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Abstract

I study fundamental mechanisms of atmosphere-ocean-sea ice interaction. Hierarchies
of idealized models are invoked to argue that multiple equilibria and abrupt change are
robust features of the climate system. The main finding is that meridional structure
in poleward oceanic energy transport, which is set by the wind forcing, gives rise to
preferred latitudes for the sea ice edge, including a stable large ice cap extending into
mid-latitudes.

I review multiple equilibria in energy balance models (EBMs), and extend the
EBM to include explicit ocean heat transport (OHT) and insulating sea ice. I derive
a method for simultaneously satisfying global energy and angular momentum budgets
through a diffusive closure for potential vorticity, enabling a prediction of the basic
shape of the surface wind stress. An idealized model of wind-driven gyres links this
stress to OHT, and gives significant structure on sub-hemispheric scales in agreement
with observations. This model predicts a stable large ice cap solution not found in
the classic EBM, made possible by convergence of OHT in mid-latitudes.

Analogous multiple equilibria are found in coupled atmosphere-ocean-sea ice gen-
eral circulation model (GCM) simulations with idealized geometry (a pure aquaplanet
and a "ridgeworld" with a global-scale ocean basin). Despite differing ocean dynam-
ics, both configurations support similar equilibria: an ice-free climate, a cold climate
with mid-latitude sea ice edge, and a completely ice-covered Snowball state. Multiple
states persist despite a seasonal cycle and vigorous internal variability. Simulations
with slowly-evolving thermal forcing show that some transitions between the ice-free
and large ice cap states are abrupt.

Multiple equilibria are explored in uncoupled simulations with prescribed OHT.
The large ice cap is stabilized by wind-driven convergence of OHT at the poleward
edge of the subtropical thermocline. The size of the large ice cap is sensitive to the
meridional and seasonal distribution of OHT convergence. The ice-free state persists
in the absence of high-latitude OHT. Mid-latitude convergence of OHT warms the
poles by driving increased atmospheric heat transport to the poles. This effect is
captured in a simple diffusive EBM. I discuss the significance of these findings for



understanding the paleoclimate record.
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Chapter 1

Introduction

These theories have an extensive and fertile future ahead of them,

and nothing will contribute more to their perfection than a numerous set

of precise experiments; for, mathematical analysis... can deduce general

phenomena and lend simple form to the expression of the laws of nature;

however, the application of these laws to very complex effects demands a

long series of exact observations. (Fourier, 1827)

1.1 Milestones in climate and climate dynamics

The quantitative theory of climate perhaps began with the publication of Fourier's

seminal essay on the planetary energy balance in 1827 (the final paragraph of which

is quoted above). Fourier posed the problem of explaining and understanding the

Earth's temperature distribution, and established it as a subject worthy of physi-

cal and mathematical inquiry. The "extensive and fertile future" of these inquiries

continues to this day.

The intervening two centuries have of course brought tremendous advancements

in our fundamental knowledge of the physical underpinnings of the climate system.

These advances have enabled an ever-more meaningful mathematical description of

the physical laws governing climate.

Parallel to these theoretical advances, there has been a remarkable flowering of



knowledge about the deep history of our planet and its climate. This story, which

arguably also began in the early 19th century with the discovery of the Ice Ages, has

brought us an awareness of a planet constantly in flux. Earth has passed repeatedly

through diverse climatic states that would be unrecognizable to us. The proportion

of the planet covered by ice, for example, may have varied between 0% and 100%

over deep time. Some large amplitude climatic shifts have also occurred incredibly

abruptly, shifting the system into a qualitatively different state over a span of years

smaller than a human lifetime. Yet despite all this variability, temperatures have

actually remained within a remarkably small window when measured against the full

range of astronomical possibilities (Pierrehumbert, 2010).

While not quite the "long series of exact observations" that Fourier wished for, this

increasingly rich paleoclimate record presents huge challenges to our theory of climate.

The rest of this introductory section therefore presents a very brief review of some

large outstanding problems in paleoclimate that await a satisfactory explanation. The

very existence of these problems provides ample motivation to explore alternative

climatic states in our models.

This thesis deals with some big questions about the basic balances in the climate

system, and whether (and how) the climate could exist in very different states, as

measured for example by the equator-to-pole temperature gradient or the amount of

ice cover. A central issue in this thesis is the possible existence of multiple equilibria

of the climate system, which will be investigated by studying the roles of ocean heat

transport and sea ice extent in mediating the climatic balance at the global scale.

The questions asked are fairly abstract, and the tools used are hierarchies of idealized

global models. We are not attempting to explain specific features of the paleoclimate

record, but rather to explore the range of possibilities permitted by the physics of

climate. In Fourier's words, we seek to "deduce general phenomena and lend simple

form to the expression of the laws of nature".



1.1.1 The long view of global climate change

Nineteenth century geologists first discovered that there had been an Ice Age dur-

ing which enormous glaciers had covered large parts of Europe and North America.'

Shortly thereafter came the discovery that there had in fact been many such glacia-

tions throughout the long sweep of geological time, and furthermore, that some of

these glaciations were separated by very long periods of relatively benign climates

with no great ice sheets, or perhaps no ice at all. This general view of Earth's deep

climatic history was in place a hundred years ago (Chamberlin, 1906; Brooks, 1925),

and remains today: "Mostly sunny with a 10% chance of snow". 2

The most recent parts of this history are known to a certain extent. Detailed

isotope records from deep-sea sediment cores reach back at least to the Cretaceous-

Tertiary boundary at 65 Ma3 (Zachos et al., 2001). We are currently in a glacial epoch

that began at the close of the Eocene at 34 Ma (Walker and Geissman, 2009), in the

sense that permanent ice sheets have existed on Earth since that time. The Eocene

epoch (56 Ma to 34 Ma) was characterized by a climate markedly different from our

own. Proxy records indicate equatorial temperatures just a few degrees C warmer

than at present, while polar temperatures were apparently much warmer than at

present: high-latitude sea surface temperature (SST) 4 is estimated to be in the range

10-15'C (see the review in Abbot and Tziperman, 2008a). Vegetation records from

high-latitude continental interiors indicate warm, ice-free conditions prevailed even

in winter (e.g. Greenwood and Wing, 1995). The deep ocean temperature ranged

between 8C and 12'C for much of this time, but also cooled slowly throughout

the Eocene (Zachos et al., 2001), leading into the glacial world we currently inhabit

(present-day deep ocean temperatures are close to 0 C). Tectonic changes are impli-

cated in these very long-term variations, e.g. the gradual closing of the equatorial

oceanic pathway known as the Tethys Seaway (e.g. Lawyer and Gahagan, 1998), but

'See Imbrie and Imbrie (1986) for a fascinating account of the scientific history.
2This phrase is respectfully borrowed from course notes by Julian P. Sachs, MIT, 2004.
3Ma = millions of years; ka = thousands of years before present.
4Many abbreviations are defined where they are first introduced in the text, but also listed in a

table in Appendix A for easy reference.



the mechanisms remain obscure.

Similar warm, equable5 conditions are believed to have prevailed as far back as

the late Cretaceous (ca. 100 Ma). In fact one of the striking characteristics of the

reconstructions of warm climates such as Fig. 2 of Zachos et al. (2001) is their apparent

long-term stability. One gets the impression that colder, icier worlds are also more

variable.6 This impression carries over into the much more recent glacial-interglacial

cycles (see below). It is not unreasonable to assume that an ice-free Earth would

have a less variable climate, as continental glaciers and sea ice both add considerable

complexity to climate system. Much of this thesis, in fact, is concerned with exploring

threshold behavior in the climate system associated with the freezing and melting of

sea ice.

It is entirely possible that the stable, equable, ice-free Eocene climate is a better

description of the very long-term mean state of the Earth than our modern climate,

although testing this assertion will have to await new advances in the quantitative

reconstruction of the deep past. Curiously, though, our climate models have been

largely unsuccessful at simulating these warm, equable climates in a manner consistent

with available proxy data (Abbot and Tziperman, 2008a). The conundrum is that

weak equator-to-pole temperature gradients seem to demand enhanced poleward heat

transport, while poleward heat transport (or at least the atmospheric component)

tends to scale with the temperature gradient for dynamical reasons.7

We will present in Chapter 4 a model simulation of a warm, equable climate with

5This term has a long history in the geological literature, and is generally used to denote warm
climates with relatively small temperature variations, both in latitude and season. Crowley and
North (1991, section 11.2.7) argue that it is inappropriate given the lack of detailed seasonal data
from warm climates and the difficulty of simulating reduced continental seasonality in climate models
(see also Axelrod, 1992). Newer data do in fact suggest reduced Eocene continental seasonality as
noted above, and the term "equable" is now widespread in the climatological literature (e.g. Farrell,
1990; Korty and Emanuel, 2007; Abbot and Tziperman, 2008b).

6 An important exception is the so-called Paleocene-Eocene Thermal Maximum, a relatively brief
period of extreme warmth ca. 55 Ma. However one can think of this as the exception that proves
the rule, in the sense that its detection in the proxy records gives confidence that the relative
smoothness of the temperature reconstructions for the rest of the Eocene is not simply an artifact
of poor resolution in the records.

71t is also possible that Eocene tropical temperatures were in fact much warmer than discussed
above, and the equator-to-pole temperature gradient consequently closer to today's value. Ambigu-
ities in the equatorial temperature proxy records make it difficult to rule this out (Huber, 2008).



temperature characteristics not unlike those of the Eocene.8 In Chapter 5 we present

additional modeling results illustrating the critical, yet indirect, role played by ocean

heat transport (OHT) out of the tropics in the maintenance of an ice-free pole.

1.1.2 Glacial climate variability

Permanent ice sheets first appeared in the Antarctic towards the end of the Eocene

(ca. 36 Ma), and have been present ever since, while Northern Hemisphere ice sheets

were well established by the Pliocene (ca. 5 Ma) (Zachos et al., 2001). The northern

ice sheets in particular have undergone many cycles of growth and decay since the

late Pliocene. Explaining the waxing and waning of these ice sheets was one of

the "holy grails" of nineteenth century science, and remains so today (Imbrie and

Imbrie, 1986; Raymo and Huybers, 2008). The argument that these cycles result from

astronomically-imposed variations in solar forcing (due to changes in Earth's orbital

configuration) also dates to the mid-nineteenth century, and has been at the center of

glacial theory since Hays et al. (1976) demonstrated a clear connection between the

orbital frequencies and the record of global ice volume (measured isotopically from

ocean sediments).

One outstanding puzzle is the great shift in the global ice record that occurred in

the mid-Pleistocene (ca. 1 Ma). Prior to this shift, glaciations seem to have followed

a regular 41 ka cycle, following known variations in the obliquity of Earth's spin axis.

The most recent 800 ka, however, have been characterized by longer and less regular

glacial cycles of approximately 100 ka period. See, for example, Fig. 1 of Raymo and

Huybers (2008). A satisfactory explanation for this shift has not yet been found.

The late Pleistocene 100 ka glacial cycles also have a sawtooth character that is

absent from the earlier record: ice grows for roughly 90 ka and decays over just 10 ka.

While there are variations in the eccentricity of Earth's orbit at the 100 ka period,

these variations contribute very little to the solar forcing signal (Raymo and Huybers,

2008; Wunsch, 2003). Why the ice sheets should therefore respond at this frequency,

8Though the model has no land, and so we do not address the significant problem of explaining
warm continental winters, e.g. Abbot et al. (2009).
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Figure 1-1: The GISP2 6180 record, considered a proxy for temperature in central
Greenland. Time runs from left to right, and temperature increases upward. Repro-
duced from Wunsch (2006).

and how to explain the sawtooth shape, are still outstanding problems. Explanations

have recently been sought in terms of non-linear interactions between the solar forcing

and internal ice sheet dynamics (Gildor and Tziperman, 2001; Tziperman et al., 2006)

Moving now to the even more recent past, much finer timescale climatic data

are inferred from ice core records. The Greenland records extend back about 100 ka

(Meese et al., 1997), while some from Antarctica extend back 800 ka (EPICA, 2004).

The Greenland ice cores in particular have revealed amazing details about climate

variability during the last glaciation.

Fig. 1-1 shows the well-known 6180 record from the GISP2 core (Meese et al.,

1997), which is interpreted as a temperature measure. This record show the stark

difference between the Holocene (the most recent 10 ka) and the last glaciation that

preceded it (which culminated at the so-called Last Glacial Maximum (LGM) at 21

ka, e.g., Peltier (1994)). The Holocene is characterized by relative stability, while

the colder glacial period was subject to numerous large amplitude climate changes

every few thousand years. Like the 100 ka ice ages themselves, this millennial-scale

variability has a distinct sawtooth shape: the warming is abrupt, while the subsequent

cooling is much slower. The meaning of "abrupt" in this context is usually defined as

persistent, large scale changes in climate occurring on a time scale of decades (Clark

et al., 2002). These abrupt warmings are known as Dansgaard-Oeschger (D-0) events



(Dansgaard et al., 1993). They are characterized by a mean annual temperature

increase in Greenland of 5-10'C (Li et al., 2005), with some evidence that the change

is largely confined to the winter season (Denton et al., 2005) and of order 20'C (Seager

and Battisti, 2007).

While questions remain about whether D-O events represent changes local to

Greenland versus global climate change (e.g. Wunsch, 2006), the balance of evidence

(at least for the most recent abrupt changes) points to at least a hemispheric-scale

event. Seager and Battisti (2007) give a thorough recent review of the evidence for

abrupt climate changes, and of the leading hypotheses to account for them. It is still

very much an open question, which we will return to later in the chapter. The D-O

events in Fig. 1-1 provide strong evidence that the climate system is capable of very

rapid, large amplitude changes. Furthermore, the transition from noisy ice age into

the relatively stable Holocene further supports the assertion made above that colder,

icier climates are also more variable.

1.1.3 Snowball Earth

This final topic in our brief paleoclimate review goes much farther back into the

deep past. The late Neoproterozoic era ca. 750 - 550 Ma saw repeated widespread

glaciation, and paleomagnetic evidence shows that ice was present at sea level near the

equator during at least two of these episodes (Hoffman et al., 1998). The "Snowball

Earth" hypothesis, first put forward by Kirschvink (1992) and later championed by

Paul Hoffman (Hoffman et al., 1998; Hoffman and Schrag, 2002), contends that the

global oceans were covered in sea ice down to the equator. While not universally

accepted, the hypothesis accounts for several features of the geologic record from

this time, including large isotopic shifts indicative of enhanced weathering (and a

draw-down of atmosphere pCO2 ) prior to glaciation; the appearance of sedimentary

iron formations indicative of anoxic ocean conditions during 100% glaciation; and the

global carbonate deposits following de-glaciation, which are indicative of abrupt sea

ice melt at very high atmospheric pCO2 levels (resulting from slow volcanic outgassing

throughout the duration of the Snowball glaciation). See the review by Hoffman and



Schrag (2002).

If true, then these Snowball Earth events and the greenhouse gas-induced extreme

warmth that followed them represent the largest climate changes in all of Earth's

history. Quantitative reconstructions of these deep past events are essentially non-

existent at present, but the problem has been better constrained through climate

model studies, which we will review in a separate section below.

1.2 Energy balance and heat transport: some fun-

damentals

We now briefly review some key physics of the climate system underlying the modeling

work in later chapters.

1.2.1 The equator-to-pole temperature gradient

As alluded to above, two equally fundamental measures of the climate are the global

mean surface temperature and its equator-to-pole gradient AT,.

Basic considerations of Sun-Earth geometry indicate that the equator receives

roughly 2.5 times more solar energy than the poles, averaged over the seasonal cycle

(417 W m-2 vs. 117 W m-2 , calculated according to Hartmann (1994)). In response

to this solar heating, the planet must emit radiation back to space. Because these

emissions increase with temperature, an equilibrium temperature can be achieved

at which the outgoing longwave radiation (OLR) balances the net Absorbed Solar

Radiation (ASR). Planetary emission is thus the most fundamental of all climate

feedbacks. In fact Fourier anticipated this result long before the discovery of the

fourth-power Stefan-Boltzmann law.

The observed ALTep is shown in Fig. 1-2. A fundamental question is, to what extent

is this pattern imposed astronomically versus set by internal atmosphere-ocean pro-

cesses? It is often argued (e.g. Farrell, 1990; Hartmann, 1994; Enderton, 2009) that

poleward energy transport by the atmosphere and oceans is responsible for greatly
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Figure 1-2: Surface air temperature from NCEP Reanalysis (Kalnay et al., 1996),
zonal and time mean.

reducing the ATep from a large hypothetical value it might have in the absence of

such fluid transports - Farrell (1990), for example, reports 109*C. These estimates are

based on both the astronomically-imposed solar heating gradient mentioned above, as

well as parameterizations of OLR appropriate for the observed greenhouse and cloud

properties of the atmosphere.9 One is left with the impression that the main role

of the climate system is to diminish ATep from the value imposed by astronomical

considerations. It is not a very meaningful argument, though, since the greenhouse

effect is generated by the same interactive atmosphere-ocean system that also trans-

ports energy poleward. Vertical radiative-convective dynamics and horizontal fluid

dynamics are convenient to separate mathematically, but are inextricably linked in

nature.

There is a relatively unambiguous astronomically-imposed equator-to-pole tem-

perature gradient that one can calculate from first principles, which might be appro-

priate for Earth in the absence of an atmosphere and ocean. We simply assume the

Earth is a blackbody radiator with a uniformly reflective surface, and balance the

9In its simplest form this argument just invokes a linear OLR law A + BT, with the value of B
found empirically to be much smaller than a linearization of o-T 4 would give; see Section 2.1.1 and
Appendix C.



incident solar radiation with oT 4 at every latitude. Thus

((1 - a)417 W m- (1 - a)117 W M iZATep Tequator - Toie 01 7 W 53 C

(1.1)

with a planetary albedo a = 0.33. This value is surprisingly close to the observations

in Fig. 1-2 -- ATep - 45'C and 65'C in the Northern and Southern Hemispheres

respectively. Why then do we need look any further for a theory of climate?

The most obvious and well-known reason is that, by neglecting the greenhouse

effect, the above calculation gives a global mean temperature much too cold (T ~

-21 0 C, with sub-freezing temperatures even at the equator). Once the greenhouse

properties of the atmosphere are invoked to explain the global mean temperature,

we must reckon with all the simultaneous ways the climate system perturbs the

astronomically-imposed temperature. For example, the observed equator-to-pole con-

trast in absorbed solar radiation (ASR) is closer to a factor of 5 than 2.5 (Enderton,

2009) because of a systematic poleward increase in the albedo (or reflectivity) of the

Earth due, mostly, to patterns of clouds and snow/ice cover. Meanwhile, fluid insta-

bilities arise as a natural (inevitable?) consequence of the temperature gradient, and

the resulting winds and ocean currents carry energy poleward. Processes internal to

the climate system thus tend to increase and decrease ATp simultaneously, and the

observed climate emerges from the dynamic balance between these different factors.

Since this balance can change, so too can ATe, change over time, as attested to by

the paleoclimate record.

This, then, is the second reason why we need a theory for interactive components

of the Earth's energy balance. While the astronomical forcing has changed over time,

those changes are relatively modest and tell us nothing, for example, about the shift

from Eocene warmth to the glacial epoch that followed (Zachos et al., 2001; Raymo

and Huybers, 2008).



1.2.2 Heat transport: some definitions and observations

Much of this thesis is concerned with the role of atmospheric and oceanic heat trans-

port (AHT and OHT) in setting ATp. Before diving into the relatively abstract world

of simple models, we will take a brief look at the observations of heat transport, and

the challenges involves in measuring it.

First, a word about nomenclature. In this thesis we follow the standard termi-

nology of the atmospheric and oceanic literature in referring to the bodily transport

of energy by fluid motions as "heat transport", or occasionally "heat flux". War-

ren (1999) explains that this terminology is both inaccurate (heat is a quantity of

exchange, not a property of a fluid) and potentially misleading (in that it invites

confusion with actual heat fluxes due to processes such radiative absorption). The

relevant thermodynamic fluid property is actually enthalpy. However, the meaning is

almost always clear in context.

The terms AHT and OHT generally refer to the net energy transport integrated

across longitude-height sections, which we will denote 71, -, for the atmosphere and

ocean respectively. The total heat transport (THT) is thus simply

71 = Ha + 'o (1.2)

which describes the net meridional energy flux in and out of each latitude band. In

the absence of significant geothermal heat sources, the only additional energy source

is the net radiative flux at the top of the atmosphere (TOA), which we will denote

RTOA. Thus a basic budget for the total energy content E of the atmosphere-ocean

system can be written

-- E(#) = RTOA - 1 awH (1.3)
19t 2a 2 cos 84

where RTOA includes both solar and terrestrial radiation, and is defined to be positive

downwards. Here also a is the planetary radius and 4 is latitude.

The total energy E contains important contributions from internal energy, po-



tential energy, and (for the atmosphere) the latent heat represented by water vapor.

The kinetic energy component is small and usually neglected. See Peixoto and Oort

(1992) for a thorough derivation. The transports are usually computed from

Na= vJ(A,#0,p,t)(cT+gz+Lq)(acos OdA) (1.4)

OH= v(A, #, z, t)pc0 (a cos #dA)dz (1.5)

where v is the northward velocity, p is the vertical pressure coordinate in the atmo-

sphere, and A is longitude (so that a cos #dA is a zonal length element). Here also c,
is the specific heat at constant pressure for the respective fluids, L is the latent heat

of vaporization, q is the specific humidity, p is the ocean density and 0 is the oceanic

potential temperature referenced to surface pressure. See also Warren (1999) for a

thorough discussion of the oceanic case and its accuracy.

For the atmosphere it is convenient to define the Dry Static Energy (DSE) as the

sum of internal and potential energy, and Moist Static Energy (MSE) as this quantity

plus Latent Heat (LH):

DSE = cT + gz (1.6)

MSE = cT + gz + Lq (1.7)

The total atmospheric heat transport Na can therefore be decomposed into fluxes of

DSE and LH (see Pierrehumbert (2010) for a very general discussion of this decom-

position).

The total heat transport is inferred from satellite observations of RTOA through

(1.3) by assuming planetary energy balance (&E/8t 0) and integrating from pole

to pole. In principle one can calculate Ra and 11,, through (1.4) from in-situ velocity,

temperature and humidity measurements. In practice there are substantial uncer-

tainties in all of these calculations due to sparsity and reliability of the underlying

observations. This is most obviously the case for the ocean, and in fact in many

estimates N0 is calculated simply as a residual from (1.2).
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Figure 1-3: Estimates of northward total heat transport 7-t and its atmospheric

(ha) and oceanic (7-t) components from Trenberth and Caron (2001). Red solid

(dashed) curve derived from NCEP (ECMWF) atmospheric reanalysis. Blue curves
are computed as residuals from black and red curves.

Fig. 1-3 reproduces the very widely cited estimate of 'he and its atmosphere-ocean

partition from Trenberth and Caron (2001), based on this residual approach. 'Je( is

smooth and nearly perfectly anti-symmetric about the equator, with peak values of

about +5.5 PW reached near 350C in both hemispheres.'0 7a and 7Nto, by contrast,

have more complicated structures with latitude. The ocean is dominant within about

100 of the equator, while the atmospheric component dominates throughout the extra-

tropics. 7-4 reaches its peak value of about t1.8PW near 150N,S, and drops to

relatively small values in the mid-latitudes.

The solid and dashed curves indicate two different estimates of 'Ha based on differ-

ent reanalysis datasets. The difference between the curves suggests that even this es-

timate, which draws on decades of radiosonde observations, is subject to a non-trivial

uncertainty. This uncertainty is of course reflected in the different residual values

for 'Ho in the graph, which for example differ rather widely in the oceanic transport

101 PW = 105 W.

. ... ........



in the Northern mid-latitudes. There is also a non-trivial amount of uncertainty in

the satellite-based estimates of RTOA, from which Wunsch (2005) infers an error bar

of order ±1 PW in the peak values of 7 t (see also an update by Enderton, 2009).

The same paper also offers an independent estimate of R, from direct ocean measure-

ments, including error bars (based primarily on Ganachaud and Wunsch (2003)). The

peaks are estimated at 2.2±0.6 PW (NH) and -0.8±0.6 PW (SH), with substantial

northward transport across the equator. The lack of inter-hemispheric symmetry in

R, is attributed the meridional overturning circulation (MOC) in the Atlantic basin.

With all these caveats the curves in Fig. 1-3 must be regarded with some caution.

Still, a few robust characteristics seem to survive between different estimates (and

also in coupled model simulations), including the smoothness of NR, the dominance

of NR near the equator, and the dominance of 'ha in the extra-tropics. In the next

section we'll review the fluid mechanisms that give rise to these transports, and some

of the theory to explain this basic pattern.

1.2.3 Understanding the partition of heat transport

Fundamental reasons for the observed smoothness of R( were explored by Stone

(1978). He showed in very general form that the total meridional energy flux on

a spherical planet is proportional to (x3 - x), where x = sin q. This formula is a

result of simple geometrical constraints on the energy budget, and is independent

of the structure of the dynamics (assuming only that motions are dominated by the

planetary scale, and the hemisphere is at equilibrium). Thus the total energy flux is

constrained to peak near 350 latitude, and the flux per unit area near 45'.

Furthermore, Stone (1978) finds that the magnitude of Rt is determined primarily

by the solar constant, the earth's radius and axial tilt, and the global mean albedo.

This suggests that the total energy transports in a climate model should be insensitive

to the detailed formulation of the dynamics, so long as the mean albedo is well

approximated. Indeed, as discussed by Wunsch (2005), Stone's simple formula for

the total energy flux provides a very reasonable approximation to the observed total

in Fig. 1-3. See Enderton and Marshall (2009) for a critical re-examination of Stone's



results with modern satellite observations and climate model results.

The curves in Fig. 1-3, which represent integrals in depth and longitude, give

relatively little indication of the complex three-dimensional circulation patterns un-

derlying the energy transports. In the atmosphere the relative wealth of observations

allows for detailed decomposition of 'Ha into its sensible, latent and potential energy

components, which can each be further subdivided according to the contributions

to the zonal mean of transport by symmetric circulations, transient eddies and sta-

tionary eddies. Many details of these decompositions are given in Peixoto and Oort

(1992). Here we mention briefly that the partition between transports of DSE and LH

is roughly equal. The single largest contributions (in the annual mean) to the midlat-

itude WHa peaks come from transient eddy fluxes of sensible heat in both hemisphere,

of order 3 PW.

In the ocean W, includes contributions from shallow overturning cells driven by

Ekman layers, transport by horizontal wind-driven gyres, and deep meridional over-

turning circulation associated with deep water formation at high latitudes. Unfortu-

nately, estimating the relative strengths of these different mechanisms from the sparse

observations is a difficult and ambiguous task. See Hall and Bryden (1982) and Bry-

den et al. (1991) for some estimates based on subtropical sections in the Atlantic

and Pacific basins, respectively. Much of the progress made on understanding the

oceanic energy balance has of necessity come from models of ocean circulation driven

by observed meteorological fields (e.g. Boccaletti et al., 2005), rather than from direct

ocean observation.

The large OHT out of the tropics is attributed largely to the so-called "subtropical

cell" (STC), an elegant model of which is given by Klinger and Marotzke (2000).

Easterly surface winds in the tropics drive poleward Ekman layer transports (scaling

as r/f where T is a wind stress and f is the Coriolis parameter) in both hemisphere,

leading to a strong horizontal mass flux divergence along the equator, compensated

by upwelling water. The Ekman transport converges in the subtropics where the wind

stress becomes small (tropical easterlies give way to mid-latitude westerlies), forcing a

downwelling of cooler water, which returns equatorward at depth. Heat is transported



poleward by virtue of the temperature difference between the poleward-flowing surface

water and the equatorward-flowing subsurface water at a given latitude. Bryden et al.

(1991) show that the heat transport across 24' N in the Pacific is about evenly divided

between the STC and circulations in the horizontal plane.

It has been argued that the observed partition of heat transport between Wa and

7-, is a robust feature of the climate system, set by fundamental physical constraints

and thus unlikely to change radically under different climates (Held, 2001; Czaja

and Marshall, 2006). A general scaling argument for both AHT and OHT can be

written W-1 = AO where T is a mass transport and AO is an energy gradient across

the overturning cell (measured in terms of sensible heat in the ocean, MSE in the

atmosphere). Held (2001) argues that the meridional mass transports of the two

fluids are strongly coupled together, since in the tropics they are both driven by

Ekman layers that balance an equal and opposite surface stress. This is true so long

as non-linearities in the momentum balance (i.e. eddies) are small, and the land

fraction near the equator is small. Since T at low latitudes is roughly equal for the

two fluids, the partition of heat transport must be set by the stratification AO. This

is set by rather different physical processes in the two fluids: in the atmosphere,

moist convection is a very efficient mechanism for returning the tropical atmosphere

to neutral stratification, and so AO is small. In the ocean, Held (2001) invokes the

STC model of Klinger and Marotzke (2000) to argue that Ekman-driven equatorial

upwelling creates a shallow thermocline and strong stratification. Consequently AO is

large, and the ocean transports large amounts of energy out of the tropics. The only

obvious way to interrupt this mechanism is through blocking of the ocean's tropical

overturning cell by large land masses near the equator. For an alternative perspective

on the tropical heat transport partition, see Clement and Seager (1999) and Hazeleger

et al. (2004), who point out that Held's reasoning is complicated by the existence of

an equatorial gyre that carries heat equatorward in low latitudes.

The extra-tropical momentum balance is quite different, and, as noted above,

eddies play a major role in the atmospheric mass transport. Czaja and Marshall

(2006) calculate T within moist isentropic layers from an atmospheric reanalysis and



find essentially a single equator to pole circulation in each hemisphere, with winter

season mass transports peaking at around 200 Sv in mid-latitudes.1' Thus T for

the atmosphere is an order of magnitude larger than its oceanic counterpart in mid-

latitudes (typically around 20 Sv). This much larger mass transport accounts for the

dominance of the atmosphere in the heat transport curves in Fig. 1-3 outside of the

tropics. Given that sea water is more than a thousand times denser than air, this is

a curious result, but is true nonetheless due to the vigorous mixing of air masses by

baroclinic eddies.

1.3 Ocean heat transport and sea ice in the climate

system

This section presents a review of the literature on the global-scale climatic impacts of

sea ice, ocean heat transport, and the interactions between them. These are subjects

of central concern to this thesis.

1.3.1 The observed sea ice distribution and atmospheric in-

teractions

A perennial sea ice cap has existed over the high-latitude oceans in both hemispheres

at least since the beginning of the satellite era, and probably much longer. The Arctic

sea ice extent is currently shrinking rapidly, particularly at its annual minimum extent

in September (e.g., Stroeve et al., 2008), a fact that is usually attributed, at least in

part, to warming induced by rising greenhouse gases (Serreze et al., 2009). Climate

forecasts predict continued Arctic sea ice loss through the 21st century(e.g. Holland

et al., 2006), while Antarctic warming and sea ice loss is projected to be slower due

to increased in ocean heat uptake in the southern high latitudes (Holland and Bitz,

2003).

11 Sv = 106 m3 s-' is the standard oceanographic unit of volume transport. Czaja and Marshall
(2006) express atmospheric transport in units of "mass Sverdrups" where 1 Sv = 109 kg s-', enabling
easy comparison with their oceanic counterparts, since ocean density is very close to 103 kg m- 3 .



The sea ice budget study of Bitz et al. (2005) indicates that for most regions of the

high-latitude oceans, the major determinant of the ice edge is the local convergence

of OHT, and that the seasonal ice melt occurs from the bottom and sides rather

than the top. Exceptions to these rules seem to occur primarily in areas of rapid

wind-driven ice advection such as Fram Strait (east of Greenland) and the Labrador

coast, as well as certain areas that experience strong seasonality in the advection of

warm and cold air masses.

On short, intra-seasonal timescales there are demonstrable covariances between sea

ice and winds, but the literature is somewhat equivocal about the causality. In one

observational study, for example, Fang and Wallace (1994) find that North Atlantic

ice cover covaries with the North Atlantic Oscillation (NAO) with the ice lagging the

atmosphere by about two weeks. One phase of the NAO involves positive geopotential

height anomalies over Greenland, which tends to be accompanied by a retreat of the

ice edge in the Davis Strait and Labrador Shelf and an advance of the ice edge in the

Greenland and Barents Seas. Fang and Wallace (1994) attribute the ice behavior as

a response to the anomalous surface wind and temperature associated with the NAO

pressure anomalies. These results are largely confirmed in a more comprehensive

analysis of observations by Deser et al. (2000), who also note the tendency for the

storm track in the Greenland Sea to follow displacements of the ice edge, and for

storm counts to increase in response to reductions in ice cover.

To first order, then, it seems that sea ice responds passively to climate forcing

on short timescales. However the possibility of coupled feedbacks exists due to the

aforementioned effects of sea ice cover on the atmosphere, as well as effects on the

high-latitude deep-water formation processes in the ocean. Because the observational

signal is dominated by the ice response to atmospheric variability, the atmospheric

response to ice anomalies has been studied in models, where the ice cover can be

specified a priori (some examples include Herman and Johnson, 1978; Murray and

Simmonds, 1995; Honda et al., 1996; Wu et al., 2004). A concise review of past

modeling results can be found in the introduction of Alexander et al. (2004). Results

from this paper, as well as Deser et al. (2004), suggest that there is a remote, large-



scale atmospheric response to reduced ice cover in the Greenland Sea which projects

strongly onto the negative phase of the NAO, weakening the polar vortex and the main

branch of the North Atlantic storm track. Because this is opposite to the observed

relationship between the NAO and sea ice variability, Deser et al. (2004) suggest a

negative, stabilizing feedback between the atmosphere and the ice edge.

There remains the possibility of a significant three-way feedback between sea ice,

winds, and wind-driven ocean currents on longer timescales, since OHT convergence

has been shown to be a key player in setting the observed ice edge (Bitz et al., 2005).

This possibility has been largely unexplored in the climate modeling literature. While

there have been numerous simple model studies of interactions between sea ice and

ocean thermohaline circulation (e.g. Yang and Neelin, 1993, 1997; Nakamura, 1996;

Jayne and Marotzke, 1999; Bendtsen, 2002), there has been relatively little attempt

to represent the physics of wind-driven OHT in such models. A simple coupled

atmosphere-ocean-sea ice model with wind-driven OHT is derived in Chapters 2 and

3 of this thesis, and its multiple-equilibrium properties are explored.

1.3.2 On the role of sea ice in glacial climate variability

In a series of papers (Gildor and Tziperman, 2000, 2001; Timmermann et al., 2003;

Gildor and Tziperman, 2003; Sayag et al., 2004; Kaspi et al., 2004), Gildor, Tziperman

and colleagues present a mechanism for glacial cycles, in which sea ice plays a crucial

role. The mechanism is identified in a simple box model for the zonally averaged

ocean, atmosphere, sea ice and land ice. This model generates sawtooth-shaped

oscillations of the continental ice sheet (slow buildup, rapid deglaciation) on 100 ka

timescales. Sea ice acts as a climate switch by controlling the moisture supply to the

ice sheets through high latitude evaporation, thus shifting the ice sheet from growing

phase (warmer, less sea ice, more high latitude precipitation) to a retreating phase

(colder, more sea ice, less precipitation). Interestingly, the sea ice cover in this model

behaves as if quantized into low and high states, with rapid transitions between the

two when much slower climatic forces (albedo of the growing/shrinking ice sheet;

diffusion of heat in the deep ocean) push the system past a threshold. In this body



of work, rapid switch-like changes in sea ice cover are implicated in both the 100

ka glacial cycles and the millennial scale D-O events (Gildor and Tziperman, 2003;

Timmermann et al., 2003).

The idea that sea ice could act as an amplifier of climate signals and an agent of

rapid glacial climate change has been receiving increased attention in recent years.

For example, Chiang et al. (2003) show that perturbations in the sea ice cover in

LGM simulations can force displacements of the Atlantic ITCZ (through unspecified

atmospheric teleconnections) in a manner that is consistent with observations from

the Cariaco basin sediment. Li et al. (2005) use an atmospheric model forced by

specified SST and ice cover to investigate whether the direct atmospheric response

to a reduction in ice cover from LGM conditions is consistent with the magnitude

of the Greenland warming of a typical D-O event. They conclude that a plausible

reduction in winter ice extent can explain the Greenland signal. While these results

do not explain the ultimate cause and timing of D-O events, they do suggest that

rapid sea ice retreats are a critical component of the mechanism for millennial-scale

glacial climate variability.

Ideally we would like to be able to test these ideas by looking for evidence of rapid

sea ice retreats in the paleo record synchronous with D-O events. Unfortunately

the reconstruction of past sea ice cover from proxies is not a very precise endeavor.

The ice edge advances and retreats seasonally, and does not leave behind any direct

physical evidence in the sediment. Sea ice reconstructions rely instead on indirect in-

dicators, such as microfossil assemblages that correlate with modern ice distributions

(e.g de Vernal and Hillaire-Marcel, 2000; de Vernal et al., 2005), or are inferred from

temperature estimates (e.g. Sarnthein et al., 2003). It seems clear that the state of

the art in sea ice reconstruction is not sufficient to validate or refute the sea ice switch

mechanism. We can say with some certainty that winter sea ice cover at LGM was

more extensive than at present; a more quantitative statement is trickier", especially

with the high temporal resolution that would be required to properly understand the
1 2Jt should be noted, however, that the trend in estimates of LGM sea ice cover since the classic

CLIMAP reconstruction has been towards less ice, especially for the summer season (Sarnthein et al.,
2003).



dynamics of ice cover during D-O events.

1.3.3 On the climatic impact of ocean heat transport

Ideas going back to Bjerknes (1964) suggest that changes in R', may be compensated

by changes in 71,a as a result of air-sea interactions, so that the total poleward energy

transport Wt remains constant (see also Marshall et al., 2001). While these ideas stem

from considerations of decadal-scale variability rather than the long-term mean state,

they mirror the arguments of Stone (1978) that lit is largely fixed by astronomical

constraints and the distribution of planetary albedo, and thus independent of the

detailed atmosphere-ocean dynamics.

On the other hand, there is ample modeling evidence that changes in OHT can

be associated with large changes in the surface climate. The balance of this evidence,

which we will review below, is that the largest climate changes occur in associated

with changes in sea ice extent. While some degree of compensation is always found

in such experiments so that changes in ?it tend to be much smaller than changes

in 74, (and in fact can be of the same or opposite sign, e.g., Winton (2003)), the

high-latitude temperatures can vary widely. Wt is thus not a particularly sensitive

measure of ATp, a point that was first made by Stone (1978), reiterated by Enderton

and Marshall (2009), and which will be taken up again in Chapter 2.

Since OHT is intimately coupled to the rest of the climate system, some care in

experimental design is required to study the climatic response to OHT changes. One

approach is to systematically vary the bathymetric constraints on ocean circulation in

a coupled model (Enderton and Marshall, 2009). These experiments have interesting

paleoclimate analogs, since Earth's continental distribution has varied tremendously

over geologic time, allowing for very different oceanic energy pathways. Coupled

model experiments with idealized geometry very similar to Enderton and Marshall

(2009) are presented in Chapter 4.

Many more studies have used the so-called "q-flux" approach (Russell et al., 1985),

wherein an atmospheric model (and possibly sea ice) is coupled to a simple mixed-layer

ocean model, which computes the seasonally storage and release of heat interactively.



OHT convergence is represented by specified sources and sinks of heat applied to the

mixed layer. This specified forcing is known as a q-flux, and allows the modeler to

study the response of the rest of the climate system to direct perturbations of 71,.

The traditional method for specifying the q-flux is to run an atmosphere-only GCM

with prescribed climatological SST and calculate the net implied surface heating (e.g.,

Hansen et al., 1984; Russell et al., 1985; Hansen et al., 1997; Clement and Seager,

1999; Herweijer et al., 2005).

Winton (2003) introduces the novel approach of taking fixed ocean currents from

a coupled model simulation, and using these currents and perturbations thereof in

a kinematic ocean model to advect heat and salt while coupled to full atmospheric

and sea ice models. This approach was also used by Herweijer et al. (2005). Be-

cause temperatures are free to evolve, this approach allows for a certain degree of

interactivity that is absent from q-flux experiment; for example, the region of strong

OHT convergence can follow changes in the sea ice edge (Winton, 2003). It is an

interesting intermediate modeling technique between q-fluxes and full dynamically

coupled models. However it's probably best suited to studying transient climate

change rather than the long-term equilibria that are the main focus of this thesis.

This is because, as noted by Winton (2003), the deep ocean stratification adjusts

over very long timescales in these experiments (as it does in a dynamically coupled

model), which exerts a slowly changing influence on factors such as the convective

heat flux at the ice edge.

In one early q-flux model experiment, Rind and Chandler (1991) find that a 15%

OHT increase is sufficient to remove all sea ice, and the resulting climate is Eocene-

like: the global mean temperature increases by 2*C, while the polar temperatures

increase by 20'C. The melting of sea ice is directly attributed to increased OHT into

high latitudes. The authors argue that the shifts in the wind and hydrological cycle

at mid- to high latitudes in the warmer climate would also be consistent with an

increased OHT in a coupled system, and so speculate that the warm, ice free state

could represent another stable mode of operation.

Winton (2003) uses both a q-flux approach and the fixed current approach to



vary OHT in models of the present-day climate. Sea ice feedbacks are included using

both a fully dynamic sea ice model and a purely thermodynamic model. The sea ice

extent is quite sensitive to prescribed OHT changes in all these runs. In the most

extreme cases with zero q-flux (i.e. N, = 0 everywhere), he finds unstable ice growth

when sea ice dynamics are included (the runs are not integrated out to equilibrium

but are suggestive of a runaway ice-albedo feedback). The same experiments with

purely thermodynamic sea ice equilibrate with stable but large ice caps. Increasing

(decreasing) the current speeds in the fixed-current models lead to roughly propor-

tional increases (decreases) in sea ice extent. The upward convective heat flux during

winter near the ice edge is identified as an important oceanic mechanism setting the

ice extent. He concludes that the presence of OHT warms the global mean climate

both through its impacts on sea ice as well on low-level cloud cover (see also Herweijer

et al., 2005).

The study by Langen and Alexeev (2004) employs an atmospheric GCM coupled

to a thermodynamic sea ice model and an ocean mixed layer forced by an idealized

q-flux. They use aquaplanet geometry and eliminate the seasonal cycle in a deliberate

attempt to mimic the simple boundary conditions of Energy Balance Model studies

(see Chapter 2). They specify a q-flux that varies only in latitude, is symmetric across

the equator, and implies a broad equator-to-pole structure in R,: it cools the ocean

between about 25'N to 25'S, and warms the ocean nearly uniformly poleward of 30'.

They vary the amplitude of this q-flux as a bifurcation parameter and find multiple

equilibria of the climate and ice edge. For weak q-flux (peak -i, ~ 1.1 PW) only

a stable large ice cap state is found, with ice edge near 40'. For large q-flux (peak

710 - 2.5 PW) only an ice-free state is found. For intermediate values both the large

ice cap and no-ice equilibria are possible. Furthermore they find a small range (peak

WO ~ 2 PW) in which a third equilibrium with a small ice cap is possible (ice edge

near 650). It's interesting that the ice extent appears to be quantized in these results.

The large ice cap, for example, does not retreat gradually as OHT in increased; its

branch of the solution simply vanishes as a threshold in q-flux amplitude is crossed.

At least in this idealized set-up, then, the connection between OHT convergence and



the ice edge appears to be highly non-linear. We take this point up in detail in

Chapter 5.

Seager et al. (2002) compare "zero q-flux" model runs (i.e. no OHT) with and

without a thermodynamic sea ice component to a control run to assess the impact

of OHT on present-day climate. The primary focus of this paper is to account for

the zonal asymmetries between North American and European winters13 , and as such

they do not report extensively on the annual mean energy balance. However they do

find that the largest impacts of OHT occur in conjunction with sea ice feedbacks -

the model with active sea ice and zero q-flux experiences a significant cooling and

expansion of sea ice in the Nordic Seas.

The "zero q-flux" result with active sea ice included in Seager et al. (2002) was

first reported by Clement and Seager (1999), who study tropical heat transport com-

pensation (and in fact this paper does not mention sea ice). The sea ice expansion

associated with setting OHT to zero in this run is apparently quite modest compared

to those reported by Winton (2003) and Langen and Alexeev (2004). An important

caveat is that this run uses the GISS GCM (Hansen et al., 1984; Genio et al., 1996),

which has a two-layer ocean with vertical heat exchange; thus the ocean energetics

(in particular its seasonality) are more complex than simple mixed-layer models such

as Winton (2003).

It is somewhat paradoxical that, while OHT into the high latitudes in the current

climate is small, alterations in the OHT can produce large changes in the high-

latitude climate. This is often interpreted to indicate a very strong sensitivity of the

sea ice cover to small changes in high-latitude OHT convergence (e.g., Winton, 2003;

Enderton and Marshall, 2009). Why the steady-state sea ice edge should respond so

much more sensitively to a given W m- 2 of heating from below, as opposed to above

(say from an increase in high latitude 'Na) has never been explained satisfactorily.

Surely the seasonality of the heating at the ice edge is an important factor, as Winton

(2003) discusses. A possibly more fundamental issue that has not been explored is the

role of remote OHT changes on the high-latitude surface heat budget. It is known that

13On this topic, see also the rebuttal by Rhines et al. (2008).



changes in OHT out of the tropics (where the signal is large) can be communicated

globally by atmospheric teleconnections (e.g., Clement and Seager, 1999; Herweijer

et al., 2005). None of the above model experiments have attempted to separate out

the high-latitude impacts of the large imposed changes in tropical OHT on the one

hand, versus the relatively modest changes in high latitude OHT. We examine this

question in detail with our slab ocean calculations in Chapter 5.

A more extreme test of the OHT - sea ice connection comes from GCM exper-

iments inspired by Snowball Earth. Boundary conditions appropriate for the Neo-

proterozoic include a reduced solar luminosity and an equatorial supercontinent with

relatively high albedo" (Poulsen et al., 2001), both of which tend to cool the climate

relative to the present. The ice extent in three such models with different treatments

of OHT are compared by (Poulsen et al., 2001): a mixed-layer ocean with zero OHT,

a mixed-layer ocean with 'Ho parameterized as a lateral diffusion, and a fully cou-

pled dynamical ocean model (all with a low pCO2 ). They find that both mixed-layer

models freeze over into the Snowball state, although the ice edge takes substantially

longer to penetrate the tropical oceans in the presence of diffusive OHT. The cou-

pled model, on the other hand, generates stable large ice caps extending into the

mid-latitudes." Poulsen and Jacob (2004) use a more sophisticated coupled GCM to

study the stabilization of this large ice cap state. They identify both the wind-driven

OHT convergence near the sea ice edge and cloud feedbacks as key elements prevent-

ing the runaway glaciation found in mixed-layer models. See also Donnadieu et al.

(2004).

What would be the fate of sea ice and climate in the modern world, were the ocean

to stop circulating completely? This is of course a purely hypothetical question,

but is of interest here in anticipation of some of the results of this thesis, and is

a straightforward question to answer by means of slab ocean models with zero q-

flux and a sea ice model. Surprisingly few results of this kind have appeared in the

literature, and those that have (which we have reviewed above) suggest that very large

"Land plants had yet to evolve at this time.
isThe size of the ice caps appears to depend on initial conditions of ocean temperature, but these

coupled simulations are not run out to equilibrium.



(and sometimes unstable) sea ice expansions are the norm. These two statements are

probably tightly connected. Some authors have de-emphasized such results since their

interest lay in climates closer to that of the present-day (e.g., Langen and Alexeev,

2004)16, and many of the reported "zero q-flux" experiments have employed a fixed

sea ice cover to explicitly eliminate strong sea ice feedbacks (e.g. Seager et al., 2002).

A model inter-comparison study is currently underway to find threshold pCO2 values

at which such "zero q-flux" models exhibit unstable ice growth down to the Snowball

state. 17

1.4 Multiple equilibria in the climate system

Much of this thesis is dedicated to investigating the possibility of multiple equilibria of

the atmosphere-ocean-sea ice system. Of course the climate system exhibits variabil-

ity on all timescales and is never truly in equilbrium; by 'multiple equilibria' we really

mean multiple sets of long-term statistics. Lorenz (1968, 1970), for example, discusses

the implications for climate of whether the governing equations are transitive, sup-

porting only one set of long-term statistics; intransitive, supporting two or more sets

of long-term statistics, each of which has a finite probability of resulting from random

initial conditions; or possibly almost intransitive, meaning that the system behaves

as if transitive for long periods of time before abruptly and spontaneously shifting

to another mode. In general, any of these three types of behavior is possible from

nonlinear dynamical systems of equations, both simple and complex (Lorenz, 1970).

Lorenz was agnostic about which of these groups the climate system likely belonged

to, and the question is still open today.

The proven existence of multiple equilibria in complex models of the climate sys-

tem could have a profound impact on our interpretation of the large and abrupt

changes in the paleoclimate record. Multiple equilibrium states, that might be 'ac-

cessed' suddenly as external forcing parameters slowly change (e.g. orbital parame-

16Langen and Alexeev (2004) mention in the text that the ice expands to 30' to 401 latitude in
the absence of a q-flux, but it's not clear whether these are equilibrated.17D. Abbot and R. Pierrehumbert, personal communication 2010.



ters, greenhouse gas concentrations, continental drift ...) and pass through 'tipping

points' (see the review by Lenton et al., 2008), could have played a role in some of

these climate excursions. In the context of future global change in response to an-

thropogenic greenhouse gas emissions, if multiple equilibria exist then the possibility

of massive (and possibly abrupt) climate shifts in response to slow changes would

have to be taken very seriously, even if the chance of such an event were very un-

likely. Moreover, if the levels of atmospheric greenhouse gases were to be reduced, the

climate might not necessarily return to its prior state. In terms of specific features of

the paleoclimate record, both the abrupt D-O events and the 100 ka late Pleistocene

glacial cycles have been interpreted as indicative of switching between multiple quasi-

stable modes (e.g., Broecker et al., 1985; Paillard, 1998; Gildor and Tziperman, 2003;

Crowley and Hyde, 2008).

In fact, the oceanic and atmospheric literature abound with studies of simple mod-

els that exhibit multiple equilibria and hysteresis.' 8 Among these, two key concepts

were formulated by Stommel (1961) who deals with the oceanic thermohaline circu-

lation (or meridional overturning circulation, MOC), and Budyko (1969) and Sellers

(1969) dealing with the ice-albedo feedback. A brief discussion of both mechanisms is

offered below; the second (albedo feedback) will be a central theme throughout this

thesis.

While the multiple equilibrium properties of the above-cited simple models are

well-understood, it is by no means assured that the such characteristics will also be

found in more comprehensive models of the climate system which have many more

degrees of freedom. Indeed, hitherto, the existence of multiple stable states has not

been conclusively demonstrated in complex coupled climate models, as we will review

below. Such a demonstration would seem to be an essential prerequisite to advancing

our quantitative theory of climate, if we are to invoke hypotheses of multiple equilibria

to explain some of the dramatic and/or abrupt climate changes of the past.

We also note that, though Stommel (1961) and Budyko (1969) represent the

canonical starting points for the two mechanisms in the modern atmospheric and

18For another example dealing with warm climates, see Emanuel (2002).



oceanic literature, the underlying ideas are in fact much older. The notion of mul-

tiple equilibria in the abyssal ocean circulation dates back at least to Chamberlin

(1906), while a qualitative discussion of ice-albedo feedback and resulting instability

of small ice caps is offered by Brooks (1925, 1949).

1.4.1 The "oceanic" mechanism: thermohaline circulation

Stommel (1961) investigated the dynamics of a convective overturning circulation

forced by surface heat and salt fluxes in a simple two-box model. The fluid moves

between boxes in response to spatial density variations, but the density field is mod-

ified both by surface fluxes and by the flow field itself, due to the advection of heat

and salt. He found that under certain conditions the MOC could exhibit two stable

states: a thermal mode with vigorous circulation and a haline mode with weak and

opposite circulation. Multiple equilibria exist in this system because the specified

heat and salt fluxes tend to force the density in opposite ways (and with different

timescales) - one box is cooled and freshened, the other is warmed and salted. This is

typically understood as an analogy for the North Atlantic, although it must be noted

that Stommel (1961) makes no mention of this analogy.

There is a considerable literature on this concept and its possible role in abrupt

D-O events. Broecker et al. (1985) were the first to draw the link from abrupt transi-

tions in the Greenland ice sheet record to changes in the rate of deep water formation

in the North Atlantic. A qualitative picture emerged to explain the abrupt climate

transitions of D-O events as resulting from large-scale reorganizations of the ther-

mohaline circulation. The abruptness of the change is conceptualized as a threshold

behavior in the thermohaline circulation responding to a gradual shift in the atmo-

spheric heat and moisture fluxes, along the lines of the Stommel (1961) prototype.

For a discussion of this mechanism, see Broecker et al. (1985), Alley et al. (2003),

and Clark et al. (2002). The historical sequence is reviewed by Stocker (1999).

Broecker et al. (1985) had issued a sort of challenge to the climate modeling

community to investigate the possibilities of abrupt transitions or mode switching in

the thermohaline circulation. Shortly thereafter, Bryan (1986) demonstrated multiple



equilibrium solutions for the thermohaline circulation in a three-dimensional ocean

general circulation model (GCM). These results led to a general acceptance of the

oceans as a central and active component of the climate system (Stocker, 1999).

In ocean GCMs, multiple states of the MOC can be revealed through "water-

hosing" experiments in which freshwater perturbations are added to the high-latitudes

of the North Atlantic basin. Typically the MOC collapses for some finite freshwater

anomaly and does not recover its initial state once the anomaly is reduced. Manabe

and Stouffer (1988) were the first to report on such multiple states in a coupled ocean-

atmosphere-sea ice GCM. The existence of hysteresis in the thermohaline circulation

in response to the surface fresh water forcing was interpreted to be a robust feature

of the climate system, having been demonstrated throughout the modeling hierarchy

from box models to coupled GCMs (Stocker and Wright, 1991; Stocker, 1999; Clark

et al., 2002).

We argue here, however, that multiple stable states of the MOC have not yet

been demonstrated in a fully coupled and conservative atmosphere-ocean GCM with

realistic variability.

Manabe and Stouffer (1988), for example, employed surface salt flux adjustments,

an acceleration technique for the ocean convergence which creates spurious sources

of heat and salt in the ocean interior (Bryan, 1984), a coarse resolution (R15) which

prevents the development of synoptic scale eddies in the atmosphere, an annual mean

insolation, and a prescribed annual mean cloud cover derived from observations. All

these features were required to carry out such an experiment at the time, but they

raise major questions about the robustness of the result 9 .

Following Manabe and Stouffer (1988), multiple states of the MOC under "water-

hosing" forcing were extensively studied in ocean-only models (e.g. Rahmstorf, 1995)

and more recently in coupled GCMs (Rahmstorf et al., 2005; Stouffer et al., 2006).

Rahmstorf et al. (2005) report on a standardized "water-hosing" inter-comparison

19Manabe and Stouffer were the first to recognize this: "In this study, it was necessary to adjust
the rate of water exchange at the ocean-atmosphere interface in order to remove a systematic bias of

the model. In view of this artificial adjustment of surface water flux, one has to regard the present

results with caution".



project with earth system coupled models of intermediate complexity. They find that

all coupled GCMs exhibit multiple states of the MOC. Although the study includes

a wide variety of GCMs, all calculations are compromised by at least one of the

following two limitations: 1) freshwater/heat/momentum flux adjustments and 2)

use of a simplified atmosphere (Energy Balance Model (EBM), zonally averaged, or

statistical model). As in Manabe and Stouffer (1988), flux adjustment breaks the laws

of conservation in the coupled climate system and results in air-sea fluxes inconsistent

with the oceanic and atmospheric dynamical transports. The use of a simplified

atmosphere, on the other hand, effectively reduces the coupled system to a lower

order system. Additionally, it suppresses the development of a vigorous storm-track

and hence the energizing of a substantial internal variability in the coupled climate

system. This is important because it is known that, in some contexts, the addition of

realistic noise can lead to the destabilization of otherwise stable equilibria (Lee and

North, 1995). From a dynamical point of view, the absence of atmospheric eddies

requires parametrization of the meridional transports and surface winds. The use

of a simplified atmosphere also often requires ad-hoc choices about air-sea coupling

(e.g.,the zonal distribution of precipitation).

In a "water-hosing" inter-comparison similar to that of Rahmstorf et al. (2005)

but with more comprehensive coupled GCMs, Stouffer et al. (2006) report possible

multiple equilibria in only two cases. These are however not run out to steady state

and employ surface flux adjustment (and in one case an EBM atmosphere).

In summary, we must conclude that the existence of multiple stable states of the

MOC in fully coupled, dynamically consistent GCMs is still an open question despite

some twenty years of research on the subject. Part of the difficulty must surely

lie in the long integration times required to bring the deep ocean into equilibrium.

Exploratory, multi-millenial numerical experiments of the sort described in Chapter

4 of this thesis would have been prohibitively expensive until quite recently. We

must also mention that the causal link between MOC dynamics and observed D-O

events remains speculative; see Wunsch (2006) and Seager and Battisti (2007) for

some alternative views.



1.4.2 The "atmospheric" mechanism: ice-albedo feedback

Snow and ice are more reflective to sunlight than other surface types (e.g., green

vegetation or open ocean), as anyone who has taken a walk on a sunny winter morning

following a fresh snowfall knows well. Frozen surfaces thus absorb a smaller fraction

of the incident solar radiation, and consequently tend to be colder, which encourages

the formation of additional snow and ice. This very simple reasoning is the canonical

example of a positive feedback loop, and is often the starting point for textbook

discussions of the complexity of the climate system.

The simplest quantitative treatment of the ice-albedo feedback in the global cli-

mate system is found in so-called Energy Balance Models (EBMs), first formulated

(independently and in different ways) by Budyko (1969) and Sellers (1969). The

properties of these models are reviewed extensively in Chapter 2. Briefly, they treat

the competing effects of meridional energy transport and local radiative processes

on surface temperature, and provide an elegant representation of the non-linear ice-

albedo feedback. One of the hallmarks of this interaction is the existence of two very

different equilibrium climates for a given solar forcing: a warm climate with a small

ice cap (or none at all), and a very cold, completely ice-covered state (i.e. a "Snowball

Earth"). The ice-covered planet is sufficiently reflective that its surface temperature

lies far below the freezing point even at the equator.2 0

Between the two stable equilibria lies a third solution with large but finite ice

cover. However, in the classical EBM, this mid-latitude ice cap is unstable to small

perturbations and is thus not a physically realizable state. Some models also exhibit

unstable equilibria with very small ice caps. This phenomenon will be discussed

thoroughly in Chapter 2. The early EBM literature is reviewed by North et al.

(1981).

Investigation of analogous multiple states of the atmosphere-ocean-ice system in

complex models are more scarce. The existence of the Snowball state as a multiple

201t's interesting to note that the possibility of a Snowball state was first identified in these
simple models, and was generally regarded as just a curious theoretical concept until the geological

Snowball Earth hypothesis was put forward in 1990s. The interaction between climate data and

climate models, and between the practitioners of both sciences, is a two-way process.



equilibrium alongside a nearly ice-free state, which is the primary prediction of the

classical EBM, has recently found support by Marotzke and Botzet (2007) and Voigt

and Marotzke (2009) in a state-of-the-art coupled GCM configured for the present

day.

It remains unclear whether the climate system can also support stable interme-

diate states with large but finite ice caps, which would be of great interest from a

paleoclimate perspective. Such states were found by Langen and Alexeev (2004) in a

slab ocean model with prescribed OHT, as mentioned above. This gives incentive to

seek them out in a fully coupled model. The lack of a seasonal cycle of solar forcing

in the Langen and Alexeev (2004) study is a potentially important caveat, since it is

thus missing a key source of potentially destabilizing variability.

The existence of multiple equilibria of the ice edge, and in particular stable large

ice caps, will be a central question throughout this thesis. Chapter 4 describes the first

unambiguous demonstration of multiple equilibria in a complex coupled atmosphere-

ocean-ice model, albeit one without highly simplified geometry. We find a stable large

ice cap in addition to ice-free and Snowball solutions.

1.5 A roadmap for this thesis

The main body of this thesis consists of four chapters, plus a concluding chapter and

several appendices. The main focus of each chapter has already been mentioned in

the above text. A brief overview of each chapter is provided here.

Chapter 2 begins with a derivation of the classic Energy Balance Model with

diffusive heat transport and the non-linear ice-albedo feedback. An analytical solution

technique is introduced here, and reused several times in later chapters. Properties of

the classic model are reviewed, including a thorough discussion of multiple equilibria

of the ice edge and Small Ice Cap Instability. Next, an extension of the classic model

allowing for separate treatment of the atmospheric and oceanic heat transport is

introduced and its properties explored. I argue that a proper accounting of the ocean

/ sea ice interaction has to take into account the meridional structure of OHT, which is



principally imposed by the pattern of surface wind. A simple model of heat transport

by wind-driven gyres is derived. With an imposed wind stress, this Atmosphere-Ocean

Energy Balance Model (AO-EBM) supports an additional equilibrium state not found

in the classic EBM. This new state has a large ice cap resting at the mid-latitude zero

wind curl defining the boundary between subtropical and subpolar gyres.

Chapter 3 introduces some dynamics into the Energy Balance Model framework. I

derive a zonally averaged model based on diffusion of quasi-geostrophic potential vor-

ticity. This model, which I call the Energy-Momentum Balance Model (EMomBM),

is only slightly more complicated than the simple EBM but predicts the surface wind

stress in addition to meridional energy fluxes. Next, the interactive wind stress is cou-

pled to the ocean gyre parameterization developed in Chapter 2. This very compact

description of the mechanical and thermodynamic coupling of the atmosphere-ocean-

sea ice system exhibits very similar multiple equilibria to those found in Chapter 2

(including the large ice cap state), with the OHT structure now generated by the

model physics rather than externally imposed. The hysteresis associated with transi-

tions in and out of the large ice cap state are examined, and have a sawtooth character

with abrupt warmings and gradual coolings. Finally I present an analytical solution

for the surface wind stress on the sphere for a simple limit of this PV diffusion model.

Chapter 4 reports on multiple equilibria in simulations with a much more com-

plex coupled atmosphere-ocean-ice model. The model has highly idealized Aqua-

planet geometry, but unlike the simple models considered earlier, has complex three-

dimensional dynamics and vigorous internal variability. This model generates a warm,

equable, and nearly ice-free solution coexisting with a much colder solution with large

stable ice caps (reminiscent of that found in the EMomBM). The atmosphere, ocean

and sea ice climatologies of the multiple states are described. I also present some

time-dependent calculations wherein the model is forced by slow sinusoidal variations

of the energy budget to show the transitions between the warm and cold states. Some

of these transitions are abrupt. In the final section of this chapter, the existence of the

multiple states is rationalized in the EBM framework. Unlike the gyre models consid-

ered earlier, these coupled simulations show that OHT is dominated by a wind-driven



subtropical cell. The AO-EBM is therefore modified to account for the meridional

structure of these cells. The resulting solutions have multiple equilibria that bear a

marked resemblance to those of the full coupled model. The wind-driven convergence

of OHT in mid-latitudes is identified as a key factor in the stabilization of the large

ice cap state.

Chapter 5 explores the sensitivity of the ice edge in the GCM by replacing the

oceanic component with a slab mixed layer model in which ocean heat transport is

prescribed (based on the coupled model climatologies). Ice extent in the cold state

is sensitive to the details of the specified OHT convergence, including the seasonal

distribution (which in the coupled model includes a significant winter-season warming

from deep ocean convection near the ice edge). The warm state is much less sensitive

to the details of OHT convergence. In particular, the warm state persists when OHT

into the high latitudes is suppressed. The rest of the chapter takes a more abstract

view of OHT by assigning to it a simple analytical form that represents transport out

of the tropics and convergence throughout the mid-latitudes. I study the response of

the atmosphere and sea ice to variations in amplitude and meridional scale of the gen-

eralized OHT form, both in the simple AO-EBM (which admits analytical solutions

when OHT is prescribed) and in the slab ocean GCM. Both models indicate that

large ice cap states are sensitive to the details of the mid-latitude OHT convergence,

consistent with results from previous chapters. Additionally, I find an important in-

fluence of OHT on the warm ice-free states as well, without carrying heat directly into

the high latitudes. The simple model and the GCM both show that the warming of

the mid-latitude atmosphere by OHT convergence drives additional poleward AHT,

and this forcing is critical to the maintenance of the ice-free pole. Ocean dynamics

are thus shown to play a crucial, albeit indirect, role in the maintenance of equable

climates.

Finally, Chapter 6 presents a summary, conclusions, speculations about the rele-

vance of these results to the understanding of the paleoclimate record, and directions

for future work. Material in the appendices includes some mathematical machinery

for working with diffusion equations on the sphere, and a brief data analysis of cor-



relations between temperature and outgoing longwave radiation in observations and

the coupled model.

Some of the material from Chapters 2 and 3 has been published in Rose and

Marshall (2009). Some of the material in Chapter 4 will appear in another paper

currently under review (Ferreira et al., 2010b). The first paper is nearly entirely my

own work, while I made substantial contributions to both the content and the writing

of the second paper. The coupled model simulations described in the first half of

Chapter 4 were originally set up by David Ferreira, who also produced several of the

figures in Chapter 4 describing the model climatologies. Chapter 5 contains newer

results which have not been published previously.



46



Chapter 2

Energy Balance Models

This chapter begins with a review of a particularly simple model of the global climate

system, the well-known one-dimensional Energy Balance Model (EBM). As noted in

the introduction, this model provides a minimal quantitative description of the com-

peting effects of heat transport and radiation on the surface temperature distribution

ATp. It also predicts the existence of multiple equilibria arising from temperature-

sensitive variations in the Earth's albedo, i.e. the ice-albedo feedback. It is therefore

the starting point point for our investigation into the possibility of multiple states of

the climate system. Later in this chapter, and again at several points throughout the

thesis we will consider generalizations of this simple model that capture the role of

ocean heat transport more realistically.

2.1 The one-dimensional EBM: a review and dis-

cussion

The classic EBM papers include Budyko (1969), Sellers (1969), Held and Suarez

(1974), North (1975a) and North (1975b). A thorough review of the early literature

is provided by North et al. (1981). This model is illustrated in schematic form at the

top left of Fig. 2-1. We begin this review with a brief mathematical derivation of the

EBM with diffusive heat transport.



2.1.1 Derivation

We begin with a zonally- and column-averaged heat equation for the climate system,

a slightly more detailed form of Eq. (1.3):

_T So 1 d7- 21
C = A--s(x) - F as a2  (2.1)

at 4 2xa2dx

where T is some relevant measure of the column temperature, C (in J m-2 "C-) is a

heat capacity for the column, So (in W m-2 ) is the solar constant, A is the coalbedo

(i.e., A = 1 - a where a is the albedo), s(x) is the annual mean distribution of

incoming solar radiation (dimensionless, unit global mean), F,"t (in W m 2 ) is the

OLR, and N (in W) represents the dynamic heat flux across latitude-height sections.

We express the equations in terms of the independent variable x = sin 4 where # is

latitude, for notational convenience.

One of the principal assumptions built-in to this class of models is that all the

terms in (2.1) can be usefully parameterized in terms of the zonally averaged surface

air temperature Tsa. One such set of parameterizations is as follows:

s(x) = 1 + s2P2(x) (2.2a)

{ ao + a2P 2(x), T,, > Tf (2.2b)
ai, Tsa <; Tf

Fout A + BTsa (2.2c)

x -27r(1 - x 2 )CK s (2.2d)

(2.2a) is a reasonable approximation to the observed annual mean distribution of

solar radiation, with P2 (x) = 1(3x 2 - 1) the second Legendre polynomial and s2 =

-0.48. (2.2b) is the crucial representation of the ice-albedo feedback, with threshold

temperature Tf typically taken to be - 10'C (based on the observed annual mean snow

and ice line, going back to Budyko (1969)). The latitude dependence a2 P2 in the ice-

free coalbedo is sometimes used to account for a solar zenith angle dependence and

observed cloudiness (North, 1975b). Detailed justification for these parameterizations



can be found in North et al. (1981) and references therein.

Values for the constants A and B in (2.2c) can be determined empirically from

radiation and temperature data. North et al. (1981) report best fit values of A =

203.3W m- 2, B = 2.09 W m- 2 oC 1 based on northern hemisphere data. Smaller

values of B were used in some of the earlier EBM papers (e.g. Budyko, 1969; North,

1975a). An estimate from the NCEP Reanalysis gives B = 1.68 W m- 2 C- 1 (see

Appendix C). As we will show, the sensitivity of the model to perturbations in the

radiative budget is inversely proportional to the value of B, which determines the

strength of the stabilizing longwave radiation feedback. We can also note in pass-

ing that a linearization of the Stefan-Boltzman law about 00C would yield a much

larger value of B (4.6 W m- 2 oC-'). The positive water vapor feedback implicit in

the empirical fit probably accounts for much of the enhanced sensitivity of the cli-

mate relative to a simple blackbody radiator, as discussed by Manabe and Wetherald

(1967), Held and Suarez (1974) and North et al. (1981).

It is not at all clear how cloudiness should vary with T, and little attempt has

been made to represent clouds explicitly in EBMs beyond the empirical tuning of

the radiative parameters. The omission of cloud-related feedbacks was and remains

a significant shortcoming of the EBM approach to climate modeling.

For the heat transport term (2.2d) we have followed Sellers (1969) in setting N7

down the mean temperature gradient. The coefficient K (in units of m2 s-') may in

general be a function of latitude and/or of temperature. This is one of two classes

of parameterizations used for 'R in the EBM literature. The other, going back to

Budyko (1969), is slightly simpler mathematically, but provides a less clear connection

to the more sophisticated models considered in this paper. Note that in this simplest

of EBMs there is no attempt to represent atmospheric and oceanic heat transport

separately.

Plugging these parameterizations into (2.1), the heat equation takes the form of

a forced spherical diffusion equation with K as the diffusion coefficient:

DTsa 1 2  ssao
C X2 (1_2)CK + A-s(x) - BTsa - A (2.3)

&t a2 axx 4
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When K is constant, (2.3) is solvable analytically. We will look at the solution in

some detail, because it provides a useful starting point for generalizing to the more

sophisticated models to be considered later. A non-dimensional, steady-state form of

(2.3) is

1 I(1 - x2) dT*(x)) - T*(x) = q*A(x, xi)s(x) + A* (2.4)

where we have non-dimensionalized temperature by a typical scale for the pole-to-

equator temperature gradient AT , and thus A* B A and q* = SO and we have

defined the parameter
CK
Ba2  (2.5)

This crucial parameter is the ratio of the diffusivity to the radiative feedback; it

is non-dimensional measure of the transport efficiency of the system (Stone, 1978)

It may also be thought of as the square of a length scale VCK/B relative to the

planetary radius.

The relevant climate problem is to determine the ice edge latitude xi = sin(<pi) as

a function of parameters q*, A*, 1o. The mathematical problem is much simpler when

xi is treated as an independent variable, since the system (2.4) is linear in q* and T*.

Typically these models have been used to investigate the relationship between the

radiation budget, transport, and ice cover, by tuning to such that xi = 0.95 (ice at

about 72' latitude) for the reference solar constant and plotting curves of q* vs. xi.

Such curves can be been found in a number of papers (e.g. Held and Suarez, 1974;

North, 1975a,b). As has been widely discussed, the functional relationship xi(q*)

is peculiar, due to the non-linearity introduced by the ice-albedo feedback through

(2.2b).

Solutions of the simple EBM are shown in Fig. 2-1. Before discussing these so-

lutions we will take a brief mathematical detour to introduce an analytical solution

technique that will applied several more times in this thesis.



2.1.2 Analytical solutions to the simple EBM

Here we solve the steady-state EBM (2.4) as a boundary value problem with unknown

parameters, as laid out by North (1975a). Some additional mathematical details are

given in Appendix B. We solve on a hemisphere with x extending from 0 to 1. The

domain is subdivided into the ice-free side 0 < x < xi and the ice covered side

xi < x < 1. Boundary conditions are zero flux at the equator and pole, along with

matching conditions at the ice edge:

dT*
V1- x 2  = 0, x =0, 1 (2.6a)

dx
dT*

T*d continuous x xi (2.6b)dx

T* T x = xi (2.6c)

These are sufficient to solve the linear boundary value problem with fixed x and

unknown q.

As discussed in Appendix B, the EBM (2.4) is a form of Legendre's equation, and

one can solve T*(x) for any RHS forcing that is polynomial in x = sin(4). (This

requires that the diffusion coefficient be at least piecewise constant.)

A particular solution to the EBM is

( s2 2 (x)\

T*=q*A 1+ -XA* (2.7)
1+610

(with A taking on different values on either side of xi). It is convenient to define

Lo = 1 + 6lo (2.8)

since this term appears frequently in this and subsequent analyses. Note that the

factor of 6 arises from the diffusion operator acting on a forcing proportional to P2 (x),

which is monotonic from equator to pole and thus represents the hemispheric scale

differential heating. The general solution is then the sum of T* (x) and two linearly

independent solutions of the homogeneous problem. See appendix for more details.



The solution satisfying equatorial and polar boundary conditions can be written'

ao  I S2P2(x) A*q*

a, Lo

Cifix (x)

C2PA (x)

x < x

x > xi
(2.9)

with special functions PA, fuA defined in Appendix B (both computable in terms of

hypergeometric functions), and the Legendre order A defined by

-A (1 + A) (2.10)

We then apply the matching conditions at xi to get

(a. - a ) 1

- (ao -a)
PA - Pf1A

where all functions are evaluated at x, e.g. PA = PA(xi). The ice edge condition

T* = Tj is then used to compute q*(xi):

q*(xi) = _P2 (2.12)
ao (1 + ) + Cif,

For completeness, we also note that the ice-free solution (valid for any q* > q*(1)

as given by (2.12)) is

T~~0j~=q~a(1+ 2P2(x ))T - q*ao(1 + L ) -A* (2.13)

In this case the particular solution is complete since it satisfies all the boundary

conditions.

1The solution is written out for constant ice-free albedo (i.e. a2 = 0 in (2.2b)). The inclusion of
a latitude dependence is straightforward but complicates the algebra so is omitted here. If included,
the product of P2 (x) terms in both the albedo and the insolation gives a P4 (x) contribution to the
forcing (introducing some smaller spatial scales), with a consequent P4 (x)/(1 + 20l) term in the
response.

S2 (
+ L 2

s2 (p
+ Lo \2

PP2))

P )

P2'fA

(2.11a)

(2.11b)

T = q*



2.1.3 Some properties of the solution

Some solutions of the EBM are plotted in Fig. 2-1, using parameter values listed in

Table 2.1. A discussion of the value of B in offered in Appendix C. The top right

panel shows the temperature and heat transport from equator to pole in dimensional

units, for a solution tuned to give an ice edge around 720 for a realistic solar constant.

The temperature decreases smoothly and monotonically from equator to pole, and the

heat transport down this temperature gradient therefore also has a smooth, broad,

equator-to-pole structure, peaking near 35'. In fact the heat transport in this simple

model has much the same shape as the observed total (atmosphere+ocean) heat

transport in Fig. 1-3, in agreement with the arguments of Stone (1978).

The So versus ice edge curves in the lower panels of Fig. 2-1, which for brevity

will henceforth be referred to as #4 - So curves, illustrate the well-known multiple-

equilibrium property of the EBM: for a given So, there may be anywhere from 1 to

5 different #i that solve (2.3) exactly (which can be seen by tracing horizontal lines

across these plots). Not all of these equilibria are stable, however. Unstable regions

of the graph, which are physically unrealizable states, are plotted in dashed lines.

The stability criterion can be expressed succinctly as

aS 0 > 0 (2.14)
axi

This is known as the slope-stability theorem and is true for a wide class of models

(Cahalan and North, 1979).

A heuristic argument demonstrates the principle of the slope-stability theorem

(e.g. Lindzen, 1990, chapter 2). Suppose that a disturbance causes the ice edge

to advance equatorward while So is held constant. The resulting climate is out of

balance; so long as dSo/doi > 0 there is now an excess of solar radiation for the

current ice cover, and the ice will melt back to its initial resting value. This is the

case for ice edges throughout the mid-latitudes in Fig. 2-1. On the other hand, for

sufficient large ice caps we find dSo/d#3 < 0; in this case the perturbed climate

experiences a deficit of solar energy and must cool further, leading to unstable ice
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growth down to the equator. This phenomenon, variously known as "large ice cap

instability" or "white earth catastrophe" is a fundamental property of all EBMs with

albedo feedback. Transport plays an essential role in this instability, because of the

sharing of heat between the ice-free and ice-covered regions. The boundary of the

unstable region (near 300 in Fig. 2-1) is the point at which the heat sink associated

with an equatorward ice perturbation overwhelms the tropical heat source and leads

to further tropical cooling.

There is a hysteresis loop in the EBM associated with the large ice cap instability:

the reduction of So below a threshold value causes the ice to grow unstably to the

snowball state (ice at 0' latitude). Escape from the snowball state would then require

So to increase to a very high value in order to begin melting ice at the equator. At

this point the ice would melt unstably all the way to the pole, and the solution would

re-equilibrate at a much warmer temperature. The system could return to its original

state only after going through this very large climatic excursion. According to Fig. 2-

1, a reduction of So between 5 and 10% is required to initiate this run-away glaciation,

depending on the value of the transport efficiency parameter 1.

Fig. 2-1 also shows the "small ice cap instability" (SICI) in the polar latitudes. A

very small amount of polar ice must either melt completely or grow to a minimum

stable size. There is thus a range of solar constants over which a total of three stable

solutions coexist: ice-free, moderate ice cap, and snowball. A thorough discussion of

SICI is offered in a subsequent section.

Although the steady-state for this simple model is completely solvable by analytic

methods as shown above, that will not be the case for some of the more complex

models considered later. We therefore introduce a numerical procedure for integrat-

ing the time-dependent equations numerically to map out their steady-state <j - So

relationships. The procedure is very similar to that described by Huang and Bow-

man (1992). We start from a warm, ice-free state, and first decrease then increase

So by small increments, allowing the system to re-equilibrate after each perturbation,

turning around just before the large ice cap instability threshold. This method finds

only the stable equilibria. Numerical results for the simple EBM are plotted in Fig.



Table 2.1: Parameter values used for the numerical solutions of the three classes of
EBM in this chapter. In each case two solutions are computed, using two sets of values
for the longwave cooling Aout, Bout as shown. The dash (-) indicates parameters that
are not used in particular models.

Parameter Units EBM AO-EBM AO-EBM
(constant K,) (fixed wind)

Fig. 2-1 Fig. 2-3 Fig. 2-4
a m 6.373 x 106 same same

Tf C -10 same same
S2 -0.48 same same
ao 0.70 same same
a2  -0.078 same same
A 0.38 same same
Ca J m-2 C- 1  107 same same
CO J m- 2 oC 1  - 107 same
Ka m 2 s-1 2.2 x 106 2.7 x 106 2.7 x 106
KO n 2 s- - 5.2 x 105  -

Bu, W m- 2 C 1  - 15 same
A W m- 2  - 238 same
Bout W m-2 oC 1  2.9 / 1.7 2.9 / 1.7 2.9 / 1.7
Aout W m-2 207 / 212 199 / 211 208 / 217

2-1 along with the analytic solutions; the curves differ only in the polar latitudes,

where the analytic solution shows an unstable equilibrium but the numerical solution

"jumps" over it (this is the effect of SICI).

In anticipation of our later results, note the uniqueness of the ice edge in Fig.

2-1. While the EBM supports multiple equilibria in the form of snowball and ice-free

solutions, there is never more than one stable solution with a finite ice edge.

2.1.4 A note on parameter values

Numerical values for the EBM calculations are listed in Table 2.1. The main results

are qualitative and not sensitive to specific parameter choices. For-each of the four

classes of models presented here, we choose parameter values giving pole-to-equator

temperature differences, heat transport profiles and ice edges in reasonable agreement

with the observed climate. Two solutions are shown in each case, taking the outgoing



longwave sensitivity Best as either 2.9 or 1.7 W m 2  C and tuning A0 st to give

the same #i for So = 1367 W m-2. The Boat values are based on linear regression

of long-term mean northern hemisphere NCEP reanalysis OLR against temperature

at 500 hPa and 1000 hPa respectively (see Appendix C). Given that T in our

models effectively represents both the surface and the mid-troposphere (see below),

we take these values to be reasonable upper and lower bounds on Boat. In every case,

smaller Bst is associated with enhanced sensitivity of #i to changes in So, analogous

to increasing l in the simple EBM (although the corresponding non-dimensional

parameter is not so clearly defined in the more complex models considered later).

2.1.5 A generic view of the EBM phase space

In preparing Fig. 2-1 we have followed the classic strategy of fixing radiative pa-

rameters from observational estimates and tuning the diffusivity K (and thus the

nondimensional lo) to generate a realistic ice edge. The two different stability curves

in Fig. 2-1 show that the sensitivity of the ice edge to changes in So increases at higher

10, a fact that was first pointed out by Held and Suarez (1974). The large differences

reported in the literature for the percent reduction of So necessary for initiating run-

away glaciation stem from tuning the model with rather different values of B, and

hence lo.

Because of this ambiguity, as well as the overall simplicity of the model, it seems

appropriate to take a more general view of the behavior of the solution as a function

of lo. Fig. 2-2 shows the entire space of solutions to (2.4) (for fixed values of A* and

albedo parameters, as listed in Table 2.1). We have plotted contours of q* (relative to

So = 1367Wm- 2), global mean temperature, equator-to-pole temperature difference,

and peak poleward heat transport, as functions of #j and 10. The equilibrium ice

edge as a function of 10 can be viewed by following the appropriate blue q* contour,

whereas the standard graph of #2 vs. q* at fixed 10 (e.g. the curves in Fig. 2-1) is

obtained by moving vertically in the plot. Multiple equilibria are found in this graph

by intersections of vertical lines with blue contours. Depending on the specific value

of 10 (horizontal axis) and solar constant, there may be anywhere between 1 and 5
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such equilibria.

The shaded area in Fig. 2-2 is all unstable as defined by (2.14). For most of

the range of 10 there are two unstable regions, for small and large ice caps. Both

unstable regions are larger at higher values of 10, and there is a threshold beyond

which the stable ice cap region disappears entirely, meaning the climate can exist

only in ice-free and snowball states. This may be just a curiosity, since stable ice

caps are demonstrably possible on our planet, and smaller values of 10 are usually

assumed in EBM studies. However there is evidence (shown later in this thesis) that

a complex aquaplanet climate model actually exhibits such fully unstable behavior,

and that stable ice caps are made possible by convergence of ocean heat transport in

the mid-latitudes - a crucial piece of physics that is missing from the simple EBM.

This will be a central issue in much of the rest of this thesis.

Stone (1978) shows a graph of peak heat transport (7max hereafter) as a function

of lo in a very similar EBM (for fixed solar constant), and points out that changes in

Wmax are generally modest except near lo = 0, which corresponds to local radiative

equilibrium. Away from this limit, increases in lo are partially compensated by a

flattening of the temperature gradient and a retreat of the ice edge, so that Whi max

increases only slowly, or even decreases. Fig. 2-2 offers a more general illustration

of this relationship. For example, if one follows the q* = 1 contour from lo = 0 to

16 = 0.3, +lmax (magenta contours) first increases linearly from zero, then begins to

saturate and reaches a peak just above 5 PW for 1 ~~ 1.8, at which point the ice edge

is near 45'. As lo increases further, the increasing transport efficiency is outweighed

by the increasing high-latitude energy budget due to the retreat of the ice, and Wmax

decreases by half a petawatt or so while the ice disappears entirely. In the ice-free

regime, tmax increases monotonically but slowly with lo.

The main point we wish to emphasize is that heat transport may increase or

decrease under a change in transport efficiency 1, and the response depends on the

ice edge. Increases in lo lead to decreases in both 'Hmax and ATep over a range of phase

space of particular climatic interest (namely modest ice cap size and realistic solar

constant). Enderton and Marshall (2009) have found analogous results in simulations



with a complex coupled aquaplanet model, and more coupled model results along

these lines will be shown in Chapter 4.

2.1.6 Small Ice Cap Instability

We have already seen that the diffusive EBM has a minimum size of stable polar ice

cap. Ice caps smaller than this minimum must either melt away completely or grow to

a finite size. This phenomenon is known in the literature as Small Ice Cap Instability

(SICI). Models that exhibit SICI typically have a narrow range of parameter space

in which three stable equilibria coexist: an ice-free solution, a snowball solution, and

a modest ice cap solution. For example, the q* =1 curve in Fig. 2-2 intersects the

vertical line at lo = 0.31 five times, three of which occur in stable regions of the

phase map. This section presents a brief literature review of SICI in EBMs and more

complex models. It's especially relevant since a central result of this thesis is the

existence of multiple states of the ice cover in a complex GCM (to be presented in

Chapter 4).

SICI is a property of the EBM with diffusive heat transport W oc -T, first set up

by Sellers (1969) and studied extensively by North and others (e.g. North, 1975a,b;

Drazin and Griffel, 1977; Cahalan and North, 1979), and reviewed in this chapter.

In contrast, the Budyko-type EBM with 74 oc (T - T) does not have a minimum

stable ice cap size, and thus no SICI. SICI can also be suppressed in diffusive EBMs

through various mathematical manipulations, including spectral truncation (North,

1975b), smoothing of the albedo discontinuity (Cahalan and North, 1979), and certain

forms of non-linear diffusion (Lin, 1978). This apparent non-robustness of SICI led

many early authors to conclude that it was a spurious feature of the simplest diffusive

models, and not a useful paradigm for understanding the climate system (e.g. Lindzen

and Farrell, 1977).

However the truth about SICI is more complex and not yet fully understood.

SICI-like behavior has since been identified in various more complex models. A few

examples include: a two-dimensional EBM with realistic land-ocean distribution and

a seasonal cycle (Huang and Bowman, 1992), an atmospheric GCM (Crowley et al.,



1994), and an atmospheric GCM coupled to a mixed-layer ocean with prescribed OHT

(Langen and Alexeev, 2004). On the other hand, SICI has been suppressed in EBMs

by the addition of noise characteristic of synoptic variability (Lee and North, 1995)

and coupling to a realistic land-ice model (Maqueda et al., 1998). Whether SICI can

help explain aspects of Earth's climate such as the first appearance of an Antarctic

ice sheet, the waxing and waning of the Northern Hemisphere ice sheets in the late

Pleistocene, or the fate of Arctic sea ice under global warming, is apparently still an

open question.

The physics and mathematics of SICI are described in detail by North (1984). The

key point is the existence of a diffusive length scale CK/B, first noted by Lindzen

and Farrell (1977), which is proportional to v/1 as defined by (2.5). This sets a

minimum meridional extent of the balanced atmospheric temperature response to a

local radiative perturbation - smaller scales are smeared out by diffusion. Following

North (1984), a thought experiment serves to illustrate the instability.

We imagine an ice-free planet with the polar temperature just near the freezing

threshold, not unlike the warm Aquaplanet simulations described in Chapter 4. We

perturb the equilibrium by adding a small patch of ice at the pole. The high albedo of

this polar ice patch introduces a local heat sink. The atmosphere must cool radiatively

at the pole in response to this heat loss, which increases the meridional temperature

gradient and leads to a transient increase in the poleward heat flux. One of two things

can happen, depending on the magnitude of the heat sink. The increased heat flux

may be sufficient to melt the ice patch, in which case the original ice-free equilibrium

is re-established. Or the heat lost from the surrounding region in order to supply the

increased heat flux over the polar ice patch may be sufficient to lower the subpolar

temperature below freezing, in which case the ice patch will grow (as well as the

corresponding heat sink). The effects of the polar ice patch are thus communicated

meridionally by atmospheric heat transport over its characteristic length scale. The

ice cap will grow unstably to roughly the same atmospheric length scale, at which

point a new equilibrium can be achieved. Essentially the atmospheric diffusion acts

as a spatial integrator, responding only to the net radiative forcing integrated over



scales shorter than its characteristic length. The above mechanism is given a formal

mathematical treatment by North (1984).

The prominent role of the diffusive length scale in the SICI mechanism presents

a caveat for generalizing beyond simple diffusive models. It is not obvious how this

scale relates to the physical length scales encoded in the equations of motion, and

it's highly unlikely that the real atmosphere obeys such strict scaling principles. The

scaling by 1 also explains how SICI can be suppressed in some non-linear diffusion

models: if K is proportional to temperature gradient, it will go to zero at the pole, so

that the local diffusive scale is zero at the pole as well. However there is no reason to

suppose that such a non-linear model is more realistic than the simplest fixed K model

in this sense. Most of the poleward atmospheric heat flux is carried by geostrophic

eddies which are dynamically constrained to finite length scales; e.g. the deformation

radius, which is the length scale of the most unstable mode in a baroclinic flow. There

is no reason to expect that the meridional scales relevant to the heat transfer process

should become especially small at the pole. See also the discussion of this length scale

in North and Stevens (2006).

2.2 Generalization to an Atmosphere-Ocean EBM

One of the serious limitations of the classical EBM approach is the assumption that

a single temperature T is a valid measure of both the surface conditions that set

ice cover, and the atmospheric conditions that determine outgoing radiation. In

particular we are interested in how the partition of heat transport between atmosphere

and ocean fits into this picture. In this section we look at a simple generalization of

the EBM in which the transports in the two fluids are specified independently. This

will turn out to be quite important. A recurring theme throughout the thesis will

be that OHT, unlike AHT, does not tend to have a broad equator-to-pole structure

but is instead largely confined to the lower latitudes, with important implications for

the stability of large ice caps. The "Atmosphere-Ocean Energy Balance Model" (AO-

EBM) derived below provides a simple mathematical framework for understanding



the effects of meridional structure in OHT, and in later chapters will become a crucial

tool for rationalizing and anticipating the behavior of more complex climate models.

2.2.1 Formulation

Our goal here is to extend (2.3) to include an explicit atmosphere and ocean, with

heat transport in each fluid. The first step is to separate the thermodynamics into

two layers, the lower layer representing the ocean, and the upper layer representing

the atmosphere. This is the next member of our model hierarchy, which is sketched

in Fig. 2-3. We let the surface (ocean) and atmosphere have temperatures T, and

Ta respectively. The albedo is controlled by T, (replacing Ta in (2.2b)), while the

outgoing radiation is again given by

Fo-t = Aout + BoutTa (2.15)

Here Ta will be treated as a measure of the free tropospheric temperature, say at 500

hPa.

The atmosphere will be treated as transparent to solar radiation, so that the net

solar flux ASo/4s(x) is absorbed at the surface. The net heat flux from the surface

to the atmosphere is parameterized as

Fu,- Aup + Buv(Ts - Ta) (2.16)

with Aup, BU, constant. This is a crude representation of the net effect of infrared

radiation, turbulent heat fluxes and convection.

Heat budgets for the two layers then give the governing equations for this "Atmosphere-

Ocean EBM" (AO-EBM):

aTa F - Fot - da (2.17a)Ca t 2-Fa 2 dx
aTS so 1 d'h

Co a =A 4s(x) - F, - " (2.17b)08t 4 2a2dx
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We will retain the diffusive model for AHT. Thus we set

'Na =-2r(1 - x 2 )CaKa Ta (2.18)ax

in (2.17a). Finding an appropriate parameterization for OHT will be a running theme

in this thesis, with contributions entering in every chapter. We will begin, though,

by making the simplest assumption, namely the same diffusive model used for the

atmosphere. This is explored in the following section.

2.2.2 The AO-EBM with diffusive ocean

We now assume diffusive transport in the ocean:

WO = -27r(1 - x2 )COKO TS (2.19)ax

and take KO constant in latitude.

With the heat transport parameterizations (2.18) and (2.19), the governing equa-

tions (2.17) take the form of a pair of coupled diffusion equations:

Ca "= D, (CaKaTa + AU + BUp(Ts - Ta) - BoutTa - Aout (2.20a)
at ay

aT / T8\
Co -=D Co oa)±AS -A, - Bu,(T8 - Ta)j (2.20b)

This system can be solved by numerical time-stepping out to equilibrium. The 44 - So

relationship for this model can be computed numerically as described in Section 2.1.3.

Plots of the solution are shown in Fig. 2-3.

Held and Suarez (1974) looked at a similar atmosphere-ocean generalization of the

Budyko-type EBM. With constant coefficients, they showed a mathematical equiva-

lence of their AO-EBM to the simply one-layer EBM. Thus, while the extension to two

layers may provide a physically more meaningful framework for estimating parameter

values, it does not lead to any qualitatively new behavior in the climate. Similarly,

although we use the more physically-motivated diffusive (Sellers-type) transport, we



find that our AO-EBM (2.20) does not yield any qualitatively new behavior when the

diffusivities Ka, K are constant in latitude.2 This equivalence of (2.17) and (2.3)

is confirmed by the results plotted in Fig. 2-3. Despite the added complexity of

the distinct atmosphere and ocean layers with separate heat transport, there is no

qualitative change in the <h - So graph compared to Fig. 2-1 (only stable solutions

are shown).

A clue as to what is required to endow the EBM with qualitatively new behavior

is offered by Lindzen and Farrell (1977): they argue that the stability of the ice

edge cares only about the range of latitudes over which a heat transport mechanism

is acting to smooth temperature, and the efficiency with which it does so. In the

real world, the ocean is driven by the wind stress, which varies over sub-planetary

scales, leading to considerable structure in the ocean's meridional energy transport. In

simple EBMs we represent the ocean heat transport as a hemispheric-scale diffusion,

which cannot capture the important physics of, e.g., subtropical cells or gyres. In the

next section we constrain the ocean in a physically motivated way, and in doing so,

introduce smaller, more realistic scales to ocean heat transport. This turns out to be

crucial to the sensitivity of the ice edge.

2.3 Ocean heat transport and sea ice

In this section we refine the surface equation (2.20b) of the AO-EBM to account more

fully for the separate roles of oceanic transport and ice cover on the energy balance.

These issues are most easily understood in an aquaplanet framework with interacting

atmosphere, ocean and sea ice but without land surfaces, since land ice is constrained

less directly than sea ice by sea surface conditions and ocean heat transport. We

therefore now focus attention on the representation of sea ice and its interaction with

the ocean.

2North (1975b) showed that the diffusive EBM and the Budyko-type EBM are equivalent under
a spectral truncation. It can also be shown that the steady-state, constant-K form of (2.20) is
isomorphic with (2.3) up to a spectral truncation error.



2.3.1 Sea ice

Sea ice has three basic properties that are crucial for the large-scale energy balance:

it forms where the sea surface temperature reaches the freezing point, it is highly

reflective compared to open water, and it insulates the ocean surface from the atmo-

sphere (e.g. Bendtsen, 2002). The albedo parameterization in the simple AO-EBM

in Fig. 2-3 captures the first two of these properties, but not the third. With K,

constant everywhere, there is a non-zero ocean heat transport convergence under the

ice, which is communicated upward to heat the atmosphere exactly as it would be in

the absence of ice.

The simplest time-dependent model of sea ice is the "O-layer" thermodynamic

model of Semtner (1976), which assumes an ice top temperature T in balance with

the heat fluxes at the surface, the temperature at the base of the ice fixed at freezing

Tf, and a linear conductive heat flux through the ice pack: Fc = ri(Tf - T)/hj where

ri is constant. The prognostic variable is the ice thickness hi, evolving in response to

imbalances in the energy flux at the top and bottom of the ice pack. This model is

an approximation to the detailed thermodynamic model of Maykut and Untersteiner

(1971), itself an approximation to the fundamental equations for a two-phase brine-

ice mixture or "mushy layer" (Feltham et al., 2006). Bendtsen (2002) coupled this

type of sea ice model to a zonally averaged atmosphere-ocean EBM.

Focusing on the steady-state response to mean annual forcing, we consider an even

simpler limit, in which the ice is a perfect insulator. Setting rj = 0 in the Semtner

model effectively means that the ice thickness hi drops out of the problem, and the

existence of ice can be diagnosed directly from the temperatures (as in the EBM).

Therefore let T be determined by local radiative equilibrium with the atmosphere,

and assume that the underlying ocean temperature T, = Tf everywhere under the

ice, then the ocean heat transport go to zero at the ice edge. We represent this limit

with a single equation (2.20b) for a single temperature T, simply by setting K, = 0

and A = Ai wherever T, < Tf. The temperature T, characterizes whichever surface

is exposed to the atmosphere - either ocean or ice. 3

3We continue to take Tf = -10 C (the canonical threshold temperature in simple EBMs, based



2.3.2 Wind-driven gyres and ocean diffusivity

We now develop a simple parameterization for ocean heat transport (denoted 71,)

by wind-driven gyres. We consider the heat budget of a homogeneous ocean layer

of depth hm, driven by the zonal mean wind stress r, and exchanging heat with

the atmosphere. Physically we might conceptualize this as a horizontally circulating

wind-driven mixed layer overlying a motionless abyss with no overturning, in which

there is no significant land surface but the ocean is confined to a basin geometry

by a thin continental ridge running from pole to equator - the "Ridgeworld", whose

climate has been explored in a number of recent papers (Enderton and Marshall,

2009; Ferreira et al., 2010a), and which will described in detail in Chapter 4. In this

simple limit we can write the ocean heat transport across zonal sections as

R = 27ra cos COv'T' (2.21)

where v is the meridional flow and C, = cOpOhm where c0, p0 are respectively the spe-

cific heat and density of the ocean of depth hm. We assume here that the transport

is dominated by ocean gyres, so that it is well-approximated by an interior in Sver-

drup balance, with return flow in a western boundary layer. The interior meridional

velocity is therefore
1

vs =- 1 Dy (T) (2.22)
3Pohm

where # 2Qa- 1 cos # is the planetary vorticity gradient and T is the applied zonal

wind stress (assumed to be constant in longitude). We also introduce a meridional

divergence/curl operator DY defined as

Dy (h(#)) = s (cos #h(#)) = / (1 - x2h(x)) (2.23)

on the mean annual position of the land-based snow line) for ease of comparison with established
results. A more appropriate threshold for this sea ice model might be T = -2'C, roughly the
freezing point of sea water. The main results of this section (in particular, the existence of multiple
stable ice edges to be discussed later) are not sensitive to this choice: we have obtained the same
qualitative results using Tf = -2'C.



for any function h(#), where # is latitude, a is the planetary radius, and x = sin #

as defined above. This operator simplifies the notation while including the necessary

spherical geometric factors.4

We further assume that the temperatures of the interior and western boundary

current differ by ATEW which is a function of latitude only. Then for a western

boundary current of fractional width y, the temperature flux can be written

vT' (1 -)ATEW Dy(r) (2.24)
S 3poh,

Under these assumptions, heat transport by ocean gyres reduces to finding a

closure for ATEW. The temperature anomaly results from preferential advection in

the western boundary, such that it could plausibly depend on the steepness of the

meridional temperature gradient. The sign and strength of the advection depend on

the sense of the gyre, itself set by the wind curl. We thus choose the following closure:

. (a cos #)2  T2
ATEW = -P* D rTO D(T) (2.25)

Here ro is a constant scale value for the stress, and the constant of proportionality

p* is a dimensionless number, related to the fractional zonal temperature difference

across the basin with respect to a given meridional temperature change. In practice

p* is an adjustable parameter that sets the magnitude of the ocean heat transport

(the shape being set by the wind).

With this parameterization (substituting (2.25) and (2.24) into (2.21)) we can

write the ocean heat transport in terms of the wind stress curl and temperature

gradient thus (absorbing the factor (1 - -Y) into p*):

27(a cos #)3 cop* (D 2(T))2aT, (2.26)
/3ro Dy

Note that 7-o depends on the square of the wind curl, and is thus non-negative ev-

4Note that DY is defined as a horizontal divergence operator, but is used here to take the curl of
stress r (more precisely, the vertical component of the curl). This has the same mathematical form
as the divergence because r varies only in latitude.



erywhere: both the subtropical and subpolar gyres carry heat poleward despite the

change in sign of the mass transport, because ATEW also changes sign. 5 The depen-

dence of W, on the square of the wind curl corresponds to the weak gyre advection,

strong temperature restoring limit of the idealized gyral heat transport problem stud-

ied by Wang et al. (1995). An expression very similar to (2.26) was previously derived

by Gallego and Cessi (2000) for heat transport by wind-driven gyres, though their

model also includes a constant background diffusivity independent of the wind forcing.

Since we have set W, proportional to the temperature gradient, our heat equation

once again takes the form of a diffusion equation - in fact we recover (2.20b), but

with the ocean diffusion coefficient now proportional to the square of the local wind

stress curl:

ao 3Cos #P 2 aV11 - x2 p r) 2
Ko = D,(r) = 1x2r) (2.27)foCO Y(r fo CO Ox/

where we have rewritten the constants using fo = 2Q sin(450) = (V cos #) -'a, and

defined a dimensional constant p = (V o)cop *.

In the next section we find solutions to the AO-EBM (2.20) with the ocean diffu-

sivity (2.27), and with Ko = 0 in the ice-covered region. This model setup is sketched

at the top left of Fig. 2-4. Note that since the ocean heat equation depends on the

product COK,, which is independent of depth hm, the steady-state solutions are also

independent of hm.

2.4 Multiple equilibria in the AO-EBM with spec-

ified winds

To explore the properties of this new model let us first suppose that the wind stress

is externally specified. The final member of this model hierarchy, to be discussed
5 1n the real oceans gyres transport heat poleward everywhere except in the equatorial regions,

where the circulation is opposite to that of the neighboring subtropical gyres, but there is no corre-
sponding change in sign of ATEW. However the equatorward heat transport by the equatorial gyres
is small, and overwhelmed by the substantial poleward heat transport by wind-driven subtropical
cells (see e.g. Hazeleger et al., 2004; Enderton and Marshall, 2009).
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in the next chapter, is capable of generating a wind stress interactively in response

to the differential heating of the atmosphere. For now, we will simply "borrow"

the wind field generated by the interactive model, which is plotted in Fig. 3-1. It

features a broad band of easterlies stretching from the equator to 330, and an even

broader and more intense band of westerlies peaking at 64' and extending almost to

the pole. We show in Chapter 3 that the surface stress associated with this wind field

is subject to a momentum constraint ensuring that its area-weighted global integral

is zero. The main disparity between this idealized wind field and the observed time-

and zonal-mean zonal wind fields is the position of the westerly maximum, which

actually occurs near 50'. Taking the square of the curl of this wind stress in order to

apply our ocean diffusivity parameterization (2.27) leaves us with two broad regions of

enhanced diffusivity centered at 32' and 76', which we associate with subtropical and

subpolar gyres. K, has minima at the zero curl lines located near 110, 56' and 88'.

We integrate (2.20) numerically with this variable K, but with constant atmospheric

diffusivity Ka. We also set K, = 0 poleward of #3 at each timestep to set meridional

ocean energy transport to zero, so representing the insulating effect of sea ice.

Fig. 2-4 is analogous to Figs. 2-1 and 2-3, giving results for this AO-EBM with

fixed winds and insulating sea ice. Parameters are chosen to yield a high-latitude 4 i

for a realistic value of So (see Table 2.1). This solution is plotted in detail in the

top right of Fig. 2-4. The ocean heat transport 7, now exhibits sub-hemispheric

scale meridional structure imposed by the wind: there is a primary maximum in the

subtropical gyre, and a secondary maximum in the subpolar gyre, with a minimum

in between, at the mid-latitude zero curl line.6

At bottom right in Fig. 2-4 is an additional stable solution for the same solar

forcing, in which the entire subpolar gyre is frozen over and #i rests at the zero curl

line (and the climate is consequently much colder). This new stable equilibrium state,

which has no analog in the simple EBM, is the principal new result of this chapter.

Its existence is intimately related to the meridional structure imprinted on the ocean

6 Note that the 2D wind-driven gyre model of Primeau and Cessi (2001) also generates such a
bi-modal 7,. A qualitatively similar similar shape is found in 3D GCM simulations in "Ridgeworld"
geometry; see Fig. 4-7 in Chapter 4 or Fig. 10 of Enderton and Marshall (2009).



heat transport by the wind.

The 44 - So graphs for this wind-driven model (lower left in Fig. 2-4) are quali-

tatively different than those of the constant-diffusivity cases considered earlier: there

is a marked asymmetry between the cooling and warming branches due to the new

multiple equilibrium regime. In the cooling phase the ice edge advances gradually

over the subpolar gyre as So is reduced. In the warming phase, 4j remains at the

zero curl line over a wide range of So values, until a threshold is reached near 1400

W m 2 which causes a complete melting of the subpolar ice cover. An additional,

similar multiple equilibrium regime and threshold at higher So values is associated

with the zero curl line near the pole.

These results can be understood as follows. At steady state 7, must go smoothly

to zero at 4O; this requires either zero wind curl or zero temperature gradient (viz

eq. (2.26)). Thus it is possible for the ice edge to rest in the interior of a gyre, but

only if T, flattens out at Tf just equatorward of 4j. In contrast, if the ice edge rests

at a zero curl line, the system can support ocean temperatures above freezing just

equatorward of 44 (this can be seen in Fig. 2-4). This icy solution collapses when the

temperature just poleward of 4$ (set by radiative balance with the atmosphere) rises

above Tf.

The cooling branch of the 4i -So curves differ in important ways from the constant-

diffusivity cases, even disregarding the existence of the multiple equilibria. Their

slopes are highly variable - the ice is much more sensitive to changes in the heat

budget when the edge is located in the interior of a gyre, i.e. a latitude of efficient

ocean heat transport. On the other hand, 45 is quite insensitive to changes in the

heat budget when it is located near a zero curl line, i.e. at a latitude characterized by

inefficient ocean heat transport. This is a somewhat more general argument than the

wind-curl dependence posited here. It implies that the regions of low ocean transport

efficiency are the most likely places for the ice edge to rest.

There are no qualitative differences between the small Best and large Bst versions

of the model in Fig. 2-4. The multiple equilibrium regime spans a larger range of So

values for larger Bost. We emphasize that the new equilibrium is not an expression



of SICI; here we have the coexistence of two finite ice caps of different sizes, and the

underlying physical mechanism is rather different than the SICI mechanism outlined

in Section 2.1.6. This model does not have a minimum stable ice cap size (Fig. 2-4

shows that stable small polar ice caps are possible). Furthermore, in the new cold

solution in Fig. 2-4 the ice edge is slaved to the position of the mid-latitude zero wind

curl line, because there is no ocean heat transport across this line. Thus the ice edge

is fixed at a particular latitude (about 550) for a wide range of solar forcing, unlike

the multiple equilibria generated by SICI in the simple EBM (Figs. 2-1 and 2-3).

2.5 Summary

The main goal of this chapter was to demonstrate the existence of an additional stable

equilibrium climate state in an extension of the well-known Energy Balance Model.

This extension, which we have referred to as the Atmosphere-Ocean EBM, allows

for separate treatment of the AHT and OHT, and we will return to it several times

throughout this thesis. The new equilibrium state in the AO-EBM features a mid-

latitude ice edge and has no analog in the simple EBM. It coexists with the warmer,

small ice cap solution and the very cold "snowball" solution found in the simple EBM.

The minimal new physics required to support this new equilibrium are twofold: the

ocean heat transport must have some latitudinal structure with a minimum in mid-

latitudes, and the sea ice must insulate the ocean from the atmosphere (which requires

that the ocean heat transport go to zero at the ice edge at steady state).

In this chapter we have considered wind-driven gyres in Sverdrup balance whose

meridional energy transport is represented by a heat equation in which the diffusion

coefficient is set proportional to the square of the curl of the wind stress. Thus the

meridional scales of the wind forcing are imprinted on the ocean, and in particular,

7/, has a minimum within the mid-latitude band of westerlies. The specific arguments

laid out in section 2.3 linking -, and r are somewhat tenuous; we do not claim that

this is the most useful coarse-grained description of a wind-driven ocean (in particular

due to the absence of subtropical cells). The larger point seems to be that the scales



of motion in the ocean, unlike the atmosphere, are such that the heat transport

mechanisms may operate over sub-hemispheric scales, and this can have profound

implications on the equilibrium position of the ice edge. We noted in section 2.4 that,

even ignoring the existence of multiple equilibria, the sensitivity of the ice edge to

changes in the heat budget varies considerably depending on the proximity of the ice

edge to a region of minimum ocean heat transport efficiency (i.e. minimum K0 ). The

maintenance of the ice edge in a region of high K therefore requires a rather delicate

balance of forcing; we expect that in a noisy, eddying climate system the ice edge

would spend much more time near minima in K,.

In the next chapter we introduce a dynamical process into the AO-EBM in order

to calculate T interactively. As we will see, this fully coupled model generates essen-

tially the same multiple equilibrium behavior discussed above, without the need to

externally specify a wind stress forcing.
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Chapter 3

Energy-Momentum Balance

Models and surface wind stress

In the previous chapter we argued that a consideration of the meridional structure

of ocean heat transport is key to understanding its role in limiting sea ice expansion,

and developed a simple extension of the Energy Balance Model framework in which

to represent this structure. One of the key findings was the existence of multiple

equilibria of the ice edge made possible by the sub-hemispheric structure of the OHT.

This structure was imprinted on the OHT by imposing a specified wind stress on the

ocean, through a simple model for heat transport by wind-driven gyres. The focus

of this chapter is to develop a simple model to calculate the wind stress interactively

from dynamical considerations. With this new extension to the EBM hierarchy, the

meridional structure of the OHT will emerge from "first principles" rather than being

imposed on the model. We will find that the multiple equilibria identified in Chapter

2 occur in very similar ways in this fully interactive atmosphere-ocean model.

3.1 The Energy-Momentum Balance Model

Our goal in extending the atmospheric EBM framework is to simultaneously represent

poleward heat transport by synoptic eddies and their associated angular momentum

transport that acts to maintain the surface wind stress. In so doing, and coupling



this atmosphere to the wind-driven ocean developed in the previous section, we will

arrive at a simple system of equations in which the atmosphere and ocean are coupled

together both dynamically and thermodynamically. This next member of our model

hierarchy is illustrated in the top left panel of Fig. 3-1. In it we represent the

transfer of angular momentum by Reynold stresses transporting westerly momentum

out of the tropics in to mid-latitudes, inducing tropical trade winds and mid-latitude

surface westerlies. To represent this angular momentum transfer, we hypothesize

that atmospheric eddies mix potential vorticity (PV) subject to a global angular

momentum constraint - viz eddies should not generate any net momentum but only

redistribute it.

We exploit an idea first developed by Green (1970), who, using a quasi-geostrophic

(QG) beta-plane framework, represented the eddy forcing of the zonal mean wind

through a diffusive parameterization on the QGPV. By assuming a plausible form

for the baroclinicity of the atmosphere, Green (1970) and White (1977) were able

to derive analytic solutions for the zonal mean surface wind, obtaining the familiar

tropical easterlies, mid-latitude westerlies and polar easterlies. Subsequently Wu

and White (1986) demonstrated the extension of Green's idea to the sphere, using

a two-level QGPV framework, and showed that the existence of polar easterlies is

rather sensitive to model details. Here we couple the two-level, spherical QGPV

system to an energy balance calculation, such that the baroclinicity and the surface

wind are predicted simultaneously. Essentially we diffuse PV in two atmospheric

layers, rather than, as in Chapter 2, diffusing temperature in a single atmospheric

layer. Similar models were previously considered by Cessi (2000) and Gallego and

Cessi (2000) in cartesian beta-plane geometry, and by Primeau and Cessi (2001) in

spherical geometry. The two-level approach was also used by Marshall (1981) for a

zonally averaged ocean channel model.

'As has been known since the work of Jeffreys (1926), angular momentum transport by synoptic
eddies cannot be represented as a diffusive process since westerly momentum is transported up the
mean gradient to maintain the midlatitude westerly jet. Instead we choose to mix PV, following
Green (1970).



3.1.1 Zonally averaged two-level QGPV

The model is based on the dry two-level QGPV equations, first derived on a f-plane

by Phillips (1956). The extension of QG theory to spherical geometry is discussed in

detail by Mak (1991). Here we adopt the form used by Marshall and Molteni (1993),

retaining the full latitude dependence of the Coriolis parameter f = 2Q sin 4 in the

horizontal advection terms, but using a constant value fo in the stretching term and

the thermal wind equation. Define the QGPV in pressure coordinates as

q = V2+ f + fo2_(a -1 (3.1)
Op ap

which evolves according to

(- + vP -V)q = g V xr) - fo (3.2)
at op op u-p

where 4, is the geostrophic streamfunction, vg, is the geostrophic advecting velocity,

u is the static stability (assumed to a function of pressure only) 2 , T is a mechanical

stress, and J is a diabatic heating rate in 'C s-.

We now take a zonal average of (3.2) (resulting in the eddy PV flux v'q' appearing

as a forcing on the zonal mean) and divide the atmosphere into two equal mass layers.

We assume that the bottom boundary at po = 1000 hPa is the only significant source

of mechanical stress on the atmosphere, which we will express in terms of the equal

and opposite stress T, of the atmosphere on the surface. The diabatic heating is

applied at the interface between the layers (500 hPa). Discretizing the zonal mean of

(3.2) by a vertical finite difference yields the following pair of equations for the zonal

mean PV in the upper and lower layers:

8 R
qu -Dy(v' qu') - R (3.3a)

at CaL 2foQ
DR - 2g

q, -Dv (vjq') + L2 fO + -D, (T,) (3.3b)
at C dif PO

2Not to be confused with the Stefan-Boltzmann constant which appeared briefly in Chapters 1
and 2.



where Q = CaJ is the column-integrated diabatic heating in units of W m-2 , and DY
is the meridional divergence operator defined in Eq. (2.23). We have also expressed

the stratification in terms of a deformation radius Ld = Apf&-lo.1 /2 which is held

constant.

The flow is calculated at each timestep by inversion of the zonal mean PV gradients

(3.13), subject to boundary conditions uu = ul = 0 at # = 0', 90' (here uu, ul are

respectively the upper and lower level zonal mean winds). The system is closed by

expressing PV fluxes, heating and stress in terms of the winds.

3.1.2 Angular momentum constraint and diffusive closure

Following Green (1970) and White (1977), we close the eddy flux terms in the PV

equation by setting them to be down the mean PV gradients:

vlqz = -K i = u,l (3.4)ay

where q is the zonal-mean PV, K is a diffusivity, and the subscripts u, 1 refer to

the upper and lower atmospheric levels respectively. Assumptions need to be made

about the meridional and vertical structure of the diffusion coefficients. The choice

is constrained by the requirement of global angular momentum conservation, which

can be expressed on the hemisphere as

/7r/2(v4lqu ± v,'ql') cos Oo-0 (3.5)

implying a steady-state balance

j T, cos #d# = 0 (3.6)

This constraint couples the vertical and meridional structure of the diffusivity.

More details can be found in Marshall (1981) for a two-layer ocean channel model

with parameterized geostrophic eddies. We follow Marshall's ad-hoc assumption of a



separable form for the coefficients Ka, K:

K =ki= u,l (3.7)
lUd max

where ku, k, are constants, and d = ud - ui is the zonal mean wind shear. Thus eddy

fluxes are concentrated in the region of maximum baroclinicity in mid-latitudes, and

go to zero at the equator and pole. Substitution of (3.7) into the integral constraint

(3.5) leads to the condition:

kJ7/2 u d cos #d# =k, /2 ak lJ! cos #dp (3.8)
Do y fo ay

We fix k, (in units of m2 s-'), and compute ku from (3.8) at each timestep. This

ensures that the parameterized eddies do not exert a net torque but only redistribute

angular momentum.

Plugging (3.4) into (3.3), the PV equations become diffusive:

a 'Y(uqu R
-q= D(K )Q (3.9a)
8t a y CLy fo
a qi R 2g

q Dv Kj + OL2 f + -- D (rs) (3.9b)at 09y Ca)f d0

These equations are coupled together through the heating term and the dynamical

constraint (3.8) which sets the relative magnitudes of the diffusivities.

3.1.3 Thermal and mechanical forcing

The bottom stress is modeled as a linear drag acting on the wind extrapolated down

to the surface, following Phillips (1956):

TS = 6 U1 - U) (3.10)

where e is a constant and po(ge)-1 defines a frictional damping time.



The thermal wind relation for this model can be written

OTa fo
- -Ud (3.11)

ay R

The temperature Ta is dynamically related to the tilt of the interface between the

layers, and is thus best thought of as a measure of the mid-tropospheric temperature,

just as in the AO-EBM introduced in Chapter 2. The heating is specified in the same

way as in the AO-EBM, namely

Q - Fu, - Fout (3.12)

using the linear heat flux parameterizations Fout and Fu, defined respectively by (2.15)

and (2.16).

The system (3.9) is solved by expressing the temperature and stress in terms of

the winds, which are related to the PV gradients by

8a nagqu = 3 - aD + (3.13a)

a ay U L
q = / - -D,(u,) 2 (3.13b)

ay B9y L2

The winds are obtained by inversion of (3.13). We use a linear drag law to relate

the stress (last term in (3.9b)) to the winds, and the imposed momentum constraint

on the PV diffusion ensures that T integrates to zero globally at equilibrium. The

atmospheric temperature T is set by the wind shear from thermal wind balance up

to a constant of integration. We solve for the global mean temperature by invoking

global energy conservation:

d
Ca- < Ta >< Q> (3.14)

dt

where the angle brackets represent an area-weighted global mean < h >= f/2h cos #d4.



3.1.4 Summary

Our atmosphere thus consists of two coupled diffusion equations (3.9) for PV with

thermal, mechanical and eddy forcing calculated from winds and temperature, along

with the prognostic equation (3.14) for global mean temperature. The ocean is repre-

sented by the heat diffusion equation (2.20b) with the wind-driven diffusivity (2.27),

which is now coupled to the atmosphere thermodynamically through the heat ex-

change Pp and mechanically through the stress T. We thus have a system of three

prognostic PDEs and one prognostic ODE that can be integrated numerically by

a simple timestepping procedure, with inversion of the QGPV according to (3.13)

between each timestep. We refer to this system as the Energy-Momentum Balance

Model, or EMomBM 3 . The model is readily spun up to steady state on a laptop.

Our EMomBM is similar to the zonally averaged wind-driven model discussed by

Gallego and Cessi (2000), which also couples together Green's model for atmospheric

eddy momentum fluxes with an energy balance calculation and a simple description

of wind-driven ocean gyres. Our model differs from this earlier work in the inclusion

of sea ice and spherical geometry, and the lack of an explicit delay time for the wind

forcing of the ocean (in our model gyres adjust instantaneously to changes in wind

forcing, implying very fast Rossby wave speeds). These differences reflect the very

different intended applications of the two models. We are primarily interested in the

role of the wind-driven ocean circulation in setting sea ice extent and thus, through

the non-linear albedo feedback, allowing for multiple stable equilibria (as we show

in the next section). Gallego and Cessi (2000), on the other hand, focus on coupled

modes of variability in the mid-latitude atmosphere-ocean system, and their model

exhibits decadal-scale oscillatory solutions due to the finite cross-basin Rossby wave

transit time. A more comprehensive model would include both sea ice and a finite

delay time for the gyres; whether such a model would exhibit multiple oscillatory

solutions is left as an open question.

3Not to be confused with an "Energy-Moisture Balance Model", which is sometimes abbreviated
EMBM in the literature.



Table 3.1: Parameter values used for the numerical solutions of the EMomBM. All
other parameters as given in Table 2.1.

Parameter Units EMomBM

Bout W m-2 oC- 1  2.9 / 1.7
Aout W m- 2  205 / 216

R J kg- 1 C- 1  287
E kg m- 2 S1 0.04
k m2 s-1 6 x 106

Ld m 5 x 105

p m3 kg- 1 0C- 1 350

3.2 Multiple equilibria in the EMomBM

3.2.1 Steady-state solutions

Parameters for EMomBM are listed in Table 3.1. Values were chosen to give roughly

the same ice edge and heat transports as found for the fixed-wind AO-EBM in Fig.

2-4. The maximum value of atmospheric diffusivity is 6 x 10' m2 s-1, which occurs in

the mid-latitude lower troposphere; this is consistent with a simple scaling in terms

of eddy mixing lengths and wind speeds.

The EMomBM exhibits multiple equilibria that are quite similar to that found

in the fixed-wind model, as illustrated by the two solutions plotted at top right

and bottom right of Fig. 3-1. The similarity to the solutions plotted in Fig. 2-4

demonstrates two things: the two-level QGPV diffusion equations (3.9) can reproduce

the temperature field predicted by the one-level heat diffusion equation (2.20a); and

the surface wind stress generated by the EMomBM is quite robust (the winds in the

upper and lower panels look nearly the same, despite substantial changes in albedo

and temperature).

Since the winds do not vary much, the <6 - So graph (lower left in Fig. 3-1) is

quite similar to its fixed-wind counterpart in Fig. 2-4. Thus our earlier discussion

on the multiple equilibrium regimes applies equally to this EMomBM. There are,

however, some differences from the fixed-wind case: the ranges of So for which the
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Figure 3-1: Solutions from the Energy-Momentum Balance Model. The atmosphere
is now represented by two layers of QGPV (equations (3.9)), with the temperature Ta

in thermal wind balance with the vertical wind shear. Meridional fluxes of heat and
angular momentum (sketched in red and blue respectively) are implicitly represented
by a meridional eddy QGPV flux (sketched in green). The ocean is driven by T,

generated interactively by the atmospheric model (the westerlies being maintained
by the convergence of momentum fluxes in mid-latitudes); otherwise the ocean is
identical to that shown in Fig. 2-4. The model supports multiple stable ice edges,
as illustrated in the top right and bottom right. The So - q5i relationships (lower
left) are similar to those in the AO-EBM with fixed wind-driven gyres (Fig. 2-4). A
grayscale version of this figure appears in Rose and Marshall (2009).
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multiple equilibria exist are smaller, and the jump in #j as the system warms past its

threshold is more modest. These differences are related to subtle shifts in position

and magnitude of the wind stress, and thus the shape of K, that occur in response

to changes in #i (and thus the differential heating of the atmosphere). Apparently

the feedback between ice, wind and ocean heat transport in the EMomBM acts to

destabilize the cold solution somewhat. Paradoxically, this may actually increase the

likelihood of abrupt changes in the system under variable forcing, because smaller

variations in the heat budget are required to span the hysteresis loop.

3.2.2 Abrupt climate change in the EMomBM

Here we briefly explore the climatic implications of the hysteresis loop in the EMomBM.

The #i - So graphs suggest that an external forcing that raises and lowers the energy

budget of the climate system has the potential to generate asymmetric warming and

cooling, without driving the climate to snowball extremes. To make this idea explicit,

we integrate the EMomBM with imposed time-dependent sinusoidal variations in Aout

(setting the global mean longwave cooling) while holding So fixed.4

The time history of the forcing and of the response for three different runs are

shown in Fig. 3-2. We impose Aout variations on the order of 10 W m-2, which

is roughly equivalent to a threefold variation in CO 2 concentration, based on the

classic radiative transfer calculations of Manabe and Wetherald (1967) holding rel-

ative humidity fixed. For these integrations we have set the ocean heat capacity to

C, = 4 x 108 J m-2 'C-i, corresponding to an ocean mixed layer depth of about 90

m. The timescale of the forcing (2000 years) is arbitrary but long compared to the

equilibration time of the system (roughly 10 years).

We show in Fig. 3-2 that by making small changes in the amplitude of Aout

variations (+ 1 W m-2 ), we can generate very different climate variability in the

EMomBM. Each of the three runs is initialized from a warm state and cools gradually

4 Here we choose to vary Aost partly to explore a different parameter sensitivity in the model, but
also because A0ut is a better analog to the effects of greenhouse gas concentration than So, since So
projects both onto the global mean energy budget and its pole-to-equator gradient.



in response to the increase in longwave emission. In one case (dashed curve) the

climate varies linearly with the forcing, with the ice expanding and melting back

gradually through three forcing cycles. The maximum value of A0 st (first reached

after 1000 years) is not large enough in this case for 4j to reach the mid-latitude

zero curl line. A second case (solid curve) does get cold enough to freeze over the

entire subpolar gyre, and 4j consequently remains fixed at the zero curl line while

the "greenhouse warming" increases (Ast decreases), until the system warms past the

melting threshold. The resulting climate variations have a sawtooth shape illustrating

a distinct asymmetry: gradual cooling and abrupt warming. The third case (dash-

dot curve) has a slightly greater minimum A0 st value, such that the abrupt warming

threshold is never reached. In this case the climate cools gradually during the first

cycle, 4/ reaches the zero curl line, and never recovers. As a result, the global mean

air temperature is some 6C colder than the other two runs at the warmest point in

the cycle.

3.3 Steady-state analysis of the surface wind stress

Earlier work on the PV diffusion approach to calculating the surface wind stress,

including Green (1970), White (1977) and Wu and White (1986), assumed a fixed

baroclinicity or temperature gradient. The EMomBM derived in this chapter extends

this earlier work by computing the baroclinicity of the atmosphere interactively on the

basis of an energy balance calculation, including sea ice and interactive wind-driven

OHT. This interactive approach requires numerical time-stepping but has yielded

some interesting insights about the coupled atmosphere-ocean-ice system.

In this final section we return to Green's assumption of a fixed baroclinicity and

consider a simple steady-state limit of the EMomBM. This analysis renders some of

the parameter dependencies in the EMomBM more transparent. We will also derive

a new analytical solution for the surface wind stress on the sphere.

The essence of the derivation is to assume that the atmosphere is in quasi-

geostrophic angular momentum balance, so that the surface stress balances the col-
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Figure 3-2: A time-dependent case with sinusoidally varying forcing. Three separate
integrations of the EMomBM are initialized from a warm, ice-free state and forced
by sinusoidal variations of the longwave cooling constant Aost over 2000 year periods
(upper panel). The middle and bottom panels show the resulting ice edge and global
mean atmospheric temperature. The three runs each produce very different climate
variations as a result of small differences in the amplitude of the thermal forcing.
Same parameters as in Fig. 3-1 (with Bst = 1.7 W m- 'C-), but with C, set to
a more realistic value of 4 x 108 J m 2 C-, giving an adjustment time of about 10
years for the system (short compared to the timescale of the forcing). Reproduced
from Rose and Marshall (2009).

88



umn integral of the QGPV fluxes. The diffusive closure on QGPV then allows us to

write down a 2nd order boundary value problem for the steady-state wind stress.

3.3.1 Derivation of surface wind equation

Setting the time derivatives in (3.9) to zero, summing vertically and integrating from

the equator yields the balance

---T, = Kuu + K, (3.15)
pA ay B9y

The meridional structure of the PV diffusion coefficients Ku, Ki in (3.4) is one of

the least-well constrained components of this simple model. In the full EMomBM

we assumed they were proportional to the wind shear or temperature gradient (viz.

Eq. (3.7)). In this analysis we retain the assumption of separability but avoid the

non-linearity of the previous assumption. We thus replace (3.7) with

Ki = kifk(#) i = U, 1 (3.16)

where fk(#) is some fixed, dimensionless meridional profile.

The drag law (3.10) is also an ad-hoc parameterization; to keep this derivation

more general we replace (3.10) with

3 1
Ts- f (1)u - U (3.17)

where the surface drag also has some meridional variation given by fE(#).

Substituting for the PV gradients (3.13) and expressing the winds in terms of

bottom stress and shear now yields an ODE for the stress T, forced by the planetary

PV gradient and the wind shear:

2g f _ = ±(ku+ ki) - -ki - ku) -d D (-(ki + 3ku) + * (ki + ku)
PO Ak(#) L 2 dy 2d dy\\(2

(3.18)

We then plug in the thermal wind relation, non-dimensionalize the equation, and



switch to the independent variable x = sin #, yielding

d2 V/1_2* *d*dd*
d-x2fk - 1+s (1- 3 ) d+(1-7)ld d2((1-x2)d))dx2 V -x) i,1X fWx dx dx2 \dx

(3.19)
where we have used 3 = 2Q/1 - x2 /a, non-dimensionalized with respect to a depth-

averaged diffusivity ik = (k + k,) /2, and defined the following

T s Kpo L2 Ku RAO
T = 1 = ld= = - s= (3.20)

2QaE gea2 2a2  2K Ld 2f02Q

AO is a reference scale for the equator-to-pole temperature gradient, and the parame-

ter s measures the ratio of the vertical to meridional potential temperature gradients.

Observations and models generally show that this ratio is of the same order as the

aspect ratio of the atmosphere, which means s is an 0(1) quantity (e.g., Schneider,

2007). With AO = 35 K and the parameters in Table 3.1 we get s = 2.8.

Other parameters introduced in (3.20) include two non-dimensional length scales

IT, 1d. The first is a ratio of diffusivity to drag, and plays a mathematical role analogous

to l in the EBM equations: it defines an intrinsic length scale over which the wind

stress can adjust to localized forcing. Unlike 10, though, realistic values of 1, are small.

With the drag coefficient E = 0.04 as given in Table 3.1 and taking K = 2 x 106 m 2

s- gives l, = 0.01. The second length scale ld is a non-dimensional measure of

the deformation radius, and is an even smaller number - our parameter values give

ld= 0.003.

The equation (3.19) is a second order ODE for r* which can be solved as a bound-

ary value problem, given a temperature gradient. This equation for the surface wind

stress was first derived on the beta plane by Green (1970). Versions of (3.19) on the

sphere have been derived by White (1977), Wu and White (1986) and Primeau and

Cessi (2001) under a variety of different assumptions about the atmospheric isentropic

structure.

The physical boundary conditions are that PV fluxes, and thus also the stress,

should vanish at the equator and pole, thus T*(0) = T*(1) = 0. The parameter K



measures the vertical structure of diffusivity, and is unknown a priori. It can be solved

for using the steady-state torque balance condition (3.6). Aside from the different

assumption about the meridional structure of the diffusivities, (3.19) contains the

same physics as the time-dependent PV diffusion equations in the EMomBM.

To proceed to solutions for the wind stress, one now needs to specify fk(x), fe(x).

In general a numerical BVP solver is required, in conjunction with either a specified

temperature gradient dO*/dx, or coupled to an interactive EBM. In the next section

we show that (3.19) is analytically solvable for a particular choice of fk(x), fE(x). An

analytical solution for T on the sphere has not been published previously.

3.3.2 Analytical solutions to the surface stress equation

First, we note that ld is a very small number, so the last term on the RHS of (3.19)

can be neglected (this term involves second derivatives of the temperature gradient,

and arises from the curvature terms in the QGPV gradients). This simplification is

justified for any reasonably smooth 0*(x), and only results in a small change in the

value of rn required for torque balance.

Next we assume that s (which measures the isentropic slope) is a fixed num-

ber. This assumption differs from that made in the interactive EMomBM: there

we assumed a fixed stratification in the tradition of QG theory, and computed the

temperature gradient from energy balance considerations.

We also assume that the diffusivities Ka, KI are proportional to the planetary

QGPV gradient 3 2Q cos(#)/a. Thus

fA cos # = V1 - X2  (3.21)

It turns out that this assumption results in an equatorward shift of the westerlies and

gives a better fit to observations than we found in the non-linear EMomBM. It also

enables the wind stress equation (3.19) to be transformed into a standard Legendre

form, as we'll show below.

Finally we assume that the drag law also has this same meridional structure,



namely fe(x) = fk(x) = /1 - x 2 . This is a purely ad-hoc assumption to enable a

fully analytical treatment.

With this new set of assumptions the non-dimensional equation for the surface

stress is
2  

- = 1 + s(1 - 3U) (3.22)
dx2 (T ,(i- x2) dx

A simple change of variables renders this equation into the same Legendre form

we've already encountered for the EBM in Chapter 2. Let

T*(X) (I - x2 ) dz (3.23)
dx

and integrate from 0 to x to get

dx 1X2) dx x + s(1I - 3)* (3.24)

(we are free to set the constant terms to zero in the integration since the physical

model depends only on derivatives of z(x)). (3.24) can now be solved by the method

for Legendre equations discussed in the appendix, so long as 0*(x) is polynomial in x

or otherwise expressible in terms of Legendre functions.

The most useful basic case to consider is 0* = 00 + 02P2(x). This two-mode

expansion can provide a good first-order fit to the observed temperature structure

(North, 1975b); it is also the exact solution to the simple EBM in the absence of ice

(viz. Eq. (2.13)). The parameter 02 (a negative number) gives a measure of the pole-

to-equator temperature gradient. Note that for consistency with the above scaling by

the equator-to-pole temperature gradient, we should have 02 ~ -2/3.' But it turns

out that the final solution is independent of this number.

Following the method in the appendix, a particular solution to (3.24) can be

written

x s(1 - 3)0 2P2(x)
z,() -l + -(3.25)

1I + 21, 1 + 61,

The general solution to the homogeneous equation that remains bounded at the

5 This sets the non-dimensional equator-to-pole temperature drop exactly to 1.



pole can be written

z(x) =C1P,(x) (3.26)

v(v+ 1) = (3.27)

Now differentiating in x and applying the equatorial boundary condition, we get

T*(X) = -lT(1 - x2) (1- + (I -3r,) 2 P(X) (3.28)
( 1+21T PV (0) )+8 1+61,

To complete the solution we need to apply the zero-torque constraint (3.6) to solve

for the unknown ri. In non-dimensional form the constraint is simply

T*dx = 0 (3.29)

A closed form for the integral of (3.28) is possible. Some details are given in Appendix

B. The resulting expression is linear in K, which is trivially solved to yield

_ 4(1+61T) G(l,) _2

382(1+21,r) 1+ 21T( 3

where G(l) is a positive, increasing function defined by (B.28) and plotted in Fig. B-2.

For 'T in the realistic range G(l) ~ v/I to a very good approximation.

We can plug this back into (3.28) to get the complete solution. Notably, the

dependence on 02 (the temperature gradient) drops out of the solution, and we are

left with

r*x - (1 - x2) 1- + 4x G() (3.31)1 + 21T PV1(0) (1 +2 2l 3)

This set of approximations has rendered a particularly simple form for the surface

stress: it is now a one-parameter expression (recall that v is a function of 1,).

The term P (x)/P (0) in (3.31) arises from the equatorial boundary condition

T*(0) = 0. Graphs of this quantity are shown in Fig. 3-3 for a range of values of 1,;
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Figure 3-3: Graphs of P (x)/P'(0) for various values of 1,.

it measures the decaying influence of the no-slip equatorial boundary in the interior

of the domain. The parameter 1, gives a meridional length scale for this adjustment.

For the tuned value i, ~ 0.01 used in the numerical EMomBM yields, the adjustment

occupies just the tropical latitudes; for larger values of 1, the equatorial boundary

condition is felt across the whole hemisphere. Recall that 1, measures the ratio of

diffusivity to surface drag.

Graphs of the wind stress 'r(#) computed from (3.31) are plotted in Fig. 3-4 for

the same range of I,. The fundamental pattern of tropical easterlies and mid-latitude

westerlies is evident. Comparing this simple solution to those plotted in Fig. 3-1 for

the non-linear EMomBM, the westerlies actually peak at a more realistic latitude,

near 50'. In the dimensional graphs in Fig. 3-4 we find an equatorward shift and

intensification of the westerlies for larger values of surface drag. We note that an

equatorward shift of the westerlies with increased surface friction has been found in

an atmospheric GCM by Chen et al. (2007). In our non-dimensional analysis, the drag

coefficient e scales both 1, and T*. In Fig. 3-4 we have assumed that E changes, while

holding K constant. If we make the opposite assumption and vary k while holding

c fixed, we find instead that a poleward shift is accompanied by intensification of the

westerlies for stronger diffusivity.

It seems paradoxical that the solution (3.31) is independent of any measure of
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Figure 3-4: Wind stress computed from the simple analytical solution (3.31), ex-
pressed in dimensional units (N m-). Different curves correspond to the same range
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the temperature gradient or baroclinic structure of the atmosphere, when the eddy

transports we are parameterizing as a PV diffusion depend crucially on the existence

of this gradient. The temperature gradient dropped out of the solution as a result

of applying the no-torque condition to the vertical structure of the PV diffusivity.

According to (3.28) a stronger temperature gradient contributes positively to T* and

thus tends to increase the strength of the westerlies. This increase is mitigated,

however, by a shift in diffusivity to the upper layer implied by (3.30). This shift

reduces the positive (poleward) PV flux in the lower layer which is responsible for

accelerating the zonal mean wind near the surface.

The solution (3.31) is the simplest expression of the surface stress resulting from

baroclinic PV transport on the sphere. The above derivation is an original contribu-

tion of this thesis.

3.4 Summary

In this chapter we have described a new "Energy-Momentum Balance Model" for

the coupled atmosphere-ocean-ice system. We have modeled the atmosphere as a

two-level quasi-geostrophic system in order to solve simultaneously for the energy

and angular momentum balance in the simplest possible way. The surface stress

generated by the QG atmosphere is used to drive the ocean, employing the simple

gyre model developed in Chapter 2. Thus the two fluids are coupled together both

thermodynamically and mechanically. This model responds to an imposed differential

heating by fluxing heat poleward in the atmosphere, while simultaneously generating

a mid-latitude westerly wind band that drives subtropical and subploar ocean gyres,

both of which also carry heat poleward (so long as they are not frozen over). The

model exhibits similar multiple equilibria to those found in Chapter 2 with fixed

wind stress: in addition to a small ice cap and a Snowball-type solution, there is

also a stable large ice cap state with the sea ice edge sitting at the mid-latitude zero

wind curl line defining the boundary between subtropical and subpolar gyres. When

subject to a slowly varying thermal forcing, this model produces sawtooth-shaped



climate changes, with abrupt warming and gradual coolings.

The results with the fixed-wind model indicate that the mechanical coupling be-

tween atmosphere and ocean in the EMomBM is not required to support the new

equilibrium state; heat diffusion with K, varying in latitude but fixed in time is suffi-

cient for the new behavior. However the EMomBM is interesting in its own right. It

is one of the most compact expressions of the simultaneous conservation of heat and

angular momentum in the climate system. With only a modest increase in computa-

tion over the simplest EBM, we solve for a quantity (wind stress) that is fundamental

to atmosphere-ocean coupling. This EMomBM may therefore help fill in a gap in our

spectrum of climate models.

The final section introduced a simple limit of the EMomBM in which the steady-

state wind stress can be solved for analytically. While this solution may not be of

great practical significance, it does illustrate the key parameter dependence for the

wind stress in the EMomBM: the ratio of diffusivity to frictional drag we defined

as 1,r It also serves to demonstrate the robustness of the solution: because of the

compensation in the vertical distribution of PV fluxes necessary to satisfy the angular

momentum constraint, we find that the pattern of tropical easterlies and mid-latitude

westerlies is predicted independently of the magnitude of the temperature gradient.

This gives a rationalization for the lack of significant wind shifts in the full EMomBM

in response to changes in ice cover, and therefore the similarity between the hysteresis

curves for this model (Fig. 3-1 and those of the fixed-wind model in Chapter 2 (Fig. 2-

4).

A few words about the PV diffusion parameterization are in order. Green (1970)

posited a general relationship between eddy transfer and the mean gradient of any

conserved quantity, resembling a non-isotropic diffusion process. PV is conserved un-

der horizontal displacements in QG theory, so the transfer can be represented through

a horizontal diffusion coefficient alone.' Green argues some general constraints of the

values of K, including the following: that it should have a maximum near the steering

6Stone and Yao (1987) give a more thorough argument for needing only a horizontal PV diffusion
to get the vertical mean momentum flux, which is the quantity that balances surface stress.



level for a baroclinic eddy (as individual parcels are under the influence of the wave

for a maximum length of time at the steering level); and that it should depend only on

properties of the mean flow averaged over the baroclinic zone (since parcels traverse a

large fraction of the zone during an eddy lifetime). Our choice of the separable form

is consistent with Green's constraints, but certainly not unique.

Direct calculation of eddy PV fluxes from observations, such as Edmon et al.

(1980), show that the latitude of maximum flux (in the winter hemisphere) does vary

with height. However this variation is not extreme, and the overall pattern suggested

by the data is of PV fluxes concentrated in mid-latitudes, with positive flux near the

surface underlying negative flux throughout most of the troposphere. This reflects

the basic balance of a baroclinic atmosphere, whereby eddies are acting to reduce the

shear to which they owe their existence. The zone of positive PV flux (accelerating

the zonal mean wind) is apparently contained within the planetary boundary layer in

nature, but is forced to occupy the whole lower troposphere in the two-layer model.

Finally, it is important to note that PV is not conserved when condensation oc-

curs, which decreases the accuracy of Green's parameterization. Stone and Salustri

(1984) show that the heating associated with convergent eddy moisture fluxes con-

tributes significantly to the eddy forcing of the zonal mean flow. It is possible to

define an equivalent PV which is approximately conserved for QG motion including

condensation, and apply Green's parameterization to this quantity (Stone and Yao,

1987). Extending the EMomBM to include such effects could be the subject of future

work.



Chapter 4

Multiple equilibria in a coupled

GCM

This chapter describes multiple equilibria in a coupled atmosphere-ocean-sea ice GCM

under idealized geometrical conditions. The context of the calculations is that of the

Aquaplanet, a planet just like our own except that the geometrical constraints on the

ocean circulation are reduced to a minimal description: the land is represented by a

series of sticks as described in Marshall et al. (2007), Enderton and Marshall (2009),

and Ferreira et al. (2010a). Multiple equilibria have been found in two different land

configurations: the pure Aquaplanet, Aqua, in which the ocean covers the entire globe

and topographic constraints are absent from both fluids, and the Ridge in which a

strip of land extends from pole to pole, enclosing the ocean in a global-scale basin.

The first part of this chapter gives a description of the coupled model and the

climatologies of the multiple states. Some results from transient climate change ex-

periments are also shown, which give show the abruptness of some of the transitions

between the different states of the coupled model. The final part of this chapter

is concerned with understanding the existence of the multiple states in the context

of the simple Energy Balance Models introduced in Chapter 2. We will show that

the classical EBM theory fails to account for the existence of these states, while a

modified form of the Atmosphere-Ocean EBM with a realistic OHT captures them.

Some of the contents of this chapter will appear in Ferreira et al. (2010b). David



Ferreira is responsible for the original discovery of multiple equilibria in the GCM,

and also produced several of the figures that appear in Section 4.2. We collaborated

closely on the analysis of the GCM climatology that appears in that section. Material

in Sections 4.3 and 4.4 are primarily my own work.

4.1 Brief description of the coupled model

These simulations use the MITgcm in a coupled atmosphere-ocean-sea ice setup (Mar-

shall et al., 1997a,b). The model exploits a fluid isomorphism between the ocean and

atmosphere to generate model components for both fluids from the same dynami-

cal core (Marshall et al., 2004). Both components use the same cubed-sphere grid

(Adcroft et al., 2004) at a coarse horizontal resolution of C24 (i.e. 24 x 24 points

per cube face, yielding a resolution of 3.75' at the equator). The cubed-sphere grid

avoids numerical problems associated with converging meridians at the poles and

ensures that the model dynamics are treated with as much fidelity at the poles as

elsewhere. It also greatly simplifies the implementation of a conservative interface

between the atmosphere and ocean (Campin et al., 2008). The atmosphere uses pres-

sure coordinates in the vertical, while the ocean component uses the rescaled height

coordinate z* (Adcroft and Campin, 2004).

The atmospheric model is of "intermediate" complexity, with five vertical levels,

and physics parameterizations based on SPEEDY (Molteni, 2003). This comprises a

four-band radiation scheme (tuned to present-day CO 2 levels), diagnostic clouds, a

parameterization of moist convection, and a boundary layer scheme. The dynamics

are based on the primitive equations, and the resolution is sufficient to simulate

synoptic-scale eddies generated by baroclinic instability, and develop a vigorous storm

track. We use an implicit scheme for internal gravity waves to enable a longer time

step.

The ocean model has a flat bottom and uniform depth of 3 kin, and 15 levels in the

vertical, increasing from 30 m at the surface to 400 m at depth. Effects of mesoscale

eddies are parameterized as an advective process (Gent and McWilliams, 1990) and
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an isopycnal diffusion (Redi, 1982), both with a transfer coefficient of 1200 m2 s-.

Ocean convection is represented by a convective adjustment method - implemented

as an enhanced vertical mixing of temperature and salinity (Klinger et al., 1996). The

background vertical diffusion is uniform and set to 3 x 10-1 m2 S1.

The thermodynamic sea ice model is based on Winton (2000). It uses an energy-

conserving two-level enthalpy formulation to solve prognostically for ice thickness and

ice fraction, accounting for the thermodynamic effects of brine pockets and ice salinity.

It also solves for snow thickness above the ice. Ice dynamics are not represented

explicitly, however as a proxy we allow a diffusion of ice thickness'. The snow albedo

parametrization (also used for snow over land2 ) depends on snow height, surface

temperature and the age of the snow.3 The seasonal cycle of insolation is represented

(using a present-day obliquity of 23.5*, and zero eccentricity) but there is no diurnal

cycle. The set-up is identical to that used in Ferreira et al. (2010a) and very similar

to that used in Marshall et al. (2007) and Enderton and Marshall (2009) (see Ferreira

et al. (2010a) for key differences).

Aqua uses a solar constant of 1366 Wm- 2 (the modern value) but slightly different

sea ice albedo parameters than the reference configurations presented in the above-

cited papers. Ridge, on the other hand, uses the reference albedo parameters, but a

slightly lower solar constant value of 1352 Wm-2. This was necessary to find multiple

equilibria, as discussed below.

As noted by Campin et al. (2008), the coupled model achieves perfect (machine

accuracy) conservation of water, heat and salt during long climate simulations. This

is enabled by the use of the z* ocean coordinate, which allows for a realistic treatment

of the ice loading of the sea surface.

'The Aqua calculation was repeated without diffusion of sea ice thickness. The results do not
change substantially; multiple equilibria are found in both configurations.

2Although the land surface plays a negligible role in Ridge (because of the vanishingly small strip
of land employed), we nevertheless solve for temperature, soil moisture and run-off associated with
the land cells.

3 See Appendix A of Ferreira et al. (2010b) for details of the ice and snow albedo parameterizations.
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4.2 Multiple equilibria in Aqua and Ridge

4.2.1 Overview

For both Aqua and Ridge, we have found three statistically equilibrated states each

under identical solar forcing and parameters. The three states differ greatly in terms

of global mean temperature and ice extent. One features warm poles that are nearly

ice-free, and another is much colder and features large sea ice caps that extend into

the mid-latitudes. We will refer to these as the Warm and Cold solutions. The third

solution is colder still and completely ice-covered down to the equator. The existence

of this Snowball state is not surprising given its ubiquity in EBM solutions, but it is

not the primary focus here.

The Warm and Cold states of both Aqua and Ridge are illustrated in Fig. 4-1.

All these solutions are nearly symmetric about the equator, reflecting the symmetric

boundary conditions of both Aqua and Ridge. Attempts to find asymmetric states

(e.g. ice in only one hemisphere) by integrating from asymmetric initial conditions

have thus far been unsuccessful.

We emphasize that these solutions are fully equilibrated and do not exhibit any

drift, despite significant variability. In particular (and in contrast to earlier work such

as Manabe and Stouffer (1988)), air-sea heat and moisture fluxes are fully consistent

with the oceanic and atmospheric transports of mass and energy, since the model

employs a real freshwater formulation even in the presence of sea ice (Campin et al.,

2008), and there are no flux adjustments. The last 4100 years of the global mean

ocean temperature for each run are shown in Fig. 4-2. Note that these time series

were shifted to fit within one degree Celsius, in order to display some of the very long

timescale variability.

There are some differences in the radiative parameters between Aqua and Ridge

(although not between the different states of each setup). Aqua uses a solar constant

So=1366 Wm- 2 (the modern value) but slightly different sea ice albedo parameters

than the reference configurations presented in Marshall et al. (2007), Enderton and

Marshall (2009), and Ferreira et al. (2010a). Ridge, on the other hand, uses the
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Figure 4-1: Multiple equilibria in Ridge (top) and Aqua (bottom). Annual mean sea
surface temperature plotted in color, sea ice thickness in greyscale, for the Cold (left)
and Warm (right) solutions for each model. Reproduced from Ferreira et al. (2010b).

reference albedo parameters, but a slightly lower solar constant value of 1352 Wm- 2 .

These differences are the result of the sequence of events that led to the discovery

of the multiple states pictured in Fig. 4-1. The multiple states in Aqua were in fact

discovered inadvertently by D. Ferreira in the process of exploring the sensitivity of

the solutions to the ice/snow and ocean albedo parameters.4 This discovery occurred

roughly contemporaneously with (and independently of) the development of the AO-

EBM theory showing the existence of a large ice cap state in a simple gyre model,

as reported in Rose and Marshall (2009) and Chapters 2 and 3. Subsequently we

4There is little agreement on the "correct" values for sea ice albedo parameters in current-
generation GCMs. Values in different models are tuned to match observed sea ice conditions in
ways that compensate for substantial differences in high-latitude cloud formation between different
models (Eisenman et al., 2007).
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Figure 4-2: Time series of the global mean ocean temperature in the four simulations.
The last 4100 years are shown. Offsets have been added (as indicated in the figure)
in order to plot on a common temperature axis. These offsets preserve the ordering
of the global temperatures, i.e. Cold Ridge < Cold Aqua < Warm Ridge < Warm
Aqua. Reproduced from Ferreira et al. (2010b)

104

-li-

Warm Aqua (-.5 C):

- -o- -i-gWarm R (dge

--- -- - - -.-.- Cold Aqua (+5 C -

----- ColdRidge-(+7 Cy -......



searched for multiple states in Ridge in a more systematic way. Starting from the

reference (ice-free) Ridge simulation (Ferreira et al., 2010a), the solar constant was

slowly decreased until a large stable ice cap appeared at S0=1352 W m-2. At inter-

mediate values of So the model tended to drift back to an ice-free state. One of these

was carried forward, its solar constant readjusted to So=1352 Wm-2, and allowed to

re-equilibrate in the ice-free state. A further discussion about the transitions between

states is given later in this chapter.

The third stable state in each setup is the Snowball. The existence of this state

was confirmed by initializing both Ridge and Aqua with uniform T and S in the

ocean (S=35 psu and T=-1.90 C, the freezing point of water at this salinity) and a

uniform 10 m thick sea ice sheet over the whole globe. From these initial conditions,

the ocean cools while sea ice thickens in both configurations. This happens because

the water extracted from the ocean to grow sea ice increases the salinity and thus

lowers the freezing point. After 2000 years, the sea ice is about 200 m thick and,

although the solutions are not equilibrated, the rate of cooling decreases. Goodman

and Pierrehumbert (2003) suggest that sea ice thickness in a Snowball world could

grow in excess of a kilometer and that geothermal heating (as the only source of

heat for the ocean) is a key factor in determining the equilibrium thickness. We did

not attempt to find fully equilibrated Snowball solutions here - the lack of both a

geothermal heat source and realistic sea ice dynamics in this model are likely to be

important limitations for the study of Snowball climates. These results are however

sufficient to demonstrate that, in both Ridge and Aqua, a Snowball state co-exists

along with the Warm and Cold solutions for exactly the same set of parameters and

external forcings. A discussion of the circulation patterns in the Snowball climate can

be found in the appendix of Ferreira et al. (2010b). Also note that, while we have

verified the existence of a Snowball state in the GCM, we do not address the forcing

necessary to push the climate system into that state.

The remainder of this section provides a detailed description of the Warm and

Cold states of the two model configurations.
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4.2.2 Atmospheric state

Fig. 4-3 provides an overview of the zonal mean surface temperature, wind stress,

and radiation fields for the four states. The atmospheric state does not differ much

between Aqua and Ridge, while it varies greatly between the Warm and Cold states in

both configurations. The Warm states are characterized by weak equator-to-pole gra-

dients in both surface temperature and OLR. The Cold states features much stronger

meridional gradients in the mid-latitudes and a cooler tropics. Interestingly though,

the low-latitude OLR is very similar in all cases. This is explained by a systematic

decrease in tropical cloud top height going from Warm to Cold (not shown), so that

the typical emission temperature remains about the same despite the cooler tropics

in the Cold state. The observed OLR is also shown in the third panel of Fig. 4-3; it

aligns well with all four model states in the tropics, but is much closer to the Cold

state (with strong gradients) in the extra-tropics.

The net solar radiation (second panel in Fig. 4-3) drops quite abruptly over the

ice edge in the Cold states, compared to a smooth poleward decrease in the Warm

states. This is indicative of a strong ice-albedo feedback (more details follow).

The vertical structure of zonal wind and potential temperature are plotted in Fig.

4-4 for the Cold and Warm atmospheric states of Ridge. The corresponding solutions

in Aqua are very similar to those in Ridge and are therefore not shown. The zonal

winds of the warm and cold states have generally similar patterns and magnitudes,

with trade winds in the tropics, westerly winds centered around 400 and subpolar

easterlies north of 55'. The temperature structures are also similar with flat isotherms

in the deep tropics and broad baroclinic zones (in thermal wind balance with the zonal

winds) in mid-to-high latitudes. There are some noteworthy differences, however.

The jet stream is slightly broader in the Cold state with weaker polar easterlies and

slightly stronger trade winds. This is probably because of the presence of sea-ice

which generates strong meridional temperature gradients at low levels (see bottom

left panel near 60'), and thus strengthens and extends the baroclinically unstable

zone poleward into high-latitudes.
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Figure 4-3: From top to bottom, surface air temperature, top of the atmosphere

Absorbed Solar Radiation, top of the atmosphere Outgoing Longwave Radiation

(OLR), and surface wind stress for the Cold (black) and Warm (gray) solutions of

Ridge (solid) and Aqua (dashed). The solid line with crosses (third panel) shows
the observed present-day OLR for comparison (from the "NOAA interpolated OLR"
dataset, Liebmann and Smith, 1996).
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Figure 4-4: Zonally averaged zonal wind (top) and potential temperature (bottom)
for the Cold (left) and Warm (right) solutions of Ridge. For the wind, the solid
and dashed contours denote westward and eastward flow, respectively, while the zero
contour is highlighted. The Aqua atmospheric states are very similar. Reproduced
from Ferreira et al. (2010b).
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In the upper troposphere, meridional temperature gradients are weaker in the

Cold state because of a weaker stratification in the deep tropics. This is associated

with a larger tropical lapse rate (which closely follows a moist adiabat) found in

colder/drier climates: the equatorial lapse rate is 6.4 'C km-' in the Cold state

compared to 5.3 'C km- in the Warm state. The weaker meridional gradient in the

upper troposphere in the Cold state counteracts the stronger gradient at low levels.

This leads to the somewhat counter-intuitive result that upper level westerlies are

larger in the Warm state than in the Cold one. Fig. 4-3 shows, however, that the

strength of the surface winds changes little between the Warm and Cold states - with

the exception of a weakening of the subpolar easterlies.

4.2.3 Oceanic state

Fig. 4-5 shows the time and zonal mean ocean temperature and the residual-mean

overturning circulation for the Cold and Warm states of Ridge and Aqua. In both

states, the temperature exhibits a marked thermocline in the subtropics due to pump-

ing down of warm water from the Ekman layer around 250N/S and upward suction

of cold water at the Equator and near 50'N/S, reflecting the pattern of surface wind

stress. Despite broad similarities in their thermal structures, Ridge and Aqua exhibit

very different dynamical balances. The meridional barrier in Ridge allows both zonal

pressure gradients and geostrophic meridional currents to contribute to balancing the

applied wind stress. A gyre circulation develops with a Sverdrup interior, western

boundary currents and marked zonal asymmetries. The thermocline is relatively shal-

low. In Aqua, however, the zonal stress is balanced by (parameterized) eddy form

drag, as described in Marshall et al. (2007). The thermocline in Aqua is deeper than

in Ridge, because its depth is set by eddy processes as in the model of the Antarctic

Circumpolar Current discussed in Marshall and Radko (2003).

In the Warm states, there is also a thermocline at high-latitudes (poleward of 50')

due to the presence of polar easterlies which act to pump fresh water (~28 psu) down

from the surface creating very stable stratification (see Fig. 4-6 below). In the Cold

state, sea ice exists poleward of 500 or so. Here SSTs are uniform and close to 1.9 'C.
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Figure 4-5: Zonally averaged potential temperature (gray shading) and residual mean
circulation (red) in the ocean for the Cold (top) and Warm (bottom) solutions of Ridge
(left) and Aqua (right). For temperature, the contour interval is 20C while the dashed
and thick solid lines highlight the -1 and 0*C contours, respectively. The residual-
mean circulation (in Sv) is the sum of the Eulerian and eddy-induced circulation.
Solid and dashed contours denote clockwise and anticlockwise circulations, respec-
tively. Because the solutions are symmetric about the equator only one hemisphere
is shown. Reproduced from Ferreira et al. (2010b).
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These cold dense waters extend over the whole high latitude water column and cover

the bottom of the ocean. In the Warm states, deep temperatures are much higher,

by a full 7 and 150C relative to the cold state of Ridge and Aqua, respectively.

In all solutions the temperature of bottom water is the same as that of the sur-

face waters at the poleward edge of the subtropical thermocline, around 50-55 0N/S.

In Aqua, this is straightforward to understand because deep convection occurs near

500 where isopycnals are drawn upwards by Ekman suction and weak stratification

develops in subsurface layers (a phenomenon similar to pre-conditioning: see the re-

view in Marshall and Schott (1999)). In Ridge, deep convection occurs on the eastern

side of the basin between 60 and 800 of latitude. However, because of advection by

the subpolar gyre, relatively warm surface waters present at the gyre boundary are

advected eastward and poleward into the convective region. In both warm and cold

states, the temperature of deep water does not correspond to the coldest water at

the surface, but rather to the somewhat higher temperature typical of surface waters

near 50-55' N/S.

In all solutions, the residual-mean circulation is dominated by the subtropical

wind-driven cells, although the pattern of overturning differs strongly between Ridge

and Aqua, reflecting the different dynamics at play. In particular note the deep over-

turning cell in Aqua extending over the thermocline. Here the quasi-adiabaticity of

the circulation in the ocean interior is clearly revealed by the coincidence of stream-

lines and isotherms (note density is dominated by temperature in the subtropics). In

the Ridge, this is less evident because of zonal asymmetries in the ocean state.

The pattern and magnitude of the overturning circulation changes little between

the Cold and Warm states, consistent with the fact that they are primarily wind-

driven and the broad pattern of surface winds changes little. A notable exception

is the disappearance of the high-latitude cell in the cold solution of Ridge with the

growth of the sea-ice cap. In the Warm state, this cell is associated with deep con-

vection and deep water formation at these latitudes.

Fig. 4-6 shows cross-sections of salinity, as well as the net Precipitation minus

Evaporation at the sea surface for the four cases. In all cases the highest salinity
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Figure 4-6: Ocean salinity and surface freshwater flux for the Cold (top) and Warm
(bottom) solutions of Ridge (left) and Aqua (right). Gray shading indicates depth-
latitude cross-sections of salinity with a contour interval of 0.5 psu. Black lines at
the top of each panel indicate Precipitation minus Evaporation (or net freshwater
flux into the ocean) in units of mm/day. Only one hemisphere is shown for each
configuration, as in Fig. 4-5.
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occurs in the subtropics, coinciding with both a maximum in net evaporation and

high sea surface temperatures. In the Warm states, a halocline exists poleward of

about 600 (stronger in Aqua than in Ridge). As mentioned above, the presence of

very fresh surface water at high latitudes stabilizes the water column despite the

increase in potential temperature with depth (Fig. 4-5). This halocline is maintained

both by Ekman pumping due to the polar easterlies, and by net atmospheric moisture

transport into the high latitudes.

4.2.4 Meridional energy transport

The ocean, atmosphere and total (atmosphere plus ocean) heat transports are shown

in Fig. 4-7. The W, reaches a maximum in the subtropics near 250N/S where it

dominates the total transport, and becomes small at high latitudes. Because of the

meridional barrier which supports a subpolar gyre and high-latitude deep convection,

the OHT in the warm state of Ridge has a small, albeit significant, contribution pole-

ward of 50'. In comparison, the atmospheric heat transport (AHT) has a smoother,

hemispheric-scale structure with maxima at 45 0N/S.

The scaling of W-ta ~TAT was discussed in Section 1.2.3. Here IF is the strength

of the MOC and AT is the (vertical) difference in potential temperature between

the upper and lower limbs of the overturning circulation (Czaja and Marshall, 2006).

This helps one rationalize changes in Wo on moving from the Warm to the Cold

solutions: 7N, increases strongly in the subtropics, but weakens at high latitudes, in

both Ridge and Aqua. The first effect is primarily due to the strong cooling of the

deep water masses (which increases AT) and, to a lesser extent, the strengthening of

the circulation (increase in IV). The effect is stronger in Aqua probably because its

subtropical thermocline is very deep, extending down well in to the bottom waters.

The second effect is related to the insulating role of sea ice: at equilibrium, 'R,

poleward of the sea ice edge must be very small.5

Na also exhibits an increase in its peak value, consistent with a strengthening

5 Note that vertical diffusion of heat across the ice layer is represented in the sea ice model and
so it is not entirely insulating.
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Figure 4-7: Oceanic (top), atmospheric (middle), and total (bottom) heat transport
for the Cold (dashed gray) and Warm (solid) solutions of Ridge (left) and Aqua
(right). Reproduced from Ferreira et al. (2010b).
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Figure 4-8: Column-integrated, zonal mean heat budgets for the four coupled model
states. Black curves are net radiation (outgoing longwave - absorbed solar); blue,
green and red curves are convergence of atmospheric dry static energy, atmospheric
latent heat, and OHT respectively. The black curve equals the sum of the other three
curves. One hemisphere is plotted for each model state since they are all symmetric
about the equator.

of the storm-track from the Warm to the Cold state. Note that the increase is

proportionally smaller than in the ocean. As a result, the total 7-4 (bottom panels of

Fig.4-7) exhibits an increase over a broad band of latitudes. Interestingly, comparison

of Ridge and Aqua emphasizes that 7-4 is relatively insensitive to the details of the

ocean-atmosphere circulation, and depends primarily on the planetary albedo, as

discussed in Stone (1978) and Enderton and Marshall (2009).

An alternative view of the same quantities is shown in Fig. 4-8. Here we plot

the components of the column-integrated energy budget versus latitude for the four

model states, including net radiation and convergence of AHT and OHT. Integrals of
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Figure 4-9: Annual and zonal mean TOA (black), cloud (gray), and surface (dashed)
albedos as a function of latitude for the Warm (left) and Cold (right) states of Ridge.
See text for the details. Since the solutions are symmetric about the equator, only one
hemisphere is plotted for each state. The Aqua results are very similar. Reproduced
from Ferreira et al. (2010b).

these curves thus give the transports in Fig. 4-8, although here we have separated the

atmospheric component into convergence of Dry Static Energy (DSE) and Latent Heat

(LH). The main point we wish to emphasize here is that OHT convergence makes a

substantial contribution to the total energy budget near the ice edge in the Cold states

of both Aqua and Ridge (the ice edge is evident as a sharp increase in the net radiative

sink, plotted in black). In Cold Aqua in particular this is especially true given the

near-perfect cancellation between DSE and LH convergence just equatorward of the

ice edge. Compare this situation to the energy budget at the poles in Warm Aqua

and Warm Ridge, which is effectively the "ice edge". Here the atmospheric DSE

convergence is by far the dominant term -80 W m- 2 ). There is a modest oceanic

contribution in Warm Ridge (~15 W m- 2 ), and less than 5 W m- 2 in Warm Aqua.

The top-of-atmosphere (TOA), cloud and surface albedos are shown in Fig. 4-9

for the Cold and Warm Ridge (Aqua is very similar). The TOA albedo is computed

as aTOA = OSR/F = 1 - ASR/F where OSR, ASR, and F = ASR + OSR are,

respectively, the outgoing, absorbed and total incoming solar radiation at the top
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of the atmosphere. All quantities are annual means, denoted by (.). The diagnos-

tic aTOA is in effect an "insolation weighted mean" albedo6 and includes effects of

cloud and surface albedo as well as short-wave absorption in the atmosphere. The

cloud contribution to aTOA is computed as (OSR - OSRelear)F where OSRie, is

the clearsky outgoing shortwave radiation. Similarly to aTOA, this is a net effect

including short-wave reflection and absorption by clouds. For consistency, the surface

contribution is computed as an insolation weighted mean: a,(t)F(t)/F although the

instantaneous surface albedo a,(t) is explicitly computed by the GCM.

In the Warm state, the surface albedo is small (with an increase in high latitudes

increase due to a prescribed dependence on solar zenith angle) and aTOA is dominated

by the cloud contribution everywhere. In the Cold state, however, the contribution

of sea ice to the surface albedo dominates poleward of 400.7 There is a dramatic

increase of the TOA albedo aTOA (black solid) from the Warm to the Cold state at

high latitudes (this has already been noted in the ASR plots in Fig. 4-3. However

it's important to note that this increases is not as large as one would expect from the

surface albedo increase alone. For example, near 70', cTOA increases by only 0.24

(from 0.33 to 0.57), while the surface albedo increases by 0.47 (from 0.1 to 0.57). This

is because, on moving from Warm to Cold conditions, the cloud albedo contribution

significantly decreases (by 0.15 or nearly 60% at high-latitudes) as the climate is

drier and the cloud cover diminishes. In effect, clouds strongly mitigate, by a factor

of two, the impact of sea ice on the TOA albedo. Such an effect was also noted by

Langen and Alexeev (2004) in the more comprehensive atmospheric NCAR GCM.

Gorodetskaya et al. (2006) estimated the impact of sea-ice on planetary albedo from

observations. They found an increase in TOA albedo of 0.25 (0.16) from ice-free to

ice-covered conditions in the Northern (Southern) hemisphere. Values from our GCM

are broadly consistent with these observational estimates.

Fig. 4-10 offers a closer examination of the seasonality of cloud cover. The largest

6This is made clear by using the annual mean of the instantaneous relation:_OSR(t) = a(t)F(t)
where a(t) is the instantaneous TOA albedo. Then, &TOA = a(t)F(t)/F $ a(t)

7Note that albedo contributions are neither additive nor multiplicative because 1) the surface
albedo only applies to the fraction of the radiation that reaches the ground, and 2) the atmosphere
absorbs short-wave radiation.
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differences between the Warm and Cold cases occur at high latitudes during the winter

season. In the Warm simulations with open, ice-free polar oceans, fractional cloud

cover at high latitudes is high and relatively constant throughout the year, hovering

near 85%. By contrast, the polar cloud cover in the Cold simulations undergoes a large

seasonal cycle, with summer values similar to the warm cases, but winter values as low

as 35%. The warm simulations thus experience an enhanced cloud cover during polar

night relative to the ice-covered cases, and the additional infrared opacity of these

clouds mitigates the winter season radiative cooling of the polar oceans. Clouds thus

appear to contribute a positive feedback on temperature changes at high latitudes

in this model. This effect is complementary to the ice-albedo feedback, but operates

during the winter season when there is no albedo effect due to the polar darkness. It

is reminiscent of the "high latitude convective cloud feedback" described by Abbot

and Tziperman (2008a,b), but the polar clouds in our model are not convective in

origin. They appear to be driven by the large-scale atmospheric circulation, and

constrained by the very low availability of moisture poleward of the sea ice edge in

the cold simulations.
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Figure 4-11: (top left) Seasonal cycle of the northern hemisphere sea ice extent (in

millions km 2). (top right) Zonal mean northern hemisphere sea ice concentration in

January and August. (bottom) Annual-mean sea ice extent anomaly in the Northern

hemisphere as a function of time (note that, to remove some of the highest frequencies,
the time-series are smoothed with a 1-2-1 running mean filter). Black and grey curves

correspond to Ridge and Aqua, respectively. Reproduced from Ferreira et al. (2010b).
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4.2.5 Variability of the coupled system

The mean states of the coupled system described above exhibit considerable inter-

nal variability on all timescales, ranging from day-to-day synoptic scale variability

through the seasonal cycle and out to centennial-scale fluctuations. Thus the multi-

ple states we have described are stable enough to persist through significant internal

variability of the coupled system. This is important because such variability is absent

from many simple models such as EBMs that exhibit multiple equilibria, and the

presence of noise has been shown to destabilize otherwise stable equilibria in some

EBM solutions (Lee and North, 1995). Not surprisingly, the largest perturbations oc-

cur on seasonal timescales. The seasonal and interannual variations of the northern

hemisphere sea-ice cover in the Cold solutions are illustrated in Fig. 4-11. The cli-

matological sea ice area varies by 14 million km2 in Ridge and 7 million km2 in Aqua

over a season (20% and 10% of their annual mean cover, respectively). Note that the

mean area of coverage are rather large relative to contemporary observations because

there is little to no land our Aquaplanet. The zonally averaged sea ice fraction at its

maximum (January) and minimum (September) extent (Fig. 4-11, top right) gives

an impression of the geographical variation of sea ice cover with the seasons. Note

that the ice 'edge' is in fact rather wide, notably at the maximum sea ice extent in

January, with the ice fraction varying from zero to 100% over 5-10' of latitude. This

is because the seasonal sea ice does not have time to reach full cover. In addition, for

Ridge, there is a zonal asymmetry in the sea ice edge which has a southwest/northeast

tilt across the basin.

The annual mean sea ice area anomalies for Ridge and Aqua are shown in Fig.4-11

(bottom), for a stretch of 500 years (note the absence of drift). In both solutions,

anomalies of 2 million km 2 recur, sometimes persisting over a decade or more, with

occasional excursions exceeding 3 million km 2. The Aqua time-series is somewhat

regular in behavior and its spectrum has a marked peak at a 40-y period. The Ridge

has a more random behavior and a 'red noise' spectrum.

120



A)
Eq

B)

) SOH

C) Sea Ice extent

Pole

~500

Warm state I

Figure 4-12: Schematic of the multiple equilibrium states: A) ocean thermal structure
(black) and residual overturning circulation (red), B) OHT transport in the Warm
(dashed) and Cold (solid) states, and C) sea ice extent for the three stable states.
Reproduced from Ferreira et al. (2010b).

4.2.6 Summary

The key characteristics of the multiple states described above are summarized in the

schematic diagram, Fig. 4-12. It shows the ocean's thermocline, residual circulation,

OHT and sea-ice extent in the Warm, Cold and Snowball states. The latitude of 500

corresponds (approximately) to the poleward edge of the subtropical thermocline set

by the pattern of prevailing winds. Since the multiple equilibria exist in both Ridge

and Aqua, the schematic emphasizes their common aspects.

As noted above, the 'bulge' of the warm subtropical thermocline is a consequence

of Ekman pumping associated with the trade/westerly winds acting at the surface.

It is also the location of the bulk of the OHT which is primarily achieved by a wind-

driven meridional overturning circulation (marked blue). Poleward of the subtropical

thermocline, the OHT drops to vanishingly small values. Hence, heat is 'deposited'
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at the poleward edge of the subtropical thermocline which also corresponds to the

mean location of the ice edge in the Cold solution. It appears, then, that convergence

of OHT on the poleward flank of the subtropical thermocline limits the equatorial

expansion of sea-ice leading to a stable equilibrium with a large polar ice cap.

Despite large differences in the ocean dynamics due to the very different geomet-

rical constraints in Aqua and Ridge, the wind-driven subtropical cell dominates the

OHT, resulting in a large midlatitude OHT convergence in all cases. Note that the

difference in OHT between the Cold and Warm states seems to be of secondary impor-

tance in this mechanism, as they both realize a large midlatitude OHT convergence.

We will examine this question in Chapter 5.

In Section 4.4 these speculations about the role of the OHT in stabilizing the large

ice cap will be quantified through a modified version of the AO-EBM. The question

will also be pursued in Chapter 5 through GCM calculations with specified OHT.

First, though, we will take a look at the transient behavior of the coupled system as

it transitions between Warm and Cold states.

4.3 Abrupt climate change in the coupled GCM

The existence of multiple states in the coupled model naturally raises questions about

how the atmosphere-ocean-ice system transitions from one state to the other. How

large a perturbation is necessary to drive the system out of each state? How abrupt

are the transitions? Is there an important asymmetry between warming and cooling,

such as was predicted by the simple gyre model in Fig. 3-2? Are there stable inter-

mediate states (i.e. small ice caps)? How do Aqua and Ridge differ, with their rather

different ocean dynamics? In this section we report on some transient climate change

experiments that begin to answers to these questions.

In these experiments we treat the solar constant as a bifurcation parameter, in

close analogy with the EBM. We perform long integrations of the coupled model

while slowly varying So sinusoidally about its reference value (1366 Wm 2 for Aqua,

1352 Wm 2 for Ridge). The timescale for this forcing is set to a 4000 year period
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in most experiments. This choice is somewhat arbitrary but constrained by avail-

able computer resources. The forcing is slow enough that many aspects of the cli-

mate system (atmosphere, sea ice, surface ocean) should remain in quasi-equilibrium

throughout the run, and thus clearly reveal any tendencies for abrupt changes. The

adjustment time of the deep ocean, however, is sufficiently long that it is not expected

to remain in equilibrium with the forcing during the runs.

4.3.1 Aqua

Fig. 4-13 shows the evolution of several transient runs in the Aqua configuration.

Runs were initialized in both the Warm and Cold equilibrium states. Solar constant

was varied as shown in the upper panel. The amplitude of the forcing is t24 W

m-2, or about 1.8% of the reference value. This is roughly equivalent to a three-fold

variation in CO 2 in terms of its contribution to the planetary energy balance, similar

to the forcing of the simple gyre model in Fig. 3-2.8 Smaller perturbations were found

to be insufficient to initiate any transitions.

The results are shown as timeseries of two diagnostics. The lower panel shows

the volume-averaged ocean temperature < T, >. In the middle panel, we introduce

a diagnostic of the sea ice cover called "equivalent ice edge latitude", denoted #ice,

which we'll use repeatedly in this and the next chapter. It is actually a transformation

of the global ice area Aice:

~ 1800 A
&e =80 arcsin 1 - A'e (4.1)

7r 47ra2

This diagnostic gives the latitude (in degrees) of the ice edge assuming zonal and

interhemispheric symmetry of the ice cover. Because it's a global diagnostic, it filters

out much of the seasonal cycle.

Five runs are plotted (color coded in Fig. 4-13). Two runs (red and magenta)

begin from the Warm initial conditions (#ice = 900, < T, >= 160C) and are forced to

cool, while two other runs (blue, cyan) are initialized from the Cold initial condition

8 Note that the relevant quantity is So/4 which varies by ±6 W m-2.
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Figure 4-13: Transient climate change experiments in the coupled Aqua model. Upper
panel shows the specified changes in solar constant (the external forcing). Middle
panel shows equivalent ice edge latitude <ce of the response (defined by (4.1)). Lower
panel shows evolution of the global mean ocean temperature. The gray curve shows
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years of the simulation.
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(qjce ~ 470, < To >= 3.5'C) and forced to warm. The magenta and cyan curves are

forced on a shorter 2000 year period (same amplitude).

The blue and red curves both undergo a clear hysteresis. As So returns to its

reference value after the first 2000 years, the red curve has effectively transitioned

from the Warm to the Cold state, at least measured in terms of its ice cover, while

the reverse is true of the blue curve (though the < T, > curves show that the deep

ocean does not fully adjust during this period). During the second half of the run the

forcing is reversed, and the blue and red curves both transition (approximately) back

to their initial states. Curiously, there is a net cooling of the ocean in all these runs.

We speculate that this is related to the inherent physical asymmetry between warming

and cooling the ocean from the surface: warming stabilizes the water column, thus

suppressing convection and deep water formation, while cooling destabilizes the water

column and enhances convection. Thus the cooling signal is likely communicated to

the deep ocean more efficiently than the warming signal.

Abrupt changes in the ice cover occur in several of these runs, both expansions and

contractions. For example, in the blue curve around year 2300, the sea ice expands

from about 80' down to about 65' within 40 years (or equivalently, from about 8 x 106

km 2 to 47 x 106 km 2 , a nearly six-fold expansion in areal coverage). Similar abrupt

ice expansions occur in the red curve around year 750, and the magenta curve around

year 500. In all these cases, the abrupt ice expansion is coincident with an abrupt

change in the ocean temperature trend. This most likely indicates a dramatic shift in

the location and/or intensity of deep ocean convection, for example shifting from the

moderate temperature, mid-latitude convection seen in the Warm Aqua (discussed in

section 4.2.3) to convection of freezing-temperature water at the advancing ice edge.

Abrupt warming and ice melt also occurs in the blue, red and magenta curves.

These three runs all lose their ice cover abruptly in their warming phases once the

ice melts back to around 70'. Overall these runs are relatively symmetric between

warming and cooling, and suggest a SICI-like instability for ice caps smaller than 70'.

In contrast to these abrupt jumps, variations in #ice between 70' and the Cold

reference state at 47' are much more gradual, looking more like a linear response
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to the slowly varying forcing. The cyan curve in fact doesn't experience any abrupt

changes, just warms somewhat and loses some ice during the warming phase and

drifts back to the Cold state during the cooling phase. Its ice edge reaches 60' at

its warmest point; evidently the shorter duration of the warming phase in this run

is insufficient to push the climate system to the unstable threshold at Oic ~ 700.

The magenta curve undergoes both abrupt cooling and warming during its 2000 year

period, but the ice edge remains near the 70' threshold during its cold phase rather

than drifting into the Cold state. The magenta curve in fact looks very switch-like,

in sharp contract to the cyan curve's sinusoidal ice variations.

Finally we explore the possibility of a quasi-stable state with an intermediate ice

cap (e.g. an ice edge near 70'). A run was initialized from the blue curve at year

2260, just at the beginning of its abrupt ice expansion. For this run, which is plotted

in gray, the solar constant is set back to the reference value and held constant for

1740 years. It experiences the same abrupt ice expansion as the blue curve, followed

by a gradual cooling and drift back toward the Cold state in spite of the absence

of forcing. This indicates that intermediate equilibria between the Warm and Cold

states are not very likely. If any such states do exist in the coupled system, they are

not easily accessed.

4.3.2 Ridge

Analogous experiments were performed in the Ridge, and are plotted in Fig. 4-14.

One pair of runs (plotted in blue and magenta) are forced by variations ASO ±24

W m-2. This is the same amplitude forcing that was sufficient to generate a full

hysteresis in Aqua. In Ridge the response is less symmetric: ±24 W m-2 is sufficient

to take the Cold state through a full hysteresis including a complete ice loss (blue

curve), but not sufficient to push the Warm state all the way into the Cold state

(magenta curve)9 . A third run with a stronger forcing (±32 W m 2 , plotted in red)

9The run plotted in magenta ends around year 2800 before completing the entire forcing cycle,
but as it is in an ice-free state in the middle of the warming phase, it seems safe to assume that,
were the simulation to be carried forward, a large ice cap would not suddenly appear before year
4000.
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does undergo transitions all the way from Warm to Cold and back to Warm.

The ice edge evolution is overall more complicated in these runs than in Aqua.

There are some fairly rapid transitions, but nothing quite as abrupt as the 40 year

ice expansions seen in Aqua. There is also a clear asymmetry between warming and

cooling which was not evident in Aqua - the warming (ice loss) is much faster than

the cooling in most cases. Ice growth is also not monotonic with the forcing in the

Ridge, unlike Aqua. The red and magenta curves both experience a small ice cap

for several hundred years during their initial cooling, which then retreats back to the

pole for nearly 1000 years before a more substantial ice expansion begins.

The magenta and blue curves both suggest a two-phase cooling process, with a

quasi-stable ice edge near 70' persisting for hundreds of years, followed either by a

retreat almost to the pole (magenta) or a fairly rapid expansion into the Cold large

ice cap state (blue). But this is clearly not a universal result: the red curve shows

nearly steady ice growth from 85' down to the Cold state over the course of 400 years,

with little indication of a quasi-stable intermediate state.

Another key difference between Ridge and Aqua is the ocean temperature evo-

lution. Ridge does not display the abrupt changes in temperature tendency such as

we saw in Aqua at the onset of freezing (though there is a noticeable increase in the

warming rate coincident with abrupt warming events in both the blue and red curves).

In fact the red and magenta curves in the bottom panel of Fig. 4-14 show that the

ocean cools continuously throughout the 2000 year cooling phase despite those runs

remaining ice-free throughout much of that time. This is not entirely surprising, since

the Warm Ridge, unlike Aqua, has an active MOC (and associated deep convection)

carrying heat into the high latitudes. The deep ocean at high latitudes is thus more

tightly coupled to the surface climate in Ridge, and the cooling signal is propagated

more efficiently. We also note that the net ocean cooling seen in Aqua is also evident

here in the red and blue curves.
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4.3.3 Discussion

The ice expansions and contractions in the Ridge bear some resemblance to those in

simple gyre model plotted in Fig. 3-2. The simple model undergoes abrupt warmings

and gradual coolings in response to a sinusoidal radiative forcing. The Ridge has

the same asymmetry, although the warming occurs in the GCM over roughly 100

years. The "Cold" state in both models is characterized by an ice edge near the mid-

latitude zero wind curl line, or roughly the same latitude as the maximum surface

westerlies, though these latitudes differ because the winds differ between the two

models, comparing the wind stress in Fig. 3-1 (for the simple model) and Fig. 4-3

(for the coupled GCM). The suggestion is that the feedback between wind stress,

ocean gyres and the ice edge encoded in the simple model is in fact operating in the

complex model (though it is clearly not the whole story). We speculate that the

quasi-stable intermediate states shown by the blue and magenta qee curves in Fig. 4-

14 may actually be part of the same mechanism. Because of the polar easterly winds

in the Ridge, there is a well-developed boundary between subpolar and polar gyres

in the coupled model. This feature is less prominent in the simple model because the

winds generated by the EMomBM are westerly all the way to the pole;10 if the wind

field from the GCM were used to drive the simple gyre model, there would presumably

be a barrier to ice expansion near 700 similar to the mid-latitude boundary.

The timescales of the abrupt changes (roughly 40 years for Aqua, 100 years for

Ridge) warrant a careful study, given their possible analogy to the observed abrupt

warmings during D-O events. We offer a few speculations here.

The timescale of ice melt is relatively simple to account for by the thermodynamics

of the ice itself (as opposed to oceanic processes). The ice cap near the poles is about

20 m thick in Cold Aqua (slightly thicker in Ridge), and it takes a finite amount of

time and energy to melt through this thick ice. The 20 m ice cap translates into a

vertically integrated ice enthalpy of about 1.2 x 1010 J m 2 , which if subjected to a

10There is in fact a zero curl line very close to the pole in the simple model solutions, and a small
hysteresis loop associated with it can be seen in Figures 2-4 and 3-1. This was mentioned briefly in
Section 2.4.
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steady heat source of 6 Wm-2 (the maximum value of S0/4 perturbations in the Aqua

experiments) would melt in 2 x 10' s, or about 63 years. This is the same order of

magnitude as we observe in both Aqua and Ridge, and suggests that the timescale of

the abrupt ice melt events is determined by the thermal inertia of the sea ice. In the

simple gyre model we had assumed this thermal inertia to be zero, and the ice melt

is therefore essentially instantaneous.11

The timescale of ice advance varies much more between Aqua and Ridge, and

almost surely involves a more complicated interplay with ocean dynamics. This is

because, as noted previously, cooling from above destabilizes the water column and

couples the surface with the deep heat reservoir. We therefore speculate that the rapid

ice expansions are only possible in the presence of a pre-existing oceanic halocline,

allowing a stable layer of cold fresh water to develop at the surface. This halocline

may develop as a result of seasonal advance and retreat of the sea ice: each iteration

of the seasonal cycle will create some dense water by brine rejection during ice forma-

tion, which will subsequently mix downwards, leaving a net freshening of the surface

water after the melting of seasonal ice. In other words, the advancing sea ice may

precondition the water column for its own further advancement. The interplay of this

process with the background ocean stratification and the large-scale ocean dynamics

will impose a timescale on the ice expansion, and such considerations may explain

the quite different time scales of ice growth in Aqua and Ridge. This is left as the

topic of a future study.

Finally we note that the sea ice extent in these runs never exceeds that of the

reference Cold states by more than a few degrees, despite the substantially reduced

solar constant during the cooling phases. This is consistent with the arguments put

forth in section 4.2.6: the strong convergence of OHT in mid-latitudes acts as a barrier

to equatorward sea ice expansion and stabilizes the large ice cap.

11In fact it is limited by the numerics of the EMomBM to melt no more than one grid point per
timestep.
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4.4 Interpretation in terms of the AO-EBM

Building on the sketch shown in Fig. 4-12, we now turn back to the simple ocean-

atmosphere-sea ice EBM developed in Chapter 2 to interpret the reasons for multiple

equilibria in the coupled GCM. In Chapters 2 and 3 it was argued that meridional

structure in the OHT, along with the insulating property of sea ice, was key to the

existence of stable large ice cap state (see also Rose and Marshall, 2009). The coupled

model also exhibits a stable large ice cap, in which OHT convergence seems to play

a crucial role. The remainer of this chapter is concerned with fitting a modified form

of the AO-EBM to these Aquaplanet results to further elucidate the role of the OHT.

The AO-EBM presented in Chapter 2 (and studied in Chapter 3 with interactive

winds) employs gyre dynamics as a "proxy" to explore the impact of latitudinal struc-

ture of the OHT on the multiple equilibria. Diagnostics of the coupled GCM, however,

show that the wind-driven meridional overturning circulation is the principal agent

of OHT rather than horizontal gyres (which are, of course, entirely absent in Aqua).

Here, therefore, we modify the AO-EBM to take into account the dynamics seen in

the coupled model, i.e. an OHT dominated by wind-driven subtropical overturning

cells acting on a vertical temperature gradient. In the following, we show that by

using such a representation of the OHT, the AO-EBM supports multiple equilibria

which bear a marked similarity with those seen in the coupled GCM.

4.4.1 Recap of Atmosphere-Ocean EBM formulation

The Atmosphere-Ocean EBM used here is identical to that described in Chapter 2,

with the exception of the different treatment of the ocean dynamics. The governing

equations are given by (2.17). As a brief reminded, the model consists of two cou-

pled, zonally-averaged heat-budget equations representing the atmosphere and ocean

through temperatures 0 and T, (functions of latitude <$ and time). The atmosphere

is assumed transparent to solar radiation, the albedo (ice cover) is determined by

the surface temperature, and outgoing longwave radiation is generated in the atmop-

shere. A simple linear parameterization (2.16) accounts for heat exchange between
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the atmosphere and ocean. Atmospheric heat transport is parameterized as a simple

down-gradient temperature diffusion with a constant coefficient, viz. Eq. (2.18).

4.4.2 Representation of ocean heat transport

To capture the OHT dynamics seen in the GCM, we parameterize W, as the sum of

an advective term acting on a vertical temperature gradient, and a diffusive term:

( 5 T eep KO aTj\
T - T K8

Wo = 2,ra cos #C Te Ae a **) (4.2)

where @,es is a prescribed overturning streamfunction, Tdeep is the deep ocean tem-

perature, and Az is a depth scale over which the overturning is assumed to operate.

In contrast to Chapter 2, the diffusion coefficient K. is small and constant. Diffu-

sion is included primarily to satisfy boundary conditions: its contribution to OHT

is small.12 The spatial structure in OHT is introduced through re. which has a

prescribed latitudinal structure.

As seen in Fig. 4-5 and discussed in Section 4.2.3, deep ocean temperatures in the

coupled GCM are spatially homogeneous in all 4 states, roughly equal to the surface

temperature near 50-55'. We formalize this in the EBM by setting Teep equal to the

surface ocean temperature at a specified critical latitude #cit (which we take as 50'):

Tdeep = max (Ts($crit ), Tf ) (4.3)

Note that the max operator appears here because, where there is sea ice cover, T.

represents the ice-top temperature, whereas the ocean temperature below the ice is

assumed to be Tf (this operator only comes into play if the ice edge reaches #crit). The

vertical temperature gradient T, - Teep thus changes sign across crit, in agreement

with the GCM results.

For ,es/ZAZ we use a smooth polynomial fit to the overturning streamfunction

computed in potential temperature coordinates from Warm Aqua (see Marshall et al.,
12The present calculations use K, = 300 m 2 S1 (see Table 4.1) which is 2 orders of magnitude

smaller than was used in Chapter 2.
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Figure 4-15: Ocean overturning in potential temperature coordinates diagnosed from
the Warm Aqua coupled model solution, and a smooth polynomial fit. Units are
arbitrary. This is the 0,es field used in the AO-EBM calculations displayed in Fig.
4-16

2007, for an example). These are plotted in Fig. 4-15. 0,e, rises from zero at the

equator to a large tropical peak, falls off rapidly in the subtropics, and decays more

gradually into the higher latitudes. When multiplied by T, - Tdeep, this produces

a large ocean heat flux out of the tropics, and a convergence of that OHT in the

subtropics to lower mid-latitudes, in accordance with the coupled GCM shown in

Fig. 4-7. In these calculations V),e is fixed and not allowed to change between states.

Note, however, that W, is a prognostic variable in this AO-EBM because both T, and

Tdee, are free to evolve.

In Chapters 2 and 3 we solved the AO-EBM by integrating the time-dependent

equations out to equilibrium. Here a different method is used: we set the time deriva-

tives to zero and solve the steady-state AO-EBM directly as a numerical boundary

value problem with unknown parameters. This is a numerical generalization of the

North (1975a) analytical method which was outlined in Chapter 2 - we assume an ice

edge and solve for the necessary solar constant. Boundary conditions for the atmo-

sphere are 'Ha = 0 at the equator and pole, and continuity of temperature and heat

flux at the ice edge. For the ocean, the boundary conditions are T, = Tf at the ice

edge, and W-, = 0 at the equator and the ice edge. This last condition represents the

crucial insulating effect of sea ice, as argued in Section 2.3.1. This method maps out
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Table 4.1: Parameter values for the
given in Table 2.1.

Value
-20 C
0.72
-0.078
0.4
18.5 x 107 J m- 2 oC-

4.0 x 106 m2 s-1
300 m2 S-1
212 W M-2

1.5 W m- 2 oC- 1

AO-EBM calculations. All other parameters as

Notes
freezing temperature
open ocean coalbedo
open ocean coalbedo (zenith angle dependence)
ice-covered coalbedo
ocean heat capacity (mixed layer depth of 45 m)
atmospheric diffusivity
oceanic diffusivity
Outgoing longwave constant
Outgoing longwave sensitivity

the entire solution space of the model, including both stable and unstable branches.

For this calculation, we have tuned the AO-EBM parameters to fit the Warm Aqua

state. Many of the parameters are identical to those listed in Table 2.1 and used in

the AO-EBM calculations of Chapter 2; parameters that differ from those earlier

values are listed here in Table 4.1. In particular, the radiative and albedo parameters

allow for good quantitative agreement in both the shortwave and longwave budgets

at the TOA, thus capturing the net effects of clouds in the GCM (as seen in Fig.

4-9). We have also set the ice threshold temperature Tf = -2'C, roughly the freezing

temperature of sea water, rather than the canonical -100 C as was used in Chapters 2

and 3. We have taken a slightly smaller value of Bet (1.5 vs. 1.7 W m- 2 oC-l) to

improve the fit to the OLR (see Appendix C).

4.4.3 Equilibrium solutions of EBM

There are three stable solutions to the EBM for the same parameters and external

forcing, analogous to the three stable solutions seen in the coupled GCM. These are

(1) a warm ice-free state, (2) a completely ice-covered snowball state, and (3) a cold

state with a large ice cap extending down in to middle latitudes. Fig. 4-16 shows

the SST (top left) and heat transports (top right) for the warm and cold states. The
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Figure 4-16: Multiple equilibrium solutions of the AO-EBM with meridional over-
turning ocean model. Top: SST (left) and heat transport profiles (right) in the warm

(solid) and cold (dashed) AO-EBM solutions with So = 1366 W m~2 . Bottom: hys-
teresis plot of ice edge as a function of So for the AO-EBM (blue). Stable branches of
the solution are indicated by thicker lines. Left panel also shows the equivalent simple
EBM solution in black. Right panel is a zoomed-in view of the AO-EBM hysteresis
curve, with the dashed line indicating So = 1366 W m-2. Light red arrows indicate
a hysteresis loop with abrupt jumps between the warm and cold states.
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Snowball solution, which is of little interest here, is not shown in detail.

The warm and cold solutions share many features with the analogous coupled

GCM model results from both Aqua and Ridge. The SST has the appropriate weak

equator-to-pole gradient in the warm state (with an over-emphasized equatorial min-

imum). In the cold state, tropical temperature are significantly cooler as in the GCM

(compare to Fig. 4-3), and a region of especially strong SST gradient occurs just

equatorward of the ice edge. The width of this boundary layer is sensitive to the

choice of K since (4.2) is dominated by diffusion very close to #rit. A qualitatively

similar enhanced SST gradient near the ice edge can be seen in the colors in Fig. 4-1.

The heat transports are well captured, with a reasonable quantitative fit in both

meridional pattern and magnitude. The AHT and the total heat transport both

show an overall increase going from warm to cold, as in the GCM. The increase in

subtropical OHT going from warm to cold is smaller than the corresponding increase

in the GCM, but of the correct sign. Note that in these calculations the magnitude of

?res/Az was tuned to give a peak OHT between 2 and 3 PW, intermediate between

the Warm and Cold states of Aqua. Other differences between these results and the

GCM include a poleward shifting of the peaks of the atmospheric and total transports

on moving from warm to cold states. No such shift is observed in the GCM.

The multiple-valued structure of the EBM solutions can be seen in the bottom

panels of Fig.4-16, where we plot the #i - So relationship for this model. As usual,

branches of the curve where dOJ < 0 are unstable (the stable branches are marked bydSo

thicker lines). The bottom left panel shows the full structure, with ice-free solutions

along the right-hand side and snowball solutions along the left-hand side. Finite ice

caps are mostly unstable in this system except for a stable branch from about 400 to

60' latitude. This stable branch is shown again, in zoomed-in detail, in the bottom

right panel of Fig. 4-16. Here So = 1366 W m 2 is denoted by a horizontal dashed

line; the intersections of this line with the stable branches of the blue curve at #3 = 90'

and 550 give the Warm and Cold multiple equilibria plotted in the upper panels. The

black curve in the bottom left plot is a solution of the simple EBM without OHT,

which we discuss below.
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This mid-latitude "stability ledge" is the main new result of the modified AO-

EBM. For So between about 1310 W m- 2 and 1390 W m-2 a stable mid-latitude ice

edge is possible. For the upper part of this range (So between 1360 and 1390 W m- 2 ),

the ice-free solution is also permitted, and there are thus three stable solutions. The

thin red arrows in the bottom right panel of Fig. 4-16 indicate a hysteresis loop. This

is the path the time-dependent system would follow under a slowly varying forcing

like in Fig. 3-2 (for the simple gyre model). In fact this hysteresis bears a marked

resemblance to that of the coupled Aqua GCM plotted in Fig. 4-13. Both models

have abrupt transitions in and out of the ice-free state. The simple model requires

a 30 W m- 2 range in So to span the hysteresis loop, compared to 48 W M- 2 in the

GCM.

One might legitimately ask whether the simple EBM without explicit ocean heat

transport can account for the multiple equilibria seen in the GCM. Is it just a man-

ifestation of Small Ice Cap Instability, and if so, is the OHT model (4.2) really an

unnecessary detail? The answer appears to be no. Looking back at the large phase

space diagram for the simple EBM (Fig. 2-2), we have marked a dashed circle at

the approximate location of the Warm Aqua state in the ice-free region of the plot

around lo = 0.53. It's here (and only here) that we find the approximate intersection

of 20'C global mean temperature with 30'C equator-to-pole temperature difference

at a solar constant near So = 1366 W m-, and with a peak heat transport between

5 and 6 PW. The key point is that in order to achieve the weak temperature gradient

of the Warm Aqua state, the atmospheric diffusivity (and thus the non-dimensional

lo) needs to be quite high compared to typical tuned values for the observed climate

(e.g. the red star at lo = 0.32 in Fig. 2-2). This renders the EBM highly sensitive to

heat budget changes. Fig. 2-2 shows that there are no stable solutions with a finite

ice cap at lo = 0.53 and So = 1366 W m- 2 (the blue contours labelled 1 on the plot).

Turning back to Fig. 4-16, the black curve in the lower left panel shows the <h - So

curve for this case of the simple EBM with 1 - 0.53 and the same parameters used

"Given that the long adjustment time of the deep ocean in the coupled GCM, it's plausible that
a weaker forcing applied over a longer period would be sufficient to span the hysteresis loop in the
GCM, bringing it into closer agreement with the steady-state prediction of the simple model
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in Chapter 2 (computed from (2.12)). This curve shows that the simple EBM, when

tuned to the Warm Aqua state, completely fails to predict the simultaneous existence

of a Cold state with a stable ice cap. In this model, if the Warm state were subject to

a significant cooling perturbation, it would plunge directly into the Snowball state.

We conclude, then, that the simple EBM without any explicit OHT is lacking a

crucial piece of physics for the stabilization of the large ice cap state. This missing

ingredient is the spatial structure of the OHT, with its tendency to converge heat in

the mid-latitudes. This is essentially the same conclusion reached in Chapters 2 and

3 on the basis of a simple gyre model. The difference here is that the spatial structure

is introduced to the AO-EBM through a specified 4res, which enables us to achieve a

good quantitative fit to the coupled Aquaplanet GCM.
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Chapter 5

Exploring the effects of ocean heat.

transport structure

Much of the preceding chapters has been focussed on understanding the coupling

between the OHT and the rest of the climate system, and coming up with various

ways to represent that coupling in simple models. These studies have demonstrated

that the meridional structure of the OHT plays a key role shaping the mean climate

state, particularly in cold climates with large sea ice caps. We have found multiple

equilibria in a hierarchy of models, and in each case argued that OHT convergence is

the principle ingredient in the stabilization of the large ice cap state.

Many questions remain. What, for example, is the role of the seasonal cycle in the

balance between OHT convergence and sea ice? The coupled GCM results in Chapter

4 indicate that the ice equilibrates just poleward of the region of deep convection.

This convection, in fact, is a crucial component of the meridional structure of OHT,

and it was built-in to the simple overturning model studied at the end of Chapter

4. Oceanic deep convection is a highly seasonal phenomenon both in nature and in

the GCM, mixing warm water up to the surface during winter storms (see the review

by Marshall and Schott, 1999), leading to a very asymmetric delivery of heat to the

surface mixed layer throughout the seasonal cycle. Do our simple theories and models

based only on annual mean energy balance significantly underestimate the impact a

given W m- of OHT convergence on the stabilization of the ice edge?
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In many ways the ice-free states of the coupled GCM are just as curious as the

large ice cap states. What prevents the poles from freezing over in these simulations,

giving the warm temperatures and weak gradients seen in Fig. 4-3? What lessons

lie therein for the past and future states of the ice-covered poles of our own planet?

One is tempted to attribute the ice-free poles to ocean heat transport into the high-

latitudes (e.g. Enderton and Marshall, 2009). Certainly the aquaplanet geometry of

these simulations allows for the possibility of more efficient high-latitude OHT than

we observe in the real oceans, and the Warm Ridge displays these characteristics.

However the existence of a very similar Warm state in Aqua calls this simple argument

into question. Aqua, after all, experiences only a very small OHT convergence near

the pole (see Fig. 4-8). Can we abstract out of these various modeling exercises any

general principles about the ocean's impact on the polar climate?

In this chapter, rather than continuing to employ fully coupled models, we pursue

the above questions with atmosphere-ocean-ice models in which the OHT is a pre-

scribed forcing. The response of these models to systematic variations in OHT will

shed light on cause and effect in the coupled system. Two modeling tools will be used.

One is yet another form of the Atmosphere-Ocean EBM, first introduced in Chapter

2, which we will distill down to its simplest form in this chapter by treating OHT as

a prescribed forcing. The other is a so-called "slab ocean" model. It consists of the

atmospheric and sea ice components of the coupled GCM from Chapter 4, coupled

to a simple mixed layer ocean with prescribed "q-flux", i.e. convergence of OHT.

5.1 Seasonal heat budget analysis of the coupled

model (Aqua)

In this section we look in more detail at the heat budgets in the coupled Aqua. The

goal is to understand which processes are dominant in setting the ice edge, and how

that answer differs between the Warm and Cold states1 . Given that there is significant

convergence of OHT near the ice edge in the Cold state, while the OHT near the pole
1In the Warm state, the ice "edge" is effectively the pole, which is close the freezing point.
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Figure 5-1: Heat transport in the coupled Aqua, broken down by season. The thick
black curves indicate annual means.
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is very small in the Warm state, we might reasonably expect a different balance of

terms keeping the sea surface near the freezing point in these two instances.

A practical goal of this section is also to compute the required OHT convergence

or "q-flux" to apply to the slab ocean model in order to reproduce the climatology of

the fully coupled system. We will do this by diagnosing the complete heat budget for

the top-most ocean model level. Note that this approach differs from the traditional

method for diagnosing q-fluxes from atmosphere-only models with prescribed SST,

as mentioned in Chapter 1.

Chapter 4 presented only annual mean climatologies of the coupled model. Here

we will focus on the seasonality of the heat budgets. All the diagnostics presented in

this section are based on monthly means of a 20 year climatology of the coupled Aqua

(although we group the results into three month seasons DJF, MAM, JJA, SON). The

seasonal fluctuations in the column-integrated meridional heat transports are plotted

in Fig. 5-1. The seasonal component of OHT is very large in the subtropics, with

departures from the annual mean as large as 9 PW in the Cold state and 6 PW in the

Warm state. These large fluctuations can be attributed to the seasonal migration of

the Hadley cells and corresponding shifts in the trade winds.2 However the seasonal

fluctuations are much smaller in the vicinity of the mid-latitude ice edge (Cold). The

seasonal fluctuations in AHT are more modest and more uniformly distributed in

latitude. These represent a net transport of energy from the winter hemisphere to

the summer hemisphere during solsticial seasons.

5.1.1 Seasonal cycle of mixed layers

Terms in the ocean model heat budget include: heat storage (temperature tendency),

surface heat flux, shortwave heat flux (which is allowed to penetrate the surface and

is exponentially attenuated with depth), and convergence of dynamic heat fluxes.

The dynamic fluxes include contributions from Eulerian advection, parameterized

bolus transport, diapycnal heat diffusion, and convective adjustment. These terms

2Jayne and Marotzke (2001) find the same qualitative pattern of seasonal OHT variations in an
ocean model with realistic Earth geometry, but smaller amplitude of ±3 PW.
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Figure 5-2: Seasonal dynamic heating rates from the coupled Aqua. Colors indicate
the zonally averaged temperature tendency (degrees per month) due to total heat
flux convergence, plotted for the top six model levels. The thick black curves indicate
mixed layer depth. The four panels represent solsticial and equinoctial seasons for
Warm and Cold states.

are diagnosed from the coupled model climatology on a gridpoint-by-gridpoint basis,

and zonal averages are taken to get depth-latitude sections of the components of the

heat budget.

The seasonal deepening and shoaling of the mixed layer is an important component

of the surface ocean energy budget. This is illustrated in Fig. 5-2. Colors in these

panels show the net dynamical heating rate (i.e. the net convergence of all heat flux

components listed above) in zonal mean cross sections for the top 450 m of the ocean

(the top 6 model levels), along with the mixed layer depth (black curves). Results

are shown for DJF (solstice) and MAM (equinox); because of the interhemispheric

anti-symmetry these plots capture the full seasonal cycle.

We focus first on the Warm state (the left-hand side of Fig. 5-2). The mixed layer
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is shallow throughout the summer hemisphere, averaging about 30 m (the depth of

the first model level). Much deeper mixed layers are found in the winter hemisphere,

especially in the area of deep convection around 50' latitude (where the "mixed layer"

is essentially the whole depth of the ocean), and the deep mixed layers mostly persist

through the following spring. Poleward of the convective region the winter mixed

layer extends down to about 75 m. There is strong dynamical heating at the surface

throughout the winter hemisphere. Much of this heating is directly related to the

deepening mixed layer, and is balanced by a dynamical cooling in the 2nd model

level: as the winter mixed layer is destabilized by surface heat fluxes and mixes

downward, there is a net upward transfer of heat from the subsurface water. The

reverse process occurs in the high-latitude summer hemisphere - there is a dynamic

cooling of the surface, and warming of the subsurface. 3

We have already seen that in the annual mean, the high-latitude OHT convergence

is small in Warm Aqua (e.g. Fig. 4-8). Thus the dynamical warming and cooling at

the surface associated with the seasonal mixing seen in Fig. 5-2 must nearly balance

out over a full seasonal cycle. Even with zero annual mean, though, it's possible

that this seasonal cycle helps to keep the poles ice-free in Warm Aqua, because some

summer heat is being isolated below the surface, and released to the surface water

only during the winter. We will examine this question in the slab ocean model below.

Turning to the Cold state in Fig. 5-2, we see a broadly similar pattern in the

seasonal cycle of mixed layer depth. Major differences from the Warm state are

poleward of the ice edge. Here the dynamic heating rate is essentially zero everywhere,

and the mixed layer remains deep year-round (although it is of little significance since

this part of the ocean is so well thermally isolated by the sea ice cover). The dynamic

heating rate peaks at the surface just equatorward of the ice edge in winter. There is

a dynamical cooling throughout the water column below, indicating the net upward

flux of heat associated with the deep convection occurring near the ice edge. As

we have already seen, there is a significant annual mean OHT convergence near the

3The seasonal cycle of oceanic mixed layer depth is a ubiquitous feature of both observations and
models; some classic observations and physical interpretation of this phenomenon can be found in
Gill and Turner (1976).
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ice edge (Fig. 4-8). Thus much of the heat mixed up from below and deposited at

the surface in the winter is actually supplied by meridional heat fluxes from lower

latitudes during other seasons. The winter mixing acts as a sort of amplifier for the

OHT convergence: heat of tropical origin that trickles into the midlatitude water

column throughout the year is delivered to the surface during the winter when it is

most needed to prevent ice expansion. If the roughly 30 W m- 2 of OHT convergence

seen near the ice edge in Fig. 4-8 were added to the surface water evenly throughout

the year, it might be a less effective barrier to ice expansion.

5.1.2 Diagnosis of monthly q-fluxes

We now calculate q-flux fields month by month from the Warm and Cold states to

apply to the slab ocean model. These q-fluxes are simply the net dynamic heating

rate in the top-most ocean level, the same quantity plotted in the top-most row of

each panel in Fig. 5-2. These q-fluxes thus include the surface ocean and cooling

associated with the seasonal cycle in mixed layer depth. It is therefore appropriate to

apply these q-fluxes to a slab of 30 m depth, which is the thickness of the first ocean

layer in the coupled model. The slab model should then reproduce the climatologies of

the coupled model (atmosphere, SST, sea ice) given the appropriate initial conditions

for each q-flux. The fields are computed point by point, month by month. Zonal,

seasonal averages are plotted in Fig. 5-3.

These plots emphasize the points made above about the seasonal cycle: the heating

rate at the surface varies tremendously over the course of a year. Near the ice edge

in Cold Aqua, the q-flux varies by 200 W m- 2 over the annual cycle, between a 50

W m- 2 cooling in summer and a 150 W m-2 warming during winter (in fact the full

range is even larger and is partially smoothed out by the seasonal averages in this

plot).
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Figure 5-3: Seasonal and zonal mean q-fiuxes diagnosed from the coupled Aqua. The
thick black curves indicate annual means. These represent residuals of the heat budget
for the first ocean model layer.

5.2 A slab ocean model with prescribed OHT

In this section we introduce the slab ocean model, and show that it reproduces the

Warm and Cold coupled model climatologies when forced by the appropriate q-fiux.

We then explore the sensitivity of the Warm and Cold states to changes in the q-fiux.

5.2.1 Brief description of the slab ocean model

The atmospheric and sea ice models are identical to that used in the fully coupled

GCM (described in Section 4.1). As a brief reminder, it is a 5-level eddy-resolving

atmosphere with simplified moist physics and radiation, and a thermodynamic sea ice

model with thickness diffusion. We retain the full seasonal cycle of insolation. The

three-dimensional ocean is replaced by a two-dimensional slab of fixed depth. The

temperature of the ocean slab (i.e. the SST) evolves according to

cophm =Fs(x, y, t) + FN(X, y, t) ± FQ(x, y, t) (5.1)

146

. .. ...... . .... .. ...... ...... . ....... ........ . .... .. .... .. ........ .. ..... ................ .......... . ............. . .....



where Fs, FN are the solar and net air-sea heat fluxes, computed exactly as in the

coupled model, and FQ is the prescribed q-flux representing the convergence of OHT

in the surface mixed layer. In these experiments FQ will be varied to gauge the effects

of OHT on the ice edge and high-latitude climate.

The mixed layer also includes an interactive salt budget, which is driven by atmo-

spheric freshwater exchange and by freezing and melting of sea ice. We constrain the

salt budget with a strong relaxation to climatology. The only feedback of this artifi-

cial salt budget on the atmosphere / ice climate is through the ice freezing threshold

temperature, which has a weak salinity dependence.

We integrate the slab ocean model from both Warm and Cold initial states (at-

mosphere, sea ice, and SST) from the Warm and Cold coupled model solutions. All

experiments are integrated out to equilibrium: 100 years is sufficient in most cases

(due to the lack of a deep ocean).

5.2.2 Response of the slab ocean model to the q-fluxes from

the coupled model

Fig. 5-4 shows the evolution of the ice cover in the slab ocean model, in terms of the

latitude diagnostic 4ice (as defined by (4.1)). A total of ten model runs are plotted in

this graph, with five runs each starting from Warm and Cold initial conditions, which

correspond to dice = 90' and 490 respectively. A detailed description of the different

runs follows. First, however, a quick glance at Fig. 5-4 reveals three qualitatively

different equilibria in the slab model, just as in the coupled system: the Warm, ice-

free climate (ce = 90'); the Cold large ice cap climate (4ice ~ 30' - 50'), and the

Snowball state (ie = 00).

The different colors in Fig. 5-4 indicate model runs forced by different q-fluxes.

Red and blue solid lines represent the seasonally-varying q-fluxes diagnosed respec-

tively from the Warm and Cold states of the coupled model, plotted in Fig. 5-3.

Each of these was applied to both Warm and Cold initial conditions. The black lines

represents zero q-flux, i.e. a swamp ocean. Additionally, runs were performed using
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Figure 5-4: Evolution of the ice edge in slab ocean runs with prescribed ocean q-
fluxes. Five runs are plotted starting from each of two initial conditions (Warm and

Cold). The solid red (blue) curves indicate the full seasonal q-flux diagnosed from

the coupled model Warm (Cold) state. Dotted lines indicate forcing by the annual

mean of the full q-fluxes. Dashed lines indicate forcing by just the seasonal anomaly
of the full q-fluxes. Black lines indicate zero q-flux, i.e. a swamp ocean. The "ice

edge" here is actually global ice area, expressed as a latitude <i, according to (4.1).
The ice-free runs (q$, = 900) are plotted with a slight offset for better visualization.
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just the annual mean component of the q-fluxes (dotted lines) and just the seasonal

anomaly (dashed lines). We will step through these results in turn below. As a basic

sanity check on the slab ocean model, we note that the coupled model solutions are

reproduced faithfully when the appropriate full seasonal q-flux is applied (the upper

red solid curve and lower blue solid curve).

All but two of the runs that are initialized in the Warm ice-free state remain

ice-free. This includes runs forced with the Warm q-flux, the Cold q-flux, and the

annual mean Warm q-flux. The Warm q-flux provides roughly 5 W m- 2 heating to

the high latitude mixed layer, whereas the Cold q-flux is essentially zero poleward

of 700. Evidently a direct heating of the poles by OHT is not required to maintain

ice-free conditions. Two runs initialized in the ice-free state drift all the way into the

Snowball state: the run subject to just the seasonal component of the Warm q-flux

(red dashed) and the run with no q-flux (upper black). These results suggest that

the existence of the ice-free state is remarkably insensitive to the details of the q-flux,

so long as there is a significant annual mean transport in the lower latitudes. This

point will be address further in later sections of this chapter.

Turning to the runs initialized in the Cold state, we find again that runs with zero

annual mean q-flux drift into the Snowball state, while the three runs with non-zero

annual mean forcing equilibrate in large ice cap states. In this case, however, the

extent of ice cover is sensitive to the details of the ocean heating. The full seasonal

Cold q-flux has a very large winter season peak of order 150 W m- 2 just equatorward

of the ice edge associated with deep ocean convection in the coupled model, as seen in

Fig. 5-3 and discussed above. This feature is much less prominent in the annual mean

(black curve in Fig. 5-3), and forcing the model with just the annual mean component

results in a significant ice expansion down to near 40' (dotted blue curve in Fig. 5-4).

An even greater ice expansion to about 330 results from forcing the model with the

Warm q-flux (lower red curve). The results suggest that the details of the meridional

and seasonal distribution of ocean heating exert a significant influence on the large

ice cap solution, with the ice tending to equilibrate just poleward of the maximum

heating.
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We can summarize these results as follows. Multiple equilibria akin to the Warm

and Cold states of the coupled model also exist in the slab ocean model with fixed

OHT; thus the change in OHT between the Warm and Cold states of the coupled

model is not essential to the existence of multiple equilibria. The Cold state is more

sensitive to the detailed structure of OHT than the Warm state. In general these

results support the notion that OHT is a critical element in the stabilization of the

Cold state.

Seasonality appears to be a secondary but not negligible part of the story: replac-

ing the strong annual heating cycle near the ice edge with its annual mean does result

in ice expansion, as speculated in Section 5.1.1, though not a fundamental change in

the number and type of equilibria. The Warm state, on the other hand, is relatively

unaffected by the presence or absence of a seasonal cycle. For the rest of this chapter

we will go back to studying annual mean forcing only, with some confidence that

we're not missing a key ingredient in the maintenance of multiple equilibria.

5.3 A generalized analytical form for ocean heat

transport

One of the remarkable results from Chapter 4 was the existence of very similar large

ice cap states in Aqua and Ridge, despite the quite different ocean dynamics at play in

those two configurations. The basic argument, encapsulated in the sketch in Fig. 4-12,

is that the shape of the subtropical thermocline and associated OHT is fundamentally

set by the wind, which is relatively invariant. Thus while the detailed mechanisms

of OHT differ between Aqua and Ridge (e.g. the presence or absence of gyres), the

net transport is rather similar. Both experience between 2 and 3 PW of OHT out

of the tropics, most of which is deposited on the poleward flank of the subtropical

thermocline. In fact the similarity between Aqua and Ridge (and indeed with the

observed OHT in Fig. 1-3) suggest that a detailed consideration of ocean dynamics

is not essential for understanding the existence of multiple equilibria. In effect, the
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efforts made in previous chapters to account for the physics of gyres and overturning

circulation may have been unnecessary in this context. In the remainder of this

chapter, we will deal with an idealized analytical form for OHT, with which we

attempt to abstract out the essential meridional structure without any reference to

the underlying dynamics.

We consider ocean heat transport with the non-dimensional form

1* = @* sin(#) cos(4$)2 N _ *X( _ X2)N (5.2)

where N is a positive integer, and 4'* is an amplitude. This is a convenient and useful

form for several reasons: it goes to zero at the equator and pole, thus satisfying

energetic boundary conditions; it is polynomial in x for any N, and thus is amenable

to analytical methods (as we'll see); and most importantly, it captures the basic shape

of OHT as seen in observations and model simulations. Larger values of N shift the

peak 710 equatorward. N and @9* thus gives us two tunable parameters with which

to investigate the role of (respectively) spatial structure and amplitude of OHT in

climate system.

The meridional structure of OHT and its divergence (the q-flux) computed from

this formula for various values of N are shown in Fig. 5-5. Here the amplitudes are

adjusted so that all curves peak at 2 PW. For reference, we also plot the estimate

of real-world OHT from Trenberth and Caron (2001) (see also Fig. 1-3 and Section

1.2.2). It is clear that no single mode captures the entire structure of the "observed"

OHT - the main tropical peak can be well-fitted by one of the high-order curves (e.g.

N = 6), but it has a fatter mid-latitude tail that more closely resembles N = 2.

The convergence of this observational estimate is also plotted in the lower panel.

(This curve shows the zonal mean convergence - it does not take into account the

fraction of latitude circles occupied by land surfaces, and so is actually a substantial

underestimate of the local OHT convergence within each ocean basin, especially in

the northern hemisphere.)

In the next section we will look at a simplified form of the AO-EBM with OHT
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Figure 5-5: Idealized ocean heat transport (in PW, upper panel) and its divergence (in
W M-2, lower panel) given by the analytical formula (5.2) (amplitudes are adjusted
such that all curves have peak values t-2 PW). Also plotted is the estimate of real-
world OHT from Trenberth and Caron (2001) and its divergence (dashed black line).
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prescribed according to (5.2). This will be followed by a suite of experiments with

the slab ocean model forced in the same way.

5.4 Prescribed ocean heat transport in the AO-

EBM

5.4.1 A simplified analytical form for the AO-EBM

We now go back to the AO-EBM equations in Chapter 2, and note that in the steady

state the ocean heat budget equation (2.17b) can be written

F, = A-ss(x) - " (5.3)
4 2,a 2 dx

(i.e. there is a balance between the local solar heating, the oceanic heat flux conver-

gence, and the net heat exchange with the atmosphere), which we substitute into the

atmospheric heat budget equation (2.17a) to get a single differential equation for Ta:

1 dNo CaKa d dTa
0 = QAs(x) - Aout - BoutTa - 2 - + 2 -2) a) (5.4)

2xa2 dx a dx dx

In non-dimensional form, the AO-EBM equation is

0d d(I* d2 d*
o (1 - x2) - 0* = -q*As(x) + A* + dx 0*(5.5)

dx dxdx

where we have non-dimensionalized according to

0* - "0 1z\0 a0 (5.6)
BoutAO 4 27ra 2 Bot A6 *

The above equation (5.5) is identical to the simple EBM equation (2.4) with an

additional forcing term on the RHS representing the ocean heat flux convergence. It

is solvable by North's method, therefore, if this forcing is expressible in terms of Leg-

endre polynomials. However, the two models are not equivalent, even with zero OHT.
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This is because the ice edge condition applies to T, rather than T. The two tem-

peratures are related through (5.3) and (2.16), so that (after non-dimensionalizing)

T* = 0* -(A - q*As(x) +d'ho (5.7)

where we have defined

Bout A U 58y = A = ""(5.8)
Bup 2 BoutA0

The parameter -y gives a non-dimensional measure of the thermal coupling between

the atmosphere and ocean - the degree to which the surface and tropospheric tem-

peratures can have substantially different structures with latitude. We note that the

basic EBM is recovered in the limit -y -9 0 and zero R*.

The physical ice edge condition is that T, -- Tf on the open water side. We can

use (5.7) to express this condition in terms of the tropospheric temperature 0*:

0* = TJ + A* - q*aos(x) + dx (5.9)

Thus the ice threshold for the AO-EBM is somewhat more complicated than was

the case in the simple EBM. The threshold temperature varies with latitude, and is

affected by ocean heat flux convergence at the ice edge. Physically, this represents the

fact that colder atmospheric temperatures can persist above an ocean surface near

freezing, if there are ocean heat sources preventing the water from freezing (although

with WO = 0 and non-zero y, (5.9) clearly still does not give 0* T).

We now introduce the analytical form (5.2) for W,. To solve (5.5), we write

d R* d* =,O*- x(1 - x2)N _ *( _ X2 )N-1 (1 _ X2 (1 + 2N)) (5.10)
dx dx \

=* bP(x) (5.11)
n=2,4,...,2N

Here we have expanded the ocean heating rate in Legendre polynomials of even order.

Expansion coefficients for N up to 7 are given in Table 5.1. In all cases but N = 1,
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Table 5.1: Expansion of A (x(1 - x2)N)

mials for various values of N.
Zn=2,4,...,2N bnP,(x) in Legendre polyno-

the sum of the coefficients E b- = 0 which ensures that the convergence of OHT at

the pole is identically zero, as plotted in Fig. 5-5.

Equation (5.5) is solved by the same method we used for the simple EBM in

Section 2.1.2. We need only modify the particular solution to account for the ocean

forcing term. The expansion in Legendre polynomials makes this simple, since the

particular solution for any forcing term bnPn(x), using the eigenfunction properties

of Pn, is given by

(5.12)*=-n Pn(x)
P + n(n + I1)lo

(see Appendix B).

We can therefore write the full solution to (5.5) forced by (5.2) as

+ S2 P2 (x) - A* + q* bnP (x)
+ n(n +I1)lo

C flA (x)

C2 P (x)

(5.13)

with the constants C1, C2 unchanged from (2.11).'

One can see from (5.12) and (5.13) that the effects of the higher n orders of

4Here, as in the simple EBM solutions in Section 2.1.2, we have written out the solution for the
case of constant albedos (i.e. no zenith-angle dependence, a2 = 0 in (2.2b)). Non-zero a2 complicates
the algebra but remains fully solvable by this method.
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N b, for n = 2, 4,..., 2N

1 -2

2 -8 87' 7

3 176 288 16
231' 231' 33

4 128 1152 128 128
231' 1001' 165 ' 715

5 1280 1024 512 1024 256
3003' 1001' 561' 2717' 4199

6 1024 15360 10240 10240 15360 1024
3003' 17017' 10659' 19019' 96577' 52003

7 2048 36864 10240 40960 129024 4096 2048
7293' 46189' 10659' 62491' 482885' 66861 - 334305

0 q* ao
aJ

x < xi

x > Xi



the OHT on the atmospheric temperature are damped out as n2 . Physically this

represents the atmospheric diffusion responding preferentially to the largest scales in

the forcing. We discuss this in more detail below.

We then set O*(xi) = 0* as given by (5.9) to derive the value of the solar constant

as a function of ice edge latitude relationship for this model at steady state:

T* + A* + 'A* + @* E bnPn(+ 1

q*(xi) = (5.14)
ao(1 + -Y) + aos2 P2 (Y + ) + CifA

where functions Pn, flu are evaluated at the ice edge xi.

Before looking some solutions, a brief comment about OHT and the ice edge is

in order. In developing the simple gyre model in Chapter 2, and again with the

overturning model in Chapter 4, we set a boundary condition WO = 0 at the ice edge.

The reasoning was that sea ice is a strong insulator, so in a balanced state we cannot

have significant amounts of oceanic heat carried poleward under the ice. We also

saw that this is approximately true in the coupled GCM, though there is some OHT

convergence and heat conduction through the thinner ice near the ice margin. In

the present derivation we have specified OHT independently of the ice edge. This

has simplified the analysis, but at the cost of losing a representation of the insulating

effect. This is an important caveat - the above equations allow us to solve for climates

in which the ocean carries 2 PW of heat under the ice edge (for example), but such

situations are not very realistic.

5.4.2 Solutions of the AO-EBM with prescribed OHT

Fig. 5-6 shows a family of solutions to the AO-EBM, with varying magnitudes of OHT

as shown in the upper panel (solid curves). Parameter values for this calculation are

nearly the same as we used in Chapter 4 (see Table 4.1).' These standard parameters

yield non-dimensional quantities 1 = 0.66, y = 0.1.

5There are two changes: a2 = 0 (suppressing the zenith angle albedo dependence for simplicity),
and a slight retuning of A0ce to 215 W m- 2 to get a better quantitative fit to the ice-free solutions
found in Chapter 4.
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Figure 5-6: Solutions to the analytical AO-EBM with specified OHT. Upper panel
shows five different amplitudes of OHT (solid curves). Dashed curves indicate the
resulting total heat transport in the ice-free regime with So = 1366 W m-2 . Lower
panel shows the hysteresis curves of ice edge latitude versus solar constant for the five
different values of ocean forcing.
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For this example, the spatial scale of 'R, is fixed at N = 4. Solutions are pre-

sented in the lower panel as the now-familiar hysteresis curves showing the ice edge

as function of solar constant, calculated directly from (5.14). Note that the Snowball

branches of these solutions are plotted along the left side of the graph at #3 = 00 as

usual, but the full Snowball hysteresis is not plotted because the graphs are "zoomed

in" to show the behavior of mid-latitude ice edges.

As the magnitude of OHT increases from zero (blue curve) to 4 PW (red curve,

two notable changes occur in the #i - So curves. The first is an increase in the

stability of midlatitude ice edges, evident as a downward bulging of the graph near

450 for larger amplitude OHT. The second is an overall downward displacement of

the curves to smaller So values. We will deal with both in turn.

Stabilization of the large ice cap

All of the curves in Fig. 5-6 have a SICI-like unstable branch for #i poleward of 700

or so, and consequently all admit the possibility of unstable ice growth, should the

Warm ice-free state be sufficiently perturbed. Whether such a perturbation produces

a stable large ice cap or grows all the way to the Snowball state depends on the

magnitude of the OHT convergence. With no OHT at all (the blue curve), the large

ice cap state is just hovering on the brink of instability, as was already noted in

Chapter 4. With 2 to 3 PW of OHT (peak values in the Warm and Cold Aqua

simulations in Chapter 4), the slope dq*/dxi is steeper between about 450 and 750,

creating a distinct "stability ledge" allowing for the existence of stable mid-latitude

ice edges as multiple equilibria with the ice-free state. These results are qualitatively

consistent with the findings of Section 4.4, although the quantitative agreement with

the coupled GCM results is not as good in this case. For example the curves in

Fig. 5-6 predict that the hysteresis loop between the ice-free state and the large ice

cap state is spanned by a much smaller perturbation in So than we found in the GCM

in Section 4.3. However our goal here is not so much to reproduce the behavior of

the GCM, but rather to build some intuition about the general role of OHT. Fig. 5-6

shows that even in this very generic framework, midlatitude OHT convergence plays
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a key role in the stabilization of large ice caps.

We can use the analytical AO-EBM solutions to be more precise about this stabi-

lization effect. The stability is governed by the slope dq*/dxi, which can be calculated

directly from (5.14). Because the OHT contribution to this slope is linear, we can

quantify the stabilization per unit OHT as

,I dq* 1 P'/ PnF'
= b ( + (5.15)

o* dxi =,,.2 1 +n(n +1)1o) F F2

where F = a(1 + 7) +- aos 2P2(y + ) + Cifu is the denominator of (5.14.), and

all functions are evaluated at the ice edge xi (the derivation is not shown in detail

but involves a straightforward differentiation of (5.14)). This quantity, which is in-

dependent of OHT amplitude, is plotted in Fig. 5-7 for several different values of N

(i.e. different meridional scales of OHT). The units are scaled to show the change in

So (in W m-2) required for a 1' latitude displacement of the ice edge, per PW peak

ocean heat transport. The OHT contribution is stabilizing wherever these curves are

positive, and de-stabilizing where negative. The result is straightforward: OHT is

stabilizing for ice caps within a certain range of latitudes, and that range shifts with

the meridional scale of the OHT. For example the red curve in Fig. 5-7 corresponds

to N = 4, which was the OHT shape used in Fig. 5-6; it indicates that with this

shape, OHT acts to stabilize any ice cap whose edge lies poleward of 400 latitude,

with a maximum stabilization for an ice edge near 50', and a smaller effect for high-

latitude ice edges. The location of this peak stabilization varies systematically with

the imposed OHT convergence (which is plotted for various values of N in Fig 5-5).

As we mentioned above, our assumption of fixed OHT fails to take account of the

insulating effects of sea ice. It's likely that this shortcoming results in an underesti-

mation of the stabilizing effect of OHT. In an equilibrated coupled system the OHT

must arrange itself such that it becomes small at the ice edge. The zone of OHT con-

vergence must therefore shift equatorward with expansions of the sea ice. We might

account for this in the present mathematical framework by allowing N to increase

for larger ice caps. If this were the case, the stabilizing OHT barrier would tend to
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Figure 5-7: The oceanic contribution to ice edge stability, as a function of ice edge
latitude and meridional scale of the imposed OHT (N). These curves are calculated
from (5.15) and expressed as the change in So in W m- 2 required per degree latitude
shift in the ice edge per PW of OHT (measured at its tropical peak).

covary with the ice edge, and thus extend the stability ledge seen in Fig. 5-6. This

type of consideration might help reconcile these results with the stronger stabilization

effect found in Section 4.4 in which the OHT was interactively coupled to the sea ice

edge.

Heat transport and remote polar warming

We now turn to the second effect of OHT variation seen in Fig. 5-6: the overall

downward displacement of the <6 - So curves as the OHT amplitude increases. An

interesting consequence of this shift is that the minimum So required to maintain ice-

free conditions at the pole is smaller for larger amplitude OHT. This is a remarkable

result, given that the ocean's contribution to the polar heat budget is identically zero

in these calculations. Changes in ocean heat transport can only affect the atmospheric

and sea ice states at lower latitudes, and the only way these energetic signals can be

felt at the pole is through the atmospheric heat transport.

Looking back at the upper panel of Fig. 5-6, the thin dashed lines indicate the total
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Figure 5-8: The effects of OHT on atmospheric temperature in the AO-EBM. Left
panel: 9 vs. latitude for different amplitudes of OHT, with fixed spatial structure
(N = 4). Right panel: the component of 9 due to OHT forcing, as function of the
meridional scale parameter N. Plotted in units of 'C per PW of OHT.

heat transport W-l, = 7ta+ 1o at a fixed So in the ice-free regime (WL is computed from

(2.18) and (5.13)). These curves indicate a substantial degree of compensation: Wt

increases by less than 0.5 PW as W-, ranges from 0 to 4 PW. However the compensation

is not perfect, and (although it's difficult to see in this graph), there is an increase

in the convergence of Ra at the pole of about 4 W m- 2 over the entire range of

magnitudes of ?I,, (from 94 to 98 W m- 2 ). More heating of the pole results in

warmer polar temperatures, and a corresponding drop in the minimum So required

to maintain an ice-free pole.

In the ice-free regime the AO-EBM solution can be written:

s2P(x)bnPn(x)
0*(x) = q*ao 1 + -2T1 A* + q* - @b* b.,()(5.16)

LO 1 I+ n(n + 1)1on=2,4,...,2N

Atmospheric temperature 0 is plotted from this formula in the left panel of Fig. 5-8

from equator to pole as a function of OHT amplitude with N = 4. In fact this is

the same family of solutions whose heat transports are plotted in Fig. 5-6. Tropical

temperatures are cooler, and their gradients flatter, as the OHT forcing increases and
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more heat is pumped out of the tropics. Meanwhile the temperatures are warmer

throughout the extratropics all the way to the pole.

The linearity of the AO-EBM in the ice-free limit means that the atmospheric

response to the OHT forcing (i.e. the tropical cooling / extra-tropical warming) can

be cleanly separated from the rest of the solution: it is just the term proportional to 4@*
in (5.16). This quantity is plotted in the right panel of Fig. 5-8 for different values of

N. These curves show the warming/cooling in 'C per PW of OHT. Not surprisingly,

the warming effects shifts equatorward for larger values of N (as the region of strong

heating by OHT convergence also shifts equatorward). But this warming is nearly

uniform across the mid-latitudes all the way to the pole. The diffusive atmosphere

acts as if has some "stiffness" in its response to a spatially localized forcing. This

stiffness was discussed back in Chapter 2 in the context of Small Ice Cap Instability.

Here, though, we emphasize that we are restricting attention to the ice-free limit, and

the remote warming of the poles in response to OHT convergence at lower latitudes

is completely independent of ice-albedo feedback.

The remote heating right at the pole (x = 1) per unit OHT forcing can be written

zn )(5.17)
n=2,4,...,2N 1 nn +

(this is so because P,(1) =1 for all n - see Appendix B for a summary of Legendre

function properties). Thus the expansion coefficients b, listed in Table 5.1 can give

some direct insight into this remote polar warming effect. Consider for example

the case N = 2, whose expansion in Legendre terms (5.11) gives b2 = -8/7, b4 =

+8/7. This simple case is represented by just two harmonics: b2 represents the

broadest equator-to-pole structure, the tendency to cool the tropics and warm the

high latitudes; while the b4 mode tends to warm the mid-latitudes and cool the pole

(see Fig. B-1). The direct heating by OHT convergence at the pole is proportional

to -b 2P2 (1) - b4P4 (1)= -b2 - 0, as we have noted several times. According to

(5.17), the polar warming response involves a sum of Legendre modes weighted by a

decaying factor (1 + n(n + 1)lo)-1. This factor arises from the atmospheric diffusion
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Figure 5-9: Remote polar warming as function of 10, plotted for different values of
OHT scale parameter N. Units are *C per PW OHT (same as the right panel of
Fig. 5-8).

operator, which always selects preferentially for the largest scales in the forcing. In

this case, the sum is dominated by the b2 term, so the polar atmosphere is warmed

in spite of the finer spatial structure in the OHT represented by the b4 term.

The atmospheric diffusivity parameter 1 controls the efficiency with which high-

order modes are damped out in the temperature response. If lo -+ 0 the expression

(5.17) reduces to E b, = 0. In this limit the atmosphere is in local radiative equi-

librium, ', = 0 everywhere, and the remote polar warming vanishes - the warming

is purely local in the regions of OHT convergence. The opposite limit of large 1

describes an atmosphere with perfectly efficient heat transport and zero tempera-

ture gradient, just reflecting the global mean energy balance everywhere; in this case

redistribution of heat by the oceans has no effect on temperature at the poles or any-

where. The real atmosphere obviously lies between these limits with 1 a nearly 0(1)

quantity, but is closer to the high-efficiency limit (Stone, 1978). The remote polar

warming calculated from (5.17) is plotted in Fig. 5-9 as a function of l for various

values of N. These show that the warming is only weakly sensitive to the choice of

l within the realistic range, so can be considered a robust response of the AO-EBM.
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A comment on tropical dynamics and temperature gradients

Observed atmospheric temperature gradients are weak throughout the tropics (see

Fig. 1-2), a robust climate feature that simple EBMs are not able to reproduce

(Lindzen and Farrell, 1977). Theoretical explanations for the weak tropical tem-

perature gradient are found in the dynamics of Hadley cells and conservation of

angular momentum in axisymmetric circulation regimes (e.g. Held and Hou, 1980).

This physics is absent from simple diffusive models, though it can be accounted for

by imposing an explicit tropical temperature adjustment as shown by Lindzen and

Farrell (1977) (see also Lindzen and Farrell, 1980). Despite this shortcoming, Fig. 5-6

shows that the tropical temperature gradient in the AO-EBM becomes more realistic

as a consequence of imposing a realistic OHT out of the tropics. Interestingly, it's

the trade winds associated with Hadley cells that are ultimately responsible for the

large tropical OHT (Held, 2001; Czaja and Marshall, 2006). The Hadley cell EBM

adjustment proposed by Lindzen and Farrell (1977) and the OHT imposed in this

study can thus be viewed as two facets of a dynamically coupled tropical climate

system. Both adjustments provide a more realistic temperature gradient, and both

are also shown to stabilize the system against runaway ice-albedo feedback.

5.4.3 Summary

The AO-EBM provides two distinct predictions about the role of OHT in the global

energy balance. The first is the stabilization of the large ice cap state, which has been

a running theme throughout this thesis and demonstrated in several different ways.

The second is the tendency of the atmosphere to carry more heat to the pole as a

result of OHT convergence at lower latitudes. This remote polar warming effect is not

related to ice at all, but rather to the different spatial scales at play in atmospheric

and oceanic heat transport.

We have gone into considerable mathematical detail in this simple model frame-

work because, as we will see in the following section, both of these effects are found

in the much more complex GCM as well. The simple diffusive AO-EBM may thus
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provide the simplest demonstration of two quite fundamental aspects of the ocean's

role in the climate system.

5.5 Slab ocean model experiments with a general-

ized analytical OHT

In this final section we return to the slab ocean GCM introduced in Section 5.2, but

now apply the same systematic variations in OHT (amplitude and meridional scale)

that we studied in the AO-EBM in Section 5.4.

In these experiments the q-flux is computed directly from the divergence of (5.2),

plotted in Fig. 5-5. It is fixed in time and varies only in latitude. The mixed layer

depth is set to 60 m. The slab ocean model is integrated out to equilibrium for

a large array of q-fluxes. The meridional scale is varied between N =1 (giving

a broad equator-to-pole structure of OHT, peaking at 350) and N = 8 (giving a

narrow tropical OHT peaking at 14'). Note that q-flux associated with N - 1 has

a qualitatively different shape than all the higher powers of N: it provides a large

positive heat convergence at the poles (in fact, the q-flux reaches a maximum at the

poles, see Fig. 5-5). For N > 1 the q-flux at the pole is identically zero, and the

maximum heating is occurs at lower latitudes for larger powers of N. The large OHT

convergence at the poles for N = 1 is not realistic (comparing either to observations

or the coupled model), but provides a useful extreme case.

For each of the six meridional structures considered (N = 1, 2, 3, 4, 6, 8), we take

five different amplitudes of the OHT peak (1 PW, 2 PW, 2.5 PW, 3 PW, 4 PW).

These amplitudes are chosen because they bracket the full range of OHT seen in

observations and the different states of the coupled Aquaplanet model. Thus a total

of 30 different q-flux forcings are used, and the model is integrated out to equilibrium

from both the Warm and Cold initial conditions for each q-flux (for a grand total of

60 model runs).

165



5.5.1 Multiple equilibria in the ice cover

The time evolution of all these runs are plotted in Fig. 5-10 in terms of timeseries of

the ice edge latitude diagnostic 'ice (defined in (4.1)). The results are grouped into

panels according to the meridional structure of OHT, i.e. by value of N, which is

shown in thick gray lines in each panel. Almost all the runs initialized in the Warm

state remain ice-free. The exceptions are a few runs with small meridional scale and

small amplitude OHT, which drift either into the Snowball state, or (only in the case

N = 8, 2 PW) into a stable large ice cap.

By contrast, the runs initialized in the Cold state diverge tremendously depending

on the size and shape of the imposed q-flux. For small N (large meridional scale)

there does not appear to be any stable ice edge. These runs drift either into the

Snowball state (for smaller amplitude) or the ice-free state (for larger amplitudes).

As the meridional scale is reduced (N increased), one stable ice edge appears for

N = 3, 3 PW. This solution is very similar to the Cold state of the coupled model.

For N > 3 there are many different stable large ice caps in the range 300 < ce : 500

with the ice systematically expanding equatorward as the meridional scale of OHT

or its amplitude are reduced.

There also appears to be a minimum amplitude of OHT required to support a

stable large ice cap. All runs initialized from the Cold state with the amplitude set

to 1 PW drift into the Snowball state.

These results are consistent with the findings of Section 5.2 but provide consid-

erably more detail. Fig. 5-10 shows that the ice-free state is much less sensitive to

the details of OHT than the large ice cap state, and exists over a broader range of

the OHT parameter space. Broadly speaking, the ice-free state requires "some" OHT

out of the tropics, but how much and where that heat is released to the atmosphere

are not crucial. On the other hand, the existence of the large ice cap is dependent

on OHT having a particular shape and sufficient amplitude - a large transport of

heat out of the tropics, with most of that heat converging in the subtropics and lower

mid-latitudes.
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Figure 5-10: Timeseries of ice edge latitude #bice for a large array of slab ocean model
calculations. Each panel contains plots of ,ice for 10 different model runs with a
particular meridional structure of OHT (value of N) as indicated in gray. For each
N value the slab model is integrated out to equilibrium with 5 different amplitudes
of OHT, indicated by the different colors, and from both Warm and Cold initial
conditions, for a total of 60 individual model runs.
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Fig. 5-11 provides a concise view of the equilibria for the whole array of slab

ocean model runs. In the upper panels we plot #ice, with the runs initialized in the

Warm and Cold states on the left and right respectively. Values were averaged over

the last several years of each run. These graphs show the entire OHT parameter

space, with the meridional scale (N) on the x axis and amplitude on the y axis. The

"zero" amplitude runs are included here; these were already presented in Fig. 5-4,

and produce a Snowball state regardless of initial condition. The OHT space can be

divided into several regions on the basis of the number and type of equilibria:6

Snowball only Zero OHT, or small scale, small amplitude

Snowball & Ice-free Any OHT except extreme small scale, small amplitude

Snowball, Ice-free & Large ice cap Smaller scale, larger amplitude OHT

Snowball & Large ice cap One point only, extreme small scale, intermediate

amplitude

The region in which all three equilibria co-exist is outlined in black in Fig. 5-11.

In the lower panels of Fig. 5-11 we plot global mean surface air temperature on

the same grid. Not surprisingly, the three types of equilibria fall within very different

temperature ranges.7 Focussing on the red region of the plot (warm, ice-free states),

we can see that changes in OHT project onto the global mean temperature, despite

the q-fluxes having zero global mean (simply acting to redistribute heat meridionally).

For any given value of N, global mean temperature increases as the amplitude of ',t

increases, on the order of 1.50C / PW. This same effect has been noted in other models

by Herweijer et al. (2005). The magnitude of the temperature response decreases at

6 Snowball solutions exist over the entire parameter space, though in some cases the Cold initial
condition is not sufficiently cold to access the Snowball state (Fig. 5-10). There is a clear physical

inconsistency in specifying a large meridional heat flux in a completely ice-covered ocean, since such
an ocean is well-isolated from both the wind forcing and the solar heating. However there is nothing
preventing us from carrying out such an experiment in the slab model, and given that our specified
OHT always carries heat off the equator, it will only serve to amplify the freezing of the equatorial
ocean once Snowball conditions are initialized.

7It's worth noting here that none of these solutions is particularly Earth-like, either in terms of
ice cover or temperature. Our modern Earth climate falls somewhere in between the Warm and
Cold states, and this Aquaplanet model does not appear to support such an intermediate state.
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Figure 5-12: Scatterplot of the OHT convergence at the ice edge vs. latitude of ice
edge for the array of idealized q-flux experiments. Only the runs with a finite ice edge
are plotted (blue squares). Corresponding value from the Cold coupled Aqua solution
plotted in red circle.

higher N values. The effects of OHT on temperatures in the ice-free climates will be

discussed further below.

Fig. 5-12 shows a scatterplot of the value of the q-flux immediately equatorward of

the ice edge versus the ice edge #ice at equilibrium for all the runs that have a stable

large ice cap. This number represents the oceanic thermal barrier to equatorward ice

expansion. Despite the wide array of shapes and sizes of OHT considered in these

runs, the values in Fig. 5-12 are tightly clustered, all within the range 25 ± 5 W m-2 .

The corresponding value from the Cold coupled Aqua solution is also plotted here,

and falls within the same range. The suggestion is that the ice edge will equilibrate

near the latitude receiving about 25 W m-2 of heating due to OHT convergence, so

long as that latitude falls somewhere in the range 300 < dice < 50*. None of the

1 PW runs achieves this threshold (this can be seen by taking half the magnitudes

plotted in Fig. 5-5), and consequently none of these runs maintains a large ice cap.

It's interesting to compare this apparent threshold range of 20 - 30 W m- 2 in the

aquaplanet model to the Trenberth and Caron (2001) estimates of real-world OHT
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convergence shown in Fig. 5-5. These estimates come close to the threshold value in

two separate regions of each hemisphere: at the edge of the subtropics, and again

in the high latitudes near 70'.' The high latitude peaks in OHT convergence are

co-located with the observed sea ice edges and are known to play a key role in setting

the mean state of the ice (Bitz et al., 2005). The lower latitude peaks are expressions

of the same robust wind-driven heat convergence that we find in Aqua and Ridge

(as sketched in Fig. 4-12), and suggest that a Cold state with a mid-latitude sea ice

edge stabilized by OHT convergence is a possibility for the real Earth in its present

continental configuration.

5.5.2 Polar warming and OHT

Fig. 5-13 shows one aspect of the meridional structure of the climate in these runs.

Here we plot equilibrium surface air temperature from equator to pole, in the zonal

and annual mean. Only one hemisphere is plotted since the solutions are all roughly

symmetric about the equator. These plots illustrate the qualitatively different nature

of the temperature structure in the three types of solution: very weak gradients and

warm temperatures in the ice-free solutions, very strong gradients in the large ice cap

solutions, and intermediate gradients but much colder temperatures in the Snowball

solutions.

It has already been noted in the previous section that OHT exerts a modest mean

global warming effect in the absence of ice. Fig. 5-13 shows that the global warming is

expressed as polar-amplified warming: the warming associated with increases in OHT

amplitude is maximum at the pole. Polar warming is of order 6C / PW for small

N values, ranging down to 2.5'C / PW for large N. It should be recalled that, with

the exception of the N = 1 case, the imposed q-flux is identically zero at the poles.

Thus this polar warming must involve atmospheric teleconnections - the atmosphere

responds to the increase in mid-latitude heating (due to OHT convergence) by fluxing

8The local convergence within ocean basins at 70'N is substantially higher than the 18 W m 2

indicated on the graph, due to the large land masses at this latitude as mentioned in Section 5.3. It's

also important to bear in mind that these OHT estimates carry substantial uncertainty; see Section

1.2.2.
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Figure 5-13: Surface air temperature for the large array of slab ocean model calcula-
tions (annual and zonal mean at equilibrium, plotted from equator to pole). Same set
of runs as shown in Fig. 5-10. Each panel represents a particular meridional structure
of OHT as indicated in gray. Line colors indicate the amplitude of OHT. Solid curves
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slab ocean runs with OHT given by N = 3 and varying amplitudes. Energy budgets
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as "RAD" represent net solar (right) and OLR (left), while the other source terms
are convergence of dry static energy (DSE) and of latent heat (LH). The contribution
from convergence of OHT is zero at the pole by definition when N > 1.

more heat poleward. This remote polar impact of OHT in the absence of ice-albedo

feedback was anticipated in the simple diffusive AO-EBM.

In Fig. 5-14 we take a closer look at the balance of terms in the column energy

budget at the pole for one example set of runs with N = 3 (all ice-free). Since

the oceanic contribution is zero at the pole, the local energy balance is particularly

simple. Sources are solar radiation and convergence of dry static energy and latent

heat, which together balance OLR loss to space. OLR increases for larger amplitude

OHT in response to the increasing polar temperatures. Fig. 5-14 shows that the OLR

increase is accompanied by a reduction in DSE convergence and a larger increase in

latent heating. Thus the atmosphere achieves the polar-amplified warming in response

to OHT through latent heat, rather than sensible heat.

Fig. 5-15 shows just the latent heat convergence at the pole for all the ice-free

runs. The latent heating increases with OHT amplitude for all values of N (with the

notable exception of N = 1 which has a large positive energy source at the pole from

OHT convergence). Thus the latent heating effect discussed above for the case N = 3
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Figure 5-15: Latent heating at the pole in the slab ocean model as a function of OHT
shape and magnitude. For all cases with an ice-free pole, convergence of latent heat
in indicated by the colors in W m- 2. Nothing is plotted in the parts of the OHT
parameter space for which an ice-free pole is not possible.

is in fact a generic, robust response of the atmosphere to changes in OHT. Changes

in ocean circulation that provide enhanced heat flux convergence in the mid-latitudes

lead to warmer, wetter poles. Precisely why this occurs in the GCM (as opposed to

the EBM where it can be related to the diffusive length scale) in unknown at this

time, and will be the subject of future work.

5.6 Discussion

This chapter contains several new results on the role of OHT in climate system. Key

findings will be reviewed in the summary at the beginning of Chapter 6.

The literature on OHT - ice interactions was reviewed in Section 1.3.3. The q-flux

model experiments in this chapter represent the most comprehensive investigation to

date of the effects of OHT variations. The model setup used by Langen and Alexeev

(2004) (LA04 hereafter) is similar to what has been used here in Section 5.5, viz. an

atmospheric GCM coupled to a thermodynamic sea ice model and a smooth, idealized
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q-flux. We therefore briefly compare the results of these two studies.

The q-flux used by LA04 has a broad equator-to-pole structure, implying a direct

heating of the high-latitudes by convergence of OHT. In terms of the mathematical

form used here, their q-flux lies in between N =1 and N = 2. Its meridional structure

is fixed, and they consider only changes in its amplitude. Their main finding is that

within a range of OHT amplitudes from about 1.1 PW to 2.5 PW, the model supports

multiple equilibria similar to present study: a large ice cap state, and a warm ice-free

state. The large ice cap state does not exist for large amplitude OHT, while the ice-

free state does not exist for smaller amplitude OHT. They also find an intermediate

small ice cap state for a narrow range of OHT amplitude around 2 PW.

On the other hand, we do not find a large ice cap state for N = 1 or N = 2, only

the ice-free state. We also do not find any intermediate small ice cap states. While

it's possible that these differences can be attributed to very subtle dependencies on

the specific shape of the imposed q-flux, it seems more likely that the explanation lies

in the different model setups used in LA04 and the present study.

LA04 use the NCAR CCM3, which is a much more comprehensive atmospheric

model than was used in the present study, both in terms of its vertical resolution and

its parameterization of moist processes. On the other hand, LA04 uses a more limited

sea ice model that does not, for example, allow for fractional ice concentration in each

grid cell. Both of these differences in model physics could contribute to differences in

the stability of equilibria. Perhaps more significant, though, is the presence of a full

seasonal cycle in the present study, while LA04 impose fixed equinoctial solar forcing.

It is entirely plausible that the increased variability resulting from the seasonal forcing

destabilizes the large ice cap state in our experiments. Likewise, the very narrow range

of q-fluxes for which LA04 find the intermediate small ice cap state suggests that this

state is not very robust, and could therefore be sensitive to the variability of the

seasonal cycle. It would be straightforward to test these assertions by suppressing

the seasonal solar forcing in our model runs, but this has not yet been done.
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Chapter 6

Conclusion

This final chapter begins with a summary of the main results from Chapters 2 through

5, highlighting the original contributions. Following this summary, there is a discus-

sion of the physics of multiple equilibria, a critical look at the relevance of the idealized

GCM results to the real climate system, and some speculation regarding the applica-

tion of these results to understanding the paleoclimate record. Finally I outline some

future research to follow up on these results.

6.1 Summary of key findings

The new results in Chapter 2 are twofold. The first is methodological: I show how the

simple albedo-feedback EBM can be modified to take account of the sub-hemispheric

scale of OHT, and derive a simple parameterization of heat transport by wind-driven

gyres in which the smaller scales of OHT relative to AHT arise from basic considera-

tions of ocean dynamics (e.g., Sverdrup balance and western boundary currents). A

similar parameterization was previously developed by Gallego and Cessi (2000) but

not applied to a model with sea ice. The principal new result of climatic interest in

Chapter 2 is the demonstration of a stable large ice cap state in this modified EBM

with gyral transport. This new state features a mid-latitude sea ice edge and is found

in addition to the small ice cap state and Snowball states found in the classic EBM.

The minimal new physics required to support this new equilibrium state include the
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afore-menioned latitudinal structure in OHT and well as the thermal insulating prop-

erty of sea ice (which requires that the OHT go to zero at the ice edge at steady

state).

The original contributions in Chapter 3 are primarily methodological. The atmo-

spheric component of the coupled EBM from Chapter 2 is extended to include some

dynamics, and thereby predict the surface wind stress interactively. Eddy fluxes of

angular momentum and heat are parameterized by means of a two-layer QGPV dif-

fusion. The method extends work by Green (1970), White (1977) and Wu and White

(1986) by computing the baroclinicity of the atmosphere interactively on the basis

of an energy balance model (including sea ice and interactive wind-driven OHT). It

extends work by Cessi (2000) and Gallego and Cessi (2000) by the use of spherical ge-

ometry and the inclusion of sea ice feedbacks. This new model (the EMomBM) is one

of the most compact expressions of the simultaneous conservation of thermal energy

and angular momentum in the coupled atmosphere-ocean-ice system, and as such, it

may help fill a gap in our spectrum of climate models. The model exhibits the same

multiple equilibrium properties that were found in Chapter 2 with a specified wind

stress, with the crucial meridional structure of OHT now determined interactively

from the model physics. An original result of climatic interest in Chapter 3 is the

demonstration of asymmetric climate changes in the EMomBM in response to slowly-

varying forcing, with abrupt warming and gradual cooling. This sawtooth shape is

reminiscent of both the 100 ka glacial-interglacial cycles and the millenial-scale D-

o events (see Section 1.1.2). The final contribution in Chapter 3 is the derivation

of a particularly simple limit of Green's surface wind stress equation on the sphere

which is solvable analytically, and which produces tropical easterlies and mid-latitude

westerlies much like the more complicated interactive EMomBM.

The most significant new result in Chapter 4 is the confirmation that true multiple

equilibria are possible in a complex coupled atmosphere-ocean-ice GCM (in addition

to the Snowball state). We find three different states of the coupled system, which

are accessed from different initial conditions: the Warm state (which has nearly no

ice and a weak surface temperature gradient), the Cold state (which has large ice
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caps extending into the mid-latitudes in both hemispheres), and the Snowball state

(in which sea ice covers the whole ocean). All of these states are shown to be stable

and free of drift over thousands of years despite considerable variability. I empha-

size that the multiple states in Aqua and Ridge were originally discovered by David

Ferreira, with whom I collaborated closely on the subsequent analysis of the model

climatologies.

The model has simple boundary conditions but complex dynamics. It is fully

conservative (no flux adjustments), generates substantial internal variability and in-

cludes a realistic seasonal cycle of solar forcing. These results can thus be taken as

a sort of "proof of concept": there is nothing inherent in the physical laws governing

climate that prevents multiple equilibria, though it's possible that these particular

solutions are not robust to the inclusion of realistic Earth geometry (more on this

below). This is in contrast to earlier published results of multiple equilibria, which

have included more realistic boundary conditions but all suffer from some deficiencies

in their physics (see Section 1.4).

Another significant finding in Chapter 4 is that some of the transitions between

the Warm and Cold states in the coupled GCM are abrupt, occurring on timescales of

several decades. The Ridge in particular exhibits sawtooth-shaped cycles of abrupt

warming and gradual cooling, in qualitative agreement with the variability found

in the glacial paleoclimate record (as well as with the predictions of the simple

EMomBM). These experiments are subject to an imposed, slowly varying forcing

which might, for example, be taken as a rough analog for slow continental ice sheet

changes driven by orbital cycles. This result does not, of course, address the root

cause of glacial cycles, in which the physics of the ice sheets must surely figure. It

does, however, illustrate the potential for large-scale, abrupt changes of sea ice ex-

tent in a coupled GCM. Such rapid sea ice changes have previously been invoked to

explain features of both D-O events and the 100 ka glacial cycles (see Section 1.3.2).

The final section of Chapter 4 shows that the three multiple states of the GCM can

be reproduced in a simple energy balance model. This modified version of the AO-

EBM from Chapter 2 represents OHT through temperature advection by a prescribed
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meridional overturning cell, and achieves a reasonable quantitative fit to the zonal

mean temperature and heat transport profiles of the Warm and Cold states of the

GCM. The large ice cap state is stabilized by convergence of OHT equatorward of

the ice edge. This is consistent with the arguments in Chapters 2 and 3 about the

importance of meridional structure in the OHT, although in this case the structure

is imposed through a specified overturning circulation diagnosed from the coupled

GCM (which is a primarily wind-driven circulation). These results suggest that the

ocean plays a key role in the stabilization of the Cold state of the GCM as well, a

question that is investigated further in Chapter 5.

Chapter 5 contains several original results and one new methodological contribu-

tion. The latter is the derivation of an analytical solution to the AO-EBM with a

prescribed, idealized form for OHT. I represent Ekman-driven heat transport out of

the tropics and convergence throughout the subtropics and mid-latitudes, with tun-

able parameters to set the amplitude of the transport and the meridional scale of the

convergence. Analytical solutions for the temperature distribution permit significant

insight into the role of OHT convergence in both large ice cap and ice-free states.

The two large sets of slab ocean calculations in Chapter 5 show unambiguously

that the large ice cap state is sensitive to the details of the OHT convergence in the

vicinity of the ice margin, including both the annual mean and its seasonal distribu-

tion. The sea ice edge equilibrates just poleward of the region receiving a q-flux of

25+5 W m- 2 so long as that region lies within the latitude range 30' - 500. No large

ice cap states are found for cases in which the q-flux much larger or smaller than 25 W

m-2 within this latitude belt. The physical origin of this threshold value is unknown

at present but is presumably related to the thermodynamic requirements for sea ice

growth / melt. These results confirm the inferences made in Chapter 4 about the key

role of OHT structure in the stabilization of the Cold state of the coupled GCM.

The importance of OHT convergence at the sea ice margin is not a new idea. It has

been recognized, for example, as a key factor in the maintenance of the observed sea

ice distribution (Winton, 2003; Bitz et al., 2005) and in the stabilization of large ice

caps in the approach to Snowball Earth (Poulsen and Jacob, 2004) (see the full review

180



in Section 1.3.3). The results in Chapter 5, however, represent the most thorough

exploration to date of the full range of possible OHT - sea ice interactions. The

systematic variation of the ice edge with the location of the 25 W m- 2 q-flux is a new

result.

The final original finding in Chapter 5 concerns the remote influence of OHT

on the high-latitude climate. OHT plays an essential role in the maintenance of

the equable Warm state in the GCM (cases with zero q-flux experience unstable

Snowball sea ice expansion), but direct OHT into the high latitudes is emphatically

not required. Ice-free states exist throughout nearly the entire OHT parameter space

explored in this study. This is because the warming of the mid-latitude atmosphere by

OHT convergence drives additional poleward AHT. Analogous effects are found in the

GCM and in the analytical AO-EBM. The simple model provides a rationalization

for this effect in terms of an intrinsic length scale for atmospheric heat transport

which is relatively long compared the imposed scale of OHT convergence. In the

GCM the increased high-latitude AHT takes the form of latent heat, and the polar

warming is accompanied by a smaller increase in global mean temperature. The

global mean temperature response has been noted previously by Herweijer et al.

(2005). The remote polar heating effect in the GCM, as well as its representation

in the simple model, are both original contributions of this thesis. This effect has

potentially interesting paleoclimate implications, which are discussed below.

6.2 On the existence of multiple equilibria

This thesis has explored a hierarchy of climate models exhibiting multiple equilibria

of the sea ice extent. In every case it has been argued that the existence of a stable

large ice cap depends on convergence of OHT equatorward of the ice edge, and the

sensitivity tests in Chapter 5 show that the ice extent is indeed sensitive to the details

of this convergence in the GCM.

We must be careful, though, to distinguish the physics of the sea ice - ocean

interaction from the existence of multiple equilibria, which fundamentally rests on
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principles of planetary energy balance. All of the climate models considered in this

thesis exhibit multiple equilibria because they have a significant ice-albedo feedback,

so that the same incident solar radiation can be balanced by different combinations

of albedo and OLR.

The tendency of sea ice to equilibrate poleward of regions of strong OHT con-

vergence, on the other hand, is related to the insulating properties of sea ice: the

poleward oceanic heat flux under the ice must be small to balance the very small

upward heat conduction through the ice. (Note that this is a statement of a balance

condition, not of causality: the ice edge and OHT structure are coupled together

in various ways including the convective mixing near the ice margin.) This is true

regardless of whether or not other equilibria exist in the system.

Why, then, do we find similar multiple equilibria throughout our model hierarchy,

including large ice cap states stabilized by OHT convergence? The answer seems

to be that two factors conspire together fairly robustly in the climate system. The

radiative properties of the system allow both the large ice cap state and a warmer,

less icy state to satisfy planetary energy balance, while dynamical properties of the

wind-driven ocean ensure a significant convergence of heat into the subtropics and

lower mid-latitudes whether or not there is a large ice cap. The large ice cap state

tends to be destabilized by AHT, which carries energy from the ice-free latitudes

poleward over the ice cap; and stabilized by OHT, which carries energy out of the

tropics and deposits it in the mid-latitude ocean near the ice margin, but does not

carry significant energy into the icy regions. A minimal description of this physics

thus includes the insulating effect of the sea ice, as we first invoked in Chapter 2.

As outlined in Section 1.4, the literature on oceanic multiple equilibria has hitherto

been dominated by mechanisms invoking multiple states of the overturning circulation

(going back to the toy model of Stommel (1961)). We emphasize that the multiple

equilibria found in this thesis are instead fundamentally connected to the albedo

feedback. We have shown that OHT into the high latitudes plays only a minor role

in the multiple states, and in fact changes in the overturning circulation between the

Warm and Cold states are small in our coupled model simulations. In contrast with
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a prevailing notion in the climatological literature, the presence of very fresh water

in the high-lalitude surface ocean does not necessarily give rise to sea ice expansion

and high-latitude cooling - see for example the Warm Aqua state in the salinity plots

in Fig. 4-6.

A comment is order on the inter-hemispheric symmetry of the coupled GCM

simulations reported in Chapter 4. Several model studies of multiple equilibria in

the oceanic thermohaline circulation have indicated that stable asymmetric (pole-to-

pole) circulations are expected to arise in the presence of symmetric geometry and sea

surface forcing (e.g. Bryan, 1986; Marotzke and Willebrand, 1991). These asymmetric

states have been found in ocean-only models with prescribed (symmetric) atmospheric

freshwater fluxes. In contrast, we have found no indication of asymmetric states in

our coupled simulations (though we cannot rule out the possibility). However in a

coupled system, an asymmetric ocean circulation would create asymmetries in SST,

which would feed back on the atmosphere and break the symmetry of the atmospheric

heat and fresh water transports. The relevance of asymmetric ocean-only simulations

with fixed, symmetric forcing to the coupled climate system is thus somewhat suspect.

Whether the full coupled climate system is capable of supporting stable asymmetric

equilibria in the absence of any asymmetries in its boundary conditions thus must

still be considered an open question.

In the following sections we discuss the possible significance of the idealized model

results in this thesis for the real climate system.

6.3 On the relationship between the Aquaplanet

models and the observed climate

6.3.1 The possibility of an intermediate, small ice cap state

It was noted in Chapter 4 and 5 that neither Warm nor Cold states of Aqua and

Ridge are a good fit to the current climate - one is too warm and ATep is too weak,

while the other is too cold and ATep is somewhat too strong. Compare, for example,
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the observed temperatures in Fig. 1-2 to model temperatures in Fig. 4-3, or the OLR

curves in Fig. 4-3.

Does the coupled GCM have any stable states intermediate between the Warm

and Cold solutions that are closer to the observed climate? We briefly considered

this possibility with the transient model integrations in Section 4.3. No intermediate

equilibria were found, but we cannot rule out the possibility that such a state could

be found with a retuning of parameters. One possibility that seems promising is in

the Ridge (whose ocean is more Earth-like than that of Aqua due to the presence of

gyres), where some of the runs in Fig. 4-14 spend several hundred years in a moderate

ice cap state (ice edge near 700) before transitioning into either the Warm or Cold

state. We have not searched systematically for a stable equilibrium of this sort in the

Ridge (though an attempt in Aqua didn't reveal any new states). Whether such a

state is likely would probably depend on conditions of ocean stratification that are

not evident in Fig. 4-14 and await further analysis.

Meanwhile, the EBM results of Section 4.4 predict that no stable states exist for

ice caps between 60' and the pole. This model is of course based on a very crude

parameterization of the overturning ocean circulation and undoubtedly omits many

important processes. For example the location of deep convection is fixed in the

simple model and cannot adjust to changes in the ice edge. It's also worth pointing

out that the AO-EBM was tuned to Aqua rather than Ridge (e.g., the prescribed

overturning circulation in Fig. 4-15 was diagnosed from Warm Aqua), and following

the same procedure to tune to Ridge could yield a different hysteresis curve. With

these caveats in mind, the evidence suggests that stable equilibria with smaller ice

caps are not possible in this system, and the equilibrium ice extent is quantized into

Warm and Cold states. Intermediate states are accessed only as transients (though

of course the long ocean adjustment times mean that transient states can persist for

many years, as Figs. 4-13 and 4-14 illustrate).

Evidence from the q-flux experiments in Chapter 5 points in the same direction:

no stable states were found with ice edges poleward of the reference Cold state. In

fact the ice extent grew larger in many of these experiments (see Figs. 5-4 and 5-
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10). Of course these results carry the caveat that OHT is fixed and can't respond to

changes in the ice edge, including the possible feedback between the sea ice edge and

the location of deep convection. (We have speculated in Section 4.3 that such shifts

occur in the coupled model for intermediate ice states, but this has not been verified.)

If the region of deep convection were to shift poleward, the intense winter-season peak

in the q-flux plotted in Fig. 5-3 would also shift poleward. It's quite possible that

the slab model is capable of supporting a smaller ice cap if forced by such a modified

q-flux. Forcing with the "observed" ocean q-flux derived from the Trenberth and

Caron (2001) residual estimate in Fig. 5-5 could also produce a small ice cap state,

since this q-flux contains peaks near 70'N,S. These ideas would be simple to test, but

have not yet been done.

6.3.2 Is the MITgcm atmosphere too sensitive?

We showed in Chapter 5 that if the dynamical ocean in the coupled GCM is replaced

by a stagnant mixed layer (i.e., including seasonal heat storage but no meridional heat

transport) the sea ice expands unstably to cover the global ocean. This Snowball state

is reached regardless of the mixed layer depth and regardless of the initial condition:

Fig. 5-4 shows that the climate shifts from an ice-free pole to the Snowball state in

about 120 years.1 The few results in the literature from analogous experiments with

other models suggest that this unstable ice growth is a possible, but not universal,

response of the climate system to the suppression of OHT (see Section 1.3.3), and is

likely to be model-dependent. We also need to reconcile this result with the fact that

the classic EBM predicts a stable moderate ice cap, without any consideration of the

role of the ocean.

From EBM theory (see Chapter 2) we find that the stability of ice caps is gov-

erned both by the heat transport efficiency parameter lo, and by the strength of

the albedo feedback (i.e., the contrast between ice-covered and ice-free albedos). l

'Mixed layer depths from 30 m to 200 m were tried, and unstable ice growth occurred in every
case, although the expansion was slower for deeper mixed layers. The reported results are for 100
m depths.
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is an adjustable parameter chosen, typically, by estimating the longwave radiative

damping B0oa from observations and tuning the atmospheric diffusivity to produce

solutions that fit the observed temperature distribution. Fig. 2-2, for example, shows

a typical value of 1 = 0.32 tuned in this manner, with an ice edge near 700. The

same figure also shows that no stable ice edges are possible for large values of 19. As

has been noted previously, the GCM behaves as if closer to this large l limit, but

for the stabilizing role of the ocean. Does this discrepancy point to a deficiency in

the simple EBM theory, a peculiarity of the Aquaplanet setup, or a deficiency in the

GCM physics?

There is reason to believe that the above-mentioned EBM tuning procedure un-

derestimates the appropriate 1 for the real atmosphere, and thus underestimates the

potential for unstable ice growth in the absence of OHT. Consider Eq. (2.13) which

gives the exact solution to the simple EBM in the absence of a discontinuous albedo

(i.e., no ice edge) - it gives a formula for the surface temperature T(x) in terms of

a 2nd order Legendre polynomial, as a function of the differential solar heating and

the parameter L = 1+ 61 (which is unknown a priori). The EBM tuning procedure

can be stated mathematically as fitting the observed temperature distribution T(x)

to the Legendre polynomial expansion T = To + T2P2 (x), and then solving (2.13) for

LO. This yields

LO = q*aos2  (6.1)
T2

where the numerator measures the imposed equator-to-pole differential heating from

solar radiation (a smooth equator-to-pole structure imposed by Earth-Sun geometry),

while the denominator measures the observed equator-to-pole temperature gradient.

This procedure attributes the total observed heat transport to atmospheric diffusion.

Now consider the fact that the observed temperature distribution results from

the combined effects of OHT and AHT. Because of the limited meridional scale of

OHT, there is an alteration of the differential heating experienced by the atmosphere

away from the geometrically imposed smooth equator-to-pole structure. The ocean

carries heat out of the tropics and deposits this heat in the lower mid-latitudes. This
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reduces (increases) the differential heating of the low (high) latitude atmosphere.

The numerator in (6.1) is thus an underestimate of the differential heating the mid-

latitude atmosphere is working against to produce the observed temperature gradient.

Consequently, by ignoring the role of OHT (particularly its limited meridional scale),

the traditional EBM tuning likely underestimates 1. (This argument could be made

more precise using the mathematical framework of Section 5.4.) This helps account

for the unstable ice growth found in some GCMs in the absence of the stabilizing

influence of OHT.

There is also reason to believe that an Aquaplanet should be more unstable than

a planet with significant land surfaces, for the basic reason that there is more surface

area over which sea ice feedbacks can operate. Our GCM has a strong ice-albedo

feedback, as evidenced by the large drop in absorbed solar radiation across the ice

edge in Fig. 4-3. It was mentioned in Chapter 4 that the TOA albedo contrast

between open ocean and sea ice (including cloud effects) in the GCM is broadly

consistent with observations from the Arctic (Gorodetskaya et al., 2006). But land

surfaces typically have a higher albedo than the open ocean (see e.g., Hartmann,

1994, Table 4.2), which means that a stronger albedo feedback is perhaps an inherent

property of Aquaplanets. In this respect, there is no evidence of a shortcoming in

the physics of our GCM. On the other hand, observations of the open water / sea ice

albedo contrast from the Arctic may not be at all representative of such contrast in

a cold climate with a mid-latitude ice margin, and we cannot rule out the possibility

of a systematic overestimate of the ice albedo feedback in the GCM. This could be

tested by comparison to more comprehensive atmospheric models run with large sea

ice cover, and by observational studies of the mid-latitude regions such as the Gulf of

St. Lawrence that do experience some seasonal sea ice cover in the present climate.

It's also possible that systematic biases in the GCM's longwave radiation con-

tribute the unstable ice growth. The OLR - temperature regressions in Appendix

C give B,,t ~ 1.7 W m 2  C- 1 from observations, but smaller estimates for the

GCM. As has been pointed out in Chapter 2, smaller Bst yields a larger tuned 1 (in

the above non-dimensional analysis, both l and the solar heating q* are scaled by
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Bt), and therefore an enhanced sensitivity of the ice edge. The atmospheric GCM

uses relatively simple parameterizations of moist physics, including a diagnostic cloud

scheme. These parameterizations are tuned to the current climate (Molteni, 2003),

but may have important biases in the widely different climates of the Warm and Cold

state. Fig. C-3 shows that the slope of the OLR from the GCM changes markedly

near 00 C, indicative of a regime shift in clouds across the ice edge. (We discussed

a positive longwave cloud feedback at high latitudes in Section 4.2.4.) Without any

direct observational analogues of the Warm and Cold states, our only recourse to

test for model deficiencies it to compare with similar states in more comprehensive

atmospheric GCMs. See also the discussion of Warm states below.

6.4 Paleoclimate implications

6.4.1 The large ice cap state

Should we expect the Cold state with a mid-latitude sea ice edge to exist in more

comprehensive GCMs, and by extension, in the real world as well? With the above

caveats about possible model biases, the question becomes one of simple versus com-

plex boundary conditions. The circulation of the real ocean is shaped in complex ways

by topographic features that are absent from our Aquaplanets, and ocean circulation

has been identified as a key factor explaining the existence of the Cold state. It's

certainly possible, then, that this state would not be found in a more realistic model.

On the other hand, the fact that stable large ice caps occur in both Aqua and

Ridge, despite the very different dynamical balances in the two ocean, suggests that

this state is not a particularly exotic one. These ice caps are stabilized by rather

robust dynamical features as 1) a wind-driven overturning cell which, overlaid on a

subtropical thermocline, generates a large OHT in the subtropics and 2) a compara-

tively small OHT poleward of the subtropical thermocline. Both are robust features

of the observed climate (see Fig. 1-3). They are also common features of IPCC-

class models under both pre-industrial and global warming conditions (Randall et al.,
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2007). In addition, they are seen in other idealized configurations with North-South

asymmetries and multiple basins (see Fig. 1 of Ferreira et al., 2010a). We are therefore

left with the intriguing possibility that the Earth in its present continental configu-

ration could be capable of maintaing a similar stable sea ice edge in mid-latitudes.

Whether such a climatic state could be considered a "multiple equilibrium" with the

present climate surely depends on which components of the broader Earth system

we consider to be fixed boundary conditions, as opposed to interactive parts of the

climate system. Among these we might list the atmospheric pCO 2 and the presence

of continental ice sheets.

It was argued in Chapter 1 that the paleoclimate record suggests that colder, icier

climates are also more variable. D-O events are the most spectacular example - abrupt

warming that occurred repeatedly throughout the last glacial, and stopped occurring

once the continental ice sheets had receded. We can speculate on the existence of a

meta-stable glacial climate capable of rapid shifts between a cold state with a mid-

latitude sea ice edge and warmer state with a sea ice distribution closer to the present

climate. In this scenario, the elevated albedo of the ice sheets as well as the reduced

glacial pCO2 (see e.g., Hartmann, 1994, Fig. 8.9) cooled the atmosphere-ocean system

sufficiently to approach a bifurcation, so that internal variability of the system was

sufficient to generate regime shifts in the sea ice. Evidence for such regime shifts in

the North Atlantic during the last glacial is reviewed by Seager and Battisti (2007).

The fact that sea ice in our coupled model simulations behaves as if quantized into

Warm and Cold states is consistent with the sea ice switch hypothesis of Gildor and

Tziperman (2001), the "switch" being the atmospheric moisture supply to the high

latitudes necessary to grow the continental ice sheets.

These are of course just vague speculations, but there is plenty of scope for pursu-

ing these ideas in more quantitative glacial climate modeling experiments. Eisenman

et al. (2009), for example, report on simulations with a high-end coupled climate

model, with a suite of different sizes of continental ice sheets as imposed boundary

conditions. They find a cold, extended sea ice state reminiscent of our Cold state in a

model run with an ice sheet intermediate between present-day and LGM conditions.
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One point that should be emphasized is the importance of the wind forcing in this

problem. The mechanism stabilizing the large ice cap in our Cold state relies on heat

transport by wind-driven ocean circulations. This suggests a need for a more careful

consideration of the role of winds in the dynamics of past climate changes - and in

D-O events in particular.

6.4.2 The equable ice-free state

The threat of total Arctic sea ice loss under future greenhouse gas-driven global warm-

ing is a serious issue (for some quantitative assessments see Eisenman and Wettlaufer

(2009), Holland et al. (2006), or Winton (2006, 2008)). It is made all the more serious

by the possibility that such changes might be irreversible, if for example greenhouse

gas levels were subsequently to be reduced to present-day or pre-industrial levels.2 If

the ice-free state is found to be a stable equilibrium at present-day greenhouse gas

levels then this potential irreversibility must be reckoned with. In the real climate

system (in contrast with our simple Aquaplanets) a transition to a fully ice-free state

would also involve the collapse of the Greenland and Antarctic ice sheets, processes

which are poorly understood at present but which undoubtedly introduce much longer

adjustment times into the system.

We now ask the same question about the Warm state as we did of the Cold state:

Does the real world, in its present-day configuration, have an ice-free, low gradient

state? Do we find this state in comprehensive coupled GCMs?

In contrast to the Cold state, we have found that the Warm state in the MITgcm

is not particularly sensitive to the details of OHT. Thus there's little reason to expect

that this state would not exist in the presence of more realistic oceanic boundary

conditions. On the other hand, the fidelity of the atmospheric radiation and cloud

schemes are important considerations in the Warm state. The possibility of ice-free

polar oceans has been addressed by Abbot and Tziperman (2008a,b), who argue on

the basis of simple models that, should the winter sea ice cover be removed from the

2I leave aside the thorny question of whether such a reduction is at all plausible. This is compli-
cated by myriad physical, biogeochemical and sociological factors.
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high-latitude oceans, convective clouds during polar night might provide sufficient

greenhouse warming to prevent the ice from returning. Abbot et al. (2009) also find

this radiative feedback in a comprehensive GCM, in which Arctic sea ice is removed

by increasing pCO 2 to 2240 ppm. They do not specifically address the question of

multiple equilibria, i.e, would the ice return if pCO2 were subsequently reduced. They

do, however, find the feedback operating at pCO 2 = 560 ppm in another simulation

with Eocene-like boundary conditions, in which there is no sea ice. The question is

apparently still an open one.

We noted in Chapter 1 that Rind and Chandler (1991) had found a warm, ice-

free state in a q-flux model with OHT increased from present-day values, and they

speculated that this state could represent another stable mode of operation. This

is somewhat at odds with our coupled model results in Chapter 4, where the OHT

is actually weaker in the Warm state compared to the Cold state. We have shown

conclusively that (at least for the MITgcm) OHT into the high-latitudes is not a

prerequisite for the Warm state. A reinterpretation of the Rind and Chandler (1991)

result might be that the imposed increase in OHT was necessary to melt the sea ice

and push the climate into the Warm state, but that once established, the state might

persist with reduced OHT.

It was also mentioned in Chapter 1 that slow changes in the oceanic boundary

conditions due to continental drift (such as the opening of Drake Passage and the

gradual closing of the equatorial Tethys Seaway) have often been hypothesized to

play a role in the long-term evolution of climate, and in particular the shift from

Eocene warmth to the glacial epoch that followed. Coupled model simulations by

Enderton and Marshall (2009) have indeed shown increased OHT out of the tropics

associated with an open equatorial passage, in idealized continental configurations

similar to those used in Chapter 4 (by comparison to the Ridge, which does not

have an open passage). The increase is partially explained by the presence of an

equatorial gyre in the Ridge (which requires a continental boundary to support a zonal

pressure gradient, and which carries heat equatorward; see Hazeleger et al. (2004) and

Enderton and Marshall (2009)). They find polar temperatures 5C warmer in the
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Equatorial Passage simulation compared to Ridge (both model states are ice-free).

This increase is attributed to enhanced OHT but no mechanism is offered.

On the basis of the results from Chapter 5 regarding the remote influence of tropi-

cal OHT variations at the poles, we can now regard this warming as a robust response

that does not depend on details of the high-latitude ocean circulation. Opening (clos-

ing) of an equatorial passage ought to lead to warming (cooling) at the poles, even

if the continental configuration prevented direct OHT into the high latitudes; some

of the extra tropical heat will find its way to the poles by way of atmospheric latent

heat fluxes. Thus, for example, the threshold pCO 2 necessary for the existence of

the ice-free state would be lower in the presence of an equatorial passage - or any

configuration that gives rise to an enhanced export of heat from the tropical oceans.

There is plenty of scope for examining this hypothesis in models with more realistic

paleo-geography.

6.5 Future work

I offer here a brief description of several extensions of this work that seem most

interesting.

6.5.1 Extensions of the slab ocean experiments

The results from the second half of Chapter 5 suggest a key role for the ocean in

setting high-latitude temperatures through its effects on AHT. This may be a quite

fundamental aspect of the planetary energy balance that has not been exposed hith-

erto in the literature. Analogous effects were found in both a very simple diffusive

model and in a much more complex GCM, which suggests that the underlying physics

could be quite robust.

Many questions remain. What are the dynamical mechanisms in the atmosphere

that give rise to the increase in latent heat transport? Why does a simple diffusion law

with its built-in meridional scaling and total lack of moist physics make a qualitatively

correct prediction? A more detailed analysis of the GCM results in Section 5.5 may
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shed some light on this important question. It would also be desirable to repeat some

of the q-flux experiments of Chapter 5 with a more comprehensive atmospheric GCM.

Questions also remain about the Cold states in the slab model. Winton (2003)

found that models with sea ice dynamics were more likely to experience unstable

growth than models with purely thermodynamic sea ice in experiments with reduced

OHT. Our experiments employ an ad-hoc diffusion of ice thickness in place of a

physical model of ice dynamics. This diffusion acts to transport ice equatorward

(and in fact represent a small poleward net energy transport). It is plausible that

the diffusion is contributing somewhat to the unstable ice growth, particularly in the

model runs with zero q-flux. It would be of interest, therefore, to do some sensitivity

tests of the slab model to ice diffusion by varying the diffusivity.

In Section 5.6 we speculated that the inclusion of a full seasonal cycle in our slab

ocean experiments could account for the differences between the findings of Chapter

5 and those of Langen and Alexeev (2004) (LA04). It would therefore be of interest

to repeat these experiments without a seasonal cycle. In particular, we would like to

know if the intermediate, small ice cap equilibrium found by LA04 appears in some

of our simulations once the seasonal variability is removed. This would help rule

out differences in model physics as crucial factors in the presence or absence of this

intermediate state.

6.5.2 Dynamics of abrupt climate changes

The transient climate change experiments of Section 4.3 are very much unfinished

business, as attested to by the speculative nature of the discussion in that section.

These simulations feature large and sometimes abrupt climate changes, and have

great potential to shed some much-needed light on the dynamics of abrupt climate

changes of the past (such as D-O events). The simulations await further analysis. In

particular the evolution of the oceanic halocline at high latitudes ought to provide

some insight into the mechanisms that set the timescales for the various warmings

and coolings. I hope to be able to make a connection between these results and a

new high-resolution marine sediment core from the Norwegian slope that has been
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interpreted as showing a cyclical build-up and erosion of a fresh, cold surface halocline

during the last glacial, in association with abrupt changes in sea extent (Camille Li,

personal communication).

The carbon cycle is an aspect of the coupled climate system that introduces impor-

tant feedbacks on the long timescales considered in these experiments. The transient

Ridge simulations plotted in 4-14 have actually been performed with an active ocean

biogeochemical carbon cycle, using existing MITgcm code (e.g., Follows et al., 2006)

to compute atmospheric pCO 2 interactively. Preliminary results show that ocean

warming (cooling) are associated with an increase (decrease) in pCO2 , a result that

is probably attributable (at least in part) to carbon solubility effects, and which fur-

thermore has the same sign as glacial-interglacial pCO2 changes. These calculations

are strictly passive because the atmospheric radiation scheme is currently uncoupled

from pCO2 (the radiation code assumes a fixed pCO 2 tuned to present-day values).

Work is currently underway to couple the radiation model to the carbon cycle. This

coupling will introduce a positive CO 2 feedback into the GCM, which will presum-

ably mean that the large and abrupt changes plotted in Figs. 4-13 and 4-14 could be

triggered by smaller external perturbations.

6.5.3 Multiple equilibria in the presence of continental asym-

metries

Ferreira et al. (2010a) report on a sequence of calculations with the same Aquaplanet

model used in Chapter 4, but introducing asymmetries into the oceanic boundary

conditions in a piecewise manner: first by opening a "Drake Passage" in the southern

end of the Ridge, then by introducing a second ridge to create small and large ocean

basins, connected by a southern circumpolar channel (the "Double Drake"). Many

features of the observed climate are reproduced with these idealized asymmetries,

most notably the fact that the Atlantic-like small basin is warmer and saltier than

the Pacific-like large basin, and is the main site of deep water formation. The refer-

ence states reported by Ferreira et al. (2010a) have sea ice caps only in the southern
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hemisphere. Work is currently underway (D. Ferreira) to test for the presence of

multiple equilibria in the Double Drake. If multiple states are found in this asym-

metric configuration, it would be an important demonstration of the robustness of

the mechanisms described in this thesis.

6.5.4 Extensions of the theory of coupled atmosphere-ocean

heat transport

It has been argued repeatedly throughout this thesis that meridional structure in the

OHT is a key feature of the ocean - sea ice interaction and the existence of mul-

tiple equilibria. It has also been argued that this meridional structure is a robust

consequence of the pattern of prevailing surface winds. The EMomBM from Chap-

ter 3 generates these winds interactively, represents the simultaneous thermal and

mechanical coupling of the atmosphere and ocean, and predicts the existence of a

stable large ice cap. On the other hand, the AO-EBM used in Chapter 4 achieves a

much better quantitative fit to the coupled GCM by imposing OHT structure in the

form of a prescribed overturning cell. This is a more accurate description of the heat

transport mechanisms operating in the GCM that the parameterized gyre model in

the EMomBM. It would be desirable to relate the shape of that overturning cell to

the wind forcing, following scaling theories advanced by, e.g., Gnanadesikan (1999)

and Klinger and Marotzke (2000). This simple wind-driven ocean model could then

be coupled to the interactive winds in the EMomBM. Progress along these lines is

hampered by quantitative shortcomings in the wind stress predicted by the EMomBM

relative to those in the GCM. The band of westerlies, in particular, in much too broad

and peaks too far poleward (although this is improved somewhat by the modified as-

sumptions of Section 3.3).
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6.6 On the value of idealized climate modeling

Lorenz (1970) envisages a 21st century in which both our knowledge of the climate

system and the available computing power are sufficient to construct "a super-model,

including as variables every feature of the atmosphere and its environment which can

conceivably have varied over the ages.... When we integrate the equations, if they are

correct, we shall necessarily obtain changes in climate, including the great ice ages."

While his prediction about simulating the ice ages seems overly optimistic at this

point, such a day may not be too far off. At any rate, his main point was that even

with access to such a "super-model" that reproduces reality in all its complexity, we

will not have learned much about climate.

Lorenz understood that the future widespread availability of cheap, fast compu-

tation would have a large impact on the basic methodology of climate studies, and

specifically the role of numerical modeling therein. In his view, much computation

would be devoted not to adding complexity to the model, but rather to removing

complexity systematically, in order to identify key interactions necessary to simulate

specific phenomena. He continues:

In essence, we shall have reached the day when mathematical proce-

dures will be instrumental in formulating hypotheses as well as testing

them. This is a brute-force approach, and undoubtedly involves much

computing which a little careful planning could eliminate, but this appears

to be the way of modern computations. As to what features did produce

climatic changes, we shall still have the privilege of arguing. (Lorenz,

1970, p. 329)

Until such time as we achieve Lorenz's vision of the "super-model", we must

develop both ends of the spectrum of climate model complexity simultaneously, while

also continuing to improve the quantitive paleoclimate record in order to view as

clearly as possible the full range of past climate changes. I look forward to the

privilege of arguing about these changes for years to come.
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Appendix A

Table of abbreviations

Abbreviations used throughout this thesis are summarized in Table A.1 for easy

reference.
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Table A.1: Abbreviations used in the thesis text

Abbreviation Meaning
AHT Atmospheric Heat Transport

AO-EBM Atmosphere-Ocean Energy Balance Model
ASR Absorbed Solar Radiation
D-O Dansgaard-Oeschger
DJF December, January, February
DSE Dry Static Energy
EBM Energy Balance Model

EMomBM Energy-Momentum Balance Model
GCM General Circulation Model
GISS Goddard Institute for Space Studies
IPCC Intergovernmental Panel on Climate Change
JJA June, July, August

LGM Last Glacial Maximum
LH Latent Heat

MAM March, April, May
MOC Meridional Overturning Circulation
MSE Moist Static Energy
NAO North Atlantic Oscillation

NCAR National Center for Atmospheric Research
NCEP National Center for Environmental Prediction
ODE Ordinary Differential Equation
OHT Ocean Heat Transport
OLR Outgoing Longwave Radiation
PDE Partial Differential Equation
PV Potential Vorticity
QG Quasi-Geostrophy

QGPV Quasi-Geostrophic Potential Vorticity
RHS Right-Hand Side
SAT Surface Air Temperature
SICI Small Ice Cap Instability
SON September, October, November
SST Sea Surface Temperature
THT Total Heat Transport
TOA Top of Atmosphere
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Appendix B

Properties of Legendre functions

The Legendre differential equation, and the Legendre functions, arise naturally in the

context of diffusion on the sphere. Thus we make liberal use of this mathematical

framework in this thesis, where we use diffusive models for the meridional transport

of both heat and potential vorticity. In this appendix we will briefly review the

mathematics of Legendre functions.

B.1 The Legendre equation and its general solu-

tions

The Legendre differential equation is a 2nd order linear ODE, and can be written

d (1 - X2)dy + Ay=0(B. 1)

with A constant. Equations of this form (with various forcing terms on the RHS)

are derived several times in this thesis by setting x = sin 4 (where # is latitude) and

taking the zonal average of the spherical diffusion operator.

A class of special functions known as Legendre functions of the first and sec-

ond kind, denoted P,(x), Q,(x), satisfy an eigenfunction property for the diffusion
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operator:

(1 - x2) P(x)) = -v(v + 1)PV(x) (B.2a)

d ((1 - x2) Qv(x)) = -v(v + 1)Q(x) (B.2b)

for any complex-valued v. The linearly independent general solutions to the homo-

geneous Legendre equation (B.1) are thus Pv(x), Qv(x) with

v(v + 1) = A (B.3)

Q,(x) is singular at x = ±1, while P,(x) is regular everywhere.

In this thesis we are typically solving forced versions of (B.1) on a hemispheric

domain from x = 0 (equator) to x = 1 (pole), with boundary conditions that require

y to be bounded at the pole. For any domain that includes the pole, the Q,(x)

component of the general solution is therefore excluded, so long as the forcing terms

are also bounded at the pole (which is always the case in the models considered in this

thesis). For domains that don't extend to the pole, we must retain both Pv(x) and

Q,(x) in the solution. However we will typically transform the solution into a more

convenient form in this case. This simplification follows North (1975a). Rather than

Pv(x), Qv(x), we express the linearly independent homogenous solutions in terms of

fv(x), f 2,(x), where

fiv(x) = 2F1- 2' 1 '1 2) (B.4a)

f2,(X) = X2F1 , 1+ 2' 2, x2) (B.4b)

and 2F1 is Gauss's hypergeometric function. Since fiv(x), f 2 ,(x) span the same solu-

tion space as P,(x), Qv(x), they must also satisfy the eigenfunction property (B.2).

In some of the derivations we will make use of these properties of hypergeometric
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functions:

+ 2F 1 a, b, c, z) = 2F1 (a + 1, b + 1,c + 1, z (B.5a)
d z c

2 F1(a, b, c,O) = 1 (B.5b)

This form (fiw(x), f 2,(x)) is convenient partly because routines for computing

and plotting the hypergeometric function are readily available, but also because in

several cases the equatorial boundary condition will allow us to exclude the f2,(x)

component. This is so because we are often dealing with no-flux boundary conditions

requiring dy/dx = 0 at the equator. Using (B.5), we can write

f1(0) = 0 ftv(0) 1 (B.6)

Thus if the particular solution has a vanishing gradient at the equator (which is often

the case when the forcing is symmetric about the equator), the equatorial boundary

condition allows us to eliminate f2,(0).

For computational purposes, we note here that P,(x) can also be expressed as a

hypergeometric function:

1 + V v
Pv(X) = 2F1 , , 1, 1 - X2 (B.7)

2 '2'

B.2 Legendre polynomials

A special class of P,(x) is particularly useful to us: the so-called Legendre polynomi-

als, for which v takes on integer values n. Any polynomial in x can be expressed as

a linear combination of Legendre polynomials Z 2 n(x).

For reference the first several P,(x) are listed in Table B.1. We also plot Pn(x)

up to order 6 in Fig. B-1.

We are principally interested in the domain x E [0, 1]. The even order Legendre
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Table B.1: The first 12 Legendre polynomials

polynomials have the property

j P?,(x)dx = 0 n = 2,4, 6,... (B.8)

Such integrals arise frequently because dx = cos #d4, and thus integrating in x gives

an area-weighted average over the hemisphere.

B.3 Forcing terms and particular solutions

Particular solutions to the Legendre equation (B.1) with inhomogeneous forcing terms

are straightforward so long as the forcing can be expressed as a linear combination

of Legendre functions. In particular, we can express any forcing that is polynomial

in x as a sum of Legendre polynomials P,,. The linearity of (B.1) allows us consider

particular solutions to each Legendre mode in isolation and sum them up.
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Po(x) 1
P1(x) x

P2(x) } 3x 2 _ 12/

P3(x) } 5x 3 - 3x)

P4(x) j 35x4 -30x2 +3)

Ps(x) j 63x 5 - 70x 3 + 15x

P6(x) 1 231X6 - 315x4 + 105x2 - 5)

P(x) a-I- 429X7- 693x 5 + 315x 3 - 35x)

Ps(x) 1 6435x 8 - 12012x6 + 6930x 4 - 1260x 2 + 35)

Pg(x) 12 12155x 9 - 25740x 7 + 18018x 5 - 4620x 3 + 315x)

Pio(x) 25 46189x 10 - 109395x 8 + 90090x 6 - 30030x4 + 3465x 2 - 63)

P1 (x) 2 88179x" - 230945x 9 + 218790x 7 - 90090x 5 + 15015x 3 - 693x)

P12(x) 1 (676039x12 - 1939938x10 + 2078505x 8 - 1021020x 6 + 225225x 4 - 18018x 2 + 231
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Figure B-1: The first several Legendre polynomials Pn(x), plotted with respect to
x = sin q (upper panel) and latitude (lower panel).

Consider, then, the following form of Legendre's equation with a single forcing

term on the RHS:

d ( -x2) ) - y = aP,(x) (B.9)

where 1 and a, are constants and yt is some complex number. (Here we have re-

arranged (B.1) into a form that more closely resembles the EBM equations we en-

counter in Chapter 2).

Since P,(x) satisfies the eigenfunction property (B.2), a particular solution yp(x) =
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b,iP,(x) gives

dx (1 - x -P y,=( (p + 1)1 - 1)bP,(x) (B. 10)

so that (B.9) is clearly satisfied for

b =- a. (B.11)I 1+ p (p +1)

Physical insight can be gained from (B.11), particularly when the forcing is poly-

nomial (i.e. p is an integer n). The plots in Fig. B-1 show that the spatial scale

of P,(x) gets smaller at higher orders. (B.11) shows that the response of the dif-

fusive model to a forcing is scale-selective: the amplitude of the response decays as

n- 2 . Thus one expects to see the strongest response to planetary-scale forcing (e.g.

n = 2, which represents the equator-to-pole structure of the forcing). Furthermore,

the parameter I controls the efficiency of this scale selection: higher orders are more

effectively damped out of the response at larger 1. In chapters 2 and 3 we consider

models in which 1 is a non-dimensional measure of the meridional diffusivity of the

climate system. This parameter sets the sensitivity of the model to sub-planetary

scales in the forcing. We will see several examples in which 1 is square of a diffusive

length scale relative to the planetary radius; this length scale can then be interpreted

as the minimum spatial scale in the response of the diffusive system.

With the particular solution (B.11) in hand, we can write the general solution to

(B.9) as
Y(X) aP,(x) + '

y(x) = - 1 + C1 Pv(x) + C2Qv(x) (B.12)

or equivalently

y(x) aP,1(x) + Cifiv(x) + C2 f 2 2(x) (B.13)

where the first form is typically more convenient for domains that include the pole,

while the second is more convenient for domains that include the equator. Here the
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Legendre order v/ is related to the physical constant 1 through

1
v(v + 1) =

y= - 1( +

(B.14)

(B.15)1 --

(the second root is ignored since the resulting solutions are not linearly independent).

B.4 Some useful limits and integrals

To solve the surface wind stress equation in Section 3.3 we will need to compute the

limit

lim P,(x) = (B.16)
"-*O I- ) B.)+

where F is the gamma function. A useful integral is the following:

o 1P,(x)dx PV+ 1(O) -PV1(0)
2v+1

(B.17)
v(1 + v) 2F (2

and a gamma function identity is

1F(1 + z) - z(z) (B.18)

To solve the global torque constraint for the surface wind problem, we will need

the following integral:

where

I P)Wdx

v(v + 1)

A closed form for this integral doesn't appear in standard tables, but can be worked

out as follows.
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First, from the properties of Legendre functions we can write

dP
(1 - x2) =e (1 + v)(xP(x) - P

so the integral can be written

Jo 1( x2)Pv dx = (1+v) I lI

But using integration by parts we can also write

j(1- x2) dPvdx = -Pv(0) + 2

Equating these two expressions, we can solve for

j xP,(x)dx
PV(0) + (1 + v) 1 P,+1 (x)dx

(B.24)

which, using (B.17), (B.18) and (B.20), reduces to

I 1
which we can plug back into (B.23) to get

(1 - x2) P W dx
PIII(0)

1 P"(0)
1 + 2l Pl(0)

Now evaluating the limits of P,, P/ we get the final result

X2P) __ G

(1~ ~~ - (x ) dx= Gl
e we hu121

where we have defined a function

G(l) = ____ _
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xP,(x)dx - (1 + v) I lI
P,+1 (x)dx

(B.21)

(B.22)

(B.23)Io l
xP,(x)dx

xPv(x)dx = 1 Pv(0)
1+21

(B.25)

(B.26)

(B.27)

(B.28)
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Figure B-2: The special function G(l) as defined by (B.28).

and 1 is related to y through (B.20). While v is a complex quantity, it can be verified

numerically that G(l) is a real, positive, and increasing function of 1 for 1 > 0. G(l)

is plotted in Fig. B-2. For small 1 it is very well approximated by Vl. G(l) -+ 1 in

the limit of large 1.
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Appendix C

Tuning the EBM: a look at OLR -

temperature relationships

Although our main interest is in qualitative results from the EBM, the importance of

the parameter B (or B0,,) in setting the stability of the EBM solution suggests that

it's worth taking a closer look at the available numbers.

The basic assumption underlying the radiative parameterization at the heart of the

EBM, namely (2.2c), is that surface temperatures and OLR are positively correlated,

at least in terms of the latitudinal variations of the annual means. This relationship

is straightforward to verify with modern observational datasets.

Figure C-1 shows a map of correlations between monthly mean surface tempera-

ture and OLR from the NCEP reanalysis (Kalnay et al., 1996). Rather than showing

a generally positive correlation globally, this figure in fact shows that the correla-

tions through time between T, and OLR vary widely around the globe, running from

nearly perfect positive correlation over extratropical continents to nearly perfect anti-

correlation over low-latitude oceans. This points to serious limitations of simple pa-

rameterizations such as (2.2c) that ignore cloud cover, especially in tropics (North

and Stevens, 2006). The anti-correlation seen in much of the tropics in Figure C-1

likely reflects the connection between surface temperatures and convective activity:

low SST anomalies are associated with suppressed convection, with a consequent re-

duction in high cloud cover and an increase in the emission to space of longwave
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Figure C-1: Correlation between observed surface temperature and outgoing long-
wave radiation. Correlation coefficient is computed at each grid point from 60-year
timeseries of monthly mean skin temperature and TOA longwave flux from NCEP
reanalysis.
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Figure C-2: Correlation between surface temperature and OLR from two coupled
aquaplanet model climatologies. From the Warm and Cold Aqua simulations de-
scribed in Chapter 4.

radiation from the surface (which is at a much warmer temperature than the cloud

tops, despite the cold SST anomaly).

For the sake of comparison, Figure C-2 shows the same correlation map from

coupled GCM calculations. The two panels are taken from two very different clima-

tologies of the same coupled Aquaplanet model, the Warm and Cold Aqua simulations

described in Chapter 4. The basic pattern of anti-correlated temperature and OLR

in the low latitudes and positive correlation in the extra-tropics, seen in the NCEP

reanalysis in Figure C-1, is revealed even more starkly here in the Aquaplanet sim-

ulations which have no land and no zonal asymmetries. Evidently this tropical /
extra-tropical divide in the OLR - temperature relationship is a robust climate fea-

ture that persists for climates very different from that of modern Earth.1

These results suggest an important caveat to the EBM approach. The linear form

A + BT does not capture the physics of tropical radiation. Despite this limitation

the linear parameterization has been used extensively in the EBM literature, and is

used throughout this thesis as well. The method remains useful despite the tropical

'The correlation between OLR and cloud fraction (not pictured) is strongly negative in both
warm and cold states of the GCM throughout the tropics, consistent with the cloud mechanism
described in the previous paragraph.
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Figure C-3: Scatterplots of OLR versus surface air temperature in the NCEP reanal-
ysis and in two Aquaplanet model cimatologies. The reanalysis data are binned and
plotted as a 2D density histogram - warmer colored contours indicate higher densities
of data points. Black and gray dots are from the zonally averaged cimatologies of
the Warm and Cold Aquaplanet simulations. The dashed line is the best fit to the
reanalysis data with A = 213 W m- 2, B = 1.68 W m- 2 *C- 1 .

shortcomings, probably because temperature variations in the tropics tend to be

small.

Taking a global view, Fig. C-3 shows scatterplots of OLR versus surface temper-

ature, from both the NCEP reanalysis and the Aquaplanet model (monthly means).

The reanalysis data are presented as a density plot due to the large number of data

points. Globally there is a positive correlation, with a best fit of A = 213 W m- 2,

B = 1.68 W m- 2 oC-1. The linear model (2.2c) fits the reanalysis data well for

colder temperatures, but the scatter becomes much larger at warmer temperatures.

The tropical regime shows up in this figure as a strong maximum in datapoint fre-

quency within a narrow range of temperature near 250 C (characteristic of tropical

SST) for which there is a very large spread in OLR. It's also interesting to note that
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a secondary maximum in datapoint density occurs near 00C, indicating dispropor-

tionately large fractions of the Earth's surface are near the freezing point.

A similar tropical tail shows in the distribution of OLR for the coupled model,

but at different temperatures (corresponding the different mean tropical SSTs in these

two simulations). For temperatures above freezing, the slopes of the two GCM curves

a weaker than the observations. For Cold Aqua, the slope becomes steeper at sub-

freezing temperatures. This is suggestive of a regime shift in the modeled cloud field

across the ice edge.

Linear fits to these curves yield A = 227 W m- 2, B = 0.79 W m- 2 oC- 1 for Warm

Aqua, and A = 220 W m- 2, B = 1.47 W m-2 "C 1 for Cold Aqua.
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