8

Organizing an Asynchronous
Network of Processors
for Distributed Computation

We have considered so far synchronous and asynchronous algorithms for the solution
of a variety of problems on a network of processors. The focus has been on questions
of convergence and rate of convergence, and on the computation and communication
complexity of these algorithms. These questions can, to a large extent, be viewed sep-
arately from the issue of organizing the processor network itself to execute distributed
algorithms in either a synchronous or an asynchronous mode. There are a number of
questions related to this issue. For example, how does one start a distributed algorithm
in an asynchronous processor network? How does one abort a distributed algorithm that
is in progress? How does one detect the termination of a distributed algorithm? How can
a processor broadcast messages to all other processors? If an algorithm is synchronous,
how does one synchronize its computations across the processors of the network? How
does one schedule the use of scarce resources among different processors? How can the
above be accomplished when the processors and/or the communication links that connect
them are subject to failure and repair? We have touched upon some of these topics in
previous chapters, and in this chapter, we will provide a more systematic discussion.
The subject of this chapter is very broad and we cannot address it comprehensively
within the framework of this book. Our treatment is, therefore, selective and focuses
on problems that are most relevant to the numerical computation methods of the earlier
chapters. Our treatment is also somewhat nonrigorous because we often do not adhere to
formal models of distributed computation. This serves the dual purpose of curtailing the

570

Sec. 8.1 Detecting Termination of a Distributed Algorithm 571

length of the exposition and of emphasizing the more intuitive aspects of the algorithms
discussed. We justify, however, our algorithms in sufficient detail to convince the reader
of their essential correctness and to provide a starting point for rigorous proofs of their
validity.

Throughout this chapter we restrict ourselves to message—passing systems. In
Section 8.1, we discuss the problem of detecting the (global) termination of an algorithm
based on local termination conditions at the processors of a distributed system. In
Section 8.2, we present a snapshot algorithm that can be used to detect certain properties
of the global state of a distributed system such as deadlock, for example. In Section
8.3, we consider algorithms for scheduling the resources of an asynchronous processor
network when there are restrictions on the simultaneous use of some resources by several
processors. In Section 8.4, we discuss a synchronization method, based on rollback,
that provides an alternative to the global and local synchronization methods of Section
1.4, and is particularly relevant to simulation of discrete event dynamical systems. In
Sections 8.1 through 8.4, we assume that the topology of the processor network does
not change with time. In Section 8.5, we consider networks whose topology can change
unpredictably due to processor or link failures and repairs. We discuss two fundamental
problems within this framework: communication of all processors with a single special
processor and communication of a single special processor with all other processors.

8.1 DETECTING TERMINATION OF A DISTRIBUTED ALGORITHM

In many of the algorithms considered in the preceding chapters, there are situations where
the computation can naturally be viewed as terminated. For example, the Bellman-Ford
algorithm comes to an end when Bellman’s equation is satisfied for each node. Similarly
one may terminate the iterative solution of a linear system of equations when relaxation of
any one of the equations changes the corresponding variable by no more than a given € >
0. These are examples of situations where a global termination condition is decomposed
into a collection of local termination conditions, one for each processor. In some cases,
for example, when using the global synchronization method of Subsection 1.4.1 based on
phase termination messages, there is a processor that can observe simultaneously all the
local termination conditions, and can, therefore, detect the global termination condition.
In an alternative scheme, a special processor checks (with some delay) whether the
system satisfied the global termination condition at the end of some phase, in which case,
it issues a command to stop all computation. In a related scheme, a processor issues
a special “local termination” message when it reaches the local termination condition,
and issues a special “restart” message when it exits that condition. A special processor
collects the local termination and restart messages. When the difference between the
number of local termination messages and the number of restart messages equals the
number of processors, the special processor issues a command to stop the computation,
perhaps after some delay to guard against the possibility that additional restart messages
are forthcoming. There is no guarantee, however, that this algorithm will always detect
termination correctly, particularly when the delays of messages along communication

572 Organizing an Asynchronous Network of Processors Chap. 8

links are unpredictable. The preceding types of schemes are, nonetheless, often adequate
in practice, despite the fact that their theoretical properties may not be fully satisfactory.

In this section, we describe, somewhat informally, an alternative method for de-
tecting termination that is theoretically more sound than the methods just described. We
have a network of processors connected with bidirectional communication links. We
assume that each packet transmitted on a link is correctly received after a finite but
unspecified time delay. We do not assume, however, that the links preserve the order of
packet transmissions.

It is useful for our purposes to ignore the precise nature of the algorithm whose
termination is to be detected and to focus instead on its communication aspects. We
use the term “message” to refer to a special type of packet that is related in some way
to the algorithm. The examples that follow illustrate the nature of messages in specific
contexts. We assume that the algorithm is started when a special processor, referred
to as the initiator, sends a message to one or more other processors. Subsequently, a
number of messages are exchanged by the processors. The implication here is that each
processor follows some rules according to which it generates and sends messages to
other processors; however, the nature of these rules and the contents of the messages are
immaterial for our purposes.

We consider a situation where during execution of the algorithm, each processor
is able to monitor its own computations and decide whether a certain “local termination
condition” holds. We do not need to specify the precise nature of this condition, but we
assume the following:

Assumption 1.1. If the local termination condition holds at some processor,
then no messages can be transmitted by that processor. Furthermore, once true, the
local termination condition remains true until a message from some other processor is
received.

We say that termination has occurred at some time ¢ if:

(a) The local termination condition holds at all processors at time ¢.
(b) No message is in transit along any communication link at time .

We say that termination occurs at time £, if £ is the smallest time ¢ for which the above
conditions (a) and (b) hold. Our objective is to detect the termination within finite time
after it occurs. Notice that if termination has occurred at some time ¢, then the same is
true for every subsequent time ¢ > ¢, since no messages will be transmitted after time ¢
and the local termination condition will remain true at all processors.

We illustrate the nature of messages and of the termination condition by means of
some examples:

Sec. 8.1 Detecting Termination of a Distributed Algorithm 573

Example 1.1. Asynchronous Fixed Point Iterations

Consider a network of n processors and the totally asynchronous execution of the iteration
z = f(z), where f : R® — R, as discussed in Section 6.1 (cf. Example 1.1). Each
processor 7 stores the vector

2'(@t) = (z1®),...,zn®)), 1.1
it updates its ith coordinate at some times according to
z; = fulc), (1.2)

and it subsequently communicates this updated value to the other processors. Here the
messages of the algorithm are the updated values of the coordinates. The preceding algo-
rithm, as stated, will execute an infinite number of iterations. To convert it into a finitely
terminating algorithm, we assume that the update (1.2) is not executed (and the attendant
communication of the updated coordinate does not take place) if

|z} — fil@)| < e, 1.3)

where € is a given positive scalar. This is the local termination condition at <. Thus,
termination occurs when Eq. (1.3) holds simultaneously for all processors ¢ and there is no
message in transit along any communication link. Note the nature of the difficulty here;
each processor i can verify its own local termination condition (1.3), but cannot easily
detect whether this condition holds simultaneously for all processors and whether there is
any message in transit.

Example 1.2. Asynchronous Bellman—Ford Algorithm

In the context of the preceding example, consider the asynchronous Bellman-Ford algorithm
discussed in Section 6.4 for finding the shortest distances of all nodes to node 1. The
algorithm updates the shortest distance estimate of a node 7 # 1 according to

; := min (ai; + z;), 1.4
¥ jeAw(i+ @) 14)

where A(:) is the set of all nodes such that (¢, ;) is an arc, and the updated value is
communicated to the processors j such that ¢ € A(j). Thus, the messages of this algorithm
are the updated values of the shortest distance estimates. We assume that when the iteration
(1.4) does not change the value of x;, this value is not communicated to any other processor.
The local termination condition here holds at 7 if execution of iteration (1.4) does not change
the value of z;. Based on the results of Section 6.4, the number of messages generated by
the algorithm is finite, and termination occurs within finite time after all processors have
found their shortest distance to the destination.

Our termination detection procedure is based on message acknowledgments. In
particular, messages received by processor ¢ from processor j, are acknowledged by :
by sending to j special acknowledgment packets (abbreviated ACKs). Note that ACKs
are distinct from messages and are not acknowledged by further ACKs. We assume that

574 Organizing an Asynchronous Network of Processors Chap. 8

each message and each ACK arrives at its destination after some positive (but finite)
time from the time it was transmitted. Furthermore, each processor can transmit only a
finite number of messages and ACKs within any bounded time interval, can transmit at
most one message or ACK to another prossesor at any one instant of time, can receive
at most one message or ACK at any one instant of time, and is not allowed to transmit
(a message or ACK) and simultaneously receive (a message or ACK) at any instant of
time. These assumptions do not diminish the practical relevance of our analysis. For
example, they would be appropriate for a practical situation where there can be multiple
simultaneous transmissions and receptions at a processor, but the processor has a way
of establishing unambiguously the relative temporal order of these transmissions and
receptions. Our assumptions are used to resolve in a simple manner ambiguities about
the algorithmic rules that will be described shortly. They also allow us to simplify
the presentation by assuming without loss of generality that communication events, that
is, transmissions and receptions of messages and ACKs, occur at integer times ¢ > 0
and that the initial transmission of the initiator occurs at time ¢ = 0. Accordingly,
in all subsequent references to communication events, we imply that these events occur
instantaneously at integer times. The expression “just after time ¢”, where ¢ is an integer,
will refer to all times that are larger than ¢ and smaller than ¢ + 1.

There are two possible states for a processor at any one time: the inactive state
(in which the processor is called inactive) and the active state (in which the processor
is called active). We describe these states, the restrictions that a processor must obey at
each state, and the circumstances under which a processor changes states. All changes
of state occur at integer times, and we will adopt the convention that when a processor
changes its state from A to B at time ¢, then the state is A at time ¢ and it is B just after
time £.

In the inactive state, a processor can send no messages or ACKs. It will move
from the inactive state to the active state at a time ¢ if it receives a message at time ¢
from some other processor j. This message and the corresponding processor j play a
special role for the period between ¢ and the next time ¢’ at which processor i returns
to the inactive state. During this period, the message is called the critical message, j is
called the parent of i, whereas ¢ is called a child of ;.

In the active state a processor may transmit any number of messages to any one
of its neighbors (subject to the limitation of one per neighbor and time instant assumed
earlier). It must also acknowledge within a finite number of time units each message that
it receives except for the critical message. An active processor becomes inactive simul-
taneously with transmitting an ACK for its critical message. This ACK is transmitted at
the first time ¢ for which the following conditions hold:

(a) No message is received by the processor at time t.
(b) The local termination condition holds at the processor at time ¢.

(c) The processor has transmitted prior to ¢t an ACK for each message it has received
except for the critical message.

(d) The processor has received prior to ¢t an ACK for each message it has transmitted.

Sec. 8.1 Detecting Termination of a Distributed Algorithm 575

The preceding rule for changing to the inactive state is also imposed on an active proces-
sor without a parent, except that the references to the critical message are unnecessary.
It will be seen shortly that under our assumptions, the initiator is the only processor that
is ever active without having a parent. Note that the parent of a processor j must be
active, since ¢ must still be awaiting the ACK for the critical message it sent to j. A
diagram summarizing the algorithm is given in Fig. 8.1.1.

Message Reception

Figure 8.1.1 States of a processor during

the termination detection algorithm. In the
inactive state a processor transmits no
messages or acknowledgments (ACKs), and
changes to the active state upon receiving a
Last ACK Received Message Received message from some other processor, which
ACK Sent to Parent from Parent then becomes the processor’s parent. In the
active state, a processor trasmits messages
and sends an ACK for each message it
receives. The processor changes its state to
inactive upon sending an ACK to its parent,
and is allowed to send this ACK only
Message Message after it receives an ACK for each of the
and ACK and ACK messages it has transmitted, and in addition,
Receptions Transmissions its local termination condition holds.

Initially, at time ¢ = O, the initiator is active and all other processors are inactive.
Furthermore, at ¢t = 0, the local termination condition holds at all processors except for
the initiator. It can be seen that based on the rules of the algorithm, if a processor is
inactive at time ¢, the following are true:

(a) Its local termination condition holds at t.
(b) It has transmitted ACKs for all the messages it has received prior to ¢.
(c) It has received ACKs for all the messages it has transmitted prior to t.

If the processor is active at time ¢, at least one of the above conditions is violated.

We say that termination is detected, at the first time when the initiator becomes
inactive. It follows that up to the time that termination is detected, the initiator will
never receive a critical message and acquire a parent, whereas every other processor will
always have a parent while it is active.

We will show that the procedure we have described has the following two proper-
ties:

(a) If termination is detected at time t’, then termination occurred at some time t < ¢'.
(b) If termination occurs at time ¢, then termination is detected at some time ¢t > ¢.

The key concept for showing these properties is the activity graph (abbreviated
AG), which at each time ¢, consists of all the processors that are active together with the

576 Organizing an Asynchronous Network of Processors Chap. 8

directed arcs that connect the parents of these processors with the processors themselves.
We make the following observations regarding the AG:

(1) At all times prior to termination detection, the initiator is active and therefore
belongs to the AG.

(2) At all times, the parent of any processor that belongs to the AG (other than the
initiator) is unique and must also belong to the AG.

(3) If a processor j belongs to the AG just after time ¢, then its parent i belongs to
the AG at all times in the interval (¢t — 2,¢ + 2). (The reason is that the critical
message sent from ¢ to j must have been transmitted at a time ¢’ < ¢ — 1 and the
corresponding ACK will not be transmitted by j prior to time ¢ + 1 and will not
be received by ¢ prior to time t + 2; we are using here the assumption that all
messages and ACKs take at least one time unit to reach their recipients. Based
on this observation, we see that only childless processors are added to or removed
from the AG at any one time.)

An important fact is that at all times prior to termination detection, the AG is a tree
of directed arcs that is rooted at the initiator (meaning that it has no cycles, it contains
the initiator and also contains a unique positive path from the initiator to every one of its
other processors; see Fig. 8.1.2). To show this, it will be sufficient, in view of the above
observations (1) and (2), to show that at all times prior to termination detection the AG
does not contain a positive cycle. Indeed, initially the AG consists of just the initiator
and if the AG first acquired a positive cycle C just after time ¢, then each processor of
C is the parent of another processor of C which is active just after time ¢. By the above
observation (3), it follows that each processor of C is active just after time t — 1. Since
the AG is acyclic just after time ¢ — 1, it follows that some arc of the cycle C was added
to the AG at time ¢, joining two already active processors. This, however, is impossible
since an arc (%, j) is added to the AG only when the processor j changes from inactive
to active.

Initiator

Figure 8.1.2 The activity graph at a given
time consists of all the processors that are
active at that time together with directed
arcs connecting the parents of the active
processors with the processors themselves.
At all times, the graph is a tree of directed
o) O arcs that is rooted at the initiator in the
Activity Graph sense that it has no cycles, it contains the
e) initiator and also contains a unique positive
path from the initiator to every one of its
Inactive Nodes other nodes.

Sec. 8.1 Detecting Termination of a Distributed Algorithm 577

Assume now that termination is detected at time t’. We claim that the activity
graph becomes empty at ¢’ and that termination must have occurred at time ¢’. To show
this, we first observe that just after time ¢’ — 1, the initiator must be the only processor
in the AG since otherwise, the initiator would be the parent of some processor just after
time ¢’ — 1 and by the above observation (3), the initiator would not become inactive at
time ¢/. We next observe that a processor cannot become active at time ¢’ since by the
above observation (3), its parent must be active in the interval (¢’ —2,t’ + 2); the parent
cannot be different than the initiator because it must be inactive just after time ¢’ — 1 as
shown earlier, and it cannot be the initiator which turns inactive at time ¢’ by assumption.
Therefore, at time ¢/, the activity graph becomes empty and all processors are inactive.
From the rules by which processors become inactive, it follows that the local termination
condition holds at all processors and that there are no messages in transit at time ¢’. This
means that termination has occurred at time t'.

Suppose finally that termination occurs at time ¢t. We will show that termination is
detected (necessarily at some time ¢’ > t, based on what has been proved so far). Indeed
after ¢, no processor can change its state from inactive to active because no further
messages will be received by any processor, so if termination is never detected, the
activity graph must not change after some time while being nonempty. This, however,
cannot happen because each processor ¢ that is active and has no child in the final
activity graph will eventually receive an ACK for each message it sent to the other
processors (once termination occurs and the activity graph stops changing, processor :
will never again have a child, so each processor must either have sent an ACK to i
or will send eventually an ACK to ¢ for every message it has received from 7). Since
the local termination condition holds at processor ¢ after termination has occurred, ¢
must eventually become inactive, thereby contradicting the hypothesis that it stays active
indefinitely. We see, therefore, that the activity graph will eventually become empty at
which time termination is detected.

We now consider the communication overhead that can be attributed to the termi-
nation detection procedure. Since there is one ACK per message, we see that when the
procedure is used, the total number of packet transmissions is doubled. On the other
hand, the ACKs can be incorporated in some way into an existing data link control
scheme such as those discussed in Subsection 1.3.2, in which case, the communication
overhead for termination detection is almost negligible.

Consider next the delay associated with the termination detection procedure, that
is, the difference between the time when termination is detected and the time when
termination occurs. Let us consider the activity graph at the time when termination
occurs. It can be seen that the delay for termination detection is the time needed for the
ACKs to propagate to the initiator along the links of the AG, starting from the childless
nodes and proceeding toward the initiator. Thus the delay for termination detection is
O(r), where r is the maximum number of links on a path of the AG that connects the
initiator with a node of the AG. Since r is less than the number p of processors of the
distributed system, the delay for termination detection can be estimated as O(p).

There are a number of variations of the termination detection procedure just de-
scribed. For example, it is possible that a single ACK can acknowledge several messages

578 Organizing an Asynchronous Network of Processors Chap. 8

After Event 1 After Event 2 After Event 3

Empty
e (Termination Detected)
After Event 4 After Event 5 After Event 6
(b)

Figure 8.1.3 Illustration of the termination detection procedure for the asynchronous Bellman—Ford algo-
rithm. (a) Shortest path problem data. The number next to each arc is the length of the arc. (b) The activity
graphs corresponding to the following sequence of events involving updates according to the Bellman—Ford
iteration, and message and ACK transmissions. Each event may require several time units.

Event 1: Nodes 2 and 3 receive message “z; = 0” from node 1. Node 2 becomes active due to the message
from node 1, declares node 1 as its parent, and sends message “z, = 3” to nodes 3 and 4. Node 3 becomes
active due to the message from node 1, declares node 1 as its parent, and sends message “z3 = 1” to nodes
2 and 4. All these messages are received before event 2 begins. The 3-to—4 message is received before the
2-to—4 message (so node 4 will declare node 3 as its parent).

Event 2: Node 3 sends ACK to node 2. Node 2 sends message “c; = 2” to nodes 3 and 4, and then sends
ACK to node 3. Node 3 sends (a second) ACK to node 2. Node 4 becomes active, declares node 3 as its
parent, sends message “z4 = 4” to node 3, and sends ACK to node 2. All messages and ACKs are received
before event 3 begins.

Event 3: Node 3 sends ACK to node 4. Node 4 sends message “z4 = 3” to node 3, and sends ACK to node
2. All messages and ACKs are received before event 4 begins.

Event 4: Node 2 sends ACK to node 1 and becomes inactive. Node 3 sends ACK to node 4. These ACKs
are received before event 5 begins.

Event 5: Node 4 sends ACK to node 3 and becomes inactive. The ACK is received before event 6 begins.
Event 6: Node 3 sends ACK to node 1 and becomes inactive. Node 1 receives the ACK of node 3, becomes
inactive, and termination is detected.

Sec. 82 Snapshots 579

simultaneously. Furthermore, it is not crucial that each ACK is tied to a specific mes-
sage. What is important for the execution of the algorithm is that each node keeps track
of the difference between the number of messages transmitted and ACKs received along
each link. When this difference becomes zero, the node knows that no more ACKs are
pending from the opposite end processor of that link.

Figure 8.1.3 illustrates the termination detection procedure in the context of the
asynchronous Bellman-Ford algorithm (Example 1.2) for a particular sequence of mes-
sage and ACK receptions. The following is another example of a termination detection
algorithm.

Example 1.3. Verifying the Reception of Broadcast Information

Consider a network of processors connected with bidirectional communication links. Sup-
pose that some processor, referred to as the initiator, wishes to send some information, call
it I, to all other processors and to verify the reception of I by all other processors. The
following algorithm uses two types of packets, denoted M and A, which are assumed to
be received within finite time from the start of their transmission. The packets M carry the
value of I and the packets A play the role of acknowledgments of reception of packets M.
The algorithm operates as follows:

The initiator starts the algorithm by sending M to all its neighbor processors.

When processor ¢ receives M for the first time, say from processor f(3), it stores the
identity number of f(i) and sends M to all its neighbors except for f(z), if it has at
least one such neighbor; otherwise it sends A to f(3).

‘When processor 5 receives M for the second and subsequent times, say from processor
J, it sends A to j.

When processor 7 receives A from all neighboring processors other than f(2), it sends
Ato f(i).

By associating M with messages and A with ACKs, and by viewing f(z) as the parent
of processor 7, we see that the preceding algorithm is a special case of the termination
detection procedure. It follows that the initiator will eventually receive A from all its
neighbors and that at that time, all processors will have received M. Figure 8.1.4 illustrates
the operation of the algorithm.

Algorithms such as the one of the preceding example are often useful in data
networks. For instance, the reader may wish to construct a similar algorithm that allows
the initiator to determine the number and/or identities of all the processors in the network.

8.2 SNAPSHOTS

Each processor in a distributed computing system typically has access only to local in-
formation, that is, its own state of computation as well as the messages it sends and
receives. Now suppose that we wish to detect whether the global state of the distributed
system has certain properties. For instance, we might wish to detect whether the system

580 Organizing an Asynchronous Network of Processors Chap. 8

Initiator

(a)

B A

Event 1 Event 4

A 7z

Event 2 Event 5
A/ N\ A
Empty
(Reception Verified)

Event 3 Event 6

Figure 8.1.4 Illustration of the algorithm for verification of the reception of broadcast
information of Example 1.3. (a) Graph over which the information is broadcast by
the initiator. (b) A sequence of message and ACK transmissions (shown on the left)
together with the corresponding activity graphs following these transmissions (shown on
the right). M indicates a message transmission and A indicates an ACK transmission.

(b)

is deadlocked, whether the vector generated by an asynchronous iterative algorithm has
come sufficiently close to a solution, or to monitor the progress of some distributed
algorithm. Ideally, such a task might be accomplished by having the processors simul-
taneously record and then transmit their local states to a central processor. However,

Sec. 8.2 Snapshots 581

simultaneous recording of local states is generally impossible if the processors do not
have access to a global clock and if messages (that could be used for synchronization)
are subject to unknown delays. For this reason, we will settle for the lesser goal of
having the processors record their local states at a set of times that are possibly simulta-
neous, meaning that the information available to the processors does not contradict the
simultaneity of these times. We provide an algorithm (known as the snapshot algorithm)
that achieves this goal and we then show how the recorded information can be used to
detect certain properties of the true global state of the system.

We start by stating the assumptions on the operation of the distributed system. Let
G = (N, A) be a directed graph. The set N of nodes corresponds to the processors and
each arc (i, j) represents a unidirectional, never failing, and error—free communication
link. We assume that G is strongly connected, meaning that there exists a positive path
from every processor to every other processor. Concerning the communication links, we
assume that for each (7,7) € A, a message sent by processor 7 to processor j reaches
its destination after a positive but finite amount of time, and, furthermore, messages
are received by processor j in the order in which they were transmitted. The latter
assumption (often called FIFO, for first in, first out) is crucial for the correct operation
of the snapshot algorithm to be presented later. It can be enforced by using an appropriate
protocol for data link control (Subsection 1.3.2).

We associate a local clock with each processor. The current value ¢; of the local
clock of processor ¢ will be called i’s local time, as opposed to global time, denoted by
7, which is the time in the clock of an external observer. We make the assumption that
distinct global times correspond to distinct local times, and conversely. In particular,
the global time can be written as h;(t;), where ¢; is the local time of processor i and h;
is a strictly increasing function. The material in this section could have been presented
without introducing the notion of global time. This is because global time (equivalently,
the function k;) is not known by any processor and its value cannot have any effect on the
algorithms being implemented. Nevertheless, the concept of global time simplifies the
presentation.

We assume that the processors are engaged in some collective computation and
that at any time, the state of computation of processor ¢ is specified by a local state
x; belonging to some state space X;. [For example, the local state variable ; could
consist of the values of all variables in the memory of the ith processor that are related
to the collective computation. In the special case of an asynchronous iteration of the
form y := f(y), the local state variable z; is naturally identified with the value of the
vector y kept in the memory of processor :.] The computation involves the exchange
of messages. For any (i,j) € A, let M;; be the set of all possible messages from 4
to j. The state of a communication link (i,7) € A, at some global time, is defined to
consist of all messages that have been transmitted through that link and have not yet
been received. A collection of local states (a variable z; for each processor 7) and of
link states [a sequence of messages m;; for every (i,7) € A] is called a global state. If
the processor and link states in a global state s are the actual states at some global time
7, we say that s is the global state at (global) time 7. We use S to denote the set of all
global states.

582 Organizing an Asynchronous Network of Processors Chap. 8

The computations performed by each processor are modeled as a sequence of
events. When an event occurs at processor 4, the state z; of that processor may change
and certain messages m;; to other processors may be generated. Events can be of two
types: they can be self-induced, in which case, the state z; changes spontaneously to
a new value, or they can be message—induced; in the latter case, an event occurs upon
reception of a message m;; € M;; from some processor j with (j,7) € A. In the sequel,
the following assumption will be in effect. It is somewhat stronger than necessary, but
helps in simplifying the discussion.

Assumption 2.1.

(a) Events are instantaneous: each event at any processor ¢ takes a zero amount of
time. (Accordingly, it is meaningful to talk about “the time that an event occurs”
or event time, for brevity.)

(b) Distinct events at the same processor occur at different local times.
(c) Only-a finite number of events can occur during a time interval of finite length.

(d) Different messages received by the same processor are received at distinct local
times. In particular, a message—induced event is caused by exactly one message.

Let us consider local times ¢;, ¢;, and t;, at three respective processors ¢, j, and k.
Suppose that a message m;; is transmitted by processor : at a local time larger than ¢;,
and that this message is received by j at a local time smaller than ¢;. In such a case,
there is sufficient information to determine that h;(¢;) < h;(t;). If, in addition, some
other message mj from j to k testifies to the fact that h;(t;) < hg(tx), then it can be
inferred that h;(¢;) < hi(tx). If, on the other hand, two local times t; and ¢; are such that
no inference of the form h;(t;) < h;(t;) can be made, we will say that the local times are
possibly simultaneous. We shall make this notion precise and then present an algorithm
that records the state of each processor, and of each link, at possibly simultaneous times.

We define a collection {t; | i € N} of local times to be possibly simultaneous if
every message m;; sent by ¢ at or after ¢; is received by j after ¢;, and this property holds
for every (4, j) € A. We define the snapshot corresponding to a collection {¢; | ¢ € N} of
possibly simultaneous times to be the global state consisting of the local states x; of each
processor ¢ at local time ¢; and, for each (2, j) € A, of the sequence of all messages sent
by 4 before ¢; and received by j after ¢; (Fig. 8.2.1). This definition could be ambiguous
if some t; is an event time at processor ¢ (do we record the state z; immediately before
or immediately after the event?) and for this reason, we shall subsequently ensure that
none of the times ¢; is an event time.

We now present an algorithm by means of which a snapshot of the system is taken.
The algorithm uses special marker messages. We assume that these marker messages do
not interfere with the underlying collective computation carried out by the processors. In
particular, any sequence of events and message transmissions related to the underlying
computation that was possible in the absence of the marker messages is also assumed to
be possible when the marker messages are present, and conversely.

Sec. 8.2 Snapshots 583

Global time
[12
]
t‘l
Processor 1 Processor 2 Processor 3
(a)
! Global time
ot
/.
q
q
L
t, L) 3
< 3
Processor 1 Processor 2 Processor 3

{b)

Figure 8.2.1 Illustration of a set of possibly simultaneous times and of a corresponding snapshot. Each axis
represents the progress of each processor as global time increases. Each node in the diagram represents an
event and each arc represents a message. Although the vertical axes stand for global time, the labels ¢, ¢2, ¢3,
and ¢} are the local times of the respective processors at the indicated points. Times ¢, and t} are not possibly
simultaneous because of the presence of the message m. However, the times ¢, ¢, and ¢3 are possibly
simultaneous. In part (b), we show an alternative timing of the different events that is indistinguishable from
the one in part (a) as far as the sequence of events in each processor is concerned and in which the local times
t1, t2, and t3 correspond to the same global time.

It can be shown that a timing diagram as in (a) can be always redrawn to an equivalent diagram
(meaning that for each processor, the same events occur in the same order) so that a given set of possibly
simultaneous times is transformed into truly simultaneous times.

The dashed line in (a) illustrates a snapshot. The state of each processor i is recorded at local time t;
and the link states consist of all message that cross the dashed line. In this example, the recorded states of
links (1, 2) and (2, 3) consist of the empty sequence and the recorded states of links (2, 1) and (3, 2) consist of
one message.

Notice that messages crossing the dashed line can only start below the dashed line and end above it;
otherwise the possible simultaneity of the times ¢}, 5, and ¢3 would be contradicted.

584 Organizing an Asynchronous Network of Processors Chap. 8

The Snapshot Algorithm [ChL85]

(A1) (/nitialization) One or more processors initiate the algorithm by recording their
respective local states and immediately sending a marker message to each of their
neighbors. For every initiating processor ¢, let ¢} be its local time upon initiation.
It is assumed that ¢} is not an event time at processor ¢.

(A2) (Recording of processor states) Each processor i that is not an initiator records
its local state at the first local time ¢} that it receives a marker message. (If the
first reception of a marker message by processor 7 occurs at an event time, we
assume that the marker reception is artificially delayed by a negligible amount,
thus ensuring that ¢} is not an event time.)

(A3) (Marker generation) If processor ¢ is not an initiator, it sends a marker message
along each of its outgoing arcs at local time ¢}.

(A4) (Recording of link states) For any (i,7) € A, let t;; be the first local time that
processor j receives a marker message from processor ¢. Processor j records the
state of link (¢,) by recording the sequence of all messages received by j on that
link between local times ¢} and ¢7;.

Figure 8.2.2 illustrates the algorithm and shows that the global state recorded by
a snapshot can be different from any one of the true global states at the different global
times.

Figure 8.2.2 Illustration of the snapshot algorithm for the sequence of events shown
in Fig. 8.2.1. The algorithm is initiated at local time ¢} by processor 1. The dashed
lines indicate the travel of marker messages. Processor 1 records the state of link (2, 1)
to consist of all messages received between local times ¢ and ¢3,. This is the set of all
messages that were generated by processor 2 in the “past” (that is, before time t3) and
received by processor 1 in the “future” (that is, after time ¢}).

Sec. 8.2 Snapshots 585

We now show that the snapshot algorithm performs as desired. We first show that
the algorithm eventually terminates with every processor having recorded its local state
as well as the states of its incoming links. Because of the marker generation rule (A3),
and because the graph G has been assumed strongly connected, it follows that every
processor that is not an initiator eventually receives a marker message. In particular, ¢}
is well defined for each ¢, and every processor eventually records its local state. We then
see [cf. (A1) and (A3)] that exactly one marker message is transmitted along each arc
(¢,7) € A. In particular, t7; is well defined and finite for every (i, j) € A. Thus, each
link’s state is recorded. We conclude that the snapshot algorithm eventually terminates.

Next we show that the local times ¢} at which the processors record their states
are possibly simultaneous. Suppose that (4, 7) € A and that a message m;; is transmitted
from processor ¢ to processor j after time ¢;. We see that this message is transmitted
after the transmission of a marker message from 7 to j. Using the FIFO assumption,
the message m;; is received by processor j subsequent to the reception time ¢;; of the
marker message. Since t; > ¢7, it follows that m;; is received after time ¢7. This proves
that the times {¢ | i € N} are possibly simultaneous.

In order to complete the proof that the states recorded by the algorithm form a
snapshot, it remains to show that the recorded state of a link (z, j) is the sequence of
messages sent along that link before t7 and received after ¢7. According to (A4), the
recorded messages are those received by processor j between local times ¢; and t7;.
From the FIFO assumption, this is the same as the set of messages sent by ¢ before time
t; and received by j after ¢}, which completes the proof.

As just shown, the snapshot algorithm is guaranteed to terminate. Termination can
be detected by the processors as follows. As soon as a processor records its own state and
the states of its incoming links, it broadcasts to all processors a termination message. As
soon as a processor receives a termination message from all other processors, it knows
that the snapshot algorithm has terminated. Furthermore, the processors can send the
recorded states to a particular processor, designated as a center, which could analyze the
data provided by the snapshot and draw inferences on the global state of the distributed
system. It was indicated earlier that the states recorded in a snapshot need not correspond
to a true global state of the distributed system. Despite that, it will be shown that the
information contained in a snapshot is sufficient for detecting certain interesting properties
of the true global state.

Let Sy be a subset of the set S of all global states. We say that Sy is invariant if it
has the following property: if the global state at some global time 7 belongs to Sp, then
the same is true for every possible global state at any subsequent global time 7/ > 7.

It has been shown [ChL85] that a snapshot can be employed to detect membership
in an invariant set, under certain assumptions. We are interested, in particular, in the
following two properties:

Property P1. If the global state of the system at global time 7 belongs to Sg and
if the snapshot algorithm is initiated after global time 7, then the global state recorded
by the snapshot algorithm also belongs to Sp.

586 Organizing an Asynchronous Network of Processors Chap. 8

Property P2. If the global state recorded by the snapshot algorithm belongs to
S, then the global state of the system also belongs to Sy at any global time 7 subsequent
to the termination of the snapshot algorithm.

We will prove the above two properties for the special case where the invariant
set Sp has a simple Cartesian product structure. A more general result can be found in
[ChL85].

Let there be given a subset X} of X; and a subset M;; of M;; for each i € N
and each (z, j) € A, respectively.

Assumption 2.2.

(a) If the local state x; of processor ¢ belongs to X prior to a self-induced event, then
it belongs to X* after the event as well. Furthermore, any messages m;; generated
by that event belong to the set M.

(b) Part (a) of this assumption holds for message—induced events as well, provided that
the message m;; causing the event belongs to M ;.

Let Sy be the set of all global states for which the local state x; of each processor
i belongs to X and every message in the state of a link (7, j) € A belongs to M;;. We
see that under Assumption 2.2, the set Sy is invariant.

We now verify Properties P1 and P2 when S is defined as above and Assumption
2.2 holds. Property P1 is obvious because if the global state at some global time 7
belongs to Sp, then every subsequent local state of processor ¢ belongs to X and every
subsequently generated message belongs to a set M, which establishes that the global
state recorded by a subsequent snapshot belongs to Sg.

We now assume that a snapshot corresponding to a set of possibly simultaneous
times {t} | ¢ € N} has recorded a state in Sp, and we verify Property P2. We will say that
an event at processor ¢ has Property P if the state of processor ¢ after the event belongs
to X; and any message m;; generated by that event belongs to M;;. We assume that
Property P2 does not hold, in order to derive a contradiction. Then there exists an event
that occurs at some processor i at some local time ¢; > t; that does not have Property
P. Let us choose a processor ¢ and such an event for which the corresponding global
time h;(t;) is as small as possible. If this event is self-induced, then Assumption 2.2(a)
implies that the state of processor ¢ did not belong to X before the event. However, z;
belonged to X" at time ¢ and we conclude that some event must have occurred between
local times ¢} and ¢; that does not have Property P. This contradicts our definition of
t;. We now consider the case where the event at time ¢; is message—induced. Using
Assumption 2.2(b) and the same reasoning as before, we conclude that the message
m;; inducing this event does not belong to M7;. We distinguish two subcases. If the
message mj; was transmitted by processor j before local time ¢}, then this message is
one of the messages recorded in the state of link (j,4) and, therefore, belongs to M;,
a contradiction. In the second subcase, the message m;; was transmitted after time ¢}.
It follows that this message was generated by some event at processor j at some (local)

Sec. 8.3 Resource Scheduling 587

time ¢; satisfying t; > t7 and, furthermore, since m;; ¢ M;, the event at processor
J did not have property P. On the other hand, we have h;(t;) < h;(t;), which again
contradicts our choice of i and t;, and completes the proof.

Example 2.1. Termination Detection

For each processor i, let X be the set of states z; from which any self-induced event leaves
z; unchanged and generates no messages. (The condition z; € X is to be interpreted as a
local termination condition for processor 7.) For every link (, j) € A, let M; be the empty
set. It is clear that the sets X and M;; satisfy Assumption 2.2, and the corresponding set
So is invariant. It is seen that the global state of the system belongs to & if and only if
the underlying computation has terminated. We conclude that a snapshot can be usefully

employed for termination detection.

Another interesting application of snapshots will be seen in Section 8.4 on asyn-
chronous simulation. ‘

EXERCISES

2.1. [Gaf86] Suppose that each one of the sets {¢; | ¢ € N} and {¢; | i € N} is a collection
of possibly simultaneous local times. Show that the same is true for each one of the sets
{max{t;,t;} | ¢ € N} and {min{t;,t;} |i € N}.

8.3 RESOURCE SCHEDULING

We consider an asynchronous network of processors, described by an undirected graph
G = (N, A), where N = {1,...,n} is the set of processors, and A is the set of undirected
arcs. Each arc represents a perfectly reliable bidirectional communication link joining
processors ¢ and j. We assume that the processors participate in some computational
task and that they perform certain operations once in a while. We assume, however, that
each arc (i, j) is associated with some shared resource R;;, which is necessary for either
processor ¢ or j to perform an operation, and that this resource can only be possessed by
one processor at a time. Therefore, for the computation to proceed, we need a processor
1 to gain control of all resources associated with its incident arcs. As shown in Fig. 8.3.1,
it is possible that the processors become deadlocked if each one is idle waiting for some
needed resource. We will present a simple algorithm under which deadlock is avoided
and all processors have a chance to operate an infinite number of times.

This problem, also known as the dining philosophers problem, is of fundamental
importance in synchronization and deadlock avoidance in distributed systems, and applies
to a variety of situations. The example closest to the applications discussed in this book
relates to the distributed execution of an iteration of the form

ZT; = fi(x],...,itn), i=1,...,n. (31)

588 Organizing an Asynchronous Network of Processors Chap. 8

R Figure 8.3.1 Illustration of deadlock.

Each processor has taken hold of one of the
two resources it needs and waits to take
hold of the second. A direction is assigned
to each arc (z, j) to indicate the processor
holding the corresponding resource R;;.
As the situation of each processor is
completely symmetrical, they are faced
with a deadlock.

Rz Rz
Here we let G be the corresponding undirected dependency graph, that is, an arc (2, j) is
present if and only if f; depends on z; or f; depends on z;. Consider a serial execution of
iteration (3.1), whereby at each time ¢, some processor ¢(¢) executes Eq. (3.1) and informs
the other processors about the new value of x;. Suppose that such a serial algorithm
is convergent for all possible choices of (1), i(2),..., provided that each processor
executes an infinite number of times. This is the case, for example, for the dual relaxation
algorithms for network flow problems, which were studied in Chapter 5. The same is
true in several situations in which there is an underlying cost function that decreases
whenever a single processor performs an update. Coordinate descent methods, such as
the Gauss—Seidel algorithm for linear equations or the nonlinear Gauss—Seidel algorithm
for nonlinear problems, are some examples. In some such algorithms, convergence can
be lost if two neighboring processors ¢ and j [with (¢,) € A] are allowed to perform an
update simultaneously. For example, the nonlinear Gauss—Seidel algorithm for strictly
convex optimization problems is guaranteed to converge, but this is not always the case
for the nonlinear Jacobi algorithm in which all processors update simultaneously. We
conclude that there are several circumstances in which we wish iteration (3.1) to be
executed in a way that is mathematically equivalent to a serial execution (one processor
at a time). To guarantee this, it is sufficient to require that no two adjacent processors
operate simultaneously. This, in turn, will be accomplished by means of a resource R;;
that cannot be simultaneously held by processors 7 and j.

A synchronous solution to our problem is obtained by using a coloring scheme, as
discussed in Subsection 1.2.4. Here we associate a particular “color” with each processor
in the graph, subject to the constraint that no two adjacent processors have the same color.
Let the different colors be numbered from 1 to K. The computation proceeds in stages.
At the first stage, all processors with the first color operate, then processors with the
second color, all the way to the last color, and then we restart with the first color.
Such a scheme is fair in the sense that the number of operations performed by different
processors can differ by at most one. The example in Fig. 8.3.2 shows that the coloring
approach is not necessarily the most efficient possible synchronous scheduling method.
In an inherently asynchronous system, the previously outlined synchronous solution can
be implemented using a synchronization mechanism (Section 1.4). In particular, a global
synchronization method could be used, but the overhead involved is unwarranted. We do
not discuss the use of a local synchronization method for this problem because it leads
to an algorithm similar to the one to be presented.

We motivate our algorithm in terms of the resource allocation problem mentioned
in the beginning of this section. With each arc (¢, j) € A, we associate a resource R;;.

Sec. 8.3 Resource Scheduling 589

2
(a)
Processors || 1| 2 '1 2 Processors || 1|1 23| 4|5
Operating || 3 | 4 ‘3 U Operating |[3| 4|5 1|2
Time || 1]2[3[4]5]6 Time |[1]2]3]4]5
(b) (c)

Figure 8.3.2 An example where optimal coloring cannot achieve the concurrency at-
tainable by an optimal schedule. We consider the dependency graph in (a) and we require
that no two neighbors operate simultaneously. Let processors 1 and 3 have color 1, pro-
cessors 2 and 4 have color 2, and processor 5 have color 3. The synchronous schedule
based on this coloring is shown in (b) and the average number of processors operating per
time unit is 5/3. With the schedule in (c), however, there are two processors operating
at each time unit.

At any point in time, either one of the two processors i and J is in control of R;; or the
resource is traveling from one processor to the other. When a processor ¢ takes control
of the resources R;; associated with all of its incident arcs, it is allowed to perform an
operation, and we assume that it will do so in finite time. Subsequently, and for each j
such that (i,) € A, the resource R;; is transferred to processor j. This is done by sending
an appropriate message to each adjacent processor j. The resource is said to be traveling
while this message is in transit and as soon as that message reaches processor j, the
resource R;; is under the control of processor j. The state of this scheduling procedure,
at any given time, can be described compactly by assigning a particular direction to each
arc (i, j) € A, thus converting G to a directed graph. In particular, we orient arc (4, 5)
to point toward processor j if and only if the resource R;; is under the control of j or is
traveling toward j. Given a current orientation of the arcs in the graph G, we say that
processor ¢ is a sink if and only if all of its incident arcs (7, j) € A are oriented to point
toward i. It is seen that a processor that is a sink eventually has control of all relevant
resources and performs an operation. The subsequent transfer of these resources to the
neighbors of i is then equivalent to reversing the directions of all arcs incident to i. We
notice that if the previously described directed graph has no sink, then the graph remains
forever unchanged. In that case, no processor ever becomes a sink, no processor ever
operates, and the system is deadlocked. (This is the case, for example, in Fig. 8.3.1.) It
will be shown that we can guarantee the existence of a sink at any given time, provided
that the directions with which the scheduling algorithm is initialized make G a directed
acyclic graph, that is, a directed graph with no cycles consisting exclusively of forward
arcs.

590 Organizing an Asynchronous Network of Processors Chap. 8

In terms of the directed graphs just defined, the algorithm can be simply described
as follows (see Fig. 8.3.3 for an illustration).

Arc Reversal Algorithm. The algorithm is initialized by assigning a direction to
each arc (¢, 7) € A so that the resulting directed graph is acyclic. Any processor who is
a sink performs an operation, within a finite amount of time, and reverses the directions
of its incident arcs.

VYIY

Figure 8.3.3 Illustration of the arc reversal algorithm. Processors marked with an X
are those that are ready to operate and reverse the directions of their incident arcs.

We now verify that if a directed graph is acyclic and if the orientation of each arc
incident to a sink is reversed, then the resulting directed graph is also acyclic. Let ¢ be a
sink that has performed an arc reversal. After the arc reversal, there can be no positive
cycle going through i because there are no arcs oriented toward 7. Furthermore, the
directions of all arcs not incident to 7 are unchanged by the arc reversal. Assuming that
the directed graph was acyclic before the arc reversal, we see that no positive cycles not
involving ¢ are created by the reversal. We conclude that the directed graph maintained
by the arc reversal algorithm is at all times acyclic.

We next verify that any directed acyclic graph has a sink. To see this, suppose
that there was no sink. Then we could construct an arbitrarily long path by starting at
an arbitrary node and choosing each time an outgoing path from the current node. In
particular, if the path has at least n arcs, then some node has to be visited at least twice,
thereby contradicting acyclicity and proving the existence of a sink.

This discussion shows that at any given time, the directed graph maintained by the
algorithm has a sink. It follows that for any given time ¢, there exists a subsequent time ¢’
at which some processor operates. In particular, deadlock is never reached. We continue
by verifying a fairness property of the algorithm. Let X;(¢) be the number of operations
performed by processor ¢ until time t. Between consecutive operations by processor ¢,
all of its neighbors must operate at least once, in order to reset the corresponding arcs
so that they point toward 3. It follows that | X;(¢) — X;(¢t)| < 1 for all arcs (i, j). Thus,
if the graph G is connected, we have

(Xt - X;W <d, Vi, (3.2

where d is the diameter of the graph. Hence, no processor can be arbitrarily far ahead
of the others, as far as the number of operations is concerned.

Sec. 8.3 Resource Scheduling 591

In the context of the distributed execution of iteration (3.1), the scheduling algo-
rithm is implemented as follows. Each arc is initially assigned a direction, so that the
resulting directed graph is acyclic. Each processor ¢ that is initially a sink learns the
initial value of z; for each neighbor j and updates z; according to Eq. (3.1). It then
transmits the new value of z; to all its neighbors. When a neighbor j of ¢ receives a
value of x;, it interprets this as a signal that the direction of the arc (j, 7) has now been
reversed to point toward j. Eventually, processor j becomes a sink, performs an update
of z;, etc. To summarize, it is seen that a processor performs an update as soon as it has
received new values from all of its neighbors and transmits to them its new value as soon
as it has performed its own update. The similarity with the local synchronization method
of Section 1.4 should be evident. The only difference is that here we are dealing with
a Gauss—Seidel rather than a Jacobi iteration, and that the algorithm uses the undirected
dependency graph as a starting point.

We now investigate the choice of the directed acyclic graph with which the schedul-
ing algorithm is initialized. For the sake of analysis, let us assume that the algorithm
starts at time 1, that an operation by a processor takes exactly one time unit, and that
communication between processors is instantaneous. (In particular, processors adjacent
to a sink are instantaneously informed about the arc reversal when it occurs.) We finally
assume that a processor starts its operation as soon as it becomes a sink. Let G(t) denote
the directed acyclic graph at time ¢. We notice that the set of all possible graphs G(t) is
finite, since there is only a finite number of possible orientations of the arcs in the graph
G. Since G(t) changes deterministically, it must eventually become a periodic function
of time. We let M(t) be the number of sinks in G(t). We see that M(t) eventually
becomes periodic and, therefore, the limit

t
M = lim M

t—oo t

exists. The number M is the average number of operations per time unit and should be
thought of as a measure of concurrency. We notice that

t n
DM =Y Xi(t+1).
r=1 =1

We divide both sides by nt, take the limit as ¢ tends to infinity, and use inequality (3.2)
to obtain
M X
m -,

— =1

Vi.

n t—oo ¢
The number M depends strongly on the directed acyclic graph G(1) with which the
algorithm is initialized. In particular, for the same underlying undirected graph G, M
could be as large as n/2 and as small as 1 (see Fig. 8.3.4 for an example). It turns out that
with an optimal choice of G(1), the scheduling method under consideration achieves the

592 Organizing an Asynchronous Network of Processors Chap. 8

maximum concurrency over all schemes where a processor must operate once between
two consecutive operations by any neighbor [BaG87]. Unfortunately, the problem of
choosing G(1) so as to maximize M is an intractable combinatorial problem (NP-hard)
[BaG87], although it is often easy to solve when G has a special structure (Exercise 3.2).

t=1 t=2 t=1 t=2
(a) (b)

Figure 8.3.4 The effects of the initial assignment of directions to the arcs on the resulting measure
of concurrency M. (a) A good choice of G(1). Here M = 3. (b) A bad choice of G(1). Here
there is only one sink at a time and M = 1. More generally, if we have a ring of n nodes, with n
even, a best choice of G(1) leads to M = n/2, whereas a bad choice leads to M = 1.

EXERCISES

3.1. Let G(1) = (N R A(l)) be the directed acyclic graph with which the arc reversal algorithm
is initialized. Suppose that there exist nodes %1,...,7ix € N such that (3;,ix) € A(1) and
(ik,ik+1) € A1) for k =1,..., K — 1. Show that the concurrency measure M is bounded
above by n/K. Hint: See Figure 8.3.4.

3.2. Suppose that the graph G is a d—dimensional mesh. Assign initial orientations to the arcs
of G so that the value of the concurrency measure M in the resulting scheduling algorithm,
is as large as possible. Hint: Generalize the red—black ordering of Subsection 1.2.4 to the
d—dimensional case.

8.4 SYNCHRONIZATION USING ROLLBACK: ASYNCHRONOUS
SIMULATION

We have seen in Subsection 1.4.1 that a synchronous algorithm can be implemented
in an inherently asynchronous parallel or distributed computing system, using either
global or local synchronization methods. However, these methods have drawbacks that
in certain contexts can be significant. For example, in global synchronization, several
processors can be idle, waiting for other processors to complete the computations of
the current phase. Also, the local synchronization method works well if each processor
knows from which processors it is going to receive a message at the current phase, but
involves substantial communication overhead (dummy messages) in case such knowledge
is missing (see the discussion in Subsection 1.4.1). The synchronization method presented

Sec. 8.4 Synchronization Using Roliback: Asynchronous Simulation 593

here is based on an entirely different principle: each processor keeps computing at its
own pace under the assumption that no message is going to be received from other
processors; in the case that such a message is actually received, the processor invalidates
its computations and starts over again, taking the received message properly into account.
This mechanism, called rollback, is a general purpose synchronization procedure and
can be used in the implementation of any synchronous algorithm in an asynchronous
computing system. It has been applied mainly in concurrency control of distributed
databases and in the simulation of dynamical systems. We use simulation as our working
example in this section, but it should be kept in mind that the method is of more general
validity.

A Model of Discrete Time Dynamical Systems

We wish to simulate a discrete time dynamical system (referred to as the physical system)
consisting of n interacting subsystems. It is natural to carry out the simulation using a
parallel computing system with a different processor assigned to the task of simulating
a different subsystem. The processors have to exchange messages, in the course of the
simulation, in order to handle the interactions between subsystems.

To be more specific, let S; be the ith subsystem and let its state at time ¢ be
described by a state variable z;(t) belonging to some state space X;. Here t is an
integer time variable, running from O to some final time 7', which represents physical
time in the system being simulated. It should be distinguished from real time, which
is the time in the clock of an observer looking at the computing system used for the
simulation. The initial states z;(0) in the physical system are assumed to be known.
Let G = (N, A) be a directed graph. The set N of nodes is equal to {1,...,n}, with
node i representing subsystem S;. The presence of an arc (7, j) indicates the possibility
that the state of subsystem S; influences the state of subsystem S;. For any (i,j) € A
and any (physical) time ¢, let m;;(t) be a variable, taking values in a space M;;, which
models the interaction of subsystems S; and S; in a way to be made precise shortly. We
postulate a functional dependence of the form

mij(t) = gs; (z:(1)), (z,5) € A, @.1)

where g;; is a function from X; into M;;. We wish to allow for the possibility that
even if (¢, j) € A, subsystems S; and S; do not interact at every time instance. We thus
assume that m;; can take a special (null) value, denoted by n. The equality m;;(t) =
is interpreted as the absence of any interaction from S; to S; at physical time ¢. Let
z;(t) be the vector consisting of all interaction variables m;(t), where (j,¢) € A. We
assume that we have a model of the form

xl(t + 1) = fl (xl(t)v Zl(t))a (4'2)

for each subsystem S;. Equations (4.1) and (4.2) define completely the computations
that we would like to carry out. In fact, such equations can be used to describe a broad

594 Organizing an Asynchronous Network of Processors ~ Chap. 8

variety of synchronous algorithms and for this reason, the discussion that follows is of
much more general applicability.

A Synchronous Simulation Algorithm

We assign a separate processor P; to each subsystem S;. The computation proceeds
as follows. If processor P; knows the value of z;(¢) and has received a message from
processor P; containing the value of mj;(t) for every j such that (j,i) € A, then
processor P; computes z;(t + 1) and m;,(t + 1) for each k such that (i, k) € A, using
Egs. (4.2) and (4.1), respectively. Subsequently, for every k such that-(i, k) € A, the
message m;i(t + 1) is transmitted to the corresponding processor Pi. [Such a message
is transmitted even if m;(t + 1) has the null value 7.] We allow for the possibility
that messages are not received in the order in which they were transmitted. In order for
the receiver to be able to interpret correctly the received messages, we assume that the
messages also contain a timestamp (see Fig. 8.4.1). For concreteness, let us assume that
messages have the format (¢, m, ¢, 7). Reception of such a message informs the recipient
that m;;(t) = m. We refer to ¢ as the timestamp of the message.

Figure 8.4.1 [Illustration of the need for
timestamps. Here there are two subsystems
and subsystem S; affects S5, but not
conversely [A = {(1,2)}]. The nodes

in this figure indicate the real times at
which the values of the variables x;(t)

are computed. Processor P, receives

two messages at real times r; and 7,
respectively, but if these messages carry no
timestamps, it has no way of telling which
Real time one is m2(0) and which one is m5(1).

Assuming that all messages eventually reach their destinations, it is evident that the
previously described algorithm correctly simulates the system described by Egs. (4.1) and
(4.2). Consider the special case where each stage requires C time units of computation
by each processor and assume that each message reaches its destination with a delay
of D time units. Then the total time until the completion of the simulation is equal to
(C + D)T. This is the best possible if the subsystems interact all of the time.

The method just described is precisely the local synchronization method of Subsec-
tion 1.4.1. It is an appropriate method if subsystems S; and S; interact at every physical
time step for each ¢ and j such that (7, j) € A. On the other hand, if such interactions are
rarely present, then m;;(t) is equal to the null value 7, most of the time. Then processor
P; will often have to wait to receive a message m;;, only to discover that it carries the
uninformative value w. The objective of the synchronization method to be presented is
precisely to avoid waiting for these null messages. ‘

The Rollback Mechanism

Let us consider the following scheme. Each processor continues updating according
to Eq. (4.2) and keeps sending messages containing values of the interaction variables,
generated according to Eq. (4.1). We assume again that messages have the generic

Sec. 84 Synchronization Using Rollback: Asynchronous Simulation 595

format (¢, m, i, 7) and that they are guaranteed to reach their destination after some finite
but unknown real time and not necessarily in the order that they were sent. Whenever
processor P; needs [in order to execute Eq. (4.2)] the value of some interaction variable
m;;(t) and a message (f,m,j,7) has not been received, then processor P; uses the
default value 7. In effect, processor P; takes a gamble that interactions will be absent.
If interactions are indeed absent for all times and for all pairs of subsystems, then
it is evident that the simulation is completed in the least possible time, since each
processor continues computing at full speed. Now suppose that during the simulation,
a nonnull interaction variable m;;(t) # m is generated. When processor P; receives
the corresponding message (t,m,1,), there are two distinct possibilities that we now
discuss.

Suppose that at the real time instance when m;;(t) is received, z;(t 4 1) has not
been computed. Then when processor P; eventually reaches the point where x;(t 4+ 1) is
to be generated, it will have available and will be able to use the correct value of mg;(%).

" Now suppose that processor P; has already computed z;(t + 1), before receiving
m;;(t), while assuming, incorrectly, that m;;(t) = w. Then the value of z;(t + 1) and all
subsequent values z;(t'), t' > t, that have already been computed are incorrect and must
be recomputed. (We then say that processor P; is rolling back; see Fig. 8.4.2.) In order to
recompute these values, processor P; must remember the value of x;(¢) and all messages
mp;(t'), t' > t, it has received. Furthermore, all messages m;x(t'), t' > t, sent by
processor P; are incorrect because they were evaluated from Eq. (4.1) on the basis of an
incorrect value of x;(t'). Therefore, processor P; has to transmit special messages to the
other processors, informing them that certain messages transmitted in the past are invalid.
We refer to these special messages as antimessages. For concreteness, we assume that the
antimessage invalidating the message (¢, m, j, k) has the format (¢, m, j, k,). Notice that
the transmission of appropriate antimessages requires each processor to keep a record
of the messages it has transmitted in the past. Whenever a processor Pj receives an
antimessage (t,m, j, k,), some of the results of earlier computations by that processor
can be invalidated, which can invalidate some messages that have been already sent by
Py.. Thus, P, may have to send antimessages as well. In particular, each antimessage
can trigger the transmission of an arbitrary number of further antimessages (see Fig.
8.4.3). Finally, notice that a processor can receive an antimessage (t,m, i, j, *) without
first receiving the corresponding message (¢, m, ¢, j), because we allow messages to be
received out of order, and we must specify how such a situation is to be handled.

We continue with a full description of the simulation algorithm, but we first make
the key observation that null messages of the form (¢, 7,1, j) are inconsequential: pro-
cessor P; performs the same computations whether or not such a message has been
received. The reason is that 7 is the default value to be used in the absence of a mes-
sage. It follows that processor P; does not have to transmit a message if the value of the
interaction variable m,;(2) is equal to 7. This modification can save a substantial amount
of communication and is one of the reasons for introducing the rollback mechanism.

We assume that for each (7, j) € A, there is a buffer B;; in which messages from
P; to P; are placed upon reception until they are processed by P;. We also assume that
each processor P; keeps the following in its memory:

596 Organizing an Asynchronous Network of Processors Chap. 8

s O—O—D—0

&
«\’»
5 O—F—D—0
Physical time
(a)
Start of rollback
upon reception of m,; ,(1)
s O—O—D—O—F—O—0
)
o X,(2) is recomputed
N after the rollback
%0, A —O

Real time
(b)

Figure 8.4.2 [Illustration of a rollback. (a) A possible scenario for the physical system
being simulated. Here the state of subsystem S; at time 1 affects the state of S, at time
2. (b) A possible scenario for the simulation. A node labeled ¢ stands for the point in
time that x;(t) was computed by processor F;. In this scenario, processor P, is slow
and the communication delay of the message m»(1) is large enough so that this message
reaches p-ocessor P; after x;(3) is computed. Receipt of such a message invalidates the
computation of z2(2) and x(3), which have to be recomputed.

(a) An integer variable 7; initialized with 7; = —1. [This variable is interpreted as the
largest value of ¢ such that z;(¢) has been computed and the computed value has
not been invalidated.]

(b) A record containing a value z;(7) for every 7 such that 0 < 7 < 7;.

(c) A record of all messages (¢,m, j,¢) it has received and processed and for which a
corresponding antimessage (t,m, 7, %, *) has not been received and processed.

(d) A record of all antimessages (t,m, j, %, *) it has received and processed and for
which a corresponding message (¢, m, j,%) has not been received and processed.

(e) A record of all messages (t,m,%,7) it has sent and for which it has not sent a
corresponding antimessage.

Initially, the records (b) to (e) are empty. During the algorithm, processor P;
executes the following three instructions. (Several improvements are possible; see e.g.
Exercise 4.2.)

1. If a message (t,m, j,4) exists in one of the buffers Bj;, remove it from the buffer
and do the following:

Sec. 84 Synchronization Using Rollback: Asynchronous Simulation 597

5 O—D—— D0

(b)

Figure 8.4.3 Illustration of a rollback that causes a further rollback at another processor.
(a) A possible scenario for a physical system consisting of three subsystems. Here the
arrows stand for nonnull interactions. For example, x;(0) affects z,(1) by means of an
interaction m2(0). (b) A corresponding possible scenario for the simulation. Processor
P, computes z(1) and sends a message a = my3(1) to processor P;. However,
the message 5 = m2(0) reaches processor P, after x(2) has been computed, causes
a rollback, and invalidates the values of z,(1) and z,(2). This rollback triggers an
antimessage o’ from processor P, to processor P3 to invalidate the message .. In the
meantime, processor P3 has sent a message -y to processor P, based on its computation
of 23(2). However, when the antimessage o is received, the value of z3(2) is invalidated
and an antimessage +’ is sent to processor P; to cancel the message v. Eventually, z5(1)
is recomputed and a new message 6 is sent to processor Pj, carrying the correct value
of my3(1). Then processor P; eventually computes the correct value of z3(2) and sends
a message € with the correct value of m32(2). This message causes one more rollback
at processor P, which recomputes x2(3).

1.1. If the antimessage (t,m, j,%,*) is found in the record (d) of antimessages,
then delete it and discard the message (¢, m, j, 7).

1.2. If the antimessage (¢, m, j, ¢, *) is not found in the record (d), then place the
message (t,m, j,1) in the record (c) of messages received and processed. If
t > 7;, no further action is required. If ¢ < 7;, then do the following:
1.2.1. (Rolling back) Assign to the variable 7; the new value ¢ and delete
x;(t') from record (b) for all ¢’ > ¢.

598 Organizing an Asynchronous Network of Processors ~ Chap. 8

1.2.2. (Canceling incorrect messages) Remove all messages of the form
(t',m,i,k), ' > t, from the record (¢) of messages sent and send corre-
sponding antimessages (t', m, 1, k, *).
2. If an antimessage (¢, m, 3,1, *) exists in one of the buffers B;;, remove it from the

buffer and do the following:

2.1. If the message (¢, m, j, ¢) is not found in the record (c) of messages, then place
the antimessage in the record (d) of antimessages received and processed.

2.2. If the message (t,m, j,) is found in the record (c), then delete it from that
record and discard the antimessage. If ¢ > 7;, no further action is required.
If ¢t < 7, then do the following: ,
2.2.1. Assign to the variable 7; the new value ¢ and delete z;(t") from record
(b) for all ¢/ > t. v
2.2.2. Remove all messages of the form (¢',m,,k), t' > t, from the record
(e) of messages sent and send corresponding antimessages (t', m, 7, k, *).

3. If 7, < T, then do the following:

3.1. Compute z;(7; + 1) and m;x(7; + 1) for each k such that (i, k) € A, using
Egs. (4.1) and (4.2). [In the special case where 7; = —1, instead of using
Eq. (4.2), simply fetch the value of x;(0), which is viewed as an external
input.] If the computation of z;(7; + 1) requires the value of m;;(7;) [i.e., if
(4,1) € Al, look for it in the record of messages received and processed. If
it is not found, use the default value 7. If several messages from P; with the
same timestamp 7; are found in that record, choose one of them arbitrarily.

3.2. Increment 7; to 7; + 1.

33. If r; < T, then for each k such that (i,k) € A and m;i(7;) # 7, send
a message (7;,m,t,k) to processor Py, with m = m;(7;), and place this
message in the record (e) of messages sent.

The algorithm terminates when 7; = T for each 7, and there are no messages or
antimessages that have been transmitted but have not yet been received and processed.

We assume that each processor keeps executing instructions 1, 2, and 3 at its
own pace and in an arbitrary order. For example, if several messages and antimessages
have been placed in the buffers Bj; of processor P;, then this processor has the option
of executing either instruction 1 or 2, and handle any one of the received and yet
unprocessed messages and antimessages. Still, we assume that every transmitted message
or antimessage is received correctly and is processed after a finite amount of time, in
the course of some execution of instruction 1 or 2. We also assume that if 7; < T,
then processor P; will eventually execute instruction 3. It is assumed that each one of
the three instructions is indivisible: for example, processor P; will never interrupt the
execution of instruction 2 to start executing instruction 1.

We now argue that the algorithm eventually terminates with the correct values of
z;(t) for each ¢ and t € {0,1,...,T}, where a value is called correct if it is the one
generated by a synchronous execution of Egs. (4.1) and (4.2). To reach this conclusion,
we will show that for each physical time ¢, there exists some real time r; such that the
following are true:

Sec. 84 Synchronization Using Rollback: Asynchronous Simulation 599

(a) We have 7; >t for each i.

(b) There are no messages or antimessages in transit (i.e., sent but not yet received
and processed) with a timestamp smaller than ¢.

We start by noticing that if (a) and (b) are true at some real time r;, then they
remain true for all real times » > r;. To see this, we examine the nature of instructions
1 to 3 and verify that there is no possibility for (a) or (b) to become false. For example,
if instruction 3 is executed, 7; becomes 7; + 1 > ¢t + 1 > t, messages generated have
the timestamp 7; + 1 > ¢ + 1, and no antimessages are generated. If instruction 1 is
executed, it involves a message with a timestamp no smaller than ¢. Thus, even if a
rollback occurs, the new value of 7 will be no smaller than ¢, and any antimessages
caused by this rollback have a timestamp no smaller than ¢t + 1. If instruction 2 is
executed, the argument is similar.

We now proceed by induction. We observe that for ¢ = 0, condition (b) always
holds and condition (a) becomes and remains true as soon as instruction 3 is executed
at least once by each processor. Consider now some ¢ < T' and suppose that (a) and (b)
are true at some real time r,. The argument of the preceding paragraph shows that (a)
and (b) remain forever true and, furthermore, no new messages or antimessages with a
timestamp smaller than ¢ + 1 will be generated in the future. In particular, any messages
and antimessages with a timestamp ¢ will eventually reach their destinations and be
processed. (This argument is correct if we assume that there is only a finite number
of messages or antimessages in transit. Otherwise, it might take an infinite amount of
time until all of them are received and processed, even though each one is received and
processed in finite time. This issue is, however, of no concern because it can be proved
that only a finite number of messages and antimessages is generated in the course of the
algorithm; see Exercise 4.1.) We conclude that there exists some real time r,’: after which
condition (b) will be satisfied for ¢t + 1. Similarly, after real time r;, the value of each
7; never becomes smaller than ¢. Moreover, at the first time after r; that instruction 3
is executed, 7; is incremented to a value no smaller than ¢ + 1 and is never going to
decrease below t + 1 because no message or antimessage with a timestamp smaller than
t + 1 will be received in the future. Therefore, there exists a real time ;4 > r; such
that condition (a) is true for every real time r > 7.

We conclude that there exists some time r at which 7; = T, for each 7, no
messages or antimessages are in transit, and, therefore, the algorithm has terminated. It
remains to show that at termination, all the values z;(t) and m;;(t) in the records of the
processors are correct for each ¢. This is obviously true for ¢ = 0 and we proceed again
by induction. Assuming that it is true for some physical time ¢, the messages m;;(t)
in the buffers of processor P; have the correct values and this implies that the value
of z;(t + 1) is also correct. Therefore, the only messages m;x(¢ + 1) that have been
sent and have not been invalidated by subsequent antimessages have the correct values.
Since, at termination, there are no messages or antimessages in transit, it follows that the
messages m;(t 4 1) in the buffers of all processors Pj have the correct values, which
completes the induction.

Let us now make the additional assumption that messages and antimessages are
received in the same order as they are transmitted. In this case, the antimessages in-

600 Organizing an Asynchronous Network of Processors Chap. 8

validating past erroneous values of m;(t) reach processor P; before the final correct
message. Therefore, as soon as the correct messages are received, processor P; can
compute the correct value of z;(t) without any further delay. We conclude that in this
case, the algorithm proceeds as fast as possible: correct values are computed at the first
instance of time when the required data have been received. To be more specific, suppose
that computations take zero time and the transmission delay of a message or antimessage
from P; to P; takes T;; time units. Let 7; , be the real time of the last (and, therefore,
correct) computation of x;(). Assume that r; o = 0 and it can be seen that

Tit+1 = max{ri,tamax{rj,t + Ty | (4,9 € A, mj;(t) # W}},

where we use the convention that max{c | ¢ € C} = —oc when C is the empty set.
On the other hand, given our assumptions on communication delays, no other algorithm
could evaluate xz;(t) before real time r; 4, even if we knew ahead of time which of the
interaction variables m;;(¢) are absent (null). We therefore have an optimal algorithm as
far as time is concerned.

The argument in the preceding paragraph refers to an idealized situation. It is based
on the assumption that communication delays are independent of the particular algorithm
being used and ignores the overhead associated with the rollback mechanism. In fact,
rollback involves several types of overhead:

(a) Computational overhead due to invalid computations: computational resources are
wasted in computing often incorrect values of z;(¢) to be invalidated later. Suppose
that a processor can stop a computation immediately upon reception of an inval-
idating message and start a new computation using the message value received.
Then the computational overhead does not slow down the computation because any
processor engaged in a computation to be invalidated later only has the alternative
option of staying idle. On the other hand, if computations cannot be interrupted
and take a long time to be completed, this overhead should be taken into account.

(b) Communication overhead: this can be quite severe in the worst case. One can
envisage multiple rollbacks triggering further rollbacks, each one generating large
numbers of antimessages that result in queueing delays. Even if communication
resources are abundant, excessive communication can drain the computational re-
sources of the processors, since each message requires some amount of processing.
On the other hand, it is hoped that for a class of interesting systems, rollbacks will
exhibit some temporal and spatial locality: if a processor rolls back, it may only
roll back a few time units, and if any further rollbacks are triggered, these will
involve only a few neighboring processors. However, this hypothesis has not been
established theoretically or experimentally as yet.

(c) Finally, the algorithm has significant memory requirements. Processors have to
keep records of all messages sent and received, and of the values of z;(t) that
have been computed. There are two partial remedies to this problem that we now
discuss.

Sec. 8.4 Synchronization Using Rollback: Asynchronous Simulation 601

Assuming that messages are relatively infrequent, the main memory requirement
comes from having to remember old values of x;(t). This requirement is reduced if a
processor saves x;(t) only once in a while, say once every A time units, where A is
some integer. This introduces a new problem: if a processor has to roll back to some
time ¢ for which the value of z;(¢) has not been saved, then it must go even further back,
use an earlier value of z;, and reconstruct x;(t). So, the savings in memory are offset
by increased computational requirements each time that a rollback occurs. A reasonable
compromise is to save all values z;(t) for ¢ close to 7;, and save a few old values just in
case that a rollback to the distant past occurs. Again, whether this scheme would work
well depends on the validity of the hypothesis of temporal locality of rollbacks.

Another reduction of the memory requirements is suggested by the following ob-
servation. If 7; > ¢ for all 4, and if there are no messages or antimessages in transit
(transmitted but not received and processed) with timestamps smaller than £, then there
is nothing that could cause a rollback resetting 7; to a value smaller than ¢. This means
that the values of z;(7) and m;;(7) for 7 < t can be discarded. Unfortunately, such a
memory management mechanism cannot be easily implemented in a distributed manner,
because it involves global properties of the algorithm, as opposed to the local information
available to each processor. It can be implemented, however, by employing the snapshot
algorithm of Section 8.2 (under the FIFO assumption). To see this, we say that the state
of computation of processor P; belongs to the set X if 7; > ¢ and any messages or
antimessages in the buffers Bj; (that is, received but not processed) have timestamps
greater than or equal to t. Also, we let M; be the set of all possible messages or
antimessages from ¢ to j with timestamps greater than or equal to t. These sets have the
invariance properties considered in Section 8.2, and, therefore, the snapshot algorithm
can be used to detect whether the local state of computation of each processor P; belongs
to X and each message or antimessage in transit from ¢ to j belongs to M.

A related problem with the algorithm is that the processors cannot detect termina-
tion based on their own local information. Rather, termination has to be detected either
by a host computer supervising the simulation or by a distributed termination detection
algorithm of the type discussed in Section 8.1. Alternatively, if the snapshot algorithm
is used to monitor the progress of the algorithm, the snapshots can also be used for the
purpose of termination detection.

Simulation of Continuous Time Discrete Event Systems

Asynchronous distributed simulation with rollback has been actually proposed not for
discrete time systems described by equations of the form (4.1)-(4.2), but for so called
discrete event systems. These latter systems evolve in continuous time, but their state
changes only at a discrete set of times. (An example of a discrete event system is a
queueing network with random arrivals and service times.) Some new difficulties arise
because the times at which these discrete events can occur are not a priori known.

We describe a model of a discrete event system and suggest some algorithms. The
issues are similar to those discussed in the context of the simulation of discrete time
systems, and for this reason, the presentation here will be less detailed.

602 Organizing an Asynchronous Network of Processors Chap. 8

We again have n subsystems Sy, ..., S, and a directed graph G = (V, A) indicating
the possible interactions between subsystems. Let z;(t) be the state of the ith subsystem
at time ¢. Here ¢ is a continuous time variable, taking values in [0,77]. We constrain
z;(t) to be a piecewise constant function of time, and for concreteness, we assume that it
is right—continuous. The times of discontinuity of z;(¢) are called event times. Whenever
an event occurs at subsystem &;, it can trigger an interaction with another subsystem
S;, assuming that (¢, j) € A. Whether this is the case or not depends on the state z;(t)
just after the event. To keep the discussion simple, we assume that interactions are
not instantaneous, that is, if an event occurs at subsystem S; at time ¢, the resulting
interaction can affect another subsystem S; only after some positive amount of time,
although we allow this time to be arbitrarily small. At the time that such an interaction
affects subsystem S;, an event is triggered at the latter subsystem. Events can also be
self-induced. In particular, if an event occurs at subsystem S; at time ¢, then a new
event time ¢’ is generated, as a function of the state z;(t) right after the event. The value
of ¢’ is the time of the next event at subsystem S;, unless an event is triggered earlier
due to an interaction from another subsystem.

The above description of a discrete event system is not very rigorous. The follow-
ing sequential algorithm simulates a discrete event system, and can also be taken as a
definition of the dynamics of such a system. Assume that the system has been simulated
up to a certain time ¢, including ¢ itself. Each event that has already occurred determines
the times at which certain events will occur in the future. Choose that event that is
scheduled to occur first among all those future events. (For simplicity, we prohibit si-
multaneous events at different subsystems. This is no loss of generality: since we do not
allow simultaneous interactions, if two events were to occur simultaneously, they could
not be causally dependent and their times could be perturbed by an infinitesimal amount
to make them appear non-simultaneous.) Suppose that the first future event is scheduled
to occur at subsystem S; at time ¢ > t. We can then simulate all subsystems up to time
t' as follows. No events occur at any of the remaining subsystems during the interval
[£,t'], and, therefore, the state of these subsystems remains unchanged. Concerning sub-
system S;, we have to simulate the particular event under consideration. That is, we
have to generate the new state of S; after the event, determine the times of interaction
with other subsystems caused by this event (if any), and determine the time of the next
self—generated event at subsystem S;. We can then proceed to the simulation of the next
event.

The above algorithm can be used to simulate an arbitrary number of events. In
particular, if only a finite number of events can occur during a finite time interval, the
algorithm can simulate the system for any arbitrary length of time. On the other hand,
this algorithm is inherently sequential, because after the occurrence of each event, we
need to determine the minimum event time over all events due to occur in the future and
all subsystems. Several modifications of this algorithm which are more parallelizable
have been studied. However, they are susceptible to deadlock and require, in general,
special deadlock resolution procedures or special assumptions on the nature of interactions
between subsystems [Mis86].

An alternative distributed simulation algorithm is based on the rollback scheme
and is almost identical to the algorithm provided earlier for discrete time systems. Each

Sec. 8.4 Synchronization Using Rollback: Asynchronous Simulation 603

processor P; keeps simulating its subsystem S; arbitrarily far into the future. At each
stage, it determines the time of the next event due to occur at S;, using the information
available. Whenever an event is simulated by P;, messages are transmitted to other
processors P; to inform them about events to be triggered at S; caused by the event
simulated at S;. If processor P; receives a message stating that an event is to occur at
some time ¢ at S; and processor P; has already simulated S; up to some time t' >t
then it has to undo and repeat its simulation for the interval [¢,t']. As before, appropriate
antimessages should be sent to invalidate any incorrect messages. The details are the
same as for the simulation of discrete time systems. In particular, if we assume that all
messages and antimessages reach their destinations and are processed in finite (real) time,
and if only a finite number of events can occur during a finite (physical) time interval,
then the rollback algorithm eventually simulates the system correctly, arbitrarily far into
the future.

An Example: Shortest Path Computation

In the example to be discussed here, the physical system to be simulated involves a
directed graph G = (N, A). With each arc (i,), there is an associated positive arc
length a;;. The physical system operates as follows: initially, all nodes have a state
z;(0) = 0o, except for node 1 for which z;(0) = 0. Node 1 emits a signal along its
outgoing arcs. When a node receives for the first time a signal along one of its incoming
arcs, it immediately retransmits it along all of its outgoing arcs. Signals to be received
later are not retransmitted. Let ¢; be the time at which subsystem S; receives a signal for
the first time. We define the dynamics of the state variables z;: we have z;(t) = oo for
t < t;, and when a signal is first received by node ¢ at time ¢;, the value of z; becomes
t; and stays at that value thereafter. Assume that the travel time of the signal along an
arc (i,) is equal to the arc length a;;. It is then obvious that ¢; is equal to the length of
a shortest path from node 1 to node .

This physical system can be viewed as a discrete event system. The event times
are the times at which the nodes receive signals. Notice that the state of a node changes
only at the first event at that node. We now describe a simulation of the system using
the rollback algorithm.

We use a network of n processors interconnected according to the topology deter-
mined by the graph G. The algorithm to be executed by processor P; is the following:
initially, z;(0) = oo for 7 # 1, and z,(0) = 0. Messages along an arc of the computing
system simulate signals along the same arc in the physical system. The only useful infor-
mation in these signals is the physical time at which the signal is received. Accordingly,
messages only carry a timestamp indicating the time that the corresponding signal should
reach its destination in the physical system.

Recall that the essence of the rollback scheme is that each processor simulates
its own subsystem, [the time function z;(-)] as far into the future as it can under the
assumption that all messages it has received are correct, and that no further messages are
to be received. Notice that in the present example, the time function z;(-) corresponding
to a set of messages is straightforward to determine: x;(¢) is infinite for ¢ less than
the smallest timestamp s; of the received, processed, and not invalidated messages, and
z;(t) is equal to s; thereafter. Thus, the time function x;(-) is uniquely determined by

604 Organizing an Asynchronous Network of Processors Chap. 8

the single number s;, and we can assume that processor P; only keeps s; in its memory,
rather than the time function z;(-). It follows that the rollback scheme amounts to the
following. Each processor P;, i # 1, keeps a number s; initialized at infinity. Whenever
a processor P; receives a message, it reads the timestamp t. If ¢t > s, it leaves s;
unchanged. If ¢t < s;, then s; is reset to ¢. The messages sent by P;, triggered by
the reception of a message with timestamp ¢, are determined as follows. If ¢ > §;, NO
message is sent, corresponding to the fact that a signal is emitted from the subsystem S;
only at the first time that the subsystem receives a signal. If on the other hand, ¢ < s;,
then the old value of s; is invalidated, which invalidates the signals already sent by P;.
Thus, processor P; must sent antimessages as well as new messages based on the new
value of s;. The message sent to processor P; should be equal to the sum of the new
value of s; and a;;; this is the time at which a signal is received by S; if this signal was
emitted from S; at a time equal to the new value of s;. In fact, it is not hard to see that
antimessages are redundant in this context. If processor P; receives a new message with
a smaller timestamp it automatically knows that the old messages are invalid.

An equivalent and more compact description of the above scheme is the following.
Each processor P;, i # 1, maintains a number s; initialized at infinity. Whenever
processor P; receives a message from processor P; with a timestamp s;- = 3 + ajj
which is less than s;, it resets s; to be equal to s; and sends a message s; + aji to
every processor k such that (j,k) € A. It is assumed that all messages are received
after some unspecified delay. We recognize this as being equivalent to the asynchronous
Bellman-Ford algorithm analyzed in Section 6.4. We now recall that the asynchronous
Bellman—Ford algorithm has, under a worst case scenario, exponential communication
complexity (see Fig. 6.4.2 in Section 6.4). This proves, in particular, that it is possible
for the rollback scheme to generate a number of messages and antimessages that is an
exponential function of the number of nonnull interactions in the physical system being
simulated.

EXERCISES

4.1. Show that the total number of messages and antimessages generated during the asynchronous
simulation of a discrete time system over a finite time interval [0, T], using the rollback
mechanism, is bounded by some function of 7" and the number of subsystems. Hint: Show
that the number of rollbacks that reset 7; to a value less than or equal to t is bounded by
a function of the number of messages and antimessages with a timestamp smaller than or
equal to ¢. Then bound the number of messages and antimessages with a timestamp equal
to ¢ + 1 and proceed by induction.

4.2. Consider a processor P; that computes z;(t + 1) by executing instruction 3. Suppose,
furthermore, that processor P; finds two messages (¢, m, 7,4) and (¢,m’, j,1) in the record
of messages received and processed, and that the message (¢, m, j, ¢) is used to compute
zi(t+1). Suppose that the antimessage (¢, m’, J,1%, %) is received later. Such an antimessage
causes a rollback at processor P; and the recomputation of x;(¢ + 1) (cf. instruction 2). On
the other hand, it is intuitively clear that if a message has not been used in computations,

Sec. 8.5 Maintaining Communication with a Center 605

its cancellation by a corresponding antimessage does not invalidate any computations and
should not cause a rollback.
(a) Modify the algorithm so that no rollback occurs in a situation such as the one described
above and explain why the algorithm still produces the correct results.
(b) Show that the situation under consideration cannot arise if messages and antimessages
are received in the order in which they are transmitted.

8.5 MAINTAINING COMMUNICATION WITH A CENTER

We consider an asynchronous network of processors described by an undirected graph
G = (N, A), where N = {0,1,...,n} is the set of processors, and A is the set of
undirected arcs. Each arc (z, j) indicates the existence of a bidirectional communication
link between processors 7 and j. Processor O represents a center and we are interested
in an algorithm that guarantees that each processor maintains a set of simple (loop—free)
paths through which it can communicate with the center. Furthermore, we would like
such an algorithm to be able to adapt itself to unpredictable topological changes such
as the removal or the addition of communication links. Finally, the algorithm should
be distributed, with the actions of each processor depending only on locally available
information.

The above problem has applications in a few different contexts. For example, in
certain data networks, such as mobile packet radio networks, topological changes can
be very frequent and the task of maintaining communication with a center can be quite
challenging. Another context is provided by geographically distributed sensor networks
in which data obtained by the sensors must be relayed to a central processing station.
Finally, one might envisage loosely coupled distributed computing systems operating in
an uncertain environment with failure—prone communications.

A simple solution to our problem could be a centralized one. Here the processors
transmit topological information to the center. Then the center, based on its knowledge
of the topology of the network, computes a set of simple paths, from each processor to
the center, and communicates these paths to the individual processors. This is not as
straightforward as it seems because for the processors to transmit topological information
to the center, they need to have already established communication paths, which is the
problem that we were trying to solve in the first place. For this reason, the task of
transmitting the topological information to the center becomes rather complex. It can
be solved by flooding or by running a topology broadcast algorithm (see the end of this
section). Both of these solutions can be undesirable, however, because they can involve
an excessive amount of message transmissions and considerable overhead.

A distributed alternative is based on the solution of a shortest path problem. Let
us assign a length of 1 to every arc in the network and let the processors execute
the asynchronous Bellman-Ford algorithm, with processor 0 playing the role of the
destination. If the topology of the network does not change and if the network is
connected, this algorithm will eventually terminate and a set of shortest paths from every
processor to the center will be obtained. Since the arc lengths are positive, such shortest
paths will be simple, as desired (Fig. 8.5.1). Furthermore, if topological changes occur,

606 Organizing an Asynchronous Network of Processors ~ Chap. 8 ’

Figure 8.5.1 Simple paths from every
processor to the center obtained by solving
a shortest path problem. An arrow on the

0 Center € (¢, 7) indicates that this arc belongs to a
shortest path from < to the center.

the processors will keep executing the Bellman—Ford algorithm, which is then guaranteed
to converge to a set of shortest paths for the new topology of the network.

While the shortest path approach provides a distributed algorithm for our problem,
it has two undesirable properties:

(a) The paths obtained when the algorithm reaches quiescence are guaranteed to be
simple, but this is not necessarily true while the algorithm is executing. If a proces-
sor attempts to communicate with the center before the algorithm has terminated,
the messages it sends might travel in a cycle before they reach their destination
(Fig. 8.5.2).

(b) If a topological change (say the addition of an arc) does not disrupt previously
established paths from the processors to the center, it might be reasonable to con-
tinue using these paths. Nevertheless, the shortest path algorithm may lead to major
changes in the paths (Fig. 8.5.3).

We now proceed to develop a class of algorithms for the problem under consider-
ation. In these algorithms, starting with the original undirected graph G, we convert it
into a directed graph G’ by assigning a direction to each one of its arcs. If the assigned
directions are such that G’ is acyclic (i.e., there are no cycles consisting exclusively of
forward arcs), we say that G’ is a directed acyclic graph (DAG). If G’ is a DAG and
node 0 is the only sink, we say that G’ is oriented toward the center; otherwise, we call
it disoriented. Notice that if we manage to assign directions to the arcs so that G’ is
acyclic and oriented, we have obtained a solution to our problem. In particular, starting
from any node ¢, consider any path obtained by traversing consecutive arcs in accordance
to their assigned directions. Such a path must eventually come to an end because G’
is acyclic. When it comes to an end, a sink must have been reached and, since G’ is
oriented, that sink must be node 0 (Fig. 8.5.4).

The algorithms to be presented maintain at all times a direction for each arc and
rely on the following properties:

Property A. The algorithm is initialized by assigning directions to the arcs so
that the resulting directed graph is acyclic.

Sec. 8.5 Maintaining Communication with a Center 607

Figure 8.5.2 Formation of a cycle when the paths are chosen by a shortest path algo-
rithm. (a) Original shortest paths. The labels next to each node indicate estimates of the
distance from the center. Also, an arrow on arc (4, j) pointing toward j indicates that
node 7 perceives this arc as belonging to a shortest path to the center. (b) Arc (3,0) is
removed from the network and arc (5,3) is added. Processors 3 and 5 perform simulta-
neously an iteration of the Bellman-Ford algorithm to obtain new distance estimates of
3 and 2, respectively. (c) Processor 4 performs an iteration to obtain a distance estimate
of 3. The shortest paths perceived by each processor are such that a cycle is formed. In
particular, if processor 4 attempts to send a message to the center, that message could
circulate in the cycle until eventually the processors perform more iterations and obtain
the correct shortest distances.

Figure 8.5.3 (a) A network and
corresponding shortest distances. (b) Arc
(5,0) is added to the network. Although
the old shortest paths can still be used for
communication with the center, the new
shortest paths are different.

608 Organizing an Asynchronous Network of Processors Chap. 8

Figure 8.5.4 (a) An oriented DAG. (b) A
(a) (b) disoriented DAG.

Property B. The direction of any arc can only be changed in a way that preserves
acyclicity.

Property C. In the absence of topological changes and assuming that the undi-
rected graph G is connected, the algorithm eventually terminates and, at termination,
processor 0 is the only sink.

Property D. When an arc is added, it is assigned a direction so that the new
directed graph is still acyclic.

Clearly, any algorithm with these four properties provides a solution to our problem.
Acyclicity is preserved throughout, resulting in loop—free paths, and at termination, we
have an oriented DAG.

A simple way for initializing any algorithm is by letting arc (i, 7) point toward
processor j if and only if ¢ > j. This results in a DAG because any path in the directed
graph can only go toward processors with smaller identity numbers and cannot, therefore,
contain a cycle.

It is assumed in the sequel that the direction of an arc is under the control of the
processor to which it points from the time that this processor learns this direction until
the time that the direction is changed. In particular, if a processor is in control, it knows
the correct direction. Also, our subsequent algorithms are such that a processor that is not
in control remains passive. It follows that no actions will ever by taken by processors
with incorrect knowledge of the direction of an arc. In order to keep the discussion
simple, we will assume that every processor always knows the current directions of its
incident arcs (i.e., arc reversal information is instantaneously transmitted and received
along an arc whenever its direction is reversed), but the above discussion implies that
this assumption is not really necessary.

Our first algorithm is very simple:

Full Reversal Algorithm. The algorithm is initialized by assigning arc directions
so that the resulting directed graph is acyclic. Each processor knows the directions of its

Sec. 8.5 Maintaining Communication with a Center 609

incident arcs. If all arcs incident to processor ¢ point toward ¢ (i.e., if 4 is a sink) and if
¢ # 0, then processor 7 will, after some finite amount of time, reverse the directions of
all these arcs.

Arc reversals by a processor ¢ in this algorithm are assumed to be instantaneous
operations and, in particular, all arcs involved are simultaneously reversed and the neigh-
bors of ¢ are informed about this reversal after a finite amount of time. We now verify
that the full reversal algorithm has Properties B and C. Concerning Property B, it has al-
ready been shown in Section 8.3 that an arc reversal by a sink in a directed acyclic graph
preserves acyclicity. For Property C, let X;(t) be the number of times that processor %
has performed a full arc reversal until time ¢. Let j be a neighbor of i. After an arc
reversal by processor 4, the arc (7, j) points toward processor j. In order for processor
@ to perform another arc reversal, it must become a sink and this is possible only if
processor j performs an arc reversal in between. This shows that a full arc reversal is
performed by processor j between any two consecutive full arc reversals by processor i.
Hence | X;(t) — X;(t)| < 1 for all times ¢ and for all pairs i and j, of neighboring pro-
cessors. Furthermore, processor 0 never performs an arc reversal and we have Xo(t) = 0
for all . Assuming that the underlying graph is connected, we obtain X;(t) < d for all
times ¢, where d is the largest distance from processor O to any other processor i. We
thus see that in the absence of topological changes, each processor performs at most d
full arc reversals and the algorithm terminates after a total of less than nd arc reversals.
After termination, no processor ¢ # 0 can be a sink because if it were a sink, it would
eventually perform an arc reversal, thereby contradicting termination. Figure 8.5.5 illus-
trates the algorithm for a particular example and Exercise 5.1 shows that the worst case
estimate O(nd) on the total number of full arc reversals is tight.

® O o——=o
O——R———-C ®
——70 & J
t
Oo——=R O @
" O——O——@
Figure 8.5.5 Illustration of the full
reversal algorithm. The black node

~ Y corresponds to the center and an X denotes
a sink ready to perform an arc reversal.

¢
O
¢

We have not yet mentioned how the full reversal algorithm copes with topological
changes, additions of new arcs in particular. It can be seen (Exercise 5.2) that there
always exists a direction that can be assigned to a new arc, so that acyclicity is preserved,
but this cannot be done, in general, using only the local information available to the

610 Organizing an Asynchronous Network of Processors Chap. 8

processors (Fig. 8.5.6). For this reason, we modify the algorithm so that more information
is available to the processors. "

Numbered Full Reversal Algorithm. This is the same as our earlier full reversal
algorithm except that each processor ¢ maintains an integer number a;. Initially, these
integers satisfy a; > a; for every arc (,7) that points toward j. Whenever processor
i # 0 becomes a sink, it performs an arc reversal and updates a; by letting

a; := 1+ max a;
‘ jeA® 7’

where A(?) is the set of neighbors of i. Furthermore, when a neighbor of ¢ becomes
aware of an arc reversal by i, it also learns the new value of a;. Finally, whenever a
new arc (¢, j) is added to the network, it is oriented to point to processor j if and only
if a; > aj; or a; = aj and 7 > j.

(a) (b)

Figure 8.5.6 Difficulties in assigning a direction to a newly created arc using only local
information. In (a) and (b), we show two directed acyclic graphs. Arc (1,4) has just
been added to the graph and is to be assigned a direction while preserving acyclicity.
In (a), this arc must point toward node 1, whereas in (b), it must point toward node 4.
However, in both examples, the local information available to processors 1 and 4 is the
same and is therefore insufficient for assigning a direction to arc (1, 4).

The initialization of the numbers a; is easy. For example, we can let a; = i for
all 4, and orient every arc (i, j) to point to the processor with the smaller identity. We
call the pair v; = (a;,) the value of processor <. We order values lexicographically, that
is, we let (a;,?) > (a;,j) if a; > a; or if a; = a; and ¢ > j. With this ordering, the
set of all possible values is totally ordered and, furthermore, no two processors can ever
have the same value. We notice that the algorithm maintains throughout the property"
that an arc (z, j) € A is oriented toward processor j if and only if v; > v;. In particular,
this property is preserved when arcs are added to or removed from the network, which
guarantees that we have an acyclic graph at all times and Property D holds. Properties
B and C remain valid by our earlier discussion. We conclude that this algorithm satisfies
all of our requirements.

Sec. 8.5 Maintaining Communication with a Center 611

As the numbered full reversal algorithm continues to be executed and as more
topological changes occur (resulting in more and more arc reversals) the numbers a; will
grow unbounded. It may thus be necessary to have the center obtain a global view of
the network and reassign new and relatively small numbers to the processors once in a
while. Alternatively, a processor can reduce its number a; on its own, provided that this
does not change the direction of any arc.

We continue with a modification of the full reversal algorithm that, in the absence
of topological changes, tends to terminate with a substantially smaller number of arc
reversals.

Partial Reversal Algorithm. The algorithm is initialized by assigning arc direc-
tions so that the resulting directed graph is acyclic. Each processor i # 0 maintains a
list of its incident arcs (¢, j) that have been recently reversed by processor j. (Initially
this list is empty.) If processor ; becomes a sink, then it reverses the directions of all
incident arcs that do not appear in the list and empties the list. An exception arises if
the list contains all arcs incident to i, in which case, all of them are reversed and the list
is emptied.

In the absence of topological changes, the partial reversal algorithm tends to involve
fewer arc reversals than the full reversal algorithm (see Fig. 8.5.7 for an illustration),
even though the best bound we have available is exponential in d. Exercise 5.3 provides
such a bound and also proves that the algorithm eventually terminates. The difficult part
in the proof of correctness of this algorithm is in verifying that acyclicity is preserved
throughout. Furthermore, as discussed earlier, in the context of the full reversal algorithm,
locally available information is not sufficient to handle topological changes. For this
reason, a set of auxiliary integer variables will be introduced. Each processor i is
assumed to maintain a value v; that is a triple v; = (a;, b;, ¢). Values are again ordered
lexicographically. That is, v; > v; if and only if one of the following three occurs: (i)
a; > aj, or (ii) a; = a; and b; > b, or (iii) a; = aj, b; = bj, and ¢ > j. The processors’
values are to be updated as in the following algorithm.

®——O0——0 ®
R
O—————O0——0
t
R Figure 8.5.7 Illustration of the partial
- I R - reversal algorithm for the same graph and
O I ® initialization as in Fig. 8.5.5. An arc
labeled R and pointing toward processor 4
belongs to the list (maintained by processor

r
Q
1
[

1) of recently reversed arcs.

Numbered Partial Reversal Algorithm. The algorithm is initialized by assigning
arc directions so that the resulting directed graph is acyclic. Each processor ¢ maintains a
triple v; = (a3, b;, 2); an arc (4, j) is oriented toward j if and only if v; > v;. If processor
i # 0 becomes a sink [i.e., if v; < v; for all j € A(%)], then processor i lets

612

Organizing an Asynchronous Network of Processors

—

(a)

(b)

(c)

Figure 8.5.8 The relation between the partial reversal algorithm and the numbered par-
tial reversal algorithm, in the absence of topological changes. Suppose that the numbered
partial reversal algorithm is initialized with a; = b; = ¢ for all 7 # 0, where c is some
constant. We show that throughout the algorithm we have (i) |a; — a;| < 1 for any
two neighboring processors ¢ and j, and (ii) a; = a; + 1 if and only if processor 4
has recently reversed the direction of arc (¢, 7) and processor j has not yet performed
a partial arc reversal. Indeed these properties are true at initialization. Suppose that
these properties are true before a partial arc reversal by processor ¢. Parts (a), (b), and
(c) consider the three possible cases. All arcs are reversed in cases (a) and (b). In (c),
we have right after the partial arc reversal, a; = a; = ag, b; < bj, and b; < by.
Thus, arcs (4, 2) and (k,) are not reversed. This shows that properties (1) and (ii) remain
valid throughout the algorithm. Given that property (ii) holds, we conclude that the set
{i | a; = a; + 1} in the numbered partial reversal algorithm is equal to the list of
recently reversed arcs maintained by processor j in the partial reversal algorithm, and
the two algorithms are identical.

Chap. 8

Sec. 8.5 Maintaining Communication with a Center 613

. :—- 1 : .1
a; =1 +ij n aj, (CRY)
b; := min b; — .

5 jmn(]i)bj 1, (5.2)

reverses the directions of its adjacent arcs (i, j) for which the new value of v; is larger
than v;, and communicates the new value of v; to its neighbors. If a new arc (¢, j) is
added to the network, it is oriented toward j if and only if v; > v;.

This algorithm coincides with our original partial reversal algorithm, provided that
it is initialized appropriately and no topological changes occur (Fig. 8.5.8). The algorithm
can also be interpreted as a version of the Bellman-Ford shortest path algorithm [cf. Eq.
(5.1)]. The role of the coefficients b; is to provide a tie breaking mechanism under
which acyclicity is preserved. The number of partial arc reversals until the algorithm
terminates behaves similarly with the Bellman—Ford algorithm: it tends to be small when
the coefficients a; are initialized appropriately (e.g., very large; see Section 4.1), but can
also be arbitrarily large under certain circumstances (Fig. 8.5.9).

Figure 8.5.9 An example of slow
performance of the numbered partial
reversal algorithm. Suppose that the
algorithm is initialized with ay = 0,

a; = M, and a; = a3 = 0, where M
is a large integer. Processor 1 never
becomes a sink and the value of a; stays
constant. The values of a; and a3 increase
by steps of size ©(1), and it is seen that
the algorithm undergoes a total of O(M)
partial arc reversals before it terminates.

We now verify that this algorithm has the desired properties. In our arguments, we
will assume that processors adjacent to i receive all relevant information instantaneously
after an arc reversal by processor :. Similarly, if a topological change involving arc (7, 5)
occurs, both processors 7 and j are instantaneously informed. The proof for the case
where these instantaneity assumptions fail to hold follows the same lines, but the details
are more tedious. Property A holds by definition. The values v; of successive processors
along any positive path in the directed graph are strictly decreasing, which shows that
acyclicity is maintained throughout, and, therefore, Properties B and D hold.

To verify Property C, we assume that there are no topological changes and that the
graph is connected, and we first prove that the algorithm eventually terminates. Let us
denote by a;(t) the value of a; at time ¢. Suppose that the function a;(t) is unbounded
above for some i. From Eq. (5.1), it follows that a;(t) is also unbounded above for
every j that is a neighbor of ¢. Since the graph is connected, a;(t) must be unbounded
above for all processors. But this is impossible because processor 0 never performs an
arc reversal and ag stays constant at its initial value. We conclude that each a;(t) is
bounded above. We also notice from Eq. (5.1) that the quantity min; a; cannot decrease
when a processor performs an arc reversal. We conclude that the functions a;(?) are also

614 Organizing an Asynchronous Network of Processors Chap. 8

bounded below. In particular, each function a;(t) has a smallest limit point to be denoted
by Ci.

We denote by NT the set of processors that perform an infinite number of partial
arc reversals, and let T be its complement. We assume, in order to derive a contradiction,
that NT is nonempty. Let ¢y be some time such that a;(7) > ¢; for all 7 > ¢y and all
i. Such a time exists because otherwise some function a;(t) would have a limit point
smaller than or equal to c; — 1. Notice that for every i € T, the function a;(t) eventually
becomes and stays equal to c;. Thus, by choosing t, sufficiently large, we have a;(t) = ¢;
for all i € T and t > to. Let i* € NT be a processor such that ¢;» < ¢; for all : € NT.
‘We consider two cases:

(i) If processor i* has a neighbor j € T with ¢; < ¢;+, then ai(t) > ¢» > ¢ = a;(t)
for all ¢ > to. Thus, processor i* cannot be a sink at any time after ¢o, contradicting
our assumption that 3 € NT.

(ii) Now suppose that ¢; > c;- for all neighbors j € T of i*. Since ¢; > ¢;- for all
j € NT (this follows from the definition of i*), we obtain a;(¢) = ¢; 2> ¢+ for all
neighbors j of i* and for all times greater than ¢o. In particular, at each time after
to that processor i* performs an arc reversal, the new value of a;- is at least as
large as c;- + 1. In between consecutive arc reversals by processor i*, the value of
a;» Temains constant. We conclude that a;-(¢) > c;+ + 1 subsequent to the first arc
reversal by processor ¢* that occurs after time ¢o. In particular, every limit point

of a;«(t) is larger than c;-. This contradicts the definition of c;x.

We have thus contradicted the existence of an element of NT. It follows that the
algorithm eventually terminates. At termination, processor 0 is by necessity the only
sink, and we conclude that the algorithm has Property C and performs as desired.

We now show that the reversal algorithms do not have the undesirable properties of
the shortest path methods that were mentioned in the beginning of this section. Suppose
that a reversal algorithm has not yet terminated and that a processor ¢ sends a message
to a neighboring processor j, attempting to communicate with the center. If the direction
of the arc (i, j) is reversed by processor j before the message is forwarded by j, it is
conceivable that the message is returned to processor <. Such a scenario can be repeated,
thus demonstrating that a message can circulate in a cycle as long as the reversal algorithm
has not terminated. It can be shown, however, that the number of arcs traversed by such
a message is bounded by a function of the number of arc reversals performed by the
processors. In the absence of further topological changes, the number of arc reversals is
bounded, and, therefore, the total number of arcs traversed by a message is also bounded
(Exercise 5.4). This is in contrast to the shortest path method, in which a cycle can be
formed and a message can circulate an unbounded number of times in that cycle (cf. Fig.
8.5.2).

For the second property, we claim that if a numbered reversal algorithm has ter-
minated, resulting in a particular DAG and a set P of simple positive paths, and if a
topological change occurs, then any path in P that is unaffected by the topological change
is also unaffected by future iterations of the algorithm. To see this, first suppose that a

Sec. 8.5 Maintaining Communication with a Center 615

new arc is added. Since at termination, processor 0 was the only sink and no new sinks
can be created by the addition of an arc, we conclude that the new DAG is also oriented
and therefore does not change in the future. Now suppose that an arc is removed, but that
a path p = (41,42,...,1x,0) € P from a processor i; to O is unaffected. Since the arc
(ix,0) has not been removed and processor 0 never reverses its arcs, processor ¢ x never
becomes a sink. Thus, processor ix does not reverse its incident arcs and, therefore,
processor ik —; never becomes a sink. Proceeding backwards, we see that none of the
processors on the path p ever becomes a sink and the path p remains unaffected. This is
a major difference with our earlier algorithm that was based on the shortest path problem
(compare with Fig. 8.5.3).

Information Broadcast in a Failure—-Prone Network

We have considered so far the problem of establishing loop—free paths along which
the nodes of the network can communicate with the center. These paths can also be
used to solve the reverse problem, whereby the center wishes to communicate with the
processors. In particular these paths can be used to broadcast some information from the
center to every node. We discuss briefly some approaches to this problem.

Suppose that the center has some information that we model as a variable V
taking values from some set. The value of this variable changes with time, and the
center wishes, roughly speaking, that every other processor is to know, after a while,
the current value of this variable. For example, V' could represent the status of one of
the outgoing communication links from the center; in this case, when the information
broadcast algorithm is executed with every node independently playing the role of the
center, it is usually called a ropology broadcast algorithm. Alternatively, V could be
a command from the center to start a certain distributed algorithm together with the
information needed by each processor to execute this algorithm.

More precisely, we assume that after some initial time, several changes of V and
several changes of the network topology occur, but there is some time after which there
are no changes of either V' or the network topology. We wish to design an algorithm
by which all processors, after a finite time from the last change, are to know the correct
value of V.

The simplest solution to the broadcast problem, widely used in data communication
networks, is the so called flooding scheme, whereby the center (which holds the value of
V) sends an update message with the most recent value of V to all its neighbors following
each change of V. The neighbors send the message to their neighbors except for the
one that they heard the message from, etc. To avoid infinite circulation of messages,
a sequence number is appended to the value of V. This number is incremented with
each new message issued by the center. A processor then accepts a new value of V
and propagates it further only if it carries a sequence number that is larger than the one
stored in its memory; otherwise it simply discards the corresponding message. To cope
with situations where the network becomes disconnected, we require that when a link
becomes operational after being down, the end processors exchange their stored values
of V together with the corresponding sequence numbers. This flooding scheme works
fairly well in practice, and requires less than 2| A| messages per new value of V, where

616 Organizing an Asynchronous Network of Processors Chap. 8

|A] is the number of bidirectional network links. In fact, the scheme does not require
the assumption that links preserve the order of transmission of messages; the sequence
numbers can be used to recognize the correct order of messages.

One drawback of this flooding scheme is the extra overhead required for the se-
quence number. Usually, this number is encoded in a binary field of fixed length, which
must be large enough to ensure that wraparound will never occur between startup and
shutdown of the system. A second drawback is that when a processor crashes, it must
remember the last sequence number it used at the time of the crash if there is a possibility
that the processor will be repaired before the entire system is shut down.

We now discuss briefly an alternative to the use of sequence numbers. Here each
processor 7 stores in its memory the value Vji latest received from each of its neighbors
j and also maintains in its memory the value of V; it thinks is the correct one. Each
time V; changes, its value is transmitted to all neighbors of i along each of the currently
operating links incident to i; also, when a link (,j) becomes operational after being
down, the end nodes ¢ and j exchange their current values V; and V}, that is, 7 sends V;
to j, which is stored as Vij , and j sends V; to 1, which is stored as VJZ

The algorithm description will be completed once we give the rule for changing
the value V; of each processor i. There are a number of possibilities along these lines,
but the main idea is as follows.

Suppose we have an algorithm running in our system that maintains a tree of
directed paths from all processors to the center (i.e., a tree rooted at the center; see Fig.
8.5.10). What we mean here is that this algorithm constructs such a tree within finite
time following the last change in the network topology. Every node i except for the
center has a unique successor s(i) in such a tree, and we assume that this successor
eventually becomes known to i. The rule for changing V; then is for node ¢ to make it
equal to the value si(i) latest transmitted by the successor s(i) within finite time after
either the current successor transmits a new value or the successor itself changes. It is
evident, under these assumptions, that each node 7 will have the correct value V; within
finite time following the last change in V or in the network topology.

Figure 8.5.10 Information broadcast over
a tree rooted at the center that initially
holds the value V. Here there is a unique
directed path from every processor to
the center and a unique successor s()
of every node 7 on the tree. The idea
of the algorithm to broadcast V is to
i maintain such a tree (in the presence of
topological changes) and to require each
g node i to (eventually) adopt the latest
s(i) received message from its successor s(z)
Ge., V; = V;(i)). This guarantees that
the correct information will eventually be
propagated and adopted along the tree even
after a finite number of topological changes
that may require the restructuring of the
CENTER tree several times.

Sec. 8.5 Maintaining Communication with a Center 617

It should be clear that there are many candidate algorithms that maintain a tree

rooted at the center in the face of topological changes. Two possibilities are the full and
partial reversal algorithms of this section, where the successor s(3) of a node i is selected
arbitrarily among the neighbors j for which the arc (3,) is oriented from i to j- Another
scheme is given in [Spi85c] and [SpG87], where the idea of information broadcast without
sequence numbers was first introduced. A detailed presentation, together with additional
discussion of topological change broadcasting is given in Section 5.3 of [BeG87].

5.1

5.2.

5.3.

5.4.

EXERCISES

Consider the graph G = (N, A), where N = {0,1,...,n},and 4 = {G,i+1)|]0<i<
n — 1}. Suppose that each arc (4,7 + 1) is initially oriented to point toward node 7 + 1.
Calculate the total number of full arc reversals to be performed by the processors before the
full reversal algorithm terminates. Check your answer with Fig. 8.5.5 for the case n = 3.
Let G = (NN, A) be a directed acyclic graph and suppose that (i, j) ¢ A and (5,7) ¢ A for
some ¢, € N. Let A" = AU{(i,5)} and A” = AU{(4,4)}. Show that at least one of the
graphs (N, A’) and (N, A”) is acyclic.
Consider the partial reversal algorithm on a connected graph with a fixed topology. Let
X(¢) be the number of times, up to time ¢, that processor i has performed a partial arc
reversal.
(a) Show that if (7, j) € A, then between any three consecutive partial arc reversals by
processor %, processor j must have performed at least one partial arc reversal.
(b) Show that X;(¢) < 2X;(t) + 2 for all (1, j) € A.
(c) Show that the algorithm eventually terminates and bound the total number of partial
arc reversals until termination.

Suppose that the processors are using either the full or the partial reversal algorithm and
that some processor sends a message, attempting to communicate with the center, before
the algorithm terminates. This message is forwarded by other processors along arcs that are
oriented away from the forwarding processor. Assuming that no topological changes occur,
show that the total number of arcs traversed by the message, until it reaches the center,
is bounded by some function of the number of processors. Hint: For the partial reversal
algorithm, use the result of Exercise 5.3.

NOTES AND SOURCES

8.1 The idea of detecting termination through the use of acknowledgments is

implicit in some distributed shortest path routing and network resynchronization algo-
rithms developed for use in data communication networks (cf. Example 8.3; see [Gal76],
[SMG78], [Fin79], and [Seg83]). The termination detection procedure of this section
is due to [DiS80]. For related work see [Apt86], [ChM82], [DFV83], [Eri88], [Frag0],
[HaZ87], [MiC82], [SSP85], and [Ver87].

618 Organizing an Asynchronous Network of Processors Chap. 8

8.2 The snapshot algorithm is from [ChL85]. A discussion of local and global
clocks, and of the issues related to the comparison of the times at which different events
take place at different processors can be found in [Lam78]. See [GaB87] for the use of
snapshots in the context of a distributed implementation of simulated annealing.

8.3 A version of the resource allocation problem has been first formulated in
[Dij71]. A probabilistic algorithm for this problem was given in [LeR81]. The algorithm
presented in this section is from [ChM84] and is closely related to the arc reversal
algorithm of Section 8.5. See [Bar86] and [BaG87] for the analysis and the optimization
of the concurrency measure M.

8.4 Methods for the simulation of discrete event systems that do not use rollback
are surveyed in [Mis86). See also [ChM81] for a particular such method. Synchroniza-
tion by rollback has been introduced in [Jef85]. The rate of progress of a simulation
when the rollback mechanism is used has been studied in a probabilistic framework
in [LMS83] and [MiM84], for the case of two processors. The use of the snapshot
algorithm for monitoring the progress of the simulation is discussed in [Sam85b] and
[Gaf86]. The relation between rollback and the asynchronous Bellman-Ford algorithm,
and its communication complexity implications, are new.

8.5 The arc reversal algorithms of this section are from [GaB81]. The topology
broadcast problem is discussed in [Spi85c], [Gaf86], [HuS87a], [HuS87b], and [SpG87].
The idea of maintaining a tree in the face of topological changes along which to broad-
cast information, is implicit in [Spi85c] and [SpG87], and was articulated by E. M.
Gafni (private communication). Flooding is used in many data networks for information
broadcast, including the ARPANET. Some difficulties with the ARPANET algorithm are
discussed in [Per83] and [BeG87]. For a complexity analysis of flooding, see [Top87].

A

Linear Algebra and Analysis

In this appendix, we collect definitions, notational conventions, and several results on
linear algebra and analysis that are used extensively in the book. We omit some proofs
that are either elementary or too involved. In any case, it is assumed that the reader has
some basic background on the subject. Related and additional material can be found in
[Gan59], [HoK71], [LaT85), and [Str76] (linear algebra), and in [Rud76] and [Ash72]
(analysis). '

We will be considering both real and complex vectors and matrices. Many results
are stated for the complex case, but the reader should have no difficulty in converting
them to the real case. '

Notation

If S is a set and z is an element of S, we write z € S. A set can be specified in the
form S = {z | z satisfies P}, as the set of all elements satisfying property P. The union
of two sets S and T is denoted by S U T and their intersection by SNT. The symbols
3 and V have the meanings “there exists” and “for all,” respectively.

Let R be the set of real numbers and let R be the set of real numbers together
with co and —co. If a,b € R and a < b, the notation [a, b] stands for the set of all
z € R such that a < z < b. Similarly, if a < b, the notation (a, b) stands for the set of
all z € R such that @ < = < b. Notations such as [a,b) and (a, b] are to be interpreted
accordingly.

619

620 Linear Algebra and Analysis App. A

If f is a function, we use the notation f : A — B to indicate the fact that f is
defined on a set A (its domain) and takes values in a set B (its range).

Let A be some subset of R and let f: A+~ R and g : A — R be some functions.
The notation f(z) = O(g(z)) [respectively, f(z) = Q(g(z))] means that there exists a
positive constant ¢ and some o such that for every = € A satisfying z > zo, we have
|f(z)] < cg(z) [respectively, f(z) > cg(z)]. The notation f(x) = ©(g(z)) means that
both f(z) = O(g(z)) and f(z) = Q(g(z)) are true.

Throughout the text, we use log = to denote the base 2 logarithm of z and Inn to
denote the natural logarithm of z, that is, z = 2!°¢% = €=,

Vectors and Matrices

Let C be the set of complex numbers. For any ¢ € C, let ¢ be its complex conjugate,
and let |c| be its magnitude. Let R™ (respectively, C™) be the set of n—dimensional real
(respectively, complex) vectors. For any = € C", we use z; to indicate its ith coordinate,
also called its ith component. Vectors in C™ will be viewed as column vectors, unless
the contrary is explicitly stated. For any = € C", we let 2’ be its transpose, which is an
n—~dimensional row vector; we also let z* be the conjugate transpose of z. For any two
vectors x,y € C", their inner product (x,y) is defined to be equal to z*y = i, Z;y;.
For real vectors z,y € R™, their inner product is equal to z'y. Any two vectors z,y € C"
satisfying z*y = 0 are called orthogonal.

For any matrix A, we use A;;, [Al;;, or a;; to denote its ijth entry. The transpose
of A, denoted by A’, is defined by [A 1ij = a;; and its complex conjugate transpose,
denoted by A*, is defined by [A*];; = @j;. For any two matrices A and B of compatible
dimensions, we have (AB) = B’A’ and (AB)* = B*A*.

Let A be a square matrix. We say that A is symmetric if A" = A. We say that
A is diagonal if [A];; = O whenever ¢ # j. It is tridiagonal if [Al;; = 0 for all ¢
and j such that | — j| > 1. It is lower triangular if [A];; = O whenever ¢ < j and
strictly lower triangular if [A];; = 0 whenever ¢ < j. It is upper (respectively, strictly
upper) triangular if its transpose is lower (respectively, strictly lower) triangular. It is
triangular if it is upper or lower triangular. We use I to denote the identity matrix. The
determinant of A is denoted by det(A).

Positive Vectors and Matrices

If w is a vector in ", the notations w > 0 and w > 0 indicate that all coordinates of w
are positive or nonnegative, respectively. Similarly, if A is a real matrix, the notations
A > 0and A > 0 indicate that all entries of A are positive or nonnegative, respectively.
For any two vectors w, v, the notation w > v means w — v > 0. The notations w > v,
w < v, A < B, etc. are to be interpreted accordingly.

Given a vector w € C*, we denote by |w| the vector whose ith coordinate is equal
to the magnitude of the ith coordinate of w. Similarly, for any matrix A, we denote by
|A| the matrix whose entries are equal to the magnitudes of the corresponding entries of
A.

App. A Linear Algebra and Analysis 621

Subspaces and Linear Independence

A subset S of C™ is called a subspace of C™ if az + by € S for every z,y € S and
every a,b € C. If S is a subspace of C" and z is some vector in C™, then the set
z+S={2€C"|z—a € S}is called a linear manifold. Given a finite collection
F = {z',...,z%} of elements of C", the span of F is the subspace of C™ defined as
the set of all vectors y of the form y = Z,le arx®, where each ay, is a complex scalar.
The vectors z!,..., 2% € C" are called linearly independent if there exists no set of
complex coefficients ay,...,ax such that Zf___l arz® = 0, unless ar = 0 for each k.
An equivalent definition is that z' # 0 and for every k > 1, the vector z* does not belong
to the span of z!,..., z¥~1. It can be seen that if the vectors z!,...,zX are nonzero and
mutually orthogonal, then they are automatically linearly independent. Given a subspace
S of C™, a basis for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number of vectors and
this number is called the dimension of S. In particular, the dimension of C" is equal to
n. Another important fact is that every subspace has an orthogonal basis, that is, a basis
consisting of mutually orthogonal vectors.

Vector Norms

Definition A.1. A norm || - || on C™ is a mapping that assigns a real number ||z||
to every z € C™ and that has the following properties:

@) ||z|| >0 for all z € C™.

(b) |[cz|| = |c| - ||z|| for every ¢ € C and every z € C™.
(©) ||z|| = 0 if and only if z = 0.

@ Iz +yll < llzll + llyl| for all z,y € C™.

A norm on R is defined by replacing C and C™ by R and R, respectively, in the
above.

The Euclidean norm || - ||, is defined by
n 1/2
2]l = @*x)'/? = (Z Ixi|2) , (A.1)
i=1

and R", equipped with this norm, is called a Euclidean space. The Euclidean norm
satisfies the Schwartz inequality

lz*y| < [lzll2 - ly]l2, (A.2)
and the following theorem:

Proposition A.1. (Pythagorean Theorem) If z and y are orthogonal then
2+ yl3 = llzll3 + llyl3-

622 ' Linear Algebra and Analysis App. A
The maximum norm || - || (also called sup—norm or {—norm) is defined by

z]loo = max |- (A3)

For any positive vector w (w > 0), we define the weighted maximum norm || - ||, by

w L3
ol = max |1, A
The ¢1-norm || - ||; is defined by
. .
lzlls =) lail. (A3)
i=1

Proposition A.2. For any z € C", we have:

@ lzllo < llzfl2 < 02|z oo

®) [|zfl < 22zl < 7!zl
Proof.

(a) This is a straightforward consequence of Eqgs. (A.1) and (A.3).

(b) Let e be the vector with all coordinates equal to 1. Using Egs. (A.5) and (A.2),
we have

Izl = €Izl < llell2 - llzllz = n'/?|1z]|2.

The inequality ||z|l» < ||z||; is an easy consequence of Egs. (A.1) and (A.5).
Q.E.D. ’

Sequences, Limits, and Continuity

A sequence {z* | k = 1,2,...} (or {«*} for short) of complex numbers is said to
converge to a complex number z if for every € > O there exists some K such that
|zF — x| < e for every k > K. A real sequence {z*} is said to converge to co
(respectively, —co) if for every A there exists some K such that z¥ > A (respectively,
z* < A) for all k > K. If a sequence converges to some z (possibly infinite), we say
that z is the limit of z*; symbolically, limi_ o z* = z.

A sequence {z¥} is said to converge geometrically (or at the rate of a geometric
progression) to z* if there exist constants A > 0 and « € [0, 1) such that |£* —z*| < Aa*
for all .

A sequence {z*} is called a Cauchy sequence if for every € > 0, there exists some
K such that |z*F — 2™| < e forall k > K and m > K.

A real sequence {z*} is said to be bounded above (respectively, below) if there
exists some real number A such that ¥ < A (respectively, zF > A) for all k. A

App. A Linear Algebra and Analysis 623

real sequence is said to be nonincreasing (respectively, nondecreasing) if z**t! < z*
(respectively, z¥+! > z¥) for all k. A complex sequence {z*} is called bounded if the
sequence {|z*|} is bounded above.

Proposition A.3. Every nonincreasing or nondecreasing real sequence converges
to a possibly infinite number. If it is also bounded, then it converges to a finite real
number.

The supremum of a nonempty set A C R, denoted by sup A, is defined as the
_ smallest real number z such that z > y for all y € A. If no such real number exists, we
~ say that the supremum of A is infinite. Similarly, the infimum of A, denoted by inf A4, is
defined as the largest real number z such that z < y for all y € A, and is equal to —oco
if no such real number exists. Given a sequence {z*} of real numbers, the supremum of
the sequence, denoted by sup, z*, is defined as sup{zF | k=1,2,.. .}. The infimum of a
sequence is similarly defined. Given a sequence {z*}, let y™ = sup{z* | k > m}, z™ =
inf{z* | k > m}. The sequences {y™} and {z™} are nonincreasing and nondecreasing,
respectively, and therefore have a (possibly infinite) limit (Prop. A.3). The limit of y™
is denoted by limsup,,_, ™ and the limit of 2™ is denoted by liminf,,_, ., ™.

Proposition A.4. Let {z*} be a real sequence.
(a) There holds

infz* < liminfz® < lim sup z¥ < sup z*.
k k—oo k—oo k

(b) The sequence {:c’“} converges if and only if lim infy_, ., z* = lim SUD._, oo z* and,
in that case, both of these quantities are equal to the limit of z*.

A sequence {z*} of vectors in C™ is said to converge to some z € C™ if the
ith coordinate of z* converges to the ith coordinate of z for every ¢. The notation
limg_, o, ¥ = x is used again. Convergence is said to occur geometrically if each coor-
dinate of z* converges geometrically. Finally, a sequence of vectors is called a Cauchy
sequence (respectively, bounded) if each coordinate is a Cauchy sequence (respectively,
bounded).

Definition A.2. We say that some x € C™ is a limit point of a sequence {z*} in
C™ if there exists a subsequence of {z*} that converges to x. Let A be a subset of C™.
We say that z € C™ is a limit point of A if there exists a sequence {z*}, consisting of
elements of A, that converges to z.

Proposition A.5.

(@) A bounded sequence of vectors in C™ converges if and only if it has a unique limit
point.
(b) A sequence in C™ converges if and only if it is a Cauchy sequence.

624 Linear Algebra and Analysis App. A

(c) Every bounded sequence in C™ has at least one limit point.
(d) If {z*} is a real sequence and limsup,_, ., z* (respectively, liminfy_ o z*) is
finite, then it is the largest (respectively, smallest) limit point of the sequence

{z*}.

Definition A.3. A set A C C" is called closed if it contains all of its limit points.
It is called open if its complement is closed. It is called bounded if there exists some
¢ € R such that the magnitude of any coordinate of any element of A is less than c. A
closed and bounded subset of C™ is called compact. Let || - || be a vector norm on C".
If AC C" and z € A, we say that z is an interior point of A if there exists some € > 0
such that {y € C™ | ||z —y| < €} C A.

Proposition A.6.

(a) The union of finitely many closed sets is closed.

(b) The intersection of closed sets is closed.

(c) The union of open sets is open.

(d) The intersection of finitely many open sets is open.

(e) A subset of C™ is open if and only if all of its elements are interior points.

Let A be a subset of C™ and let f : A — C™ be some function. Let = be a limit
point of A. If the sequence {f(z*)} has a common limit z for every sequence {z*} of
elements of A such that limy_, o, =¥ = z, we write lim,_, f(y) = z. If A is a subset of
R and z is a limit point of A, the notation limyq, f(y) [respectively, limy . f(y)] will
stand for the limit of f(z¥), where {z*} is any sequence of elements of A converging
to = and satisfying ¥ < z (respectively, zF >), assuming that the limit exists and is
independent of the choice of the sequence {z*}.

Definition A.4. Let A be a subset of C™.

(a) A function f : A — C™ is said to be continuous at a point z € A if lim,_., f(y) =
f(z). It is said to be continuous on A if it is continuous at every point z € A.

(b) A real valued function f : A — R is called upper semicontinuous (respectively,
lower semicontinuous) at a vector ¢ € A if f(x) > limsup_, f(z®) [respectively,
f(z) < liminfy_ o f(z*)] for every sequence {z*} of elements of A converging
to x.

(c) Let A be a subset of R. A function f : A — C" is called right—continuous
(respectively, left—continuous) at a point z € A if limy, f(y) = f(x) [respectively,

It is easily seen that when A is a subset of R, a nondecreasing and right—continuous
(respectively, left—continuous) function f : A — R is upper (respectively, lower) semi-
continuous.

App. A Linear Algebra and Analysis 625
Proposition A.7.

(a) The composition of two continuous functions is continuous.
(b) Any vector norm on C™ is a continuous function.

(c) Let f: C™ + C™ be continuous, and let A C C™ be open (respectively, closed).
Then the set {z € C™ | f(z) € A} is open (respectively, closed).

Proposition A.8. (Weierstrass’ Theorem) Let A be a nonempty compact subset of
C™. If f: A~ R is continuous, then there exist z,y € A such that f(z) = inf,c 4 f(2)
and f(y) = sup,c 4 f(2).

Proof. Let {z*} be a sequence of elements of A such that limg_o f(2F) =
inf,c 4 f(2). Since A is bounded, this sequence has at least one limit point x [Prop.
A.5(c)]. Since A is closed, = belongs to A. Finally, the continuity of f implies that
f(@) = limg_o f(z%) = inf,cy f(2). The proof concerning the supremum of f is
similar., Q.E.D.

Proposition A.9. For any two norms || - || and || - || on C®, there exists some
positive constant ¢ € R such that ||z|| < ¢||z||’ for all z € C™.

Proof. Let a be the minimum of ||z||" over the set of all z € C™ such that ||z|| = 1.
The latter set is closed and bounded and, therefore, the minimum is attained at some #
(Prop. A.8) that must be nonzero since ||Z|| = 1. For any z € C", z # 0, the || - || norm
of z/||z| is equal to 1. Therefore,

z 1 Jall
o<amtl < =1 v s
12 <zl = 1=

which proves the desired result with ¢ = 1/a. Q.E.D.

Proposition A.10. The set of interior points of a set A C C™ does not depend
on the choice of norm.

Proposition A.11. Let || - || be an arbitrary vector norm. A sequence {z*}
converges to z if and only if limg_o [|z*¥ — z|| = 0. In particular, z* converges to =
geometrically if and only if ||z* — z|| converges to zero geometrically.

Proof. By definition, z* converges to z if and only if limg_, [|z* — z||cc = O
and the first result follows from Prop. A.9. The result concerning geometric convergence
follows similarly. Q.E.D.

Definition A.S. Let A be a subset of C™. Let {f*} be a sequence of functions
from A into C". We say that f* converges pointwise to a function fiA—CMif
lim oo f*(z) = f(x) for every = € A. We say that f* converges to f uniformly if for
every € > 0, there exists some K such that || f*(z) — f(z)|| < e forall k > K and z € A.

626 Linear Algebra and Analysis App. A

(Using Prop. A.9, it is seen that uniform convergence is independent of the choice of the
norm || - |.)

Matrix Norms

A norm || - || on the set of n x n complex matrices is a mapping that assigns to any n X n
matrix A a real number ||A|| and that has the same properties as vector norms do when
the matrix is viewed as an element of C™.

We are mainly interested in induced norms, which are constructed as follows.
Given any vector norm || - ||, the corresponding induced matrix norm, also denoted by
| - ||, is defined by

llAll l|Az]|. (A.6)

= max
" {zecm] |lzl=1}

The set over which the maximization takes place in Eq. (A.6) is closed [Prop. A.7(c)]
and bounded; the function being maximized is continuous [Prop. A.7(b)] and therefore
the maximum is attained (Prop. A.8). It is easily verified that for any vector norm, Eq.
(A.6) defines a bona fide matrix norm having all the required properties. Induced norms
have the following additional properties:

Proposition A.12. Let || - || be an induced norm on the set of n x n matrices.
Then:

@ [|All = maxzo | Az||/|2||-
(b) [[Az|| < [|A] - l|z]| for all z € C™.
(c) |AB] < ||A]| - ||B|l, where A and B are n X n matrices.

Proof. Part (a) follows because any nonzero vector x can be scaled so that its norm
is equal to 1, without changing the value of the ratio || Az||/||z||. Part (b) then follows
immediately. For part (c), we use part (b) twice to obtain ||ABz| < ||4] - ||Bz|| <
lAll - | Bl - |lz||- Since this is true for all x, the result follows from Eq. (A.6). Q.E.D.

The examples of vector norms given earlier induce certain matrix norms and, by
abuse of notation, we use the same symbols to denote them. They have the following
properties:

Proposition A.13. Let A be an n x n matrix. Then:

(a) ||Ally, = max; wL Z;;l laij|w;. (A7)
(b) ||A||1 = maxj E?:l |a,~j|. . (AS)
© AL = [|A]loo-

@ (Al < n'/2||Allo-

@© Al < n'/2|A].

® Al - 1Al < nl|All3.

App. A Linear Algebra and Analysis 627

Proof.

(a) Let x be such that ||z||, = 1. We then have |z;| < w; for all ¢ and it follows that

| Az || —maxi En:aw:c‘ < max ! anlahu
oo_.z. w; =)| = i w; o LVR Rav s

Since this is true for all such z, we conclude that ||A||% is no larger than the
right-hand side of Eq. (A.7). Let ¢ be an index for which the maximum in the
right-hand side of Eq. (A.7) is attained. Let = be a vector whose jth coordinate
x; satisfies a;;x; = |a;;|w; for each j. In particular, |z;| = w; for each j and
lzlls; = 1. Furthermore, the ith coordinate of Az is equal to 3 7, |ai;|w;.
Therefore, ||Az||% is at least as large as the right-hand side of Eq. (A.7). This
implies the same inequality for || A||%, and completes the proof.

(b) The proof is similar. A little algebra shows that || A]|; is no larger than the right—
hand side of Eq. (A.8). Then consider a vector z with all entries equal to zero,
except for the entry corresponding to the maximizing index in Eq. (A.8), which is
equal to 1. For this vector, ||z||; = 1 and ||Az||; is equal to the right-hand side
of Eq. (A.8), which shows that ||A||; is no smaller than the right-hand side of Eq.
(A8). .

(c) This is immediate from Egs. (A.7) and (A.8).

(d) Using Prop. A.2, we have

14zl < llAzll2 < |All2 - lzll2 < [|Alln' l2]|oo-

By dividing with ||z||s and taking the maximum over all z # 0, the result is
obtained.

(e) The result follows, similarly with part (d), from the inequalities
lAzll; < n'2|Az]l2 < 22| Allz - lell2 < n'/?|All2 - |21
() This is obtained by combining parts (d) and (e). Q.E.D.
A more general class of induced matrix norms is defined as follows. Let || - || and

| - |I' be vector norms on C™ and C™, respectively. (The two norms could be different
even if m = n.) This pair of vector norms induces a matrix norm defined by

14l = max |Az],

where A is an m x n matrix. Parts (a) and (b) of Prop. A.12 remain valid, provided that
|lz|| is replaced by ||z||’.

628 Linear Algebra and Analysis App. A
Eigenvalues

Definition A.6. A square matrix A is called singular if its determinant is zero.
Otherwise it is called nonsingular or invertible.

Proposition A.14.

(a) Let A be an n x n matrix. The following are equivalent:
(i) The matrix A is nonsingular.
(ii) The matrix A’ is nonsingular.
(iii) For every nonzero = € C™, we have Az # 0.
(iv) For every y € C™, there exists a unique z € C" such that Az = y.
(v) There exists a matrix B such that AB =] = BA.
(vi) The columns of A are linearly independent.

(b) Assuming that A is nonsingular, the matrix B of statement (v) (called the inverse
of A and denoted by A~!) is unique. Furthermore, if A is real, then A~ is also

real.
(c) For any two square invertible matrices A and B of the same dimensions, we have
(AB)~! = B-14-1,

Definition A.7. The characteristic polynomial ¢ of an n X n matrix A is defined
by ¢(A) = det(A\] — A), where I is the identity matrix of the same size as A. The n
(possibly repeated) roots of ¢ are called the eigenvalues of A. A vector z € C™ such
that Az = Az is called an eigenvector of A associated with \.

We note that the eigenvalues and eigenvectors of A could be complex even if A
is real.

Proposition A.15.

(@) A complex number) is an eigenvalue of a square matrix A if and only if there
exists a nonzero eigenvector associated with .

(b) A square matrix A is singular if and only if it has an eigenvalue that is equal to
zero.

Definition A.8.

(a) A matrix J of size m X m is said to be a Jordan block if it is of the form

(=]
> - O O

App. A Linear Algebra and Analysis 629

That is, Ji,i+l =10 <t<m-1), Ji=Xx(SZSm),and.]zJ=01f]#z
and j # i+ 1.
(b) A square matrix J is said to be a Jordan matrix if it has the structure

Jb0 - 0
R
Do o0
0 -~ 0 Jg

where each Jy, £ = 1,..., L, is a Jordan block. That is, J is block—diagonal and
each diagonal block is a Jordan block.

Proposition A.16. (Jordan Normal Form)

(a) Every square matrix A can be represented in the form A = SJS~!, where S is a
nonsingular matrix and J is a Jordan matrix.

(b) The Jordan matrix J associated with A is unique up to the rearrangement of its
blocks.

(c) The diagonal entries of J are the eigenvalues of A repeated according to their
multiplicities.

Proposition A.17.

(a) The eigenvalues of a triangular matrix are equal to its diagonal entries.

(b) If S is a nonsingular matrix and B = SAS~!, then the eigenvalues of A and B
coincide.

(c) The eigenvalues of cI + A are equal to ¢+ Aj,...,c +)\, where Aly.vny Ay are
the eigenvalues of A.

(d) The eigenvalues of A* are equal to)\f, ceey)\’,i, where Ay, ..., A\, are the eigenval-
ues of A.

(e) If A is nonsingular, then the eigenvalues of A~! are the reciprocals of the eigen-
values of A.

(f) The eigenvalues of A and A’ coincide.

Proof.

(@) If ay; is the ith diagonal entry of a triangular n X n matrix A, then det(A\l — A) =
[T, (A — a;;), which has roots ay,..., any.

(b) Let A = S,JS[!, where J is a Jordan matrix associated with A (Prop. A.16).
Then B = (S5,)J(SS;)~!. Thus, J is a Jordan matrix associated with B. From
Prop. A.16(c), A and B have the same eigenvalues.

(c) If A = SJS™!, where J is a Jordan matrix, then ¢/ + A = S(cI + J)S~!. It
is easy to see that ¢/ + J is a Jordan matrix and its ith diagonal entry is equal

630 Linear Algebra and Analysis App. A

to \; + ¢, where); is the ith diagonal entry of J. The result follows from Prop.
A.16(c).

(d) If A= SJS™!, where J is a Jordan matrix, then A* = SJ*S~!. From part (b)
of the present proposition, the eigenvalues of A* coincide with the eigenvalues of
J*. Since J is triangular, J* is also triangular and its eigenvalues are equal to its
diagonal entries; the latter are equal to the kth powers of the diagonal entries of
J, that is, the kth powers of the eigenvalues of A.

(e If A= SJS~!, then A~! = SJ~1S~! and, by part (b), the eigenvalues of A~ are
equal to the eigenvalues of J~!. It is easy to show that the inverse of a triangular
matrix is also triangular and the diagonal entries of the inverse are the reciprocals
of the diagonal entries of the original matrix. From part (a), the eigenvalues of
J~1 are equal to the reciprocals of the diagonal entries of J; they are, therefore,
equal to the reciprocals of the eigenvalues of A.

(f) Notice that A’ = (S~!YJ'S’. From part (b), the eigenvalues of A’ coincide with
the eigenvalues of J’. From part (a), the eigenvalues of J’ are its diagonal entries;
these coincide with the diagonal entries of J, which are the eigenvalues of A.
Q.E.D.

Given a polynomial ¢ and a square matrix A, we define ¢(A) by substituting A
for the free variable A of the polynomial.

Proposition A.18. (Cayley-Hamilton Theorem) If ¢ is the characteristic polyno-
mial of a square matrix A, then ¢(A) =0.

Definition A.9. The spectral radius p(A) of a square matrix A is defined as the
maximum of the magnitudes of the eigenvalues of A.

It is known that the roots of a polynomial depend continuously on the coeffi-
cients of the polynomial. For this reason, the eigenvalues of a square matrix A depend
continuously on A, and we obtain the following.

Proposition A.19. p(A) is a continuous function of A.

Proposition A.20. For any induced matrix norm || - || and any n X n matrix A
we have

lim [|A*||'/* = p(4) < ||A].
k—oo

Proof. Let) be an eigenvalue of A such that |A| = p(A). Let z # O be an

eigenvector of A corresponding to the eigenvalue A\ normalized so that ||z]| = 1.
Then ||A|| > ||Az| = ||[Xz|| = || = p(A), which proves the right-hand side in-
equality. Furthermore, ||A¥| > ||A*z| = |[X*z|| = |A\|¥ = p(A)*, which shows that

liminfy_ . || A*||'/* > p(A). We will now prove a reverse inequality. Let A = SJS!,
where J is a Jordan matrix. Then A*¥ = SJ*S~! and

App. A Linear Algebra and Analysis 631
A< IS0 - I* 1 - 1S 7HI-
Thus,

tim sup || A¥[|"/% < tim sup (||S]| - [|S~11)"/* tim sup [|J¥[|/* = im sup || ¥ || /%,
k—o0 k—oo k—oo k—o0

where we used the fact that limg . a'/% =1 for any positive number a.

Let J be one of the Jordan blocks in J, of size m x m. Let A be the value of
its diagonal entries [thus, |A] € p(A)]. A direct computation shows that for £ > m, the
entries of J* are given by

- 0 0<j<t
k L) Lo ’
(7% = { (jfi))\k—u—z), 1<j<m,

(k) Rk
) k-0

is the binomial coefficient. Using the inequality

where

(jk) <ktk—1---k—j+i+D<kk-1---(k—m+1<k™,

—1

we see that each one of the entries of J* is bounded in magnitude by k™|\|k-U-9 <
ck™p(A)*, where c is a constant such that |A\| =99 < ¢ for every nonzero eigenvalue A
and any i and j between 1 and n. The same bound is obtained for all entries of J*. Let
c;; be the norm of a matrix with all entries equal to 0, except for the 7jth entry, which
is equal to 1. Let C = Y21 | 3", ¢;;. From the triangle inequality,

[J%]| < Cck™p(A)F (A9)
and

lim sup [|7*[|'/* < p(4) lim (Cck™'/* = p(4),
—00

k—oo

which completes the proof. We have used here the fact limy_, k! = 1, which is
easily proved by taking logarithms. Q.E.D.

As a corollary of Prop. A.20, we obtain:

Proposition A.21. Let A be a square matrix. We have limj_,o, A* = 0 if and
only if p(4) < 1.

632 Linear Algebra and Analysis App. A

Proof. If p(A) > 1, then ||A¥|| > p(AF) = p(A)* > 1 and A* does not converge
to zero. If p(A) < 1, let € > 0 be such that p(A) + € < 1. Using Prop. A.20, we have
| A¥||'/* < p(A) + € < 1 for all sufficiently large k. It follows that A* converges to
zero. Q.E.D.

Definition A.10. The trace of a square matrix A, denoted by tr(A), is defined as
the sum of the diagonal entries of A.

Proposition A.22.

(a) The trace of A is equal to the sum of the eigenvalues of A counted according to
their multiplicities.

(b) The trace of A* is equal to the sum of the kth powers of the eigenvalues of A
counted according to their multiplicities.

Proof. Consider the characteristic polynomial det(Al — A) = o + citA + -+ +
Cn—1A""!1 + A", From the formula for the determinant, it can be seen that the coefficient
cn—1 is equal to the negative of the sum of the diagonal entries of A. On the other hand,
det(A] — A) = [T7;(A— X)), where Ay, ..., Ay are the eigenvalues of A. The coefficient
of A»~! is seen to be equal to — E?=1 A; and the result of part (a) follows. Part (b)
follows from part (a) and Prop. A.17(d). Q.E.D.

Properties of Symmetric and Positive Definite Matrices
Proposition A.23. Let A be a real and symmetric n X n matrix. Then:

(a) The eigenvalues of A are real.
(b) The Jordan matrix associated to A is diagonal.

(c) The matrix A has a set of n mutually orthogonal, real, and nonzero eigenvectors

z!,...,z", associated to its eigenvalues Aj,..., A,.

(d) Suppose that the eigenvectors in part (c) have been normalized so that ||z*||, = 1
for each k. Then

A= Zx\kl‘k($k)l.

k=1

Proof.

(a) Let A be an eigenvalue of A and let x be an associated nonzero eigenvector.
Since A is real and symmetric, we have (z*Az)* = z*A*z = z*Az. Therefore, the
expression z* Az = z*\z = \||z||? is real, which shows that) is real.

(b) We represent A in the form A = SJS~!, where S and J are as in Prop.
A.16. Suppose, to derive a contradiction, that J is not diagonal. Consider the smallest
i such that [J];;41 = 1. Let A = [J]; and let x and y be the ith and (¢ 4+ 1)st

App. A Linear Algebra and Analysis 633

column, respectively, of the matrix S. By reading the ith and (¢ + 1)st column of the
equation AS = SJ, we obtain Az = Ar and Ay = z + Ay. The first equation yields
y* Az = Ay*z. The second yields 2* Ay = z*z+ Az*y. We combine these two equalities
and the assumption that A is real and symmetric to obtain

Mz =y Ar = (2" A*y)* = (*Ay)" = (T¥z + \z™y)* = ¥z + My,

from which we conclude that z*x = 0. Therefore, x = 0, which means that a column
of S is zero. Using the equivalence of conditions (i) and (vi) in Prop. A.14(a), we see
that S is singular, which is a contradiction.

(c) Suppose that X is an eigenvalue of A and that it has multiplicity m as a root of
the characteristic polynomial of A. Then m of the diagonal entries of the Jordan matrix
J are equal to \. Let z!,...,2™ be the columns of the matrix S corresponding to these
diagonal entries. Since J is diagonal and AS = SJ, we see that each z*, k = 1,...,m,
is an eigenvector of A associated to A. Furthermore, these eigenvectors are linearly
independent because otherwise the matrix S would not be invertible.

Let Q be the span of the vectors z!,...,z™; its dimension is m because these vec-
tors are linearly independent. For k = 1,...,m, let v*, w*, be the real and imaginary
parts, respectively, of the vector z*. Since A is a real matrix and since its eigenvalues
are real, the equation Az* = A\z* implies that Av* = Mv* and Aw® = Aw*. The
span in C™ of the set of vectors U = {v!,w',...,v™, w™} contains Q and therefore
has dimension at least equal to m. Thus, the set U contains m linearly independent
vectors. Furthermore, these vectors are real and they therefore span an m—dimensional
subspace H of R™. Let z!,..., 2™ be an orthogonal basis for the subspace H. We have
already shown that each element of U is an eigenvector of A, with eigenvalue A. The
vectors z!,...,2™ are, by construction, linear combinations of the elements of U and
are themselves eigenvectors.

We have shown so far that to every eigenvalue of multiplicity m, we can associate
m real, nonzero, and mutually orthogonal eigenvectors. The proof is completed by ob-
serving that eigenvectors associated to different eigenvalues are also orthogonal. Indeed,
suppose that Az = A\jz, Ay = Ay, and A\; # X;. Then

ANy'z =y Az = (2" Ay)" = Xa(@"y)* = My’z,

which shows that y*z = 0.

(d) Let Aj,...,)\, be the eigenvalues of A and let z!,...,z" be associated real
mutually orthogonal eigenvectors, normalized so that ||z*||, = 1 for each k. These
eigenvectors are linearly independent and they therefore span R™. Thus, any vector
y € R™ can be expressed in the form y = > _,_, cxz*, where cy, ..., c, are suitable real
coefficients. Using the orthogonality of the eigenvectors, we obtain ¢, = y'z*. We now
notice that

634

Linear Algebra and Analysis App. A

n n n
Z Akxk(xk),y = Z /\kal‘k = chAxk = Ay
k=1 k=1 k=1

Since this equality is true for every y € R", the proof of part (d) is complete. Q.E.D.

(a)
(b)

(@

(b)

(a)
(b)
(©)
(d)

Proposition A.24. If A is a real and symmetric n X n matrix, then:

[All2 = p(AD).

I4ll2 = max (zemn| |af=1y |2 Az]-

Proof.

We already know that ||A|], > p(A) (Prop. A.20) and we need to show the re-

verse inequality. Let z!,...,z" and),,...,)\, be mutually orthogonal nonzero
eigenvectors of A and the corresponding eigenvalues, respectively. We express an
arbitrary vector x € C™ in the form z = Z;;l c;zt, where each ¢; is a suitable
complex scalar. Using the orthogonality of the vectors z* and Prop. A.1, we obtain
llzl3 = 35, lesl? - ||=¢]2. Using Prop. A.1 again, we obtain

n .
l|Az|f = HZ Aiciz!
i=1

2 2 :
|, = 2 INE -l e < el
i=1

Since this is true for every x, we obtain || Al < p(A) and the desired result follows.

Let A be an eigenvalue of A such that || = p(4) = ||A||, and let y # O be a
corresponding real eigenvector normalized so that ||y||; = 1. Then

max 2 Az| > |y Ayl = M| - lwll2 = || All».
enE [A2l 2 1 Ayl = -yl = (4]l

For the reverse inequality, let z € R", with ||z||2 = 1, be arbitrary and decompose
itas x = Z;;l c;x*, as in the proof of part (a). Using the orthogonality of the
eigenvectors, we obtain

|’ Az) =) el - [Nl - 1213 < o)zl = p(A) = || A2

i=1
Q.E.D.

Proposition A.25. Let A be a real square matrix. Then:

[l All2 = max |y, =|iz|.=1 |y’ Az|, where the maximization is carried out in R™.
Al =114

If A is symmetric then ||A*||, = ||A||¥ for any positive integer k.

IAl5 = 14" Al = A4

App. A Linear Algebra and Analysis 635

(@ [1A]13 < [|Allo - [|All1-
(f) If A is symmetric and nonsingular, then ||A~!||, is equal to the reciprocal of the
smallest of the absolute values of the eigenvalues of A.

Proof.

(a) It is easily seen that the Euclidean vector norm satisfies |||l = max|y,=1 [¢'z|.
It follows that ||A"2 = mMax||z|,=1 ||A$||2 = MaAX||y||,=(|z|.=1 |y’A:c|.

(b) This is an immediate consequence of part (a) and the fact y’ Az = 2’ A'y.

(¢c) If A is symmetric then A* is symmetric. Using Prop. A.24(a), we have || A¥|; =
p(AF). Using Prop. A.17(d), we obtain p(A¥) = p(A)*, which is equal to ||A|l}
by Prop. A.24(a).

(d) For any vector z such that ||z||, = 1, we have, using the Schwartz inequality (A.2),

| Az|l} = 2* A’ Az < |lzllz - [|A"Az]l2 < llzll2 - |4’ Allz - llzll2 = | A" All2.

Thus, ||A[3 < [|A’All. On the other hand, [|A'All2 < [|A']|2 - Al = [|A]3.
Therefore, ||A||3 = ||A’A|l2. The second equality is obtained by replacing A by
A’ and using the result of part (b).

(e) Using part (d) and Prop. A.24(a), we have l4]]3 = |AA"]|2 = p(AA"). We now
recall Prop. A.20, which shows that p(AA’) < ||AA||. Finally, we use Prop.
A.13(c) to obtain ||AA'||oc < [|Alleo - |4 lec = ||Alleo - IlAll1, which completes
the proof.

(f) This follows by combining Prop. A.17(e) with Prop. A.24(a). Q.E.D.

Definition A.11. A square matrix A of dimensions n x n is called positive definite
if A is real and =’ Az > O for all z € R", = # 0. It is called nonnegative definite if it is
real and ' Az > O for all z € R™.

Proposition A.26.

(a) For any real matrix A, the matrix A’A is symmetric and nonnegative definite. It
is positive definite if and only if A is nonsingular.

(b) A square symmetric real matrix is nonnegative definite (respectively, positive def-
inite) if and only if all of its eigenvalues are nonnegative (respectively, positive).

(c) The inverse of a symmetric positive definite matrix is symmetric and positive
definite.

Proof.

(a) Symmetry is obvious. For any vector z € R", we have z'A’Az = ||Az| > 0,
which establishes nonnegative definiteness. Positive definiteness is obtained if and
only if the inequality is strict for every « # 0, which is the case if and only if
Az # 0 for every z # 0. This is equivalent to A being nonsingular.

636 Linear Algebra and Analysis App. A

(b) Let A, z # 0, be an eigenvalue and a corresponding real eigenvector of a symmetric
nonnegative definite matrix A. Then 0 < z’Az = Az’z = A||z||3, which proves
that A > 0. For the converse result, let z be an arbitrary real vector Let A\1,..., \n
be the eigenvalues of A, assumed to be nonnegative, and let z',...,z" be a corre-
sponding set of nonzero, real, and orthogonal eigenvectors. Let us express z in the
form z = Y7 | ¢;z'. Then 2’ Az = ity (Zz L ¢iAiz?). From the orthog-

- onality of the eigenvectors, the latter expression is equal to 3 ., c2);||z%|3 > 0,
which proves that A is nonnegative definite. The proof for the case of positive
definite matrices is similar.

(¢) Let A be symmetric positive definite. We have AA~! = I, which implies I =
(A7'YA" = (A7'Y A, which shows that (A~!Y = A~! and A~! is symmetric.
Since A is positive definite, we have for every real nonzero vector z, ' A~z =
' AT AA™ 'z = (A~'z) A(A~'z) > 0, which shows that A~ is positive definite.
Q.E.D.

Proposition A.27. Let A be a square symmetric nonnegative definite matrix.

(a) There exists a symmetric matrix A'/? with the property A!/241/2 = A, called a
symmetric square root of A.

(b) The matrix A'/2 is invertible if and only if A is invertible; its inverse is denoted
by Al /2

(c) There holds A=1/24-1/2 = A-1,

(d) There holds AA'/2 = Al/24.

Proof.

(@) Let Ay,..., A, be the eigenvalues of A and let z!, ..., 2™ be corresponding nonzero,
real, and orthogonal eigenvectors normalized so that ||z¥||, = 1 for each k. We let

AI/Z — ZAL/2xk(xk)/,

k=1

where)\,lc/ 2 is the nonnegative square root of \;. We then have

A2 412 — ZZ’\Z!/Z 1/2 z(xz)lz (xk)/ — Z /\z!/zAllc/ZIi(xk)'

i=1 k=1 {G,k)i=k}
=Y Maf@h) =4
k:l

Here the second equality follows from the orthogonality of distinct eigenvectors;
the last equality follows from Prop. A.23(d). We now notice that each one of the
matrices z*(z¥)’ is symmetric and it follows that A'/2 is also symmetric.

App. A Linear Algebra and Anaiysis 637

(b) This follows from the fact that the eigenvalues of A are the squares of the eigen-
values of A'/2 [Prop. A.17(d)].

(c) We have (A™'/2471/2)A = A=1/2(A=12 A/ A1/2 = A-12T A2 =],

(d) We have AA'2 = AV/2A1241/2 = 442, Q.E.D.

A symmetric square root of A is not unique. For example, let A'/2 be as in
the proof of Prop. A.27(a) and notice that the matrix —A!/? also has the property
(—AY2)(—AY?) = A. However, if A is positive definite, it can be shown that the
matrix A'/2 we have constructed is the only symmetric and positive definite square root
of A.

Proposition A.28. Let G be a symmetric pbsitive definite n X n matrix. For
z € R", let ||z||¢ = (2'Gz)'/%. Let G'/? be a symmetric square root of G.

(@) There holds ||z||g = ||G1/2:c||2 for all z € R™.

(b) || - |l is a vector norm.

(c) There exist positive constants K1 and K5, such that K\2'G™ 'z < z/Gz <
K,2'G™ !z for all z € R".

(d) There exists some o > 0 such that 2'Gz > a|z|[3 for all z € R".

(€) (Schwartz inequality) There holds /Gy < ||z - ||ly||g for all z,y € R™.

Proof. Part (a) is trivial and part (b) follows easily from part (a) and the fact that
[l |2 is a norm. For part (c), notice that (z'G~'x)'/2 is also a vector norm, because G !
is symmetric and positive definite [Prop. A.26(c)], and the result follows from Prop. A.9.
Part (d) follows similarly from Prop. A.9. Part (e) follows from the Schwartz inequality
applied to the vectors G'/2z and G'/2y. Q.E.D.

Proposition A.29. Let G and H be symmetric positive definite matrices of di-
mensions m X m and n X n, respectively. Consider the norm on m x n matrices defined
by ||A]| = max)z|, = ||Az||g, where || - ||¢ and || - ||y are defined as in Prop. A.28.
Then ||A|| = |G'/*AH /2.

Proof. Since ||z|| i = ||H'/?x||,, we obtain

Al = max G'?Az|, = max ||GYVPAH"V2y|, = |GM2AH/?|,.
= | o= Ty | vlo=1 2
Q.E.D.

Derivatives

Let f : R™ — R be some function, fix some x € R™, and consider the expression
p:

i flx + ae?) — f(x)’
a—0 [e]]

638 Linear Algebra and Analysis App. A

where €° is the ith unit vector. If the above limit exists, it is called a partial derivative
of f at the point = and is denoted by (8f/9z;)(x). If all of these partial derivatives
exist, we let V f(z), called the gradient of f, be the column vector whose ith coordinate,
denoted by V; f(z), is equal to the partial derivative (8f/dz;)(x). For any y € R, we
define f'(z;y), the one-sided directional derivative of f in the direction y, to be equal
to

i & T 09 — f@)
al0 (6]

provided that the limit exists. [Notice that if f'(z;ef) = —f/(z; —€?), then f'(z;e') =
(8f /0x;)(x).] If all directional derivatives of f at a point z exist and f'(z;y) is a linear
function of y, we say that f is differentiable at x. 1t is seen that f is differentiable at z if
and only if the gradient V f(x) exists and satisfies y’'V f(z) = f'(z; y) for every y € R™.
The function f is called differentiable if it is differentiable at every z € R". In particular,
f is differentiable if V f(z) exists for every z and is a continuous function of z, in which
case f is said to be continuously differentiable. It is seen that a continuously differentiable
function is always continuous. Finally, continuously differentiable functions have the

property

lim f@+y) - f@)—-y'Vi) _
y—0 llyll

0, vz,

where || - || is an arbitrary vector norm.

Notice that the definitions concerning differentiability of f at a point z only involve
the values of f in a neighborhood of z, that is, in an open set containing z. Thus, f
does not have to be defined on all of ®™, as long as it is defined in a neighborhood of
the point at which the derivative is computed. .

If f: R™ — R™ is a vector valued function, it is called differentiable (respectively,
continuously differentiable) if each component f; of f is differentiable (respectively,
continuously differentiable), and we let V f(z) be the matrix of dimensions n x m whose
ith column is the gradient V f;(z) of f;. Thus,

Vi@ = [VA@: -V in(@)]-

The transpose of V f is called the Jacobian of f and is a matrix whose ijth entry is
equal to the partial derivative 9f;/0z;.

Now suppose that each one of the partial derivatives of a function f : R" — R
is a continuously differentiable function of x. We use the notation (8% f/ O0z;0z;)(x) to
indicate the ith partial derivative of 0f/0z; at a point z € R*. We define V?f(z),
called the Hessian of f, as the matrix whose ¢jth entry, denoted by ij f(x), is equal
to (8% f/0z;0z;)(x). We have (82f/0z;0z;)(x) = (8* f /0x;0z;)(z) for every z, which
implies that V2 f(z) is symmetric.

App. A Linear Algebra and Analysis 639

Let f: R¥ — R™ and g : R™ — R™ be continuously differentiable functions and
let h = go f be their composition, that is, h(z) = g(f(z)). Then, the chain rule for
differentiation states that

Vh(z) = Vf(@)Vg(f(z)), VzeRr

Proposition A.30. (Mean Value Theorem) If f : R — R is continuously differ-
entiable, then for every z,y € R, there exists some z € [z, y] such that

f@) - f@@) = f'(2)(y —2),

where f’ is the derivative of f.

Proposition A.31. (Second Order Taylor Series) Let f : R™ — R be twice
continuously differentiable.

(a) For any = € R", there exists a function h : R" — R satisfying

im h(y) _
lyll—=o [yl

and such that
f@+y)=Ff@)+y' V@) + 37V f@y+hy), VyeR™ (A.10)
(b) For any z,y € R", there exists some o € [0, 1] such that

f@+y) = f@) +y' V@) + iy Vi + ayy.

Proposition A.32. (Descent Lemma) If f : R™ — R is continuously differentiable
and has the property ||V f(z) — Vf(@)|2 < K|z — y||» for every z,y € R™, then
/ K 2
f@+y < f@+y Vi) + 7“9”2-

Proof. Let t be a scalar parameter and let g(f) = f(z + ty). The chain rule yields
(dg/de)(t) = y'V f(z + ty). Now

640 Linear Algebra and Analysis App. A
1 d g 1
f@+w—ﬂ@=ﬂD—ND=A;#ﬂ#=lywﬂwHwﬁ

1 1
< [wvi@ae+|[v(i@+ - V@)
0 0

1 1
< /0 YV (@) dt + /0 ol - [V £z + ty) — VF(@)|adt

1
< yVi@ + Iyl / Ktlyll dt
0
— YV @) + LKyl
Q.E.D.

Proposition A.33. Let f : ® — R be twice continuously differentiable and fix
some z € R. Then

Ef gy JEr a0 2@ iy

where h is some function satisfying lima_.o R(A) = 0.

Proof. We apply Prop. A.31(a) twice: once with y = A and once with y = —A.
By adding the two equalities obtained, the desired result follows. Q.E.D.

Definition A.12. Let X C R and let f : X — R be a given function. A vector
z € X is called a local minimum of f (over the set X) if there exists some € > 0 such
that f(y) > f(z) for every y € X satisfying ||z — y|| < ¢, where || - || is some vector
norm. A vector z € X is called a global minimum of f (over the set X) if f(y) > f(z)
for every y € X. A local or global maximum is defined similarly.

Proposition A.34. Let f: " — R be a continuously differentiable function. If
some z € R is a local minimum of f over R", then V f(z) = 0.

Proof. Fix some y € R™. Then

1'mw >0

! —
yVﬂM—ho .

)

where the last inequality follows from the assumption that z is a local minimum. Since
y is arbitrary, the same inequality holds with y replaced by —y. Therefore, y'V f(z) = 0
for all y € R", which shows that Vf(z) =0. Q.E.D.

App. A Linear Algebra and Analysis 641
Convexity
Definition A.13. Let C be a subset of . We say that C is convex if
az+(1—-a)y€C, Vz,y € C, Va € [0,1].
Let C be a convex subset of R*. A function f : C — R is called convex if
flex+(1—-a)y) <af@+1-a)fy), Vz,yeC, Yael0,1. (A.12)

The function f is called concave if —f is convex. The function f is strictly convex if
for every z,y € C, = # y, we have

flaz+ (1 -a)y) <af@+1-a)f(y), Vac(0,1).

We occasionally deal with convex functions that can take the value of infinity. An
extended real valued function f : C — RU{co} is also called convex if condition (A.12)
holds.

Proposition A.35. Let C C R" be a convex set.
(@ If f: C— Ris convex, z',..., 2™ € C, ay,...,am > 0,and > .~ a; = 1, then

f (Eaiz‘i) < Zaif(:ci).
1=1 i=1

(b) A linear function is convex.

(c) The weighted sum of convex functions, with positive weights, is convex.

(d) If I is an index set and f; : C — R is convex for each ¢ € I, then the extended
real valued function h : C — R U {oo} defined by h(z) = sup;c fi(z) is also
convex.

(e) Any vector norm is convex.

(f) If z is a local minimum of a convex function f : C — R, then it is also a global
minimum.

(g) If f: C — R is strictly convex, then there exists at most one global minimum of

f.

Proof. Part (a) is obtained by repeated application of inequality (A.12). Parts (b)
and (c) are immediate consequences of the definition of convexity.

For part (d), let us fix some z,y € C, o € [0, 1], and let z = ax + (1 — a)y. For
every i € I, we have

fi(2) < afi@) + (1 — o) fi(y) < ahz) + (1 — a)h(y).

642 » Linear Algebra and Analysis App. A

Taking the supremum over all ¢ € I, we conclude that h(2) < ah(z) + (1 — a)h(y), and
h is convex.
Let || - || be a vector norm. For any z,y € R" and any « € [0, 1], we have

ez + (1 — oyl < [laz|| + |1 - a)yll = ellz]| + (1 —)yll,

which proves part (e).

Suppose that z is a local minimum of f but not a global minimum. Then there
exists some y # x such that f(y) < f(z). Using inequality (A.12), we conclude that
f(oz+(1—a)y) < f(z) for every a € [0,1). This contradicts the assumption that z is
a Jocal minimum and proves part (f). To prove part (g), suppose that two global minima
z and y existed. Then their average (z + y)/2 would belong to C, since C is convex,
and the value of f would be smaller at that point by the strict convexity of f. Q.E.D.

Proposition A36. If f : ®* — R is convex, then it is continuous. More
generally, if C C R" is convex and f : C — R is convex, then f is continuous in the
interior of C.

Proof. Without any loss of generality, it is sufficient to prove continuity at the
origin, assuming that 0 € C and that the unit cube S = {z | ||:::||oo < 1} is contained

in C. Let e, i = 1,...,2", be the corners of S, that is, each e* is a vector whose

entries belong to {— 1 1} It is not difficult to see that any = € S can be expressed in
the form z = Zf_l a;e’, where each a; is a nonnegative scalar and E 1a; = 1. Let
A = max; f(e'). From Prop. A.35(a), it follows that f(z) < A for every a: €S.

Let {z*} be a sequence in R™ that converges to zero. For the purpose of proving

continuity at zero, we can assume that z* € § for all k. Using (A.12), we have

k
F@®) < (1 = [|z%[100) fO) + l|l2* |0 f (”—;—”—) :

Letting k tend to infinity, ||2¥||» goes to zero and we obtain

limsup f(z*) < f(0) + Alimsup ||z*||oo = £(0).
k—o0 k—oo

Inequality (A.12) also implies that

ol (g > I)
0 +
10 < a1 e) T e 17

and letting k tend to infinity, we obtain f(0) < liminfy_ o f(z¥). Thus, limy_ o f(z¥) =
f(0) and f is continuous at zero. Q.E.D.

App. A Linear Algebra and Analysis 643

Proposition A.37. Let I C R be convex. (Thus, [is an interval.) Let f : I — R
be convex. If z,y,z € I and x < y < 2, then

f@) - f@) _ f&) = f@) _ f() =~ f@)
y—z ~ z-z ~ z-y
Proof. Using inequality (A.12), we obtain

fy) < (?’—‘—"’-) &) + (z — y) f@
Z—=2

zZ—=T
and either of the desired inequalities follows by appropriately rearranging terms. Q.E.D.

Let I C R be an interval and let f : I — R be convex. Let a and b be the infimum
and the supremum, respectively, of I. For any z € I, z # b, and for any o > O such
that z + o € I, we define

o4

st(z,0) =

Let 0 < a < o’. We use the first inequality in Prop. A.37 withy = z+a and z = z+a’
to obtain s*(z,a) < s*(z,a’). Therefore, s*(z,) is a nondecreasing function of
and, as o decreases to zero, it converges either to a finite number or to —oo. Let f+(x)
be the value of the limit, which we call the right derivative of f at the point z. Similarly,
ifrel,z#a,a>0,and z — a € I, we define
f@) - flz-a)

o b

s (z,) =

which is, by a symmetrical argument, a nonincreasing function of a. Its limit as «
decreases to zero, denoted by f~(z), is called the left derivative of f at the point z, and
is either finite or equal to oo.

In case the end points a and b belong to the domain I of f, we define for com-
pleteness f~(a) = —oo and f*(b) = oo.

Proposition A.38. Let I C R be convex and let f : I — R be a convex function.
Let a and b be the end points of I as above.

(a) We have f~(y) < f1(y) for every y € I.

(b) If = belongs to the interior of I, then f*(z) and f~(x) are finite.

(¢) Ifz,z€ I and z < z, then f¥(z) < f~(2).

(d) The functions f~, f* : I — [—00, +00] are nondecreasing.

(e) The function f* (respectively, f~) is right— (respectively, left-) continuous at
every interior point of I. Also, if a € I (respectively, b € I) and f is continuous
at a (respectively, b), then ft (respectively, f~) is right— (respectively, left-)
continuous at a (respectively, b).

644 Linear Algebra and Analysis App. A

() If f is differentiable at a point = belonging to the interior of I, then f"'(:p) =
f~(z) = (df /dz)(x).
(g) For any z,z € I and any d satisfying f~(z) < d < ft(z), we have

f(2) > f(x) + d(z —).

(h) The function f* : I — (—o0,00] [respectively, f~ : I — [—o0,00)] is upper
(respectively, lower) semicontinuous at every x € I.

Proof.

(@) If y is an end point of I, the result is trivial because f~(a) = —oo and f*(b) = oco.
We assume that y is an interior point, we let @ > 0, and use Prop. A.37, with
z=y—aand z =y + q, to obtain s~ (y,a) < sT(y,a). Taking the limit as o
decreases to zero, we obtain f~(y) < f¥(y).

(b) Let x belong to the interior of I and let & > 0 be such that £ — o € I. Then
f~(x) > s7(z,0) > —oo. For similar reasons, we obtain f*(z) < oo. Part (a)
then implies that f~(z) < oo and f+(z) > —cc.

(c) We use Prop. A.37, with y = (z + z)/2, to obtain s*(z,(z — 2)/2) < s™(2,(z —
x)/2). The result then follows because f+(z) < s* (z,(z—)/2) and 5™ (2, (2 —
2)/2) < f~(2).

(d) This follows by combining parts (a) and (c).

(e) Fix some =z € I, x # b, and some positive § and o such that z + § + o < b.
We allow z to be equal to a, in which case f is assumed to be continuous at a.
We have f*(z + 6) < st(z + 6,). We take the limit, as § decreases to zero, to
obtain lims)o f*(z + §) < sT(z,). We have used here the fact that s*(z, @) is
a continuous function of z, which is a consequence of the continuity of f (Prop.
A.36). We now let o decrease to zero to obtain lims)o f+(z + §) < f*(z). The
reverse inequality is also true because f* is nondecreasing and this proves the
right—continuity of f*. The proof for f~ is similar.

(f) This is immediate from the definition of f* and f~.

(g) Fix some z,z € I. The result is trivially true for z = 2. We only consider the case
z < z; the proof for the case z > z is similar. Since s*(z,a) is nondecreasing
in o, we have (f(2) — f(x)) /(z —x) > s*(z,a) for a belonging to (0, z — x).
Letting o decrease to zero, we obtain (f(2) — f(z))/(z —z) > f+(z) > d and the
result follows.

(h) This follows from parts (d), (¢), and the definition of semicontinuity (Definition
A4). Q.E.D.

Any d € R satisfying f~(z) < d < f*(z) is called a subgradient of f at z. The
following result generalizes Prop. A.38(g) to the case of a multivariable and differentiable
convex function.

App. A Linear Algebra and Analysis 645

Proposition A.39. Let C C R™ be a convex set and let f R — R be differ-
entiable.

(@) The function f is convex on the set C if and only if
f(2) > f(x) + (z — 2)' Vf(z), Vr,z € C. (A.13)

(b) If the inequality (A.13) is strict whenever z # z, then f is strictly convex on C.

(c) Suppose that C' = R™ and that f is convex. We have V f(x) =0 if and only if x
is a global minimum of f.

Proof.

(a) Suppose that f is convex on C. Let z € C and z € C. By the convexity of C,
we obtain z + a(z —) € C for every « € [0, 1]. Furthermore,

i fz+otz-2) - fl@) _
m =
al0 o

(z = 2)'V f().
Using the convexity of f, we have
f(z+ oz — 2)) < af(z) + (1 — @) f(z), Va € [0,1].

Using this inequality to replace the f (:c+ oz — x)) term in the previous inequality,
we obtain (A.13).

For the proof of the converse, suppose that inequality (A.13) is true. We fix
some z,y € C and some a € [0,1]. Let z = az + (1 — a)y. Using inequality
(A.13) twice, we obtain

f@) > f(2) + (z — 2) Vf(2),
f@) > + @y — 2)'V f(2).

We multiply the first inequality by a, the second by (1 —), and add them to obtain

af@)+ (1 - f @) > f(2) + (ex + (I - a)y — 2) ' Vf(2) = f(2),

which proves that f is convex.

(b) The proof for the strictly convex case is almost identical to the proof for part (a)
and is omitted.

(¢) If Vf(z) = 0, then inequality (A.13) shows that f(z) > f(z) for all z € R”, and
z is a global minimum. Conversely, if z is a global minimum, then it is also a
local minimum, and Prop. A.34 shows that V f(z) = 0. Q.E.D.

646 Linear Algebra and Analysis App. A

Proposition A.40. Let f: R" — R be twice continuously differentiable, and let
A be a real symmetric n X n matrix.

(a) The function f is convex if and only if V2 f(x) is nonnegative definite for all z.
(b) If V2 f(x) is positive definite for every z, then f is strictly convex.
(c) The function f(x) = =’ Az is convex if and only if A is nonnegative definite.

(d) The function f(z) = x’ Az is strictly convex if and only if A is positive definite.
In particular, ||z||3 = z'Iz is strictly convex.

Proof.

(@) If V2f(z) is nonnegative definite for all z, then Prop. A.31(b) shows that f(z +
y) > f(x) + y'Vf(z) for all z,y € R™. Using Prop. A.39(a), we conclude that
f is convex. Conversely, suppose that f is convex and suppose, to derive a
contradiction, that there exist some z, y such that 3'V2f(z)y < 0. Using the
continuity of V2f, we see that we can choose the magnitude of y to be small
enough so that y'V2f(z + ay)y < O for every o € [0,1]. Then Prop. A.31(b)
yields f(z + y) < f(z) + ¥’V f(z), which, in view of Prop. A.39(a), contradicts
the convexity of f.

(b) The proof is similar to the proof of the corresponding statement in part (a).

(¢) An easy calculation shows that V2f(z) = 2A for all z € R™, and the result follows
from part (a).

(d) If A is positive definite, then strict convexity of f follows from part (b). For
the converse, suppose that f is strictly convex. Then part (c) implies that A is
nonnegative definite and it remains to show that A is actually positive definite.
In view of Prop. A.26(b), it suffices to show that zero is not an eigenvalue of A.
Suppose the contrary. Then there exists some z # O such that Az = —Az =0. It
follows that 1 (f(z) + f(—z)) = 0 = f(0), which contradicts the strict convexity
of f. Q.E.D.

Proposition A.41. (Strong Convexity) Let f : R" — R™ be continuously differ-
entiable and let o be a positive constant. If f satisfies the condition

(V@) - Vf(y))/(a: —y) > allz -yl Vz,y € R", (A.14)

then f is strictly convex. Furthermore, if f is twice continuously differentiable, then the
condition (A.14) is equivalent to the nonnegative definiteness of V2 f(z) — al for every
z € R™, where I is the identity matrix.

Proof. Fix some z,y € R™ such that z # y, and define the function b : R — R
by h(t) = f(z + t(y — z)). Consider some ¢,¢' € R such that ¢ < t'. Using the chain
rule and Eq. (A.14), we have

App. A Linear Algebra and Analysis 647
dh dh !
r_ Slb gy SR — Pen _ _ _ r_
¢ ~0(F0) - F0) = (Ve +t@-2) - V(a+1y-)) @ -2 -t
> a(t' - t)|lz — y|3 > 0.
Thus, dh/dt is strictly increasing and for any ¢ € (0, 1), we have

h(t);h(0)=% %()dr <_/ dh()dr _h(ll) ;l(t)'
0 _

Equivalently, ¢h(1) + (1 —)h(0) > h(t). The definition of h yields ¢f(y)+ (1 —t) f(z) >
f(ty+(1 —t)z). Since this inequality has been proved for arbitrary ¢ € (0,1) and # y,
we conclude that f is strictly convex.

Suppose now that f is twice continuously differentiable and Eq. (A.14) holds. Let
¢ be a scalar variable. We use Proposition A.31(b) twice to obtain

f@+cy) = f@)+cy' Vi) + éy'sz(x + tey)y,

and

f@) = f(z+cy) —cy'Vix+cy)+ ;y'sz(:v + scy)y,

for some ¢ and s belonging to [0, 1]. Adding these two inequalities and using (i) we
obtain

éy’ (sz(x + sey) + V2 f(z + tcy))y = (Vf(z + cy) - VI@) (ey) > a|lyl}3-

We divide both sides by ¢? and then take the limit as ¢ tends to zero to conclude that
y'V2f(z)y > ally|3. Since this inequality is valid for every y € R", it follows that
V2 f(z) — ol is nonnegative definite.

For the converse, assume that V2 f(z) — o/ is nonnegative definite for all 2z € R”".
Consider the function g : ® — R defined by

9ty = Vf(tz + (1 - t)y) @ — y).

Using the Mean Value Theorem (Prop. A.30), we have (V flx) -V f(y))'(x -y =
g(1) — g(0) = (dg/dt)(t) for some ¢ € [0, 1]. The result follows because

d
d—‘t’(t) =@ -y Vf(tz + (1 - y) @ —y) > allz — |2,

648 Linear Algebra and Analysis App. A

where the last inequality is a consequence of the nonnegative definiteness of V2f (t:c +
(1-ty) —al. QED.

Notice that the directional derivative f'(z;y) of a convex function f : R* — R at
a vector x € R in the direction y € R" is equal to the right derivative F;‘ (0) of the
convex scalar function Fy(a) = f(z + ay) at a = 0, that is,

f@ + ay) — f(z)

(¢}

f'(z;y) = lim (A.15)
al0

and, in particular, the limit in Eq. (A.15) is guaranteed to exist. Similarly, the left

derivative F; (0) of Fy is equal to — f'(z; —y) and, by using Prop. A.38(a), we obtain

—fl@;—-y) < flzy), VYyeR™ (A.16)

The following proposition generalizes the upper semicontinuity property of right deriva-
tives of scalar convex functions [Prop. A.38(h)], and shows that if f is differentiable,
then its gradient is continuous.

Proposition A.42. Let f : R" — R be convex, and let {fx} be a sequence of
convex functions fj : ™ — R with the property that limy o fx(zk) = f(z) for every
£ € R and every sequence {z} that converges to z. Then for any z € R™ and y € R",
and any sequence {zj} converging to z, we have

lim sup fi(zk; y) < f'(@3). (A.17)

k—oc

Furthermore, if f is differentiable at all z € R™, then its gradient V f(z) is a continuous
function of z.

Proof. For any p > f'(z;y), there exists an o > 0 such that

fx+ az) - f(x) <

Hence, for all sufficiently large k, we have

fr(@r + oy) = fr(zk) <
P H

K

and since f(zx;y) does not exceed the left-hand side of the last inequality, we obtain
that

lim sup fr.(zk;y) < p

k—oc

Since this is true for all x> f’(z;y), inequality (A.17) follows.

App. A Linear Algebra and Analysis 649

If f is differentiable at all z € R™, then using the continuity of f and the part of
the proposition just proved, we have for every {z;} converging to z and every y € R,

limsup V f(zx)"y = limsup f'(zx;) < f'(z;y) = VF(z)'y.

k—oo k

By replacing y by —y in the preceding argument, we obtain
—liminf V f(z})'y = limsup(—V f(zx)'y) < -V f(2)'y.
k—oo k—oo

Therefore, we have V f(z;)'y — V f(z)'y for every y, which implies that V f(z;) —
V f(z). Hence, the gradient is continuous. Q.E.D.

We will encounter functions of the form f(z) = max.cz #(z,z) when dealing
with dual optimization problems (see Appendix C). The following result characterizes
the directional derivatives of f.

Proposition A.43. (Danskin’s Theorem [Dan67]) Let Z C R™ be a compact set,
and let ¢ : R" x Z — R be a continuous function such that ¢(-, z) : R* — R, viewed as
a function of its first argument, is convex for each z € Z.

(a) The function f : R™ — R given by
f(z) = max é(z,)
is convex and has directional derivative given by

fl@y) = Jnax d'(z, 2 y), (A.18)

where ¢'(z,z;y) is the directional derivative of the function ¢(-,z) at z in the
direction y, and

Z@@)y=A{z]| ¢(z,2) = rzneaz)g o(z, 2)}. (A.19)

In particular, if Z(z) consists of a unique point Z and ¢(-, 2) is differentiable at
z, then f is differentiable at x, and V f(z) = V_¢(z, 2), where V_¢(zx, 2) is the
vector with coordinates (8¢/dz;)(z,2),i=1,...,n.

(b) The conclusion of (a) also holds if, instead of assuming that Z is compact, we
assume that Z(z) is nonempty for all z € R", and that ¢ and Z are such that for
every sequence {x} converging to some z, there exists a bounded sequence {2}
with z, € Z(x}) for all k.

650 Linear Algebra and Analysis App. A

Proof. We only prove part (a). The proof of part (b) is almost identical. The
convexity of f has been established in Prop. A.35(d). We note that since ¢ is continuous
and Z is compact, the set Z(z) is nonempty by Weierstrass’ theorem (Prop. A.8) and f
is finite. For any z € Z(z), y € R™, and a > 0, we use the definition of f to obtain

fx+ay) — f(z) S &z + ay, z) — ¢z, 2)
o - o)

Taking the limit as o decreases to zero, we obtain f'(z;y) > ¢'(x,2;y). Since this is
true for every z € Z(zx), we conclude that

fl@y) > sup ¢'(z,29), VyeR™ (A.20)
2€Z(x)

To prove the reverse inequality and that the supremum in the right-hand side of
inequality (A.20) is attained, consider a sequence {ay } of positive scalars that converges
to zero and let z, = z + apy. For each k, let z; be a vector in Z(z). Since {2k}

belongs to the compact set Z, it has a subsequence converging to some z € Z. Without
loss of generality, we assume that the entire sequence {2} converges to Z. We have

(K, 2k) = HK,2), Vz€Z
so by taking the limit as k — oo and by using the continuity of ¢, we obtain
#z,2) > ¢(z,2), Vz€eLZ
Therefore, zZ € Z(x). We now have

f+ony) - f@) _ d& + aky, 2x) = 9(x,2) _ (& + awy, 2k) — H(, 2k)
(o7 - ag - 72

fl@y) <
< —¢'(x + ory, zi; —y) < &' (T + Ay, 23 Y), (A21)

where the last inequality follows from inequality (A.16). We apply Prop. A.42 to the
functions f;, defined by fr(-) = &(:, 2¢), and with x;, = z + a;y, to obtain

limsup ¢'(z + ary, 2k; ¥) < ¢'(z, Z; 9). (A.22)

k—oo

We take the limit in inequality (A.21) as k — oo, and use inequality (A.22) to conclude
that

fly) < ¢z, zy).

This relation together with inequality (A.20) proves Eq. (A.18).

App. A Linear Algebra and Analysis 651

For the last statement of part (a), if Z(z) consists of the unique point Z, Eq. (A.18)
and the differentiability assumption on ¢ yield

fl@wy)=d(x,5y) =y'Vad(z,2), VyeR,

which implies that V f(z) = V,é(z,3). Q.E.D.
Linear Differential Equations

Consider the differential equation

%(t) = AW®2®) + Bbu(t). (A.23)

Here z(t) € R™, u(t) € R™, and A(t), B(t) are matrices of dimensions n x n and n X m,
respectively. We assume that u(t), A(t), and B(t) are continuous functions of ¢. Then
it can be shown that for any given initial condition z(0) = zy € R™, the differential
equation (A.23) has a unique solution over the interval [0, co) [CoL55].

Proposition A.44.

(@) Under the above continuity assumptions, the solution of Eq. (A.23) admits the
representation

t
z(t) = / &(t,) B(T)u(r) dm + ®(t, 0)xo, (A.24)
0
where ©(¢,7) is an n x n matrix satisfying ®(r, 7) = I for every 7 > 0, and
dd)
E(t’ T) = AP, 1), VT, Vt > 1. (A.25)

(b) Suppose that A(t) is a continuous and bounded function of time. Let || - || be some
induced matrix norm. Then there exist constants C and ¢ such that

B,)| < Cet=, V¥r>0, Vt>r1. (A.26)
Proof.

(a) We first notice that Eq. (A.25) defines ®(t, 7) uniquely, because of the existence
- and uniqueness result quoted earlier. Let us define z(t), t > 0, by Eq. (A.24). We
notice that z(t) satisfies the initial condition z(0) = zy and, by differentiating the
right-hand side of Eq. (A.24), we see that z(t) also satisfies Eq. (A.23). The result
follows because Eq. (A.23) has a unique solution.

652 Linear Algebra and Analysis App. A

(b) Let D, be a bound on || A(t)||. Let D, = ||I||. Let ¢ = D, and C = 2D,. Notice
that inequality (A.26) is true if t = 7. Fix some 7 > 0. Suppose, to derive a
contradiction, that there exists some ¢ > 7 such that inequality (A.26) fails to hold.
Let t* be the infimum of the set of all such ¢. Since ®(¢, 7) is a continuous function
of t, it follows that inequality (A.26) holds with equality at time t*. We integrate
Eq. (A.25) and take the norm of both sides to obtain

.
/ Ao, 7 dt| + o, 7l

2D26D1(t‘_7-) — ”‘b(t*,T)“ S ‘
t
s/lmwrmmmm+m
T

+*
< / D2D,eP =" g4t 4+ D,
T
) = 2D26Dl(t'_7-) bt 2D2 + Dz < 2D26D'(t* _T),

which is a contradiction. Q.E.D.

B
Graph Theory

In this appendix, we collect the definitions and notational conventions relating to graph
theory that we will use throughout the book. For further material, consult [Chr75],
[Har69], [Law76], [PaS82], and [Roc84].

Undirected Graphs

We define a graph, G = (N, A), to be a finite nonempty set /V of nodes and a collection
A of pairs of distinct nodes from N. Each pair of nodes in A is called an arc (or link
in some contexts). An arc (i, J) is viewed as an unordered pair, and is indistinguishable
from the pair (j,); thus (i, j) = (,9. If (Z, 7) is an arc, we say that (i, 7) is incident to i
and to 7, and we say that ¢ and j are adjacent nodes (or neighboring nodes or neighbors).
The degree of a node i is the number of arcs that are incident to ¢. The numbers of
nodes and arcs of G are denoted by |N| and | A, respectively.

Note that we have disallowed self-arcs, that is, arcs connecting a node with itself,
We have also disallowed multiple arcs between the same pair of nodes, and thus we can
refer unambiguously to the arc between nodes i and J as arc (z,7). This was done for
notational convenience; all of our analysis can be simply extended to the case of graphs
that can have multiple arcs between any pair of distinct nodes. The standard method for
doing this is to replace each arc between nodes i and j by an additional node, call it n,
together with the two arcs (¢, n) and (n, 7).

653

654 Graph Theory App. B

A walk in a graph G is a finite sequence of nodes (n(,n,...,nx) such that
(n1,n2), (n2,n3),...,(ng_1,n) are arcs of G. A walk (ni,...,ng) with ny = ng, k >
3, is called a cycle. A walk is said to be simple if it contains no repeated nodes, except
possibly for the start and end nodes, in which case, it is a (simple) cycle. We say that a
graph is connected if for each node 1, there is a walk (i = n,n2,...,nx = j) to each
other node j.

We say that G’ = (N, A’) is a subgraph of G = (N, A) if G’ is a graph, N' C N,
and A’ C A. A tree is a connected graph that contains no cycles. A spanning tree of
a graph G is a subgraph of G that is a tree and that includes all the nodes of G. The
following proposition gives a basic result on trees and spanning trees:

Proposition B.1. Let G = (V, A) be a connected graph with |N| nodes and |A|
arcs. Then:

(a) G contains a spanning tree.

(b) [A] = |N| -1
(¢) G is atree if and only if |A| = |[N| - 1.
Proof.

(a) We show that the following algorithm constructs a spanning tree:
1. Let n be an arbitrary node in N. Let N’ = {n}, A’ = empty.
2. If N’ = N, then stop [G’ = (N’, A’) is a spanning tree]; else go to Step 3.
3. Let (4,7) € A be an arc with : € N’ and j ¢ N’. Update N’ and A’ by

N':=N'u{j},
A=A u{G N}

Go to Step 2.

To see why the algorithm works, note that Step 3 is only entered when N is
a proper subset of IV, so that the existence of the arc (¢, j) in Step 3 follows from
the connectedness of G. We use induction on successive executions of Step 3 to
show that G’ = (I, A') is always a tree. Initially, G’ = ({n}, empty) is trivially
a tree, so assume that G’ = (N', A’) is a tree before the update of Step 3. This
ensures that there is a walk between each pair of nodes in N’ using arcs of A’.
After node j and arc (z, j) are added, each node has a walk to j simply by adding
j to the walk to i, and, similarly, j has a walk to each other node. Finally, node j
cannot be in any cycles since (z, j) is the only arc of G’ incident to j. Furthermore,
there are no cycles not including j by the induction hypothesis.

(b) Observe that the algorithm starts with a subgraph having one node and zero arcs,
and adds one node and one arc on each execution of Step 3. This means that the
spanning tree G’ resulting from the algorithm always has |N| nodes and |N| — 1
arcs. Since G’ is a subgraph of G, the number of arcs |A| in G must satisfy
|4] > |N| - 1.

App. B Graph Theory 655

(c) Assume that |A| = |N| — 1. This means that the algorithm uses all arcs of G in
the spanning tree G', so that G = G’ and G must be a tree itself. Conversely,
if |A| > [N, then G contains at least one arc (i, j) not in the spanning tree G’
generated by the algorithm. Letting (J,...,7) be the walk from j to i in &, it is
seen that (i, j,...,7) is a cycle in G and G cannot be a tree. Q.E.D.

Directed Graphs

A directed graph or digraph G = (N, A) is a finite nonempty set N of nodes and a
collection A of ordered pairs of distinct nodes from N; each ordered pair of nodes in A
is called a directed arc (or simply arc). Thus, a directed graph can be viewed as a graph
where each arc has a direction associated with it. We do not allow more than one arc
between a pair of nodes in the same direction, but we do not exclude the possibility that
there is a separate arc connecting a pair of nodes in each of the two directions. If (i, 5)
is a directed arc, we say that (z,) is an outgoing arc from node i, and an incoming arc
to node j; we also say that (4, j) is incident to ¢ and to j, and that i and j are adjacent
nodes (or neighboring nodes or neighbors).

A path P in a directed graph is a sequence of nodes (n;,ns,...,ng) with k > 2
and a corresponding sequence of k£ — 1 arcs such that the ith arc in the sequence is
either (n;,n;4+1) (in which case it is called a forward arc of the path) or (n;41,n;) (in
which case, it is called a backward arc of the path). We denote by P* and P~ the sets
of forward and backward arcs of P, respectively. The arcs in Pt and P~ are said to
belong to P. Nodes n; and ny are called the start node (or origin) and end node (or
destination) of P, respectively.

A directed cycle (or simply cycle when confusion cannot arise) is a path for which
the start and end nodes are the same. A path is said to be simple if it contains no repeated
nodes except possibly for the start and end nodes, in which case, it is a (simple) cycle.
A path is said to be positive (or negative) if all of its arcs are forward (respectively,
backward) arcs. We refer similarly to a positive and a negative cycle. A digraph that
does not contain any positive cycles is said to be acyclic.

A digraph is said to be connected if for each pair of nodes i and j, there is a path
starting at ¢ and ending at j; it is said to be strongly connected if for each pair of nodes
¢ and j, there is a positive path starting at ¢ and ending at j.

Flows
A flow vector f in a directed graph (N, A) is a set of real numbers { fij | G,5) € A}.

We refer to f;; as the flow of the arc (, j). The divergence vector y associated with a
flow vector is the | V|-dimensional vector with coordinates

vi= Y. fi— 3. fi, VieN. (B.1)

{slG.eA} {ilG.HeA}

Thus, y; is the total flow departing from node ¢ less the total flow arriving at ;. We say
that node ¢ is a source (respectively, sink) for the flow vector f if y; > O (respectively,
¥: <0). If y; =0 for all i € N, then f is called a circulation.

656 Graph Theory App. B

We say that a path P conforms to a flow vector f if f;; > 0 for all (i,j) € P*
and f;; < O for all (3,7) € P~, and either P is a cycle or else the start and end nodes
of P are a source and a sink of f, respectively. A simple path flow is a flow vector f of
the form

a if (4,5) € P,
fij =18 —a if (4,j) € P, (B.2)
0 otherwise,

where a is a positive scalar, and PT and P~ are the sets of forward and backward arcs,
respectively, of a simple path P. We say that a simple path flow f° conforms to a flow
vector f if the path P corresponding to f* via Eq. (B.2) conforms to f. The following
is an important result proved in several sources, (e.g., [Roc84}], p. 103).

Conformal Realization Theorem. A nonzero flow vector f can be decomposed

into the sum of finitely many simple path flow vectors f!, f2,..., f* that conform to f.
If f is integer, then f', f2,..., f* can also be chosen to be integer. If f is a circulation,
then f', f2,..., f* can be chosen to be circulations.

Proof. We first assume that f is a circulation. Our proof consists of showing how
to obtain from f a simple circulation f’ such that

0<fi; = O0Zf;<fy, (B.32)
fi; <0 = fi; <fi; <0, (B.3b)
fij=fi; #0 for at least one arc (7, j). (B.3¢c)

Once this is done, we have f;;— f;; > 0(< 0) only if f;; > 0 (fi; <0), and f;; — =
for at least one arc (i, 7) with f;; # 0. If f is integer, then f’ and f — f’ will also be
integer. We then repeat the process with the circulation f replaced by the circulation
f— f' and so on until the zero flow is obtained. This is guaranteed to happen eventually
because f — f' has at least one more arc with zero flow than f.

We now describe the procedure by which f’ with the properties (B.3) is obtained.
Choose an arc (z, j) with f;; # 0. Assume that f;; > 0. (A similar procedure can be

used when f;; < 0.) Take Tp = {j}. Given Tk, let

Tis1 = {n ¢ U’;=0Tp| there is a node m € Ty, and either an arc (m,n)

such that fn,, > 0, or an arc (n,m) such that f,n, <0},

and mark each node n € Ty with the label “m”, where m is a node of T such that
fon > 0 0r frm < 0. We claim that one of the sets Tj contains node i. To see this
note that there is no outgoing arc from U,T} with positive flow and no incoming arc
into Ui Ty with negative flow. If ¢ did not belong to U;T%, there would exist at least
one incoming arc into U7} with positive flow, namely, the arc (i, j). Thus, the total

App. B Graph Theory 657

incoming flow into U T} would not be equal to the total outgoing flow from U; T}, and
this contradicts the fact that f is a circulation. Therefore, one of the sets 7} contains
node <.

We now trace labels backwards from ¢ until node j is reached. (This will happen
eventually because if “m” is the label of node n and n € T}y, then m € T}, so a
“cycle” of labels cannot be formed before reaching j.) In particular, let “3,” be the label
of 7, let “4,” be the label of 7;, etc., until a node i, with label “;3” is found. The cycle
C = (, ik, k-1, .-,01,1,7) is simple, it contains (4, j) as a forward arc, and is such that
all its forward arcs have positive flow and all its backward arcs have negative flow (see
Fig. B.1). Let a = mingy, nyec | fmn| > 0. Then the circulation f’, where

a if@,j)eCt,
fij=4 —a ifG,j)eC, (B.4)
0 otherwise,

has the required properties (B.3).

If f is not a circulation, we introduce a new node s and for each node i € N,
an arc (s,z) with flow fs; equal to the divergence y; of Eq. (B.1). Then the resulting
flow vector is a circulation, and application of the decomposition result just shown for
circulations proves the proposition. Q.E.D.

Figure B.1 Construction of a cycle of nonzero flow arcs used in the proof of the
Conformal Realization Theorem.

658 Graph Theory App. B

We close this appendix by using the Conformal Realization Theorem to prove a use-
ful fact. We first introduce some definitions. For any positive path P = (n;, na, ..., nk),
the multiplicity of an arc belonging to P is the number of times that it appears in the se-
quence (n;,n2),(n2,n3),...,(Mk_1,nk). We say that the positive path P is decomposed
into a set of positive paths P, P,,..., Py if: '

(a) an arc belongs to P if and only if it belongs to at least one of the paths P, P, ..., Py;

(b) the multiplicity of an arc belonging to P is equal to the sum of the multiplicities
of the arc in those paths P;, P,,..., Py to which it belongs.

We have the following result:

Path Decomposition Theorem. A positive path P can be decomposed into a
(possibly empty) collection of simple positive cycles, together with a simple positive
path P that has the same start node and end node as P.

Proof. For every arc (i, 7) that belongs to P, let f;; be equal to its multiplicity,
and for every other arc (7, j) let f;; = 0. Assume first that P is a cycle. Then, for each
node i, the number of arcs that are outgoing from ¢ and belong to P is equal to the
number of arcs that are incoming to ¢ and belong to P. Hence, the flow vector f is a
circulation, and the result follows by applying the Conformal Realization Theorem. If
P is not a cycle, introduce a new node s and the arcs (s,%;) and (¢, s) where) and
are the start node and end node of P, respectively. Let fg;, = fi,s = 1. Then the flow
vector f is a circulation in the expanded graph. By applying the Conformal Realization
Theorem, we see that f is decomposed into a collection of simple positive cycles, of
which only one contains the arcs (s,%;) and (i, s). This latter cycle is used to determine
the simple positive path P that has the same start and end node as P. Q.E.D.

C
Duality Theory

In this appendix, we develop a Lagrange multiplier theorem and an associated duality
theorem for convex optimization problems with linear constraints. For additional material
on duality, consult [Roc70], [Roc84], and [StW70]. Our line of development is based
on a simple result known as Farkas’ Lemma. To understand this lemma, we introduce
some notions related to cones in ™.

Definition C.1. A set C' C R" is said to be a cone if az € C for all a > 0 and
zeC.

Definition C.2. The polar cone of a cone C is the cone given by

Ct={y|y'z<0, VzecC}. (C.1)
Figure C.1 illustrates these definitions.
To develop an example of a cone that is particularly interesting to us, let ey, e,..., e
and ay,ay,...,a, be given vectors in R™. Then it can be seen that the set
m ™
C= 1‘{ Tr= pie; + Zujaj, PiER, u; >0 (C.2)
i=1 Jj=1

659

660 Duality Theory App. C

Figure C.1 Illustration of a cone and

its polar in ®2. Here C = {z |z =
wja; + wzap, u; > 0, up > 0} and
Ct ={y|ya1 £0, ya, < 0}, where
a; and a; are the vectors shown; compare
with Egs. (C.2) and (C.3).

is a closed cone with a polar cone given by
Cr={y|ye=0,4a; <0, Vi=1,...,m, j=1,...,7}. (C3)

The following result, when specialized to the cones C and C* of Egs. (C.2) and (C.3),
respectively, yields what is usually referred to as Farkas’ lemma [PaS82].

Polar Cone Theorem. For any closed convex cone C, we have (C+)L = C.

Proof. See Fig. C.2.
Consider now the optimization problem

minimize F'(z)

subject to eix = s;, i=1,...,m,
/ . P)
a;z < tj, ij=1...,r
z € P,

where F': R" — R is a convex function, e; and a; are given vectors in R”, s; and t;
are given scalars, and P is a nonempty polyhedral subset of R”. (A polyhedral set P is
one that is specified by a finite collection of linear inequalities; we admit the possibility
that P = R™.) A vector x satisfying the constraints of problem (P) will be referred to
as primal feasible (or simply feasible). Define the Lagrangian function

L,p,w) = F@) + Y _pilejz — s) + Y _ uj(djz — t;), (C.4)
=1

=1

App. C Duality Theory 661

Figure C.2 Proof of the Polar Cone
Theorem. If = € C, then for all y € C+,
we have 2’y < 0, which implies that

z € (CH)L. Hence, C C (CL)L.

To prove the reverse inclusion, take

z € (C+)L, and let 2 be the unique
projection of z on C, as shown in the
figure. The projection exists because C is
closed; see Prop. 3.2 in Section 3.3, which
also implies that

(z-2(z-32<0, VzeC.

By taking = 0 and z = 2% in the
preceding relation, it is seen that

(z—2)2=0.

Combining the last two relations, we obtain
(z— 2)'z < 0forall z € C. Therefore,
(z — 2) € CL, and since z € (CL)L, we
obtain (z — 2)’z < 0, which when added
to (2 — 2)'2 = 0 yields ||z — 2[2 < 0.
Therefore, z = 2 and z € C. It follows
that (CL)+ c C.

where p and u are the vectors (pi, ..., pm) and (uy,...,u,), respectively. Consider also
the dual functional q : R™*" +— [—00, 00) defined by

q(p,w) = inf L(z,p,u). (C.5)
Tz€P
The dual problem is

maximize q(p,u)
. . . (D)
subjectto peR™, uweR", u>0.

Note that if the polyhedron P is bounded, then the dual functional takes real values, but
in general, g(p, u) can take the value —oo. Thus we generally view g as an extended real
valued function. A pair (p,u) satisfying the constraints of problem (D) will be referred
to as dual feasible (or simply feasible). From Egs. (C.4) and (C.5) we see that q is
obtained as the infimum of a collection of linear functions of p and u (one for each
z € P). It follows that g is concave [Prop. A.35(d) in Appendix A]. Figure C.3 provides
a geometric interpretation of the dual functional, and illustrates why the optimal value
of the original problem (P) is “normally” equal to the optimal dual value.

The following theorems hold for general convex functions F' : R" — R, but will
be shown under the additional assumption that F is differentiable. The proof without this
assumption requires a more refined version of Farkas’ lemma (see [Roc70], pp. 187 and
277). These theorems will be proved in Section 5.5 without assuming differentiability

662 Duality Theory App. C

Cost level F(x)

Optimal primal value
min F(x) = q(u*)
o x <t
x€eP

A
Slope = —u
Slope = —u*
Dual value
qlu) = minygLbeu) | \=ming { Fix) +ula'x—1) |
o Constraint level a'x — ¢t

Figure C.3 Geometrical interpretation of the dual functional for the case of the single
inequality constraint problem

minimize F(z)

subject to a'z < ¢, z € P.

We construct the set of constraint—cost pairs A = {(a’ T — t,'F(z)) |z € P}. Given
u > 0, the dual value g(u) is obtained by “supporting” A from below with a line of
slope —u. The point where this line intercepts the vertical axis is g(u). As u varies, g(u)
is always below the optimal primal value and for a particular value u*, g(u*) equals the
optimal primal value. This happens because the convexity of F' can be used to show

that the set A = {(z,y) | @’z —t < z, F(z) < y for some z € P} shown in the
figure is convex.

of F in the special case of a network flow problem with a separable cost function.
They also have extensions to more general convex optimization problems, where the
inequality constraints are specified by convex nonlinear functions and the constraint set
P is a convex set which is not necessarily polyhedral (see [Roc70] and [StW70]).

Lagrange Multiplier Theorem. A vector z* is an optimal solution of problem
(P) if and only if z* is feasible and there exist vectors p* = (p},...,p},) and u* =
(ul,...,uy) with u* > 0 such that

App. C Duality Theory 663
F(z*) = L(z*,p*,«*) = min L(z, p*, u*), (C.6)
z€EP

uj =0, V j such that a}z* < t;. €7

Proof. (Assuming that F is differentiable.) Let z* be feasible. If there exist p*
and u»* with the given property, we have for all z that are feasible for (P),

F(z") < L(z,p*,u") = F@) + Y _pi(efz — s) + 3 _uj(@jz —t;) < Fz), (C.8)

i=1 j=1

where the last inequality follows from the condition u* > 0 and the feasibility of z.
Hence, z* is optimal for (P).

Conversely, assume that z* is optimal for (P). We will first prove the version of
the result where P = R™ or, equivalently, where the linear inequalities defining P are
lumped together with the inequality constraints ag-x <tj;, j=1,...,7. We will then use
the result for this special case together with the just shown forward part of the theorem
to prove the result for the general case.

The optimality of z* implies that for every feasible z, the rate of change of F
starting from z* and going toward z is nonnegative, that is,

VF(@*)(z—z*) >0, V feasible z, (C.9)
(cf. Prop. 3.1 in Section 3.3). Consider a representation of the polyhedral set P as
P={z|dx<t;, j=r+1,...,7},
where a; and t;, j =r +1,...,, are some vectors and scalars, respectively. Let J be
the set of indices for which the corresponding inequalities a;x < t; hold as equalities at
z*, that is,
J={jlaz" =t;, j=1,...,7}.
Consider the cone
m
c= 4y=2)m+z)ﬂﬁmeﬁwzo, (C.10)
i=1 JjeJ
and its polar given by [cf. Egs. (C.2) and (C.3)]
Ct={y|ye=0,ya; <0, Vi=1,...,m, je J}.

It is seen that we have y € C* if and only if y = «(z — z*) for some v > 0 and some
feasible z. Thus, from the condition VF(z*)'(z — z*) > 0 [cf. Eq. (C.9)] we obtain

VF@E*)y>0, VyecCt.

664 Duality Theory App. C

Hence, —V F(z*) belongs to (C+)%, which, by the Polar Cone Theorem, is equal to C.
It follows from the representation of C [cf. Eq. (C.10)] that there exist p* and w* > 0
such that wj = 0 for all j ¢ J and

m T T
VF(z*) + pre,- + Zw;aj + Z wia; = 0. (C.11)
=1 j=1 j=r+l1
Define v* = (wy,...,w;) and consider the problem

minimize L(z,p*,u*)

subject to azz < t;, j=r+1,..., 7

The function L(z,p*,u*) + > _. ., wj(ajz — t;) is the Lagrangian function for this
problem and is convex with respect to . From Eq. (C.11), it follows that z* minimizes
this function over R™. By using the earlier shown forward part of the theorem, we
obtain that z* solves the above problem, that is, minimizes L(z, p*,u*) over all z € P.
Using the properties of «* and the feasibility of z* we see that (C.7) holds and that
F(z*) = L(z*,p*,u*). Q.E.D.

Duality Theorem.

(a) If the primal problem (P) has an optimal solution, the dual problem (D) also has
an optimal solution and the two optimal values are equal.

(b) In order for z* to be an optimal primal solution and (p*, u*) to be an optimal dual
solution it is necessary and sufficient that z* be primal feasible, (p*,u*) be dual
feasible, and

F(.’L'*) = L($*7p*,U*) = ngg L(%P*yu*)-
Proof.

(a) We have, using the definitions of the Lagrangian and the dual functions [cf. Egs.
(C.4) and (C.5)]

q(p,u) < L(z,p,u) < F(x), V primal feasible x, and dual feasible (p, u).
(C.12)
Furthermore, the Lagrange Multiplier Theorem implies that if z* is a primal optimal
solution, then there exist dual feasible p* and u* such that ¢(p*, u*) = F(z*). From
Eq. (C.12), it follows that (p*,u*) is dual optimal and that the primal and dual
optimal values are equal.
(b) If z* is primal optimal and (p*, u*) is dual optimal, then using the equality of the
optimal primal and dual values [part (a)], Eq. (C.12), and the definition of the dual
functional, we obtain

App. C Duality Theory 665
F(z*) = L(z*,p",u") = q(p*,u") = min L(z, p*, u*).
z€P

Conversely, the relation F'(z*) = mingep L(z, p*,u*) can be written as F(z*) =
q(p*, u*), and, since z* is primal feasible and (p*, u*) is dual feasible, Eq. (C.12)
implies that z* is primal optimal and (p*, u*) is dual optimal. Q.E.D.

Saddle Point Theorem. In order for z* to be an optimal primal solution and
(p*, ©*) to be an optimal dual solution, it is necessary and sufficient that * € P, u* > 0,
and
L(z*,p,u) < L(z*,p*,u*) < L(z,p*,u"), VzeP, peR™ u>0. (C13)
Proof. If z* is primal optimal and (p*,u*) is dual optimal, then z* € P and
u* > 0. Furthermore, from part (b) of the Duality Theorem, we obtain

* ok kN s * ok
L(.’I) 7p ,U)_:l;nelg[’(wap 7“)a

thereby proving the right-hand side of Eq. (C.13). We also have for all p and u > 0,
using Eq. (C.12) and part (b) of the Duality Theorem,

L(:L'*7p7 u) < F(.Z'*) = L(x*7p*au*)7

which shows the left-hand side of Eq. (C.13).
Conversely, assume that z* € P, v* > 0, and Eq. (C.13) holds. It is seen from
the definition of the Lagrangian function (C.4) that

sup L(z*,p,u) =

{F(z*), if ez* = s, Vi, ajz* < tj, V4,
u20,p

400, otherwise.
Therefore, from Eq. (C.13), we obtain that £* is primal feasible and
F(z*) = L(z*,p*, ") = min L(z, p*, u*).
zEP

The primal optimality of =* and the dual optimality of (p*,u*) follow from part (b) of
the Duality Theorem. Q.E.D.
Examples of Dual Problems
As an example of application of the preceding theorems, consider the linear program
minimize a'z
subject to ejr = s;, i=1,...,m, (LP)

b]Sx]ScJa j=17°--7n7

666 Duality Theory App. C
where a and e; are given vectors in R, and s; are given scalars. The jth component

of the vector e; is denoted by e;;. Using the definition of the dual functional q [cf. Egs.
(C.4) and (C.5)], we obtain

n m m
= min z a~+Z €55 x~—Z £
%) bj<z;<cj, j=l,m 7z lp’) R 1p’ ‘
1= =

i=1

This minimization can be carried out separately for each z;, leading to the form

n m
@ =Y @ - pisi, (C.14)
Jj=1 i=1
where
(aj + Yizi pieij)bj, if aj + 32 piei; 2 0,
i@ = 7 . C.15
%® { (aj + iy pieig) sy if aj + Y02, pesj <O ©19
The dual problem is
maximize q(p)
(DLP)

subjectto p € R™.

From part (b) of the Duality Theorem, we also obtain that z* and p* are primal and dual
optimal, respectively, if and only if

eix* = s, Vi=1,...,m, (C.16)

and 77 minimizes (a; + i pg“eij) x; subject to b; < z; < c; for each j. The latter
minimizing property of z7 is equivalent to

m
5 = bj, if aj+ Y plei; >0, (C.17a)
=1
m
2l =¢;, if a;+) plei; <0, (C.17b)
=1
m
bj <z} <, if a;+» ple;=0. (C.17¢)

=1

The relations (C.17) are known as the complementary slackness conditions.

App. C Duality Theory 667

Consider also the linear program
minimize a'z
subject to ejx = s;, i=1,...,m, (LP)
0<L zj, 17=1...,n,

where a, e;, and s; are as in the previous linear program (LP). Using the definition of
the dual functional g of Egs. (C.4) and (C.5), we obtain

n m m
alp) = OSa:j,n;il,...,n Zl (aj + sz'eij) %~ lpisz' ,
]= 1=

=1

s0 g(p) = —oo if aj + S i, pies; < O for some j, and g(p) = — Y i~ p;s; otherwise.
Thus, the dual problem is

m
maximize — E PiS;

=1

m
subject to a; +Zpie,~j >0, Vi=1,...,n.

i=l1

By making the change of variables m; = —p;, this problem is written in the following
form, which is the one usually encountered in linear programming textbooks,

m
maximize sti

i=1 ,
~ (DLP')
subject to Emeijgaj, Vi=1,...,n.

i=1

As an example of a special case of the linear program (LP’), consider the following
version of the assignment problem [see Section 5.3, Eq. (3.6)]

n
maximize E E (4231 fij

i=1 jEAG)
subject to Z fi; =1, Vi=1,...,n,
JEAG) (AP)
Z f,’j=l, Vj:l,...,n,
{ilje A}

OSfijy Vi:l,...,n, JEA(2)>

668 Duality Theory App. C

where each A(7) is a subset of { 1,...,n}. This problem becomes a special case of
(LP’) once the sign of a;; is reversed and maximization is replaced by minimization.
By carrying out this transformation, writing the corresponding dual problem (DLP’), and
changing sign of the dual variables while replacing minimization by maximization, we
obtain the dual problem

n n
minimize E s +E Dj
i=1 j=1

subject to r; +pj 2> Qij, V1, j € AQ@).

(DAP)

Here the dual variables r; (respectively, p;) correspond to the first (respectively, second)
set of equality constraints of the assignment problem (AP).

As another example of a duality relation, consider the quadratic programming
problem

minimize }z'Qz — bz QP
subject to Az <c,

where @ is a given n x n positive definite symmetric matrix, A is a given m X n matrix,
and b € R" and c € R™ are given vectors. The dual functional is

q(u) = inf {32'Qz — bz + v'(Az — o}.

The infimum is attained for x = Q~'(b — A’u), and, after substitution of this expression
in the preceding relation for ¢, a straightforward calculation yields

9w = —3u'AQ™' A'u — /(e — AQ™'b) — 16'Q™".

The dual problem, after a sign change that converts it to a minimization problem, is
equivalent to

minimize fu'Pu+ 7'y bOP
(DQP)
subjectto u >0,

where
P=AQ'A, r=c-AQ .

If v* is any optimal solution of the dual problem (DQP), then the optimal solution of
the primal quadratic programming problem (QP) is given by z* = Q71(b — A'u*).

App. C Duality Theory 669

Differentiability Properties of the Dual Functional

We finally consider the question of differentiability of the dual function ¢ of Eq. (C.5)
when P is a bounded polyhedron. Since L(-, p,u) is convex, it is continuous (Prop. A.36
in Appendix A) and it follows that the infimum of L(z, p, u) over z € P is attained for all
(p, u) by the Weierstrass theorem (Prop. A.8 in Appendix A). Thus, the concave function
q is everywhere finite and is therefore continuous (Prop. A.36 in Appendix A). Situations
where q is differentiable can be characterized by using Danskin’s theorem (Prop. A.43
in Appendix A). This theorem applies to functions of the form max,cz ¢(y, z) where ¢
is convex with respect to y for every fixed z. Equivalently, by changing the sign of ¢,
the theorem applies to functions of the form min,cz ¥(y, z), where % is concave with
respect to y for every fixed z. The dual functional is of the latter form, provided that
we identify 9, y, 2, and Z with L, (p,w), z, and P respectively, and we notice that L is
linear (and hence concave) with respect to (p,u) for each fixed x. Since P is compact
and L is continuous, it follows from Danskin’s theorem that if the infimum of L(z, p, u)
over x € P is attained at a unique point, then g is differentiable at (p, u). Thus, by using
also the fact that a convex differentiable function has a continuous gradient (Prop. A.42
in Appendix A), we obtain the following result:

Dual Function Differentiability Theorem. Assume that F' is a strictly convex
function and that the polyhedron P is bounded. Then the dual functional g is continuously
differentiable and for all (p, u), we have

1o

q(p’u)=e:.’1-3—3u i:l,...,m,
Op;

9q(p, u) - 1

du; =a;z—t;, j=1...,,

where T is the unique vector that minimizes L(z,p,u) over z € P for the given pair

(p, w).

D

Probability Theory
and Markov Chains

We now present some background material on probability theory. We start with two
results on exponentially distributed random variables needed for Exercise 4.1 in Section
1.4. We continue with the basic definitions and properties of finite state Markov chains.
Finally, we present some more advanced results that are needed for Section 7.8. It is
assumed that the reader is already familiar with the basic concepts of probability theory,
such as random variables, independence, expectations, and conditional expectations. A
rigorous proof of some of the results to be presented requires measure theory ([Ash72]
and [Rud74]). Still, knowledge of measure theory is not needed for understanding the
contents of this appendix. For more information, the reader could consult [Ash70],
[Fel68], and [WoH85] for probability theory, and [Ash70] and [Ros83a] for Markov
chains.

We use the notation Pr(A) to denote the probability of an event A. A piecewise
continuous function p : R — [0, co) is called the density of a real valued random variable
X if

b
Pr(X € [a,b]) =/ p(zx) dz,

for every a,b € R such that a < b. The expectation of a real valued random variable X
with density p is given by

670

App. D Probability Theory and Markov Chains 671

F[X]= /oo zp(x) dzx,

—0oQ
and its variance by

Var(X) = B[(X - E[X))’] = / (z - ELX))p(z) dz,

—o0

provided that the integrals exist. If X is a random variable that takes only nonnegative
values, then its expectation satisfies the Markov inequality

E[X] 2 aPr(X > a), (D.1)
. for every scalar a. Suppose now that X is nonnegative and that lim zPr(X > z) = 0.
— 00

We notice that the function zPr(X >) also vanishes at zero and infinity and its
derivative is equal to Pr(X > z) — zp(x). It follows that

E[X] =/ zp(.r)da::/ Pr(X > z)dzx. (D.2)
0 0

Properties of Exponential Random Variables

A random variable X is said to have an exponential distribution, with mean J, if it has
the density

0, <0,
p) = Xe 2 £ >0.

Notice that if X has an exponential distribution, then
20
Pr(X > x) = / e M dy = A2,
T

Proposition D.1. Let {X;} be a sequence of independent exponentially dis-
tributed random variables, with mean one. Then

lnngE[lryaé(Xi] <1+Inn, Vn > 1.

(Here In is the natural logarithm.)

672 Probability Theory and Markov Chains ~ App. D

Proof. Let a, = E[maxlsis,, Xi]. Then a; = 1. For n > 2, we use Eq. (D.2) to
obtain

an=/0°°Pr(max Xiz.'z:)dx

1<i<n

=/0°°(1—(1—e'1)")dx
- /Ooo (1 —a- e'z)"_l) dz + /Ooo e*(1 — =) dz

1 —z\n|™® 1
=p-1+—(1—-¢€"%) =Qp—1+ —-
n 0 n

Thus, a, = 1+(1/2) + - -- + (1/n). We then notice that

"1 “1 ™1
1nn=/ —dng—.SH/ —dz =1+Inn,
1 T pmri 1z

which proves the desired result. Q.E.D.

Proposition D.2. Let {X;} be a sequence of independent exponentially dis-
tributed random variables, with mean one. Then there exist positive constants ¢ and
K, such that

Pr (Z X; > nk) < emokn (D.3)

i=1
for every positive integer n and any k larger than K.

Proof. Fix some 8 € (0,1), and let v be a positive scalar. A direct calculation
yields

E [eﬂ(xi—'y)] - /oo BE=Ne=T g — =B 1 ‘
0 1-8

In particular, we can choose ~ sufficiently large so that
E [eﬁ(xi—'r)] < 1.

Using the independence of the random variables X;, we obtain

E [eﬂ Z?:x(xi_”] = ﬁE [eﬂ(x"_")] < 1.

i=1

App. D Probability Theory and Markov Chains 673
Using the Markov inequality (D.1), we obtain

e,@mnpr (eﬂE:=I(X¢—‘Y) > eﬁmn) <1.

This in turn implies that

n
Pr (Z X; > n(m + 'Y)) =Pr (eﬂzizl(xi—‘” > eﬁmn) < g~ Bmn

=1

Let kK =2m and K = 2v. Then if k£ > K, we have m > ~ and

i=1

i=1 i=1
—Bmn _ _—akn
< e=Bmn — g—akn

where o = 3/2. Q.E.D.
Markov Chains

A discrete time, finite state, homogeneous Markov chain is a sequence {X} | k =
0,1,2,...} of random variables that take values in a finite set (state space) {1,...,n}
and such that

Pr(Xeet =5 | Xty Xeot, X =4) =pig, VK20, (D.4)

where each p;; is a given nonnegative scalar. In particular, the probability distribution of
the next state Xy, depends on the past only through the current state X ;. Furthermore,
since the coefficients p;; do not depend on the time index k, the transition probabilities
Pr(Xi41 = j | Xx =) are independent of .

The sum over all j of the transition probabilities Pr(X;4; = j | Xy = z) has to
be equal to 1. Thus,

n
Zpij = 1, Vi.
i=1

We form an n x n matrix P with entries p;;. The sum of the entries in any row of P is
equal to 1; furthermore, all entries of P are nonnegative. Any square matrix possessing
these two properties is called stochastic.

Proposition D.3. The product of two stochastic matrices of the same dimensions
is a stochastic matrix.

Proof. Let P and Q be n x n stochastic matrices. Since P > 0 and Q > O, it
follows that PQ > 0. Also, for any i, we have

674 Probability Theory and Markov Chains App. D

n

STIPQL; =)D IPLk[Qlk; = D) [Plil Qi

Jj=1 j=1k=1 k=1 j=1
=3 [Pl Y _[Qlk; =Y [Pl =1,
k=1 7j=1 k=1

where the last two equalities followed from the assumption that @ and P are stochastic.
Q.E.D.

As a special case of Prop. D.3, if P is stochastic and t is a positive integer, then
Pt is also stochastic and its entries have the following probabilistic interpretation:

[PY);; = Pr(Xt =j|Xo= z) D.5)

To see this, assume that Eq. (D.S) holds for ¢t — 1 and use Eq. (D.4) to obtain

PI'(Xt =le0='L) = PI'(Xt =j|Xt_1=k,X0=i)'PI'(Xt_| =k|X0=Z)

M 10

n
Pr(Xe =3 | Xem1 = B)[P*™ 'l = > pij [P" 'l = [Py
k=1

a
Il
-

Let 7 be an n—dimensional nonnegative row vector whose entries sum to 1. Such
a vector defines a probability distribution for the initial state X by means of the formula
Pr(Xp = i) = m;. Using Eq. (D.5), we obtain

[P =Y mi[P =Y Pr(X, =i | Xo = j) - Pr(Xo = j) = Pr(X; =1).
j=l1 j=1

In particular, if = has the property 7P = m, then Pr(X; = i) = m; = Pr(X, = 1) for all
t and all 7, and the distribution of X; does not change with time. Such a = is called an
invariant or steady-state distribution of the Markov chain associated with P.

A useful classification of the states of a Markov chain is obtained by forming a
directed graph G = (N, A), with N = {1,...,n} and A = {(3,) | ¢ # j and p;; # 0}.
For any state ¢ € N, let R; be the set consisting of state ¢ and all states j 7 ¢ such that
there exists a positive path from ¢ to j (that is, all arcs in the path are forward arcs).
A state i is called transient if there exists some j € N such that j € R; but ¢ ¢ R;.
Nontransient states are called recurrent.

If j € R;, we say that i communicates to j. It can be seen that the set of recurrent
states can be partitioned into a collection of disjoint sets C},...,C; such that any two
states in the same set C; communicate to each other and no two states in distinct sets
C; and Cj, i # j, communicate. Each one of the sets C; is called an ergodic class (see
Fig. D.1 for an illustration). We say that the matrix P is irreducible if j € R; for every

App. D Probability Theory and Markov Chains 675

1,j € N. An equivalent condition is that there are no transient states and there exists a
single ergodic class.

Figure D.1 The transition diagram of a
Markov chain. States 1 and 2 are transient.
There are two ergodic classes, namely,
{3,4} and {5, 6}.

Suppose that the Markov chain associated with a stochastic matrix P has mg
transient states and £ ergodic classes, with m; states in the ith ergodic class C;. Let us
assume that the states have been renumbered so that the transient states have the smallest
indices and so that the states in C; have smaller indices than the states in C;ifi<j.
Since states in an ergodic class C; communicate only to other states in C;, the matrix P
has the structure

Aw -+ - Ao
0 A;p 0 O
P=1 . .)
: . .0
0 -0 Ay

where each Ag; and A;; is a matrix of size mo x m; and m; x m;, respectively.

A stochastic matrix P is called periodic if there exists some k > 1 and disjoint
nonempty subsets Np, ..., Ni_; of the state space N such that if i € N, and pij >0
then j € Nyyimod k)- We say that P is aperiodic if it is not periodic.

Convergence of Random Variables and their Expectations

A sequence {X;} of random variables is said to converge to a random variable X, with
probability one, if

Pr(‘lim X; = X) =1.

1— 00

More generally, we say that an event A occurs with probability one (“w.p.1,” for short)
if Pr(A) = 1. The sequence {X;} converges to X in the mean square sense if

lim E [(X; - X)?] =0.
1—0
Finally, it converges to X in probability if

lim Pr(|X; — X| > 6) =0,
1—00

676 Probability Theory and Markov Chains ~ App. D

for every 6 > 0. Convergence with probability one (respectively, in the mean square
sense, in probability) of vector valued random variables is defined by requiring conver-
gence with probability one (respectively, in the mean square sense, in probability) of each
component. It is a basic fact that convergence with probability one implies convergence
in probability (see, e.g., [Ash72], p.94).

The following result allows us to interchange summation and expectation, under
certain assumptions ([Ash72], p.44).

Proposition D.4. (Lebesgue’s Monotone Convergence Theorem) Let {X;} be a
sequence of nonnegative random variables and suppose that > .-, E[X;] < oco. Let

Y, = Zle X;. Then:

(a) The sequence {Yk} converges, w.p.1, to a finite valued random variable Y.
(b) There holds E[Y] = Y 2| E[X;].

Given a finite set 7 = {X},..., X,,} of random variables, we use the notation
E[X | F] to denote the conditional expectation of a random variable X, given the random
variables Xi,..., X,,.! The conditional expectation E[X | F1=E[X | X1,..., Xm]
is a function of Xi,..., X,, and is therefore itself a random variable. We define M (F)
as the set of all random variables X of the form X = f(Xj,...,X,,), where f is an
arbitrary function from R™ into R. In particular, E[X | F] € M(F).t

The following result provides some properties of conditional expectations (see, e.g.,
[Ash72], Section 6.5).

Proposition D.5. Let X, Y, X1,...,X,,, Y;, i > 0, be random variables with
finite expectations, and let F = {X1,..., X}, § = {Xy,..., X,,}. Then:

(a) There holds
E[ELX | F]] = E[X]. (D.6)

(b) If n < m (equivalently, G C F), then

E[E[X | F1|G] = E[X | G], wp.l. D.7

(¢) f Y € M(F), then
E[X-Y|Fl=Y-E[X|F], wp.l. (D.8)
 The reader familiar with measure theory should interpret F as the o—field generated by X, ..., X,

and E[X | F] becomes the usual notion of conditional expectation given a o—field [Ash72]. We also point
out that conditional expectations can be uniquely defined only on a set of probability 1. (That is, there can
exist different versions of E[X | F] which are different with probability zero but which are not always equal.)

For this reason, any statements involving conditional expectations are only valid w.p.1.
f Actually, only “measurable” functions [Ash72] should be allowed in the definition of M(F), which

excludes certain pathological functions. This is not a concern for our purposes.

App. D Probability Theory and Markov Chains 677

(d) If E[|X|] < oo, then E[X | F] is well defined and finite, w.p.1.
(e) If each Y; is nonnegative and Z;’il E[Y;] < oo, then

i=1

where the infinite sums are interpreted as limits with probability 1. Furthermore,
both sides of Eq. (D.9) are finite, with probability 1.

fJ =Y E; | 7, (D.9)
=1

The following result can be viewed as a generalization, to a probabilistic context,
of the fact that a bounded monotonic sequence converges ([Ash72], Section 7.4).

Proposition D.6. (Supermartingale Convergence Theorem) Let {Y;} be a se-
quence of random variables and let {F;} be a sequence of finite sets of random variables
such that 7; C ;4 for each i. Suppose that:

(a) EachY; is nonnegative and belongs to M (F;).
(b) For each i, we have E[Y;] < oo.
(¢) For each i, we have E[Y;,, | Fi1<Y;, wp.l.

Then there exists a nonnegative random variable Y such that the sequence {Y;} converges
toY, wp.l.

In Section 7.8, we use the following extension of the Supermartingale Convergence
Theorem.

Proposition D.7. Let {Y;} and {Z;} be two sequences of random variables. Let
{F:} be a sequence of finite sets of random variables such that Fi C Fiyq for each i.
Suppose that:

(a) The random variables Y; and Z; are nonnegative, have finite expectations, and
belong to M (F;) for each 3.
(b) There holds
ElYi | F1<Yi+ Z;, Vi, w.p.l. (D.10)

(c) There holds

ZE[Zi] < oo. (D.11)

=1

678 Probability Theory and Markov Chains ~ App. D

Then there exists a nonnegative random variable Y such that the sequence {Y;}
converges to Y, w.p.1.

Proof. Proposition D.5(¢) states that Vi = E[Y oo, Z; | Fi] is finite, w.p.1, for
every k. We define random variables W, by

o
Wk=Yk+Vk=Yk+E[ZZi fk] :
=k

Then, from Prop. D.5(b) and inequality (D.10),

EWis1 | il = ElYin | B+ B |E[3 2,

i=k+1

-Fk+l] l -7:ij

<Y+ Zy+FE

i Z \ fk] = Wi, wp.l
i=k+1

Notice that each W}, is nonnegative, belongs to M (F%), and has finite expectation. Thus,
Prop. D.6 applies to the sequence {Wj} and shows that it converges, with probability
one, to a nonnegative random variable W.

We will now prove that Vj, converges to zero, with probability one. This will imply
that Yz, = Wi, — Vi converges to W, with probability one, and will complete the proof.
Using Prop. D.5(b), we have

(e)
EWVisi | Fil=E [E[Yz
i=k+1

Fis] \fk] =E[i Z | Fk}

i=k+1
= Vk - E[Zk | fk] S Vk, W.p.l,

where the last inequality follows from the nonnegativity of Z;. We apply Prop. D.6 to
the sequence {V} to see that it converges to a nonnegative random variable V, with
probability one. We now use the Monotone Convergence Theorem to obtain

> z,-] = ElZ),

i=k i=k

EVk]l=F

which converges to zero as k tends to infinity, because of Eq. (D.11). Suppose that V'
is nonzero with positive probability. Then there exist some 6 > 0 and € > 0 such that
Pr(V > 6) > e. On the other hand, Vj, converges to V' in probability and this implies that
we can find some ko such that Pr(|Vi — V| > 6/2) < ¢/2 for every k > ko. Therefore,
for k > ko,

App. D Probability Theory and Markov Chains 679
Pr(Vk > 5/2) > Pr(V >6and |V — V| < 5/2)
> Pr(V > 5) - 1>r(|v,c V> 5/2) > ¢/2.

This implies that E[V;] > (6¢)/4 for every k > ko, contradicts the convergence of E[V;]
to zero, and shows that V =0. Q.E.D.

References

[AaM76] Aashtiani, H. A., and T. L. Magnanti. 1976. Implementing primal-dual net-
work flow algorithms. Operations Research Center, Working Paper OR-055-76, Mas-
sachusetts Institute of Technology, Cambridge.

[AaM81] Aashtiani, H. A., and T. L. Magnanti. 1981. Equilibria on a congested trans-
portation network. SiAM J. Algeb. & Disc. Math. 2:213-26.

[ADMS82] Ahmed, H. M., J.-M. Delosme, and M. Morf. 1982. Highly concurrent
computing structures for matrix arithmetic and signal processing. Computer 15:65—
82.

[Agm54] Agmon, S. 1954. The relaxation method for linear inequalities. Can. J. Math.
6:382-92.

[Ahn79] Ahn, B. H. 1979. Computation of Market Equilibria for Policy Analysis: The
Project Independence Evaluation Study (PIES) Approach. New York:Garland.

[AhO86] Ahuja, R. K., and J. B. Orlin. 1986. A fast and simple algorithm for the max-
imum flow problem. Working paper. Sloan School of Management, Massachusetts
Institute of Technology, Cambridge.

[AhO87] Ahuja, R. K., and J. B. Orlin. 1987. Private communication.

[AHU74] Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis
of Computer Algorithms. Reading, MA: Addison-Wesley.

680

References 681

[AHVS85] Andre, F., D. Herman, and J.-P. Verjus. 1985. Synchronization of Parallel
Programs. Cambridge, MA: The MIT Press.
[AkI85] AKI, S. G. 1985. Parallel Sorting Algorithms. Orlando, FL: Academic Press.

[Ame77] Ames, W. F. 1977. Numerical Methods for Partial Differential Equations. New
York: Academic Press.

[Apt86] Apt, K. R. 1986. Correctness proofs of distributed termination algorithms. ACM
Trans. Prog. Lang. & Syst. 8:388—405.

[Ash70] Ash, R. B. 1970. Basic Probability Theory. New York: Wiley.
[Ash72] Ash, R. B. 1972. Real Analysis and Probability. New York: Academic Press.

[AtK84] Atallah, M. J., and S. R. Kosaraju. 1984. Graph problems on a mesh-connected
processor array. J. ACM. 31:649-67.

[Aus76] Auslender, A. 1976. Optimization: Methodes Numeriques. Paris: Mason.

[Avr76] Avriel, M. 1976. Nonlinear Programming: Analysis and Methods. Englewood
Cliffs, NJ: Prentice-Hall.

[Awe85] Awerbuch, B. 1985. Complexity of network synchronization. J. ACM. 32:804—
23.

[AwG87] Awerbuch, B., and R. G. Gallager. 1987. A new distributed algorithm to find
breadth first search trees. IEEE Trans. Inf. Theory. 1T-33:315-22.

[BaG87] Barbosa, V. C., and E. M. Gafni. 1987. Concurrency in heavily loaded
neighborhood-constrained systems. Proc. 7th Int. Conf. Distr. Comput. Sys.

[BaJ77] Bazaraa, M. S., and J. J. Jarvis. 1977. Linear Programming and Network Flows.
New York: Wiley.

[BaK78] Bachem, A., and B. Korte. 1978. An algorithm for quadratic optimization over
transportation polytopes. Z. Angew. Math. & Mech. 58:T459-61.

[BaK80] Bachem, A., and B. Korte. 1980. Minimum norm problems over transportation
polytopes. Lin. Algeb. & Appl. 31:102-18.

[Bar86] Barbosa, V. C. 1986. Concurrency in systems with neighborhood constraints.
Doctoral dissertation. Computer Science Dept., UCLA.

[Bau78] Baudet, G. M. 1978. Asynchronous iterative methods for multiprocessors. J.
ACM. 15:226-44.

[BaW75] Balinski, M., and P. Wolfe (eds.) 1975. Nondifferentiable Optimization, Math.
Prog. Study 3. Amsterdam: North-Holland.

[BBG77] Bradley, G. H., G. G. Brown, and G. W. Graves. 1977. Design and imple-
mentation of large-scale primal transshipment problems. Manag. Sci. 24:1-34.

[BBK84] Bojanczyk, A., R. P. Brent, and H. T. Kung. 1984. Numerically stable solution
of linear equations using mesh-connected processors. SiAM J. Sci. & Stat. Comput.
5:95-104.

[BeC87] Bertsekas, D. P., and D. A. Castanon. 1987. The auction algorithm for trans-
portation problems. Unpublished report.

[BeE87a] Bertsekas, D. P., and J. Eckstein. 1987. Distributed asynchronous relaxation
methods for linear network flow problems. Proc. IFAC ’87.

682 : References

[BeE87b] Bertsekas, D. P., and D. El Baz. 1987. Distributed asynchronous relaxation
methods for convex network flow problems. SiAM J. Contr. & Optim. 25:74-85.
[BeES88] Bertsekas, D. P., and J. Eckstein. 1988. Dual coordinate step methods for linear
network flow problems. Laboratory for Information and Decision Systems Report
LIDS-P-1768, Massachusetts Institute of Technology, Cambridge. Math. Prog. Series

B. (in press).

[BeG82] Bertsekas, D. P., and E. M. Gafni. 1982. Projection methods for variational
inequalities with application to the traffic assignment problem. In D. C. Sorensen
and R. J.-B Wets (eds.), Mathematical Programming Studies, Volume 17, 139-59.
Amsterdam: North-Holland.

[BeG83] Bertsekas, D. P., and E. M. Gafni. 1983. Projected Newton methods and
optimization of multicommodity flows. IEEE Trans. Auto. Contr. AC-28:1090-6.
[BeG87] Bertsekas, D. P., and R. G. Gallager. 1987. Data Communication Networks.

Englewood Cliffs, NJ: Prentice-Hall.

[Bel57] Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton University
Press.

[BeM73] Bertsekas, D. P., and S. K. Mitter. 1973. Descent numerical methods for
optimization problems with nondifferentiable cost functions. SiAM J. Contr. 11:637-
52.

[Ber74] Bertsekas, D. P. 1974. Partial conjugate gradient methods for a class of optimal
control problems. [EEE Trans. Auto. Contr. 19:209-17.

[Ber75] Bertsekas, D. P. 1975. Necessary and sufficient conditions for a penalty method
to be exact. Math. Prog. 9:87-99.

[Ber76a) Bertsekas, D. P. 1976. On the Goldstein-Levitin-Polyak gradient projection
method. IEEE Trans. Auto. Contr. AC-21:174-84.

[Ber76b] Bertsekas, D. P. 1976. Multiplier methods: A survey. Automatica. 12:133-45.

[Ber76c] Bertsekas, D. P. 1976. Newton’s method for linear optimal control problems.
Proc. IFAC Symp. Large Scale Sys., 353-9.

[Ber77] Bertsekas, D. P. 1977. Monotone mappings with application in dynamic pro-
gramming. SiAM J. Contr. & Optim. 15:438-64.

[Ber79a] Bertsekas, D. P. 1979. Convexification procedures and decomposition methods
for nonconvex optimization problems. JOTA. 29:169-97.

[Ber79b] Bertsekas, D. P. 1979. A distributed algorithm for the assignment problem.
Laboratory for Information and Decision Systems, Working Paper, Massachusetts
Institute of Technology, Cambridge.

[Ber79c] Bertsekas, D. P. 1979. Algorithms for nonlinear multicommodity network
flow problems. In A. Bensoussan and J. L. Lions (eds.), International Symposium on
Systems Optimization and Analysis, 210-24. New York: Springer-Verlag.

[Ber80] Bertsekas, D. P. 1980. A class of optimal routing algorithms for communication
networks. Proc. 5th Intl. Conf. Comput. Commun., 71-6.

References 683

[Ber81] Bertsekas, D. P. 1981. A new algorithm for the assignment problem. Math.
Prog. 21:152-71.

(Ber82a] Bertsekas, D. P. 1982. Constrained Optimization and Lagrange Multiplier
Methods. New York: Academic Press.

[Ber82b] Bertsekas, D. P. 1982. Projected Newton methods for optimization problems
with simple constraints. SiAM J. Contr. & Optim. 20:221-46.

[Ber82c] Bertsekas, D. P. 1982. A unified framework for minimum cost network flow
problems. Laboratory for Information and Decisions Systems Report LIDS-P-1245-
A, Massachusetts Institute of Technology, Cambridge. Also in Math. Prog. (1985),
125-45.

[Ber82d] Bertsekas, D. P. 1982. Distributed dynamic programming, /EEE Trans. Auto.
Contr. AC-27:610-16.

[Ber83] Bertsekas, D. P. 1983. Distributed asynchronous computation of fixed points.
Math. Prog. 27:107-20.

[Ber85] Bertsekas, D. P. 1985. A distributed asynchronous relaxation algorithm for the
assignment problem. Proc. 24th IEEE Conf. Dec. & Contr., 1703—4.

[Ber86a] Bertsekas, D. P. 1986. Distributed asynchronous relaxation methods for linear
network flow problems. Laboratory for Information and Decisions Systems Report
LIDS-P-1606, revision of Nov. 1986, Massachusetts Institute of Technology, Cam-
bridge.

[Ber86b] Bertsekas, D. P. 1986. Distributed relaxation methods for linear network flow
problems. Proc. 25th IEEE Conf. Dec. & Contr., 2101-6.

[Ber87] Bertsekas, D. P. 1987. Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ: Prentice-Hall.

[Ber88] Bertsekas, D. P. 1988. The auction algorithm: A distributed relaxation method
for the assignment problem. Ann. Oper. Res. (in press).

[BeS78] Bertsekas, D. P., and S. E. Shreve. 1978. Stochastic Optimal Control: The
Discrete Time Case. New York: Academic Press.

[BeT85] Bertsekas, D. P., and P. Tseng. 1985. Relaxation methods for minimum cost
ordinary and generalized network flow problems. Laboratory for Information and
Decision Systems Report LIDS-P-1462, Massachusetts Institute of Technology, Cam-
bridge. Also in Oper. Res. J. (1988) 36:93-114.

[BeT88] Bertsekas, D. P., and P. Tseng. 1988. RELAX: A computer code for minimum
cost network flow problems. Ann. Oper. Res. 13:125-90.

[BGG84] Bertsekas, D. P., E. M. Gafni, and R. G. Gallager. 1984. Second derivative
algorithms for minimum delay distributed routing in networks. IEEE Trans. Commun.
COM-32:911-19.

[BGV79] Bertsekas, D. P., E. M. Gafni, and K. S. Vastola. 1979. Validation of algorithms

for optimal routing of flow in networks. Proc. 18th IEEE Conf. Dec. & Contr, 220—
227.

684 References

[BhI85] Bhatt, S. N., and I. C. F. Ipsen. 1985. How to embed trees in hypercubes. Dept.
of Computer Science, Research Report YALEU/DCS/RR-443, Yale University, New
Haven, CT.

[BHT87] Bertsekas, D. P., P. Hossein, and P. Tseng. 1987. Relaxation methods for
network flow problems with convex arc costs. SiAM J. Contr. & Optim. 25:1219-43.

[Bin84] Bini, D. 1984. Parallel solution of certain Toeplitz linear systems. SiAM J.
Comput. 13:268-76.

[BUSS] Bland, R. G., and D. L. Jensen. 1985. On the computational behavior of a
polynomial-time network flow algorithm. School of Operations Research and Indus-
trial Engineering, Technical Report 661, Cornell University, Ithaca, NY.

[BLS83] Bertsekas, D. P., G. S. Lauer, N. R. Sandell, Jr., and T. A. Posbergh. 1983.
Optimal short term scheduling of large-scale power systems. IEEE Trans. Auto. Contr.
AC-28:1-11.

[BLT76] Bensoussan, A., J. L. Lions, and R. Temam. 1976. Sur les methodes de
decomposition, de decentralisation et de coordination et applications. In J. L. Lions
and G. 1. Marchouk (eds.), Methodes Numeriques pour les Sciences Physiques at
Economiques. Paris:Dunod.

[Boj84a] Bojanczyk, A. 1984. Complexity of solving linear systems in different models
of computation. SiAM J. Numer. Analy. 21:591-603.

[Boj84b] Bojanczyk, A. 1984. Optimal asynchronous Newton method for the solution
of nonlinear equations. J. ACM. 32:792-803.

[Bok81] Bokhari, S. H. 1981. On the mapping problem. IEEE Trans. Comput. C-
30:207-14.

[BoM75] Borodin, A., and I. Munro. 1975. The Computational Complexity of Algebraic
and Numeric Problems. New York: American Elsevier.

[Bon83] Bonnans, J. F. 1983. A variant of a projected variable metric method for bound
constrained optimization problems. Research Report 242. INRIA, France.

[BoV82] Borkar, V., and P. Varaiya. 1982. Asymptotic agreement in distributed estima-
tion. IEEE Trans. Auto. Contr. AC-27:650-5.

[BrH83] Broomell, G., and J. R. Heath. 1983. Classification categories and historical
development of circuit switching topologies. Computing Surveys. 15:95-134.

[BrL85] Brent, R. P., and F. T. Luk. 1985. The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays. SiAM J. Sci. Stat. Comput. 6:69-84.

[BrP67] Browder, F. E., and W. V. Petryshyn. 1967. Construction of fixed points of
nonlinear mappings in Hilbert space. J. Math. Anal. & Appl. 20:197-228.

[Bra81] Brandt, A. 1981. Muligrid solvers on parallel computers. In M. H. Schultz (ed.),
Elliptic Problem Solvers. New York: Academic Press.

[Bre67] Bregman, L. M. 1967. The relaxation method for finding the common point of

convex sets and its application to the solution of problems in convex programming.
USSR Comput. Math. & Math. Phys. 7:200-17.

References 685

[Bre74] Brent, R. P. 1974. The parallel evaluation of general arithmetic expressions. J.
ACM. 21:201-6.

[Bro70] Brockett, R. W. 1970. Finite Dimensional Linear Systems. New York: Wiley.

[BSS88] Byrd, R. H., R. B. Schnabel, and G. A. Shultz. 1988. Parallel quasi-Newton
methods for unconstrained optimization. Dept. of Computer Science, Technical Report
CU-CS-396-88, University of Colorado-Boulder.

[CaG74] Cantor, D. G., and M. Gerla. 1974. Optimal routing in a packet switched
computer network. IEEE Trans. Comput. C-23:1062-9.

[CaM87] Calamai, P. H., and J. J. More. 1987. Projected gradient methods for linearly
constrained problems. Math. Prog. 38:93-116.

[Cap87] Cappello, P. C. 1987. Gaussian elimination on a hypercube automaton. J.
Parallel & Dist. Comput. 4:288-308.
[CDZ86] Cottle, R. W., S. G. Duvall, and K. Zikan. 1986. A Lagrangean relaxation
algorithm for the constrained matrix problem. Naval Res. Logist. Quart. 33:55-76.
[CeH7] Censor, Y., and G. T. Herman. 1987. On some optimization techniques in
image reconstruction from projections. Appl. Numer. Math. 3:365-91.

[Cen81] Censor, Y. 1981. Row-action methods for huge and sparse systems and their
applications. SiAM Rev. 23:444-91.

[ChC58] Charnes, A., and W. W. Cooper. 1958. Nonlinear network flows and convex
programming over incidence matrices. Naval Res. Logist. Quart. 5:321-40.

[ChL85] Chandy, K. M., and L. Lamport. 1985. Distributed snapshots: Determining
global states of distributed systems. ACM Trans. Comput. Syst. 3:63-75.

[ChM69] Chazan, D., and W. L. Miranker. 1969. Chaotic relaxation. Lin. Algeb. &
Appl. 2:199-222.

[ChM70] Chazan, D., and W. L. Miranker. 1970. A nongradient and parallel algorithm
for unconstrained minimization. SiAM J. Contr. 8:207-17.

(ChM81] Chandy, K. M., and J. Misra. 1981. Asynchronous distributed simulation via
a sequence of parallel computations. Commun. ACM. 24:198-206.

(ChM82] Chandy, K. M., and J. Misra. 1982. Distributed computation on graphs:

. Shortest path algorithms. Commun. ACM. 25:833-17.

[ChM84] Chandy, K. M., and J. Misra. 1984. The drinking philosophers problem. ACM
Trans. Prog. Lang. & Sys. 6:632-46.

[Chr75] Christofides, N. 1975. Graph Theory: An Algorithmic Approach. New York:
Academic Press.

[ChS85] Chan, T. F., and R. Schreiber. 1985. Parallel networks for multi-grid algorithms:
Architecture and complexity. SiAM J. Sci. & Stat. Comput. 6:698-711.

[ChS86] Chan, T. F., and Y. Saad. 1986. Multigrid algorithms on the hypercube
multiprocessor. /EEE Trans. Comput. C-35:969-77.

[Chv83] Chvatal, V. 1983. Linear Programming. New York: W. H. Freeman.

[Cim38] Cimmino, G. 1938. Calcolo approssimato per le soluzioni dei sistemi di
equazioni lineari. Ricerca Sci. XVI Ser. 11, Anno IX, 1:326-33.

686 References

[Cof76] Coffman, E. G., Jr. (ed.). 1976. Computer and Job Shop Scheduling Theory.
Englewood Cliffs, NJ: Prentice-Hall.

[Coh78] Cohen, G. 1978. Optimization by decomposition and coordination: A unified
approach. IEEE Trans. Auto. Contr. AC-23:222-32.

[CoL55] Coddington, E. A., and N. Levinson. 1955. Theory of Ordinary Differential
Equations. New York: McGraw-Hill.

[Coo81] Cook, S. A. 1981. Towards a complexity theory of synchronous parallel com-
putation. Enseigne. Math. 27:99-124. '

[CoP82] Cottle, R. W., and J. S. Pang. 1982. On the convergence of a block succes-
sive overrelaxation method for a class of linear complementarity problems. In D.C.
Sorensen and R. J.-B. Wets (eds.), Mathematical Programming Studies, Volume 17,
126-38. Amsterdam: North-Holland.

[CoR86] Cosnard, M., and Y. Robert. 1986. Complexity of parallel QR factorization.
J. ACM. 33:712-23.

[Cot84] Cottle, R. W. 1984. Application of a block successive overrelaxation method to
a class of constrained matrix problems. In R. W. Cottle, M. L. Kelmanson, and B.
Korte (eds.), Mathematical Programming, 89—103. Amsterdam: North-Holland.

[CoZ83] Cohen, G., and D. L. Zhu. 1983. Decomposition and coordination methods
in large scale optimization problems. The nondifferentiable case and the use of aug-
mented Lagrangians. In J. B. Cruz, Jr. (ed.), Advances in Large Scale Systems, Theory
and Applications, Vol. 1. Greenwich, CT: JAI Press.

[Cry71] Cryer, C. W. 1971. The solution of a quadratic programming problem using
systematic overrelaxation. SiAM J. Contr. 9:385-92.

[Csa76] Csanky, L. 1976. Fast parallel matrix inversion algorithms. SiAM J. Comput.
5:618-23.

[Cyb87] Cybenko, G. 1987. Dynamic load balancing for distributed memory multi-
processors. Dept. of Computer Science, Technical Report 87-1, Tufts University,
Medford, MA.

[Daf71] Dafermos, S. C. 1971. An extended traffic assignment model with applications.
to two-way traffic. Trans. Sci. 5:366-89.

[Daf80] Dafermos, S.C 1980. Traffic equilibrium and variational inequalities. Trans.
Sci. 14:42-54.

[Daf83] Dafermos, S. C. 1983. An iterative scheme for variational inequalities. Math.
Prog. 26:40-7.

[Dan63] Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton, NJ:
Princeton University Press.

[Dan67] Danskin, J. M. 1967. Theory of Max-Min and Its Application in Weapons Allo-
cation Problems. New York: Springer-Verlag.

[Dat85] Datta, K. 1985. Parallel complexities and computations of Cholesky’s decom-
position and QR factorization. Intl. J. Comput. Math. 18:67-82.

References 687

[Den67] Denardo, E. V. 1967. Contraction mappings in the theory underlying dynamic
programming. SiAM Rev. 9:165-77.

[DeP84] Deo, N., and C. Pang. 1984. Shortest path algorithms: Taxonomy and annota-
tion. Networks. 14:275-323.

[DES82] Dembo, R. S., S. C. Eisenstadt, and T. Steihaug. 1982. Inexact Newton
methods. SiIAM J. Numer. Anal. 19:400-8.

[DeS83] Dennis, J. E., Jr., and R. B. Schnabel. 1983. Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.

[DFV83] Dijkstra, E. W., W. H. J. Feijen, and A. J. M. Van Gasteren. 1983. Derivation
of a termination algorithm for distributed computations. Inf. Proc. Lett. 15:217-19.

[DGK79] Dial, R., F. Glover, D. Kamey, and D. Klingman. 1979. A computational
analysis of alternative algorithms and labeling techniques for finding shortest path
trees. Networks. 9:215-48.

(Dij71] Dijkstra, E. W. 1971. Hierarchical ordering of sequential processes. Acta Infor-
matica. 1:115-38.

[DiS80] Dijkstra, E. W., and C. S. Sholten. 1980. Termination detection for diffusing
computations. /nf. Proc. Lett. 11:1-4.

[DNS81] Dekel, E., D. Nassimi, and S. Sahni. 1981. Parallel matrix and graph algo-
rithms. SiAM J. Comput. 10:657-73.

[Don71] Donnelly, J. D. P. 1971. Periodic chaotic relaxation. Lin. Algeb. & Appl.
4:117-28.

[DoS87] Dongarra, J. J., and D. C. Sorensen. 1987. A fully parallel algorithm for the
symmetric eigenvalue problem. SiAM J. Sci. Stat. Comput. 8:5139-54.

(DuB82] Dubois, M., and F. A. Briggs. 1982. Performance of synchronized iterative
processes in multiprocessor systems. /EEE Trans. Software Eng. SE-8:419-31.

[Dun81] Dunn, J. C. 1981. Global and asymptotic convergence rate estimates for a class
of projected gradient processes. SiAM J. Contr. & Optim. 19:368—400.

[DuS63] Dunford, N., and J. T. Schwartz. 1963. Linear Operators. New York: Wiley.
[Eck87] Eckstein, J. 1987. Private communication.

(Eck88] Eckstein, J. 1988. The Lions-Mercier splitting algorithm and the alternating
direction method are instances of the proximal point algorithm. Laboratory for Infor-
mation and Decision Systems Report LIDS-P-1769, Massachusetts Institute of Tech-
nology, Cambridge.

[EdK72] Edmonds, J., and R. M. Karp. 1972. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM. 19:248-64.

[Elf80] Elfving, T. 1980. Block-iterative methods for consistent and inconsistent linear
equations. Numer. Math. 35:1-12.

[EIT82] EI Tarazi, M. N. 1982. Some convergence results for asynchronous algorithms.
Numer. Math. 39:325-40.

688 References

[Eph86] Ephremides, A. 1986. The routing problem in computer networks. In I. F.
Blake and H. V. Poor (eds.), Communication and Networks, 299-325. New York:
Springer-Verlag.

[Eri88] Eriksen, O. 1988. A termination detection protocol and its formal verification.
J. Parallel & Distr. Comput. 5:82-91.

[Eve63] Everett, H. 1963. Generalized Lagrange multiplier method for solving problems
of optimum allocation of resources. Oper. Res. 11:399-417.

[FaF63] Fadeev, D. K., and V. N. Fadeeva. 1963. Computational Methods of Linear
Algebra. San Francisco: W. H. Freeman.

[FBB80] Findeisen, W., F. N. Bailey, M. Brdys, K. Malinowski, P. Tatjewski, and
A. Wozniak. 1980. Control and Coordination in Hierarchical Systems. New York:
Wiley.

[Fel68] Feller, W. 1968. An Introduction to Probability Theory and Its Applications.
New York: Wiley.

[Fin79] Finn, S. G. 1979. Resynch procedures and a failsafe network protocol. IEEE
Trans. Commun. COM-27:840-6.

[FIL88] Fox, G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. 1988.
Solving Problems on Concurrent Processors, Vol. 1. Englewood Cliffs, NJ: Prentice-
Hall.

[FIN74] Florian, M., and S. Nguyen. 1974. A method for computing network equilibrium
with elastic demand. Trans. Sci. 8:321-32.

[Fly66] Flynn, M. J. 1966. Very high-speed computing systems. Proc. IEEE. 54:1901-9.

[FNP81] Florian, M. S., S. Nguyen, and S. Pallottino. 1981. A dual simplex algorithm
for finding all shortest paths. Networks. 11:367-78.

[FoF62] Ford, L. R., Jr., and D. R. Fulkerson. 1962. Flow in Networks. Princeton, NIJ:
Princeton University Press.

[FoG83] Fortin, M., and R. Glowinski. 1983. On decomposition-coordination methods
using an augmented Lagrangian. In M. Fortin and R. Glowinski (eds.), Augmented
Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Prob-
lems. 97-146. Amsterdam: North-Holland.

[FoM67] Forsythe, G. E., and C. B. Moler. 1967. Computer Solution of Linear Algebraic
Systems. Englewood Cliffs, NJ: Prentice-Hall.

[For56] Ford, L. R., Jr. 1956. Network flow theory. Report P-923, The Rand Corp.,
Santa Monica, CA.

[Fow78] Fortune, S., and J. Wyllie. 1978. Parallelism in random access machines. Proc.
10th ACM STOC., 114-18.

[Fra80] Francez, N. 1980. Distributed termination. ACM Trans. Prog. Lang. & Sys.
2:42-5.

[FrT84] Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses
in improved network optimization algorithms. Proc. 25th Annual Symp. Found.
Comput. Sci., 338-46.

References 689

[Gab79] Gabay, D. 1979. Methodes numeriques pour 1’optimisation non-lineaire. These
de Doctorat d’Etat et Sciences Mathematiques, Universite Pierre et Marie Curie (Paris
VI).

[GaB81] Gafni, E. M., and D. P. Bertsekas. 1981. Distributed algorithms for generating
loopfree routes in networks with frequently changing topology. IEEE Trans. Commun.
COM-29:11-18.

[Gab83] Gabay, D. 1983. Applications of the method of multipliers to variational in-
equalities. In M. Fortin and R. Glowinski (eds.), Augmented Lagrangian Methods:
Applications to the Numerical Solution of Boundary-Value Problems. 299-331. Ams-
terdam: North-Holland.

[GaB84] Gafni, E. M., and D. P. Bertsekas. 1984. Two-metric projection methods for
constrained optimization. SiAM J. Contr. & Optim. 22:936-64.

[GaB86] Gafni, E. M., and V. C. Barbosa. 1986. Optimal snapshots and the maximum
flow in precedence graphs. Proc. 24th Allerton Conf. 1089-97.

[Gaf79] Gafni, E. M. 1979. Convergence of a routing algorithm. MS thesis. Dept. of
Electrical Engineering, University of Illinois-Urbana.

[Gaf86] Gafni, E. M. 1986. Perspectives on distributed network protocols: A case for
building blocks. Computer Science Dept., UCLA; MILCOM ’86, Monterey, CA.

[GaJ79] Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: W. H. Freeman.

[Gal68] Gallager, R. G. 1968. Information Theory and Reliable Communications. New
York: Wiley.

[Gal76] Gallager, R. G. 1976. A shortest path routing algorithm with automatic resynch.
Unpublished note.

[Gal77] Gallager, R. G. 1977. A minimum delay routing algorithm using distributed
computation. /IEEE Trans. Commun. COM-23:73-85.

[Gal82] Gallager, R. G. 1982. Distributed minimum hop algorithm. Laboratory for
Information and Decision Systems Report LIDS-P-1175, Massachusetts Institute of
Technology, Cambridge.

[Gal85] Gallopoulos, E. 1985. Processor arrays for problems in computational physics.
PhD thesis. Dept. of Computer Science, University of Illinois-Urbana.

[GaM76] Gabay, D., and B. Mercier. 1976. A dual algorithm for the solution of
nonlinear variational problems via finite-element approximations. Comput. and Math.
Appl. 2:17-40.

[Gan59] Gantmacher, F. R. 1959. The Theory of Matrices. New York: Chelsea.

[GaT87] Gabow, H. N., and R. E. Tarjan. 1987. Faster scaling algorithms for graph
matching. Unpublished manuscript.
[GaV84] Gannon, D. B., and J. Van Rosendale. 1984. On the impact of communication

complexity on the design of parallel numerical algorithms. IEEE Trans. Comput.
C-32:1180-94.

690 References

[Gea86] Gear, C. W. 1986. The potential for parallelism in ordinary differential equa-
tions. Dept. of Computer Science, Report No. UIUCDCS-R-86-1246, University of
Illinois at Urbana-Champaign; also presented at the Second International Conference
of Computational Mathematics, University of Benin, Benin City, Nigeria.

[Gea87] Gear, C. W. 1987. Parallel methods for ordinary differential equations. Dept.
of Computer Science, Report No. UIUCDCS-R-87-1369, University of Illinois at
Urbana-Champaign.

[GeK81] Gentleman, W. M., and H. T. Kung. 1981. Matrix triangularization by systolic
arrays. Proc. SPIE 298, Real Time Signal Processing IV, 19-26.

[Gen78] Gentleman, W. M. 1978. Some complexity results for matrix computations on
parallel processors. J. ACM. 25:112-15.

[Geo72] Geoffrion, A. M. 1972. Generalized Benders decomposition. JOTA. 10:237-60.

[GHNS87] Geist, G. A., M. T. Heath, and E. Ng. 1987. Parallel algorithms for matrix
computations. In L. H. Jamieson, D. B. Gannon, and R. J. Douglass (eds.), The
Characteristics of Parallel Algorithms. 233-51. Cambridge, MA: The MIT Press.

[GKK74] Glover, F., D. Kamey, D. Klingman, and A. Napier. 1974. A computation
study on start procedures, basis change criteria, and solution algorithms for transporta-
tion problems. Manage. Sci. 20:793-819.

[GKK87] Gohberg. L., T. Kailath, 1. Koltracht, and P. Lancaster. 1987. Linear complex-
ity algorithms for linear systems of equations with recursive structure. Lin. Algeb. &
Appl. 88/89:271-315.

[GIL87] Glowinski, R., and P. Le Tallec. 1987. Augmented Lagrangian methods for the
solution of variational problems. Mathematics Research Center, Technical Summary
Report 2965, University of Wisconsin-Madison.

[GIM75] Glowinski, R., and A. Marrocco. 1975. Sur I’approximation par elements
finis d’ordre un et la resolution par penalisation-dualite d’une classe de problemes
de Dirichlet non lineaires. Revue Francaise d’ Automatique Informatique Recherche
Operationnelle, Analyse numerique. R-2:41-76.

[GLT81] Glowinski, R., J. L. Lions, and R. Tremolieres. 1981. Numerical Analysis of
Variational Inequalities. Amsterdam: North-Holland.

[GMWS81] Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization.
New York: Academic Press.

[Gof80] Goffin, J. L. 1980. The relaxation method for solving problems of linear in-
equalities. Math. Oper. Res. 5:388-414.

[Gol64] Goldstein, A. A. 1964. Convex programming in Hilbert Space. Bull. Am. Math.
Soc. 70:709-10.

[Gol78] Goldschlager, L. M. 1978. A unified approach to models of synchronous parallel
machines. Proc. 10th ACM STOC., 89-94.

[Gol85a] Goldberg, A. V. 1985. A new max-flow algorithm. Laboratory for Computer
Science, Tech. Mem. MIT/LCS/TM-291, Massachusetts Institute of Technology,
Cambridge.

References 691

[Gol85b] Golshtein, E. G. 1985. A decomposition method for linear and convex pro-
gramming problems. Ekon. i Mat. Metody [translated as Matecon]. 21:1077-91.

[Gol86a] Golshtein, E. G. 1986. The block method of convex programming. Sov. Math.
Doklady. 33:584-7.

[Gol86b] Goldberg, A. V. 1986. Solving minimum-cost flow problems by successive
approximations. Extended abstract. Submitted to /9th ACM STOC.

[Gol87a] Goldberg, A. V. 1987. Efficient graph algorithms for sequential and paral-
lel computers. Laboratory for Computer Science, Technical Report TR-374, Mas-
sachusetts Institute of Technology, Cambridge.

[Gol87b] Golshtein, E. G. 1987. A general approach to decomposition of optimization
systems. Sov. J. Comput. & Sys. Sci. 25:105-14 [translated from Tekhnicheskaya
Kibernetika (1987). 1:59-69].

[GoT86] Goldberg, A. V., and R. E. Tarjan. 1986. A new approach to the maximum
flow problem. Proc. 18th ACM STOC. 136-46.

[GoT87] Goldberg, A. V., and R. R. Tarjan. 1987. Solving minimum cost flow problems
by successive approximation. Proc. 19th ACM STOC. 7-18.

[GoV83] Golub, G. H., and C. F. Van Loan. 1983. Matrix Computations. Baltimore:
The Johns Hopkins University Press.

[Gra71] Grad, J. 1971. Matrix balancing. Comput. J. 14:280—4.

[GrH80] Grigoriadis, M. D., and T. Hsu. 1980. The Rutgers minimum cost network
flow subroutines. RNET Documentation. Dept. of Computer Science Report, Rutgers
University, New Brunswick, NJ.

[GrS81] Grcar, J., and A. Sameh. 1981. On certain parallel Toeplitz linear system
solvers. SiAM J. Sci. & Stat. Comput. 2:238-56.

[GuP74] Guillemin, V., and A. Pollack. 1974. Differential Topology. Englewood Cliffs,
NJ: Prentice-Hall.

[HaB70] Haarhoff, P. C., and J. D. Buys. 1970. A new method for the optimization of
a nonlinear function subject to nonlinear constraints. The Comput. J. 13:178-84.

[Hac85] Hackbush, W. 1985. Multi-Grid Methods and Applications. New York: Springer-
Verlag.

[HaC87] Hajek, B., and R. L. Cruz. 1987. Delay and routing in interconnection networks.
In A. R. Odoni, L. Bianco, and G. Szego (eds.), Flow Control of Congested Networks.
235-42. New York: Springer-Verlag.

[HaL88] Han, S. P., and G. Lou. 1988. A parallel algorithm for a class of convex
programs. SiAM J. Contr. & Optim. 26:345-55.

[Ham86] Hamming, R. W. 1986. Coding and Information Theory. Englewood Cliffs,
NIJ: Prentice-Hall.

[Han86] Han, S. P. 1986. Optimization by updated conjugate subspaces. In D. F. Griffiths
and G. A. Watson (eds.), Numerical Analysis: Pitman Research Notes in Mathematics
Series 140, 82-97. Burnt Mill, England: Longman Scientific and Technical.

[Han88] Han, S. P. 1988. A successive projection method. Math. Prog. 40:1-14.

692 ' ‘ References

[Har69] Harary, F. 1969. Graph Theory. Reading, MA: Addison-Wesley.

[HaY81] Hageman, L. A., and D. M. Young. 1981. Applied Iterative Methods. New
York: Academic Press.

[Hay84] Hayes, J. F. 1984. Modeling and Analysis of Computer Communications Net-
works. New York: Plenum.

[HaZ87] Haxari, C., and H. Zedan. 1987. A distributed algorithm for distributed termi-
nation. Inf. Proc. Lett. 24:293-7.

[HeL78] Herman, G. T., and A. Lent. 1978. A family of iterative quadratic optimization
algorithms for pairs of inequalities, with application in diagnostic radiology. Math.
Prog. Studies. 9:15-29.

[Hel74] Heller, D. 1974. On the efficient computation of recurrence relations. Dept. of
Computer Science, Technical Report, Carnegie-Mellon University, Pittsburgh, PA.
[Hel76] Heller, D. 1976. Some aspects of the cyclic reduction algorithm for block

tridiagonal linear systems. SiAM J. Numer. Anal. 13:484-96.

[Hel78] Heller, D. 1978. A survey of parallel algorithms in numerical linear algebra.
SiAM Rev. 20:740-77.

[Hen64] Henrici, P. 1964. Elements of Numerical Analysis. New York: Wiley.

[HeS52] Hestenes, M. R., and E. L. Stiefel. 1952. Methods of conjugate gradients for
solving linear systems. J. Res. Nat. Bur. Standards Sect. 5. 49:409-36.

[Hes69] Hestenes, M. R. 1969. Multiplier and gradient methods. JOTA. 4:303-20.

[HeS82] Heyman, D. P., and M. J. Sobel. 1982. Stochastic Models in Operations

. Research. New York: McGraw-Hill.

[Hil57] Hildreth, C. 1957. A quadratic programming procedure. Naval Res. Logist.
Quart. 4:79-85. See also “Erratum,” Naval Res. Logist. Quart. 4:361.

[Hil74] Hildebrand, F. B. 1974. Introduction to Numerical Analysis. New York: McGraw-
Hill.

[Hil85] Hillis, W. D. 1985. The Connection Machine. Cambridge, MA: The MIT Press.

[HLL78] Herman, G. T., A. Lent, and P. H. Lutz. 1978. Relaxation methods for image
reconstruction. Commun. ACM. 21:152-8.

[HLN84] Hearn, D. W., S. Lawphongpanich, and S. Nguyen. 1984. Convex pro-
gramming formulation of the asymmetric traffic assignment problem. Trans. Res.
18B:357-65.

[HLV87] Hearn, D. W., S. Lawphongpanich, and J. A. Ventura. 1987. Restricted sim-
plicial decomposition: Computation and extensions. Math. Programming Studies.
31:99-118.

[Hoc65] Hockney, R. W. 1965. A fast direct solution of Poisson’s equation using Fourier
analysis. J. ACM. 12:95-113.

[Hoc85] Hockney, R. W. 1985. MIMD computing in the USA—1984. Parallel Comput.
2:119-36.

[HoJ81] Hockney, R. W., and C. R. Jesshope. 1981. Parallel Computers. Bristol,
England: Adam Hilger.

References ' 693

[HoK71] Hoffman, K., and R. Kunze. 1971. Linear Algebra. Englewood Cliffs, NJ:
Prentice-Hall.

[HoM76] Ho, Y. C., and S. K. Mitter (eds.). 1976. Directions in Large Scale Systems.
New York: Plenum.

[Hou64] Householder, A. S. 1964. The Theory of Matrices in Numerical Analysis. New
York: Dover.

[HuS87a] Humblet, P. A., and S. R. Soloway. 1987. A fail-safe layer for distributed
network algorithms and changing topologies. Laboratory for Information and Decision
Systems Report LIDS-P-1702, Massachusetts Institute of Technology, Cambridge.

[HuS87b] Humblet, P. A., and S. R. Soloway. 1987. Topology broadcast algorithms.
Laboratory for Information and Decisions Systems Report LIDS-P-1692, Massachusetts
Institute of Technology, Cambridge.

[Hwa84] Hwang, K., (ed.). 1984. Supercomputers: Design and Applications. Silver
Springs, MD: IEEE Computer Society Press.

[Hwa87] Hwang, K. 1987. Advanced parallel processing with supercomputer architec-
tures. Proc. IEEE. 75:1348-79.

[HwB84] Hwang, K., and F. A. Briggs. 1984. Computer Architecture and Parallel
Processing. New York: McGraw-Hill.

[HyK77] Hyafil, L., and H. T. Kung. 1977. The complexity of parallel evaluation of
linear recurrences. J. ACM. 24:513-21.

[IEE78] IEEE Trans. Auto. Contr. 1978. Special Issue on Large-Scale Systems and
Decentralized Control, Vol. AC-23.

(IEE87] IEEE Computer. 1987. Special Issue on Interconnection Networks, Vol. 20.

[IpS85] Ipsen, I. C. F,, and Y. Saad. 1985. The impact of parallel architectures on
the solution of eigenvalue problems. Dept. of Computer Science, Research Report
YALEU/DCS/RR-444, Yale University, New Haven, CT.

[IsK66] Isacson, E., and H. B. Keller. 1966. Analysis of Numerical Methods. New York:
Wiley.

[ISS86] Ipsen, I. C. F., Y. Saad, and M. H. Schultz. 1986. Complexity of dense-linear-
system solution on a muitiprocessor ring. Lin. Algeb. & Appl. 77:205-39.

[1sS86] Israeli, A., and Y. Schiloach. 1986. An improved parallel algorithm for maximal
matching. Inf. Proc. Lett. 22:57-60.

[JeB80] Jensen, P. A., and J. W. Barnes. 1980. Network Flow Programming. New York:
Wiley.

[Jef85] Jefferson, D. R. 1985. Virtual time. ACM Trans. Prog. Lang. & Sys. 7:404-25.

[Jer79] Jeroslow, R. G. 1979. Some relaxation methods for linear inequalities. Cahiers
du C.ER.O. 21:43-53.

[Joh85a] Johnsson, S. L. 1985. Cyclic reduction on a binary tree. Comput. Phys.
Commun. 37:195-203.

[Joh85b] Johnsson, S. L. 1985. Solving narrow banded systems on ensemble architec-
tures. ACM Trans. Math. Software. 11:271-88.

694 References

[Joh87a] Johnsson, S. L. 1987. Communication efficient basic linear algebra computa-
tions on hypercube architectures. J. Parallel & Distr. Comput. 4:133-72.

[Joh87b] Johnsson, S. L. 1987. Solving tridiagonal systems on ensemble architectures.
SiAM J. Sci. & Stat. Comput. 8:354-92.

[Kar78] Karp, R. M. 1978. A characterization of the minimum cycle mean in a digraph.
Disc. Math. 23:309-11.

[KeH80] Kennington, J., and R. Helgason. 1980. Algorithms for Network Programming.
New York: Wiley.

[KiC87] Kim, T., and K.-T. Chwa. 1987. An O(n log n log log n) parallel maximum
matching algorithm for bipartite graphs. Inf. Proc. Lett. 24:15-17.

[KiL86] Kindervater, G. A. P., and J. K. Lenstra. 1986. An introduction to parallelism
in combinatorial optimization. Disc. Appl. Math. 14:135-56.

[KiS80] Kinderlehrer, D., and G. Stampacéhia. 1980. Anrn Introduction to Variational
Inequalities and their Applications. New York: Academic Press.

[KMW67] Karp, R. M., R. E. Miller, and S. Winograd. 1967. The organization of
computations for uniform recurrence equations. J. ACM. 14:563-90.

[KoB76] Kort, B. W., and D. P. Bertsekas. 1976. Combined primal-dual and penalty
methods for convex programming. SiAM J. Contr. 14:268-94.

[KoO68] Kowalik, J., and M. R. Osborne. 1968. Methods for Unconstrained Optimiza-
tion Problems. New York: Elsevier.

[Kor76] Korpelevich, G. M. 1976. The extragradient method for finding saddle points
and other problems. Fkon. i Mat. Metody [translated as Matecon]. 12:747-56.

[Kru37] Kruithof, J. 1937. Calculation of telephone traffic. De Ingenieur (E. Electrotech-
nik 3). 52:E15-25.

[Kru87] Kruse, R. L. 1987. Data Structures and Program Design. Englewood Cliffs,
NIJ: Prentice-Hall.

[KSS81] Kung, H. T., B. Sproul, and G. Steele (eds.). 1981. VLSI Systems and Compu-
tations. Rockville, MD: Computer Science Press.

[Kuc82] Kucera, L. 1982. Parallel computation and conflicts in memory access. Inf.
Proc. Lett. 14:93-96.

[Kun76a] Kung, H. T. 1976. New algorithms and lower bounds for the parallel evaluation
of certain rational expressions and recurrences. J. ACM. 23:252-61.

[Kun76b] Kung, H. T. 1976. Synchronized and asynchronous parallel algorithms for
multiprocessors. In J. F. Traub (ed.), Algorithms and Complexity, 153-200. New
York: Academic Press.

[Kun82] Kung, H. T. 1982. Why systolic architectures? Computer. 15:37-45.
[Kun88] Kung, S. Y. 1988. VLSI Array Processors. Englewood Cliffs, NJ: Prentice-Hall.

[KuP81] Kuhn, R. M., and D. A. Padua (eds.). 1981. Tutorial on Parallel Processing.
Silver Springs, MD: IEEE Computer Society Press.

[Kus84] Kushner, H. J. 1984. Approximation and Weak Convergence Methods for Ran-
dom Processes. Cambridge, MA: The MIT Press.

References 695

[KuV86] Kumar, P. R., and P. P. Varaiya. 1986. Stochastic Systems: Estimation,
Identification, and Adaptive Control. Englewood Cliffs, NJ: Prentice-Hall.

[KuY87a] Kushner, H. J., and G. Yin. 1987. Stochastic approximation algorithms for
parallel and distributed processing. Stochastics. 22:219-50.

[KuY87b] Kushner, H. J., and G. Yin. 1987. Asymptotic properties of distributed
and communicating stochastic approximation algorithms. SiAM J. Contr. & Optim.
25:1266-90.

[KVC88] Krumme, D. W., K. N. Venkataraman, and G. Cybenko. 1988. The token
exchange problem. Dept. of Applied Math. Technical Report 88-2. Tufts University,
‘Medford, MA.

[LaF80] R. E. Ladner, and M. J. Fischer. 1980. Parallel prefix computation. J. ACM.
27:831-8.

[LaH84] Lawphongpanich, S., and D. W. Hearn. 1984. Simplicial decomposition of the
asymmetric traffic assignment problems. Trans. Res. 18B:123-33.

[Lam78] Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM. 21:558-65.

[LaS81] Lamond, B., and N. F. Stewart. 1981. Bregman’s balancing method. Trans.
Res. 15B:239-48.

[Las70] Lasdon, L. S. 1970. Optimization Theory for Large Systems. New York: Macmil-
lan.

[Las73] Lasdon, L. S. 1973. Decomposition in resource allocation. In D. M. Himmelblau
(ed.), Decomposition of Large-Scale Problems, 207-31. Amsterdam: North-Holland.

[LaT85] Lancaster, P., and M. Tismenetsky. 1985. The Theory of Matrices. New York:
Academic Press.

[Law67] Lawler, E. L. 1967. Optimal cycles in doubly weighted linear graphs. In P.
Rosenstiehl (ed.), Theory of Graphs, 209-14. Paris: Dunod; New York: Gordon &
Breach.

[Law76] Lawler, E. 1976. Combinatorial Optimization: Networks and Matroids. New
York: Holt, Rinehart & Winston.

[Lem74] Lemarechal, C. 1974. An algorithm for minimizing convex functions. In J. L.
Rosenfeld (ed.), Information Processing '74, 552—-6. Amsterdam: North-Holland.
[Lem75] Lemarechal, C. 1975. An extension of Davidon methods to nondifferentiable

problems. Math. Prog. Studies. 3:95-109.

[LeP65] Levitin, E. S., and B. T. Poljak. 1965. Constrained minimization methods. Z.
Vycisl. Mat. i Mat. Fiz. 6:787-823. English translation in USSR Comput. Math.
Phys. 6:1-50.

[LeR81] Lehmann, D., and M. Rabin. 1981. On the advantages of free choice: A
symmetric solution of the dining philosophers problem. Proc. 8th ACM Symp. Princ.
Prog. Lang., 133-8.

[LeV40] Le Verrier, U. J. J. 1840. Sur les variations seculaires des elements elliptiques
des sept planets principales. J. Math. Pures Appl. 5:220-54.

696 References

[LiB87] Li, S. and T. Basar. 1987. Asymptotic agreement and convergence of asyn-
chronous stochastic algorithms. IEEE Trans. Auto. Contr. AC-32:612-18.

[LiM79] Lions, P. L., and B. Mercier. 1979. Splitting algorithms for the sum of two
nonlinear operators. SiIAM J. Numer. Analy. 16:964-79.

[LjS83] Ljung, L., and T. Soderstrom. 1983. Theory and Practice of Recursive Identifi-
cation. Cambridge, MA: The MIT Press.

[Lju77] Ljung, L. 1977. Analysis of recursive stochastic algorithms. IEEE Trans. Auto.
Contr. AC-22:551-175.

[LKK83] Lord, R. E., J. S. Kowalik, and S. P. Kumar. 1983. Solving linear algebraic
expressions on an MIMD computer. J. ACM. 30:103-17.

[LMS83] Lavenberg, S., R. Muntz, and B. Samadi. 1983. Performance analysis of a
rollback method for distributed simulation. In A. K. Agrawala and S. K. Tripathi
(eds.), Performance ’83, 117-32. Amsterdam: North-Holland.

[LMS86] Lang, B., J. C. Miellou, and P. Spiteri. 1986. Asynchronous relaxation algo-
rithms for optimal control problems. Math. & Comput. Simul. 28:227-42.

[LoR88] Lootsma, F. A., and K. M. Ragsdell. 1988. State of the art in parallel nonlinear
optimization. Parallel Comput. 6:131-55.

[LPS87] Lo, S.-S., B. Philippe, and A. Sameh. 1987. A multiprocessor algorithm for the
symmetric tridiagonal eigenvalue problem. SiAM J. Sci. & Stat. Comput. 8:5155-65.

[LRS82] Lelarasmee, E., A. E. Ruehli, and A. L. Sangiovanni-Vincentelli. 1982. The
waveform relaxation method for the time-domain analysis of large scale integrated
circuits. IEEE Trans. Comput.-Aided Des. Integ. Circ. CAD-1:131-45.

[Lue69] Luenberger, D. G. 1969. Optimization by Vector Space Methods. New York:
Wiley.

[Lue84] Luenberger, D. G. 1984. Linear and Nonlinear Programming. Reading, MA:
Addison-Wesley.

[LuM86] Lubachevsky, B., and D. Mitra. 1986. A chaotic asynchronous algorithm for
computing the fixed point of a nonnegative matrix of unit spectral radius. J. ACM.
33:130-50.

[Luo87] Luo, Z.-Q. 1987. Private communication.

[Lug84] Luque, F. J. 1984. Asymptotic convergence analysis of the proximal point
algorithm. SiAM J. Contr. & Optim. 22:277-93.

[Lug86a] Luque, F. J. 1986. The nonlinear proximal point algorithm and multiplier
methods. Laboratory for Information and Decision Systems Report LIDS-P-1596,
Massachusetts Institute of Technology, Cambridge.

[Lug86b] Luque, F. J. 1986. The nonlinear proximal point algorithm. Laboratory for
Information and Decision Systems Report LIDS-P-1598, Massachusetts Institute of
Technology, Cambridge.

[Mac79] Macgill, S. H. 1979. Convergence and related properties for a modified bipro-
portional problem. Envir. Plan A. 11:499-506.

References 697

[MaD86] Mangasarian, O. L., and R. De Leone. 1986. Parallel gradient projection
successive overrelaxation for symmetric linear complementarity problems and linear
programs. Computer Sciences Dept. Technical Report 659, University of Wisconsin-
Madison.

[MaD87] Mangasarian, O. L., and R. De Leone. 1987. Parallel successive overrelaxation
methods for symmetric linear complementarity problems and linear programs. JOTA.
54:437-46.

[Man77] Mangasarian, O. L. 1977. Solution of symmetric linear complementarity prob-
lems by iterative methods. JOTA. 22:465-85.

[Man84] Mangasarian, O. L. 1984. Sparsity-preserving SOR algorithms for separable
quadratic and linear programming. Comput. & Oper. Res. 11:105-12.

[MaP88] Maggs, B. M., and S. A. Plotkin. 1988. Minimum-cost spanning tree as a
path-finding problem. Inf. Proc. Lett. 26:291-3.

[Mar70] Martinet, B. 1970. Regularisation d’inequations variationnelles par approxima-
tions successives. Rev. Francaise Inf. Rech. Oper. 4:154-59.

[Mar72] Martinet, B. 1972. Determination approchee d’un point fixe d’une application
pseudocontractante. C. R. Acad. Sci. Paris. 274A:163-5.

[Mar73] Maruyama, K. 1973. On the parallel evaluation of polynomials. /EEE Trans.
Comput. C-22:2-5.

[McV87] McBryan, O. A., and E. F. Van de Velde. 1987. Hypercube algorithms and
implementations. SiAM J. Sci. Stat. Comput. 8:s227-87.

[McW77] McQuillan, J. M., and D. C. Walden. 1977. The ARPANET design decisions.
Computer Networks. 1:243-89.

[MeC80] Mead, C., and L. Conway. 1980. Introduction to VLSI Systems. Reading, MA:
Addison-Wesley.

[MeZ88] Meyer, R. R., and S. A. Zenios (eds.). 1988. Parallel Optimization on Novel
Computer Architectures, Annals of Operations Research. Bazel, Switzerland: A. C.
Baltzer.

[MiC82] Misra, J., and K. M. Chandy. 1982. Termination detection of diffusing com-
putations in communicating sequential processes. ACM Trans. Prog. Lang. & Sys.
4:37.

[MiC87] Mitra, D., and R. A. Cieslak. 1987. Randomized parallel communications on
an extension of the Omega network. J. ACM. 34:802-24.

[Mie75] Miellou, J. C. 1975. Algorithmes de relaxation chaotique a retards. R.A.L.R.O.
9:55-82.

[MiM84] Mitra, D., and I. Mitrani. 1984. Analysis and optimum performance of two
message-passing parallel processors synchronized by rollback. In E. Gelenbe (ed.),
Performance ’84, 35-50. New York: Elsevier.

[Min78] Minieka, E. 1978. Optimization Algorithms for Networks and Graphs. New
York: Marcel Dekker.

698 References

[MiR85] Miller, G. L., and J. Reif. 1985. Parallel tree contraction and its applications.
Proc. 26th Annual Symp. Found. Comput. Sci., 478-89.

[MiS85] Miellou, J. C., and P. Spiteri. 1985. Un critere de convergence pour des
methodes generales de point fixe. Math. Modelling & Numer. Analy. 19:645-69.
[Mis86] Misra, J. 1986. Distributed discrete-event simulation. Comput. Surv. 18:39—65.
[Mit87] Mitra, D. 1987. Asynchronous relaxations for the numerical solution of differ-

ential equations by parallel processors. SiAM J. Sci. Stat. Comput. 8:s43-58.

[MMT?70] Mesarovic, M. D., D. Macko, and Y. Takahara. 1970. Theory of Hierarchical
Multilevel Systems. New York: Academic Press.

[Mor65] Moreau, J. J. 1965. Proximite et dualite dans un espace Hilbertien. Bull. Soc.
Math. France. 93:273-99.

[MoS54] Motzkin, T. S., and 1. J. Schoenberg. 1954. The relaxation method for linear
inequalities. Can. J. Math. 6:393-404.

[MRR80] McQuillan, J. M., I. Richer, and E. C. Rosen. 1980. The new routing algorithm
for the ARPANET. IEEE Trans. Commun. COM-28:711-19.

[Mul78] Mulvey, J. M. 1978. Testing of a large-scale network optimization program.
Math. Prog. 15:291-314.

[MuP73] Munro, 1., and M. Paterson. 1973. Optimal algorithms for parallel polynomial
evaluation. J. Comput. & Sys. Sci. 7:189-98.

[MuP76] Muller, D. E., and F. P. Preparata. 1976. Restructuring of arithmetic expres-
sions for parallel evaluation. J. ACM. 23:534-43.

[Nag87] Nagurney, A. 1987. Competitive equilibrium problems, variational inequalities
‘and regional science. J. Reg. Sci. 27:503-17.

[NaS80] Nassimi, D., and S. Sahni. 1980. An optimal routing algorithm for mesh-
connected parallel computers. J. ACM. 27:6-29.

[Nem66] Nemhauser, G. L. 1966. Introduction to Dynamic Programming. New York:
Wiley.

[NeS83] Newton, A. R., and A. L. Sanglovanm Vincentelli. 1983. Relaxation-based
electrical simulation. IEEE Trans. Electron. Devices. ED-30:1184-1207.

[OhK84] Ohuchi, A., and I. Kaji. 1984. Lagrangian dual coordinatewise maximiza-
tion algorithm for network transportation problems with quadratic costs. Networks.
14:515-30.

[OLR85] O’hEigeartaigh, M., S. K. Lenstra, and A. H. G. Rinnoy Kan (eds.). 1985.
Combinatorial Optimization: Annotated Bibliographies. New York: Wiley.

[Orc74] Orcutt, S. E., Jr. 1974. Computer organization and algorithms for very high-
speed computations. PhD Thesis, Dept. of Electrical Engineering, Stanford University,
Stanford, CA.

[OrR70] Ortega, J. M., and W. C. Rheinboldt. 1970. Iterative Solution of Nonlinear
Equations in Several Variables. New York: Academic Press.

[OrV85] Ortega, J. M., and R. G. Voigt. 1985. Solution of partial differential equanons
on vector and parallel computers. SiAM Rev. 27:149-240.

References 699

[Ozv87] Ozveren, C. 1987. Communication aspects of parallel processing. Laboratory
for Information and Decision systems Report LIDS-P-1721, Massachusetts Institute
of Technology, Cambridge.

[PaC82a] Pang, J. S., and D. Chan. 1982. Gauss-Seidel methods. for variational inequal-
ity problems over product sets. Unpublished manuscript. School of Management,

~ University of Texas-Dallas.

[PaC82b] Pang, J. S., and D. Chan. 1982. Iterative methods for variational and comple-
mentarity problems. Math. Prog. 24:284-313.

[Pan85] Pang, J. S. 1985. Asymmetric variational inequality problems over product sets:
Applications and iterative methods. Math. Prog. 31:206-19.

[PaR85] Pan, V., and J. Reif. 1985. Efficient parallel solution of linear systems. Proc.
17th ACM STOC., 143-52.

[PaS82] Papadimitriou, C. H., and K. Steiglitz. 1982. Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall.

[PaT87a)] Papadimitriou, C. H., and J. N. Tsitsiklis. 1987. Unpublished research.

[PaT87b] Papadimitriou, C. H., and J. N. Tsitsiklis. 1987. The complexity of Markov
decision processes. Math. Oper. Res. 12:441-50.

[PaY88] Papadimitriou, C. H., and M. Yannakakis. 1988. Towards an architecture-
independent analysis of parallel algorithms. Proc. 20th ACM STOC. 510-3.

[Pea84] Pearl, J. 1984. Heuristics. Reading, MA: Addison-Wesley.

[Per83] Perlman, R. 1983. Fault-tolerant broadcast of routing information. Comput.
Netw. 7:395-405.

[Pet88] Peters, J. 1988. A parallel algorithm for minimal cost network flow problems.
Computer Sciences Dept., Technical Report 762, University of Wisconsin-Madison.

[Pol69] Poljak, B. T. 1969. Minimization of unsmooth functionals. USSR Comput. Math.
Phys. 9:14-29.

[Pol71] Polak, E. 1971. Computational Methods in Optimization: A Unified Approach.
New York: Academic Press.

[Pol87] Poljak, B. T. 1987. Introduction to Optimization. New York: Optimization
Software.

[PoT73] Poljak, B. T., and Y. Z. Tsypkin. 1973. Pseudogradient adaptation and training
algorithms. Auto. & Rem. Contr. 12:83-94.

[PoT74] Poljak, B. T., and N. V. Tretjakov. 1974. An iterative method for linear
programming and its economic interpretation. Matecon. 10:81-100.

[Pow69] Powell, M. J. D. 1969. A method for nonlinear constraints in minimization
problems. In R. Fletcher (ed.), Optimization, 283-98. New York: Academic Press.
[Pow73] Powell, M. J. D. 1973. On search directions for minimization algorithms. Math.

Prog. 4:193-201.

[PrS78] Preparata, F. P., and D. V. Sarwate. 1978. An improved parallel processor

bound in fast matrix inversion. Inf. Proc. Lett. 7:148-9.

700 References

[QuD84] Quinn, M. J., and N. Deo. 1984. Parallel graph algorithms. Comput. Surv.
16:338-48. :

[Qui87] Quinn, M. J. 1987. Designing Efficient Algorithms for Parallel Computers. New
York: McGraw-Hill.

[RaK88] Rao, S. K., and T. Kailath. 1988. Regular iterative algorithms and their
implementation on processor arrays. Proc. IEEE. 76:259-69.

[RAP87] Reed, D. A., L. M. Adams, and M. L. Patrick. 1987. Stencils and problem
partitionings: Their influence on the performance of multiple processor systems. /[EEE
Trans. Comput. C-36:845-58.

[RCM75] Robert, F., M. Chamay, and F. Musy. 1975. Iterations chaotiques serie-
parallele pour des equations non-lineaires de point fixe. Aplikace Mat. 20:1-38.

[Rib87] Ribeiro, C. C. 1987. Parallel computer models and combinatorial algorithms.
Ann. Disc. Math. 31:325-64.

[Rob76] Robert, F. 1976. Contraction en norme vectorielle: Convergence d’iterations
chaotiques pour des equations non lineaires de point fixe a plusieurs variables. Lin.
Algeb. & Appl. 13:19-35.

[Roc70] Rockafellar, R. T. 1970. Convex Analysis. Princeton, NJ: Princeton University
Press.

[Roc71] Rockafellar, R. T. 1971. New applications of duality in convex programming.
Proc. 4th Conf. Prob., 73-81.

[Roc76a] Rockafellar, R. T. 1976. Monotone operators and the proximal point algorithm.
SiAM J. Contr. & Optim. 14:877-98.

[Roc76b] Rockafellar, R. T. 1976. Augmented Lagrangians and applications of the
proximal point algorithm in convex programming. Math. Oper. Res. 1:97-116.

[Roc76c] Rockafellar, R. T. 1976. Solving a nonlinear programming problem by way of
a dual problem. Symp. Mat. 27:135-60.

[Roc80] Rock, H. 1980. Scaling techniques for minimal cost network flows. In V. Page
(ed.), Discrete Structures and Algorithms. Munich: Carl Hansen. 181-91

[Roc84] Rockafellar, R. T. 1984. Network Flows and Monotropic Programming. New
York: Wiley.

[RoMS51] Robbins, H., and S. Monro. 1951. A stochastic approximation method. Ann.
Math. Stat. 22:400-7.

[Ros83a] Ross, S. 1983. Stochastic Processes. New York: Wiley.

[Ros83b] Ross, S. 1983. Introduction to Dynamic Programming. New York: Academic
Press.

[RoW87] Rockafellar, R. T., and R. J.-B. Wets. 1987. Scenarios and policy aggrega-
tion in optimization under uncertainty. International Institute of Systems Analysis,
Working Paper WP-87-119, Laxenburg, Austria.

[Rud76] Rudin, W. 1976. Real Analysis. New York: McGraw-Hill.

[Saa86] Saad, Y. 1986. Communication complexity of the Gaussian elimination algo-
rithm on multiprocessors. Lin. Algeb. & Appl. 77:315-40.

References 701

[SaK77] Sameh, A. H., and D. J. Kuck. 1977. A parallel QR algorithm for symmetric
tridiagonal matrices. IEEE Trans. Comput. C-26:147-53.

[SaK78] Sameh, A. H., and D. J. Kuck. 1978. On stable parallel linear solvers. J. ACM.
25:81-91.

[Sam77] Sameh, A. H. 1977. Numerical parallel algorithms: A survey. In D. J. Kuck, D.
H. Lawrie, and A. H. Sameh (eds.), High Speed Computer and Algorithm Organization,
207-28. New York: Academic Press.

[Sam81] Sameh, A. H. 1981. Parallel algorithms in numerical linear algebra. Paper
presented at the CREST Conference on the Design of Numerlcal Algorithms for
Parallel Processing, Bergamo, Italy.

[Sam85a] Sameh, A. H. 1985. On some parallel algorithms on a ring of processors.
Comput. Phys. Commun. 37:159-66.

[Sam85b] Samadi, B. 1985. Distributed simulation: Algorithms and performance analy-
sis. PhD dissertation. Computer Science Dept., UCLA.

[San88] Sanders, B. A. 1988. An asynchronous distributed flow control algorithm for
rate allocation in computer networks. IEEE Trans. Comput. 37:779-87.

[SaS85] Saad, Y., and M. H. Schultz. 1985. Data communication in hypercubes. Dept.
of Computer Scnences Research Report YALEU/DCS/RR-428, Yale University, New
Haven, CT.

[SaS86] Saad, Y., and M. H. Schultz. 1986. Data communication in parallel architec-
tures. Dept. of Computer Sciences, Research Report, Yale University, New Haven,
CT.

[SaS87] Saad, Y., and M. H. Schultz. 1987. Parallel direct methods for solving banded
linear systems. Lin. Algeb. & Appl. 88/89:623-50.

[SaS88] Saad, Y., and M. H. Schultz. 1988. Topological properties of hypercubes. IEEE
Trans. Comput. 37:867-72.

[Sch80] Schwartz, J. T. 1980. Ultracomputers. ACM Trans. Prog. Lang. & Sys. 2:484—
521.

[Sch84] Schendel, U. 1984. Introduction to Numerical Methods for Parallel Computers.
Chichester, England: Ellis Horwood.

[Sch87] Schwartz, M. 1987. Telecommunication Networks. Reading, MA: Addison-
Wesley.

[ScS80] Schwartz, M., and T. E. Stern. 1980. Routing techniques used in computer
communication networks. IEEE Trans. Commun. COM-28:539-52.

[ScV82] Schiloach, Y., and V. Vishkin. 1982. An O(n? log n) parallel max-flow algo-
rithm. J. Algor. 3:128-46.

[Seg83] Segall, A. 1983. Distributed network protocols. IEEE Trans. Inf. Theory.
IT-29:23-35.

[Sen81] Seneta, E. 1981. Non-Negative Matrices and Markov Chains. New York:
Springer-Verlag.

[Sha79] Shapiro, J. F. 1979. Mathematical Programming. New York: Wiley.

702 References

[Sib70] Sibony, M. 1970. Methodes iteratives pour les equations et inequations aux
derivees partielles nonlineaires de type monotone. Calcolo. 7:65-183.

[Sin77] Singh, M. G. 1977. Dynamical Hierarchical Control. Amsterdam: North-
Holland.

[SMG78] Segall, A., P. M. Merlin, and R. G. Gallager. 1978. A recoverable protocol
for loop-free distributed routing. Proc. ICC.

[SpG87] Spinelli, J. M., and R. G. Gallager. 1987. Broadcasting topology information in
computer networks. Laboratory for Information and Decision Systems Report LIDS-
P-1543, Massachusetts Institute of Technology, Cambridge.

[Spi84] Spiteri, P. 1984. Contribution a ’etude de grands systemes non lineaires. Doc-
toral thesis. L’Universite de Franche-Comte, Besancon, France.

[Spi85a] Spingarn, J. E. 1985. A primal-dual projection method for solving systems of
linear inequalities. Lin. Algeb. & Appl. 65:45-62.

[Spi85b] Spingarn, J. E. 1985. Applications of the method of partial inverses to convex
programming: Decomposition. Math. Prog. 32:199-223.

[Spi85c] Spinelli, J. M. 1985. Broadcasting topology and routing information in computer
networks. Laboratory for Information and Decision Systems Report LIDS-TH-1470,
Massachusetts Institute of Technology, Cambridge.

[Spi86] Spiteri, P. 1986. Parallel asynchronous algorithms for solving boundary value
problems. In M. Cosnard et al. (eds.) Parallel Algorithms and Architectures. 73—84.
New York: Elsevier.

[Spi87] Spingarn, J. E. 1987. A projection method for least-squares solutions to overde-
termined systems of linear inequalities. Lin. Algeb. & Appl. 86:211-36.

[SSP85] Szymanski, B., Y. Shi, and N. Prywes. 1985. Terminating iterative solution of
simultaneous equations in distributed message passing systems. J. ACM. 32:287-92.

[Sta85] Stallings, W., 1985. Data and Computer Communications. New York: Macmil-
lan.

[Sta87] Stallings, W. 1987. Local Networks. New York: Macmillan.

[Ste73] Stewart, G. W. 1973. Introduction to Matrix Computations. New York: Aca-
demic Press.

[Ste77] Stern, T. E. 1977. A class of decentralized routing algorithms using relaxation.
IEEE Trans. Commun. COM-25:1092-1102.

[Sto75] Stone, H. S. 1975. Parallel tridiagonal equation solvers. ACM Trans. Math.
Software. 1:289-307.

[Sto77] Stoilow, E. 1977. The augmented Lagrangian method in two-level static opti-
mization. Arch. Auto. Telemech. 22:219-37.

[Str76] Strang, G. 1976. Linear Algebra and Its Applications. New York: Academic
Press.

[StW70] Stoer, J., and C. Witzgall. 1970. Convexity and Optimization in Finite Dimen-
sions I. New York: Springer-Verlag.

References 703

[StW75] Stephanopoulos, G., and A. W. Westerberg. 1975. The use of Hestenes’
method of multipliers to resolve dual gaps in engineering system optimization. JOTA.
15:285-309.

[Sut83] Sutti, C. 1983. Nongradient minimization methods for parallel processing com-
puters. JOTA. 39:465-488.

[Taj77] Tajibnapis, W. D. 1977. A correctness proof of a topology information mainte-
nance protocol for a distributed computer network. Commun. ACM. 20:477-85.

[TaM85] Tanikawa, A., and H. Mukai. 1985. A new technique for nonconvex primal-
dual decomposition of a large-scale separable optimization problem. [EEE Trans.
Auto. Contr. AC-30:133-43.

[Tan71] Tanabe, K. 1971. Projection method for solving a singular system of linear
equations and its applications. Numer. Math. 17:203-14.

[Tan81] Tanenbaum, A. S. 1981. Computer Networks. Englewood Cliffs, NJ: Prentice-
Hall.

[Tar85] Tardos, E. 1985. A strongly polynomial minimum cost circulation algorithm.
Combinatorica. 5:247-55.

[TBAS86] Tsitsiklis, J. N., D. P. Bertsekas, and M. Athans. 1986. Distributed asyn-
chronous deterministic and stochastic gradient optimization algorithms. IEEE Trans.
Auto. Contr. AC-31:803-12.

[TBTS88] Tseng, P., D. P. Bertsekas, and J. N. Tsitsiklis. 1988. Partially Asynchronous
Parallel Algorithms for Network Flow and Other Problems. Laboratory for Informa-
tion and Decision Systems Unpublished Report, Massachusetts Institute of Technol-
ogy, Cambridge.

[Tho87] Thompson, K. M. 1987. A two-stage successive overrelaxation algorithm for
solving the linear complementarity problem. Computer Sciences Dept., Technical
Report 706, University of Wisconsin-Madison.

[Top85] Topkis, D. M. 1985. Concurrent broadcast for information dissemination. [EEE
Trans. Software Eng. 13:207-31.

[Top87] Topkis, D. M. 1987. All-to-all broadcast by flooding in communications net-
works. Graduate School of Management, University of California-Davis. To appear
in IEEE Trans. Comput.

[TsA84] Tsitsiklis, J. N., and M. Athans. 1984. Convergence and asymptotic agreement
in distributed decision problems. IEEE Trans. Auto. Contr. AC-29:42-50.

[Tsa86] Tsai, W. K. 1986. Optimal quasi-static routing for virtual circuit networks sub-
jected to stochastic inputs. PhD thesis. Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge.

[TsB86] Tsitsiklis, J. N., and D. P. Bertsekas. 1986. Distributed asynchronous optimal
routing in data networks. /[EEE Trans. Auto. Contr. AC-31:325-32.

[TsB87a] Tseng, P., and D. P. Bertsekas. 1987. Relaxation methods for problems with
strictly convex separable costs and linear constraints. Math. Prog. 38:303-21.

[TsB87b] Tseng, P., and D. P. Bertsekas. 1987. Relaxation methods for linear programs.
Math. Oper. Res. 12:569-96.

704 References

[TsB87c] Tseng, P., and D. P. Bertseckas. 1987. Relaxation methods for monotropic
programs. Laboratory for Information and Decision Systems Report LIDS-P-1697,
Massachusetts Institute of Technology, Cambridge. To appear in Math. Prog.

[Tse85] Tseng, P. 1985. The relaxation method for a special class of linear programming
problems. Laboratory for Information and Decision Systems Report LIDS-P-1467,
Massachusets Institute of Technology, Cambridge.

[Tse86] Tseng, P. 1986. Relaxation methods for monotropic programming problems.
PhD thesis. Dept. of Electrical Eng. and Comp. Science, Massachusetts Institute of
Technology, Cambridge.

[Tse87] Tseng, P. 1987. Private communication.
[Tse88] Tseng, P. 1988. Private communication.
[Tsi84] Tsitsiklis, J. N. 1984. Problems in decentralized decision making and compu-

tation. PhD thesis. Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge.

[Tsi87] Titsiklis, J. N. 1987. On the stability of asynchronous iterative processes. Math.
Sys. Theory. 20:137-53.

[TTB86] Tsai, W. K., J. N. Tsitsiklis, and D. P. Bertsekas. 1986. Some issues in
distributed asynchronous routing in virtual circuit data networks. Proc. 25th Conf.
Dec. & Contr., 1335-7.

[Ul184] Ullman, J. D. 1984. Computational Aspects of VLSI. Rockeville, MD: Computer
Science Press.

[UrD86] Uresin, A., and M. Dubois. 1986. Generalized asynchronous iterations. Proc.
Conf. Algor. & Hardware Parallel Proc.

[UrD88a] Uresin, A., and M. Dubois. 1988. Sufficient conditions for the convergence of
asynchronous iterations. Computer Research Institute, Technical Report, University
of Southern California-Los Angeles. To appear in Parallel Comput.

[UrD88b] Uresin, A., and M. Dubois. 1988. Parallel asynchronous algorithms for
discrete data. Computer Research Institute, Technical Report CRI-88-05, University
of Southern California-Los Angeles.

[VaB81] Valiant, L. G., and G. J. Brebner, 1981. Universal schemes for parallel com-
munication. Proc. 13th Annual ACM STOC., 263-77.

[Val82] Valiant, L. G. 1982. A scheme for fast parallel communication. SiAM J. Comput.
Vol. 11:350-61. ,

[Var62] Varga, R. S. 1962. Matrix Iterative Methods. Englewood Cliffs, NJ: Prentice-
Hall.

[VeP87] Verdu, S., and V. Poor. 1987. Abstract dynamic programming models under
commutativity conditions. SiAM J. Contr. & Optim. 25:990-1006.

[Ver87] Verjus, J. P. 1987. On the proof of a distributed algorithm. Inf. Proc. Lett.
25:145-7.

[Vid78] Vidyasagar, M. 1978. Nonlinear Systems Analysis. Englewood Cliffs, NJ:
Prentice-Hall.

References 705

[Whi82] Whittle, P. 1982. Optimization Over Time, Volume 1. New York: Wiley.

[Whi83] Whittle, P. 1983. Optimization Over Time, Volume 2. New York: Wiley.

[WiH80] Wing, O., and S. W. Huang. 1980. A computation model of parallel solution
of linear equations. IEEE Trans. Comput. C-29:632-7.

[Wis71] Wismer, D. A,, (ed.). 1971. Optimization Methods for Large-Scale Systems with
Applications. New York: McGraw-Hill.

[WNM78] Watanabe, N., Y. Nishimura, and M. Matsubara. 1978. Decomposition in
large system optimization using the method of multipliers. JOTA. 25:181-93.

[WoHS85] Wong, E., and B. Hajek. 1985. Stochastic Processes in Engineering Systems.
New York: Springer-Verlag.

[WuF84] Wu, C.-L., and T.-Y. Feng (eds.). 1984. Interconnection Networks for Parallel
and Distributed Processing. New York: IEEE Computer Society Press.

[You71] Young, D. M. 1971. Iterative Solution of Large Linear Systems. New York:
Academic Press.

[Zan69] Zangwill, W. 1. 1969. Nonlinear Programming: A Unified Approach. Engle-
wood Cliffs, NJ: Prentice-Hall.

[ZeL87] Zenios, S. A., and R. A. Lasken, 1987. Nonlinear network optimization on a
massively parallel connection machine. Decision Sciences Dept., Report 87-08-03,
The Wharton School, University of Pennsylvania, Philadelphia. To appear in Ann.
Oper. Res.

[ZeM86] Zenios, S. A., and J. M. Mulvey. 1986. Relaxation techniques for strictly
convex network problems. In C. L. Monma (ed.), Algorithms and Software for Opti-
mization, Annals of Operations Research, Volume 5, Bazel, Switzerland: A. C. Baltzer.

[Zou76] Zoutendijk, G. 1976. Mathematical Programming Methods. Amsterdam: North-
Holland.

Index

A

Absorbing state, 171, 310
Addition, 16-18
on a hypercube, 87
Adjacent nodes, 653
Agreement: »
algorithm, 412, 508-15, 517-18
realization, 553
underlying, 552-55
Alternating direction method:
optimization, 253-61
transportation, 340, 375-76
variational inequalities, 281-85, 287-88
Amdahl’s law, 16
Antimessage, 595
Approximate Newton methods, 201-2, 205
Arc, 653
active, 337, 355

backward, 655
balanced, 337, 355
directed, 655
forward, 655
inactive, 337, 355
incident, 653, 655
incoming, 655
outgoing, 655
unblocked, 358

Arc reversal algorithm, 590, 608-14
Area-perimeter effect, 70, 139
Assignment, 303, 333, 338

complete, 364
dual problem, 338, 66768
See also Auction algorithm

Asynchronism measure, 481
Asynchronous:

convergence rate, 99103, 105-6, 44145
convergence theorem, 431

707

708

partially, 481, 483
totally, 426-31
Auction algorithm, 364-76
asynchronous, 451-52
complexity analysis, 387
Augmented Lagrangian, 244
Augmenting path, 349

Back substitution, 112-13, 123
Basis, 621
orthogonal, 621
Bellman’s equation, 293
Bellman-Ford algorithm, 293-306
and dual relaxation, 345
asynchronous, 446-51
for loop-free paths, 6056, 613
Gauss-Seidel version, 306
relation with rollback, 603—4
termination detection, 573, 578
Bidding, 366
Bit pipe, 31-33
Blackmailer’s dilemma, 328-29
Block-component, 21
Block-contraction, 185
Block-maximum norm, 185 -
Block-parallelization, 21
Bounded:
above, 463, 622
below, 463, 622
sequence, 623
- set, 624
Box condition, 431
Broadcast, 579, 615-17

See also Single node broadcast; Multinode
broadcast; Topology broadcast

Brouwer fixed point theorem, 148
Butterfly, 84

C

Capacity of communication link, 32

Capacity constraints, 333
Cauchy sequence, 622, 623
Cayley-Hamilton theorem, 630

Chain rule, 639

Chaotic telaxation, 426, 479

Characteristic polynomial, 628

Cholesky factorization, 130

Circuit switching, 28

Circulation, 655

Closed set, 624

Coloring, 22-27, 136, 139, 588-89
red-black, 25-26

Column storage method, 74-75, 136

Communication:
bottlenecks, 6668
with a center, 605-17
links, 30-33
- penalty, 27
processing time, 28
propagation time, 29
queueing time, 28
transmission time, 29
Compact set, 624
Complementary slackness
linear network flows, 337
linear programming, 666

strictly convex network flows, 393

Complexity:
of DAG algorithms, 11-14
measures of, 10-11
Component of a vector, 620

Index

Component solution method, 187, 222, 279

convergence, 189-91

Gauss-Seidel, 188
Concave function, 641
Conditional expectation, 676
Condition number, 174
Cone, 659

Conformal realization theorem, 656

Conforming path flow, 656
Conjugate convex function, 395

Conjugate gradient method, 158-66, 202, 288

Connectivity, 39

assumption for shortest paths, 293

Conservation of flow, 333

Constrained matrix problems, 408-10
totally asynchronous algorithms, 446
Constrained optimization, 210-65, 279

optimality conditions, 210

partially asynchronous algorithms, 534-35

Index

totally asynchronous algorithms, 440
Continuous function, 624
Contracting iteration, 181

convergence, 183

Gauss-Seidel convergence, 186

totally asynchronous convergence, 434
Contraction, 181

w. r. t. block-maximum norm, 191-98
Convergence, 622 '

pointwise, 625

of random variables, 675-79

uniform, 625
Convergence rate:

geometric, 622

quadratic, 173
Convex function, 641

continuity, 642

continuity of gradient, 648

derivatives, 643

strictly, 641

strongly, 646
Convex optimization:

constrained, 219

nondifferentiable, 232, 243-61

optimality conditions, 210

separable, see separable problems

strictly, 641

strongly, 206-7, 214

unconstrained, 206
Convex set, 641
Coordinate descent, 207
Coordinate of a vector, 620
Cross-section bound, 68
Csanky’s algorithm, 128-30
Cube-connected cycles, 84
Cut-through transmission, 30
Cycle, 654

directed, 655

negative, 655

positive, 655

D

DAG model, 8
Danskin’s theorem, 649
Data link control, 33-37
D-cube, see hypercube

Decomposition methods:
optimization, 22464
variational inequalities, 281-85

Degree, 653 i
in-degree, 9
out-degree, 9

Demand, 333

Dependency graph, 20
undirected, 568

Depth, 9

Derivative:
directional, 638
left, 643
partial, 638
right, 643

Descent:
algorithm, 199, 528

asynchronous, 53749
block-, 534
convergence, 203, 209
direction, 199
lemma, 203, 639

Determinant, 620

Diagonal dominance, 192, 533,
weak, 499

Diameter, 39

Difference equations, 26-27, 478-79

Differential function, 638
continuously, 638

Differential equations, 469-79, 651-52

Digraph, 655

Dijkstra’s method, 302-3

Dimension, 621

Dining philosophers, 587

Directed graph, 655

Discounted problem 316-17

Discount factor, 309

Discrete event systems, 601-3

Divergence vector, 655

Domain, 620

Doubling algorithm, 304-5

Down iteration, 360, 373

Dual:
differentiability theorem, 669
functional, 661
problem, 661

Duality theorem, 413, 664

710

Dynamic programming, 312-29
contraction property, 315, 325
iteration, 314
monotonicity, 315
parallel implementation, 32324
relation with shortest paths, 318
totally asynchronous algorithms, 44041,
446

Efficiency, 15
Eigenvalue, 628
Eigenvector, 628
Epsilon-complementary slackness, 356, 414
Epsilon-relaxation method, 355-76
complexity analysis, 376-90
scaled, 384-86
totally asynchronous, 451-57
Ergodic class, 674
Error detection, 33-34
Euclidean:
norm, 621
space, 621
Expectation, 670
Exponential distribution, 671
Extragradient method, 273, 285-87

F

Farkas’ lemma, 660
Feasible, 660
First derivative length, 417
First Passage, 312, 329
Fixed point, 181
existence, 148, 183, 184
uniqueness, 183
Flag, 33
Flooding, 615-16
Flow control, 33
Flow looping, 377
Flow vector, 655
Floyd-Warshall algorithm 3034, 307
Forward search, 308, 451
Framing, 33

Index

G

Game theory, 266
Gaussian elimination, 119-24, 127-28
Gauss-Seidel:
based on a mapping, 21, 185
comparison with Jacobi, 151-53
component solution method, 188
dynamic programming, 317, 328
gradient projection, 218-19
iteration, 21, 185
for linear equations, 131
for Markov chains, 172
for monotone mappings, 198
for positive definite systems, 155
projection algorithm, 276-78
for unconstrained optimization, 199, 205
version of auction algorithm, 369, 372
version of Bellman-Ford algorithm, 306
See also Nonlinear Gauss-Seidel algorithm
Givens rotations, 124-28
Global minimum, 640
Go-back-n algorithm, 36-37
Gradient, 638
Gradient algorithm, 199
convergence, 204,
partially asynchronous, 485-87, 527-34
scaled, 200, 204
stochastic, 55668
totally asynchronous, 43740
Gradient projection algorithm, 212-15
asynchronous routing, 539—40
partially asynchronous, 534-35
for positivity constraints, 224
quadratic programming, 227
routing, 417-19
scaled, 215-17
Graph, 653
activity, 575
acyclic, 655
admissible, 377
complete, 44
connected, 654, 655
directed, 655
oriented, 606
strongly connected, 655

Index
H

Hamming distance, 49

Hessian, 638

Hypercube, 48-65
communications, 56-62
independent paths, 55-56
load balancing, 526
mappings, 50-56
matrix-vector calculations, 72-79, 86-88
multinode broadcast, 56-61, 83
single node broadcast, 56, 83
single node scatter/gather, 81
total exchange, 81
two-node broadcast, 81
vector shift, 62-65, 83

Imbedding, 40
Independent paths, 30
in a hypercube, 55-56
Infimum, 623
Inner product, 18, 72-73, 620
Interconnection networks, 6
Interior point, 624
Invariant distribution, 167, 674
computation of, 166-73, 435, 515-18
See also Markov chains
Iteration matrix, 144

J

Jacobi:
asynchronous, 528
comparison with Gauss-Seidel, 151-53
for diagonally dominant matrices, 151
for linear equations, 131
overrelaxation (JOR), 133, 154, 206
-type iteration, 21
for unconstrained optimization, 199, 205,
528
See also Nonlinear Jacobi algorithm
Jacobian, 638
Jordan:
block, 628

711

matrix, 629
normal form, 629

K

Kruithof’s method, 410

L

Lagrange multiplier theorem, 662
Lagrangian function, 660
Lebesgue’s monotone convergence theorem,
676
Left-continuous, 624
Length, See Path Length
Leray-Schauder-Tychonoff fixed point
theorem, 184
Leverrier’s method, 129
Limit, 622
Limit point, 623
Linear array, 44
imbedding in a hypercube, 50
Linear independence, 621
Linearized algorithms, 207
for variational inequalities, 273-77
Linear manifold, 621
Linear programming, 226, 234, 245, 251-53,
263, 328, 665-67
Linear recurrences. See Difference equations
Linear systems:
block-tridiagonal, 117-18
iterative methods, 130-58
partially asynchronous algorithms, 484-87,
489, 498-501
totally asynchronous algorithms, 434—40
triangular, 110-13
tridiagonal, 113-18
See also Gaussian elimination; Givens
rotations; Conjugate gradient
method; Matrix
Lipschitz continuity, 203
Load balancing, 68, 519-26
Local memory, 6
Local minimum, 640
Local termination condition, 572
Logarithm, 620

712

Logical distance, 63
Lower semicontinuous, 624
Lyapunov:

stability, 433

theorem, 488

Mapping problem, 40
Markov chains, 673-75
partially asynchronous algorithms, 515-18
synchronous algorithms, 166-73
totally asynchronous algorithms, 435
with transition costs, 308-12
Markovian decision problems. See Dynamic
programming
Markov inequality, 671
Massively parallel, 5
Matrix:
aperiodic, 167, 675
diagonal, 620
diagonally dominant, 151
invertible, 628
irreducible, 147, 167, 674
nonnegative, 144-51
properties, 144-51
nonnegative definite, 635
nonsingular, 628
orthogonal, 124
positive definite, 635
primitive, 167, 173
singular, 628
stochastic, 167, 673
symmetric, 620
transition probability, 673
triangular, 620
tridiagonal, 620
weakly diagonally dominant, 498-501
Matrix inversion, 119, 128-30, 173-77
triangular, 110-13
Matrix multiplication, 18, 76-79, 86
Matrix powers, 18-19, 26, 79
Matrix transposition:
on a hypercube, 84, 86, 87
Matrix-vector multiplication, 73-76
on a hypercube, 88
on a linear array, 4445

Index

sparse, 7071, 87
Max-flow, 334, 383-84, 423
Maximal relaxation mapping, 460
Maximum norm, 622
Mean value theorem, 639
Mesh, 4748
imbedding in a hypercube, 51-55, 14042
Message-passing, 6
MIMD, 5
Minimal relaxation mapping, 460
Minimum:
global, 640
local, 640
Minimum cycle mean, 298
Modulus, 181, 182
Monotone convergence theorem, 676
Monotone mappings, 191, 197-98, 315
asynchronous algorithms, 445-51
Monotonicity, 271
strong, 195, 271
Monotropic programming, 332
Multicommodity flow problems. See
Network flows, multicommodity
Multigrid, 13942
Multinode accumulation, 42
linear array, 44
mesh, 48
Multinode broadcast, 41
with combined packets, 88
hypercube, 56-61, 83
linear array, 44
mesh, 48, 81-82, 85
tree, 80
Multiple node relaxation, 345-54, 389
Multipliers, method of, 244-53, 264
for transportation problems, 339
Multiprocessor, 4

N

Nash game, 266, 275, 279

Network flows, linear, 332-90
asynchronous algorithms, 451-57
dual problem, 335
optimality conditions, 337, 338, 357
See also, Primal-dual method, Epsilon

Index

relaxation method; Multiple node
relaxation
Network flows, multicommodity, 414-22,
424
optimality conditions, 417
partially asynchronous algorithms, 536-49
Network flows, strictly convex, 390414
dual problem, 391
Jacobi, 410
nonlinear Gauss-Seidel, 397410
optimality conditions, 393, 411
partially asynchronous algorithms, 501-7
totally asynchronous algorithms, 457-69
without arc flow bounds, 406
Newton’s method, 201
approximate, 201-2
for matrix inversion, 173-77
truncated, 288
Nine-point discretization, 27
Nondecreasing, sequence, 623
Nondifferentiable optimization, 232, 289
Nonexpensive mappings, 211
' partially asynchronous convergence,
490-508
Nonincreasing, sequence, 623
Nonlinear algorithms. See Nonlinear
Gauss-Seidel algorithm; Nonlinear
Jacobi algorithm
Nonlinear equations, 264, 279
Nonlinear Gauss-Seidel algorithm:
constrained optimization, 219-23
quadratic programming, 226-28
strictly convex network flows, 397
unconstrained optimization, 207-9
variational inequalities, 279-81
Nonlinear Jacobi algorithm;
constrained optimization, 219-23
unconstrained optimization, 207-9
variational inequalities, 278-81
Norm:
induced, 626, 627
matrix, 626
vector, 621

o)

odd-even reduction, 115, 121

713

ODE approach, 569
open set, 624

P

Packet, 28
Partial differential equations (PDEs), 1, 5,
25,27
See also Poisson’s equation
Path, 655
length, 9, 293
negative, 655
positive, 9, 655
simple, 655
unblocked, 379
Path decomposition theorem, 658
Perron-Frobenius theorem, 148, 157
Physical distance, 63
Pipelining:
of communication, 30
of computation and communication,
68-69, 87
Pivoting, 120-24
Poisson’s equation, 137-39, 155-57
Polar cone, 659, 660
Policy, 313
improper, 317
iteration, 322
optimal, 313
proper, 317
stationary, 313
Polynomial evaluation, 27
Positive cycle assumption, 293
Power method, 172
PRAM, 106
preconditioning, 164-66
Predecessor, 9
Prefix problem, 26
Price, 336
Primal-dual method, 354-55, 387, 390
Profit margin, 365
Projection, 210
scaled, 217
on a subspace, 223
theorem, 211
Projection algorithm, 269-73, 277
See also Gradient projection algorithm

714 ‘ Index

Prox operator, 241 Separable problems, 229-31, 249-51, 287,

Proximal minimization algorithm, 23243, 289
244, 261-64 Sequence, 622

Proximal point algorithm, 289 Set intersection problem, 247-48, 264
Pseudocontracting iteration, 182 Shared memory, 6

convergence, 184 Shortest paths, 37, 293-308, 334

Gauss-Seidel convergence, 187 asynchronous algorithms, 446-51

totally asynchronous, 434 dual relaxation method, 34345
Pseudocontraction, 182 stochastic, 317-23
Pythagorean theorem, 621 See also Bellman-Ford

SIMD, 5

Q Simple path flow, 656

Simplex method, 288

Quadratic optimization: Simulation, 592-605

constrained, 225-29, 261, 668 Single node accumulation, 41
unconstrained, 153, 210, 43740 hypercube, 41
linear array, 44
mesh, 47
R Single node broadcast, 41, 87
hypercube, 56, 83
Range, 620 linear array, 44
Recurrent state, 674 mesh, 47
Reduced set of price vectors, 458 Single node scatter/gather, 4243, 81
Reflected Gray code (RGC), 50 hypercube, 59, 81
Restricted dual optimal solution set, 463 linear array, 44
RGS method, 135 mesh, 48
Richardson’s method, 134, 199 Sink, 589, 655
convergence, 154, 206 Snapshots, 579-87, 601, 618
Right-continuous, 624 Source, 655
Ring, 45 Span, 621
imbedding in a hypercube, 50, 80 Specialized computation, 555, 567
Rollback, 89, 592-605 Spectral radius, 144, 630
Routing, 37-39, 414-22 Speedup, 15, 69

asynchronous, 53649
multiple-path, 37
randomized, 37, 548

Row storage method, 74, 135

Square root, 636

Steady-state distribution, 674
Steepest descent, 199
Stein-Rosenberg theorem, 152
Stochastic gradient methods, 556-68

S Stop-and-wait protocol, 34-36, 79
Stopping problem, 329
Saddle point: Store-and-forward, 28
problem, 26667, 272 Subgradient, 644
theorem, 665 Subgraph, 654
Scenario, 483 Subrings of level k, 63
Schedule, 10, 126, 587-92 Subspace, 621
Schwartz inequality, 621, 637 Successive overrelaxation (SOR), 133, 202

Semicontinuous, 624 convergence, 154, 206

Index

Supermartingale convergence theorem, 677
Supply, 333

" Supremum, 623

Surplus, 336
Sweep, 22
Sweep implementation, 379, 423
Switching systems, 6
Synchronization:
global, 89, 90-91
local, 89, 91-94
penalty, 97-99
rollback, 592-605
Synchronous convergence condition, 431
Synchronous iteration, 88-89
Systems of equations. See Linear systems;
Nonlinear equations;
Systolic, 5, 72

T

Taylor series, 639
Termination detection, 137, 571-79, 587
Time complexity. See Complexity
Timeout, 90
Timestamp, 594
Topology broadcast, 37, 615
Total exchange, 43
hypercube, 59, 81
linear array, 44
mesh, 48, 80
tree, 80
Trace, 632
Traffic assignment, 265-66, 275
Transient state, 674
Transitive closure, 308
Transportation problem, 335, 339, 340, 375
Transpose, 620
Tree, 4647, 654

715

binary and balanced, 47
coloring, 24
imbedding in a hypercube, 54-56
minimum weight spanning, 307-8
spanning, 654
two-rooted, 54-56

Two-point boundary value problems, 477-78

U

Undiscounted problems, 317-23
Up iteration, 358
partial, 363
Upper semicontinuous, 624
User optimization principle, 265, 417

v

Variance, 671
Variational inequalities, 264-88
existence, 268, 269
linear, 271-72
totally asynchronous algorithms, 440
uniqueness, 269
See also Projection algorithm; Nonlinear
algorithms
Vector:
orthogonal, 620
positive, 620
Vector shift, 62-65, 83

w

Walk, 654
simple, 654
Weierstrass’ theorem, 625
Weighted maximum norm, 144, 622

Corrections (1997)

p- 19 (Fig. 1.2.5) Change A3 to A3

p- 22 (Fig. 1.2.8) Change top 4,1 to 4,0

p- 42 (Fig. 1.3.4) Change top Zf=1 a; to Z?=1 a;

p- 65 (-9) Change “any single” to “an optimal single”

(
(
(
(

p- 67 (Table 3.3) The upper bound p — 1 for the total exchange has been
reduced to p/2; see the paper “Optimal Communication Algorithms for
Hypercubes,” J. of Parallel and Distributed Computation, Vol. 11, 1991,
pp. 263-275, by D. P. Bertsekas, C. Ozveren, G. Stamoulis, P. Tseng, and
J. N. Tsitsiklis.

p. 80 (+15) Change “at every time ...” to “at the first time unit, each node
sends its packet to all its neighbors. Afterwards, at every time ...”

p. 86 (+7) Change “bo” to “be”
p- 86 (+9) Change 2logn to 4logn

p. 86 (-1) Change “2 time units using the links illustrated” to “4 time units
using the transfers illustrated”

. 88 (+5) Change “processors.” to “processors arranged in a square array.”
. 103 (-9) Change “that” to “than”

. 106 (+13) Change p5? to pb

. 130 (+17) Change L'DL to LDL’

. 130 (+19) Delete “square”

. 179 (+5) Change “[Ash]” to “[Ash70]”

. 240 (Proof of part (c)) This proof works for the case where the penalty
parameter sequence c(t) is bounded above. If ¢(t) — oo a slightly different
argument is needed.

. 264 (+16) Change A; to \;
. 271 (+5) Change 3.13 to 3.1.3

koo B B o L o B]

(
307 (-2) Change min{zf, ,), T(,), } to max{zf, ;) 2f ;)
327 (+13) Change [z | z > 0,21 =0] to {z | z > 0,21 =0}
335 (+17) Change “capacity” to “demand”

339 (-3) Change p; to p;

340 (+10) Change “=" to “="; change p; to p;
. 363 (+2) Change b;; to bj;

TP T PP O OR T

p. 368 (-3) Change “assigment” to “assignment”

p. 375 (+6) Change “e < 1/n” to “e < 1/m, where m is the number of
similarity classes”

p. 375 (-9) Change “Exercise 3.7” to “Exercise 3.6”
p. 386 (+16) Change O(|N|3+ to O(M|N|3+
p- 390 (Exercise 4.5) Change all occurances of “8” to “6”

p. 392 (Figure 5.5.1) Change “Slope = b;;” to “Slope = —b;;”; change
“Slope = ¢;;” to “Slope = —¢;;”

. 396 (-3) In the middle figure change q(ts;) to g:;(¢i;)

. 386 (+16) Change O(JN|]3+ to O(M|N|3+

. 408 (-9) Change fi; <0to fi; <0

. 423 (-7) Change “result” to “results”

429 (-7,-8,-12,-13) Change all X to x

. 430 (-10) Change 72(9) to 72(9)

459 (+3) Change R;(p) to R;

(
(

548 (4+12) Change “rerouting” to “routing”

S v T T T T T T T

. 569 (+6) Change “of a large” to “for a large”

p. 571 For a recent treatment of the problem of termination detection,
including additional methods and references, see the paper “Finite Termi-
nation of Asynchronous Iterative Algorithms,” Parallel Computing, Vol.
22, 1996, pp. 39-56, by S. A. Savari and D. P. Bertsekas.

p. 618 (+3) Change [GaB87] to [GaBg6|
. 620 (+8) Change Inn to Inz
. 620 (+17) Delete “< z,y >”
. 649 (
(

-4) Include as an additional assumption that Z is closed
. 659 (-

8) Change “A set C” to “A nonempty set C”

T T T T T

. 659 (-1) A proof of the closure of the cone C appears in many sources,
including “Nonlinear Programming,” by D. P. Bertsekas, Athena Scientific,
1995, p. 580.

