S

Network Flow Problems

Network flow problems are the most frequently solved class of optimization problems.
They include as special cases combinatorial problems such as the assignment, trans-
portation, max—flow, and shortest path problems, and they arise naturally in the analysis
of large systems such as manufacturing, communication, and transportation networks.
Among network problems, those involving linear cost are by far the most common. Tra-
ditionally, these problems are solved using primal-simplex (see [Dan63]), primal-dual
(see [FoF62]), or relaxation methods (see [Ber82c], [BeT85], and Section 5.2). Highly
sophisticated codes based on these methods are presently available [AaM76], [BBG77],
[BeT85], [GKK74], [GrH80], [KeH80], and [Mul78]. Unfortunately, none of these meth-
ods seems inherently well-suited for parallel computation. In this chapter, we consider
several methods that are similar in spirit to the Gauss—Seidel and Jacobi methods exam-
ined in Chapters 2 and 3. They are based on a dual network flow optimization problem
involving a single dual variable per network node. At each iteration, a single node is
chosen, and its dual variable or its incident arc flows are changed in an attempt to im-
prove the dual cost. This approach is well suited for massive parallelization, whereby
each node is a processor adjusting its own dual variable on the basis of local information
communicated by adjacent processors/nodes.

In Section 5.1, we introduce the linear network flow problem (otherwise known as
the transshipment or minimum cost flow problem), along with several important special
cases. We formulate a dual problem based on linear programming duality theory. This is

331

332 Network Flow Problems Chap. 5

an unconstrained optimization problem with a structure that is suitable for application of
the Gauss—Seidel relaxation method discussed in Section 3.2, but with a cost function that
violates the differentiability requirement of the analysis of that section. We explain the
associated difficulties in Section 5.2, and we discuss potential approaches for overcoming
these difficulties. A highly parallelizable method, called e—relaxation, is introduced in
Section 5.3. A closely related method for the assignment problem, called the auction
algorithm, is also discussed. The complexity analysis of these methods is given in Section
5.4.

The last two sections of the chapter deal with nonlinear problems. In Section 5.5,
we consider nonlinear network flow problems with strictly convex arc costs, and the
associated duality theory. Here the dual cost is differentiable, so the application of the
Gauss—Seidel relaxation method is much easier than for the linear cost case. Nonetheless,
the analysis is nontrivial because the dual cost is not strictly convex, and the results of
Section 3.2 for the nonlinear Gauss—Seidel method do not apply. The algorithm can
be extended to the class of convex problems with separable cost and linear constraints,
also known as monotropic programming problems [Roc84], but we will not go into this
here; see [TsB87a]. It turns out that the Jacobi version of the relaxation algorithm is
not guaranteed to converge to an optimal solution. We will show in Sections 6.6 and
7.2 that modified relaxation algorithms are convergent when either a Jacobi—like or an
asynchronous implementation is used. Finally, in Section 5.6, we consider nonlinear
multicommodity network flow problems of the type often arising in communication and
transportation networks. The method considered here is based on the gradient projection
method discussed in Section 3.3.

Throughout this chapter, we consider synchronous algorithms. Totally and partially
asynchronous versions are discussed in the next two chapters.

5.1 THE LINEAR NETWORK FLOW PROBLEM AND ITS DUAL

The optimal network flow problem with linear arc costs of this section is a special case
of a linear programming problem, and the duality formulation to be given is a special
case of linear programming duality (see Appendix C).

Consider a directed graph with a set of nodes N and a set of arcs A. Each arc
(2, 7) has associated with it an integer a;; referred to as the cost coefficient of (¢, 7). Let
fi; be the flow of the arc (¢, 7), and consider the problem

minimize Z aijf,-j (LNF)
(,5)eA

subject to Z fij — Z fii = s4, VieN, a.n
{ilG@.HeA} {ilG.DeA}

bi; < fi; < ci, vV (3, € A, (1.2)

Sec. 5.1 The Linear Network Flow Problem and its Dual 333

where a;j, b;j, ¢;;, and s; are given integers. We refer to b;; and c;;, and the interval
[bij,ci;] as the flow bounds and the feasible flow range of arc (i, j), respectively. We
refer to s; as the supply of node i and to —s; as the demand of node i. We refer to
the constraints (1.1) and (1.2) as the conservation of flow constraints and the capacity
constraints respectively. We assume that Zie ~ 8 = 0; by adding the constraints (1.1),
we see that this condition is necessary for problem feasibility. As discussed in Appendix
B, we also assume that there is at most one arc in each direction between any pair of
nodes; this assumption is made in order to simplify notation and can be easily dispensed
with (Exercise 1.5). The numbers of nodes and arcs are denoted | V| and |A|, respectively.

The linear network flow problem (LNF) is a classical problem that has been studied
extensively. The assignment, max—flow, and shortest path problems are special cases, as
shown in Figs. 5.1.1 through 5.1.3. These problems are particularly interesting within
our context, each for different reasons.

Figure 5.1.1 In the assignment problem,
there are 2n nodes, n of which (the
sources) have supply of 1 unit of flow, and
. 1 the other n (the sinks) have a demand of 1
i / unit. Each arc (z, 7) connects a source i to
\/\A)\J a sink j and has an arc cost coefficient a;;.
All arcs flows must satisfy 0 < fi; £ B,
where B is a given positive integer. [An
alternative and equivalent formulation uses

only the constraint 0 < fij; the resulting
1 /;\d \//—7\— 1 problem, however, is not a special case
\/ " _/ of the linear network flow problem (LNF).]
Sources Sinks The problem is
minimize Z aij fij
G,)EA
subject to Yo fi=1 Vi=1,..,n,
{ilG,5eA}
Z fi; =1, Vi=1,...,n,
{ilGi,5)€ A}

0<fi; <B, VY(GjeA

It will be shown as a by—product of our analysis in the next section that if there exists a feasible solution for
problem (LNF), there exists an integer optimal solution for both (LNF) and its dual. For the assignment
problem, such an optimal solution consists of arc flows that are zero or one, and assigns exactly one source
to each sink.

The assignment problem can be viewed as the canonical special case because it
can be shown that problem (LNF) can be transformed into an assignment problem (see
Fig. 5.1.4). This means that algorithms that can be developed or understood using the
rich intuition afforded by the assignment problem can be made to work for the general
problem (LNF).

334 Network Flow Problems Chap. 5

Al cost coefficients
are zero except for a,,

Cost coefficient = —1

Figure 5.1.2 In the max—flow problem, there are two special nodes, the source (s) and
the sink (t), which are connected by an arc (¢, s). All arcs have zero cost coefficient
except for (¢, s) which has a cost coefficient of —1. The lower bound for all arc flows
is zero, and the upper bound c;s is greater than or equal to ZZ cit- We have s; =0
for all nodes z. At the optimum, the flow f;s equals the maximum flow that can be sent
from s to ¢ through the subgraph obtained by deleting arc (¢, s).

Figure 5.1.3 In the shortest path problem,
each arc (2, 7) has a length a;;, and the
objective is to find a minimum length
simple path from every node to node 1. We
can write the problem into the form of the
linear network flow problem (LNF) as
follows

minimize E ai; fij

i,j)€EA

{7 lG.HeA} {7 lG,neA}

Yi=2,...,|N|,
Z fin =IN| -1,
{jlG,DeA}
1 1 0< fi; SIN|, V(G5 €A
Each arc (/, /) has a cost
coefficient equal to its length This equivalence holds provided every
and flow range [0, IN1] cycle has a positive length.

The max—flow problem is characterized by the fact that the range of values of arc
cost coefficients is small ([—1,0]; see Fig. 5.1.2), and this will turn out to be significant
within the context of the e-relaxation algorithm of Secion 5.3.

Finally, the shortest path problem is fundamental in the analysis of the linear
network flow problem (LNF) and often appears as a subroutine in various algorithms for
solving (LNF). We will see in the next section that the relaxation method for solving
the shortest path problem is closely related to the Bellman—Ford algorithm discussed in
Section 4.3.

Sec. 5.1 The Linear Network Flow Problem and its Dual 335

Figure 5.1.4 Transformation of the
general problem (LNF) into a transportation
problem, that is, a problem of the form

O~ O
minimize Z aijfij
(@ == (i,J)EA
O .
. subject to
c. Cost coeff. = 0 d S (Cim —bim) = S; z fij=ai,V‘i=1,,,,,m’
(i.f) {m 1, mlea } GlGNEA}
Cll_br'i IB " 1
i = P, vy =1,...,n
Cost coeff. = a; i L (Cim —bim) =5, A ZA fij 5 ,
! / {mw;m)eq} {ilG, e A}
© 0< fij, V(G4 € A4,

where o, and 3; are positive integers. In the transportation problem we take as sources the arcs of the
original network, and as sinks the nodes of the original network. Each transportation problem source has two
outgoing arcs with cost coefficients as shown. The supply of each transportation problem source is the
feasible flow range length of the corresponding original network arc. The demand of each transportation
problem sink is the sum of the feasible flow range lengths of the outgoing arcs from the corresponding
original network node minus the supply of that node as shown. An arc flow fiz in (LNF) corresponds

to flows equal to f;; and c;; — b;; — f;; on the transportation problem arcs ((z', D, j) and ((i, j),i)
respectively. The transportation problem can be converted to an assignment problem by creating o; unit
supply sources (3; unit capacity sinks) for each transportation problem source i (sink j respectively).

The Dual Problem

We formulate a dual problem associated with (LNF) by associating a Lagrange multiplier
p; with the ith conservation of flow constraint (1.1) as discussed in Appendix C. By
denoting by f and p the vectors with elements f;;, (¢,) € A, and p;, i € N, respectively,
we can write the corresponding Lagrangian function as

Lp= Y aifi+Y.p| D fii- Do fiits:

(.)eA €N {ilG.neA} {ilG.5eA} (1.3)
= Z (aij +pj — P fij + Z 8;p;.
(i,J)EA 1IEN

The dual function value g(p) at a vector p is obtained by minimizing L(f,p) over
all f satisfying the capacity constraints (1.2). This leads to the dual problem

maximize q(p) 1.4)

subject to no constraint on p,

with the dual functional ¢ given by

336 Network Flow Problems Chap. 5

q(p) = bijsn}iijpsc“ L(f,p) = Z 3;(Pi — p;) + Z SiDi, (1.5)
(i,j)EA (1,J)€EA iEN

where each g;; is the scalar function defined by

gij(pi — pj) = bijslrflj,nscij(aij +pj — P fij- (1.6

The function g;; is shown in Fig. 5.1.5. We henceforth refer to (LNF) as the primal

problem, and note that based on the duality results of Appendix C, the optimal primal

cost equals the optimal dual cost. The dual variable p; will be referred to as the price
of node 1.

Primal q;\p; —p;) Du:l
cost cos
for arc for arc
(i.j) (i)
Slope = —b;;
!
| ~Slope = a;
I I
I "
l Py Zii
by; Cij fi P; —Pj
Slope = —¢;;

Figure 5.1.5 Primal and dual costs for arc (¢, j). Note that the break points for each
function correspond to slopes of linear segments in the other function.

For any flow vector f and node ¢, the scalar

gi= >, fi— Y, fitsi (1.7)

{5lG,HeA} {5lG.eA}

is called the surplus of node :. It represents the difference of total flow imported and
total flow exported by the node. The conservation of flow constraint (1.1) is also written
as

¢:=0, VY ieN. (1.8)

The necessary and sufficient conditions for a pair (f,p) to be an optimal primal
and dual solution pair are primal feasibility and complementary slackness [relations
(C.16) and (C.17) in Appendix C]. To state these conditions, we first introduce some
terminology. For any price vector p, we say that an arc (i, j) is

Sec. 5.1 The Linear Network Flow Problem and its Dual 337

Inactive if pi < ag; + pj,
Balanced if pi = a;j + pj,
Active if pi > ai; + pj.

We say that a pair (f, p) satisfies complementary slackness (abbreviated CS) if

fij = bij, for all inactive arcs (%, j), (1.9)
bi; < fi; < e, for all balanced arcs (3, j), (1.10)
fij = cij, for all active arcs (3, j), (1.11)

(see Fig. 5.1.6). Notice that a pair (f,p) satisfies CS if and only if each f;; attains the
minimum in the definition of the dual arc cost of Eq. (1.6). The optimality conditions
of Appendix C translated to our problem yield the following result:

P;— P

/ Active arc

Balanced arc

™~

Inactive arc

Figure 5.1.6 Illustration of the complementary slackness conditions (1.9)—(1.11). For
each arc (3, j), the pair of flow f;; and price differential p; — p; should lie on the
diagram shown.

Proposition 1.1. (Optimality Conditions)

(a) A flow vector f is primal optimal if and only if it is primal feasible, and there
exists a price vector p that together with f satisfies the CS conditions (1.9)—(1.11).

(b) A flow vector f and a price vector p are primal and dual optimal, respectively,
if and only if they satisfy the conservation of flow constraint (1.8) and the CS
conditions (1.9)—(1.11).

An alternative optimality condition is given in Exercise 1.2. Another important
property is that if there exists a feasible solution for problem (LNF), then there exist

338

Network Flow Problems Chap. 5

integer optimal solutions to both (LNF) and its dual. We will show this constructively
in the next section by means of a method that computes such solutions.

1.1

1.2.

1.3.

EXERCISES

Let p be any price vector, and consider a problem that is the same as the linear network flow
problem (LNF) except that the cost coefficient of each arc (¢, j) is a;; + p; — p; instead of
aij. Show that this problem has the same optimal solutions as (LNF), and that its optimal
cost is less than the optimal cost of (LNF) by zz en Pisi

Show that a flow vector f is optimal for (LNF) if and only if f is feasible, and for every
directed cycle Y for which

fij < cij, V@G,)eYT,
bij<fij7 V(Z,])GY_,

we have

Z aij — Z a;; >0,

G,HEY+ @,)EY

where Y* and Y ™ are the sets of forward and backward arcs of Y, respectively. Hint: Use
the optimality condition of Prop. 3.1 in Section 3.3, and the Conformal Realization Theorem
of Appendix B; see also the proof of Prop. 3.1 in Section 5.3.

In some situations, it is useful to have a price vector for which all arcs are inactive or
balanced; for example, to convert the problem to one where all the arc cost coefficients are
nonnegative (see Exercise 1.1). This exercise characterizes situations where this is possible,
and shows that a corresponding price vector can be obtained by solving an assignment
problem.
(a) Consider the assignment problem of Fig. 5.1.1 for the case where B > 1. Show that
the dual problem can be written as

n n
maximize E Ty — E Dj
j=1

i=1

subject to ai; +p; > 7, v (4,5) € A.

(b) Consider the linear network problem (LNF). Assume that each cycle that consists of
forward arcs (a positive cycle) has a nonnegative arc cost sum. Show that a price
vector such that all arcs are inactive or balanced [a;; + p; > ps, for all (¢,5) € A]
can be found by solving the dual of an assignment problem. Conversely, show that if
one can find a price vector such that all arcs are inactive or balanced, then each cycle
consisting of forward arcs has a nonnegative arc cost sum. Hint: For each node i,
create a source i and a sink ¢'. For each arc (4,) with cost a;;, create an arc from

Sec. 5.1 The Linear Network Flow Problem and its Dual 339

14.

1.5,

L.6.

1.7.

source 7 to sink ;' with cost a;;. Create also an arc (,:') with zero cost for each s.
Use the result of Exercise 1.2 to show that assigning i to i’ for each 4 is an optimal
solution if and only if each positive cycle has a nonnegative arc cost sum.

There are several ways to convert problem (LNF) to a problem where the flow is constrained
to be a circulation. One way is to introduce a new node v and for every node ¢ with s; # 0,
introduce an arc (v,) with zero arc cost coefficient and a feasible arc flow range [s;, s;].
This exercise provides a different conversion, which has the property that if the zero flow
vector satisfies the arc capacity constraints of (LNF), then the zero flow vector is a feasible
circulation after the conversion; this is sometimes useful in algorithms and theoretical studies.
Introduce two new nodes v and w. For each node ¢ with s; > 0, introduce an arc (v, i) with
zero arc cost coefficient and feasible arc flow range [0, s;]. For each node ¢ with s; < 0
introduce an arc (¢, w) with zero arc cost coefficient and feasible arc flow range [0, —s;].
Introduce an arc (w, v) with feasible arc flow range [0, ¢y], Where cuy > % Zz eN |ss].
Show that an optimal flow vector of the problem involving the enlarged network yields an
optimal flow vector of (LNF) if the arc cost coefficient @, is less than —L, where L is
defined as follows: for every simple path p from v to w, let L, be the sum of the forward
arc costs of the path minus the backward arc costs of the path, and let L = max, L,.
Hint: Consider an optimal flow vector f of the enlarged network problem, and assume that
fuo <3, e |8i]- Use the result of Exercise 1.2 and the Conformal Realization Theorem
to arrive at a contradiction.

Show that the version of problem (LNF) where multiple arcs are allowed between a pair
of nodes can be converted to the single arc version by introducing an extra node for each
multiple arc. ’

Show how to convert a network problem with convex piecewise linear arc costs to one with
linear arc costs. Hint: Convert each arc with a piecewise linear cost into several arcs with
linear costs. Use also Exercise 1.5.

(A Method of Multipliers for Transportation Problems.) Consider the (capacitated) trans-
portation problem

minimize Z aj fij
i1,/))EA
subject to Z fij = a4, Vi=1,...,m,
{7lG.eA}
Z fii = Bj, Yji=1,...,n,
{il¢.NeA}
0< fij <y, V(@G5 EA,

and the first of the two methods of multipliers introduced in Example 4.5 of Subsection
3.4.4. Show that the iteration that minimizes the Augmented Lagrangian has the form

1 + .
fij = [fij + %0 (ri®) + pi®) — aij + ()i + wj))] » o V@I EA

where [-]* denotes projection on the interval [0, c;;], and y; and w; are given in terms of
f oy

340

1.8.

Network Flow Problems Chap. 5

Yi = 05 — Z fiz, Vi=1,...,m,

{716, eA}

wj = B — Z fizs Vi=1,...,n.

{il,))eA}

At the end of the minimization yielding f;;(t + 1), y:(¢ + 1), and w;(t + 1), the prices r;
and p; are updated according to

ri(t + 1) = ri(t) + c@)yit + 1), Vi=1,...,m,
pit+ D) =pi®) + chw;t +1), Vji=1,...,n
(An Alternating Direction Method for Transportation Problems.) Consider the trans-

portation problem of Exercise 1.7. Show that the following iteration is a special case of the
alternating direction method of multipliers given in Subsection 3.4.4:

+
Fistt+ 1= [+ 50 [nO + 0 - a5 + O +ws@)]] VG EA
rit + 1) = ri(®) + cyi(t + 1), Vi=1,...,m,
pit+ 1) =p;t) + cw;(t + 1), Vi=1,...,n,

where y;(t) and w;(t) are given in terms of f(t) by

yi(t)=$(ai- Z fij(t)), Vi=1,...,m,

{il@.eA}

wi=T(B- 3 fu®), Vi=l...n,

7 (ilG,HeA}

and d; (or d;) is the number of incident arcs to 3 (or j, respectively).

5.2 THE RELAXATION METHOD

Consider the dual cost functional given by

(@ = > a@i—pD+ Y sipi, (2.1a)

(4,j)€EA iEN

where

(as; +pj — p)bij, ifayj+p; —p;i >0,

. 2.1
(ai; + pj — pidcij, ifa;; +pj —pi <O, (2.1b)

%;(@i —pj) = {

Sec. 5.2 The Relaxation Method 341

[cf. Egs. (1.5), (1.6) and Fig. 5.1.5]. An important characteristic of this function is that it
has a separable form that motivates solution by a Gauss—Seidel relaxation (or coordinate
ascent) method. In this section, we explore various possibilities in this direction. The
idea is to choose a single node ¢, and to change its price p; in a direction of improvement
of the dual cost while keeping the other prices unchanged. Since p; appears only in the
terms g¢;5, (¢, j) € A, and gj;,(5,%) € A, in the dual cost expression (2.1), the change in
p; requires a relatively small amount of computation.

To understand how to implement this type of iteration, we first focus on the dual
cost g(p) along a single price coordinate p;, that is, for a given price vector p, we consider
the function of the scalar &

Q;)(g) = Q(pla'"7pi—11§7pi+17"'>p|N|)'

This function is the sum of linear and piecewise linear functions [cf. Eq. (2.1)], and is,
therefore, piecewise linear as shown in Fig. 5.2.1. It is seen that the break points of the
function correspond to the values of £ at which one or more arcs incident to node i are
balanced, that is, the values

p; + aij for outgoing arcs (z, j) € A,

DPj — Qj; for incoming arcs (j,) € A.

At a break point of Qf,(ﬁ), we must distinguish between the left derivative g;” and the
right derivative g;" of Q;({). In view of the dual cost equations (2.1) and Fig. 5.1.5, for
given values of p and £, we have

g;' = Z cj; + Z bji

(j,i): active (j,i): inactive or balanced

Cij — Z bij + 85, (2.2a)
(4,5): active or balanced (i,5): inactive

g; = Z Cj; + Z bj'

(j,5): active or balanced (j,5): inactive

— Z Cij — Z bij + ;. (2.2b)

(i,): active (,5): inactive or balanced

Note that within an open interval where Q;(ﬁ) is linear, the right and left derivatives
are equal (¢;” = g;7), and there are no balanced arcs. Note also that gj* (g;") are the
minimum (maximum, respectively) surplus of node ¢ over all flow vectors that satisfy
complementary slackness (CS) together with p [cf. conditions (1.9)—(1.11) in the preced-
ing section].

342 Network Flow Problems Chap. 5

Dual functional

Slope = 10 Slope = —10

Slope = 20

Maximizing point,
where gf <0< g;

Slope = —40

Values of p; for which the corresponding
incident arcs become balanced.

/\

Py —ay; Py t+ay; Py —33; Pa + 8y Price of node /

Slope = 40

[020] [0,10] o

[0,20]

[0,30]

Figure 5.2.1 Illustration of Q;', (), the dual cost along price p;, together with the left

and right derivatives g;” and g;", respectively (all other prices are kept fixed). Here node
1 has four incident arcs (1,32), (3,1), (¢,2), (¢,4) with flow ranges [0,20], [0,20], [0,10],
and [0,30], respectively, and s; = 0. The break points of the dual cost correspond to
the values of p; at which one or more incident arcs to node i become balanced. For
values of p; strictly between two successive break points, there are no balanced arcs.

A direct analog of the Gauss—Seidel relaxation method of Chapters 2 and 3 is
obtained by choosing at each iteration a node ¢ and by changing the price p; so as to
optimize the dual cost, that is,

pi == arg mEaXQf,(é) = arg mqu(pl,-.~,pi_l,ﬁ,pi+1,---,p|zv|)-

In particular, p; is changed to a break point for which
g <0<g; 2.3)

(see Fig. 5.2.1).

The algorithm terminates when the condition g;” < 0 < g;” holds for all s € N. If
the starting prices are integer and the optimal dual value is finite (as it will be when the
primal problem is feasible; see Appendix C), the algorithm will terminate after a finite
number of iterations. To see this, first note that throughout the algorithm the node prices

Sec. 5.2 The Relaxation Method 343

and the break points of all functions Q;(g) are integer. Next observe that each time a
node price changes, there will be an improvement of the dual cost by an integer amount,
since both the price increment and the corresponding rate of improvement of the dual
cost are integer. Therefore, there can only be a finite number of dual cost improvements
and the algorithm must terminate finitely.

The difficulty with this algorithm is that it can terminate at a nonoptimal price
vector, depending on the starting price vector and the problem data. This is illustrated
graphically in Fig. 5.2.2 and analytically in the context of the shortest path problem in
the following subsection.

]

AN

Surfaces
of equal
dual cost
Figure 5.2.2 The difficulty with the
relaxation method. At the indicated corner
point, it is impossible to improve the
P, dual cost by changing any single price

coordinate.

5.2.1 Application to the Shortest Path Problem

Consider the shortest path problem formulation shown in Fig. 5.1.3, where node 1 is the
destination. It can be shown that if p* is a dual optimal price vector, then p} — p} is
the shortest distance from ¢ to 1. Indeed, by the optimality conditions of Prop. 1.1(b),
p* satisfies CS together with every primal optimal flow vector. We can construct such
a flow vector by sending the supply of each node ¢ to the destination node 1 along a
shortest path from ¢ to 1, and by accumulating the total flow on each arc. Each arc of
this shortest path must be balanced [it cannot be inactive because its flow is positive and
it cannot be active because no optimal arc flow can exceed |N| — 1 (the sum of all node
supplies) while the arc flow upper bound is | N|]. By adding the condition p} — p; = aij
for a balanced arc (4, j) along a shortest path, we obtain that p; — p} equals the length
of the shortest path.

The left and right derivatives of the dual cost Qj,(g) along the ith price coordinate
are given by [cf. Eq. (2.2)]

g; =14 |N| - [number of active or balanced arcs (j,i) — number of active arcs a1,
ifi1#1,
g7 =1—|N|+|N|- [number of active or balanced arcs (j,1)],

344 Network Flow Problems Chap. 5

gi+ =1+ |N| - [number of active arcs (j,i) — number of active or balanced arcs (i,j)],
if i #1,

g =1—|N|+ |N| - [number of active arcs (j,1)].

Consider the relaxation algorithm whereby at each iteration, a single node price p; is
changed so as to maximize the dual cost along p;, that is, p; is set to a point where the
condition gg" <0 < g; is satisfied [cf. Eq. (2.3)]. It is seen from the above equations
that this can be accomplished by setting the price p; of a node ¢ # 1 to the smallest
breakpoint at which there are fewer active incoming arcs (7, ¢) than active and balanced
outgoing arcs (i, j); the price p; should be set to the value at which there is no active
arc (7, 1), and there are one or more than one balanced arc (g, 1).

Suppose now that a price vector p is such that all arcs are inactive or balanced,
that is,

max (e spis min (ptay), VieN 2.4
{J'I(J'»i)GA}(p] i) S < {j|(z'.j>eA}(p’ is) 2.4)

[Such a price vector exists assuming that all cycles have positive length; see Exercise
1.3 in the previous section. In particular, if a;; > 0 for all arcs (¢, j), it is seen that for
the zero price vector, all arcs are inactive or balanced.] It can be seen then (Fig. 5.2.3)
that, for 7 # 1, the relaxation iteration sets p; to the smallest value such that at least one
outgoing arc becomes balanced, and takes the form

= i 4 ag), Vi1, 2.5
Di {jl(riljjl)réA}(pJ+ag) i # (2.5)

and that, for ¢ = 1, the iteration takes the form

Dual cost

Slope = 1

Slope = 1 — [N

Region where
all incident arcs

to node /
are inactive Lo .
oo Maximizing point
| _—"of the dual cost
. e
max (p; — ;) ~ min (p; +4a;) Price p;
{iliiea} {il.pea}

Figure 5.2.3 Illustration of the relaxation iteration at a node ¢ # 0 when the condition

max (pj —aj) <p; < min (p; + aij), Vi€ N,
Glgaeay 7T T Glagpeay T Y

[cf. Eq. (2.4)] holds in the shortest path problem.

Sec. 5.2 The Relaxation Method 345

p1 = max;i,neay(®; — aj1)- (2.6)

It can be seen also that this iteration creates no active arcs. Thus, if initially there are
no active arcs, then the same will be true for all iterations, and the relaxation algorithm
will be given by the preceding Eqs. (2.5) and (2.6). Under these circumstances, it is
seen that the prices p;, ¢ # 1, cannot decrease as a result of iteration (2.5) since for this
to happen, it is necessary that some arc (z,7) is active. Similarly, the price p; cannot
increase as a result of iteration (2.6) since for this to happen, it is necessary that some arc
(J, 1) is active. Furthermore, since the prices p;, j # 1, cannot decrease, it follows that
the price p; can decrease at most once as a result of iteration (2.6). Therefore, following
the first execution of iteration (2.6), the price p; will be constant and the algorithm will
become essentially equivalent to the Bellman—-Ford algorithm discussed in Section 4.1.
Upon termination (which, as discussed earlier, will occur if the shortest path problem
has at least one feasible solution), it will yield a vector p* satisfying

*= min 5+ ai;), Vi#l
bi {J‘I(i,j)GA}(p] i) #

By subtracting p} from both sides of this equation, we see that the scalars
T =p; —pi, 1EN
satisfy Bellman’s equation

i = min (a;; +z3), Vi#l,
YT Glageay T #

z} =0.
This guarantees that for all nodes ¢, x} is the shortest distance from ¢ to 1 under the
condition that all cycles have a positive length (Section 4.1).

In conclusion, the relaxation algorithm of this section, when applied to the shortest
path problem, is essentially equivalent to the Bellman—Ford method provided that there
are no active arcs for the initial price vector [cf. Eq. (2.4)].

Unfortunately, the relaxation method may not work well for other initial price
vectors. Figure 5.2.4 gives an example where it terminates with the wrong answer.
It is thus necessary to modify the basic relaxation algorithm in order to improve its
convergence properties. Two ways for doing so will be given. The first method, presented
in the next subsection, leads to good practical sequential algorithms but does not naturally
lend itself to parallelization. The second method is the subject of the next two sections,
and is highly parallelizable.

5.2.2 Multiple Node Relaxation Method

The idea here is to change the prices of several nodes simultaneously when a search
along a single price coordinate does not produce a dual cost improvement (see Fig.

346 Network Flow Problems Chap. 5

Starting price, Starting price,
Pg = 5 py=1

Starting price, Starting price,
ps=4 Ps=2

a Starting price,
P =0

Starting price, Starting price,
p; =5 Py =1

Figure 5.2.4 Example of a shortest path problem where the relaxation iteration termi-
nates with the wrong answer when the initial price vector violates condition (2.4), that
is, there is at least one active arc. The starting prices are as shown. All arcs have unity
length, and they are all balanced except for arc (5,4), which is active. It can be verified
that for each node 7, we have g;" <0< g;, so the relaxation method terminates without
obtaining an optimal price vector.

Direction of dual cost
improvement involving both
price coordinates p, and p,

Figure 5.2.5 Illustration of the idea of the
Surfaces of multiple node relaxation method. At the
equal dual cost indicated corner point, it is impossible to
improve the dual cost by changing a single
price coordinate. A dual cost improvement
is effected by changing simultaneously
both price coordinates by equal amounts;

this corresponds to dual ascent along the
direction of the form (2.7) involving nodes
1 and 2.

5.2.5). Equivalently, at a nonoptimal price vector p, we would like to use some direction
of dual cost improvement, similarly as we did in gradient methods for optimization in
Chapter 3. A remarkable fact about our problem, which will be shown shortly, is that

such a direction of improvement can be found within the finite set of directions having
the form

dL = (dl,dz,...,d|N|) 5 (2.73)

where

Sec. 5.2 The Relaxation Method 347

_[1 ifiel,
d“{o ifi¢L, (2.70)

and L C N is the node set of a connected subgraph of the graph (IV, A) with L # N.
From the dual cost expression (2.1) and Fig. 5.1.5, it is seen that the directional
derivative of the dual cost along a vector dj, of the form (2.7) is given by

q(p + adp) — q(p)

[¢]

= E Cji

(,i): active, j¢L,ieL

+ > bs

(j,3). inactive or balanced, j¢L,icL

- >

(,4): active or balanced, ieL,j¢L

- Z bi;

,j): inactive, ieL,j¢L

+Z$i.

i€l

Q'(P; dp) = B{%

(2.8)

Thus, the directional derivative ¢’(p;dy) is the difference between inflow and outflow
across the node set L when the flows of the inactive and active arcs are set at their lower
and upper bounds, respectively, and the flow of each balanced arc incident to L is set to
its lower or upper bound depending on whether the arc is coming into L or coming out
of L. Equivalently, ¢/(p; d) is the minimum of the total surplus of the nodes in L over
all flow vectors that satisfy CS together with p.

In principle, we could search over the set of vectors d; of the form (2.7) and
find a direction of improvement, that is, one for which the directional derivative (2.8)
is positive, but this brute force approach requires computation that is exponential in
|N| because there are exponentially many vectors of the form (2.7). A more effective
alternative, which we now describe, is based on maintaining a flow vector f satisfying
CS together with p. This helps to organize the search for a direction of improvement.
From the definition of the surplus, Eq. (1.7), we obtain

Sa= > fu— Y, fa+y_se 2.9)

ieL {G.)eAlj¢L ieL} {G.)eAlieL,j¢L} i€l

Therefore, if f satisfies CS together with p, we have using Egs. (2.8) and (2.9)

348 Network Flow Problems Chap. 5

Zgi =¢'(p;dr) + Z (fi — bj3)
i€l (,9: balanced, j¢rL,icL
+ Z (cij — fif) 2.10)
(,5): balanced, ierL,j¢L
>¢'(p;dp).

We see, fherefore, that only a node set L that has positive total surplus is a candidate for
generating a direction dz of dual cost improvement. The next lemma makes this idea
precise and provides the basis for the subsequent algorithm.

Lemma 2.1. Suppose that f and p satisfy the CS conditions. Let dy be a
direction vector of the form (2.7), and assume that

Z g; > 0.
i€l
Then either dy, is a dual ascent direction, that is,

q'(p;dr) >0,

or else there exist nodes ¢ € L and j ¢ L such that either (i, 7) is a balanced arc and
fij < cij, or (§,) is a balanced arc and bjs < fis-

Proof. Follows from Eq. (2.10). Q.E.D.
The typical iteration of the following algorithm starts with an integer price—flow

vector pair satisfying the CS conditions, and operates in steps. At the beginning of each
step, we have a connected subset of nodes L such that

Zgi > 0;
i€l

initially L consists of an arbitrary node i; with positive surplus. According to the
preceding lemma, there are two possibilities: Either (a) d given by Eq. 2.7) is a
direction of dual cost improvement, or (b) L can be enlarged by adding a node j ¢ L
with the property described in the lemma. In case (b), there are two possibilities: either
(bl) g; > 0, in which case,

Z gi>07

i€Lu{j}
and the process can be continued with

Lu{j}

Sec. 5.2 The Relaxation Method 349

replacing L, or (b2) g; < 0, in which case, it can be seen that there is a path originating
at the starting node ¢; and ending at node j with the property that all arcs on the path
have room for a flow increase in the direction from i; to j. Such a path is called an
augmenting path (see Fig. 5.2.6). By increasing the flow of the forward arcs (direction
from #; to j) of the path and by decreasing the flow of the backward arcs (direction
from j to ¢;) of the path, we can bring both surpluses g;, and g; closer to zero by an
integer amount while leaving the surplus of all other nodes unaffected and maintaining
CS. Once Zie ~ 19:] is reduced to zero, the corresponding flow and price vectors are
optimal by Prop. 5.1, so it follows that in a finite number of iterations, a direction of
dual cost improvement will be found at any nonoptimal price vector.

Forward arc Backward arc Forward arc
9,>0 / g <0
DD~ -~ —O
Tiviy <Ciri, Train = iniy fei < G

—_—

Direction of flow change

Figure 5.2.6 Illustration of an augmenting path. The initial node 4, and the final node j
have positive and negative surplus, respectively. Each arc on the path has room for flow

change in the direction from 7, to j. A flow change of magnitude & > O in this direction
reduces the total absolute surplus tz eN |g:| by 26 provided 8§ < min{g; ,—g;}.

We now formalize the preceding procedure. The algorithm starts with any integer
pair (f, p) satisfying CS. One possibility is to choose arbitrarily the integer vector p and
to set f;; = b;; if (4, §) is inactive or balanced, and fij = c;; otherwise. (Prior knowledge
could be built into the initial choice of p and f based, for example, on the results of an
earlier optimization.) It will be seen that the algorithm preserves the integrality and CS
property of the pair (f, p) throughout.

At the start of the typical iteration, we have an integer pair (f,p) satisfying CS,
and we select a node 4; with positive surplus. The iteration indicates that the primal
problem is infeasible, or else indicates that (f, p) is optimal, or else transforms this pair
into another pair (f, p) satisfying CS. In the latter case the iteration terminates under two
possible circumstances:

(a) When we find an augmenting path, in which case the flows of the arcs of the path
are changed as illustrated in Fig. 5.2.6 (see Step 4 below). In this case the price
vector (and hence also the dual cost) does not change, but the total absolute surplus
> ien |gil is reduced by an integer amount.

(b) When we find a node set L such that dy, [cf. Eq. (2.7)] is a dual ascent direction.
In this case the prices of the nodes in L are increased by an integer amount and
the dual cost is improved by an integer amount (see Step 5 below). The amount of
price increase is the minimum required to either make some arc (7, j) with i € L,
J ¢ L balanced from inactive or to make some arc (j, i) with j ¢ L, 7 € L balanced

350 Network Flow Problems Chap. 5

from active. With a little thought, it is seen that the price increase corresponds
to moving from the current price vector to the next breakpoint of the (piecewise
linear) dual function along the direction dj .

To implement the iteration efficiently, we introduce a simple data structure of labels
(more sophisticated data structures are possible, but for simplicity we will not go into
this). The label of a node ¢ is simply the ID number of another node (or “0” if ¢ is
the starting node ¢; of the iteration), or else an indication that node : has no label. In
the former case, node i is said to be labeled, whereas in the latter case, it is said to be
unlabeled. At the start of the iteration all nodes are unlabeled except for the starting node
t1. Labels are helpful in constructing an augmenting path once a node j with negative
surplus is identified. The corresponding augmenting path (Ty Ty bkaly---, 12, il) (cf. Fig.
5.2.6) is constructed backwards by taking iy to be the label of j, and for m = k,...,2,
by taking ¢,,_; to be the label of 7,,, until the starting node ; is encountered (and
recognized because of its distinctive label “0”). This construction is used in Step 4
below. .

During an iteration, the current node set L that is a candidate for yielding a dual
ascent direction dj, is maintained in a list. In the following algorithm, the nodes of L
are said to have been scanned, loosely indicating the fact that these nodes have been
“selected” and “examined” during the iteration. The nodes which are not yet scanned,
that is, do not belong to the current set L, are said to be unscanned. A node must be
labeled before it can be scanned and the algorithm also maintains a list of the nodes that
are labeled but unscanned. This list is used to keep track of the set of nodes that are
candidates for entering the set L.

Multiple Node Relaxation Iteration

Step 1: (Initialization) Choose a node ¢; with g; > 0. (The iteration can be started also
from a node ¢; with g;, < 0; the steps are similar.) If no such node can be
found terminate the algorithm; the current pair (f, p) is primal and dual optimal.
Else give the label “0” to 7;, set L :=empty, and go to Step 2.

Step 2: (Choose a node to scan) Select a labeled but unscanned node ¢, set L := LU{:},
and go to Step 3.

Step 3: (Scan a node) Scan the labeled node i as follows: give the label “i” to all
unlabeled nodes j such that either (j,7) is balanced and f;; > bj; or (3,) is
balanced and f,’j < Cjj- If

q'(p;dr) >0,

[cf. Eq. (2.8)] go to Step 5. Else if for any of the nodes j given the label “:”
earlier in this step, we have g; < 0, go to Step 4. Else go to Step 2.

Step 4: (Flow Augmentation) An augmenting path H has been found that begins at
the starting node ¢, and ends at the node j identified in Step 3. The path is
constructed by tracing labels backwards starting from 7, and is such that we
have

Sec. 5.2

Step S:

The Relaxation Method 351

fmn < Cmn, vV (m,n) € H+7
Fmn > by, Y (m,n) € H™,

where H* and H ~ are the sets of forward and backward arcs of H, respectively,
given by

H = {(m, n) € H | (m,n) is oriented in the direction from 7; to j },
H~ = {(m,n) € H | (m,n) is oriented in the direction from j to i }.

Let
6= min{gin =95, {Cmn—fmn | (m,n) € H+}, {fmn_bmn | (m,n) € H—}}

Increase by 8 the flows of all arcs (m,n) € H™, decrease by § the flows of all
arcs (m,n) € H—, and go to the next iteration.

(Price Change) Set

fij = cij, V balanced arcs (i,7) withi € L,j ¢ L,j € M, (2.11a)
fii 1= bjs, V balanced arcs (j,%) withi € L,j ¢ L,j € M, (2.11b)

where L is the set of scanned nodes constructed in Step 2, and M is the set of
currently labeled nodes. Let

y = geén+i35— £, (2.12)
where

§* = {p; +asj — p; | G, j): inactive, i € L,j ¢ L},

S~ ={p; —aji —pi | (j,0): active, i € L,j ¢ L}.
Set

(2.13)

i+, ifiel,
pi::_{pz Y 2

0, otherwise.

Go to the next iteration. (Note: If there is no active arc (¢,j) withi € L, j ¢ L,
or inactive arc (4,%) with ¢ € L, j ¢ L, then the price increment ~ can be taken
infinite, which indicates that the dual optimal value is infinite or, equivalently,
that the primal problem is infeasible; see Exercise 2.1).

It is clear that all operations of the algorithm preserve the integrality of the price—
flow vector pair. To see that CS is also maintained, note that a flow augmentation step

352 Network Flow Problems Chap. 5

changes only flows of balanced arcs and, therefore, cannot destroy CS; the flow change
of Eq. (2.11) and the price change of Eq. (2.13) maintain CS because they set the flows of
the balanced arcs that the price change renders active (or inactive) to the corresponding
upper (or lower) bounds. Assuming the optimal dual value is finite (otherwise the primal
problem is infeasible), termination of the algorithm is guaranteed by the fact that each
price change improves the dual cost by an integer amount. Furthermore, it is impossible
to have an infinite number of flow augmentation steps, since each of these reduces the
total absolute surplus by an integer amount. Finally, termination can occur only when
all nodes have zero surplus, which together with CS guarantees optimality of the final
price-flow vector pair. Since the algorithm maintains integrality of flows and prices, the
optimal flow and price vector obtained upon termination will be integer. We have thus
shown constructively that if problem (LNF) is feasible, there exist optimal integer flow
and price vectors. If the problem is infeasible, this can be detected either in Step 5 (see
the note given there) or through the fact that some prices increase to infinity (see also
Exercise 2.1).

Figure 5.2.7 traces the steps of the algorithm for a simple shortest path example.
The figure illustrates that in an efficient implementation of the algorithm, more than one
iterations can be “combined” in a single iteration in order to save computation time.

The stepsize ~y of Eq. (2.12) corresponds to the first break point of the dual function
along the ascent direction dz. It is also possible to calculate through a line search an
optimal stepsize that maximizes the dual function along dy. We leave it for the reader to
verify that this computation can be done quite economically, using Eq. (2.8) or Eq. (2.10)
to test the sign of the directional derivative of the dual function at successive break points
along d;. Computational experience shows that a line search is beneficial in practice.
Consider now the case where there is a price change via Step 5 and the set L consists
of just the starting node ¢;. This happens when the multiple node iteration scans i, and
finds (at the first time Step 3 is entered) that the corresponding coordinate direction leads
to a dual cost improvement [q’ (p; d{il}) > 0]. If line search of the type just described
is performed, the price p;, is changed to a break point where gjl' <0< yg;. In this
case the multinode iteration becomes identical with the (single node) relaxation iteration
examined earlier in this section (cf. Fig. 5.2.1). Computational experience shows that
such single node iterations are very frequent in the early stages of the algorithm and
account for most of the total dual cost improvement, but become much less frequent
near the algorithm’s termination.

In practice, the method should be implemented using iterations that start from both
positive and negative surplus nodes. This seems to improve substantially the performance
of the method. It can be shown that the algorithm terminates properly under these
circumstances (Exercise 2.2). Another important practical issue has to do with the initial
choice of flows and prices. One possibility is to try to choose an initial price vector
that is as close to optimal as possible (for example, using the results of some earlier
optimization); one can then choose the arc flows to satisfy the CS conditions.

Computational experiments show that the method based on multiple node relaxation
iterations has excellent practical performance. Its computational complexity, however,

Sec. 5.2 The Relaxation Method 353

$3=1

Each arc costa; = 1.
Each arc feasib{e

flow range = [0, 4].
Initially, all node

prices and arc flows = 0.

After first iteration P31 After second iteration Py =1 After third iteration
starting at node 2 RN starting at node 2 starting at node 3
N

Nz~
After fourth iteration After fifth iteration starting at

starting at node 3 node 4. Optimal solution obtained

(b)

Figure 5.2.7 Example of a solution of a shortest path problem (cf. Fig. 5.1.3) using the multiple
node relaxation method. The numbers next to the arcs are the arc flows. All problem data and
initial conditions are as shown in part (a). The problem is solved in five iterations as shown in
part (b). [The iteration sequence generated by the algorithm depends on the rule for choosing the
starting node of an iteration; the sequence shown in part (b) is one possible iteration sequence.]
The broken curves indicate the set of labeled nodes in each iteration. A description of the iterations
follows:

(1) Iteration 1 starts at node 2 and raises the price of node 2 by one unit through Step 5.

(2) Iteration 2 starts at node 2, identifies the augmenting path 2 — 3, and increases the flow of
arc (2, 3) by one unit through Step 4.

(3) Iteration 3 starts at node 3, labels node 2, and then node 4. It then raises the prices of nodes
2, 3, and 4 by one unit through Step 5.

(4) Iteration 4 starts at node 3, identifies the augmenting path 3 — 1, and increases the flow of
arc (3, 1) by two units through Step 4.

(5) Iteration 5 starts at node 4, identifies the augmenting path 4 — 1, and increases the flow of
arc (4, 1) by one unit through Step 4.

A more efficient implementation of the algorithm tries to identify an augmenting path fol-
lowing a price change. Then iterations 1 and 2 can be combined in a single iteration. Iterations 3
and 4 can be similarly combined.

354 Network Flow Problems Chap. 5

depends on the size of the arc cost coefficients. To see this, consider the shortest path
problem with positive arc lengths. The Bellman—Ford algorithm starting from the zero
initial conditions is a special case of the relaxation method, as discussed earlier, and in
Section 4.1 we saw that its complexity depends on the maximum arc length (cf. Fig.
4.1.2 in Chapter 4). It is possible to improve the theoretical complexity of the method
by using the technique of scaling the arc cost coefficients, which is discussed in Section
5.4 (see Exercise 4.2).

We finally note that multiple node relaxation iterations are less suited for paral-
lelization than the earlier single node iterations. The difficulty is that while multiple
node iterations can start simultaneously from two different nodes with positive surplus,
it is possible that the corresponding sets of labeled nodes may intersect at some point,
in which case, only one of the two iterations can proceed. This has an adverse effect
on the degree of parallelism afforded by the algorithm. It is still possible, however, to
construct a parallel implementation of the method by using an arbitration mechanism that
allows only one out of two or more simultaneous and interfering multiple node iterations
to proceed while the others are temporarily suspended. The details of this are somewhat
complicated and will not be discussed.

EXERCISES

2.1. [Ber86a] This exercise illustrates a type of argument that is central in the complexity analysis
of relaxation algorithms for linear network flow problems. Consider the multiple node
relaxation algorithm, let p? be the initial price of node 4, and let S be the set of nodes that
have negative surplus initially. For every simple path p that ends at a node j € S, let L,
be the sum of the costs of the forward arcs of the path minus the sum of the costs of the
backward arcs of the path, and let L = maxp, L,. Assume that only nodes with positive
surplus are chosen as starting nodes in the relaxation iteration. Show that, if the problem
is feasible, then during the course of the algorithm, the price of any positive surplus node
cannot exceed its initial price by more than L + max;cs p‘} — minsen p. Hint: Use the
fact that at any point in the algorithm the prices of all nodes with negative surplus have not
changed since the start of the algorithm. Show also that if 4 is a node with positive surplus,
there must exist some node with negative surplus j and a path starting at 7 and ending at j
such that all forward arcs of the path are inactive or balanced, and all backward arcs of the
path are active or balanced.

2.2. Write the form of the multiple node relaxation iteration starting from both positive and
negative surplus nodes. Show that the method terminates at an optimal flow—price vector
pair if a feasible solution exists.

2.3. (The Primal-Dual Method [FoF62].) The purpose of this exercise is to clarify the relation
of the multiple node relaxation method and two versions of a classical ascent method for
solving the dual problem, which is commonly referred to as the primal-dual method.

(a) One version of the primal-dual method for (LNF) can be obtained through a small
(but significant) change in the description of the multiple node iteration. Simply
replace the statement “If ¢'(p; d1) > 0 [cf. Eq. (2.8)] go to Step 5” of Step 3 by the

Sec. 5.3

5.3 THE ¢ - RELAXATION METHOD

The ¢ — Relaxation Method

355

statement “If the set of scanned nodes is equal to the set of labeled nodes go to Step

5”. Show that the resulting method terminates in a finite number of iterations.

(b) Another version of the primal—dual method is obtained by making the change de-
scribed in part (a), and also by giving in Step 1 the label “0” to all nodes ¢ with
positive surplus instead of just to a single node with positive surplus. Show that the
resulting method also terminates in a finite number of iterations, and that the direction
of ascent used in Step 5 maximizes the directional derivative ¢'(p; d,) over all vectors

dr of the form (2.7).

In the preceding section, we discussed one possible method for resolving the difficulty
due to the nondifferentiability of the dual cost illustrated in Fig. 5.2.2. In this section, we
consider an alternative method. The main idea is illustrated in Fig. 5.3.1. We allow single
node price changes even if these worsen the dual cost. The rationale is that if the cost
deterioration is small, then the algorithm can approach eventually the optimal solution.
Indeed, we will show that this is so, and in fact an exact solution of the problem can be
obtained in a finite number of iterations owing to the integer nature of the problem data.
A key idea is that each price change improves the dual cost of a perturbed problem, where
some of the arc cost coefficients are modified by a small amount ¢. Implementation of
this idea is based on a notion of approximate complementary slackness, which we now
introduce.

P2

Surfaces Figure 5.3.1 [Illustration of the idea of the

of equal
dual cost

e-relaxation method. By making small

changes in the coordinate directions, it is
possible to approach the optimal solution
even if each step does not result in a dual
cost improvement. The method eventually

P optimal solution.

For any price vector p and € > 0, we say that an arc (7, j) is

€ — Inactive
€~ — Balanced

€ — Balanced
¢t — Balanced

€ — Active

if p; < ai; +p; —e,
if p; = a;; +p; — ¢
if ajj +pj — € <p; < a5 +pj +e,
if p; = a;; +pj +e,
if p; > a5 +pj +e

reaches a small neighborhood of the

(3.1a)
(3.1b)
(3.1¢)
(3.1d)
(3.1e)

356 Network Flow Problems Chap. 5

Given € > 0, we say that a vector pair (f, p) satisfies e<complementary slackness (e-CS)
if for each arc (z, 7),

fij = bij if (4, j) is e-inactive, (3.22)
bij < fi]‘ < Cij if (Z,]) is e—balanced, (32b)
fii = cij if (4, 7) is e-active. (3.2¢)

An equivalent statement of the e~CS conditions is that the flows f;; satisfy the capacity
constraints (1.2), and that

fij <eij = pi—pj<ay+e (3.3a)
bij < fij = pi—pj>a;—c¢ (3.3b)

(see Fig. 5.3.2). A useful way to think about ¢~CS is that if the pair (f,p) satisfies it,
then the primal cost to be obtained by moving flow around a cycle Y without violating
the capacity constraints decreases at a rate that is at most |Y|e, where |Y'| is the number
of arcs of Y. This fact is the essence of the proof of Prop. 3.1 that follows.

P; —Pj
€ — active
/
€* — balanced
a// +e—
N //e — balanced
Ul
g;—€l
/ |
.
by Gj fii
€~ — balanced Figure 53.2 Illustration of e-CS. All
| e—inactive pairs of arc flows f;; and price differentials
p; — pj should either lie on the thick—line
diagram or in the shaded area between the
thick lines.

The algorithm to be described shortly maintains at all times a price vector p and a
flow vector f satisfying e—CS. It terminates when the flow vector f satisfies the primal
feasibility condition g; = O for all i € N. A key fact is that if € is sufficiently small,
then the final flow vector f is optimal. The proof given uses our earlier assumption that
the arc cost coefficients a;; are integer, but does not use the assumption that the flow
bounds b;; and ¢;; are also integer.

Sec. 5.3 The ¢ — Relaxation Method 357

Proposition 3.1. If ¢ < 1/|N| and the flow vector f together with the price
vector p satisfy e~CS and primal feasibility (9: =0 for all ¢ € N), then f is optimal for
(LNF).

Proof. If f is not optimal, there must exist a nonzero flow vector y = {yij |
(,7) € A} such that f 4 y is primal feasible, and has lower cost than f,thatis, yis a
circulation and

bij < fij +yi; < ¢y, V(,j5) €A,

Z Ai5Yi5 < 0.

(,5)€A

By the Conformal Realization Theorem (Appendix B) the circulation y can be decom-
posed into the sum of a finite number of simple circulations y!, ..., y™ that conform to
y (yf; > 0 or yf, < 0 implies y;; > 0 or Yij < O respectively). Therefore f + y* is
primal feasible for all k = 1,...,m, and at least one circulation y* defines a direction
of descent, that is,

Z aijyfj <0.

(2,7)€A

Let Y* and Y~ be the sets of arcs (¢,7) of the cycle corresponding to y* for which
y5 > 0 and y% < 0, respectively. Since y* is a simple circulation, we have that |yk|
is equal to some § > 0 on all arcs (7, j) for which yfj # 0. Therefore, by dividing the
preceding condition by § we obtain

D oai— > a; <0, (3.4)

(4,7)ey+ (i,J)eY —
fij < cij, V(@i,j)eyYT,
bij < fij, V(@EjHeEY.

By -CS [cf. Eq. (3.3)], we have

y2 < pj +aij + ¢, v (l,]) € Y+a
PjS<pi—a+e, V(@EjHeYT,

which, by adding and using the hypothesis € < 1/|N |, yields

Z ai; — Z a;; > —|Nle > —1.

@,J)EY+ (@.5)eY ~

358 Network Flow Problems Chap. 5
Since the a;; are integer, we obtain a contradiction of Eq. (3.4). Q.E.D.

A strengthened form of Prop. 3.1 which remains valid even if the arc cost coeffi-
cients and flow bounds are not integer, is obtained by replacing the condition € < 1/|N]|
with the condition

c< min Length of cycle Y
All cycles Y Number of arcs of Y

| Length of Y <0},

where

Length of cycle Y = Z a;j — Z Q5.
@,NeEY+ (2,5)EY ~

The proof is obtained by suitably modifying the last relation in the proof of Prop. 3.1.

The e—relaxation method uses a fixed value of € > 0, and starts with a pair (f, p)
such that e-CS is satisfied and f;; are all integer. The algorithm preserves the e-CS
and flow integrality properties throughout. A possible starting procedure is to arbitrarily
choose the vector p, and to set f;; = bs; if (¢,) is inactive or balanced, and fi; = ¢
otherwise. At the start of each iteration, a node ¢ with positive surplus g; is chosen.
(If all nodes have zero surplus the algorithm terminates; then f is primal feasible and,
together with p, satisfies e~CS, so Prop. 3.1 applies.) At the end of the iteration, the
surplus g; is driven to zero, while another pair (f, p) satisfying e~CS is obtained. During
an iteration, all node prices stay unchanged except possibly for the price of the chosen
node i. Similarly, all arc flows stay unchanged except for the flows of some of the arcs
incident to node i. As a result of these flow changes, the surplus of some of the nodes
adjacent to i is increased. In order for the flow of an arc (7, j) to change, the arc must
be et-balanced and f;; < c;; (such an arc is called et-unblocked). Similarly, in order
for the flow of an arc (j, i) to change, the arc must be e~ —balanced and b;; < f;; (such
an arc is called e~ —unblocked). The price of node 7 at the end of the iteration is usually
P; + €, where p; is one of the maximizing points of Q%(&), the dual function along the
ith price coordinate. This price level is reached through possibly several price increases
at Step 4 below (see the subsequent discussion and Exercise 3.1). Each price increase
may be preceded and followed by flow changes of incident arcs of node i to maintain
¢—CS and to reduce the surplus g; to zero (Steps 2 and 3 below).

Positive Surplus Node lteration (or Up lteration):
Let (f, p) satisfy ¢—CS, and let 7 be a node with g; > 0.

Step 1: (Scan incident arc) Select a node j such that (4, j) is an et—unblocked arc and
go to Step 2, or select a node j such that (j,¢) is an e~ —unblocked arc and go
to Step 3. If no such node can be found go to Step 4.

Step 2: (Decrease surplus by increasing f;;) Let § = min{g;, c;; — fi;}. Update fi;, g;,
and g; according to

Sec. 5.3 The ¢ — Relaxation Method 359

fij = fis + 6,
gi'=gi—6, gji=g;+6

If the updated values g; and f;; satisfy g; = 0 and fij < csj, stop; else go to
Step 1.

Step 3: (Decrease surplus by reducing f;;) Let § = min{g;, fji — bjs}. Update fj;, g;,
and g; according to

fii = fji =6,
gi:=9i—6 gji=g;+é

If the updated values g; and f; satisfy g; = 0 and b;; < fji» stop; else go to
Step 1.
Step 4: (Increase price of node i) Set

Di = &, (3.5)

_gegliBR—
where
Rf ={pj+aij+e|(i,j) € Aand fi; < i},
Ry ={pj—aji+e| (i) € Aand bj; < f;;}.

Go to Step 1. (Note: If g; > 0 and the set R} U R;” over which the minimum
in Eq. (3.5) is taken is empty, the problem is infeasible and the algorithm
terminates; see the comments that follow. If this set is empty and g; = 0, we
leave p; unchanged and stop.)

To see that Eq. (3.5) leads to a price increase, note that when Step 4 is entered,
we have f;; = c;; for all (4, j) such that p; > Pj + aij + ¢, and we have b;; = f;; for all
(4, %) such that p; > p; — a;; + €. Therefore, when Step 4 is entered, we have

pi <min R =min{p; + a;; + €| (,j) € A and f;; < ¢;;},
pi <minR; =min{p; —aj; + €| (j,i) € A and bj; < f;;}.

It follows that p; must be increased via Eq. (3.5) when the set R} U R; over which the
minimum is taken is nonempty. In the case where this set is empty, we have fi; = ¢ij
for all (4, 7) outgoing from 7 and b;; = f;; for all (j,7) incoming to i, so maximum flow
is going out of 4 while minimal flow is coming in. Therefore, if g; > 0 and RIUR;] is
empty, we can terminate the algorithm with the assurance that the problem is infeasible.

Figure 5.3.3 illustrates an up iteration. It is seen that each time Step 2 or 3 is
executed, flow is pushed away from ¢ along an e¢*—unblocked or an e~ —unblocked arc,

360 Network Flow Problems Chap. 5

respectively. If no more flow can be pushed and g; > 0, the price of ¢ is increased in
Step 4.

Figures 5.3.3 and 5.3.4 illustrate the sequence of price changes of an up iteration
in the cases where the dual cost has one and multiple maximizing points, respectively,
with respect to p;. It is seen in these figures that at the end of the iteration, the price
of the node 7 equals ¢ plus some value that maximizes the dual cost with respect to p;
with all other prices kept fixed (this property can be shown for the case where p; + ¢
is less than the minimal maximizing point of the dual cost; see Exercise 3.1). We thus
obtain an interpretation of the algorithm as a relaxation (or coordinate ascent) method,
although “approximate relaxation” may be a more appropriate term.

Consider now the case where there is a bounded interval [p , P;] of maximizing
points with p, <Di [see Fig. 5.3.4(a)]. A careful examination of the steps of the algorithm
shows that it has a tendency to set the price p; close to the largest maximizing point p;.
This is due to the fact that the iteration does not stop when g; = 0 and f;; = ¢;; (in
Step 2) or fj; = bj; (in Step 3). As a result Step 4 may be entered with g; = 0 with
an additional price increase resulting over the version of the iteration that always stops
when g; = 0 in Step 2 or 3. The latter version tends to set the price p; near the smallest
maximizing point P, and seems to work worse in practice. The reasons for this are not
entirely clear, but the complexity analysis of the next section provides some justification
since it suggests that the algorithm terminates faster when the price changes are as large
as possible.

Note that a symmetric iteration can be used for nodes with negative surplus (called
down iteration). One can construct an example (see Exercise 3.2) showing that the
algorithm may not terminate if up and down iterations are mixed arbitrarily. It is therefore
necessary to impose some assumptions either on the problem structure or on the method
by which up and down iterations are interleaved. We henceforth assume that the algorithm
consists of up iterations only.

Proposition 3.2. If problem (LNF) is feasible, the algorithm terminates with
(f, p) satisfying e~CS, and with f being integer and primal feasible.

Proof. The following facts can be verified based on the construction of the up
iteration:

(1) The integrality of f and the e—CS property of (f,p) are preserved throughout the
algorithm.

(2) The prices of all nodes are monotonicailly nondecreasing during the algorithm.

(3) Once a node has nonnegative surplus, its surplus stays nonnegative thereafter. (This
follows from the fact that an up iteration at some node 7 cannot drive the surplus
of ¢ below zero, and can only increase the surplus of its adjacent nodes.)

(4) If at some time a node has negative surplus, it must have never been iterated on
up to that time, and therefore its price must be equal to its initial price. [This is
a consequence of (3) above and the fact that only nodes with positive surplus are
iterated on by up iterations.]

Sec. 5.3 The ¢ — Relaxation Method 361

Dual functional

Slope = 10 Slope = —=10
Slope = 20,
/ Slope = —40

First Second
B price price
Slope = 40 rise rise
€ [— —+ € [+
Py—ay P P2 ta;; P3—ay Py ta, Price of node 7
-
(a)
Price level

\

Flow decrease from 20 to 10

Price rise

Py —ay;

[0, 20] P; Flow increase from 0 to 10

(b) (c) (d)

Figure 5.3.3 Illustration of an up iteration involving a single node ¢ and the arcs (1,3), (3,1),
(2,2), and (4,4) with feasible arc flow ranges [0,20], [0,20], [0,10], and [0,30], respectively, and
s; = 0. (a) Form of the dual functional along p; for given values of p|, ps, p3, and ps. The
breakpoints correspond to the levels of p; for which the corresponding arcs become balanced. For
values of p; between two successive breakpoints, there are no balanced arcs incident to node i. The
corresponding slope of the dual cost is equal to the surplus g; resulting when all active arc flows
are set to their upper bounds and all inactive arc flows are set to their lower bounds; compare with
Eq. (2.1). (b) Illustration of a price rise of p; from a value between the first two breakpoints to a
value € above the breakpoint at which (z,2) becomes balanced (Step 4). (c) Price rise of p; toa
value ¢ above the breakpoint at which arc (3,¢) becomes balanced. When this is done, arc (i,2)
has changed from et -balanced to e-active, and its flow has increased from 0 to 10, maintaining
€~CS. (d) Step 3 of the algorithm reduces the flow of arc (3,) from 20 to 10, driving the surplus
of node 7 to zero.

362

Dual functional

e

First Second
price price

/ rise rise

Network Flow Problems Chap. 5

Third
price
rise

P;

Dual functional

(a)

Price of node /

RS

d

First Second
price price
/ rise rise
— € [+— — € |—
Pr P

(b)

Price of node 7

Figure 5.3.4 Illustration of an up iteration in the case where there are multiple maximizing points
of the dual cost with respect to p;. In case (a), the set of maximizing points is bounded, and at
the end of the iteration, p; is set at € plus the largest maximizing point p;. In case (b), the set
of maximizing points is unbounded, and at the end of the iteration, p; is set at € plus the smallest

maximizing point D,

Based on (2) there are two possibilities: either (a) the prices of a nonempty subset
N> of N diverge to +oo or else (b) the prices of all nodes in N stay bounded from

above.

Suppose that case (a) holds. Then, since N°° is nonempty, it follows that the
algorithm never terminates, implying that at all times there must exist a node with
negative surplus which, by (4), must have a constant price. It follows that N> is a
proper subset of N. To preserve ¢-CS, we must have, after a sufficient number of

iterations,

Sec. 5.3 The ¢ — Relaxation Method 363

fij=cy forall G,7) € Awithi € N, j ¢ N,
fii=biy; forall (j,i) € Awithi € N j ¢ N,

while the sum of surpluses of the nodes in N> must be positive. This means that even
with as much flow as arc capacities allow coming out of N* to nodes j ¢ N and as
little flow as arc capacities allow coming into N> from nodes j ¢ N°°, the total surplus
of nodes in N*° is positive. It follows that there is no feasible flow vector contradicting
the hypothesis. Therefore, case (b) holds (all prices of nodes in NV stay bounded).

We now show by contradiction that the algorithm terminates. If that is not so, then
there must exist a node ¢ € N at which an infinite number of iterations are executed.
There must also exist an adjacent e ~—balanced arc (j,) or e*—balanced arc (i, j) whose
flow is decreased or increased, respectively, by an integer amount during an infinite
number of iterations. For this to happen, the flow of (j,) or (i, j) must be increased or
decreased, respectively, an infinite number of times due to iterations at the adjacent node
Jj. This implies that the arc (j,¢) or (¢,7) must become e*—balanced or ¢~—balanced
from e~-balanced or e*—balanced, respectively, an infinite number of times. For this to
happen, the price of the adjacent node j must be increased an infinite number of times
by at least 2¢. It follows that p; — oo, which contradicts the boundedness of all node
prices shown earlier. Therefore the algorithm must terminate. Q.E.D.

Note that Prop. 3.2 holds for all ¢ > 0. If € < 1/|N|, however, we see, by
combining Props. 3.1 and 3.2, that the algorithm terminates with an optimal flow vector.
Note also that the integrality of a;; was not needed for the proof of Prop. 3.2, while the
integrality of b;;, ¢;;, s;, and the starting flow vector were only needed to establish that
the flow change increments are bounded from below during the course of the algorithm.
The integrality assumptions are essential, however, for the complexity analysis of the
next section.

Proposition 3.2 applies without modification to the variation of the algorithm, where
up iterations are not necessarily carried to completion. In this variation, it is permissible
to execute only partial up iterations, in which the algorithm can select a new node for
iteration immediately following the completion of any Step 2, 3, or 4, even if the current
node surplus is not yet zero.

While it is possible for a price change in Step 4 of the up iteration to degrade the
dual cost, there is still an interesting interpretation of Step 4 as a dual cost improvement.
It can be seen from Eq. (2.1) that the sign of the directional derivatives g} and g;” can
change if the cost coefficients of some of the e-balanced arcs incident to node i are
perturbed by a small € amount. It follows that price changes in Step 4 yield a dual cost
improvement of a perturbed problem where some of the arc cost coefficients are slightly
changed.

A final issue has to do with detection of infeasibility (assuming it is not detected
at Step 4 of some iteration). By using the argument of the proof of Prop. 3.2, it follows
that for an infeasible problem, the prices of some nodes diverge to +oc. In Section 5.4,

364 Network Flow Problems Chap. 5

we derive a precomputable upper bound for the prices when the problem is feasible [Eq.
(4.7)]. Once this bound is exceeded, we know that the problem is infeasible.

5.3.1 The Auction Algorithm for the Assignment Problem

The main idea of the e-relaxation iteration is to increase a single price coordinate so as
to approximately optimize a dual cost with respect to that coordinate. This process can
be applied to several other network duality formulations. As an illustration, we consider
an alternative duality formulation of the assignment problem that leads to an effective
computational method.

The method, called the auction algorithm, can be intuitively understood in terms
of an economic process, and will be consequently described in those terms. Sources
and sinks are viewed as persons and objects, respectively. The algorithm operates like
an auction, whereby unassigned persons bid simultaneously for objects, thereby raising
their prices. Once all bids are in, objects are awarded to the highest bidder. The serial or
Gauss—Seidel version of the algorithm can be interpreted as a variation of the e-relaxation
method (see Exercise 3.5 for the precise relation).

Consider n persons wishing to divide among themselves n objects. For each person
i, there is a nonempty subset A(i) of objects that can be assigned to 7, and there is a
given integer value a;; that person ¢ associates with each object j. An assignment S is
a (possibly empty) set of person—object pairs (4,) such that j € A(s) for all (3,7) € S;
for each person 4, there is at most one pair (3, j) € S; and for each object j, there is at
most one pair (¢,j) € S. In the context of a given assignment S, we say that person
i is assigned if there exists an object j such that (¢,j) € S; otherwise, we say that ¢
is unassigned. We use similar terminology for objects. A complete assignment is an
assignment containing n pairs (i.e., every person is assigned to a distinct object). We
want to find a complete assignment that maximizes

E a,'j

@.5)€S

over all complete assignments S. This problem is equivalent to the linear programming
problem

n
maximize E E aij fi 5

i=1 jEA(®)
subject to Z fiz =1, Vi=1,...,n,
JEA®M) (3.6)
n
Z fij=la Vj=1,...,n,
{iljeA®}

OSfij’ Vi:la""nv]eA(l)

Sec. 5.3 The ¢ — Relaxation Method 365

A dual problem is given by (cf. Appendix C)

n

n
minimize E r,-+§ Dj
j=1

i=1

(3.7)
subject to 7; + p; > a;j, V1, j€ AQ@).

We are considering a maximization as in Eq. (3.6) rather than a minimization problem
in order to make the economic interpretation of the algorithm more transparent. It is
also convenient for our purposes to use the constraint 0 < [fi; rather than 0 < f;; < B,
with B > 1. None of these changes are of consequence, and problem (3.6) is essentially
identical with the assignment problem considered earlier (cf. Fig. 5.1.1). Therefore, there
is an integer optimal solution that assigns each person i to a distinct object j; € A(z) so
that

n
§ :a’iji
i=1

is maximized over all such assignments.

We see from Eq. (3.7) that the cost of the dual problem is minimized when r;
equals the maximum value of a;; — p; over j € A(:). Thus, an equivalent form of the
dual problem is

minimize q(p) (3.8)

subject to no constraints on p,

where p is the vector of object prices p;, and

9@ =) max {a;; —p;} + > pi. (3.9)
J=1

n
—/ JEA®)
=1

For a given price vector p, the scalar

T = jrggé){aij - pj} (3.10)
is called the profit margin of person 4 corresponding to p. It is helpful to think of p; as
the amount of money that a person must pay when assigned to j. Therefore, for a given
price vector p, a;; — p; can be thought of as the benefit person i associates with being
assigned to object j. In this context, the name “profit margin” for m; as given by Eq.
(3.10) becomes meaningful.

It is straightforward to verify that the complementary slackness conditions for an
assignment S (not necessarily complete) and a price vector p can be written as

366 Network Flow Problems Chap. 5

aij; — pj. = max {a; —p;}, V(i) €S
A necessary and sufficient condition for S and p to be primal and dual optimal is that
S is complete and that S and p satisfy complementary slackness. Thus, at an optimal
assignment, each person is assigned to an object attaining the maximum in the profit
margin definition (3.10).

A relaxation of the complementary slackness condition is to allow persons to be
assigned to objects that come within € of attaining the maximum in Eq. (3.10). This
can be seen to be equivalent to the e~CS condition (3.2) specialized to the assignment
problem. Formally, we say that an assignment S and a price vector p satisfy e-CS if

7; — €= max {a;x — pr} — € < aij — pj, V@@J) €S, (3.11)
kEA(®%)

where 7; is given by Eq. (3.10), and € is a nonnegative constant.

We now describe formally the auction algorithm. We fix ¢ > 0, and we start
with some assignment (possibly empty) and price vector satisfying e~CS. The algorithm
proceeds iteratively and terminates when a complete assignment is obtained. At the start
of the generic iteration we have an assignment S and a price vector p satisfying e-~CS.
The iteration preserves the e~CS condition and consists of two phases: the bidding phase
and the assignment phase described in the following.

Bidding Phase:

For each person ¢ that is unassigned under the assignment S:
1. Compute the “current value” of each object j € A(7) given by
Vij = Q45 — Dj- (3.12)
2. Find a “best” object j* having maximum value
vir = ek Y
and find the best value offered by objects other than j*

w;i» = MmMax v;;. 3.13
YT jeAG gt 3.13)

(If 5* is the only object in A(7), we define w;;- to be —oc or, for computational
purposes, a number that is much smaller than v;;~.]

3. Compute the “bid” of person ¢ given by

bij- = pj~ + Vjj» — Wij~ + € = ajj+ — Wi~ + €. (3.14)

Sec. 5.3 The ¢ — Relaxation Method 367

[We characterize this situation by saying that person i bid for object j*, and that
object j* received a bid from person i. The algorithm works if the bid has any
value between p;- + € and p;- + v- — w;j- + €, but it tends to work fastest for
the maximal choice of Eq. (3.14).]

Assignment Phase:

For each object j:

Let P(j) be the set of persons from which j received a bid in the bidding phase
of the iteration. If P(j) is nonempty, increase p; to the highest bid:

pj = igllg();) bij, (315)
remove from the assignment S any pair (¢, j) (if 7 was assigned to some ¢ under .S),

and add to S the pair (3%, j), where * is a person in P(j) attaining the maximum
above.

It is seen that during an iteration, the objects whose prices are changed are the ones
that received a bid during the iteration. Each price change involves an increace of at
least e. To see this, note that from Egs. (3.12) to (3.14) we have bij+ = aij» —w;ij+€ >
a;j« — Vi~ + € = pj- + ¢, and the conclusion follows from Eq. (3.15). At the end of
the iteration, we have a new assignment that differs from the preceding one in that each
object that received a bid is now assigned to some person that was unassigned at the
start of the iteration. However, the assignment at the end of the iteration need not have
more pairs than the one at the start of the iteration, because it is possible that all objects
that received a bid were assigned at the start of the iteration.

A first important fact is that the algorithm preserves e~CS throughout its execution,
that is, if the assignment and price vector available at the start of an iteration satisfy e~CS,
the same is true for the assignment and price vector obtained at the end of the iteration.
To see this, suppose that object j* received a bid from person i and was assigned to %
during the iteration. Let p; and p_'7- be the object prices before and after the assignment
phases, respectively. Then we have [cf. Eqgs. (3.14) and (3.15)]

/

Pj» = bijv« = Qi — Wi+ + €. (3.16)
Using this equation and the fact p;- > p; for all j, it follows that

/ —_ i — D — C i — — e I, —
Qije — D = Q= — bije = wyj- — € jeArE%(#_{a“ pi} —e 3.17)

This equation implies that

Qijr = Pis 2 jglgé){aij -pi}—¢ (3.18)

368 Network Flow Problems Chap. 5

which shows that the e~CS condition (3.11) continues to hold after the assignment phase
of an iteration for a pair (¢, 7*) that entered the assignment during the iteration. Consider
also any pair (z,j*) that belonged to the assigment just before an iteration, and also
belongs to the assignment after the iteration. Then j* must not have received a bid
during the iteration, so pg, = pj-. Therefore, Eq. (3.18) holds in view of the e-CS
condition that holds prior to the iteration and the fact p; > p; for all j.

Figure 5.3.5 indicates how each bidding and subsequent assignment phase can be
interpreted as a Jacobi-like relaxation step for minimizing the dual function ¢(p) of Eq.
(3.9). In particular, the price p; of each object j that received a bid during the assignment
phase is increased to either a value that minimizes q(p) when all other prices are kept
constant or else exceeds the largest such value by no more than €. To see this, suppose
that at some iteration, there is a bid for object j, raising its price from p; to pg. Then

P} = max{a;; — w;; | i was unassigned, j € A(4), and j received a bid from ¢ } + ¢,
(3.19)

p; > max{a;; — w;; | ¢ was unassigned, j € A(z), and j did not receive a bid from ¢}.
(3.20)

Since whenever an object receives a bid, its price increases by at least ¢, we have
p; 2 pi+e
so from Eqgs. (3.19) and (3.20), we obtain
P} > max{a;; — w;; | i was unassigned and j € A} + €. (3.21)

Since the algorithm maintains the e~CS condition (3.11) throughout, we have that if at
the start of the iteration person 7 was assigned to some k # j and j € A(Z), then

a;j —p; <™ < ak — Pk + €S wi; +e
Using this relation and the fact p} > pj + €, we obtain
p; 2 pj+€> ai; —wi;
and
P > max{a;; — wi; | ¢ was assigned to some k # j, and j € A(2)}. (3.22)
Combining Egs. (3.21) and (3.22), we obtain

p; > max{a;; — w;; | 1 was not assigned to j, and j € A(3)}.

Sec. 5.3 The ¢ — Relaxation Method 369

Dual cost along p;
Slope = -3
Slope = -2
Slope = 1
Slope = —1
Range of possible values of p;
Slope = 0 after an iteration at which
\ p; is increased
Highest possible bid
level of p; after the assignment
phase
€
Bigi ™ Wi Gr3i ~ Wigi Biai ~ Wigi p;
i~ Wi

Price levels at which j becomes the best object for persons 7, i, i3/,

Figure 5.3.5 Form of the dual cost along the price coordinate p;. From Eq. (3.9), the
right directional derivative of q along p; is

d;' = 1 — (number of persons ¢ with j € A(¢) and p; < a;; — wi;)

where w;; is given by Eq. (3.13). The break points are a;; — w;; for all 4 such that
J € A@). If p; < a;; — w;j, then an unassigned person 7 bids for object j the amount
a;; —w;; +¢. The price p; after the assignment phase is increased to ¢ plus the highest
level a;; — w;; over all unassigned persons ¢ with j € A(2).

Since there can be at most one person assigned to j, it follows from the form of the dual
cost shown in Fig. 5.3.5, that p;. is no less than the smallest value of p; that minimizes
g(p). Combining this fact with Eq. (3.19), we see that pg- has the property stated in the
beginning of this paragraph.

Note that the dual cost (3.9) can deteriorate after a price increase. However, the
cost deterioration is at most €. Similarly with the e-relaxation method, for ¢ small
enough, an optimal solution can still be obtained thanks to the rounding introduced by
the integer nature of the problem data and the fact that e~CS holds at termination [cf.
Eq. 3.11)]. . 4

Figure 5.3.5 suggests a variation of the algorithm, whereby, in addition to all
unassigned persons, each assigned person ¢ bids for its own assigned object j the amount
a;j — w;; + €. This variation can be useful under some circumstances.

The above algorithm can be viewed as a Jacobi version of the relaxation idea since
the bids of all unassigned persons bid are calculated simultaneously and the prices of
objects that receive a bid are raised simultaneously. An alternative is a Gauss—Seidel

370 Network Flow Problems Chap. 5

version, whereby a single unassigned person bids for an object and the price rise of the
object is taken into account when the next bid by an unassigned person takes place. This
version is just as valid as the Jacobi version and in fact tends to converge somewhat faster
in practice, but is generally less parallelizable because the corresponding dependency
graph can be quite dense (cf. the discussion of Subsection 1.2.4).

Suppose now that the algorithm terminates with the final (complete) assignment
{G,4)) | © = 1,...,n}, the object prices p;, and the profit margins m; given by Eg.
(3.10). Then, by adding the ¢—CS condition (3.11) over ¢, it is seen that

n n
Z 035, > Z(m +pj;) — ne.
i=1 i=1

If A* is the optimal primal value and the (equal) optimal dual value, we have, using the
relation above,

n n
A > Zaij,» 2> Z(ﬂ'i +pj,) —ne > A* — ne,
=1

=1

where the last step follows from the feasibility of the scalars 7; and p;, for-the dual
problem (3.7). Therefore, the assignment {(z,5;) | ¢ = 1,...,n} is within ne of being
optimal. Since a;; are integer, an optimal assignment is obtained when € < 1/n. Thus,
we have shown the following:

Proposition 3.3. An assignment {(¢,j;) | ¢ = 1,...,n} obtained upon termina-
tion of the auction algorithm is within ne of being optimal, and is optimal if € < 1/n.

The next result asserts that the algorithm terminates assuming existence of at least
one feasible assignment. The proof relies on the following facts:

(a) Once an object is assigned, it remains assigned throughout the remainder of the
algorithm’s duration. Furthermore, except at termination, there will always exist
at least one object that has never been assigned, and has a price equal to its initial
price. This is because a bidding and assignment phase can result in a reassignment
of an already assigned object to a different person, but cannot result in the object
becoming unassigned.

(b) Each time an object receives a bid, its price increases by at least ¢ [cf. Egs. (3.14)
and (3.15)]. Therefore if the object receives a bid an infinite number of times, its
price increases to oo.

(c) For every |A(?)| bids by person ¢, where |A(z)| is the number of objects in the set
A(3), the profit margin 7; as defined by Eq. (3.10) decreases by at least . This
is because a bid by person ¢ either decreases w; by at least ¢, or else leaves m;
unchanged because there is more than one object j attaining the maximum in Eq.
(3.10). However, in the latter case, the price of the object 7* receiving the bid

Sec. 5.3 The ¢ — Relaxation Method 371

will increase by at least ¢, and object 7* will not receive another bid by person ¢
until 7; decreases by at least . The conclusion is that if a person ¢ bids an infinite
number of times, 7; must decrease to —oo.

Proposition 3.4. If at least one complete assignment exists, the algorithm termi-
nates in a finite number of steps.

Proof. If the algorithm continues indefinitely, the prices of a proper [cf. (a) above]
subset J*° of objects increases to oo, while the profit margins 7; of a subset I* of
persons decrease to —oo, [cf. (c) above]. Furthermore, eventually, in view of Eq. (3.11),
at any given time, each object in J°° can only be assigned to a person from I*° , and a
person from 1> will either be assigned to an object in J° or be unassigned. Also, in
view of (c) above, eventually only persons from /°° will be unassigned. Therefore, the
cardinality of I° is greater than the cardinality of J°°, while, in view of Eq. (3.11), we
have J*° D A(¢) for all 7 in I°°. This contradicts the existence of a complete assignment.
Q.E.D.

Practical experience with the serial version of the auction algorithm has shown that
it is at least competitive with the best alternative serial algorithms for the assignment
problem, particularly for sparse problems [Ber88], [BeE88]. It is sometimes important,
however, to combine the algorithm with the scaling technique described in the next
subsection. :

5.3.2 Parallel Versions of the <—Relaxation and the Auction
Algorithms .

In this subsection, we discuss the parallel implementation aspects of the auction and
e-relaxation algorithms. It is clear that both the bidding and the assignment phases
of the auction algorithm are highly parallelizable. In the extreme case of a fine grain
parallel computing environment, where there is a processor associated with each person
and a processor associated with each object, all unassigned persons/processors can com-
pute their bids simultaneously and communicate them to the relevant objects/processors.
Those object/processors that receive at least one bid can determine the highest bidder
simultaneously and communicate to the relevant persons/processors the changes in the
current assignment and price vector. A similar implementation is possible in systems
where there are relatively few processors communicating via an interconnection network
such as a hypercube. Each processor is given the responsibility of computing the bids
of several persons, and of updating the assignments and prices of several objects. At
the end of the bidding phase, the bids are transmitted to the appropriate processors using
some form of total exchange algorithm that depends on the interconnection network and
on the sparsity structure of the assignment problem graph (cf. Subsection 1.3.4). At the
end of the assignment phase, the updated object assignments and prices are transmitted
to all processors via a multinode broadcast.

The auction algorithm is also well suited for implementation in a shared memory
machine. Here the processors of the system perform tasks such as bid calculations,

372 Network Flow Problems Chap. 5

object assignments, and price updates. A synchronization mechanism is required for
strict separation of the bidding and the assignment phases. In particular, it is necessary
that the bids of all unassigned persons are calculated before the price or assignment of any
object is. updated. This separation is not necessary in an asynchronous implementation
of the type to be discussed in the next chapter.

We now discuss how the e-relaxation algorithm can be implemented in a message—
passing system that assigns a separate processor to each node. This processor is charged
with the responsibility of carrying out up iterations at the node and communicating the
results to the adjacent processor/nodes. Our discussion applies with minor modifications
to systems with few processors, where several nodes are assigned to each processor.

There are three basic parallel implementation modes for the e-relaxation method.
The first two, discussed here, are synchronous and will be referred to as the Gauss—
Seidel and Jacobi versions in view with their similarity with the Gauss—Seidel and Jacobi
relaxation methods discussed in Chapter 3. The third is a totally asynchronous version,
and will be discussed in the next chapter (Section 6.5).

The synchronous algorithms are operated in phases, as discussed in Section 1.4.
Some nodes/processors ¢ with g; > 0 at the start of the phase execute a complete or
partial up iteration during the phase, and the results of the iteration are communicated to
all adjacent nodes. A node cannot proceed to the next phase before it knows the results
of the computation (if any) at all adjacent nodes during the preceding phase.

In the synchronous Gauss—Seidel version, the set of nodes is partitioned into sub-
sets. Each subset should not contain a pair of nodes joined by an arc. In each phase,
a single subset is selected and the positive surplus nodes of this subset only execute an
up iteration. Because no two adjacent nodes execute an up iteration concurrently, it is
seen that the Gauss—Seidel version is mathematically equivalent to a sequential version
with a specific order for choosing nodes to execute an up iteration [see the discussion
in Subsection 1.2.4; the dependency graph here contains the bidirectional arc (7, j) if
either (¢, j) or (J,¢) is an arc of the graph of the problem]. Note that for transportation
problems, we can use just two subsets; the subset of all sources and the subset of all
sinks.

The Gauss—Seidel version has the drawback that some positive surplus nodes may
be idle during some phases. This motivates the synchronous Jacobi version, whereby
all positive surplus nodes execute an up iteration at every phase based on the prices and
flows of adjacent nodes and arcs at the start of the phase. At the end of the phase,
the price of each node and the flows of all its incident arcs are communicated to its
corresponding adjacent nodes. There is an issue here on how two adjacent nodes ¢ and
j agree on a common value of the flow of the arc (7, j) joining them. The problem is
that f;; may be simultaneously modified by both 7 and j during a phase. When only
one of the nodes ¢ and j increases its price during a phase, we require that the value of
fij as set by the node that increased its price is accepted by the other node. We resolve
situations where both nodes 7 and j increase their prices during a phase as follows: if
at the end of phase k, the prices p; and p; have become such that (i, j) is e-active (or
e—inactive), then f;; is set to c;; (or b;;) by both nodes ¢ and j; otherwise, both nodes ¢
and j set f;; at the value of f;; that prevailed at the start of phase k.

Sec. 5.3 The ¢ — Relaxation Method 373

It can be seen that with this rule, e~CS is preserved, and that at the end of each
phase k, we have g; > 0 for all nodes 7 having g; > 0 at the start of phase k. With these
observations, the proof of Prop. 3.2 goes through almost verbatim, thereby showing that
the Jacobi version of the algorithm terminates in a finite number of phases.

An interesting question relates to the speedup that can be attained with a parallel
implementation of the e-relaxation method. We first note here that the maximum number
of processors that can be executing up iterations in parallel at any one time cannot ex-
ceed the number of nodes with positive surplus. Computational experimentation shows
that this number is typically quite large in the early stages of the computation. Near
termination of the algorithm, however, most nodes have zero surplus, so the number of
processors actively engaged in iterations is quite small. In fact, we give an example at
the end of the next subsection where a parallel implementation of the algorithm leads to
no appreciable speedup over a serial implementation. This example represents worst case
behavior. Limited experience with parallel implementations of the e—relaxation method
and with the auction algorithm indicates that a speedup of the order of 10 should be
attainable in many computing systems. This is only a rough estimate. Further experi-
mentation and research is needed to establish the potential of parallel implementations
of the e-relaxation method and to provide a comparison with parallel implementations
of the multiple node relaxation method of the previous section.

EXERCISES

3.1. Assume that for some price vector p, the dual cost along the ith price coordinate, g(pi, ..
Pi—1,&, Di+1,---,P|N|)» attains a maximum over § in the interval [p Pp:]. Show that an up
iteration at node 1 starting at a price value p; < D, — € sets p; to p; + €, [cf. Fig. 5.3.4(a)].
Assume instead that the maximum is attained in the interval [p o0). Show that an up
iteration at node ¢ starting at a price value p; < p, — € sets p; to p + ¢, [cf. Fig. 5.3.4(b)].
Show that under either one of the preceding assumptlons p; is set to a value that is within
€ of some maximizing point of the dual cost along the ith price coordinate.

3.2. (Mixing of Up and Down Iterations, [Tse86] and [Eck87].) Define a down iteration,
which is similar to an up iteration, but only applies to nodes : with g; < 0, increases g;,
and decreases p;.

(a) Discuss briefly how to modify the proof of Prop. 3.2 to show the finiteness of the
following algorithm: while there exists a node : € N with g; < 0, select such an 3
and perform a down iteration upon it.

(b) Consider the following algorithm: while there exists an 7 € N with g; # 0, select such
an ¢ and perform an up iteration if g; > 0 or a down iteration if g; < 0. Consider also
the following network problem: N = {1,2,3,4}, A = {(1,2),(1,3),(2,4),(3,4)},
s1=1,8 =5 =0, s4 = —1, a;; = 0, bij =0, and Cij = 2 for all (’L,]) € A.
Show that for this problem the algorithm is not guaranteed to be finite for ¢ = 1 and
the initial price vector p = 0. Hint: Give a sequence of price and flow modifications
meeting the specifications of the algorithm, in which the state py = 1, p» = p; = 0,
ps = —1, fiz =1, fis = fas =0, fza = 1 recurs infinitely many times.

374

3.3.

34.

3.5.

3.6.

Network Flow Problems Chap. 5

Consider the multiple node relaxation iteration of Section 5.2, and also the primal—dual
methods of Exercise 2.3. Show that if the terms “balanced”, “active”, and “inactive” are
replaced by “e-balanced”, “e—active”, and “e—inactive”, respectively, then the resulting meth-
ods terminate in a finite number of iterations and that the final pairs (f, p) obtained satisfy
e-CS.

In this exercise, we consider a variation of an up iteration that involves degenerate price
increases. A degenerate price increase raises the price of a node that currently has zero
surplus to the maximum possible value that does not violate e-CS with respect to the
current flow vector (assuming there exists such a maximum value). One example of such a
price increase occurs when Step 4 of the up iteration is executed with g; = 0. Show that
Prop. 3.2 holds even if degenerate price rises are allowed in the up iteration.

(Relation of the e-~Relaxation Method and the Auction Algorithm.) Consider the assign-
ment problem of Fig. 5.1.1 having n sources, n sinks, and an arbitrary set A of source—
to—sink arcs. We say that source ¢ is assigned to sink j if (3, j) has positive flow. We
consider a version of the e-relaxation algorithm in which up iterations are organized as fol-
lows: between iterations (and also at initialization), only source nodes ¢ can have positive
surplus. Each iteration does the following: (1) finds any unassigned source i (i.e., one with
positive surplus), and performs an up iteration at ; and (2) takes the sink j to which 4
was consequently assigned, and performs an up iteration at j, even if j has zero surplus.
(If 7 has zero surplus, such an up iteration will consist of just a degenerate price rise; see
Exercise 3.4.)

More specifically, an iteration by an unassigned source ¢ works as follows: (a) Source
node 1 sets its price to p; + ai; + €, where j minimizes px + a:x + € over all k for which
(z,k) € A. It then sets f;; = 1, assigning itself to j. (b) Node 7 then raises its price to
p;» + azr + €, where j' minimizes px + aix + € for k # 7, (i,k) € A. (c) If sink j had a
previous assignment f;/; = 1, it breaks the assignment by setting f;s; := O (one can show
inductively that if this occurs, p; = py — a;r; + €). (d) Sink j then raises its price p; to

Di — Qij + € = pjr + a0 — ag; + 2€.

Show that the corresponding algorithm is equivalent to the sequential (Gauss—Seidel)
version of the auction algorithm.
(The Auction Algorithm with Similar Objects [BeC87].) Given the assignment problem
of Subsection 5.3.1, we say that two objects j and j’ are similar, and write j ~ j', if for
all persons 7 = 1,...,n, we have

j € A@) = j € AG) and aij = ajr.

For each object j, the set of all objects similar to j is called the similarity class of j and is
denoted M (j). Consider a variation of the auction algorithm that is the same as the one of
Subsection 5.3.1 except for one difference: in the bidding phase, w;;. is defined now as

Wijx = max Vij
JEA@R),JEM(G*)

(instead of wijx = MaxXjecac),j%j« Vij).- Show that, assuming the initial assignment S
satisfies e~CS together with the initial vector p defined by

Sec. 5.3 The ¢ — Relaxation Method 375

p; = min pg i=1,...,n
p] kEM(j)p’ J ’ 3 10

that is,

k‘é’%’(‘i){“i’“ —pr}—€<aij—pj, VGJES,

the same is true of the assignment and the vector p obtained at the end of each assignment
phase. Show also that the algorithm terminates finitely with an optimal assignment if
e<1/n.

3.7. (The Auction Algorithm for Network Problems with Unit Capacity Bounds.) Consider
the linear network flow problem (LNF) for the case where the feasible flow range of each
arc (3,7) is 0 < f;; < 1. Convert this problem into a transportation problem, as in Fig.
5.1.4 of Section 5.1, and describe the application of the auction algorithm of Exercise 3.6.

3.8. (The Auction Algorithm for Transportation Problems [BeC87].) Consider the assignment
problem. We say that two persons ¢ and i’ are similar, and write i ~ 4', if for all objects
j=1,..., N, we have

j € A@G) = jEAG) and aij = ayj.

The set of all persons similar to ¢ is called the similarity class of 3.

(a) Generalize the auction algorithm with similar objects given in Exercise 3.6 so that it
takes into account both similar persons and similar objects. Hint: Consider simulta-
neous bids by all persons in the same similarity class.

(b) Show how the algorithm of part (a) can be applied to transportation problems.

3.9. (The Auction Algorithm for Incomplete Assignment Problems.)

(a) Derive a variation of the auction algorithm for an assignment problem where the
number of persons m is greater than the number of objects n. All objects must be
assigned to distinct persons. Hint: Introduce m — n additional objects connected to
all persons with zero cost arcs. Use the auction algorithm with similar objects of
Exercise 3.7.

(b) Repeat part (a) for the case where m < n and all persons must be assigned to distinct
objects. Hint: Introduce n — m additional persons which are similar (cf. Exercise
3.8).

(c) Repeat part (b) for the case where a person need not be assigned to an object, that is,
the constraints of the problem are

Z fi; <1, Z fi; <1, fi; >0

JEA®) {ilj€ A}

3.10. (An Auction-Like Algorithm Based on the Alternating Direction Method.) Consider a
transportation problem of the form

376 Network Flow Problems Chap. 5

minimize E ai;j fij

@,5)€A
subject to
Zf,'j=a,-, Vi:l,...,m
JEOWM)
Zf,;j:ﬂj, Vj=1,...,n
1€1(j)

0< fi, VGJ)EA,
where for all ¢ and j,
o@) = {j| (7)€ A}, IG)={i| G,j) € A}.
Consider an iteration where we first calculate, for all sources ¢ in parallel,

{fst+ 1€ 0w}

. c _ 2
=arg __ min { > [(ai,- +pi®) fis + i(fij = fii®) + 3;(®))] } ,
jeow 1= | jeow
ij >
and then we calculate, for all sinks j in parallel,

pi(t + 1) = p; (@) + cg;(t + 1),

where for all j and t,

w0= g (3 - ﬂj)

1€I(H)

and d; is the number of sources in I(j). The initial flows f;;(0) and prices p;(0) are
arbitrary, and c is a positive constant. Show that this method is a special case of the
alternating direction method of multipliers of Subsection 3.4.4.

5.4 COMPLEXITY ANALYSIS OF THE <—RELAXATION METHOD AND
ITS SCALED VERSION

In this section, we derive a bound on the order of time taken by the e-relaxation
algorithm. We then introduce a scaled version of the method with a particularly favorable
time bound. Our analysis assumes the following:

Assumption 4.1. There exists at least one feasible solution of problem (LNF).

Sec. 5.4 Complexity Analysis of the e—Relaxation Method 377
Assumption 4.2. All arc cost coefficients are integer multiples of e.

Assumption 4.3. Al starting prices are integer multiples of ¢, all starting flows
are integer, and together they satisfy e~CS. Furthermore, initially there are no et-—
unblocked or e~—unblocked arcs.

To achieve the last property required in Assumption 4.3 we can simply take initially
fij = cij for all e*—balanced arcs (¢, j) and f;; = b;; for all e~—balanced arcs (i, 5), but
better choices may be possible in particular situations.

A notion that is central in the subsequent complexity analysis is the so called
admissible graph, which consists of the e*—unblocked arcs and of the e~ —unblocked
arcs with their directions reversed (i.e., the arcs along which flow is allowed to change
according to the rules of the algorithm, with each arc oriented in the direction of the
flow change). Formally, the admissible graph is defined as G* = (N, A*), where an arc
(4, 7) belongs to A* if and only if it is possible to “push” flow from ¢ to j without an
intervening price change according to the rules of the algorithm in Step 2 or 3. In other
words, A* contains an arc (4, 5) if either (4, j) is an eT—unblocked arc of A or (j,1) is
an e —unblocked arc of A. Note that the admissible graph depends on the current pair
(f, p) that satisfies e~CS and changes as the pair (f, p) changes during the course of the
algorithm. In particular, when flow is increased (or decreased) to the upper bound of
an et—unblocked arc in Step 2 (or the lower bound of an e~ —unblocked arc in Step 3,
respectively) of the up iteration, the arc is removed from A*. Furthermore, when there is
a price increase of a node ¢ during Step 4 of the up iteration, all the incident arcs of node
¢ that belonged to A* prior to the price increase are removed from A*, and the incident
arcs (4, 5) or (j,7) that become e*—unblocked or ¢~ —unblocked, respectively, following
the price increase [i.e., those for which the minimum in Eq. (3.5) is attained] are added
to A*.

To organize the computation efficiently, it is necessary to maintain the admissible
graph in a data structure. In particular, the incident arcs of each node ¢ that belong to the
admissible graph are maintained in a list L;, which is updated as necessary after each
execution of a Step 2, 3, or 4 of an up iteration. We assume that the list L, is organized
in a way that the addition and deletion of a single arc takes O(1) computation; this is
true, for example, if L; is a doubly linked list [Kru87]. Then it is seen that updating
L; at the end of Steps 2, 3, and 4 of the up iteration takes O(1), O(1), and O(d;) time,
respectively, where d; is the number of incident arcs of node i. As a result, updating the
list L; does not affect the order of time needed for these steps.

The role of the admissible graph can be understood in terms of the example of
Fig. 5.4.1. Here the admissible graph contains the cycle 2-3-2. As a result, arc flows
change along the cycle by small increments for a number of times that can be as large
as the arc flow bounds. We call this phenomenon flow looping. It can occur only when
the admissible graph has cycles. It does not arise when ¢ < 1/|N|, because then the
admissible graph is always acyclic. To see this, note that if there existed a cycle, then by
adding the condition for an e™—balanced or e~—balanced arc along the cycle, we obtain
that the sum of the arc costs of the e”—balanced arcs minus the sum of the arc costs of

378 Network Flow Problems Chap. 5

the e*—balanced arcs on the cycle equals ¢ times the number of arcs on the cycle. This
is impossible when the coefficients a;; are integer and € < 1/|N|. When ¢ > 1/|N|, it
is necessary to choose the initial flows and prices so that the admissible graph is initially
acyclic. Then all up iterations maintain the acyclicity of this graph, as will be shown in
the proof of Prop. 4.1. Assumption 4.3 guarantees that the admissible graph initially has
no arcs and is therefore trivially acyclic.

Supply =1

Feasible Flow Range = [0,1]

Cost = 2 Feasible Flow Range = [0,R]

Cost = —1

Feasible Flow Range = [0,1]
Cost=2

Feasible Flow Range = [0,R]
Cost = —1

R = Large integer
€e=1

Demand = 1

Figure 5.4.1 An example demonstrating the role of Assumption 4.3 on the initial condi-
tions. Initially, we choose f = 0 and p = 0, which do satisfy 1-CS, but not Assumption
4.3. The algorithm will push one unit of flow R times around the cycle 2-3-2, implying
Q(R) solution time.

In order to maintain the acyclicity of the admissible graph, we need a special
data structure and a restriction in the way the algorithm is operated. We introduce an
order for choosing nodes in iterations. A cycle is a set of iterations whereby all nodes
are chosen once in a given order, and an up iteration is executed at each node having
positive surplus at the time its turn comes. The order in which nodes are taken up in a
cycle can change from one cycle to the next. This node order is maintained in a linked
list that is traversed from the first to the last element in each cycle. Each time a node
1 changes price as a result of its up iteration within a cycle, node 7 is removed from its
present list position and is placed in the first list position. (This does not change the
order in which the remaining nodes are taken up in the current cycle; only the order for
the subsequent cycle is affected.) The initial list is arbitrary. It will be shown as part
of the proof of the subsequent Prop. 4.1 that with the above method for operating the
algorithm, the admissible graph is always acyclic.

Assumption 4.4. The algorithm is operated in cycles as described above.

The motivation for the linked list data structure is illustrated in Fig. 5.4.2, and is
based on the admissible graph, which is acyclic at all times and defines a partial order
on the nodes. Within any one cycle, and up to the point where a price change occurs,
flow can only be pushed from a higher ranking (first in the list) to a lower ranking node

Sec. 5.4 Complexity Analysis of the e-Relaxation Method 379

according to the order at the beginning of the cycle. Therefore, it is most efficient to
iterate on higher ranking nodes first. Choosing the lower ranking node first may be
wasteful since its surplus will be set to zero through an up iteration and can become
positive again within the same cycle through an up iteration at a higher ranking node;
this cannot happen if nodes are chosen according to the partial order induced by the
admissible graph. This order will be shown to be consistent with the order of nodes
in the linked list previously described. As a result, during a cycle, high ranking nodes
are taken up for iteration before low ranking nodes. This effect can be described as
sweeping the positive surplus along the admissible graph from top to bottom, so we call
the corresponding implementation of the e-relaxation method sweep implementation.

Figure 5.4.2 Illustration of the admissible

graph consisting of the ¢T—unblocked

arcs and the e~ —unblocked arcs with their

directions reversed. These arcs specify the

direction along which flow can be changed
Direction of sweeping according to the rules of the algorithm. A
“+” (or “—" or “0”) indicates a node with
positive (or negative or zero) surplus. The
algorithm is operated so that the admissible
graph is acyclic at all times. The sweep
implementation, based on the linked list
data structure, requires that the high ranking
nodes (e.g., nodes 1 and 2 in the graph) are
+ chosen for iteration before the low ranking

nodes (e.g., node 3 in the graph).

We begin the complexity analysis by introducing some notation and terminology.
For any path H, we denote by s(H) and t(H) the start and end nodes of H, respectively,
and by H* and H~ the sets of forward and backward arcs of H, respectively, as the
path is traversed in the direction from s(H) to t(H). For any price vector p and simple
path H, we define

dg(@) =max{0, Y (@i-pi—ay)— Y, (@i—p;—aiy)
(4,7)€EH* (Z,5)€EH~
4.1)

=max{ 0, pmy —Pumy — D, G+ Y, @
GEH GEH-

Note that the second term in the maximum can be viewed as a “reduced cost length of
H”, being the sum of the reduced costs p; — p; — a;; over all arcs (4,7) € HT less the
sum of p; — p; — a;; over all arcs (¢,7) € H~. For any flow vector f satisfying the
capacity constraints (1.2) we say that a simple path H is unblocked with respect to f if
we have f;; < ¢;; for all arcs (7,) € HT and we have fij > b;; forall arcs (4,7) € H™.
In words, H is unblocked with respect to f if there is margin for sending positive flow
along H (in addition to f) from s(H) to t(H) without violating the capacity constraints.

380 Network Flow Problems Chap. 5

For any price vector p and flow vector f satisfying both the conservation of flow
and the capacity constraints (1.1) and (1.2), denote

D(p, f) = max{dg(p) | H is a simple unblocked path with respect to f oo @2

In the exceptional case where there is no simple unblocked path with respect to f, we
define D(p, f) = 0. In this case, we must have b;; = c;; for all (3, j) since any arc (4, 5)
with b;; < c;; gives rise to a one—arc unblocked path with respect to f.

Let

B(p) = min{D(p, f) | f satisfies constraints (1.1) and (1.2)}. “4.3)

Since for a given p, there is only a finite number of values that D(p, f) can take, it
follows that the minimum in Eq. (4.3) is attained by some f. The following lemma
shows that 3(p) provides a measure of suboptimality of the price vector p. The solution
time estimate for the algorithm to be obtained shortly is proportional to 3(p°), where p°
is the initial price vector:

Lemma 4.1.

(@) If there exists a flow vector f satisfying the conservation of flow and the capacity
constraints (1.1) and (1.2), and satisfying v—CS together with p for some v > 0,
then

0 < B < (N[- 1)y. 4.4

(b) p is dual optimal if and only if 8(p) = 0.
Proof.

(@) For each simple path H that is unblocked with respect to f and has |H| arcs, we
have, by adding the y—CS condition along H and using Eq. (4.1), dg(p) < |H|y <
(IN] = 1)y and the result follows from Egs. (4.2) and (4.3).

(b) If p is optimal, then it satisfies complementary slackness together with some primal
optimal vector f, so from Eq. (4.4) (with v = 0), we obtain 3(p) = 0. Conversely,
if B(p) = 0, then from Eq. (4.3), we see that there must exist a primal feasible f
such that D(p, f) = 0. Hence, dy(p) = 0 for all unblocked simple paths H with
respect to f. Applying this fact to single-arc paths H and using the definition
(4.1), we obtain that f together with p satisfy complementary slackness. It follows
that p and f satisfy all the optimality conditions (1.8)—(1.11), and p is optimal.
Q.E.D.

Proposition 4.1. Under Assumptions 4.1 — 4.4, the e-relaxation algorithm ter-
minates in O(|N|® + [N]?8(p°)/€) time, where p° is the initial price vector.

Sec. 5.4 Complexity Analysis of the e-Relaxation Method 381

Proof. To economize on notation, we write 3 in place of 3(p°). We first show the
following:

Lemma 4.2. The number of price increases at each node is O(|N| + (/e).

Proof. Let f° be a flow vector attaining the minimum in the definition (4.3) of
B(®°). To explain the main argument better, we assume that f° is the zero vector.
This can be done without loss of generality because we can transform the problem by
replacing c;j, bij, fi; and s; by cij — f, bij — fij, fij — f7; and O, respectively. The
transformation does not change the surplus of any node, and does not change the prices
generated by the algorithm. Let (f,p) be a vector pair generated by the algorithm. If
g¢ > 0 for some node ¢, there must exist a node s with g, < 0 and a simple path H
with s(H) = s, ¢(H) = t, and such that f;; > 0 for all (¢, j) € H* and f;; <O for all
(i,5) € H~. [This follows from the Conformal Realization Theorem (Appendix B). It
can also be shown quickly from first principles: take Tp = {t¢}, and given T}, define

Tisr1 =T U {j ¢ Ty| there is a node ¢ € Ty,

and either an arc (4, j) such that f;; <0, or an arc (j,7) such that f;; > 0}.

If none of the negative surplus nodes belongs to any of the T}, then the total surplus of
the nodes in UT}, is positive, while the forward arcs of the arc set separating UT}, and its
complement have nonnegative flow and the backward arcs have nonpositive flow. This
is a contradiction, showing that a node s with g, < O and the aforementioned properties
can be found.]

We thus conclude that the path H is unblocked with respect to f°. Hence, from
Eq. (4.2), we must have dg(p°) < D(p°, f%) = 3, and by using Eq. (4.1),

R-p- Y a;+ Y a;<p (4.5)

(. EHT (HEH—

Also, using e~CS, we have p; + a;; < p; + e forall (5,7) € HY and p; < pj + ai5 + ¢
for all (z,j) € H™. By adding these conditions along H, we obtain

—petpt Y, ai— Y, a; < |Hle<(N|-1De 4.6)
(4,5)EHT (i,5)€EH~

where |H| is the number of arcs of H. We have p? = p, since the condition g, < 0
implies that the price of s has not yet changed. Therefore, by adding Eqgs. (4.5) and
(4.6), we obtain

pe=p <(N|-De+p @7

throughout the algorithm for all nodes t with g; > 0. Since all the starting prices and
arc cost coefficients are integer multiples of ¢, it follows that the size of a price increase

382 Network Flow Problems Chap. 5

is a positive integer multiple of ¢, and we see from Eq. (4.7) that the number of price
increases of each node is O(|N| + 8/¢). Q.E.D.

Note that the price bound (4.7) ensures that an infeasible problem instance can be
detected by checking whether the total price rise of any node exceeds a known upper
bound to (|N| — 1)e + 8.

We now proceed with the proof of Prop. 4. l The dominant computanona.l require-
ments are:

(1) The computation required for price increases in Step 4.

(2) The computation required for Steps 2 or 3. for which the flow of the corresponding
arc is set to its upper or its lower bound.

(3) The computation required for Steps 2 or 3 for which the flow of the corresponding
arc is set to a value strictly between its upper and its lower bound.

We first make the general observation that by using the lists L; that hold the arcs
of the admissible graph, the computation time to examine any one arc in the algorithm
is O(1). In particular, the time to execute .Steps 1, 2, 3, and 4 (including the updating
of the lists L;) is O(1), O(1), O(1), and O(d;), respectively, where d; is the number of
incident arcs of the node ¢ iterated on. Since there are O(|N| + 3/¢) price increases for
each node, the requirements in (1) above are O (|A|(|N| + 3/ €)) operations. Whenever
an arc flow is set to either the upper or the lower bound due to an iteration at one of the
end nodes, it takes a price increase of at least 2¢ by the opposite end node before the arc
flow can change again. Therefore, there are O(|N|+ 3/¢) Steps 2 or 3 per arc for which
the flow of the arc is set to its upper or lower bound. The computation time for each
of these steps is O(1), so the total requirements for (2) above are O (|A|(|N| + B/e))
operations.

There remains to estimate the computational requlrements for (3) above. At this
point, we will use the fact that the algorithm is operated in cycles with the node order in
each cycle determined by a linked list that is restructured in the course of the algorithm,
as described earlier. We will demonstrate that the number of cycles up to termination
is O(|N|(IN| + 8 /€)). Given this, the proof of Prop. 4.2 can be completed as follows:
for each cycle, there can only be one arc flow per node set to a value strictly between
the upper and lower arc flow bound in Step 2 or 3. Therefore the total number of
operations required for these steps [cf. (3) above] is O(|N|2(|N| + 8/e)). Adding the
computational requirements for (1) and (2) calculated earlier, we obtain an O ([N [>(|N|+
B/€)) + O(JA|(IN| + B/¢)) or O(IN|*(IN| + B/e)) time bound.

To show that the number of cycles up to termination is O (|N|(|N| + 8/e)), we
use the admissible graph G* = (N, A*) and we argue as follows: a node i is called
a predecessor of a node j if a directed path exists from 4 to j in G*. First, we claim
that immediately following a price rise at node j, there are no arcs (i, j) in A* that are
incoming to j, and hence j has no predecessors. To see this, note that if (¢,j) € A
is et-balanced after the price change, it must have been e-active beforehand, and,

Sec. 5.4 Complexity Analysis of the e—Relaxation Method 383

hence, f;; = c;;, implying that (z,7) is not in A*. The e~ -balanced case is similar,
establishing the claim. We next claim that G* is always acyclic. This is true initially
because Assumption 4.3 implies that A* is empty. Flow change operations (Steps 2 and
3) can only remove arcs from A*, so G* can acquire a cycle only immediately after
a price rise at some node j, and the cycle must include that node. But since j must
then have no incoming incident arcs in the admissible graph, no such cycle is possible.
This establishes the second claim. Finally, we claim that the node list maintained by
the algorithm will always be compatible with the partial order induced by G*, in the
sense that every node will always appear in the list after all its predecessors. Again
this is initially true because A* starts out empty. Furthermore a flow change operation
does not create new predecessor relationships, while after the price of some node i rises,
¢ can have no predecessors and is moved to the head of the list before any possible
descendants. This establishes the claim.

Let Nt be the set of nodes with positive surplus that have no predecessor with
positive surplus, and let N° be the set of nodes with nonpositive surplus that have no
predecessor with positive surplus. Then, as long as no price increase takes place, all
nodes in N° remain in N, and execution of a complete up iteration at a node ; € N*
moves i from N+ to N°. If no node changed price during a cycle, then all nodes of N+
will be added to N? by the end of the cycle, which implies that the algorithm terminates.
Therefore, there will be a node price change during every cycle except possibly for the
last one. Since the number of price increases per node is O(|N| + 3/e), there can be
only O(|N|(IN| + B/e)) cycles, leading to an O(|N|*(|N| + B/¢)) overall time bound
based on the argument given earlier. Q.E.D.

An upper bound for 3(p°) is given by (|N| — 1)C + p™ — p~, where

+ — 0
= maxp;,

P iEN

= <0
= minp;
p ten b
and C is the arc cost range:

C = max |a;;l. 4.8
oA |ai;] 4.8)

Assuming that p* — p~ = O(1), we obtain the time bound O (|N|*C'/€). The algorithm
is indeed sensitive to C, as shown in the example of Fig. 5.4.3.

Application to the Max—Flow Problem

For classes of problems with special structure, a better estimate of 3(3°) may be possible.
As an example, consider the max—flow problem formulation shown in Fig. 5.1.2. The
artificial arc (¢, s) connecting the sink ¢ with the source s has cost coefficient —1, and flow
bounds §;s = 0and ¢;s =), c5;. We assume that a;; = 0 and b;; = 0 < ¢;; for all other
arcs (1, j), and that s; = O for all . We apply the e-relaxation algorithm with initial prices

384 Network Flow Problems Chap. 5

3,,=0

Flow range for arcs:
Arc (1,2): [0,2]
Arc (2,3): [0,1]
3,3 =C Arc(3,1): [0,1]

a3,=1-C

(a) Problem data

p=0
(c) Flows and prices after first
iteration at node 1

p=0 p=0
(d) Flows and prices after second (e) Flows and prices after third
iteration at node 2 iteration at node 1

Figure 5.4.3 Example showing that the pure form of the algorithm can take time that
is proportional to the cost-dependent factor C. Here up iterations at node 1 alternate
with up iterations at node 2 until the time when p; rises to the level C — 1 =+ € and arc
(3.1) becomes ¢ ~-balanced, so that a unit of flow can be pushed back along that arc. At
this time, the optimal solution is obtained. Since prices rise by increments of no more
than 2e, the number of up iterations is $(C/e).

and arc flows satisfying e-CS, where € = 1/(|N| + 1) and p* — p~ = O(1). Because
there is only one arc that has nonzero (—1) cost coefficient, we obtain d #®%) = O(1)
for all paths H. Therefore, 8(p°) = O(1) and Prop. 4.1 yields an O(|N|*) time bound.
This bound is competitive with that of other max—flow algorithms [PaS82], and can only
be improved through the use of sophisticated data structures [GoT86], [AhO86].

5.4.1 The Scaled Version of the Algorithm
Since the algorithm is sensitive to the arc cost range C, it is natural to consider cost

scaling procedures involving solution of a sequence of approximations to the original
problem, gradually increasing the accuracy of the cost coefficient data.

Sec. 5.4 Complexity Analysis of the e—Relaxation Method 385

Consider the problem obtained from (LNF) by multiplying all arc cost coefficients
by |N| + 1, that is, the problem with arc cost coefficients

a;j = (|N| + Dayj, V (3,75) € A.

We refer to this problem as (SNLF). If a pair (f', p’) satisfies 1-CS (namely, e-CS with
€ = 1) with respect to (SLNF), then clearly the pair

_ / p’
(f,p) = (f’|N|+1>

satifies (|N| + 1)~!-CS with respect to (LNF), and hence f’ is optimal for (LNF) by
Prop. 4.1. In the scaled algorithm, we seek a 1-CS solution to (SLNF).
Let

M = [log,(|N| + 1)C] + 1 = O(log(|N|C)), 4.9)

where C' = max; j)ea |ai;|.- In the scaled algorithm, we solve M subproblems. The
mith subproblem is a minimum cost flow problem, where the cost coefficient of each arc

G, 5) is

!
a:;(m) = Trunc (5 ;’jm> , (4.10)

where Trunc(-) denotes integer rounding in the direction of 0, that is, down for positive
and up for negative numbers. Note that |a;;(m)| is the integer consisting of the m most
significant bits in the M-bit binary representation of |a;;|. In particular each a;;(1) is O,
+1, or —1, while a;;(m+1) is obtained by doubling a;;(m) and adding (subtracting) 1 if
the (m + 1)st bit of the M-bit representation of |a;;| is a 1 and a;; is positive (negative).
Note also that

ai(M) = aj;,
so the last problem of the sequence is (SLNF).

All problems in the sequence are solved by applying the e-relaxation algorithm
using € = 1, yielding upon termination a pair (fi(m), pt(m)) satisfying 1-CS with respect
to the cost coefficients a;;(m). The algorithm is operated in cycles as per Assumption
44.

The starting pair (f°(1),p"(1)) for the first problem must be integer and must
satisfy 1-CS. The starting price vector for the (m 4+ 1)st problem (m = 1,2,..., M —1) is

p°(m + 1) = 2p'(m), 4.11)

where pt(m) is the final price vector obtained from solution of the mth problem. Doubling
p'(m) as above roughly maintains complementary slackness since a;;(m) is roughly

386 Network Flow Problems Chap. 5

doubled when passing to the (m + 1)st problem. Indeed, it can be seen that every arc
that was 1-balanced (l-active, 1-inactive) upon termination of the algorithm for the
mth problem will be 3-balanced (l1-active, 1-inactive, respectively) at the start of the
(m + 1)st problem.

The starting flow vector fO(m + 1) for the (m + 1)st problem is obtained from the
final flow vector f*(m) of the preceding problem by setting

fm+1) = fi;(m) for all balanced arcs (i,),
wm+ 1) =cy; for all active arcs (i, 5),

%(m + 1) =b;; for all inactive arcs (7, 7).

(The definitions of balanced, active, and inactive arcs used above are those given in
Section 5.2, that is, they correspond to ¢ = 0.) Note that this initialization method
implies that the starting price and flow vector will be integer, and that there will be no
1*—unblocked and 1~ -unblocked arcs initially for the (mm + 1)st problem. These facts
guarantee that Assumptions 4.2 and 4.3 are satisfied for the subproblems. A more refined
initial flow vector choice for the subproblems is given in Exercise 4.1.

Based on Prop. 4.1, the scaled form of the algorithm solves the problem in O(| N |>+
|N|?>B) time, where

M
B=Y Ba[p"(m)], (4.12)

m=1

and G,,(-) is defined by Egs. (4.1)~(4.3) but with the modified cost coefficients a;j(m)
replacing a;; in the definition (4.1). We will show that 3,,[p°(m)] = O(|N|) for every
m, thereby obtaining the following proposition:

Proposition 4.2. Assume that for the initial subproblem, Assumptions 4.1-4.3
are satisfied and that p{ — p(])- = O(1) for all arcs (z, 5). The scaled form of the algorithm

solves the problem in O (|N|*log(|V|C)) time, where C' = max jc 4 |as;]-

Proof. Since initially we have p; —p; = O(1) and a;;(1) = O(1) for all arcs (3, 5),
we obtain dy (p°(1)) = O(|N|) for all H, and B, [p°(1)] = O(|N|). We also have that
the final flow vector f*(m) obtained from the mth problem satisfies constraints (1.1) and
(1.2), and together with p°(m + 1) it can be seen to satisfy 3-CS. It follows from Lemma
4.1(a) that B4 [p°(m + 1)] < 3(N| = 1) = O(|N|) and the result follows from Eq.
(4.12) as discussed above. Q.E.D.

5.4.2 Application to the Assignment Problem
Consider the special case of the assignment problem shown in Fig. 5.1.1, with the feasible

flow range for all arcs taken to be [0,1]. Since all flows generated by the algorithm
are integer, it follows that at no Step 2 or 3 of the e-relaxation method, an arc flow

Sec. 5.4 Complexity Analysis of the e—Relaxation Method 387

is set strictly between the corresponding upper and the lower bound. Therefore, the
computation required for such steps can be eliminated from the accounting of the proof
of Prop. 4.1 leading to a time bound O (|A|(|N|+ 8(p°)/e)) for the e-relaxation method
and O(|A||N|log(|N|C)) for the scaled version.

The auction algorithm described in the previous section can also be shown to have
an O(|A|(IN| + B(°)/€)) time bound in its pure form and an O(]A||N|log(|N|C))
bound in its scaled version. This can be done by first modifying the proof of Lemma 4.2
to show that the number of times the profit margin of each person decreases or the price
of each object increases is O (|N|+ B(p°)/€). Then, one uses the argument of the proof
of Prop. 4.2 while excluding from the time accounting the computation for steps for
which an arc flow is set strictly between the upper and lower bounds. Note here that to
achieve the stated time bound, it is still necessary to maintain the arcs of the admissible
graph in appropriate lists, one per person and one per object. For an unassigned person
i, this list consists of the arcs (¢, j) for which 7; = maxgeaw{aix — Pr} = asj — pjs
and person ¢ can detect at the start of an iteration if its list contains more than one arc.
The iterations in which this happens are the ones for which the profit margin 7; does not
change. In such an iteration, it can be seen that the bid b;;- of Eq. (3.14) is simply p;- +¢€
and can be calculated in O(1) time. With this observation, the complexity analysis of the
auction algorithm closely parallels the one of the e-relaxation method (see also [BeE88]).
Note, however, that maintaining the lists of arcs of the admissible graph, while useful
for theoretical analysis purposes, can actually slow down the algorithm in practice.

Computational experience has shown that the serial scaled version of the auction
algorithm performs very well, outperforming some highly efficient implementations of
alternative methods. There is also some experience with parallel implementations of the
auction algorithm in shared memory machines showing a modest speedup of up to about
ten over the serial version of the algorithm. This is probably the maximum speedup that
can be expected from a parallel version of the auction algorithm, because near termination
there are typically very few persons that are unassigned thereby diminishing the method’s
potential for concurrency.

We finally mention that it is possible to combine the auction algorithm with the
primal—dual method (Exercises 2.4 and 3.8) with the purpose of improving its serial time
bound. This method is described in Exercise 4.5 and takes time O (|A[|N |2 log(|N |0)).
Its practical performance, however, does not appear to be better than the performance of
the pure auction algorithm with scaling.

An Example of Poor Performance of the <—Relaxation Method

In spite of the good theoretical time bound obtained for the scaled e-relaxation method,
there are problems where it can perform poorly compared with alternative methods. In
particular, there is sometimes a tendency for each node to make a large number of small
price rises, and the actual amount of work involved in price rises is then of the same
order as its theoretical bound. Figure 5.4.4 presents an example of such behavior. It is
an assignment problem with 2n nodes, nodes sy, ..., s, being persons and ¢y, ..., t,, being
objects. The arcs are (si,) for k = 1,...,n, and (sg,try1) for k =1,....,n — 1. All
arcs have unit capacity and zero cost. The problem may also be viewed as a max—flow

388 Network Flow Problems Chap. 5

problem by adjoining a “super source” node s and arcs (s, sx), along with a “super sink”
node ¢ and arcs (tx,). Suppose that the (scaled or pure) e-relaxation algorithm is applied
to the assignment version of this example, with € = 1, initial node order 1,2, ...,n, and
the rule that whenever it is possible to push flow away from a node on more than one
arc, the one that is uppermost in Fig. 5.4.4 is selected. After the first n price rises, the
prices and flows will be as shown in Fig. 5.4.5(a).

S
Figure 5.4.4 An assignment example

i which the number of price changes
e a required by the e-relaxation method is

proportional to |IV|?. Note that the only
° G feasible solution has each sy, assigned to
the corresponding tj.

@@ Tomm—c)
& @ & @

(a) (b)
Figure 5.4.5 (a) The assignment example after n price rises. Prices are shown next to

the corresponding node. Only arcs with positive flow are depicted. (b) The intermediate
result after (n — 1)2 + 1 price rises.

Claim. The e-relaxation algorithm as applied to the example of Fig. 5.4.4 re-
quires n? price rises. The final price of node s;, is 2k — 1, and that of ¢, is 2k — 2.

Proof. By induction. When n = 1, a single price rise at s; and the ensuing flow
adjustment yield a solution in which s, has price 1, ¢; has price 0, and s, is assigned to
t;. This establishes the base case of the induction. Now assume the claim is true for the
problem of size n — 1; we establish it for the problem of size n. After n price rises, the
configuration of Fig. 5.4.5(a) will be attained. This leaves nodes s, ..., s, and t,, ..., ¢,
in precisely the same state as after n — 1 price changes in a problem of size n — 1. By
induction, after another

m=1P-m-1D=n2=3n+2

Sec. 5.4 Complexity Analysis of the e~Relaxation Method 389

price changes, the algorithm reaches the configuration of Fig. 5.4.5(b). Following the
rules of e-relaxation, the reader can confirm that the sequence of nodes now iterated
on is ¢y, 83,13, 83, ... ,tn, Sp, and the promised prices are obtained after 2(n — 1) further
price rises. Following this, the nodes are processed in the opposite order, and a primal
feasible solution is obtained in 2n additional iterations (but no further price rises). The
total number of price changes is

n+m*—=3n+2)+2n—1)=n’
This establishes the induction. Q.E.D.

The total number of nodes in the example is | N| = 2n; hence the number of price
changes is (|N|/2)* = |[N|?/4 = Q(|N]?), and increases with |N| at the same rate as
its theoretical bound. Since all arc costs are zero, scaling cannot be of any help in this
situation. Note also that there is little opportunity for parallelism here, because there is
never more than one node with a positive surplus at any time after the first n iterations.

It can be verified that the auction algorithm performs much better than the e—
relaxation method for the preceding example, requiring only O(n) iterations in its Gauss—
Seidel version (Exercise 4.3).

EXERCISES

4.1. Consider a variation of the initial flow vector choice for the subproblems of the scaled method
of Subsection 5.4.1, whereby the flow of each arc (¢, ;) that belonged to the admissible graph
at the end of the previous subproblem, and which is 1-balanced at the start of the current
subproblem, is left unchanged, that is, f?j(m +1) = ffj(m). Show that the estimate of
Prop. 4.2 remains unchanged.

4.2. (Time Bound for the Multiple Node Relaxation Method.) Consider the multiple node
relaxation method of Section 5.2, where iterations start only from nodes with positive surplus.

(a) Use an argument similar to the one of Lemma 4.2 to show that the number of iterations
that result in a price increase is O(IN Iﬁ(po)), and, therefore, the total amount of

time to solve the problem is O(lN I,B(pO)F), where F is the amount of time for
flow augmentations between two successive price increases. [If nodes are scanned
in the order they are labeled, it is possible to show that F' = O(|N |5); see [PaS82]
and [Law76]. With a more sophisticated implementation, F' can be reduced further
considerably.]
(b) Show that if cost scaling is used as described in this section, the time estimate becomes
O(N*Flog C).
4.3. Apply the Gauss-Seidel version of the auction algorithm to the example of Fig. 5.4.4 and
show that it requires O(n) price increases.

4.4. (c—Scaling.) Consider the assignment problem. An alternative to the cost scaling procedure
given in this section is to apply the auction algorithm for a decreasing sequence {ex} of
values of €, while transferring price and assignment information from one application to

390 . Network Flow Problems Chap. 5

the next. The general form of this procedure is as follows: initially, we replace all arc
cost coefficients a;; with aéj = (n + 1)a;j, we select a scalar § € (0,1), we set o =
max,jea |aj;|, and for k = 1,2,... we set ex = [fex—1]. We apply the auction algorithm
for k =0,1,...,k with ¢ = ¢x, where k is the first integer k for which ¢x = 1. (Note here
that the admissible graph should be maintained in appropriate lists, as discussed in Subsection
5.4.2.) Let p* and S* be the price vector and complete assignment, respectively, obtained at
the end of the kth application of the algorithm. The starting price vector and assignment for
the (k + 1)st application of the algorithm are p* and {(i,j) € S* | nF —ery1 < aij —pf },
respectively, where #¥ is the profit margin of i corresponding to p®. The starting price
vector and assignment for the initial application of the algorithm must satisfy €’—CS. Show
that the algorithm finds an optimal assignment in O(nlAl log(nC)) time.

4.5. (Hybrid Auction Algorithm with Running Time O (n'/?|A|log(nC)) [AhO87].) This
exercise shows how the auction algorithm can be combined with a more traditional primal-
dual method to obtain an algorithm with an improved running time bound. The auction
algorithm is used to assign the first n — O (nl/ 2) persons and the primal-dual method is
used to assign the rest. Consider the solution of the assignment problem by the Gauss—Seidel
variant of the scaled auction algorithm (¢ = 1 throughout).

(a) Extend Lemma 4.2 to show that in any subproblem of the scaled auction algorithm
we have > = I(w? — ;) < 8en, where I is the set of unassigned persons, 7y =
max;e Ae) {ai,- - p(} } and p° is the vector of prices prevailing at the outset of the
subproblem.

(b) Suppose that at the outset of each subproblem we use a modified Gauss—Seidel auction
procedure in which only persons ¢ with profit margins 7; greater than or equal to
70 —(8n)!/?¢ are allowed to place bids. Show that this procedure can be implemented
so that at most (8n)'/? + 1 iterations are performed at each person node 4, and that it
terminates in O(n'/2|A|) time. Furthermore the number of unassigned persons after
termination is at most (8n)'/2.

(c) Assume that there exists some algorithm X which, given an incomplete assignment
S and a price vector p obeying e~CS, produces a new pair (S’, p’) obeying e~CS in
O(|A|) time, with S’ containing one more assignment than S (Exercise 3.3 indicates
how such an algorithm may be constructed). Outline how one would construct an
O (n'/?| A|log(nC)) assignment algorithm.

5.5 NETWORK FLOW PROBLEMS WITH STRICTLY CONVEX COST

We now consider the nonlinear cost version of the problem of the past four sections:

minimize Z ‘a(fij) (CNF)
(,5)EA
subject to
S fu- Y. fu=s, VieN, .1
{ilG.HeA} {ilG.heA}
bi; < fi; < cij, Y (4,j) € A. (5.2)

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 391

The difference from the linear cost problem (LNF) is that in place of the linear arc
cost functions a;; f;;, we now have the nonlinear cost functions a;;(fij). We make the
following assumption:

Assumption S.1. (Strict Convexity) The functions a;;(-), (i,7) € A, are strictly
convex real-valued functions, and problem (CNF) has at least one feasible solution.

Assumption 5.1 implies that (CNF) has a unique optimal solution. To see this note
that existence of a solution follows from the Weierstrass theorem (Prop. A.8 in Appendix
A), since the cost function is continuous (being real-valued and convex; Prop. A.36 in
Appendix A), and the constraint set of Eqs. (5.1) and (5.2) is compact. Uniqueness
follows from the strict convexity of the cost function [Prop. A.35(g) in Appendix Al.

As in the linear cost case, we will develop an unconstrained dual problem involving
a dual variable or price for each node. There is a fundamental difference, however,
because the strict convexity of the arc cost functions implies differentiability of the dual
cost as demonstrated at the end of Appendix C, and as will also be shown shortly. As
a result, the relaxation method for the dual problem encounters none of the difficulties
with corner points that were addressed in the previous sections.

Problem (CNF) and the analysis outlined above admit considerable extension. One
possibility is to eliminate the upper bounds c;; and/or the lower bounds b;;, and replace
them by growth conditions on the arc cost functions (see the analysis later in this section).
A more substantial extension is to allow the cost function to be nonseparable and/or to
replace the network conservation of flow constraints (5.1) with more general linear con-
straints (see Exercise 5.1). Still, as long as the corresponding dual cost is differentiable,
the application of relaxation methods is straightforward. The degree of parallelism af-
forded by these methods, however, depends on the dependency graph associated with
the relaxation method for the dual problem (Subsection 1.2.4), and is greatly affected by
the structure of the linear constraints.

The Dual Problem

The formulation of the dual problem for (CNF) is similar to the formulation of Section
5.1 (see also Appendix C). The Lagrangian function is given by

LD = Y a5fid+d p| Y, fu- D fyts

(i,J)EA iEN {7lG,HeA} {jlG,5eA} (5.3)
= Z (as;(fij) + 05 — P fi) + Z SiPi-
(Z,5)€A iEN

The dual function value ¢(p) at a price vector p is obtained by minimizing L(f,p) over
all f satisfying the capacity constraints (5.2). This leads to the dual problem

maximize q(p) 54

subject to no constraint on p,

392 Network Flow Problems Chap. 5

with the dual functional ¢ given by

i@ =, min LEP= D a@i-p)+) sipn (5.52)
(,J)EA (%,J)EA iEN
where
4P —pp) =, min {ai(fij) = @i =P fis}- (5.5b)

The minimization in the definition (5.5b) of g;; involves a continuous function
and a compact constraint set. Therefore, the minimum is attained (Weierstrass’ theorem
given as Prop. A.8 in Appendix A), and it follows that g¢;; is real-valued. Note also
that ¢;; is concave as it is the pointwise minimum of linear functions [Prop. A.35(d) in
Appendix A]. The form of g;; is illustrated in Fig. 5.5.1.

Primal arc cost Dual arc cost g;;(p; — p;)
Slope = b,-,
-
|
!
|
. .
byj G fi P; =P
Slope =¢;;
4
Slope = —b;;
-
| Slope = —d;
|
I
| |
¢ 4
b 4 G fi P =p;
Slope = — ¢;;

Figure 5.5.1 Illustration of primal and dual arc cost function pairs. Points where the
primal function is nondifferentiable correspond to linear segments of the dual function.

The necessary and sufficient conditions for a pair (f,p) to be primal and dual
optimal are given by the Duality Theorem in Appendix C. When specialized to our
problem, these conditions are similar to (and indeed generalize) the conditions of Prop.

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 393

1.1 for the linear cost problem (LNF). There is the primal feasibility condition that the
surplus of each node i should be zero:

g= Y. fii— Y. fy+s=0 VieN. (5.6)

{ilG,HeA} {5l HeA}

The role of the cost coefficients a;; of the linear cost problem is played by the right and
left derivatives of the arc cost functions defined by

aF(fip) = l}i{,‘ a;;(fij + 52 - aij(fij),

_ i (fij) = aij(fi; — 6)
az](f”) — lﬂg J\J g 5 YAYKN] .

The generalization of the complementary slackness (CS) conditions for a flow—price

vector pair (f,p) is that f;; attains the minimum in the definition (5.5b) of g;; for all
arcs (z, j) (see the Duality Theorem in Appendix C). Thus, denoting

tij = Pi — Pj,

these conditions take the following form, which generalizes the corresponding CS con-
ditions (1.9)—(1.11) for the linear cost problem:

tiy <afby) = fij =byj, 6.7
tij = a;(ci;) = fij = ¢y, (5.8)
afi(bi) <ti; <aglci) = by < fij<cy, and a;(fij) < ti; < afi(fi), (5.9)
as illustrated in Fig. 5.5.2. A key observation is that because of the strict convexity
of a;;, for each price differential ¢;; = p; — p; there is a unique flow fi; attaining the
minimum in the definition (5.5b) of ¢;;, and satisfying the CS conditions. It will be

shown shortly [Lemma 5.1(d) to follow] that this unique arc flow is equal to minus the
derivative of the dual arc cost at t;;, that is,

fi; and t;; satisfy the CS conditions (5.7)~(5.9) <= fi; = =V (tij).
: (5.10)
This fact will be of central importance in the relaxation algorithm to be described shortly.
By using the Lagrange Multiplier and Duality Theorems of Appendix C, we obtain:

Proposition 5.1. Let Assumption 5.1 hold:

(@) A flow vector f is primal optimal if and only if f is primal feasible and there
exists a price vector p satisfying together with f the CS conditions (5.7)—(5.9).

394 Network Flow Problems Chap. 5

Primal arc cost

S e
o
h

i

(a)

4= Pi—P;

g —— ———————
va; in the interval (d,,c;;)
8+,l(d”) ______ : if Uiad/
| Figure 5.5.2 Illustration of the CS
) —— — — — } conditions for the case where b;; < c;;.

. . (a) A primal cost function with a single

11— V4, intheinterval (b;,d;) point of nondifferentiability in the interval

(bij,cij). (b) For CS to be satisfied, the

pair of f;; and ¢;; should lie on the

b a; Gij f diagram. Note that, because a;; is strictly
convex, the gradient Va,;; is monotonically
increasing and there is a unique f;;

(b) corresponding to each t;;.

T

a+/i(b’i)

> —

(b) For every dual optimal solution p*, we have

@)= > ai(f),

(Z,5)€A

where f* = {f}; | (3,j) € A} is the unique optimal flow vector. Furthermore,
there exists at least one dual optimal solution.

(c¢) A flow vector f and a price vector p are primal and dual optimal, respectively, for
(CNF) if and only if they satisfy primal feasibility and the CS conditions (5.7)-
(5.9).

The proofs of the theorems of Appendix C require differentiability of the primal
cost function. For the problem of this section, however, a fairly simple proof that does
not require differentiability is possible (see Exercise 5.6).

From the definition of the dual function (5.5), it is seen (using the fact), en $i =0,
which is a requirement for feasibility) that if {p} | ¢ € N} is an optimal set of prices,
the same is true for {p} + ¢ | ¢ € N}, where c is any constant. Therefore, Prop.
5.1(b) shows that the dual problem has an infinite number of solutions. This implies in

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 395

particular that the dual function g is not strictly concave. In fact, it can be seen through
simple examples (compare with Fig. 5.5.1) that ¢ need not be strictly concave along any
single coordinate direction, so the convergence analysis of the Jacobi and Gauss—Seidel
methods for maximizing g (cf. Section 3.2) does not apply.

The Gradient of the Dual Function

According to the Dual Function Differentiability Theorem of Appendix C, the strict
convexity of the primal cost implies differentiability of the dual function g. We provide
a simple independent proof of this property and we derive the form of the gradient Vq.

- The relation between the primal and dual arc cost functions a;; and g;; is a special
case of a conjugacy relation that is cenfral in the theory of convex functions ([Roc70],
[Roc84], and [StW70]). More precisely, —g;;(t;;) is the conjugate convex function of
the extended real-valued function @;;(f;;) given by

= e Jaig(fi), if by < fiy < cij
%ij (_f”)= { +00, otherwise. (.11

Several interesting facts regarding the relation of a;; and g¢;;, including the differentiabil-
ity of g;;, can be obtained by appealing to the theory of conjugate convex functions. To
keep the presentation simple, however, we prove only the facts needed for our analysis
in the following lemma: '

Lemma 5.1. Let a;;(-) be a strictly convex real-valued function. Then a;;(-) and
the function ’

- gij(ti) = bijsf?ii]nSCij {aij(fij) — ti; fi5} (5.12)

[cf. Eq. (5.5b)] are related by

ey ae =) aii(fig), i by < fi <cij
St‘:f{ng(tu)+twfu} = { +oo, otherwise. (5.13)

Furthermore, ¢;; is differentiable, and the following statements are equivalent for two
scalars t;; and f;; € [bij,gij]:

@) t55fi; = as;(fi5) — qij(tsj).

(b) f;; attains the minimum in Eq. (5.12).

(c) t;; attains the supremum in Eq. (5.13).

d) Vgi;(ti;) = - fij.

(e) fi; and t;; satisfy the CS conditions (5.7)—(5.9).

Proof. Figure 5.5.3 sketches a proof of Eq. (5.13); it is left for the reader to com-
plete the details. From Eq. (5.12) we see that (b) is equivalent with (a). Similarly, from

396

q”(T,/-) = min {alj(fli) - t,-if;/-

(a)

by <f; <c; }

Slope = G
> max { (1) + 4,7, }
ty
atey) qlg;) + g8

'

|

It

(b)
9 (t;) + 58
|
|
|
|
I
|
|
|
4
fi
Slope = L
/) a(5;)
(c)

Network Flow Problems Chap. 5

Figure 5.5.3 Sketch of the proof that
suPti]. {(h'j(tij) —+ tijfij} is equal to
a,'j(fij) if bij < f,’j < cij and is equal to
oo otherwise [cf. Eq. (5.13)]:

(a) For any t;;, the value of ¢;;(t;;) is
obtained by constructing a supporting line
with slope ¢;; to the shaded convex set

{(fij,#) | bij < fij < cij, u 2> aij(fij)}a

and by obtaining the point where this line
intercepts the vertical axis.

(b) For a given f;; € [b;j,c;;], the
value of Qij (tij) =+ tij fij is obtained

by intercepting the vertical line passing
through (fij»aij(fi3)) with the line of
slope t;; that supports the shaded set. This
point of intercept cannot lie higher than
a;;(fi;), and with proper choice of t;;
lies exactly at a;;(f;;). This proves that
sup,, . {gi;(ti;) + ti; fi;} = ai;(fij) for
fij € [bij, cijl.

() For fij & [bij,cijl, the

construction given shows that

SUPy, ; {Qij(tij) + tijfij} = oo.

Eq. (5.13) we see that (c) is equivalent with (a). Therefore, (b) and (c) are equivalent.

To prove differentiability of g¢;;, let us fix t;;,

and let g;f(t;;) and g;;(t;;) be the right

J

and left directional derivatives of g;;, respectively, at ¢;;. A scalar y satisfies

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 397
gt < y < g5;(tip), (5.14)

where q;]f and ¢, are the right and left derivatives, respectively, of ¢;;, if and only if
t;; maximizes g;;(§) — £y over all £, which is true [by the equivalence of (b) and (c)]
if and only if —y attains the minimum in Eq. (5.12). Since a;; is strictly convex there
is only one minimizing scalar in Eq. (5.12), call it f;;, and —f;; is the only scalar y
satisfying Eq. (5.14). Therefore, g;; is differentiable, and (b) implies (d). Conversely, if
Vg;j(ti;) = — fi;, then t;; attains the supremum in Eq. (5.13), and [since (c) implies (b)]
fi; attains the minimum in Eq. (5.12). The equivalence of (b) and (d) follows. Finally,
the CS conditions (5.7)—~(5.9) are equivalent to (b), so the proof is complete. Q.E.D.

We can now derive the gradient of the dual cost given a price vector p. We have
foralli e N

9q(p) _ Z 8an(pm_pn)+

. s
Op; Op; ‘
mmea ‘ (5.15)
=- Z Vg;i(p; — pi) + Z V(i — pj) + si.
{jl(,5)eA} {7lG,eA}

By Lemma 5.1, the derivatives above are equal to minus the unique arc flows satisfy-
ing the CS conditions (5.7)-(5.9) together with p. Therefore, comparing the preceding
relation with the definition of surplus (5.6), we obtain

dq(p)
Op; -

9:(P) ‘ (5.16a)

where

9:(p) = Surplus of node ¢ corresponding to the unique f (5.16b)
satisfying the CS conditions (5.7)—(5.9) together with p. .

5.5.1 The Relaxation Method

The relaxation method is simply the coordinate ascent (or nonlinear Gauss—Seidel)
method of Subsection 3.2.4 applied to the maximization of the dual function. We gen-
eralize the method somewhat by allowing the maximization along each coordinate to be
inexact to some extent, and to be controlled by a given scalar § € [0, 1).

At the start of the typical iteration we have a price vector p. If the corresponding
surplus g;(p) of Eq. (5.16) is zero for all nodes ¢, then p and the unique vector f
satisfying CS together with p are dual and primal optimal, respectively, and the algorithm
terminates. Otherwise:

398 Network Flow Problems Chap. 5

Relaxation Iteration. Choose any node i. If the surplus g;(p) is zero do nothing.
Otherwise change the ith coordinate of p, obtaining a vector p which is such that

0< g <ég:(p if gi(p >0,
89:(p) < g:® <0 if gi(p)<O.

Figure 5.5.4 illustrates the relaxation iteration when § = 0, in which case we have
9:(p) = 9q(p)/Op; = 0, and the coordinate maximization is exact [cf. Eq. (5.16)]. There
is a great deal of flexibility regarding the order in which nodes are taken up for relaxation.
The only assumption we make is the following:

Assumption 5.2. Every node is chosen as the node 7 in the relaxation iteration
an infinite number of times.

The relaxation iteration is well defined, in the sense that it is always possible to
adjust the price p; as required. To see this, suppose that g;(p) > 0 and that there does not
exist a v > 0 such that g;(p + ve;) < 6g;(p), where e; denotes the ith coordinate vector.
Consider the price differentials t;;(7), (¢,) € A and t;;(7), (j,%) € A corresponding to
the price vector p+ve;. We have t;;(7) = p; —p; +7v — oo and t5;(y) = pj —p; — v —
—oo as v — oo. Therefore, the corresponding unique arc flows satisfying the CS
conditions (5.7)-(5.9) become f;; = c;; and f;; = b;; as v — oo, and using the
definition (5.16) of g;(-), it is seen that

711'1'20 9:i(p +ve;) = Z bj; — Z Cij + 8; > 6gi(p) > 0.
{jlG,0)eA} {7lG.5)eA}

This implies that the surplus of node ¢ is positive for any flow vector f satisfying the
capacity constraints (5.2), and contradicts the existence of a feasible flow (Assumption
5.1). An analogous argument can be made for the case where g;(p) < 0.

It is evident that the relaxation algorithm admits synchronous parallel Gauss—Seidel
or Jacobi implementations similar to the e-relaxation method of Section 5.3. We now
show that the Gauss—Seidel version of the algorithm is convergent. Simple examples
show that the Jacobi version is not convergent (see Fig. 5.5.5), but in the next two
chapters, it will be seen that when suitably modified, the algorithm is convergent under
reasonable conditions when implemented in either the Jacobi or an asynchronous mode.

5.5.2 Convergence Analysis

In order to obtain our convergence result, we must show that the sequence of flow
vectors generated by the relaxation algorithm approaches the linear manifold defined
by the conservation of flow constraint (5.1). The line of argument that we will use is
as follows: we will bound from below the improvement in the dual functional g per
iteration by a positive quantity. We will then show that if the sequence of flow vectors
does not approach the constraint manifold, the quantity itself can be lower bounded by

Sec. 55 Network Flow Problems with Strictly Convex Cost 399
-1,1]
a1plfiz) = 7+ 1y

a1 (fy) =;—f§1

N

1
Py —Vay =py—fy izl
Complementary slackness | Maximizes the

s, =5,=0
[=1,1] T
biy=by=-1
C12=C =1
(a)
1
| | |
| | |
| |
| o [P |
| |
|
|

| 92+V312=P2+|f12+1
| The level of | Complementary slackness
at which £, p=1 fi | diagram for arc (1, 2)

—_—— e x

|
|
diagram for arc (2, 1) Ll dual cost :
| [|
1 | L1 | |
-1 0 1 (-1 0 1
— —
fa fi2
(b)
Py
Level of p,
maximizing

the dual cost

Figure 5.5.4 TIllustration of the relaxation iteration. (a) An example problem involving
two nodes with zero supplies, and two arcs with the arc costs and flow bounds shown. (b)
Adjustment of the price p; so as to maximize the dual function along the first coordinate.
The CS diagrams for arcs (1,2) and (2,1) are superimposed, and p; is set at the level at
which the flows f12 and f;; obtained from these diagrams are equalized. (c) Illustration
of the same process for the case where the node i chosen for relaxation has more than
two incident arcs. The price p; is set at the level at which the sum of outgoing arc
flows (obtained from the CS diagrams) equals the sum of the corresponding incoming
arc flows plus s;.

400 Network Flow Problems Chap. 5

;
ayfin) = 775

Sy =8, =

_.___Set of optimal
price vectors

Surfaces of
equal dual cost

Dual cost is
(e, .py) = - 1y —py)?

(b)

Figure 5.5.5 (a) An example problem for which the Jacobi version of the relaxation
algorithm does not converge to an optimal price vector. (b) The Jacobi version of the
relaxation method (with exact minimization along each price coordinate), starting from
p yields p, and starting from p yields p. By contrast, the Gauss—Seidel version finds an
optimal price vector in a single iteration (assuming again exact maximization along each
price coordinate).

a positive constant, which implies that the optimal dual cost is co. This will contradict
the finiteness of the optimal primal cost (Prop. 5.1 and Assumption 5.1). We will denote
the price vector generated at the kth iteration by p*, k = 0, 1,.. ., and the node operated
on at the kth iteration by ¥, k = 0,1,.... We will also use the notation

th = pf —pf, k= Vi)

Note that by Lemma 5.1, f£ is the unique flow satisfying, together with ¥, = pf — p%

the CS conditions (5.7)—(5.9). For any directed cycle Y of the network, we denote

Y+ = {(,j) | (,j) is a forward arc of Y},
Y~ ={(,5) | () is a backward arc of Y }.

We also denote [cf. Eq. (5.11)]

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 401

+ .
oy =) a(fij), if by < fij <cij
a;;(fiy) = { oot fr = cur (5.17a)
c—oe v) a(fi)y if by < fiy <y
a;;(fi) = {—]oo , if by, = fu, (5.17b)

that is, a;; and &jj denote the left and right derivatives of the function a;; of Eq. (5.11).
Note that the conditions for f;; and ¢;; to satisfy CS can be written as

bij < fij < cijs a;;(fij) < tij < 71+(fu (5.18)
We first show a few preliminary results:

Lemma 5.2. We have for all k£ such that p*+! # p* [i.e., g;« (p*) # 0]

g@* Y =g > > [(5T — ai;(FF) - B = k] >0, (5.19)

(,5)EA
with equality holding in the left inequality if g;x(p**!) = 0 (i.e., the exact maximum of
the dual cost along the i*th coordinate is found at the kth iteration).

Proof. Fix an index k£ > 0. Denote v = p vkl p ~. From the definition of the

dual function (5.5), Lemma 5.1, and the definitions of tk and l’;, we have

0@ = Y (o —th 51+ D sk, VE20.

(,J)€EA iEN
Therefore, denoting e;; = 1 if i = ik, e i =—1if j = i*, and e;; = 0 otherwise, we
have
g@** - a0 = D [aETH -t = Y [an(FE) — th k)
(1,J)EA (,5)€EA
+> (@t -pl)
iEN
= > lasUETY = @E +esmfET = 0 [ai(FE) — t5 5] + vsan
(3,5)€A (¢,75)€A
Z [a”(k+1) aij(fk+l]+7 Sik — Z ez]fk+l
(1,7)€A z,5)EA
= > [agUE™ = a(F5) — (5T = FEIE] + vga @),

(2,7)€A

402 Network Flow Problems Chap. 5

When v > 0 (that is, pk, is increased), the new price p5"' of i* either maximizes the cost
with respect to p;x, in which case g;x(p**!) = 0 or pf,;" ! is smaller than all prices that
maximize the dual cost, in which case g;x(p**!) > 0. Thus, we have vg;c(p**!) > 0
when v > 0. A similar argument shows that vg;x(p**!) > 0 when v < 0, and from the
above equation, we obtain the left side of Eq. (5.19). The right side of Eq. (5.19) follows
from the strict convexity of a;;, the fact f¥*! # f* (since the surplus of i* has changed),
and the fact that i’“j, by Lemma 5.1, minimizes a;;(f;;) — tfjf,'j over f;; € [bij,cs;].
Q.E.D.

The next result is remarkable in that it shows that under a mild restriction on the
way the relaxation iteration is carried out (which is typically very easy to satisfy in
practice), the sequence of price vectors approaches the dual optimal set in an unusual
manner. In particular, the distance of the current iterate from any optimal price vector
with respect to the maximum norm never increases.

Lemma 5.3. Let p be a price vector, 7 be a node, and j be a dual price vector
obtained by applying the relaxation iteration to p using node i. Assume in addition that
p is chosen so that

g®>0 = gFE+10-p)>0, VYy>0, (5.20a)
@ <0 = g{@E+r1@-9)<0, VYy>0. (5.20b)

Then for all optimal dual price vectors p*, we have
i - o} < min {f,, — pl,} < Prm — D}, -}t G
min {pm — P} < M0 {pm — P} < WX {Prn —pr} < max {pm —pp}. (52D

Note: When g;(p) > 0 [or g;(p) < 0], the assumption (5.20) is equivalent to
assuming that p; is chosen less (greater) than or equal to the smallest (largest) maximizing
point of the dual cost along the ith coordinate starting from p. It is automatically satisfied
if there is a unique maximizing point along the ¢th coordinate.

Proof. The desired assertion (5.21) holds if g;(p) = O since then we have 5 = p.
Assume that g;(p) > 0, and fix an optimal dual price vector p*. Consider the vector p
defined by

o (7 i
J P} + maxmen{pm — 05}, ifj=i.

We have

ﬁi—ﬁm Zp:_p:w V(z,m)EA,
Pm — Di < P — PF» V (m,7) € A.

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 403

Since each Vg;; is a nonincreasing function (being the gradient of a concave function),
we have

V‘Iim(ﬁi —Pm) < V%‘m(PZ —p;), YV (i,m) € A,

V@mi(Bm — D) > V‘Imi(p:n - pf), Y (m,1) € A.
By adding over all m and by using Egs. (5.15) and (5.16), we obtain g;(p) < g;(p*) = 0.
Therefore, using assumption (5.20), we have p; < p;, while at the same time p; < p;,

and p,, = P, for all m # i. The assertion (5.21) follows. The proof is similar when
g:(p) <0. Q.E.D.

Lemma 5.3 implies, among other things, that if care is taken so that the condition
(5.20) is satisfied at all iterations, the sequence {p*} generated by the relaxation method
is bounded. Furthermore, the lemma shows that if {p* } has a limit point that is an
optimal price vector, then { p’“} must converge to that vector. We are now ready to show
our main result.

Proposition 5.2. Let {p*, f*} be a sequence generated by the relaxation method
for strictly convex arc costs. Then:

(a) limy_, o g:(p*) =0, Yi€eN. (5.22)
(b) limg.oo f¥ = f*, (5.23)

where f* is the unique optimal flow vector.

() limy_, o g(p¥) = max, q(p).

(d) If each iteration is carried out so that the condition (5.20) is satisfied, then
lim p* — p*, (5.24)
k— o0

where p* is some optimal price vector.
Proof.
(@) We first show that

lim g;x(p*) = 0. (5.25)
k—oo

Indeed, if this were not so, there must exist an € > 0 and a subsequence K such that
|9 (@*)| > € for all k € K. Without loss of generality, we assume that g;x(p*) > €
for all k € K. Since 6|g;x(0*)| > |g;+(@**1)|, we have that at the kth iteration, some
arc incident to node i* must change its flow by at least A, where A = (1 — 6)e/|A|.
By passing to a subsequence, if necessary, we assume that this happens for the same

404 Network Flow Problems Chap. 5

arc, say (i, 7), for all k € K, and that f*' — f& > A, and i* =i for all k € K (the
case f’“+1 Y < Aand i¥ = j for all k € K can be treated analogously). Using the
boundedness of {f*} we can also assume that the subsequence {fE}rex converges to

some f;;. We note that all terms a,](f’”'l) — as(ff f’“'H £)tE; in the sum of
Eq. (5.19) in Lemma 5.2 are nonnegative. Therefore we have from Eq. (5.19)

4@ = 0" > ai;(FET) - ay(FF) — (P — fhatk,
> ai(ff + D) — ai;(F5) - Atfj
> aij(fij + A) — ag;(i’}) - Aaz}(i’;)v

where the second inequality follows from the fact that a;;(f5 + 6) — ai;(f£) — 6t§j
is a monotonically increasing function of ¢ (since t is a subgradlent of a;; at)
and the last inequality follows from the fact A > 0 (1mply1ng . < cj;) and the CS
condition (5.18). Taking the limit as £ — oo, £ € K, and usmg the facts f”

fi; and liminfg_ a+(’“) < a+(fij) (in view of the fact that a;; is monotonically
nondecreasing and nght—contmuous) we obtain

paminf [4@**) — @] 2 aij(fi; + &) — aij(fi)) — Aafi(fi;) > 0.

This implies that limy_, ., g(p¥) = oo, contradicting the equality of the optimal dual
value and the optimal primal value (which is finite), and proving Eq. (5.25).

We now show that limg_, o g:(p*) = 0 [cf. Eq. (5.22)]. Choose any i € N. Take
any € > 0 and let K be the set of indices k£ such that gi(pk) > 2e. Assume without
loss of generality that g;(p*) < ¢ for all k with i = ¥ [cf Eq. (5.25)]. For every
k € K, let k' be the first index with k' > k such that i = i*". Then during iterations
k,k+1,...,k" — 1 node 7 is not chosen for relaxation while its surplus decreases from
greater than 2¢ to lower than e. We claim that during these iterations the total absolute
surplus) jen 195()| is decreased by a total of more than 2¢. To see this, we first note
that the total absolute surplus cannot increase due to an iteration because a flow change
on an arc reflects itself in a change of the surplus of its start node and an opposite
change in the surplus of its end node; furthermore, the surplus of the node chosen for
relaxation at an iteration cannot increase in absolute value or change sign during that
iteration. Next observe that for any of the iterations k,k+1,...,k" — 1, say k, for which
the surplus of i is decreased by an amount £ > O from a positive value g;(p*) > 0,
the node s = i* chosen for relaxation must be adjacent to ¢ and must have a negative
surplus gs(pk) < 0. Since all of the increase in gs(pk) during the iteration must be
matched by decreases of the surpluses of the neighbor nodes of s, and, furthermore, the
surplus of s will remain nonpositive after the iteration, it follows that the total absolute
surplus will be decreased by at least 2min{¢, g;(p*)} during the iteration. This shows
that during iterations k,k + 1,...,k" — 1, the total absolute surplus must decrease by
more than 2¢. Therefore, the set K of indices k for which g;(p*) > 2¢ cannot be infinite.

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 405

Since € > 0 is arbitrary, we obtain limsup,_, _ g:(p*) < 0. Similarly, we can show that
liminfy_, o g;(p*) > 0 and therefore g;(p*) — O.

(b)—(c) Since { Z;} is bounded, it has a subsequence converging to some f* which
is primal feasible in view of part (a). We will show that f* is the unique optimal flow
vector, and, therefore, the entire sequence { ,’;} actually converges to f*. For every arc
(z,7) for which b;; < c;;, there are three possibilities for the corresponding subsequence

of {tf}:

(1) {t%} is bounded.
) £ = cij» and —oo < liminfg_ o tfj < limsup;,_, tfj = oo.
@) fjj = bij, and —oco = liminfy o tf; < limsup,_, . t5; < co.

For an arc (¢, j) with b;; = ¢;; we must have i‘;- = l’; for all k. From these facts, it is
seen that we can construct a subsequence K such that

2 UG- IS X UG-, VkeK

(@,5)eA @,5)eB

where B is a set of arcs (%, j) such that {tfj} K is bounded. We have, using the definition
of the dual functional (5.5), Lemma 5.1 and the fact 3, fea tfj I = Dien Pisis

e —awh = > thfE =Y pis:

(5,5)€A (1,5)€A iEN
_ k gk k ok
= > U -fip< Dt - £
(Z,5)EA (,7)€EB

Since 5 — fi; and {tfj} K is bounded for (i, j) € B, we obtain by taking the limit
above

() < i k
> as(fp <, lm q@b).

(i,5)eA

Since f* is primal feasible and ¢(p) is less than or equal to the optimal primal cost,
the optimality of f* follows. Since g(p¥) is monotonically nondecreasing, and therefore
converges, it also follows from the relation above that it converges to the dual optimal
value.

(d) Under the condition (5.20), Lemma 5.3 implies that {p*} is bounded. Let
{p*}rex be a subsequence converging to a vector p*, and let t* be the vector with
elements t;‘j =p; — p;f. We have for all (z,j) € A,

G (ff) <t <ah(f), Vkek

406 Network Flow Problems Chap. 5

It follows, using part (b) and the fact that a;; (or &;"j) is nondecreasing and left continuous
(or nondecreasing and right—continuous, respectively) (Prop. A.38 in Appendix A), that
for all (z,5) € A,

a;;(fi) <t < aj;(fiy,

where f* is the optimal flow vector. Therefore, t* satisfies together with f* the CS
condition (5.18) for all (i, j) € A, and must be dual optimal. Lemma 5.3 shows that {p*}
cannot have two different dual optimal price vectors as limit points and the conclusion
follows. Q.E.D.

5.5.3 The Problem without Arc Flow Bounds

Consider the variation of the convex cost network flow problem (CNF), where there are
no arc flow bounds, that is, the problem

minimize Y a;;(fij) (UCNF)
,5)EA

subject to > fi— Y. fi=si, VYieN. (5.26)
{ilG.HeA} {7lG.HeA}

In place of Assumption 5.1, we assume that the arc cost functions a;; grow at an infinite
rate as f;; approaches the boundaries of the domain of a;; (see Fig. 5.5.6):

Assumption 5.2. For each arc (3, j), there is a nonempty open interval (b;;, c;;),
where b;; € [—00,00) and ¢;; € (—00,00], and such that the real-valued function a;; is
defined and is strictly convex over (b;;, c;;). Furthermore, a;; satisfies

li?g a;;(fij) = o0, fﬁgn a;;(fi;) = o0, (5.27a)

151045 ij 1 Cij

and its directional derivatives satisfy

. _ _ . + 3
1‘{‘1}) a;;(fij) = —oo, h%n a;;(fij) = oo. (5.27b)

71045 ij 1 Cij

In addition the problem (UCNF) has at least one feasible solution.

~ One consequence of the above assumption is that the primal problem (UCNF)
has a unique optimal solution (a;; is seen to be continuous and the level sets of the
cost function are compact, so Weierstrass’ theorem, given as Prop. A.8 in Appendix A,
applies). Similarly as earlier, the dual function is defined by [cf. Eq. (5.5)]

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 407

3(fy)

Figure 5.5.6 Illustration of the conditions (5.27). The function a;; grows to co as
fi; approaches the endpoints of the (open) domain (b;;, c;;). The rate of increase also
approaches infinity.

9D = X jyea i@ — i) + D ien Sibi, (5.28a)
where
gi;(pi —p;) = min {ay(fi;) — @ — pj)fij }- (5.28b)
fij €bij,ci5)

A second consequence of Assumption 5.2 is that the minimum in the preceding equation
is attained for all p, so the dual function value is finite. Using these facts, one can derive
variations of Prop. 5.1 and Lemma 5.1 (Exercise 5.3), as well as a modified version of
the relaxation algorithm. The CS conditions (5.7)—(5.9) are replaced by the condition

ai;(fi) < tij < af(fip).

It is seen that the strict convexity of a;; implies that, given p, there exists a unique flow
vector satisfying the condition above together with p. Using this, one can verify the
dual gradient expressions (5.15) and (5.16), and carry out a convergence analysis of the
corresponding relaxation algorithm that is similar to the one given earlier.

Similar results hold for the case of hybrid problems where some of the arc flows
are subject to upper and lower bounds, as in problem (CNF), while other arc flows are
subject to no such constraints.

408 Network Flow Problems Chap. 5
5.5.4 An Example: Constrained Matrix Problems

A problem that arises in a variety of contexts is to find an n X m matrix F that has
given row sums and column sums, and approximates a given n X m matrix M in some
optimal sense. It is often appropriate to formulate such a problem in terms of a bipartite
graph consisting of n sources and m sinks. In this graph, the set of arcs A consists of
the pairs (4, j) for which the corresponding entry f;; of the matrix F is allowed to be
nonzero. The given row sums 7; and the given column sums c; imply the constraints

E fij’:Tia i=1""an7

{3lG.5)eA}

Z fij = ¢, 17=1,...,m.

{ilG.eA}

There may be also bounds for the entries f;; of F. Thus, the structure of this problem
is similar to the structure of a transportation problem. The cost function to be optimized
can take the form

Z a;i(fi;)-

@@,)EA

Commonly used examples expressing the objective of making the entries of F close to
the corresponding entries of M are the quadratic function

aij(fij) = 1 i pea wii(Fij = mis), (5:29)

where w;; are given positive weights, and the logarithmic function

aij(fi) = fij [Iﬂ (ﬁ-) - 1] ; (3-30)
mij

where we assume that m;; > O for all (4,5) € A. Note that the logarithmic arc cost
function (5.30) is not defined for f;; < 0, but it can be seen that this does not cause diffi-
culties either in the dual problem definition or in the corresponding relaxation algorithm,
since the growth conditions (5.27) are satisfied for b;; = 0 and ¢;; = oo.

Let us denote by 7;, ¢ = 1,...,n the prices corresponding to the rows of F, and
by p;, 7 = 1,...,m, the prices corresponding to the columns of F. For the quadratic

cost function (5.29), the dual problem (assuming no bound constraints on the entries of
F)is

.’ ‘ (ﬂ-,_ .)2 n m
maximize q(p) = E <_%+m¢j(ﬂi -pj)) - E T + E CiPj
(0.j)EA “ i=l j=1

subject to no constraints on 7 and p.

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 409

For every set of prices (m,p), the unique flow vector that satisfies the CS conditions is

T — D; .
fij=my——L, G,)) €A
'wij

The relaxation iteration with exact maximization along each price coordinate is given by

1 Pj .
7!','2-:2———17—-—”- Z (—%+mij)—ri) z=l,...,n,
jeom /Wi \ jeon \Wii

1 (ﬂ'i) .
pj = = — —-my; | +¢ |, i=1...,m,
J ZieIU) l/wij iézl:(j) w;; J]
where
0G) = {j | G,5) € A}, IG) = {i | G,j) € A}.

Note that a synchronous parallel implementation of the method is possible, whereby in
each iteration, the prices of all rows are updated simultaneously followed by simultaneous
updating of the prices of all columns. Since no two rows (columns) are connected by an
arc, this method is equivalent to the Gauss—Seidel method of this section with a particular
order of choosing nodes for relaxation.

For the logarithmic cost function (5.30) the dual problem has the form

n

m
maximize qp) =— E m;;ePiTT — E 7T+ E CjDj
=1

G,)EA i=1

subject to no constraints on 7 and p.
The corresponding relaxation iteration sets m; to the value 7;, for which
Z mijepj e—*i =T, i=1’~"1n7
JEO®)

and sets p; to the value p;, for which

E mije"’” epj=Cj, j=1,...,m.
i€I(j)

If we make the change of variables

- ,
vi=e ', zj =€,

410 Network Flow Problems Chap. 5

we obtain the iterations
T
Y=,
> jeo@) Mij%j
Cj
Zj = e
J 3
Zier(j) mi;Yi

i=1,...,n, (5.31)
i=1,...,m (5.32)

The iterative method consisting of alternative updating of y; using Eq. (5.31) and updating
of z; using Eq. (5.32) is known as Kruithof s method and dates to 1937 [Kru37]. It is
used in telephony to predict traffic between n origins and m destinations based on
predictions of the total traffic of origins and destinations. In this context, the known
values m;; represent traffic intensity from origins ¢ to destinations j as measured during
some earlier period.

5.5.5 Parallel Implementations of the Relaxation Method

The parallel implementation aspects of the relaxation method of this subsection are
similar to those of the e-relaxation method (Subsection 5.3.2). We assume that there is a
processor assigned to each node, which has the responsibility of carrying out relaxation
iterations at the node and communicating the results to adjacent processors/nodes. Minor
modifications in the following are required in the case where several nodes are assigned
to each processor. A possibility for further parallelization in executing approximately
the coordinate minimization in the relaxation iteration is described in Exercise 5.7, and
requires that a separate processor be used for each arc in each direction.

There are three main possibilities. The first is the synchronous Gauss—Seidel im-
plementation, where the set of nodes is partitioned in subsets by means of a coloring
scheme (cf. Subsection 1.2.4); there is no pair of nodes connected by an arc that is con-
tained in the same subset. The algorithm is operated in phases. In each phase, a subset
is selected, and a relaxation iteration is executed using each node of the subset. The
iterations of the nodes in the same subset can be done in parallel. The method is then
mathematically equivalent to a serial algorithm for which the convergence analysis of
this section applies. Note that when the graph is bipartite as in the case of the constrained
matrix problems of Subsection 5.5.4, it is possible to use just two subsets of nodes and
execute a relaxation iteration at every node in just two phases.

The other possibilities are a synchronous Jacobi implementation and an asyn-
chronous implementation. It was seen earlier (Fig. 5.5.5) that the synchronous Jacobi
method need not converge to an optimal solution because adding the same constant to
all prices leaves the dual cost unchanged. To overcome this difficulty, we consider in
Section 6.5 a variation of the relaxation method, whereby the price of a single node, say
node 1, is kept fixed, and we assume that there is a unique dual optimal vector p with p,
equal to the given fixed value. Under these circumstances, we show that the synchronous
Jacobi method and a totally asynchronous relaxation method converge to that vector. A
variation to be described in Chapter 7, that involves the use of a relaxation parameter and
a partially asynchronous implementation, will be shown to converge as desired without

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 411

fixing the price of any node and without making any assumptions on the nature of the
set of dual optimal price vectors.

The limited computational experience available with parallel implementations of
the relaxation method of this section ([ZeM86] and [ZeL87]) indicates that the speedup
obtained is substantial. This is due to the experimentally observed fact that there are
many nodes with nonzero surplus throughout the algorithm. This observation is not
supported by any analysis at present.

EXERCISES

5.1. Consider the problem

minimize Y f3(z;)

j=1

subject to Az =s, b; <zj <y, ji=1,...,n,

where f; : R® — R are strictly convex functions, A is a given m x n matrix, s is a given
vector in ™, and b;, c; are given scalars.
(a) Dualize the constraints Az = s and write the dual problem.
(b) Calculate the gradient of the dual function and describe the corresponding relaxation
method. Under what circumstances is the method highly parallelizable?
(c) Repeat parts (a) and (b) for the case where the cost is a general strictly convex
function f : R — R.

5.2. (Necessary and Sufficient Optimality Condition.) This exercise generalizes the necessary
and sufficient optimality conditions for linear network flow problems (cf. Exercise 1.2).
Show that a flow vector f = {fi; | (¢,j) € A} is optimal for the convex network flow
problem (CNF) if and only if f is feasible, and for every directed cycle Y for which

f‘L] <C’L]7 V(z,])GY"’,

we have

Yo ahd - Y aifi 0.

G,NHEY T (4,)€Y ~

Hint: The rate of change of the primal cost at a feasible flow vector f in the direction of a
circulation y is given by

d(f;y) = Z aj(fij)yis + Z az;(fij)yis-

{@.D)]ys; >0} {3,935 <0}

412

5.3.

54.

5.5

h

Network Flow Problems Chap. 5

If f is feasible but not optimal, there must exist a circulation y such that d(f;y) < O.
Use the Conformal Realization Theorem of Appendix B to show that the given optimality
condition is then violated.

State and prove analogs of Lemma 5.1 and Prop. 5.1 for problem (UCNF) under Assumption
5.2.

(A Problem of Agreement.) The following problem will be reencountered in more general
form in Chapter 7, where it will play a significant role in the analysis. Consider a connected
undirected graph (V, A). Each node ¢ has a scalar value p;(t) at time ¢. At each time ¢, a

‘node 1 is selected and its value is set to a convex combination of its value and a weighted

average of the values of its neighbors, that is,

Pt + D) =8pi® +(1=6) Y ayp;(®),

JEA®)

where §; € [0, 1) is a given scalar, A(z) is the set of nodes connected to ¢ with an arc, and
a;; are positive scalars such that a;; = a;; and) jeau s =1 for all 2. Assuming each
node is selected infinitely often, show that the nodes will asymptotically agree on a common
value, that is, there exists some scalar p* such that

lim pi(¢) =p*, VieN.
t—o0

Hint: Replace each undirected arc (, j) € A with two directed arcs (4, §) and (j, 7). To each
directed arc (i, j) of the resulting network, assign the arc cost function a;;(f:;) = (1/ 2a,,)
and consider the problem of minimizing z(z ; @i5(fi;) subject to the constraint that f is a
circulation. Show that a price vector is optlmal if and only if all its coordinates are equal.
Apply the relaxation method.

(Feasible Differential Theorem.) Consider a directed graph (N, A). For each arc (3, j) € A,
we are given two scalars a;; € [—o0,00) and a . € (—00, 00], with a; < a+ Show that
there exists a price vector p satlsfymg

ai;‘<p'—pj<azg) V(Z,])GA,

if and only if for every directed cycle Y, we have
0< > af- Y (5.33)
@HEY T ,J)EY —

Hint: Consider the instance of (CNF) involving the piecewise linear arc cost functions
_ - +
ai;(fi) = max{a;; fij, aj;fii },

and the constraint that f is a circulation (that is, s; = O for all 7, and there are no arc flow
bounds). Show that if Eq. (5.33) holds for all Y, then f = 0 is an optimal solution of
this piecewise linear cost problem, and otherwise there is no optimal solution. Convert this
problem to a linear programming problem, and use the linear programming duality theory
of Appendix C.

Sec. 5.5 Network Flow Problems with Strictly Convex Cost 413

5.6. (Proof of the Duality Theorem.) Use Lemma 5.1, and the results of Exercises 5.2 and 5.5
to prove Prop. 5.1. Hint: We have

a@) < Y aufip)

@,NEA

for all p’ and feasible f [cf. Eq. (C.12) in Appendix C]. If f and p satisfy primal feasibility
and the CS conditions (5.7)~(5.9), argue that f;; attains the minimum in the definition (5.5b)
of the dual arc function g;;, and use Lemma 5.1 to show that equality is obtained above.
Conversely, suppose that f is optimal. Combine the results of Exercises 5.2 and 5.5 to show
that there exists a price vector p such that

a;;(fi)) <pi—pi < af(fi;), VG5 € A

Show that this price vector is dual optimal.

(Parallelization of Stepsize Selection [Tse87].) Consider a relaxation iteration where a
node i with g;(p) > 0 is chosen, and we wish to find a stepsize 5 such that for some
6 € [0,1), we have 0 < g;(p) < 8gi(p), where p; = p; + ¥ and p; = p; for j # i. The
following is a parallelizable procedure for computing a suitable stepsize 5. Let u be any
scalar with u € (0, 1), and define for all v € R and all incident arcs to node 3

5.7

.

faty=arg, min {ai© ~ @i~ p; +ME},

i 26

fin=arg min {a;i€) ~ 5 —pi =7}

j1S85C51

Let n; be the number of arcs (¢, j) that are outgoing from 4 and satisfy f;; < c;;, plus the
number of arcs (j, ¢) that are incoming to ¢ and satisfy f;; > b;;. For each arc (3, j) that is
outgoing from ¢ and f;; < c;;, set

yi=oo, i fuD-fi<Lta@, V2o,

and otherwise let -y;; be a scalar such that

m 1

—gi(< fi;(viz) — fi; £ —g:(®).

ni n;
Similarly, for each arc (j, ?) that is incoming to z and f;; > bj; set

yi=oo, i fi—f<Eam, vy

and otherwise let ~y;; be a scalar such that

1
nﬁigi(P) < fii = fii(yie) < n—igi(.’D)~

414 Network Flow Problems Chap. 5

(Note that all the scalars +;; and -y;; can be computed in parallel in a system that assigns a
separate processor to each incident arc to node z.) Let

¥ = min min ij, min T
K {{jl(i,j)eA} Y9 Gigweay }
(a) Show that ¥ > 0, and that
0<0® < (1-£) 50
3

(b) Provide a similarly parallelizable stepsize procedure for the case where g;(p) < 0.

5.8. (e~Complementary Slackness [BHT87].) Consider the convex network problem (CNF).
Given € > 0, we say that a flow—price vector pair (f, p) satisfies e-complementary slackness
(e-CS) if for all (i, 7) € A, we have fij € [bij, ¢i;] and

a5;(fij) — € < pi —pj < &5(fij) + e,

where Zi;"j(fi;) and ag(fij) are defined by Egs. (5.17a) and (5.17b), respectively. Verify
that this definition contains as a special case the corresponding definition of Section 5.3,

and show that if (f, p) satisfies e~CS, then

0< Z aij(fij) — q@) < € Z (cij — byj).

Z,j)€A @,5)EA

5.6 NONLINEAR MULTICOMMODITY FLOW PROBLEMS-ROUTING
APPLICATIONS

In this section, we consider a network flow routing model that is more complex than
the models of the previous sections in that we distinguish between several independently
constrained types of flow (commodities) that share the arcs of the given network. Typical
applications of this model arise in routing of data in computer communication networks,
and in equilibrium studies of transportation networks. The size of the problems encoun-
tered in the context of these applications is often very large, so it may be essential to
speedup the solution method through parallelization in order to meet practical solution
time constraints. In the case of routing in a data network, a distributed on—line im-
plementation is often desirable; we refer to [BeG87] for a description of some of the
practical issues arising in this context.

We are given a network and a set W of ordered pairs w of distinct nodes referred
to as the origin and the destination of w. We refer to w as an OD pair. For each w, we
are given a scalar r,, referred to as the input traffic of w. In the context of routing in
a data network, r,, (measured in data units/second) is the arrival rate of traffic entering
and exiting the network at the origin and the destination of w, respectively. The routing

Sec. 5.6 Nonlinear Multicommodity Flow Problems—Routing Applications 415

objective is to divide each r,, among the many paths from origin to destination in a way
that the resulting total arc flow pattern minimizes a suitable cost function. We denote:

P,: A given set of simple positive paths that start at the origin and end at the destination
of w.

zp: The flow of path p.

The collection of all path flows {z, | w € W,p € P,,} must satisfy the constraints

Y zp=ry, YweW, (6.1)
PEPy

zp >0, Vpé€P, weW, 6.2)

as shown in Fig. 5.6.1. The total flow Fj; of arc (i,5) is the sum of all path flows
traversing the arc:

all paths p
containing (2,5)

Consider a cost function of the form

> Dij(Fy). (6.4)

,7)

The problem is to find a set of path flows {x,} that minimize this cost function subject
to the constraints of Egs. (6.1) to (6.3).

w

Destination for

Origin of
OD pairw

QOD pair w

~ Network e

Figure 5.6.1 Constraints for the path flows of an OD pair w. The path flows should be nonnegative
and add up to the given traffic input r, of the OD pair.

416 Network Flow Problems Chap. 5

A frequently used function D;; in packet routing applications is

F;ﬁ'

Dij(Fij) = C”—_}(TJ +

d;i; Fij, 6.5)
where C;; is the transmission capacity of arc (i,) measured in the same units as F;;, and
d;; is the processing and propagation delay. (This function is defined for F;; € 10,C5)
and is usually modified during algorithmic solution so that it is defined as a convex
function for all Fj; > 0.) With this formula, the cost function (6.4) expresses the average
number of packets in the system based on the hypothesis that each queue behaves as an
M/M/1 queue of packets [BeG87].

By expressing the total flows F;; in terms of the path flows in the cost function
(6.4) [using Eq. (6.3)], the problem can be formulated in terms of the path flow variables
{zp|p€ Py, we W}as

minimize D(z)

subjectto Yz, =r,, YweW, (6.6)
PGPw

xPZOa VpeP,, weW,

where

D@)=)_D; oo

(,3) all paths p
containing (3,7)

and z is the vector of path flows z,.

We now turn to the characterization of an optimal solution. In particular, we will
show that optimal routing directs traffic exclusively along paths that are shortest with
respect to some arc lengths that depend on the flows carried by the arcs. For this, we
assume that each D;; is defined on [0, 00) and is twice differentiable on (0, c0). The case
where D;; is defined in an interval [0, C;;), where C;; is a positive number [the capacity
of the arc in a routing context, cf. Eq. (6.5)] can be handled by extending the definition
of D;; beyond the interval [0, C;;), and by suitably modifying D;;(F;;) for F;; near
Cjj; see [BeG87], p. 416. The first and second derivatives of D;; are denoted by ng
and Dy}, respectively, and are assumed positive for all F;;. This implies in particular
that D;; is strictly convex and monotonically increasing. It is seen that the optimization
problem of Eq. (6.6), viewed as a problem in the path flow variables {z,}, has a convex
twice differentiable cost function and a convex, compact constraint set.

The partial derivative of D with respect to z,, is given by

p all arcs (i,5)
on path p

Sec. 5.6 Nonlinear Multicommaodity Flow Problems—Routing Applications 417

where the first derivatives lej are evaluated at the arc flows Fj; corresponding to .
From this equation, it is seen that 0D /Oz,, is the length of path p when the length of each
arc (i,7) is taken to be the first derivative ng evaluated at z. Consequently, in what
follows, 0D /0x,, is called the first derivative length of path p.

According to Prop. 3.1 in Section 3.3, z* = {z,} is an optimal path flow vector
if and only if it is feasible, that is, it satisfies the constraints

Y zp=r1y, 2,20, VpeP, weW, (6.8)
PEP,

and the rate of change of the cost function is nonnegative along every “feasible direction”,
that is,

>3 0D@) o, a2y >0, 6.9)
P

oz
wEW pEPy,

for all {x,} that are feasible. Note that the optimality conditions (6.8) and (6.9) represent
a variational inequality which is identical to the one encountered in the traffic assignment
problem (Section 3.5) if the path travel time ¢,(x) in the latter problem is identified with
the first derivative length of path p, that is,

(6.10)

From the equivalence of Eqs. (5.2) and (5.3) in Section 3.5, it is seen that the optimality
conditions (6.8) and (6.9) are equivalent to having, for all w € W and p € P,

0D(z*) > OD(z*)

/
32y = 0z, Vp eP,l. 6.11)

z, >0 only if

In words, the above condition says that a set of path flows is optimal if and only if path
flow is positive only on paths with a minimum first derivative length. This parallels the
minimum travel time condition implied by the user optimization principle in the traffic
assignment problem. The condition of Eq. (6.11) also implies that at an optimum, the
paths along which the input flow r,, of OD pair w is split must have equal length (and
less than or equal length to that of all other paths of w).

We now consider iterative algorithms for solving the optimal routing problem. One
possible method is based on the scaled gradient projection method discussed in Section
3.3. To apply this method, we write the optimization problem of Eq. (6.6) as

minimize D(x)
6.12)
subject to Ty € Xy, VweW,

where z,, is the vector of path flows of OD pair w:

zy ={2p | P € Py}, (6.13)

418 Network Flow Problems Chap. 5

and X, is the feasible set for z,,:

Xy = xw‘ Y p=ru, T 20, pEP, p. (6.14)
PEPy

The gradient projection method replaces the current iterates z,,, w € W, with the
corresponding solutions Z,, of the quadratic programming problems

minimize (Zy — 2u) Vo D(@) + §(@w — Tw) My(Zy — 24) 6.15
subject to Ty € Xu, '

where V,,D denotes the gradient of D with respect to z,,, and M, is a matrix that
satisfies z,, M, z,, > 0, for every nonzero z,, in the subspace

zo| 3 ap=0}. (6.16)

pEPy
A suitable practical choice is to select M, diagonal with the scalars

1 82D(z)

5 Bxf,

3 PE PR,

along the diagonal, where ~ is a positive stepsize parameter. This choice corresponds
to an approximation of a constrained form of Newton’s method, where the off-diagonal
terms of the Hessian matrix have been set to zero. Note that M,, can change from one
iteration to the next. The convergence properties of the algorithm can be inferred from
the convergence result for the gradient projection method given in Section 3.3 (Prop.
3.6). Note that the algorithm admits massive parallelism, since the OD pairs w can
be assigned to separate processors that can solve the quadratic subproblems (6.15) in
parallel.

Another gradient projection algorithm (which in fact can be shown to be a special
case of the preceding one for a particular choice of the matrices M,,) is based on
converting the simplex constraints of the optimization problem (6.6) (for the purpose
of the next iteration) into nonnegativity constraints. This is done as follows: at each
iteration, we calculate for each OD pair w € W a path p,, of minimum first derivative
length (MFDL). We then express the flows of the MFDL paths 5,, in terms of the other
path flows while eliminating the equality constraints

E Tp =Ty
pEPy

in the process. For each w, we eliminate zp, from the cost function D(z) using the
equation

Sec. 5.6 Nonlinear Multicommodity Flow Problems—Routing Applications 419

T, = Tw — Z Zp, 6.17)
pEP,
P#Py
thereby obtaining a problem of the form

minimize D@
(6.18)
subject to zp, 20, YweW, p€ Py, p#Dy»

where Z is the vector of all path flows z, with p # p,, for all w € W. Note that the
constraint 7 > 0 has been ignored because the flow z3 can only be increased during
the iteration as will be seen shortly. Note also that the path<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>