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ABSTRACT

This paper discusses four sequential multiple

comparison significance tests and compares them with

seme existing multiple comparison procedures. Two of

the proposed tests begin by examining the gaps between

adjacent ordered sample means, then the three-stretches

,

four-stretches and so on until the range is reached. The

remaining two tests reverse this procedure. All four

are designed to control the experimentwise type I error

rates

.

Tables for the gap tests were constructed using

impix)ved Monte Carlo techniques. A simulation study showed

that one of the gap tests proved to be the best and provided

significantly greater power than the commonly used Tukey

Honestly Significant Difference procedure.
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MULTIPLE COMPARISON PROCEDURES BASH) ON GAPS

1 , Introduction

The purpose of this paper is to propose several multiple comparison (MC)

procedures based on gaps and to compare their performance with some commonly

used MC procedures. In order to avoid an extended philosophical discussion,

we state now that we are taking a non-Bayesian and significance oriented

approach to multiple comparisons. We tend to use MC procedures for data

exploration, so we will emphasize experimentwise error rates

.

Why gaps first? Well, for one, this author always seems to notice the

gaps first in an ordered set of treatment means. Second, a number of MC

procedures fail when applied to synthetic data with large spacings between,

say, pairs of equal population means. Eor exanple, a protected LSD (the FSD2

of Carmer and Swanson [19 7 3], hereafter C and S) has a high experimentwise

type I error rate (El) in such situations. In short, a protected LSD over-

en^jhasizes the very special null hypothesis of all population means equal at

the expense of hypotheses where subgroups of population means are equal. Looking

at gaps first has the effect of giving liiese subgroup hypotheses more attention.

Preliminary investigations indicated that cair^jared with the Tukey HSD (TSD in

C and S), a gap procedure would be more powerful for a given El.

Finally, we had noticed an additional problem with the Newman-Keuls (SNK

in C and S) procedure which, incidentally, suffers fran the same defect as the

protected LSD when there are subgroups of equal means. The SNK procedure

requires that if a group of ordered means is not declared significant, then we are

barred fran looking at any subgroups of that group. If we were to look at gaps

first (and then groups of three, etc.), we would say that if a group is
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significant, then all groups containing that group are significant. Since

in significance testing we tend to emphasize disproving the null hypothesis,

this is a more appealing way to develop a sequential significance procedure.

The paper is organized as follows. The next section discusses error

rates, the third discusses the design of sequential multiple comparison

procedures, and the fourth and fifth discuss the new MC procedures. Section

six contains the corr^jarison of the new tests with existing ones. The

appendices discuss the details of the Monte Carlo used to obtain the tables

and to compare the various procedures. Finally, there is an analysis of

the tables to show hew they may be reduced in size by certain approximations.

The author would like to acknowledge many helpful conversations with

John Tukey, David Hoaglin, Paul Holland and John Hartigan. Eavid Jones

provided invaluable programming assistance.
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2. Multiple Conparisons in General

Vk: view multiple coiparison procedures as nainly appropriate for the

exploration of data rather than for decision-making. In particular,

significance oriented procedures should give us hints and clues about

the ordering of the underlying populations with respect to sane attribute.

These we will use to think about what may be going on and wliich experiments

to perform next.

Why then should any one configuration of means be particularly sacred?

We are interested in contemplating those configurations which remain after

the data has given us an indication about those we should reject. If we

are interested in specific configurations , then we should concentrate our

statistical power on them. But, if we are exploring, how can we risk con-

sidering just a few alternatives?

The literature contains extensive discussions about errors and error

rates. Useful references are Kurtz, et. al. (1965), Miller (1966), and

O'Neill and Wetherill (1971). For those interested in exploring data, a

particular definition of error and error rate provides a way to compute a

set of critical values and perhaps make some power calculations. It is

certainly conceivable that a data analyst might use more than one set of

critical values in analyzing a particular batch of data, weighing the results

in light of the definition of error and error rate used to determine each

set of critical values.

We distinguish three types of errors:

Type I: Two population means are declared significantly

different when they are, in fact, equal.

Type II: Two population means are not declared to be

significantly different when they in fact are.
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Type III: Two population means are declared significantly

different when they are in fact different, but

the order is reversed.

These errors are considered in two ways—experimentwise and comparisonwise

.

An experiment is the determination of a sample mean value for each of the

populations under consideration. The experimentwise type I error rate

(El) is defined as the number of experiments with one or more type I errors

divided by the number of experiments. The comparisonwise type I error rate

(CI) is defined as the number of type I errors divided by the number of com-

parisons .

We should note that sane authors define type I errors to include both

type I and type III errors.
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3. Sequential Multiple Coiiparison Significance Tests

We will be considering MC significance tests v^diich have the following

s tructune . Let m, < m„ < . . . < m be the ordered treatment determinations

that we wish to canpare. Then we seek a set of critical values (gap gages),

C, ,and a scale measure, s, such that:

i. The quantity sC, is used to measure all )<-stretches

(m.., - m. , i=l,. . . ,t-k) .
If a k-stretch exceeds sC, it is

l+k 1 ' k.

declared significant.

ii. If a k-stretch is declared significant,

then all h-stretches containing that k-

stretch are declared significant.

iii. If a k-stretch is not declared significant,

no h-stretch contained in that k-stretch

can be declared significant.

The order relations two and three are automatically satisfied when

the C, are equal for all k. Thus the LSD and HSD satisfy the three conditions,

but the LSD fails to control El. (It is designed to control CI.)

The protected LSD (e.g., FSD2) satisfies the above criteria but a

special check is made first with an F-test (or a test on the range) before

the MC procedure is applied.

The SNK procedure chooses different C, such that C > C > ... > C^ and

examines the t-stretch first, then the (t-D-stretch etc. and enforces rules

two and three by not checking h-stretches within a non-significant k-stretch.

At this point, it is possible to see some of the reasons why a test

starting with the 2-stretches would be appealing. Looking at the 2-stretch

first, then the 3-stretches, etc., makes it natural to declare a k-stretch

significant when it contains a significant h-stretch, h < k. This is enough

to satisfy rules two and three.
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U. Gap Tests

We wciuld like to find a procedure starting with the gaps that allows

us to control, at predetermined levels, the El. Why not use the HSD?

When t=3 and a is 3<nown, we found critica.1 numbers C„ < C- analytically

from the bivariate Gaussian distribution. These critical numbers were

then used in a small Monte Carlo which showed that a gap test would be

generally more powerful than the HSD for a given El level.

When t > 3 we need special methods to get the critical numbers for

a gap test. We assume that the data comes from t independent Gaussian

populations K.,M^,...,M with population means y-i < ^9 ^ ••• - ^t

2
and Vr^riance . (Note that m , the smallest sample determination,

does not necessarily come frcm M, . ) There are many possible configurations

of the true means, but for our purposes we need only consider whether two

means are equal or not equal and we shall set \i-, = 0. This implies that

U-,,vi^ etc. are partitioned into blocks of equal population means with

the blocks possibly ranging in size from 1 to t.

2 2
Let (X-|,...,X, ) denote k ordered independent variates from G(0,a ), S

2
an nxidependent estimator for a , and

T.(k) = mx (X. . -,- X.) .

j=l,k-i+l ^
^

We will use H to denote any configuration of true means having at least

one block with more than one mean. Denote the blocks by

B (d-,), B (d2)j . ..,B (d ) where d- refers to the number of means in the
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i""^^ block. Let

P. = P{T, (d.) > SC, or T , (d.) > SC,
d. d. 1 d. d._^ 1 d._^

or ... or T^Cd^) > SC2} .

Theorem 1 . For a gap procedure with C„ < C„ < ... ^ C we have,

P{one or more type I errors |H} ^ P + P +•••+?.
^1 ^2 q

Proof. First we check the gaps in the ordered sample determinations

m^ i m_ < ... < m with scale estimate, s. A type I error can only be

nade if, when d. > 2, TjCd. ) > sCj. Next look at the three-stretches.

If d. > 3, an error possibly occurs when T-Cd. ) > sC, or TjCd.) > sC^,

since determinations from other blocks could lie between two determinations

from the i block. If d.=2, then an error may occur when T2(d-) > sC^.

We require that C, > C^ so that the event T„(d. ) > sC- is included in

TjCd^) > sC_. The four-stretches may be treated in a similar way. Thus

Po + P^ + ... P, is an upper bound on El.
^1 ^2 ^q





The key quantities are obviously the P , . Theorem 1 tells us that
i

to control El at level a for all hypotheses, H, we must have

Z P^ i a
i=l 1

q
for all sequences {d.} such that Z d. < t, and C„ < C < . . . < C .

1
i=l

1 ^ J r

We would like to choose the C- in order to achieve maximum power for

a given level a. We would also like relatively sinqsle tables. We considered:

A. P^ = ^ • a 3 = 2,..., t-2, t with P^_-^ = a and

B. Pj = i • a j=2,...,t

We suspected that A would be more powerful but that B would lead to smooth

and simple tables. We shall call these procedures GAPA and GAPB. In

Appendix A we discuss how tables were computed for these tests.
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5. Mcxiified Newman-Keuls Procedures

So far we have focused on gap tests that look like a reversal of the

Newman-Keuls (NK) procedure. It is natural at this point to think

of modifying the SNK procedure in order to control El. To show how to

do this we prove a result analogous to Theorem 1. For simplicity we

set RP, =P{T, (d.) > SC, }.
d . d . 1 d

.

11 1

Theorem 2 . For an NK procedure with C > C , ^ ... > C_ we have,

P{one or more type I errors IH} i RP, + •»
• + RP

^1 q

Proof . First we check the range. We can only make an error if

T- (d-) > sC, for some i. Since C. i. C, for all i, we have included
d. 1 t ^ d.

these errors. Next we have two cases, d-,=t or no d.=t. We only look

at (t-1) -stretches if the range has exceeded sC, . If d-, =t, we will never

look at any k-streches with k<t unless we have already made an error

(i.e. the range exceeded sC. ) , Hence we do not need to count errors

made by checking (t-1)-stretches within a group of t equal means.

If d, ^t,then we have not made a type I error at the first stage

so we consider the (t-l)-stretches. An error can only be made if

T, (d-) > sC^ , for some i. Since C^ . > C , when d. < t-1, this error
d. 3 t-1 t-1 d. 1

is counted in the statement of the theorem. This process continues

for (t- 2) -stretches, etc, in an analogous manner.
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The ypy qioantities for this test are the RP, . To control the type I

i
error rate we rniist have

Z RP , < a
. , a.
x=l 1

for all sequences {d . } with Z d . < t , and C . ^ C -, i ... > C^

,

i=l ^ X t-i 2

We allocate the error as with the gap tests and call these tests

WNKA and WNKB.
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6 . Conparison of the Tests

We used the Monte Carlo study by Carmer and Swanson [1973] as a basis

for our comparison of the new procedures . A macro of commands from the

NBER TROLL system running on an IBM 350/67 was used for the simulation

experiment

.

In order to overlap one of the sampling sitioations of C and S, we chose

t= 5 with 20 error degrees of freedom (i.e., a two-way ANOVA with six

replications). The data was generated by using a Gaussian random generator

developed by Marsaglia et al. (1972). Five sets of 4000 replications each

from G(0, 1/6) were drawn and then adjusted to represent the various

configurations in Table 1. (This implies that the ANOVA model has

2
a =1.) New seeds were used for each of the eight configurations.

[Table 1 about here.]

2The scale was generated from a x generator with 20 degrees of

freedom (a sum of squared Gaussian variates obtained using the method

of Box and Muller [1958]) with a different uniforro driver from that

used for the Marsaglia generator.

The variability of the results was measured by dividing the 4000

samples into 10 batches of 400 and finding the standard error of the

results over the 10 batches.

For benchmark purposes we included our own proposed tests plus the

LSD, HSD(TSD) , and SNK. Since there is no indication of san^ling error

in C and S,it is difficult to tell if our results are within the C and S

sample error. With the possible exception of the SNK procedure, our

results are in reasonable agreement with C and S if we use our own measure

of standard error.
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TABLE 1

CONFIGURATIONS OF TRUE MEANS

Set True means

1*

2 .2 .2

3 .5 .5

U 11

5 2 2

6 3 3

7* -.5 -.5 .5 .5

8»^ -1-10 11

#1 is equivalent to #1 of C and S

#7 is equivalent to #3 of C and S

#8 is equivalent to #5 of C and S
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To save space we have not listed the results for WNKB since it was

the wrjrst of tl-ie four procedures we proposed.

5a. Type I Error Rates

Table 2 shows the experimentwise and comparisonwise type I error

rates when all five population means are equal and a=.05. Of more

intej^(ist are the El rates for other configurations (all means not equal)

listed in Table 3. We see that for the new tests this error rate is

less than five percent to within standard error as we have proved it

should be. We note that this is not the case for SNK.

[Tables 2 and 3 about here,]

6b. Type III Error Rates

We found that E3 rates were very small relative to the El rates.

Our results agreed with those described in C and S. Clearly the HSD

is designed to control both type I and type III error. We cannot prove

such ci result for the tests we propose, except in very special cases.

We conjecture that such a result is true generally.

6c. Type II Error Rates

Since all of the tests we have proposed control the El rate, we

are most interested in comparing them on the basis of power. For non-

zero true differences we use the C and S definition of power which is

100 - Type II error.

[Table 4 about here.]
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TABLE 2

El AND CI ERROR RATES EOR EQUAL MEANS

Error

El

StandarxJ Error

CI

S.E.

Procedure

HSD
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TABLE 3

El ERROR RATES FOR UNEQUAL MEANS

Set

2

3

»+

5

6

7

8

Procedure

Hsir
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The results are listed in Table 4 for various values of &../o

where 6.. is the true difference between y- and y. (|y.-y.|) and

a is the population standard deviation, which we took to be 1,

These results are based only on configurations 2 through 6 in Table 1.

As we expected GAPA dominates GAPB. All of our proposed tests

improved upon the HSD with Q\PA the winner. Clearly WNKA is not far

behind, and since it requires somewhc'it ecisier to compute tables (see

Ajipendix A) we cannot CCTnp],etely set it aside (as we thought we might before

running the simulation). Strictly interpreted, these results apply only to

the types of configurations listed in Table 1,

We conclude that when we desire to control El, sequential procedures

beat the HSD with the gap procedures having a "slight edge over Newman-Keuls

type procedures. The tables for sequential procedures are more complicated

but the approxijiations developed in Appendix B can make them compact and

easy to use. This author hopes that sequential procedures which control

El will receive serious consideration from the statistics community.
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TABLE U

100-TYPE II ERROR RATE

s../. Procedure

.2

.5

1

2

3

HSD
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APPENDIX A

A. Ccmputation of the Critical Numbers

We first consider the gap tests. There does not seem to be a feasible

computational way to find the C., (i=2,...,t) simultaneously so, for a

given El level a (we used .05), v (error degrees of freedom) and t, we found

C , then C„, etc. We will suppress the dependency of C on t, v, and a

in QUI' notation.

Given t, v, a and the critical numbers C^, C_,,.., C, , , k < t, our

problem is to find C, such that

P{T2(X) > SCj or T3(X) > SC3 or . . . or Tj^(X) > SC^} = Pj^ (A.i)

where, in order to emphasize the X, we put T- (X) in place of T. (k). Since the

2 2 2
C. arp independent of a we set a =1 and assume that vS is distributed

2
independently of X as X . If C, turns out to be less than C, , we shall set

C, = C in order to preserve the ordering of the C 's.
K K—x 1

We propose to find C, by evaluating

P{T2(X) > SC2 or ... or Tj^(X) > Sb} (A. 2)

for several values of b and using inverse interpolation for the C,

corresponding to P, . Now (A. 2) is equivalent to

P{T2(X) > SC2 or ... or Tj^_^(X) > SCj^_^ and Tj^(X) < Sb} (A. 3)

+ Pi\(X) > Sb} .
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Since T, (X) is just the range of X the second term in (A. 3) can be

obtained directly from tables of the studentized range.

Let 1 denote a vector of ones. An interesting property of the

statistics, T. (X), is that for any scalar X

,

T.(XX) = \T.(X)
3 - J ~

and

T.(X-Xl) = T.(X)
3 " " J -

In other words, T. is equivariant with respect to scale and invariant with

respect to location. When this situation arises, Relies (1970) noticed

that a considerable reduction in Monte Carlo sampling error can be

obtained by considering a standardized configuration such as

c(X) = (X-X^l)/R where R = \-\'

If we condition the first part of (A. 3) with respect to this

configuration, we have

P{T^(X) > SC„ or ... or T, , (X) > SC, -, and T, (X) < Sb|c(X)}

=^^^2^^^ > ^ or ... and T^^C^^) <
S|

c(X)}

(A. 4)

=P{T2(c(X)) > -^ or ... and \(c(X)) < |^

^n R
=P{miii ( (Jy\0 < I < b|c(X)}

j=2,k-l ^j^S^e^^ ^

c(X)}
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since T, (c(X)) = 1, The quantity R/S is just the studentized range and

conditional on c(X) we can compute (A. 4) from tables of the studentized

range by using an appropriate interpolation procedure. Then the integral

over c(X) can be obtained by simple rnndom sampling. We used 1000 samples.

Since c(X) = (CY^, . . . ,Y^_j_,l) where < Y2 < Y3 < . . . < Y^_^ < 1

we may as well take the Y. to be a random sample of k-2 ordered

independent variates from the uniform distribution on [0,1], to be

called QUID, and then use weights to convert to the configuration space

c(X). The probability density associated with sampling k variates from

OGID (ordered Gaussian) is

i~7y exp[-y(_Z: x?)]dx^,...,dxj^. (A.5)

(27T)

Transforming to y.=(x.-x, )/r, i=2,...,k-l with r=x^-x,, the

probability element (A.5) becomes

k!

(27r)

k72
'^''-^^- ^^"^ ^1

'
^y?'-"'^^-!'^^^''

+ u(y)r 3}dx^dy2...dyj^_^dr

with
y=y2'--"y]^_l

^^ u(y)=y2+y3+'"+l-(y2+y3+*-*+l)^/k. To

find the probability element for c(X) in configuration space we integrate

over X, (a Gaussian integral) and r (a GamnH integral) to obtain
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/ir(k-])r((k..i)/2) ., _., , ,

2[iru(y)]

We can now perform saiipling in the configuration space by sampling OUID

with weights

,,r.A - /T<'(k-l)r((k-l )/2)

o/^ ^f ^^(k-l)/2
2(7na)(y))

The first step in constructing the tables of C, was to find C^

to an accuracy of one unit in the fourth significant digit by using the

method of inverse interpolation described in Harter (1959) on the tables

of the studentized range contained in the same report. The subroutine

ALI from the IBM Scientific Subroutine Package was used for the

direct interpotation

.

The rest of the ccmputation was carried out sequentially on k

starting with k=3. Assume that the computation has been completed for k-1.

Then we would have 1000 sets of k-3 oi'dered uniform pseudo-random numbers

st
available from the k-1 step. The numbers were generated on an IBM 360/165

using a multiplicative congruential generator Z
_|_

=aZ (mod p) , n=0,l,2,...

with p=2^-'--l, a=16807=7^, and with starting value Zq=524287 when k=3.

(For more details see Lewis et al. (1969).) So for the k step we generate

1000 more numbers and add one to each of the 1000 sets of k-3 variates,

reorder, and call these samples y(i), i=l,2, . . . ,1000. For k=10 we had

generated a total of 8000 pseudo-random numbers.

It is convenient at this'"point to let ^(i) = (0, y(i), 1). Our next

Step was to ccmpute T.(y(i)), j = 2,...,k-1 and w(y(i)). These numbers

were then used for t=k(l)10 and all v.
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For a given set of k, t, and v we found which tabled value, bj ,

of the studentized range Q, satisified P{Q, > bj} > P, and

P{Qv. > b" , } < P,^. Then we evaluated

, 1000

P^Qv > ^> + TMn ^ w(Y(i))P{min
k a 1000 ^_^ < 2<j<k-l

TTT^Ciyy < Qk ^ ^^>

with I starting at l-k until we had enough points (at least 8) to perform

reasonably accurate inverse interpolation (Harter (1959), page 673, using

-5
direct interpolation tolerance of 5 x 10 ) for C, . This computation

was actually performed on batches of 200 sanples in order to obtain an estimate

of the standard error of C, ,

k

Direct interpolation of the studentized range using the Aitken-

Lagr^nge method with provision for up to 8-point interpolation with a

_5
tolerance of 5 x 10 was only requii'ed when

$<.-! '^ '
'^

and only needed to be performed once and saved as b. increased.

Every effort was rrade to ensure that errors associated with direct

and inverse interpolation would be small relative to the sampling error.

Therefore we feel the standard errors listed in Appendix C are a reasonable

measure of the accuracy of the C, . The standard errors were monotone

decreasing with the largest errors occurring for v=5. It took five minutes

of 370/165 CPU time to produce tables for t=2(l)10 and v=5(l)20, 24, 30, 40, 60,

120, 0° .
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Where ponfdble we compared our results with the conditional Monte Carlo

approacli to this problem developed by Arnold et. al, (1956) and Welsch (1965)

The results were in reasonable agreement.

The tables for WNKA required no Monte Carlo. The inverse interpolation

method was the same as that described for C^ above.
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APPENDIX B

B. Analysis of Tables

It is clear that GAPA is a more powerful test than GAPB for the situations we

have examined. We included GAPB because we thought the tables of critical numbers

might be "smoother". Our goal was a table that could be well represented by a

row term + column term + common term.

All of the analyses in this section are done for 20 degrees of freedom.

Figure 1 shows the results of computing the means of differences

between rows and between columns of the GAPB table and using /T tines the

t-statistic for conparing two samples as a common term. We see a rather

pleasing fit. For other degrees of freedom the row and column terms

are different but the quality of fit is about the same, decaying sanewhat when

the degrees of freedom are fewer than ten. An analysis like t^his could

be used to compress the tables to 17 numbers instead of 45.

[Figure 1 about here.]
^

Now we try this analysis on the critical numbers of GAPA, noticing

that when t>5 the entries for k=t-l are equal to those for k=t-2. This

occurred because we enforced the monotoninity of the critical numbers

as required for Theorem 1. Figure 2 shows this analysis. We see a less

desirable fit but since most M C tests probably deal with five or more

means, this may not be a serious problem.

[Figure 2 about here.]

Finally wt- ask hew tJie table for C-Ai'A compares wi,th the one lor WNKA.

Figure 3 shows GAPA-WNKA and we see a systematic proper-ty in the residucijL;.

A deeper analysis (not yet undertaken) may lead us to ways to find the

critical numbers for GAP tests with a minimum of computation.
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Figure 1

Two-way analysis of GAPS table for 20 degrees of freedom

Column Term
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Figure 2

Two-way analysis of GAPA table for 20 degrees of freedom

Column Term
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Figure 3

GAPA-WNKA for 20 degrees of freedom

<-Gap
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APPIKDTX C

C. Tables of Critical Numbers

We include here a selection of tables for GAPA, GAPB and WNKA. All

of these tables are for t=2(l)10 and a=.05. Table 5 lists standard errors for GAPA

with v=5 and «>. The errors are approximately monotone between these two

points. Table 6 lists GAPA critical values for v=5, 10, 20, 40, 120, <» .

Table 7 lists GAPB for v=5, 20, 40, « and Table 8 does the same for WNKA.

Linear hannonic v-wise interpolation is reconmended

.

To use the tables find the column with the total number of means

to be compared, say t=5. For 20 degrees of freedom the GAPA critical numbers

would be 3,58, 3.97, 3.97, 4.29 for gaps, 3-stretches, 4-stretches,

and the range respectively. For WNKA the numbers are 4.23, 3.96, 3.93, 3.58

for the range, 4-stretch, 3-stretch, and gaps.

Tables for v=5(l)20, 24, 30, 40, 60, 120, «> for all tests are

available from the author.
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TABLK 5

GAPA liT-or (xlO^)

DF = 5

K-GAP NUMBER OF MEANS

10 987651+32
2

3 555555 80

4 2 2 2 2 2 16

5 1111 2

6 11
7 1

8

9

10

DF = 00

K-GAP NUMBER OF MEANS

10 98765432
2

3 122222 17

4 1111 4

5 12
6 2

7 1

9

10





TABLE 6

GAPA Critical Numbers

10 9 h / (S b H 3 ?

;> ^./O b.S^ b.JV D,(fl b.r.n '4.^0 '4, if/ J.bt 3.h'+

1 fv.^l b.?4 b.nb b.rth o,64 b.J/ '+,60 S.jci

4 (^.64 6. -^7 h.^H be P./ b.84 b.J/ b.'+t^

5 ft.yy b.6J o.^r" b,<:^) 5.84 b./^

A f,.88 b.7n 6.bO b.21 b.C5

7 ft.-:/^ b.7S b.bf, b.J^

rt f^.97 b. 7R b.-)9

^i (S.-*7 6.8(1

1
'' 7 . n fl

Uh -
1 ;i

i C. ^ 1 / ^ S 4 5 2

^' a.H-.'( ^+.3') 4. JO H.l-/ 4.i,b J.Vi J. 7 3 3.1^ 3.1b

A u.'-iJ 4.8M t+.7 7 -.Oh '-.t33 4.3/ J. 68 4,d''

fU q.l(=, b.07 <4.->b 4.8h 4.71 '+.Ji' 4.47

•- S.3(i b.?n ^.09 4.s«/ 4.71 H./i

f S.39 b.3 D.18 4.V7 4.v't

7 S.47 b.37 b.l8 D.l'*

8 '^..SP b.37 S.3^

^ R . -0 ? b . 4 7

1
* S.^n
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TABLE 6 (con't.)

I (; V M / ^ S 'f i ^

;: a.O? J.tIis ,i."i-i jJ.r* 3.7i> .•(.bo J.'fi c!. >d c^ . ^ j

"I a.'+? '.,3s i*,?"> 't.lS' '+.;,9 J.s*/' J.S'i 3.^''

\ it.,-^^ ^» . 'o V M- . ^ -» M- . J -) ^ . ;^ S 3 . '-'
i' '-t . o

'- u» f ] 4+ » 6

u

u . -0 (1 4 . < / ''f . ^ '-) <+.£;>

f^ a.rtll ^.73 i+.^b '.'W 't.^+7

7 6..rt7 '.no t+.b") '+.b'^

,'- a . y ? 4 . H t . 7 H

-J 4 . 9 :^ it . '> n

in ^.01

i;f -. 4

I ;)
^* M 7 f-, -) + * ^

P l.i;j J. 77 3. /'J J.fi-J J.D.i i.'+.j 5.r'> ;i'.r5u ^.h6

H 6,1M ^*\y ^.Wrt J.V-i 3.89 5.7-^ 3.-+'. 3 . ^j ^

'- 4 . j 4 4 . ^ M o, ,? \ -+.]<.» 4 . r S 3 . / 9 3 . H r)

a.^T 4.3'-' 4. i'^ 't.d^^ 4.,:'r> ':-,uV

•^ 4. S3 '-.4 7 4.4 4.,r:<H- ^»rO

^ 4.br/ 4.54 4.4{) '+.4.':

"- 4.r5S 4.54 4-Ti3

> 4 . f ) S "^ » 6 4

1
' 4.74





iO

- C5 -

tabu: 6 (con't.)

r)h= 1,':..

fMLIMMt.t'' W'r 'U A'M^

r'l 7 (S b .J

-U /() :KhS A.:>^i J. -3^ 3.'^^ .i.j:i .i . r^ 1 2.80 ?.HU

a.'n i.VM J.v^^ .^."l•^ 3.7 7 J.brt i.j6 3.3c

h.y^ ^*[\ H>(:7 '+.;;(". J.^? 3.69 3./b

-•t . ^ .-( ^ . ? 3 4 . I r' '+.!'. 3 . '^ ^ 3 . V o

/» . H r '.31 ^ .<":) M- . 1 ^ . 1 ;^

a . '^ r( ^4 . ^ / ^ . </

^ - 1 \t-'

I
f< 7 f^ b.

1
'•

1.^1 :+ 3.^>w U'--)3 J.'*n 3.3'^ l.^^ 3.W ^.'''' <f«77

3. ;^n 3.^:>l Um 3. /v J. 7 1
<.h2 3.3r^ J.o^:

a. In ^.0^ ^.nii j.^j 3.H6 J. OH 3.71

U.c'i) ^.1'^ ^+.11 '*.';! ^,nti 3.V0

^.r";-. -"+.?< H.IH H.0 3 '+.(.6

a,3'-v '^.?-> <+.lH -f.iS

a. 3-/ ^.?Q i+.30

a. ,1V ^.39

4.^8





TABLE 7

GAPB Critical Numbers

0F= J

K-GAP iMUiiyEK jF .-Ij-^nS

iU':* o 7 o 5 ^ -5 2

I 5.70 >.:>::> o^i-i t3.?l 5.JJ ^,76 4. ay ^.i^ 3.6^

i 6.^1 o.^T O.Jo ti.f:6 5,0-^ 5,37 5,Ce 4.67

4 6.0-^ o.'fT o.2b 6,07 '3.cJ+ 'i,'J7 ^.^J'*

ij b.7'y col 6.4^ 6.21 5, Jj 5.6H

o 6.8J o. /U o.i>U 6.2; 6.Jt

7 6. y^ o. /5 o. 3o 6, 33

b 6.9 7 6./0 0. 5^

9 0.99 c.bO

lU 7.UJ

0-= 2 J

K-C;>H UUV^I-ji OF ,'Iu-*,jS

io ^J o 7 o "7 -" ;•! 2

2 4.U2 3.VO 3. do 3,dC 3.70 3.58 3,^3 :(,23 ?„^b

3 't.T2 T.ij) •>.^3 -^.19 ^aj> 3.97 3. P2 3,62

4 4.5? T.52 t,4+ A. 35 4.20 ^.13 3.^8

5 'T.Tl -f.j-t t.:>6 A.H? 4. j>7 '=.24

t> 4.'jO h-oTj '+.03 4,56 4.-+5

r 4,o7 s-.dO t.7l ^.62

b 4.92 ^,ob 4,77

9 4,-77 4.9U

lU !>,01
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TABLE 7 (con't.)

F = -t

K-GAt' f,ijM.l:JEl< JF Ac\:\S

10-^ b 7 o 5 ^- 3 2

2 i.fJ.:: J>.77 i*7J 3.62 3.jj 3.-^^ 3.29 3,12 2.36

J 4,l.d 't. 12 't. Jj 3, Ui 3.J> 3.79 3.66 3,-'>R

4 4.3t ^.20 *t.2i A, 14 4« Jj 3.94 ^.81

ii 't.H.) 'f.JV •t.J2 A, 24 A.iu 4,05

i> 'i*L.i 'r.t? t.'+J 4,33 4. d:4

7 4.0 4. DM- 4. t/ 4.39

B 4.6D 't.3v ^.32

Si 4.70 t.ot

IQ 4.74-

DF= a>

IIJ ^ 6 7 J S 4 . P

3.o4 j.:>v J,i;j 3.46 3.J9 3,2V 3.17 :k 1 2,7/

3.S6 i.^i i.d^ 3.7-; 3,/^ 3^^,2 3.51 3.35

4.10 ^.0:; H.OO 3.93 3.j4 3.76 3.6?

4.20 t.i^ 4.10 4.03 3.:^5 3.87

4.2B 't.2j t. i3 A.U '^. j3

4.J.4 t,^9 t.24 4,17

fa 4.39 t.3i 4..2V

9 4.44 't.S'y

lU 4.t3
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TABLE 8

WNKA Critical Numbers

0F= 5

K-GAP NUMBER OF MEANS

10 9 8765'^32
iO 6,^9

9 6.^7 6.80

8 6.97 6.75 6.58

7 6.93 6.75 6.50 6.33

6 6.87 6.69 6.50 6.19 6.03

5 6.78 6.60 6.^1 6.19 5.81 5.67

^ 6.61 6.44 6.26 6.05 5.81 5.30 5.22

3 6.32 6.16 5.98 5.78 5.56 5.30 4.60 '1.60

2 5.70 5.55 5.39 5.21 5.00 4.76 4.47 3.64 3.o4

DF= 70

K-GAI' NUMBER OF MEANS

10 9 8 7 6 5 4 3 2

10 5,01

9 4.92 4.90

8 4.92 A. 79 4.77

7 4,86 4.79 4.64 4.62

6 4.79 4.72 4.64 4.46 4.45

5 4.70 4.63 4.55 4.46 4.23 4.23

4 4.57 4.50 4.43 4.34 4.23 3.96 3.96

3 4.38 4.31 4.24 4.15 4.05 3.93 3.58 3.58

2 4.02 3.96 3.88 3.80 3.70 3.58 3.43 2.95 2.95
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TABLE 8 (con't.)

DF= AO

j<_QAP NUMBER OF MD\NS

109 8 7 6 5 A 3 2

10 4.73

q 4,65 4.63

8 4.65 4.53 4.52

7 4,59 4.53 4.40 4.39

6 4,53 4.47 4,40 4,24 4.23

5 4.44 4,38 4,31 4,24 4.04 4,04

4 4,32 4,26 4,20 4.12 4.03 3.79 3.79

3 4,15 4,09 4,02 3,95 3,36 3,75 3,44 3.44

2 3.82 3.77 3,70 3.62 3.53 3.43 ?.29 2,86 2.36

Di== CD

K-GAP NUMBER OF MEANS

10 9 876 5432
10 4,47

9 4.39 4,39

8 4,39 4,29 4.29

7 4.34 4.29 4.17 4,17

6 4.28 4.23 4.17 4.03 4.03

5 4,20 4,15 4.09 4.03 3,86 3.86

4 4,09 4,04 3,98 3,92 3,84 3,63 3.63

3 3.93 3.88 3.83 3.76 3.68 3.59 3.31 3.31

2 3.64 3.59 3.53 3.46 3.39 3.29 3.17 2.77 2.77








