their observation that
the Steiner tree approach recovers pathways that are functionally coherent, but our approach
differs in two critical ways. First, by using a prize-collecting variant of the Steiner tree problem,
we can handle noise in the experimental data and in the interactome and avoid producing
unnecessarily large networks that include irrelevant nodes. Second, we demonstrate that our
approach effectively integrates expression data with proteomic and genetic data. As a result,
we can discover a coherent view of the links between the biological processes from diverse
experimental data sources.

This method represents a general framework for building models of regulatory networks from
high-throughput measurements of signaling and transcription. It can be applied when there are
suitably defined constraints and in different species where the interactome are available. The
constraints can be defined in multiple ways to focus on different aspects of the regulatory
networks. For example, we can easily extend our approach to use time-courses of proteomic
and expression measurements to examine the time-dependent changes in the signaling network.
We expect that our framework will be increasingly useful and accurate as the interactome
becomes more complete.

MATERIALS AND METHODS

Overview
We consider the goal of finding a network that explains the regulatory data as a constrained
optimization problem on an interactome graph, in particular, as solving a PCST problem. Input
to the algorithm consists of two components: terminal nodes and a weighted interactome. The
terminal nodes are derived from a list of molecules reported in some experiments as potential
components in the regulatory network, for instance, hits from genetic screens, proteins with
differentially phosphorylated sites, or genes with altered mRNA expression. Each interaction
is associated with a weight to indicate the confidence of the interaction. Solving the PCST
problem on the weighted interactome is equivalent to trying to find a set of most confident
interactions that connect the terminal nodes while possibly leaving some unconnected.

The PCST formulation
We use the Goemans and Williamson Minimization (GW) definition of the PCST problem
(57).

Given an undirected graph of nodes V and edges E, a function p(v)>O that assigns a penalty to
each node vEV, and a function c(e)> that assigns a cost to each edge eEE, the PCST problem
is to find a subtree T of nodes VTCV and edges ET-CE that minimizes the objective

GW(T)= X p(v)+ E c(e).
S iPM10 e E2.
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Note that we incur penalties for excluding nodes while paying costs for including edges.
Although this problem is NP-hard (58,59), exact solutions for the datasets presented here can
be found by a published algorithm (60).

The probabilistic interactome
The interactome graph of S. cerevisiae and probabilistic weights on the edges were constructed
as previously described (4). Briefly, experimentally determined protein-protein interactions
and the experimental evidence for each interaction were collected from publicly available
databases such as BioGRID (29) and MIPS (28). With a naive Bayes probabilistic model where
the probability of each evidence is conditioned on whether two proteins interact, we computed
the conditional probability tables from published gold standard set of positive (61) and negative
(62) interactions. By applying Bayes rule to the experimental evidence of individual edges in
the interactome graph, we obtained the reliability of the interaction represented by the edge.
To this protein-protein interaction graph we added protein-mRNA edges that represent
transcription factor to target gene relationships. The mRNA node of a gene was represented
separately from the protein node of the same gene (Fig. 1). These transcription factor target
data were collected from literature and published ChIP-chip assays (30,31), and the edge
weights were computed to reflect the reliability of binding events.

Because the optimization objective is to minimize the sum of the edge costs, we took the
negative log of the probability weights on the edges as the edge costs. Furthermore, this general
interactome graph was slightly modified when the node penalties were defined for specific
mRNA expression datasets (see the section on node penalties).

Node penalties
Although the weighted interaction graph was generic, the node penalties were specific for each
dataset. We used a formulation such that the optimization would preferentially include nodes
that show the largest experimental signals. For example, the experimental signal can be the
severity of defect of the genetic hits in genetic screens or the fold change in phosphorylation
in the phosphoproteomics data. We will refer to the experimental signal generally as "strength."
Let prot be the set of proteins with the experimental signal. For all v E prot we have strength
(v)>O as a measure of the importance of v in the network. We computed the node penalty as
the normalized absolute log of the strength:

log(strength(v))|

Z log(strength(v))|
V' EpIo

To connect mRNA profiling datasets to upstream regulatory events, we need to make some
modification to the interactome. Let mma be the set of differentially expressed transcripts, and
fc(v) be the fold change in mRNA abundance of each gene v E mrna. For each v E mrna, we
searched the interactome for the set of upstream transcription factors F, removed v from the
interactome, and added one node vf for each transcription factorf E F and one edge between
f and vf. The fold change of v was transferred to all the vf and normalized so the penalties were

1log(fc(v))|
p(v)= , Author m Vf E F.
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All nodes in the interactome not in the prot or mrna set are given a penalty of zero.

Solving and analyzing the PCST
We introduced a scaling factor p for the node penalties described in the previous section. The
PCST minimization objective becomes

SJp(v)+ 2:,cr).
e E1

Intuitively, the objective function represents a trade-off between excluding nodes and including
edges. In a given problem with defined penalty and cost values, the larger the value of s, the
greater the penalty to exclude a node, making the optimization procedure exclude fewer nodes
at the expense of including more edges (with higher total edge cost) and generating a larger
network. The parameter P thus controls the size of the solution. We used a published algorithm
(60) to find the exact solution to the PCST and experimented with a wide range of p values.
For the pheromone response data, we show results for p=4 because it produces a midsize
solution network that includes most of the terminal nodes present in solutions of larger p values
(fig. S2). The solution networks were visualized in Cytoscape (63). GO enrichment statistics
were computing using BiNGO (64).

Yeast genetic and matching mRNA profiling data
Genetic interactors for STE2, STE5, and STE12 deletions were downloaded from the
Saccharomyces cerevisiae genome database (SGD) (23). Differentially expressed genes are
defined as genes that show at least a twofold change with P-value 5 0.05 (24). For the DNA
damage response, 91 genetic hits common to two independent screens (25,26) and the DNA
damage signature genes from mRNA profiling (27) were used. a-syn genetic and
transcriptional data were from (4).

Yeast pheromone response data
For termini that were proteins, we used the set of phosphorylation sites that change by least
two fold after 2 pM a-factor treatment for 120 minutes (7). Termini that were mRNA
represented genes that were differentially expressed by greater than three fold in wild-type
cells after 50 nM a-factor treatment for 120 minutes (3). Although the treatment concentrations
were different between these two datasets, there was evidence that the transcriptional response
to a-factor saturates at concentrations above 15.8 nM [fig. S5 and (3)]. The gene sets used in
calculating enrichment of mating-related genes were the Group III, pheromone-unresponsive
set from (51) and the ASD set from (52). Only the genes tested in each screen were used as
background in the calculation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Finding relevant interactions as a constraint optimization problem. We seek a set of high-
confidence edges present in the interactome that directly or indirectly link the proteins and
genes identified in the experimental assays. Because some of the input data may be false
positives (arrowhead) or may not be explained by currently known interactome (arrow), our
approach does not require that all the input data be connected, but rather uses these data as
constraints. Note that the protein product and mRNA transcript of the same gene are represented
as separate nodes.
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Fig. 2.
The PCST solution recovers compact networks. The fraction of nodes associated with the
expected biological process is comparable to the networks from flow-based approach that
include approximately equal number of nonterminal nodes, but this fraction is higher than the
first neighbor and shortest path networks connecting the same set of terminal nodes.
Perturbations for the genetic hits are STE12A (STE12 deletion), STE2A (STE2 deletion),
STE5A (STE5 deletion), and, MMS (methyl methanesulfonate treatment). The number above
each bar denotes the number of nonterminal nodes in the respective network. The GO
annotations tested are response to pheromone (GO:0019236) for STE12A, STE2A, and
STESA, and response to DNA damage stimulus (GO:0006974) for MMS. The evidence code
IGI (Inferred from Genetic Interaction) was excluded from the calculation. Statistical
significance of the GO term enrichment was computed by hypergeometric test followed by
FDR correction (65).
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Fig. 3.
The protein components of the pheromone response network constructed by the PCST
approach. Note that the canonical pheromone response pathway (enclosed by dashed lines) is
but a small component of the broad cellular changes revealed by applying the algorithm to the
mass spectrometry and expression data. For clarity the differentially transcribed genes included
in the network are not presented. Functional groups based on GO annotation are outlined with
red boxes. PKC, protein kinase C; TF with phos. site, transcription factor with at least one
differentially phosphorylated sites; TF with no phos. site, transcription factor with no
differentially phosphorylated sites; non-TF protein with phos. site, a protein that is not a
transcription factor and with at least one differentially phosphorylated sites; non-TF with no
phos. site, a protein that is not a transcription factor and with no differentially phosphorylated
sites.
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Fig. 4.
The PCST pheromone response network is compact, and, when compared to networks
predicted by other methods, it contains higher fraction of genes that are implicated in mating
responses, measured by defects in activating a FUS 1 -lacZ reporter gene (51) and defects in
cell cycle arrest and shmoo formation (52). Enrichment P-values were computed by
hypergeometric tests using all the genes tested in the respective genetic screen as background.
The number above each bar denotes the number of nodes in the network.
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Fig. 5.
Percentage of transcription factors (TF) with targets that show significant expression coherence
(EC) scores computed from 50 nM a-factor time course (3) and diauxic shift conditions (66),
for transcription factors included in and excluded from the PCST solution network. The P-
values indicate thresholds on the significance of the expression coherence score of the target
genes.
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Table 1

Biological functions and measures of coordinated mRNA expression of the clusters in the pheromone network (fig. S4). EC, expression coherence (53). EA,
expression activity (18). 9

Cluster Top three enriched GO biological process terms Corrected P-value P-value of EC score P-value of EA score
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Fig. Si. The clusters in the protein-protein interaction part of the a-syn PCST solution. Nodes are colored
or marked by GO biological process. TOR: target of rapamycin.
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Fig. S2. Statistics of the yeast pheromone PCST solution network for different values of 3. The PCST solu-
tion constructed from the pheromone response datasets is relatively stable with respect to the parameter 3, as
measured by the number of terminal nodes included in the solution that represent proteins with differentially
phosphorylated sites (protein terminals) and genes that are differentially transcribed (mRNA terminals). The
number of terminals indicated in the figure legend counts only the ones present in the interactome.
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Fig. S3. Alternative or suboptimal solutions to the yeast pheromone response dataset. Because we use an
optimization approach to analyze inherently noisy data, we asked whether the network we obtained was
stable - are there very different networks that explain the data almost as well? For this, we compared the
optimal solution network to a set of alternative solution networks obtained by finding networks that are
different from the optimal one by at least a specific percentage of nodes. (A) No alternative solutions in
the neighborhood of the optimal solution achieves the same objective function value. (B) Of the nodes that
appear at least once in the 54 suboptimal solutions, at least 80% also appear in the optimal solution.
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legend

o protein with phos. site * intracellular transport * cell cycle 0 protein folding
0 response to pheromone 0 transcription cytoskeleton organization and biogenesis

Fig. S4. The clusters in the protein-protein interaction part of the yeast pheromone response PCST solution.
Nodes are colored by GO biological process. Cluster labels correspond to those in Table 1.
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Fig. S5. Scatter plot of gene expression changes following 50 nM and 500nM a-factor treatment. Wild-type
yeast cells were treated with 50 nM and 500 nM a-factor for 30 minutes (1). Fold changes were calculated
with respect to wild-type, untreated cells.

References

1. C. J. Roberts, et al., Science 287, 873 (2000).

CD -

C,.J -

O --



86



Chapter 3

Integrating proteomic, transcriptional,

and interactome data reveals key

components of signaling network and

transcriptional response in a cell line

model of human glioblastoma

3.1 Summary

Applying our PCST method to the yeast pheromone response datasets produced some

promising results, but taking it to the mammalian system presented a significantly

more challenging problem. A fundamental component of the algorithm is the inter-

actome network. Despite large scale efforts to measure and curate protein-protein

interactions in mammalian cells, coverage of the network connections at the global

level are still very sparse. The connections between transcription factors and target

genes are intimately linked to the context which alters the activity of these factors

and which consequently determines the downstream effect of transcriptional activity.

With current technology, it is difficult, if not impossible, to experimentally identify

the targets of all mammalian transcriptional regulators genome-wide for all tissue

types and conditions. These considerations motivated our choice of the experimental



model and the new experimental and computational techniques that we addition-

ally incorporated for modeling the phosphoproteomic and transcriptional data from

mammalian systems.

The U87MG EGFRvIII over-expressing cells (Huang et al., 1997; Nishikawa et al.,

1994) makes a nice model for studying the effects of oncogenic mutations in glioblas-

toma. There are opportunities for novel development in both cancer biology and

computational modeling. The wild-type EGFR network is very well studied but the

events downstream of the EGFRvIII mutant, the relationships among them and the

functional significance are largely unexplored. We focus on the functional signifi-

cance of those events that lead to mRNA transcript changes. Since transcriptional

regulation is context dependent, evidence of changes at the protein level or phospho-

rylation level of the transcriptional regulators is often insufficient to predict the nature

of downstream differential expression. For example, activation of one transcription

factor by wild-type EGFR compared to EGFRvIII may change the expression of dif-

ferent sets of targets. With the vast amount of knowledge about the wild-type EGFR

signaling, we can be confident that the connections among the important signaling

events are well established and therefore may alleviate some issues with the sparsity

of the total interactome data. Furthermore, it is possible to make qualitative and

quantitative comparisons with the EGFR network, which will give us better under-

standing of oncogenic signaling and transcription in cancer. Therefore, this is a good

starting point to develop the method before tackling other disease models.

In order to meet the challenges in applying the PCST method to mammalian

datasets, we made some major modifications to both the experimental data collec-

tion and computational analysis for generating the components of the PCST method.

Unlike the yeast dataset, the phosphoproteomics MS data was for tyrosine phospho-

rylation only, and there were no global measurements of transcription factor targets

for all the transcriptional regulators. As a consequence, the transcription factor to

target layer was poorly constrained. To address this issue, we adopted DNase-seq,

a recently developed method that could profile condition-specific open chromatin re-

gions genome-wide, and combined these data with sequence motif libraries and mRNA



expression data in a regression-based technique to identify potential transcriptional

regulators. This approach, which constrains the transcriptional regulators from the

upstream signaling layer and downstream differential expression layer, is a promising

direction for discovery of relevant transcriptional regulators.

In the last part of this chapter I show how to generate testable hypotheses from the

PCST results. At the subnetwork level, since the method puts the phosphorylation

events in the context of protein-protein interactions, the connections participated by

these events or groups of events are suggestive of their cellular functions. The tran-

scription factors included in the network and the connections among them point to

the functional consequence of the upstream signals. Also interesting are the global

network connectivity properties that reveal key signaling nodes in the network that

are not immediately apparent from the experimental data. I will present experimen-

tal results of testing some of the hypotheses generated from the PCST solution of

EGFRvIII datasets.

This work was done in collaboration with Paul Huang in the laboratory of Forest

White, who generously provided the U87MG EGFRvIII cell lines and collected the

EGFRvIII phosphoproteomics data, and William Gordon in the laboratory of Ernest

Fraenkel, who collected the mRNA expression microarray data. The DNase-seq data

was collected with the help of Tatjana Degenhardt in the Fraenkel lab.

3.2 Materials and methods: experimental

3.2.1 Cell culture

The human glioblastoma cell line U87MG expressing high level of EGFRvIII (U87H;

2 x 106 receptors per cell) and a kinase dead version of EGFRvIII (U87DK; 2 x 106 re-

ceptors per cell) were cultured in complete media (DMEM (Mediatech) supplemented

with 10% fetal bovine serum, 100 units/mL penicillin, 100 mg/mL streptomycin (In-

vitrogen), 4 mM L-glutamine) and in a 95% air/5% CO 2 humidified atmosphere at

37 C. Expression of EGFRvIII and DK receptors were selected by 400 mg/mL G418



(Calbiochem). To enhance cell attachment tissue culture vessels with the Corning

CellBIND surface (Corning) were used.

3.2.2 Mass spectrometry phosphoproteomics

Quantitative phosphotyrosine proteomic data on the U87MG cells expressing titrated

levels of the EGFRvIII receptor (U87M, U87H, and U87SH) and U87DK cells were

collected by Paul Huang in the laboratory of Forest White and published previ-

ously (Huang et al., 2007). Briefly, the four cell lines were serum starved for 24

hours, lysed in 8 M urea and digested in trypsin. Each sample was then labeled with

iTRAQ reagent with a different mass tag. The samples were mixed and tyrosine-

phosphorylated peptides were immunoprecipitated with an antibody specific to phos-

phorylated tyrosine. The phosphorylated peptides were further enriched in an IMAC

column and analyzed by LC-MS/MS. The peptide sequences were identified from the

MS/MS spectra and the relative levels of the phosphorylated peptides were computed

from the area under the peak of the iTRAQ marker ions and normalized with respect

to the U87DK cell line.

3.2.3 Transcription profiling

Total RNA was prepared from the four U87MG derived cell lines by the RNeasy Plus

Mini Kit (Qiagen) and quantified on the Affymetrix Human Genome U133 Plus 2.0

arrays. Labeling, hybridization, washing and staining were performed following the

standard Affymetrix GeneChip protocol. The arrays were hybridized in an Affymetrix

GeneChip Hybridization Oven 640 at 45 C 45C at 60 rpm for 16 hours, washed and

stained in Affymetrix Fluidics Station 450, and scanned with Affymetrix GeneChip

Scanner 3000 7G. Two biological replicates were done for each cell line. The intensity

values were normalized using the GC Robust Multi-array Average (gcrma) package

(Wu et al., 2004) in the R BioConductor library (Smyth, 2005) and differential gene

expression was calculated by the Linear Models for Microarray Data method (Smyth,

2004) implemented as the limma package in BioConductor.



3.2.4 DNaseI hypersensitivity sequencing (DNase-seq)

The U87DK and U87H cells were seeded in parental media (complete media without

G418). After 24 hours, the cells were washed gently with PBS and cultured in serum

free media for 24 hours. To collect nuclei, the cells were washed with cold PBS,

scraped from the flasks and pelleted in 50 mL tubes at 500 g 4 0C for 8 min. The cell

pellet was washed in 25 mL cold PBS and pelleted again at 500 g 4 C for 8 min. The

cell pellet was re-suspended in 20mL cold buffer A (15mM Tris HCl (pH 8), 15mM

NaCl, 60 mM KCl, 1mM EDTA (pH 8), 0.5 mM EGTA (pH 8), into which 0.5mM

spermidine was added immediately before use), and cytoplasmic membrane was lysed

by adding 20 mL 2 x NP-40 buffer (buffer A supplemented with 0.2% IGEPAL) and

incubated on ice for 8 min. The nuclei were pelleted at 500 g for 8 min at 4 0C, washed

in 20 mL cold buffer A and pelleted again at 500 g for 8 min at 4 0C. After removal

of the supernatant, the nuclei pellet was gently re-suspended in nuclei storage buffer

(20 mM Tris HCl, 75 mm NaCl, 0.5 mM EDTA, 50% glycerol by volume, 0.85 mM

DTT, into which 0.125 mm PMSF was added immediately before use). 5 x 107 nuclei

were collected for each of the two biological replicates of U87DK and U87H cells. The

pellet was flash frozen in liquid nitrogen and stored in -80 C or proceeded to DNaseI

digestion.

Prior to digestion, 10 x digestion buffer (60 mM CaCl2, 750 mM NaCl) was diluted

1 : 10 in buffer A to make 1 x digestion buffer, and stop buffer was made by adding

RNase A (final concentration 10 pg/mL), spermidine (final concentration 1 mM) and

spermine (final concentration 0.3 mM) to stock stop buffer (50 mM Tris HCl (pH 8),

100 mM NaCl and 0.1% SDS). The digestion buffer and stop buffer were warmed up

for 30 min in a 37 'C water bath. Frozen nuclei were thawed on ice and washed twice

with cold buffer A. Each digestion reaction occurred in a 2 mL centrifuge tube for

107 nuclei so usually one biological replicate of 5 x 107 nuclei required five to six

digestion tubes. 100 pL of DNaseI (100 units; Promega) was added to one tube and

put on a 37 'C hot plate for 2 min. The nuclei were gently re-suspended in digestion

buffer to a concentration of 107 per 850 iL, and aliquots of 850 pL were added to



digestion tubes containing the DNaseI enzyme. After 2 min of digestion at 37 0C, the

reaction was stopped by adding 950 1 L pre-warmed stop buffer and inverting the tubes

multiple times. The digested samples were then incubated at 55 0C for 15 min, after

which 4 pL Proteinase K was added to each digestion tube and incubated overnight at

55 C. Aliquots of the same biological replicate were combined and DNA was isolated

by phenol-chloroform extraction and NaCl was added to the aqueous phase to make

a final concentration of 0.8 M. The purified DNA was size separated in a step sucrose

gradient (sucrose solutions of 40%, 35%, 30%, 25%, 20%, 17.5%, 15%, 12.5% and

10% in layers of 3 mL in a SW28 ultracentrifuge tube with about 6 mL sample as the

top layer) centrifuged in a SW28 rotor for 24 hours at 25000 rpm at 25 C. Fractions

of 1.8 mL were taken from the top of the solution. 30 gL of each fraction was run on

a 1.2% agarose gel with SYBR green I nucleic acid gel stain (Invitrogen) at 100 V

for two hours and scanned in a Typhoon Imager. Fractions with faint fragments

primarily in the 500 to 1000 bp range were purified using Qiagen MinElute columns

and sequenced. To prepare control digestion samples, genomic DNA was extracted

from one 10 cm tissue culture plate (usually containing 5 x 106 cells) with Promega

Genomic DNA extraction kit (Promega), digested with 0.3 units of DNaseI enzyme

in one 2 mL digestion tube, size separated and purified in the same way as the nuclei

samples.

Sequencing library was prepared by the Illumina sample preparation kit, specif-

ically selecting the 100 to 300 bp fragments by gel electrophoresis. Each biological

replicate was sequenced in one lane on a Genome Analyzer II sequencer (Illumina).

The sequencing reads of 36 bp were aligned to the hg18 genome by Illumina's Eland

extended software with maximum two mismatches in the first 25 bp. The sequencing

and alignment statistics are listed in Table 3.1.

3.2.5 Chromatin immunoprecipitation sequencing (ChIP-seq)

The U87DK and U87H cells were seeded in media without G418. After 24 hours, the

cells were washed gently with PBS and cultured in serum free media for 24 hours.

Crosslinking was initiated by adding formaldehyde directly to the culture media to



Sample name Total reads Aligned unique Aligned repeat Aligned none

million million percent million percent million percent

U87DK control 29.9 16.6 55.4 5.8 19.2 7.6 25.4
U87DK replicate 1 12.7 10.5 83.0 2.0 15.4 0.2 1.6
U87DK replicate 2 14.8 12.4 83.7 2.2 14.9 0.2 1.4
U87H control 29.8 14.6 48.9 5.2 17.5 10.0 33.6
U87H replicate 1 15.1 12.4 81.8 2.5 16.8 0.2 1.4
U87H replicate 2 30.0 11.1 37.0 9.0 29.9 9.9 33.0

Table 3.1: Illumina sequencing statistics of the DNase-seq samples. Aligned unique: reads
that are uniquely aligned to the genome. Aligned repeat: reads that are aligned to more
than one location in the genome. Aligned none: reads that are not aligned to any location
in the genome.

a final concentration of 1%, rocked at room temperature for 10 min and stopped by

adding glycine to a final concentration of 0.125M and incubating for 5min. The

crosslinked cells were washed twice with cold PBS, scraped into a 50 mL centrifuge

tube, pelleted at 1500 rpm for 5 min at 4 'C. Cell pellets were transferred to 15 mL

centrifuge tubes, flash frozen in liquid nitrogen and stored in -80 C or proceeded to

sonication. 5 x 10' cells were used for each of the two biological replicates of U87DK

and U87H cells.

For sonication, each tube of 5 x 10' crosslinked cells was thawed on ice. Then

the cell pellet was re-suspended in 10 mL of lysis buffer 1 (50 mM Hepes-KOH (pH

7.5), 140 mM NaCl, 1 mM EDTA, 10% glyerol, 0.5% NP-40 and 0.25% Triton X-100)

and rocked at 4 0C for 10 min. The cells were pelleted in a centrifuge at 4 'C at 2500

rpm for 3 min. The pellet was re-suspended in 10 mL of lysis buffer 2 (200 mM NaCl,

1mM EDTA, 0.5mM EGTA and 10 mM Tris (pH 7.5)) and rocked at 4'C for 5min.

The nuclei were pelleted at 4 'C at 1500 rcf for 3 min. The pellet was re-suspended in

1.5 mL lysis buffer 3 (1mM EDTA, 0.5 mM EGTA, 10 mM Tris-HCl (pH 7.5), 100 mM

NaCl, 0.1% Na-Deoxycholate and 0.5% N-lauroyl sarcosine), transferred to two 15 mL

polystyrene centrifuge tubes with 0.75 mL each, and sonicated in a Bioruptor NextGen

sonication system (Diagenode) with 10 cycles of 30 s on, 30 s off at high power setting.

Chromatin IP was done on the SX-8G IPStar Automated System (Diagenode)

with buffers from the Auto Transcription ChIP kit (Diagenode) following instruction



manual version Vl07-10-10. The pre-set IP protocol "ChIP 22hr IPure16 200vol"

was used with 5 hours of antibody coating and 16 hours of ChIP reaction at 4 0C.

ChIP of ESRI used 3 ig of the Diagenode antibody Mab-009-050 Lot NR-010 and

100 pL of the sonicated chromatin diluted with 100 pL of ChIP Buffer T. ChIP of p300

used 3 ig of the Santa Cruz antibody sc-585x Lot#E2610 and 25 pL of the sonicated

chromatin diluted with 175 pL of ChIP Buffer T. The ChIP products were reverse

crosslinked at 65 C for 6 hours with occasional vortexing. ChIP DNA was purified

by reagents in the Auto IPure kit (Diagenode) but done manually following the IPure

kit (Diagenode) instruction manual version V2-12-05-10.

Sequencing library was prepared from the purified DNA by the SPRI-te Nucleic

Acid extractor (Beckman Coulter) with SPRIworks Fragment Library System I car-

tridges according to manufacturer's protocol. Enrichment was done with 2x Phusion

Master Mix, PE PCR primer 1.0 (Illumina) and a barcoded paired-end PCR primer

2.0. Each biological replicate was sequenced in one paired-end (PE) lane on Illumina

Genome Analyzer II. The sequencing reads of 36 bp were aligned to the hg18 genome

by the short reads aligner bowtie version 0.12.5 suppressing all alignments for reads

that align to more than one location (--m 1). The sequencing and alignment statistics

are listed in Table 3.2.

Total reads Aligned unique Aligned repeat Aligned none
Sample name ________________ __________ ____ _____

million million percent million percent million percent

U87H p300 PEl 39.7 19.8 50.0 18.8 18.1 12.7 32.0
U87H p300 PE2 39.7 19.6 49.5 18.6 18.0 12.6 31.8
U87H ESR1 PE1 39.6 20.2 51.1 19.2 19.2 11.7 29.7
U87H ESRI PE2 39.6 20.1 50.9 19.1 19.1 11.7 29.6

Table 3.2: Illumina sequencing statistics of the ChIP-seq samples. PE1: paired-end read
1. PE2: paired-end read2. Aligned unique: reads that are uniquely aligned to the genome.
Aligned repeat: reads that are aligned to more than one location in the genome. Aligned
none: reads that are not aligned to any location in the genome.

3.2.6 Cell viability assays

WST-1 assay. 4, 000 cells in 100 pL of parental media were seeded per well in a 96



well clear plate. 24 hours later, the media was removed and each well was washed

with 150 pL of PBS and replaced with 100 pL of fresh serum free media (DMEM

with no phenol red) containing indicated concentrations of AG 1478, 17#3- Estradiol,

or 17-AAG. Six to eight technical replicates were done for at least three biological

replicates for each treatment of each cell line. AG1478 and 17-AAG were purchased

from A.G. Scientific (San Diego, CA) and dissolved in DMSO to make 10 mM stock

solution, stored at -20 C in the dark and diluted to the desired concentration im-

mediately prior to adding to the culture media. 17 / - Estradiol was purchased from

Sigma-Aldrich (product number E1024) and dissolved in pure ethanol 200 proof to

make 10 mm stock solution, stored at -20 C in the dark and diluted to the desired

concentration immediately prior to adding to the culture media. After 72 hours of

drug treatment cell viability was measured by the WST-1 reagent (Roche Applied

Science). 10 pL of WST-1 was added to each well. The plates were incubated at

37 'C for three hours and absorbance at 450 nm was measured by Varioskan Flash

Multimode Reader (Thermo Scientific). Background intensities were obtained from

wells that were treated identically but without cells and were subtracted from the

readings of wells on the same plate. Relative cell numbers were computed by taking

ratios between the background subtracted readings of the drug treated cells and vehi-

cle control cells, and statistical significance was computed by paired Student's t-test

between the treatment and control conditions for each cell line. The Bliss indepen-

dence effect was calculated as FAB,expect = FA + FB (1 - FA), where FA is the observed

growth inhibition of 5 pM AG1478, FB is the observed growth inhibition of various

concentrations of 17/3- Estradiol or 17-AAG, and FAB,expect is the expected growth

inhibition of 5 pM AG 1478 with a second drug at that concentration if the two drugs

were independent. The expected survival fraction 1 - FAB,expect was plotted.

To enable comparison with Sauvageot et al. (2009), the data from treatment of

5 pM AG1478 with and without 17-AAG was replotted in the form of interaction ratio,

defined as the ratio of the observed growth inhibition of the drug combination and

the expected growth inhibition computed from the observed inhibition by either drug

alone: FAB,observed
FABexpect



TMRE imaging. Cell seeding and treatment were done in the same way as the

WST-1 assay with the exception that the cells were seeded at a density of 20,000

cells per well in 500 iL of media in a 24 well clear plate. At the end of treatment,

tetramethylrhodamine, ethyl ester (TMRE) (Invitrogen) was added to the cell culture

media to a final concentration of 100 nM. After incubating at 37 C for 20 min, the

media was removed and replaced with fresh, warm serum free media (DMEM with

no phenol red). Fluorescence photomicrographs were taken on a Leica DM IL LED

tissue culture microscope connected to a Leica EC3 digital camera.

3.3 Materials and methods: computational

3.3.1 Overview of the prize collecting Steiner tree

We used the Goemans-Williamson formulation of the prize-collecting Steiner tree

(PCST) problem. Given an undirected graph G = (V, E) where nodes i E V are

associated with penalties ri > 0 and edges e E E are associated with costs ce > 0, we

aim to find a subtree F = (VF, EF) of G such that

ZTi + I Ce (3.3.1)
iVVF eEF

is minimized.

Nodes that have positive penalty values are called terminals. For our application,

the nodes and edges were obtained from protein-protein interaction network datasets.

Protein nodes to which experimental data could be mapped received positive penalty

values (and therefore they were terminals; see Section 3.3.3) and other nodes received

zero penalties. The cost on edges was inversely related to the confidence on each

interaction based on available evidence (see Section 3.3.2) so that high confidence

edges had lower costs and therefore were preferentially selected to be in the solution.

We further introduced a scaling parameter 3 to balance the penalties paid to exclude

nodes with experimental observations and the costs of including edges to connect

these nodes:



# 37ri + E ce . (3.3.2)
igVF eEEF

We solved this optimization problem using the branch-and-cut approach (Ljubi

et al., 2006) implemented in the dhea-code software program that called the ILOG

CPLEX linear programming solver version 12.1 (IBM). We now describe how the

experimental data were transformed into input for the algorithm. An overview of the

work flow is in Figure 3-1.

3.3.2 Interactome graph

This is Step 1 in Figure 3-1. The set of edges E of the input graph G consisted of di-

rect (physical) and indirect (functional) protein-protein interactions for human in the

STRING database version 8.2 (Szklarczyk et al., 2011), which also assigned confidence

score for each interaction based on multiple evidence types: conserved neighborhood,

gene fusions, phylogenetic co-occurrence, co-expression, database, large-scale experi-

ments, and literature co-occurrence. Since we were only interested in experimentally

determined interactions, we computed a new score Se for each interaction e combin-

ing the scores from evidence type database Se,database and evidence type experiment

Se,experiment:

Se 1 - Se,databasee,experiment, Ve E E. (3.3.3)

The cost c(e) on each edge e was

c(e) - log(Se), Ve E E. (3.3.4)

3.3.3 Node penalties

We defined two kinds of penalties for proteins in the STRING interaction graph:

one at the signaling level from the phosphoproteomics MS data, the other at the

transcription regulation level from the DNase-seq and mRNA expression data. This
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Figure 3-1: Work flow diagram for defining the optimization objective function from input
datasets. There are two streams of analysis differed by the way in which the transcription
data is included. In both streams, interaction weights go into the edge cost summation
term (Step 1) and the changes in tyrosine phosphorylation from MS data go into the node
penalty summation term (Step 2). From there, either Step 3a or Step 3b is followed. In
Step 3a, the transcription factor to mRNA target relationships are added to the edges to
form the total interactome, and the mRNA nodes are assigned penalty values. In Step 3b,
the DNasel hypersensitive regions are scored for matches to transcription factor motifs, and
these scores are assigned to nearby genes. The changes in the mRNA transcript level of
genes are regressed against the motif scores and the significance of the regression is used as
penalty on the transcription factors corresponding to that motif in the protein interactome.



is Step 2 and Step 3 in Figure 3-1. The node penalties from the phosphorylation

data corresponded to Step 2. Step 3a and 3b are two alternatives for including the

transcriptional data. The yeast pheromone response network in Chapter 2 followed

3a, while the U87 EGFRvIII analysis here followed 3b.

Phosphorylated peptide sequences from MS/MS data were matched to the protein

sequences provided by the STRING database download using the stand-alone pep-

tide BLAST program (blastall) version 2.2.17 with the following parameters recom-

mended for matching short amino acid sequences: type of search blastp, exception

value 20000, do not filter low complexity regions, gap opening cost 9, gap extension

cost 1, protein scoring matrix PAM30, word size 2, multiple hits window size 40

(-p blastp -e 200000 -F F -G 9 -E 1 -M PAM30 -W 2 -A 40). 100 alignments were

requested for each peptide in BLAST XML format report (-b 100 -m 7), which were

parsed by the Bio. Blast module in BioPython. Proteins that contained perfect align-

ment to a peptide sequence received a positive penalty value that was proportional

to the absolute value of log fold change in phosphorylation between the U87H and

U87DK cells. If one peptide sequence was aligned to multiple proteins in the STRING

interaction graph, all these proteins received the same penalty value. If multiple phos-

phorylated peptide sequences were perfectly aligned to one protein, the maximum fold

change in phosphorylation of these peptides was used to calculate the penalty value

for this protein.

We derived the penalty values for transcription factors in the protein interaction

network from the inferred activity of these transcription factors in inducing changes

of mRNA expression. Specifically, we used a regression method to find the correlation

between the differential mRNA expression to the sequence specific transcription factor

binding motifs in nearby open chromatin regions. Filtering the limma analysis results

by a maximum p-value of 0.001 adjusted by the Benjamini and Hochberg method

(Benjamini and Hochberg, 1995) gave 1292 probe sets differentially expressed between

U87DK and U87H cells. These probe sets were mapped to 1624 genes using annota-

tion from the Ensembl Project release 54 (http: //may2009 . archive. ensembl. org

and Flicek et al., 2011). From the DNase-seq data of U87DK and U87H cells, we found



genomic regions that were differentially hypersensitive between these two cell lines by

using the peak caller MACS (Zhang et al., 2008) version 1.4.Obeta. For each cell line,

aligned reads from the two biological replicates were concatenated. With the U87H

read file as the treatment parameter and U87DK read file as the control parameter,

a p-value cutoff of 1 x 10-6 (-p le-6) and also calling subpeaks (--call-subpeaks),

7760 peaks, further divided into 13141 subpeaks, were identified to be more hyper-

sensitive in U87H cells than in U87DK cells. By reversing the treatment and control

read files, 5047 peaks, divided into 9683 subpeaks, were identified to be more hy-

persensitive in U87DK cells than in U87H cells. Each of these subpeak summits was

mapped to the Ensembl 54 annotated human transcripts that have transcription start

sites within 40,000 bp of the peak, using functionalities in the ChIPpeakAnno package

in BioConductor. Sequences from 100 bp upstream and downstream of the subpeak

summits were retrieved and the transcription factor affinity scores (Figure 1-6 and

Foat et al., 2006) were computed for the 572 good quality matrices in release 2009.1

of the TRANSFAC database (Matys et al., 2006). Let Sg,H be the set of sequences

whose summits are mapped to the gene transcript g in U87H cells, Sg,DK be the set

of sequences whose summits are mapped to g in U87DK cells. Let T be the set of

TRANSFAC matrices and and xi,g,,,c be the affinity score for matrix T E T for the

ith sequence in Sg,c that is mapped to gene g in condition c E {DK, H}. The affinity

score of transcription factor matrix T for gene transcript g is

|Sg,HI ISg,DKI

Xg,T S Xi,gr,H - I Xj,g,r,DK - (3-3.5)
i=1 j= 1

Let G be the set of differential expressed genes described previously and and yg

be the log base 2 fold change in expression of transcript g E G comparing U87H and

U87DK cells. For each matrix T we fit the differential expression of g and the affinity

score by a univariate linear model:

yg = #rxg,r + eg. (3.3.6)

We selected the matrices for which the coefficients of the linear regression were
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significantly different from zero by a p-value threshold of 0.01 after Bonferroni cor-

rection, and used the t-statistic values of the regression coefficients as the penalties

on proteins that were mapped to these binding matrices by TRANSFAC (Lee and

Bussemaker, 2010; Foat et al., 2008, 2005). In cases where one binding matrix corre-

sponded to multiple transcription factors (as commonly found in transcription factor

families), all these transcription factors received the same penalty value.

An alternative to the univariate regression of individual motifs is to fit a multivari-

ate regression model of differential gene expression to the motif scores. The elastic

net regression algorithm (Zou and Hastie, 2005) was chosen because it balances sparse

and complex models and is thought to be good for selecting correlated features. Under

a cross-validation setting, the motif features selected were not significantly different

from those resulting from the univariate regression method (Figure 3-2).

3.3.4 Post-processing of PCST solutions

Solution of the PCST optimization problem was visualized on the Cytoscape pro-

gram (Cline et al., 2007) and all network diagrams were exported graphics from the

software. To compute the node betweenness centrality of the nodes in the PCST

solution, we first augmented the tree structure of the solution by adding back the

edges in the input interactome graph that contain the nodes in the solution, and used

the centrality. betweennesscentrality function in the networkx Python package

(Hagberg et al., 2008) version 0.35.

3.3.5 ChIP-seq data analysis

Peak calling of the ChIP-seq aligned reads was done by MACS version 1.4 (Zhang

et al., 2008) with the following parameter values: -- mf old=10,30 -- tsize=35 -- bw=150.

The reported peaks were filtered by a p-value threshold of 1 x 10-7 and associated

with genes whose transcription start sites lied within 10,000 bp of any peaks. This list

of genes was then ranked by fold enrichment (also reported by MACS) and used as

input to the web tool GOrilla (Eden et al., 2009) to identify enriched Gene Ontology
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Figure 3-2: In regression of differential gene expression with respect to motif scores, the
motif features that are more frequently included in the elastic net regression are also ranked
high by univariate regression. A univariate regression fit to the differential gene expression
was performed for each motif feature, and the motifs were then ranked by the p-value from
this regression. From the set of differential expression and the associated motif scores, 100
random subsets were generated, each consisting of 80% of the original dataset. For each
subset, a four-fold cross-validation procedure was used to fit an elastic net regression model
that selected a set of motif features to be included in the regression. The x axis is the rank
of motifs sorted by p-values from the univariate regression procedure, and the height of
each bar is the frequency at which that motif feature was included in the 100 multivariate
regressions by elastic net. Each panel shows the feature selection results for the indicated
a value parameter of elastic net.
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(GO) terms.

3.4 Results

3.4.1 The PCST solution provides a global view of the EGFRvIII

signaling network

The PCST network we constructed by comparing the U87H and U87DK cells using

phosphoproteomics, transcriptional profiling and DNase-seq data gives a high-level

view of the overall biological processes involved (Figure 3-3). Some of these processes,

such as the PI3K/PTEN pathway and the focal adhesion signaling pathway, have been

previously implicated in EGFRvIII induced migration in U87 cells (Cai et al., 2005;

Liu et al., 2010). At the level of transcriptional regulation, the transcription factor

STAT3 mediates EGFRvIII induced transformation (de la Iglesia et al., 2008), and

the CDK inhibitor p27 is lower in EGFRvIII tumors, leading to hyperphosphorylation

on Rb and activation of the E2F transcription factors (Narita et al., 2002). Although

no phosphorylation sites on the E2F transcription factors were reported by mass

spectrometry, and the tyrosine phosphorylation site on STAT3 (Y705) shows less than

10% change between U87DK and U87H, these two proteins are featured prominently

in our network solution, demonstrating the value of the transcriptional datasets.

3.4.2 ESR1 and HSP90 are key nodes in the PCST solution

and important components for cell viability

Many proteins included in the network solution do not contain phosphorylation sites

reported by mass spectrometry. We can quantify the importance of each node in the

overall network connectivity by a node-betweenness centrality measure (Table 3.3).

The proto-oncogene SRC is ranked among highest in this analysis. The Src family

kinases FYN and SRC are known effectors of EGFRvIJI signaling in glioblastoma,

leading to tumor growth and motility (Liu et al., 2010). The estrogen receptor ESR1

is also ranked among the top, which presents an intriguing hypothesis. Glial tumors
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Figure 3-3: The PCST solution network constructed from phosphoproteomic, mRNA ex-
pression array and DNase-seq data comparing the U87H and U87DK cells. pY: phosphoty-
rosine. TF: transcription factor.
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are more prevalent in males (Schwartzbaum et al., 2006; McKinley et al., 2000), the

risk increases with later menarche and menopause (Cowppli-Bony et al., 2011), and

young age and female gender are two favorable factors for long-term survival (Krex

et al., 2007; Shinojima et al., 2004). A recent study of glioblastoma in a rat model

shows estrogen treatment increases survival in a gender specific manner although it is

unclear whether the estrogen receptor is involved (Barone et al., 2009). On the other

hand, the selective estrogen receptor modulator tamoxifen can inhibit proliferation

and induce apoptosis in several glioma cell lines (Pollack et al., 1990; Zhang et al.,

2000; Kim et al., 2005), and a subgroup of malignant glioma patients responded or

stabilized with high dose of tamoxifen (Couldwell et al., 1996). There are several

ongoing clinical trials for tamoxifen treatment in combination with other agents or

radiation therapies (with EGFR inhibitors in breast cancer only). We further analyze

our PCST network by comparing it to networks constructed from genes discovered

in RNAi screens that are (1) essential for tumor cell growth in multiple tumor types

(Luo et al., 2008), (2) essential for growth in cell lines of glioma lineage (Luo et al.,

2008), and (3) sensitizing cells to EGFR inhibition (Astsaturov et al., 2010), ESRi is

one of the few hits that appear in all three of the networks. To test this hypothesis, I

treated the U87DK and U87H cells with the EGFR inhibitor AG1478 with or without

17#3- Estradiol, and assayed for cell viability by the WST-1 reagent that measures

the metabolic activity of viable cells. The viability of both cell lines are reduced with

increasing concentrations of 17#- Estradiol compared to vehicle control (Figure 3-

4). Adding AG1478 further reduces viability to a greater extent than if these two

drugs acted independently. These suggest that the estrogen receptor pathway is an

important component in the survival of these cells.

HSP90 was selected from the list of nodes with the highest node betweenness cen-

trality as a second target for validation as there are well characterized small molecular

inhibitors for this protein. 17-allylamino-17-demethoxygeldanamycin (17-AAG) binds

to and inhibits HSP90 and may lead to degradation of HSP90 client proteins. To test

this hypothesis, I treated the U87DK and U87H cells with AG1478 with or without

17-AAG. Nanomolar concentrations of 17-AAG greatly reduce the viability of both
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Figure 3-4: Cell viability assay by WST-1 following estradiol and AG1478 treatment of
U87DK and U87H cells. The cells were serum starved for 24 hours and treated with the
indicated concentration of estradiol with or without AG1478 for 72 hours. The Bliss inde-
pendence effect (BLISS, 1956) was computed using measurements from single agent treat-
ment of 5 pM AG 1478 and estradiol. Error bars are standard error (n = 3) and asterisks
(*) mark the concentrations of estradiol that in combination with 5pM AG1478 reduce cell
viability significantly compared to the expected effect if the two drugs acted independently
(p < 0.05).
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Protein name STRING v8.2 ID Node betweenness centrality

HDAC1 9606.ENSP00000362649 0.098600
CREBBP 9606.ENSP00000371502 0.092185
ESR1 9606.ENSP00000206249 0.086484
SRC 9606.ENSP00000362659 0.084406
SMAD4 9606.ENSP00000341551 0.080064
HSP90AA1 9606.ENSP00000335153 0.073390
UBC 9606.ENSP00000344818 0.064671
TP53 9606.ENSP00000269305 0.063942
PIK3R1 9606.ENSP00000274335 0.060804
CTNNB 9606.ENSP00000344456 0.059800

Table 3.3: Top ten nodes in the EGFRvIII PCST network ranked by node betweenness
centrality.

cell lines, as assayed by a metabolic activity readout WST-1 (Figure 3-5) and visu-

alized by the mitochondria membrane potential stain TMRE (Figure 3-6). Adding

AG1478 at a concentration that has moderate effect by itself further reduces the vi-

ability. Using the Bliss independence measure for drug synergy (BLISS, 1956), we

computed the expected effects of the AG1478 and 17-AAG combinations if they were

independent. Compared to the experimentally observed effect, this combination is

synergistic in U87H cells at a much lower concentration of 17-AAG than in U87DK

cells.

3.4.3 Transcriptional regulators p300 and SMAD proteins

may contribute to the mesenchymal-like phenotype of

U87H

In the PCST solution, the transcriptional co-activator p300 appears as a central

point that links together multiple transcription factors. ChIP-seq experiment with

p300 was performed in the U87H cells to elucidate its biological function. By GO

enrichment analysis (Eden et al., 2009) (Table 3.4), the p300 target genes are enriched

for neuronal development and differentiation processes. This is consistent with the

recent hypothesis that the cell of origin for gliomas is a neural stem cell that was
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Figure 3-5: Cell viability assay by WST-1 following 17-AAG and AG1478 treatment of
U87DK and J87H cells. The cells were serum starved for 24 hours and treated with the
indicated concentration of 17AAG with or without AG1478 for 72 hours. The Bliss indepen-
dence effect (BLISS, 1956) was computed using measurements from single agent treatment
of 5pM AG1478 and 17-AAG. Error bars are standard error (n = 3) and asterisks (*) mark
the concentrations of 17-AAG that in combination with 5pM AG1478 reduce cell viability
significantly compared to the expected effect if the two drugs act independently (p < 0.05).
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Figure 3-6: Microphotographs of TMRE staining of U87DK and U87H cells following 17-
AAG and AG1478 treatment. The top row for each cell type is the bright field image and
the bottom row is the fluorescence image of the same field of view. A live cell can be seen
in the bright field and appears in red and orange color under fluorescence due to active
mitochondria (blue solid arrow). A dead cell can be seen in the bright field but is not
visible under fluorescence (red dashed arrow).
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Figure 3-7: ChIP-seq of p300 reveals that many EMT marker genes are bound by p300 in
U87H cells. Shown here are the ChIP-seq peaks viewed in UCSC genome browser.

transformed to produce progeny cells with limited differentiation potential (Sanai

et al., 2005). Also notable are the functional categories of cellular adhesion and

Wnt receptor signaling, which leads to a hypothesis for the mechanism of possible

mesenchymal transformation of the U87H cells.

At the global level the p300 target genes are enriched for biological processes

implicated in epithelial to mesenchymal transition (EMT), and in the PCST solution

p300 links together the SMAD proteins, CEBPB (C/EBP3), and STAT transcription

factors, all are terminals selected by the expression regression method. Several lines

of evidence further suggest that these associations contribute to the mesenchymal-

like phenotype of U87H cells: (1) the U87H cells have poor attachment in tissue

culture compared to the U87DK cells, which resembles mesenchymal cells; (2) CEBPB

and STAT3 synergistically induce mesenchymal transformation of glioma cells (Carro

et al., 2010), but the level of CEBPB transcript and activated STAT3 protein do not

change significantly between the U87H and U87DK cells; (3) the physical interaction

between SMAD4 and CEBPB represses the transactivation function of CEBPB (Choy

and Derynck, 2003), and the SMAD4 mRNA level is reduced by 5-fold in the U87H

cells compared to U87DK. There are several experimental approaches for testing this

hypothesis. First, we can use quantitative Western blots to compare the protein

level of SMAD4 between U87H and U87DK. ChIP-seq of SMAD4 in U87DK and

U87H cells will reveal its binding locations in relation to EMT marker genes. To

confirm the functional role of SMAD4, we can over-express SMAD4 or stimulate its

activation by the TGF-# pathway, and as phenotypic readout measure the expression

of mesenchymal markers and observe whether it restores the attachment of U87H

cells.
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GO Term

GO:0051128
GO:0022610
GO:0007155
GO:0032940
GO:0046903
GO:0031345
GO:0030177
GO:0015850
GO:0010975
GO:0045664
GO:0051960
GO:0046165
GO:0050795
GO:0031344
GO:0051239
GO:0042133

Description

regulation of cellular component organization
biological adhesion
cell adhesion
secretion by cell
secretion
negative regulation of cell projection organization
positive regulation of Wnt receptor signaling pathway
organic alcohol transport
regulation of neuron projection development
regulation of neuron differentiation
regulation of nervous system development
alcohol biosynthetic process
regulation of behavior
regulation of cell projection organization
regulation of multicellular organismal process
neurotransmitter metabolic process

Table 3.4: Enriched GO categories of p300 bound genes in U87H cells

3.5 Discussion

3.5.1 Linking signaling and transcription data by molecular

interactions can generate hypotheses that are not im-

mediately obvious from the experimental data

We showed that the PCST solution network not only provided a high level view of the

biological processes in the EGFRvIJI network of U87 cells, but it was also useful in

generating hypotheses that have functional significance. These proposed hypotheses,

some of which were validated experimentally, are not easily apparent from simple

inspection of the phosphoproteomic and transcription data. One might argue that

the importance of ESRI and HSP90 have been previously implicated in oncogenesis.

However, since neither appears in the phosphoproteomic and transcriptional profiling

data, they would be buried in thousands of other proteins in the interactome graph

that interact directly or indirectly with the hits from the experiments. Our approach

provides a way to prioritize these hypotheses. For transcriptional regulation in this

system, standard promoter analysis of the differential expressed genes yielded little
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information about potential regulators, so bringing in additional data from upstream

signaling allowed us to identify promising candidates. This will be especially useful for

systems that lack strong signals from "master regulators", either due to the inherent

feature of the system or limitations of technology.

3.5.2 Possible mechanism of ESR1 in cell survival

In terms of mechanism, although ESR1 is a well known transcription factor, it was

not selected to be a terminal from the expression regression step. Its inclusion in the

network may be due to its genomic actions independent of estrogen response elements

(ERE) or its non-genomic role in activating protein kinase cascades (Bjrnstrm and

Sjberg, 2005) such as the ERK MAPK and P13K signaling (Levin, 2005). Interest-

ingly, non-genomic signaling by 17/#- Estradiol can both stimulate and inhibit apop-

tosis (Lewis-Wambi and Jordan, 2009). Our experiment suggests that 173- Estradiol

reduces cell viability and is synergistic with EGFR inhibition. Further experiment is

necessary to distinguish the two possible mechanisms.

At the population level, the effect of steroid hormone in the etiology of glioma is

still unclear (reviewed in Kabat et al., 2010): while epidemiology analysis of glioma

incidence shows evidence of relative protection of female to male prior to menopause,

suggesting a protective role of estrogens, the relative reduction in glioma risk in women

from the use of exogenous hormone is small and inconsistent. It remains to be seen

whether there are distinct mechanisms that lead to the development of glioma and

the response of glioma to hormonal treatment.

3.5.3 Synergy of inhibiting HSP90 and EGFRvIII

The HSP90 protein is a molecular chaperon that maintains the stability of many

oncogenic signaling proteins, and inhibitors to HSP90 inhibitors have shown promis-

ing anti-tumor activities (Neckers, 2002; Goetz et al., 2003). Although HSP90 is

known to specifically increase the in vivo efficacy of chemotherapeutic agents (Neck-

ers, 2007), previous studies offer contradictory predictions on the effect of HSP90
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inhibition in glioblastoma in the context of EGFRvIII. Lavictoire et al. (2003) re-

ported that the interaction between HSP90 and nascent EGFRvIII was necessary for

EGFRvIII expression but did not give evidence of the consequence of HSP90 inhibi-

tion to cell survival. On the other hand, Cao et al. (2011) showed that EGFR inhibi-

tion induced translocation of EGFRvIII to the mitochondria and this translocation

was responsible for tumor drug resistance. Furthermore, the current standard-of-care

agent for glioblastoma therapy temozolomide (TMZ) was not synergistic with 17-AAG

in U87 glioma cells (Sauvageot et al., 2009, and Figure 3-8). We present evidence

that AG1478 and 17-AAG achieve synergy in the U87H cells at low concentrations

of 17-AAG and they may be good candidates for combination therapy for EGFRvIII

expressing glioblastoma.

3.5.4 Mechanism of p300 and SMAD4 in glioma EMT

Identifying the possible role of p300 and SMAD4 in EMT of glioma demonstrates the

power of joint analysis of proteomic and transcriptional data. CEBPB and STAT3

were revealed to be master regulators of mesenchymal transformation of glioma cells

from a large project of transcription profiling of tumors (Carro et al., 2010), but in our

data we did not observe changes at the mRNA expression level of these two factors.

In the PCST solution these two proteins are connected to p300 and SMAD4 by

protein-protein interactions, where SMAD4 was selected by the expression regression

analysis. p300 has been implicated in EMT in human colon carcinoma (Pea et al.,

2006; Krubasik et al., 2006) and SMAD4 in breast cancer in response to TGF-

signaling (Deckers et al., 2006). The initial ChIP-seq experiment with p300 shows

many EMT marker genes are bound in the U87H cells and the p300 bound genes are

enriched for EMT related biological processes. Additional ChIP-seq experiments of

SMAD4 and from U87DK cells, together with functional assays of EMT phenotype,

will help establish the connection between these two factors and EGFRvIII signaling

in the context of EMT.
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Figure 3-8: The Bliss interaction ratio of cell viability measurements for treatment of 17-
AAG with AG1478 and treatment of 17-AAG with TMZ. The ratio was calculated as the
observed inhibitory effect achieved by the drugs in combination divided by the expected
inhibitory effect computed from each drug alone. Error bars are standard errors (n = 3).
The 17-AAG with TMZ data is taken from Sauvageot et al. (2009).
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Chapter 4

Conclusions

The specific goal of this project is to bring together global datasets of signaling and

transcription to better understand how these processes are altered in response to

oncogenic mutations and devise therapeutic strategies accordingly. Studies of signal-

ing and transcription in cancer, often done independently, have created a rich body of

knowledge that are changing clinical practices, as evidenced by the numerous clinical

trials of kinase inhibitors and many transcriptional signatures for cancer diagnosis

and treatment. However, many big questions remain. First, since these regulatory

events are context specific, how can one generalize observations in one systems to

others, and conversely, how can observations from other systems inform discovery

of critical regulatory components in the current system and prioritize experimental

validation? Secondly, genomic mutations are of paramount importance in oncogen-

esis and may manifest functionally in aberrant signaling and transcription, but the

mechanistic connections between these molecular events are often unknown. Many

recent high throughput technologies can address these questions to a certain degree,

but it is challenging to interpret the results beyond following up on the top hits. I

believe that the work in this thesis demonstrated a direction for approaching these

problems.

The concept of constraint optimization is fundamental to our computational ap-

proach. Starting from a context-free but weighted protein-protein and protein-DNA

interaction network, we map the experimental measurements from phosphoproteomic
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and mRNA expression data to the nodes in the network, and use these as constraints

to find a set of interactions that connect these hits together. To account for the

biases in the experimental techniques we allow nodes that are not detected in the

experiments to be included, if doing so helps to include other hits. To account for

the noise and incompleteness of the experimental data, we allow observed hits to be

excluded. Finding a network that satisfies multiple sets of constraints, imposed by

different types of experimental data for different aspects of the cellular processes, in-

creases our confidence in the network solution, and ensures the information in these

data are more fully utilized.

We first applied our method to yeast, a model organism with good coverage of

protein-protein and protein-DNA interaction data, using datasets from pheromone

response, a well-characterized signaling pathway. We showed that the method could

recover components in the core pheromone response pathway and additionally many

biological processes at the global level. In contrast to algorithms designed for infer-

ring signaling pathways from mRNA transcript data alone, we found subnetworks

that were coherent in function but not at the expression level. This is consistent

with recent observations from comparing the phosphoproteome and transcriptome of

human cell cycle (Olsen et al., 2010), where the steady-state transcript abundance do

not correlate well with protein abundance except in some biological processes.

Taking our methods to analyze mammalian datasets required some experimental

and computational modifications. Most notably, in order to capture the complexity

of mammalian transcription regulation, we introduced the DNase-seq technique that

identifies open-chromatin regions genome-wide, and used DNase-seq data with DNA

sequence motif and differential expression in an expression regression procedure to

select potential transcriptional regulators. When applied to datasets from the U87

EGFRvIII over-expressing cell lines, we obtained a network that gave a high level

view of the signaling and transcriptional events downstream of this mutant receptor,

and more importantly, it served as a basis for generating testable, biologically relevant

hypotheses that might contribute to our understanding of cancer.
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Chapter 5

Future perspectives

In this thesis I set a foundation for linking global datasets of signaling and transcrip-

tion and demonstrated it could uncover critical regulatory components in cellular

signaling networks. In the course of this study several issues have become apparent

that can be attributed to limitations of the computational and experimental tech-

niques. Here I will detail these challenges and attempt to propose some directions in

which we can address these problems. In the last section I envision how this frame-

work can go beyond its current capability and be useful for comprehensive modeling

of global dynamics.

5.1 Further development of the network optimiza-

tion approach

In order to focus on making the many datasets fit together, we started with the con-

ventional formulation of PCST to take advantage of the large body of literature for

solving this problem, for instance, using local search heuristics (Canuto et al., 2001)

and linear programming (Archer et al., 2011; Goemans et al., 1992). Algorithms

for solving this formulation were motivated by applications in building networks of

telecommunication and heat distribution. In contrast, biological networks have some

properties that are not captured by this formulation. First, the edges in the input

interaction graph are treated as undirected, while many molecular interactions, such
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as enzyme substrate reactions, have clear directionality. This may not be a signifi-

cant issue at present since there are very few interactions with known directions in

the current interactome. However, it must be properly handled as we improve our

ability to obtain enzyme substrate relationships experimentally and computationally.

Secondly, the optimization objective function with binary decision of including edges

dictates that the optimal solution is a tree structure, i.e. if the solution contains any

cycle, removing any edge in the cycle will reduce the objective function value but still

satisfy the connectivity constraints. As a consequence of the tree structure, between

any two nodes in the network there is only one path. This property is unrealistic in

the context of biological networks where parallel pathways are common. I will now

describe two approaches that are currently being taken in the Fraenkel lab to solve

this issue.

5.1.1 Multi-commodity flow formulation

In collaboration with Bernhard Haeupler in David Karger's group at the Computer

Science and Artificial Intelligence Laboratory of MIT, we devised a linear program

formulation of the original PCST that models directed interactions and fractional

edge selection.

We continue to use the notation from Section 3.3.1, where the interaction graph

is a tuple G = (V, E) with node penalties ri > 0 and edge costs Ce > 0, except

that the edges in the graph are now directed. We further accommodate a set of

nodes S as sources from which the observed regulatory events originate (for instance,

the cell surface receptor being stimulated), define a variable st for each node t with

positive penalty value (terminal set T) to indicate whether it is on the path of directed

interactions from a source, and a variable xe for each directed edge e E E to indicate

whether it is included in the solution. Then for each pair of edge e E E and terminal

t E T we use a variable st,e to represent whether the edge e is used to connect t to a

source. We now have this optimization problem
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min Z(1 - st)7rt + Zece (5.1.1)
tET eEE

subject to Ste st,e = 0, Vt E T,w G V\(SU{t}), (5.1.2)
e=(,w) e=(w,)

St,e - St,e = S< '1, Vt E T, (5.1.3)
e=(-,t) e=(t,.)

0 < St,e _ Xe < 1, Vt c T, E E. (5.1.4)

A naive implementation of this formulation as an AMPL model invoking the

CPLEX linear programming solver was able to find a solution to the yeast pheromone

response dataset (Chapter 2) in two hours. But with the U87MG EGFRvIII dataset

on the human interactome, the problem was unsolved after using more than 60GB

of memory for two weeks. Since AMPL is an additional layer of communication to

the CPLEX solver, I also implemented the linear program with direct functional calls

to CPLEX using the Python API and MATLAB API. The pre-processing steps were

more efficient in MATLAB where the interaction graph is represented as adjacency

matrix. However, in both cases the demand for memory was very high and the

problem remained unsolved after a week on our computing cluster. We note that this

problem bears resemblance to the multi-commodity flow (MCF) problem if we view

the variable st,e as the flow of commodity t on edge e. In one common variant of the

MCF problem that can be solved very efficiently for large scale networks, instead of

constraining St,e on edge e for each t with respect to another variable xe, the total

flow on edge e is upper-bounded by a constant ne:

0 < St,e < Ue, Vt E Te E E. (5.1.5)
tET

In some preliminary testing, simply adopting the summation but not the constant

upper bound makes it practical to solve this problem on human datasets:
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0 < St,e < Xe 1, Vt c Te E E. (5.1.6)
tET

One may argue that this formulation is in fact biologically realistic as it limits the

extent to which a particular interaction is used by different pathways in total. It is

therefore a sound and practical modification to the original formulation. However,

the quality of the solution network that it generates has yet to be scrutinized.

5.1.2 Message passing approach

As an alternative to solving the PCST as a linear programming problem, statistical

physic analysis of the properties of Steiner trees (Bayati et al., 2008) has resulted

in new optimization algorithms based on message-passing techniques. Recently Ric-

cardo Zecchina's group in Politecnico di Torino of Italy and Microsoft Research New

England published a belief-propagation method that outperforms linear programming

based algorithms computationally (including the one we used). They applied it to

analyze gene expression datasets from yeast pheromone response and identified a pre-

viously unknown regulator (Bailly-Bechet et al., 2011). We are now in collaboration

with this group to explore the potential of this algorithm. Since this algorithm is

able to solve the optimization in a fraction of the time of our current method, we

will be able to conduct more rigorous study of the quality of the network solutions,

for instance, assessing the statistical significance and stability of the solutions by

randomization.

5.1.3 Condition specific interactome

The central premise behind our constraint optimization framework is that the ex-

perimental measurements at the signaling and transcription level are sufficient for

guiding selection of relevant interactions from the interactome of many contexts. In

the absence of methods that can generate condition specific interactome for numerous
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experimental conditions, there are a few strategies to ensure the selected interactions

are indeed possible in that condition. First, as a pre-processing step the input in-

teraction network can be filtered by the expression level of the nodes measured by

transcript or protein assays under that condition. With the improved sensitivity of

RNA-seq to detect rare transcripts compared to microarrays, this step may now be

done with confidence. However, if it is not desirable to set a threshold on what is con-

sidered expressed, we can add to the PCST formulation capacities on the nodes that

represent the expression level. There are well-established procedures that transform

node capacitated network flow problems to one without the node capacities (Ahuja

et al., 1995).

5.1.4 Analysis of time series and multiple conditions data

The PCST analysis in Chapter 3 focused on comparing steady state measurements

from the U87H cells and the U87DK cells. Although this comparison has produced

fruitful results, a large amount of phosphoproteomic and gene expression data being

generated nowadays follow the time dynamics after certain experimental intervention.

As noted previously, intervention data, compared to observational data, is better for

revealing connections of regulatory networks (Hyduke and Palsson, 2010), so adopting

the PCST framework to time series data may increase the confidence in selecting

relevant interactions.

5.2 Improving the input datasets

We postulate that the heterogeneity of our input datasets can provide evidence from

multiple angles that enhance the prediction of important regulatory components.

Therefore, strengthening the accuracy and scope of each experimental dataset will

allow us to better differentiate between signal and noise, especially for prioritizing

among multiple weak hypotheses.
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5.2.1 DNaseI hypersensitivity footprinting

The DNase-seq dataset for the U87 cells for this thesis was generated using the su-

crose gradient purification protocol (Sabo et al., 2006, 2004) and from it we were

able to identify candidate regulatory regions and correlate with differential gene ex-

pression. A different protocol (Song and Crawford, 2010; Boyle et al., 2008; Crawford

et al., 2006) uses linker ligation and restriction enzyme digestion to isolate the DNaseI

hypersensitive DNA fragments. When combined with very deep sequencing, a com-

putational method that searches for protein binding "footprints" was able to predict

transcription factor binding genome-wide with high accuracy and also good spatial

resolution (Pique-Regi et al., 2011). So far we were unable to observe these footprints

in our DNase-seq data, so using this alternate DNase-seq protocol may give better

prediction of functional transcriptional regulators for inclusion in the PCST solution.

5.2.2 Kinase substrate relationships

The interactions containing proteins with phosphorylation sites are the starting point

from which the PCST network solution is built, so it is critical to have a good repre-

sentation of these interactions in the interactome graph. Functionally the phospho-

rylation sites participate in interactions with other proteins in two ways: as target

substrates of other kinases and phosphatases, and as binding partners of proteins that

recognize the phosphorylated residues. Many of these interactions are transient and

are difficult to capture in some interaction assays. There is recent evidence that yeast

two hybrid technology could detect transient signaling interactions (Yu et al., 2008)

and is probably the most sensitive method for screening transient kinase-substrate

interactions (Sopko and Andrews, 2008), but it is unclear how to distinguish between

kinase binding partners and target substrate in this assay (Manning and Cantley,

2002). Many in vivo methods are available to link kinases to phosphorylation sub-

strates (reviewed in Sopko and Andrews, 2008) but only for specific kinases. Taking

these efforts to the global level, combined with other information such as sequence

motif and integrated within a computational framework such as NetworKIN (Linding
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et al., 2007), will provide interaction datasets that greatly enhance the ability of our

algorithm to connect the phosphorylated proteins.

5.2.3 Transcription factor motif

We used the transcription factor binding profiles curated in the TRANSFAC database,

which has a large collection but is known to contain redundant motifs of different qual-

ities. In comparison, an alternative database, JASPAR, is a repository of high quality,

non-redundant motifs but has a smaller selection. In either case we are far from get-

ting a comprehensive catalog of binding specificities of close to 2000 transcriptional

factors in human (Messina et al., 2004; Babu et al., 2004). Recently protein binding

microarray (PBM) has emerged as a possible technique to rapidly generate such a

catalog (Berger and Bulyk, 2009; Badis et al., 2009). Since in vitro binding speci-

ficities determined in these assays may deviate from the in vivo specificities, motif

discovery methods seeded with the in vitro profiles (Li, 2009; Macisaac et al., 2006)

on ChIP-seq datasets will help to recover the true in vivo binding motifs.

5.2.4 Significance of phosphorylation events

Our current analysis defines node penalties on the phosphorylated proteins in a prac-

tical but ad hoc manner: the penalty values are proportional to the absolute value

of log fold changes of phosphorylation; if there are more than one phosphorylation

sites on one protein, the maximum value is used. This reflects the assumption that

larger changes in phosphorylation carry higher importance and thus should be given

higher priority to be included. There are other, probably more principled, ways of

quantifying the significance of the phosphorylation changes. But we distinguish two

kinds of significance: statistical significance and biological significance. The former

requires the development of robust error models (Zhang et al., 2010) while the latter

would benefit from knowledge about the context of the phosphorylation sites, such

as the structural domain or binding sequence motif where the sites are located (see

examples in Naegle et al., 2010) . We note that these two should not be treated sep-
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arately as biologically meaningful hits may still arise from contradictory statistical

analysis (Uher and McGuffin, 2010; Risch et al., 2009; Munaf et al., 2009).

5.3 Towards modeling the dynamics of phospho-

rylation and transcription

Analysis of the phosphoproteomic and transcriptional data by our constraint opti-

mization framework has helped us gain insight into the molecular biology of cancer,

but we recognize that the potentials of these datasets are still not fully utilized, in

particular, the quantitative nature of the measurements and the information about

feedback regulation encoded in the quantification. Motivated by simplicity and the

observed lack of correlation between changes in phosphorylation and mRNA tran-

script, in our network the proteins that contain phosphorylation events and mRNA

transcripts are treated as separate entities. This models the transcriptional changes

as a consequence of signaling changes but ignores any subsequent feedback where

changes in transcription affect the protein level of the same gene. A natural way

to describe such feedback mathematically is by differential equations, which can be

simulated numerically or analyzed. This approach has been applied genome-wide in a

comprehensive transcriptional and translational network for Escherichia coli (Thiele

et al., 2009). Although developing such a model for mammalian networks seems

daunting, techniques such as flux balance analysis, as demonstrated in the E. coli ex-

ample, hold the promise to predict network behavior even without detailed knowledge

of kinetic parameters. In another example, Muzzey et al. (2009) applied control the-

ory to model and design experiments to study the yeast osmoregulation system, for

which exhaustive models are available (Klipp et al., 2005). With only a small set of

experiments they found the network location responsible for perfect adaptation. The

approach presented in this thesis, which quickly generates a set of candidate back-

bone networks from genome-wide datasets, and in conjunction with the principles

and experiences from engineering complex systems, can achieve the ambitious but
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realistic goal of finding key mechanisms that regulate biologically relevant dynamics

at the systems level.
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