3

[ferative Methods
for Nonlinear Problems

In this chapter, we consider iterative methods for the solution of a variety of nonlinear
problems. Examples include: '

(a) The solution of systems of nonlinear equations that arise in many types of modeling,
simulation, and engineering design problems.

(b) Optimization problems, including linear programming, that arise in a broad variety
of engineering design, economic modeling, and operations research applications.

(¢) Variational inequalities that can be viewed as generalizations of both systems of
equations and constrained optimization problems. Variational inequalities can also
be used as models of saddle point and other problems arising in the theory of games,
and as models for equilibrium studies in diverse fields ranging from economics to
traffic engineering.

Nonlinear problems are typically solved by iterative methods, and the convergence
analysis of these methods is one of the focal points of this chapter. We use two principal
techniques. The first relies on the theory of contraction mappings, and the second is
based on showing iterative reduction of the cost function of an underlying optimization
problem. Throughout the chapter, we emphasize algorithms that are well suited for
parallelization such as methods of the Jacobi and Gauss-Seidel relaxation type. For
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optimization problems, we discuss at length gradient projection methods and their scaled
versions. We pay special attention to constraint sets that are Cartesian products and lend
themselves to parallel calculations. We also develop some of the tools needed for the
study of asynchronous parallel algorithms in Chapters 6 and 7.

An important aspect of convex constrained optimization problems is that they can
be transformed into dual problems, which in many cases are easier to solve or are more
amenable to parallel solution methods. Techniques based on duality, known as decom-
position methods, have been widely used for the solution of large problems with special
structure. These techniques are also particularly well suited for a parallel computing
environment. We discuss a number of decomposition methods, and we delineate some
problem structures that are well suited for their application.

In Section 3.1, we consider contraction mappings and associated fixed point prob-
lems and develop some broadly applicable tools. In Section 3.2, we study iterative
algorithms for the solution of nonlinear optimization problems; these algorithms can be
thought of as generalizations of the iterative methods for the solution of linear equa-
tions that were presented in Chapter 2. Then, in Section 3.3, we consider constrained
optimization problems, with an emphasis on the problem of minimizing a cost function
over a convex set. In Section 3.4, we discuss the use of duality transformations of op-
timization problems to enhance the parallelization of their solution. Finally, in Section
3.5, we consider algorithms for the solution of variational inequalities. Throughout, we
comment on the potential for parallelization of the different methods.

3.1 CONTRACTION MAPPINGS
Several iterative algorithms can be written as
z(t + 1) = T(x(t)), t=0,1,..., (1.1)
where T is a mapping from a subset X of R into itself and has the property
IT@) -TWI < ellz—yll, Vz,yeX. (1.2)

Here || - || is some norm, and « is a constant belonging to [0,1). Such a mapping is
called a contraction mapping, or simply a contraction, and iteration (1.1) is called a
contracting iteration. The scalar « is called the modulus of T. A mapping T: X — Y,
where X,Y C R”, that satisfies Eq. (1.2), will also be called a contraction mapping,
evenif X £#Y. .

Let there be given a mapping 7' : X +— X. Any vector z* € X satisfying
T(z*) = x* is called a fixed point of T and the iteration x := T'(z) can be viewed as
an algorithm for finding such a fixed point. The reason is that if the sequence {x(t)}
converges to some z* € X and T is continuous at z*, then z* is a fixed point of 7. We
notice that contraction mappings are automatically continuous.
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As an alternative to the contraction assumption (1.2), we will sometimes assume
that a mapping T : X — X has a fixed point z* € X and the property

IT@) — z*|| < aljz — =¥, Ve X, 1.3)

where «, called the modulus of T, is again a constant belonging to [0, 1). Clearly,
inequality (1.3) is weaker than the contraction condition (1.2). Any mapping 7" with
the above properties will be called a pseudocontraction and the corresponding iteration
z := T(x) will be called a pseudocontracting iteration. (Pseudocontracting iterations
will play an important role in the analysis of certain algorithms in Section 3.5.) Notice
that the existence of a fixed point is part of the definition of a pseudocontraction and
that a pseudocontraction is not necessarily continuous. Figure 3.1.1 shows an example
of a contraction and a pseudocontraction.

Tix) Tix)

1 R — 10______
/

|
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1 2

(a) (b)

Figure 3.1.1 Illustration of a contraction and a pseudocontraction. (a) The mapping
T : R — R defined by T(z) = x/2 is a contraction with modulus 1/2, and the
iteration = := T'(z) converges to zero, which is a fixed point of 7. (b) The mapping
T : [0,2] — [0,2] defined by T(x) = max{0,z — 1} is not a contraction since
|T(2) — T(1)] = 1. On the other hand, it has a unique fixed point, equal to zero, and is
a pseudocontraction because it is easily seen that T(z) < z/2 for every z € [0,2].

A mapping T could be a contraction (or a pseudocontraction) for some choice of
the vector norm || - || and, at the same time, fail to be a contraction (respectively, a
pseudocontraction) under a different choice of norm. Thus, the proper choice of a norm
is critical. Some particularly interesting norms, for our purposes, are the weighted maxi-
mum norms. We have already seen an interesting class of mappings that are contractions
with respect to a weighted maximum norm: Corollary 6.1 in Section 2.6 shows that
a nonnegative matrix M has the property p(M) < 1 if and only if it is a contraction
mapping with respect to some weighted maximum norm.

3.1.1 General Results

The following basic result shows that contraction mappings have a unique fixed point
and the corresponding iteration x := T'(x) converges to it.

Proposition 1.1. (Convergence of Contracting Iterations) Suppose thatT : X — X
is a contraction with modulus « € [0, 1) and that X is a closed subset of ™. Then:
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(@) (Existence and Uniqueness of Fixed Points) The mapping T has a unique fixed
point z* € X.
(b) (Geometric Convergence) For every initial vector z(0) € X, the sequence {z(@®)}
generated by z(t + 1) = T(x(t)) converges to x* geometrically. In particular,
lz@) — z*|| < a®||z(0) — z*||,  Vt>O.
Proof.

(@) Fix some z(0) € X and consider the sequence {z()} generated by z(t + 1) =
T (z(t)). We have, from inequality (1.2),

lzt + 1) — z@®)|| < alz(t) — =t — 1|,
for all ¢t > 1, which implies
lz@ + 1) — z@®)|| < of||lz(1) — z(0)]], V¢>0.

It follows that for every ¢t > 0 and m > 1, we have

|z +m) — 2@ <> llatt + i) — a(t +i - |

=1

at

<ol +a+-+a™Hz) — z0) < |lz(1) — z()]).

-«
Therefore, {z(t)} is a Cauchy sequence and must converge to a limit z* (Prop.

A.5 in Appendix A). Furthermore, since X is closed, =* belongs to X. We have
forallt > 1,

[T@") — || < [IT(@") — 2@ + [lz@®) — z*|| < allz* — 2t — D|| + [|2@) — z*||
and since z(t) converges to z*, we obtain T(z*) = z*. Therefore, the limit z* of
z() is a fixed point of T. It is a unique fixed point because if y* were another
fixed point, we would have

" =y = IT") - T < aflz™ -y

which implies that z* = y*.
(b) We have

=) — z*|| = | T (x’ = 1)) — T(")|| < aflz - 1) — z*|,
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for all ¢ > 1, so by applying this relation successively for t’ =¢,t—1, ...,1, we
obtain the desired result. Q.E.D.

We now show that the convergence result of the above proposition remains valid
for pseudocontractions as well.

Proposition 1.2. (Convergence of Pseudocontracting Iterations) Suppose that
X C R™ and that the mapping T : X — X is a pseudocontraction with a fixed point
z* € X and modulus o € [0,1). Then, T has no other fixed points and the sequence
{z(t)} generated by z(t + 1) = T'(x(t)) satisfies

llz(®) — z*|| < t]|2(0) — z*||, vt >0,
for every choice of the initial vector z(0) € X. In particular, the sequence {z(t)}
converges to z*.
Proof. Uniqueness of the fixed point follows as in the proof of Prop. 1.1. Now
notice that the pseudocontraction condition (1.3) implies that
lz(t) — z*|| = | T (2t — 1)) — z*|| < allz(t — 1) — 2™,

for every t > 1, and the desired result follows by induction on t. Q.E.D.

In order to apply a result such as Prop. 1.2, we often have to show that the mapping
T has a fixed point. In some cases, an existence result is obtained from purely topological
considerations. The following result, illustrated in Fig. 3.1.2, generalizes the Brouwer
Fixed Point Theorem that was used in Section 2.6. Its proof is beyond the scope of this
book (see e.g. [DuS63]).

Tix)

(1,1)

Figure 3.1.2 Illustration of the fixed point
theorem (Prop. 1.3) for the case where T
maps the unit interval [0, 1] into itself.
—— Graphof T Here, point A = (O, T(O)) lies on or
above the diagonal of the unit square and
Tx* =x*-—— point B = (I,T(l)) lies on or below the

| diagonal. If T is continuous, its graph must
| cross the diagonal at some point (z*, z*)
X* 1 and such an z* is a fixed point of T.

Proposition 1.3. (Leray—Schauder-Tychonoff Fixed Point Theorem) If X C R"
is nonempty, convex, and compact, and if T : X — X is a continuous mapping, then
there exists some z* € X such that T'(z*) = z*.
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The iteration = := T'(z) can be implemented in parallel in the obvious manner
(see Subsection 1.2.4). However, the parallelization can be wasteful if the mapping T is
such that the updating of different components involves a substantial amount of common
computations. This issue will be raised, in more specific contexts, in later sections.
Efficient parallel implementations are often possible in the case where the set X is a
Cartesian product of lower dimensional sets, which we study next.

3.1.2 Contractions Over Cartesian Product Sets

Throughout this subsection, we assume that X = H:’;l X, where each X; is a nonempty
subset of R™:, and where n; + --- + n,, = n. Accordingly, any vector z € X is
decomposed as x = (z1,...,Zn), With z; € X;. We also assume that we are given a
norm || - ||; on R™ for each ¢, and that R™ is endowed with the norm

[} = max ||z}, (1.4)

which we call a block—maximum norm.

Let T : X — X be a contraction with modulus «, under the above introduced
block—-maximum norm. Such a mapping will be called a block—contraction. Let T; :
X — X, be the ith (block)—component of T, that is,

T(@) = (Ti@),..., Tn()).
Notice that

| T:(2)-Ti(w)||; < max IT5@-T;l; = IT@-TWI| < allz—yll, Vz,ye X, Vi
(1.5)
Gauss-Seidel Methods

Applying the mapping T, as in the iteration z(t+ 1) = T(x(t)), corresponds to updating
all components of z simultaneously. A Gauss—Seidel mode of implementation is also
possible, whereby the block—components of = are updated one at a time. Due to the
assumption that X is a Cartesian product, such a Gauss—Seidel iteration maps the set X
into itself and the algorithm is well-defined. We now present a precise description and
a proof of convergence of Gauss—Seidel iterations.

The mapping T X — X, corresponding to an update of the ;th block—component
only, is given by

T’l(m) = ’f'i(xlv--‘vxm) = (xlv"'7xi—lvﬂ(1")7xi+lv"'axm)'

(The fact that T; maps X into itself is a key consequence of the Cartesian product
assumption.) Updating all the block—components of z, one at a time in increasing order,
is equivalent to applying the mapping S : X — X, defined by

~

S=Tpo m—10---01Ty,
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Figure 3.1.3 Illustration of Gauss—Seidel
convergence for block—contracting
iterations (cf. Prop. 1.4). Let T : R2 — R2
be a contraction, with respect to the
maximum norm, with a fixed point z* =
and modulus o < 1. Consider one iteration
of the Gauss—Seidel algorithm, starting

> x, from some z such that ||z[joc < 1. The

1 update of the first component leads to the
vector y = (T, (x), :cz) that belongs to the
shaded region [—a, a] x [—1,1]. The
update of the second component leads to
the vector z = S(z) = (yl,Tz(y)) =
(Tl (x), T (T1 (x), mz) ) , which belongs to

_1 the dotted region [—a, a] X [—a, a]. In

particular, ||z]joo < .

where o denotes composition. An equivalent definition of S is given by the equation
Sz(x) =T‘i(sl(x)a"‘751:—1(1:);:1:1:)”"xm), (16)

where S; : X — X is the ith block—component of S. It is seen that any fixed point
of T is also a fixed point of S, and conversely. The mapping S will be called the
Gauss-Seidel mapping based on the mapping T and the iteration z(¢ + 1) = S(x(t)) will
be called the Gauss—Seidel algorithm based on the mapping T.

Proposition 1.4. (Convergence of Gauss—Seidel Block-Contracting Iterations) If
T : X — X is a block—contraction, then the Gauss—Seidel mapping S is also a block—
contraction, with the same modulus as T'. In particular, if X is closed, the sequence of
vectors generated by the Gauss—Seidel algorithm based on the mapping 7' converges to
the unique fixed point of 7' geometrically.

Proof. We use the definition of S [Eq. (1.6)] and the block—contraction assumption
[inequality (1.5), in particular] to obtain for every z,y € X

15:(2) = Si@)|l: < omax {r;lgx 153(2) = 8;@ll; , max flz; ~ yjllj} :

A simple induction on i yields ||.S;(z) — S;(y)|; < amax; ||z; —y;||; = ||z —y|| for all
1. This proves that S is a block—contraction and the rest follows from the convergence
result for contracting iterations (Prop. 1.1). Q.E.D.

Proposition 1.4 is illustrated in Fig. 3.1.3. The following result provides a gener-
alization to the case of pseudocontractions.
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Proposition 1.5. (Convergence of Gauss—Seidel Block-Pseudocontracting Itera-
tions) If a mapping T : X — X has a fixed point * and is a pseudocontraction of
modulus a with respect to a block-maximum norm || - ||, then the same is true for the
Gauss—Seidel mapping 5, that is,

|S(@) —*|| < allz -, VzeX.

In particular, the sequence generated by the Gauss—Seidel algorithm based on the mapping
T converges to z* geometrically.

Proof. The proof of the inequality ||S(z) —z*|| < a||z —z*|| is the same as for the
case of block—contractions (Prop. 1.4), provided that we replace y by z*. Convergence
of the Gauss—Seidel algorithm follows from the convergence result for pseudocontracting
iterations (Prop. 1.2), applied to the mapping S. Q.E.D.

Component Solution Methods

We now investigate an alternative approach for finding a fixed point of . We are looking
for a solution of the system of equations z = T'(z). This system can be decomposed
into m smaller systems of equations of the form

Zi=’1-'i(1:1,---,zm), i=l)"'7m7 (1'7)

which have to be solved simultaneously. We will consider an algorithm that solves
at each iteration the :th equation in the system (1.7) for x;, while keeping the other
components fixed. There is no established terminology for describing such an algorithm
and we will be referring to it as the component solution method.

To be more specific, we let R;(x) be the set of all solutions of the ith equation in
the system (1.7), defined by

Ri(z) = {yi € X;

Y = Ti@1, o, Tim 1y Uis Tiks - T) . (1.8)

The method proceeds as follows. Given a vector z(t) € X, the ith block—-component
z;(t + 1) of the next vector is chosen to be a solution of the ith equation in the system
(1.7), that is,

zi(t + 1) € Ri(z(2)).
The following result shows that x;(¢ + 1) is uniquely defined if 7 is a block—contraction.

Proposition 1.6. Suppose that X is closed and that T : X — X is a block—
contraction. Then the set R;(x) has exactly one element for each 7 and for each z € X.

Proof. Fix some 7 and some = € X, and consider the mapping 77 : X; — X;
defined by
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T W) = Ti(@15 -, Tim 1y Yis Tit 1y e+ T (1.9)

Notice that R;(z) is, by definition, equal to the set of fixed points of 7. By the
block—contraction assumption [cf. inequality (1.5)], we have

175 @) — TPl < allyi — zll;, Vs, 2 € X;
and T is a contraction. The conclusion that R;(z) is a singleton follows from the

existence and uniqueness result for fixed points of contraction mappings (Prop. 1.1).
Q.E.D.

Assuming that each R;(z) is a singleton, we define a mapping Q; : X — X;
by letting Q;(z) be equal to the unique element of R;(z). We then define a mapping
Q: X — X by letting
(see Fig. 3.1.4). The component solution method is then described by

z(t+1) = Q(z()), t=0,1,.... (1.10)
In this iteration, all block—components of z are updated simultaneously. Alternatively,
we could use the Gauss—Seidel algorithm based on the mapping @, in which the block—

components of x are updated one at a time (see Fig. 3.1.5). This will be called the
Gauss—Seidel component solution method.

{xlx, =T, (x,,xz)} =R, (x)

Q(x)

(x1,Q,(x))

—~

b X = (axg) Figure 3.1.4 Illustration of the mapping

Q used in the component solution method.
Each curve is the set of points where the
equation x; = Tj(x), x7) [respectively,
3 = Th(x1,x)] is satisfied. At their
intersection z*, both equations are satisfied
and z* is a fixed point of T. The mapping
Q; corresponds to updating x; so as to
satisfy the ith equation while the other
{X'Xf I2lx 'X2)}= Ryx) component is fixed.

(Q (x),x,)
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{ X1xy= Ty, xa)} = Ay (x)

x=lxq.x2) L .
Figure 3.1.5 Illustration of the
Gauss—Seidel component solution method.
Starting from the vector z = (x1, T2),
an update of the first component leads
to the point y = (Ql(ac), a:z) and
an update of the second component
leads to the point z = (yl,Qz(y)) =

{ xlxp= Tolxs xp)} = Ay () (@@, Q (@), 22)).

Convergence of the component solution method (1.10) and its Gauss—Seidel variant
is obtained because @ inherits the contraction property of 7', as shown next.

Proposition 1.7.  (Convergence of Component Solution Methods for Block-Contrac-
tions) If T : X — X is a block—contraction, then @ is also a block—contraction with the
same modulus as T'. In particular, if X is closed, then the component solution method

zE+1)= Q(a:(t)), as well as the Gauss—Seidel algorithm based on @), converge to the
unique fixed point of T" geometrically.

Proof. Let z = (zy,...,2,) and y = (y1,...,Ym)- By the definition of Q;, we
have Q;(z) € R;(z) and Q;(y) € R;(y). Therefore,

Qi@) = Ti(x1,. - Tic1, Qi@), Tig1,. ., Tm),
and
Qi) =T;(y1,-- - ¥i-1, Qi®), Yit15-- -, Ym)-
Using the block—contraction assumption for T' [inequality (1.5)], we obtain

1Qix) — Qiw)|li < amaX{HQi(w) - Qi max lz; — yjllj}~

Since a < 1, it follows that
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1Q:@) = Qiw)ll: < amaxflz; —y;l; < o [lz - yl-
Since this is true for each 4, we obtain ||Q(z) — Q(y)|| < a||z — y||, which shows that
@ is also a block—contraction. Assuming that X is closed, Q has a unique fixed point
z*. The equation z* = Q(z*) is equivalent to {z}} = R;(z*) for each i. Using the
definition of R;(z*), we conclude that z* = T(z*) and z* is the unique fixed point of
T. The result follows because contracting iterations and their Gauss—Seidel variants are
guaranteed to converge geometrically (Props. 1.1 and 1.4). Q.E.D.

We now consider the case where T is a pseudocontraction with fixed point z*.
The major difference here is that there is no guarantee that the set R;(z) is a singleton;
consequently, the mapping @ is not, in general, well-defined. In particular, R;(z) could
be empty, in which case, the algorithm breaks down. It is also possible that R;(x) has
many elements; in this case, our approach will be to assume that Q;(x) is chosen among
the elements of R;(z) by means of some rule that we leave unspecified. The following
result provides an easily verifiable condition for the sets R;(z) to be nonempty.

Proposition 1.8. Suppose that the mapping T : X — X is continuous and a
pseudocontraction with respect to a block-maximum norm || - ||. If each set X; is closed
and convex, then the set R;(x) is nonempty for each 4 and for each z € X.

Proof. Let z* and o be the fixed point and the modulus of T, respectively. As in
the proof of Prop. 1.6 we consider the mapping T7 : X; — X;, defined by

TFW) = Ti(@1, oy Tic 1, Yis Tig 1, - .-, T ) -
Fix some 7 and some z € X. Consider the set

Yi={yi

s = 2t l: < max la; - 2311, } 0 X..
Notice that for every y; € Y;, we have

177 @) — 25l < amax{lly: — =1, max |lz; — ; 15} < max flz; — 31l
which shows that T*(y;) € Y;. The set Y; is closed and convex because it is the
intersection of two closed and convex sets. Furthermore, Y; is bounded and is therefore
compact. Finally, T¥ is continuous and the Leray—Schauder-Tychonoff Fixed Point
Theorem (Prop. 1.3) shows that T/ has a fixed point. From the definition of T/, such a
fixed point is an element of R;(z). Q.E.D.

The following result is an analog of Prop. 1.7.

Proposition 1.9.  (Convergence of Component Solution Methods for Block-Pseudo-
contractions) Suppose that the mapping 7' : X — X has a fixed point z* and is a
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pseudocontraction with respect to a block—-maximum norm || - ||. Suppose that for every
i and =z € X, the set R;(x) is nonempty. Then, the mapping @ is also a pseudocontrac-
tion, with respect to the same norm, and z* is its unique fixed point. In particular, the
sequence {z(t)} generated by the component solution method z(t + 1) = Q(:c(t)), or by
the Gauss—Seidel algorithm based on @, converges to z* geometrically.

Proof. Since Q;(z) € R;(z), we have
Qi(@) = Ti(x1, .., Tic1, Qi(@), Tig1,. .., Trn).

Using the pseudocontraction assumption on 7', we obtain
1Q:ta) = o : < aemax{1Qu(e) = = s, max [le; - 251},

where a € [0,1) is the modulus of T. It follows that ||Q(z) — z*|| < af|z — z*| for
every z € X. In particular, z* is the unique fixed point of @ and @ is a pseudocontrac-
tion. The desired conclusions follow from the convergence result for pseudocontracting
iterations (Prop. 1.2) and their Gauss—Seidel variants (Prop. 1.5), applied to the mapping
Q. Q.E.D.

Results similar to those proved so far can also be obtained if T is a monotone
mapping, that is, if T satisfies T'(x) < T'(y) for every z, y such that x < y (Exercise
1.4).

3.1.3 Some Useful Contraction Mappings

We assume again that X C R" and that X is decomposed as a Cartesian product of
lower dimensional sets X; C ®™, ¢ = 1,...,m. We consider a mapping T : X — R",
whose ith block—component T; is of the form

Ti(z) = z; — vG ! fi(x). (1.11)

Here each f; is a function from R™ into R™¢, « is some scalar, and G; is an invertible
symmetric matrix of dimensions n; x n;. Mappings of this form are very common in
iterative methods for optimization and solution of systems of equations or variational
inequalities, and they will keep recurring in subsequent sections of this chapter. We
collect here certain sufficient conditions for such mappings to be block—contractions.
These conditions will be invoked in later sections in order to establish the convergence
of certain iterative methods.

The general nature of the conditions to be considered is best illustrated in the
simple case where X = R™ and n; = 1, G; =1 for each i, and the mapping f has the
form f(x) = Az, where A is an n x n matrix. We then have

Tx)=x—~vAz = — yA)zx,



192 Iterative Methods for Nonlinear Problems Chap. 3

which is reminiscent of iterative algorithms for linear equations [see Section 2.4, Eq.
(4.9), for example]. The mapping T is a contraction with respect to the maximum norm
| - lloc if and only if ||I — yAl|oc < 1. From the formula for the maximum norm (Prop.
A.13 in Appendix A), an equivalent condition is

mgX{ll—vauHZIvaijl} <L (1.12)
j#

Assuming that + is positive and small enough so that 7v|ai;| < 1 for each 4, the expression
in Eq. (1.12) is equal to

m?x{l —yai+v ) |aij|}'

J#i

It follows that for v positive and small enough, the mapping T is a contraction if and
only if a; > 0 and

> lail <ai, Vi, (1.13)
J#i

which is a diagonal dominance condition on A. Notice that if f(z) = Az then V;fi(x) =
a;;. This suggests that the appropriate generalization of conditions (1.12) and (1.13) to
the case of nonlinear functions f should be to replace a;; by V; fi(x). Indeed, all of
the conditions to be introduced in the sequel can be interpreted as diagonal dominance
assumptions on the matrix V f of partial derivatives of f.

In the general case where the block—components of f have dimension n; > 1, we
use the notation V; f;(x) to denote the matrix of dimension nj X n; whose entries are
the partial derivatives of the components of f; with respect to the components of z;. In
particular, the kth column of V; f;(x) is the gradient vector of the kth component of fis
when viewed as a function of z;.

Since each V; f;(x) is a matrix rather than a scalar, a diagonal dominance condition
on V f(z) should involve the norms of these matrices. The most suitable norms for such
a purpose are induced matrix norms (see Appendix A) corresponding to the underlying
vector norm on R". To be more specific, let || - ||; be an arbitrary norm on R™, for
each ¢, and let || - || be the corresponding block-maximum norm. With any matrix A of
dimension n; x n;, we associate the induced matrix norm

”A”l] = max ”Axuz
a0 ||z]|;

llll;=1

We are now ready to generalize the diagonal dominance conditions (1.12) and (1.13) to
the case where f is nonlinear and the dimension n; of each block—component is possibly
larger than 1.
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Proposition 1.10. Suppose that X is convex. If f : R™ — R™ is continuously
differentiable and there exists a scalar o € [0, 1) such that

|r-er' is@) | +Z”7G‘ (V; fi()) ”i_Sa, VoeX, Vi, (1.14)

then the mapping T : X + R" defined by Ti(z) = z; — G ! f;(x) is a contraction with
respect to the block—maximum norm || - ||.

Proof. We fix some ¢ and z, y € X, and we define a function g; : [0, 1] — R™
by

git) = tz; + (1 — )y; — G fi(tz + (1 — t)y).

Notice that g; is continuously differentiable. Let dg;/dt be the n;,~dimensional vector
consisting of the derivatives of the components of g;. We then have

dg
ITi(@) - Tiw)ll: = llgz(l)—gz(o)”z“H/ L

(D)

It, therefore, suffices to bound the norm of dg;/dt. The chain rule yields

i

” dgz

tE[O 1]

”dgz T —Y; _'YG;I(Vfi(t.’L'-i-(l —t)y))/(a;_

= [I —1G;! (Vz'fi (tz+(1 - t)y))l] @i — %)

_ 27G (V f, tx +1 - t)y))/(xj — ;)
J#

i
/
S”I -1G;! (vifi(t$ +(1 - t)y)) H Nz = yills
2
/
+ 3ot (visittz+ a—om)) |- lles - will
J#i h

Sormax[|lz; - y;l; = ollz -y,

which establishes the contraction property. [We have used the assumption (1.14) with

x replaced by tx 4 (1 — t)y; this vector belongs to X because X is assumed convex.]
Q.E.D.
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The condition (1.14) in the previous proposition is generally hard to verify. It

is shown in the following that if n; = 1 for each ¢, then this condition simplifies
considerably and bears closer resemblance to the diagonal dominance condition (1.13).

Proposition 1.11. Assume the following:

(a) We have n; = 1, for each i, the set X is convex, and the function f : R” — R"
is continuously differentiable.

(b) There exists a positive constant K such that
V.ifiz) <K, VzelX, Vi
(¢) There exists some 8 > 0 such that

S IVifi@| < Vifi@) - 8,  VzeX, Vi, (1.15)
Jj#i

Then, the mapping T : X +— R" defined by T'(x) = z — vf(z) is a contraction
with respect to the maximum norm, provided that 0 < v < 1/K.

Proof. Under the assumption 0 < v < 1/K, we have
=1 Vifi@l+r Y 1V @) = 1-7(Vifi@= 3193 fi@)]) < 1-98 < 1, (1.16)
j#i i
which shows that inequality (1.14) holds. The result follows from Prop. 1.10. Q.E.D.

A minor generalization of Prop. 1.11 is provided in Exercise 1.3.

The next two results are based on a particular choice of norms, namely weighted
quadratic norms. For motivation purposes, let us temporarily consider the case where
there is only one block—component and consider a mapping 7" : X — R™ given by

T(z) = z — vG~ f(2), Vr e X, (1.17)

where G is a symmetric positive definite matrix. The effect of G in Eq. (1.17) is to scale
the direction in which z is changed when T is applied. Accordingly, it is reasonable
to consider a norm that scales the components of z in a corresponding fashion. To this
effect, we introduce the norm || - ||, defined by

”:E”G — (xIG:L_)l/Z
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and we look for conditions under which T is a contraction with respect to || - ||g. An
easy calculation yields

IT@) - T =(@ - 9 =167 (/@) - f®)) 6 (@@ -9 =167 (7@ - f®))
=llz - 4l +7*(f@) - f@)'G™' (f@) - f@)
- 27(f@) - f@) @~ y).

If v is chosen very small and the norm of f(z) — f(y) is of the order of ||z — y||¢, then
the term involving v? can be neglected. We then see that for T to be a contraction, it is
sufficient to assume that -y is positive and small enough, and that

(f@ - f@) @-y > allz—yl}  VryeX, (1.18)

where « is some positive constant. Inequality (1.18) is called a strong monotonicity
condition and its significance will be explored further in Section 3.5. Let us simply
notice here that if f is the linear function f(z) = Az, then strong monotonicity is
equivalent to the positive definiteness of A.

We now return to the general case where X =[]/~ X; C [[;~, R™, and where
T is given by T;(z) = z; — ’yGi_l fi(x) for each i. We assume that each matrix G; is
symmetric and positive definite. For each ¢, we define a norm || - ||; on R™ by

Joill: = (+/Gaz) 2.

These norms define a block-maximum norm || - || given by ||z|| = max; ||z;]|;- In

keeping with the discussion in the preceding paragraph, we shall impose a bound on the
magnitude of f(z) — f(y) and a monotonicity condition similar to (1.18).

Proposition 1.12. Suppose that each G; is symmetric positive definite and let
the norms | - ||; and || - || be as above. Suppose that there exist positive constants Aj,
Az, Az, with A3 < Aj, such that for each 7 and for each z,y € X, we have

| fiz) = fi@)lls < Aillz -y, (1.19)
and
(fi@) — fi®) @i — y:) > Aollz; — s} — As|lz — y|°. (1.20)

Then, provided that ~ is positive and small enough, the mapping T : X — R", defined
by Ti(z) = z; — vG; ! f.(z), is a contraction with respect to the block—-maximum norm

I I
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Proof. Let A, be a positive constant such that ;G Iz, < Auz,Gz; for every
xz; € R™. [The existence of such a constant follows from the positive definiteness of
Gi; see Prop. A.28(c) in Appendix A.] Assuming that 0 < v < 1/(2A4;), we have

| Ti(@) — Ti@)I? =llz: — will? + ¥ (f:@) — i) G (file) — fuw))
- 29(fi@) = f:w) (zi — %)
<llzs — will} + AF AP ||z — ylI* — 27Az]lz; — sl|? + 2vAs]|z — y))?

<(1-274 + A3 A7 + 2945 ) o -y

If 7 is also smaller than 2(A4; — A3)/(A%A4), which is possible because A; > Aj,
the expression 1 — 2yA; + A2A4y? + 27yA; is smaller than 1, which proves the result.
Q.E.D.

We now simplify the conditions of Prop. 1.12, for the case where f is continuously
differentiable. In the proof of our next result, we use the fact that if G; is symmetric and
positive definite, then the norm ||z;]|; = (z}G;z;)!/? is also equal to ||G}/z;||,, where
G; Pisa symmetric square root of G; and || - || is the Euclidean norm (see Props. A.27
and A.28 in Appendix A).

Proposition 1.13. Assume the following:

(a) The set X is convex and the function f : R" — R” is coﬁtinuously differentiable.
(b) For each ¢, the matrix G; is symmetric and positive definite.
(c) There exists a constant K such that |V f(z)|]» < K for every z € X.

(d) There exist some § > 0 and € > 0 such that V; f;(z)’ — §G; is nonnegative definite,
for every ¢ and x € X, and such that

Z“G;‘/Zvjfi(x)a;‘””z <6l-¢, ViVreX. (121
Jj#i

Then, provided that « is positive and small enough, the mapping T : X — R", defined
by Ti(z) = z; — vG; ! fi(x), is a contraction with respect to the block—maximum norm
|||l = max;(z:G;xs)!/2.

Proof. We shall verify that the assumptions of Prop. 1.12 are satisfied. Let us fix
some ¢ and some x,y € X. We define a function g : [0, 1] — R by

9@ = fi(tz + (1 — ) @i — vo).
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The chain rule yields

d
d—f(t) = (@ — )V fi(tz + (1 — ) (@ — 1),

Furthermore, the mean value theorem shows that there exists some ty € [0, 1] such that

_d
g(1) = 9(0) = —=(to).

Let z = toz + (1 — to)y and note that z belongs to X because X is convex. We then
have

/ d
(fi(@) — @) @i — y) = g(1) — g(0) = E%(to)
=(z — y)'V ()i — y2)
= (zi — y:)' Vifil@) i —vi) + D (@5 — 4;)'V; fil2)wi — yi)

Jj#i
> blles — will + 3G G} (67 Vi fiGT ) 612G - o
i
> lla: — will = 3 16} 2@ = w165 V5 1G] e - 161 @ = ol
J#
> bllz: — yill2 — e — I Y IGT 2V, £4G; 2

Jj#i
> 8||zi — will? — 60 — o)z — ylI*

where in the last two steps we used the definition of the norm || - || and inequality (1.21).
This shows that condition (1.20) is satisfied with A, = é and A; = 6(1 — €) < As.

Condition (1.19) in Prop. 1.12 is a simple consequence of condition (c) and the
mean value theorem. We conclude that Prop. 1.12 applies and shows that 7" is a con-
traction. Q.E.D.

EXERCISES

1.1. Show that if T : X — X is a contraction but X is not closed, then T need not have a fixed
point.
1.2. (a) Construct an example of a mapping T satisfying the assumptions of Prop. 1.8 and
such that for some x € X and some ¢, the set R;(z) has more than one element.
(b) Construct an example to show that Prop. 1.8 is false without the assumption that X
is convex.
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(c) Construct an example to show that Prop. 1.8 is false without the assumption that the
mapping T is continuous.

1.3. Let a function f : R™ — R™ satisfy the assumptions of Prop. 1.11 except that the condition
(1.15) is replaced by

3w Vi fi@)| S wiVifiw) - B, Ve e X, Vi,

Jj#
where wy,...,wm, are positive scalars. Show that for v positive and small enough, the
mapping T defined by T'(z) = = —yf(z) is a contraction mapping with respect to a suitable

norm.
1.4. (Monotone Mappings.) A mapping T : R™ — R" is called monotone if it satisfies
T(z) < T(y) for every z,y € R™ such that z < y. Suppose that 7" is monotone, continuous,
has a unique fixed point z*, and that there exist two vectors y*, z* € ®" such that y* < 2"
and T(y*) > y*, T(z*) < z*. Let H={z | y* <z < z"}.
(a) Show that the sequence {z(¢)} generated by the iteration z(t + 1) = T(x(t)) con-
verges to ™ if z(0) is equal to either y* or z*. Furthermore, z* € H.
(b) Show that the conclusion of part (a) remains valid for every z(0) € H.
(c) Show that the sequence of vectors generated by the Gauss—Seidel algorithm based on
the mapping T converges to z* for every initial vector z(0) belonging to H.
(d) We define T} : R" — R™ by '

Ti@) = Ti@r, .., 2n) = (21, 2o, T(@), Tig 1, -, Tm) - (1.22)

Consider the iteration z(t + 1) = Ti(x(t)) and show that it converges to a finite
vector for every z(0) € H. Hint: This is essentially a one-dimensional iteration.

(e) For any x € H and any i, let Q;(z) be the limit of z;(t), where {z(t)} is the
sequence generated by the iteration of part (d), initialized with z(0) = . Show that
the mapping @ = (Q1,...,Q@») is monotone on the set H. Construct an example
showing that @ can be discontinuous.

(f) Let Q be as in part (e). Show that the sequence generated by the iteration z(t + 1) =
Q(z(t)) converges to z* for every z(0) € H, and that the same is true for the
Gauss—Seidel algorithm based on Q.

3.2 UNCONSTRAINED OPTIMIZATION

In this section, we consider algorithms for minimizing a continuously differentiable cost
function F' : ®"* — R. We have VF(z*) = 0 for every vector z* that minimizes F’
(Prop. A.34 in Appendix A). In view of this fact, the minimization of F' is related to
the problem of solving the system V F(z) = 0 of generally nonlinear equations. In fact,
most iterative optimization algorithms are aimed at finding a solution of the equation
V F(z) = 0 without any guarantees that such a solution is a global minimizer of F'. We
will thus settle with this as our objective. In Chapter 2, we studied iterative algorithms
for the solution of linear equations; the algorithms in this section can be viewed as their
natural extensions to a nonlinear setting.
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There are two main approaches for proving convergence of an algorithm for nonlin-
ear optimization. In the descent approach, one shows that the value of the cost function
keeps decreasing toward its minimal value. In an alternative approach, a suitable norm
is introduced and one shows that the distance of the current iterate from a minimizing
point decreases with each iteration. In what follows, both approaches will be considered.

3.2.1 The Main Algorithms

The algorithms to be presented can be motivated from the iterative algorithms for solving
linear equations that were introduced in Section 2.4. Suppose that we are solving the
linear system Az = b, where A is a symmetric positive definite matrix. This is equivalent
to minimizing a cost function F' defined by F(z) = %a:’ Az — z'b. In this context,
VF(z) = Az — b and V2F(z) = A. We now recall the iterative algorithms introduced
in Section 2.4 and the following generalizations suggest themselves:

Jacobi Algorithm. (Generalizing the JOR algorithm for linear equations):
ot +1) = 2(t) - y[D(2(®))] T VE(z()), @.1y

where + is a positive stepsize, and where D(z) is a diagonal matrix whose ith diagonal
entry is V% F(z), assumed to be nonzero for each i.

Gauss-Seidel Algorithm. (Generalizing the SOR algorithm for linear equations):

ViF(2(, 1))

z(t+ 1) = z;(8) — ’me

=1,...,n, 2.2)

where 2(i,t) = (z1(t + 1),...,z,_1(t + 1), z;(t), ..., 4 (t)).
Gradient Algorithm. (Generalizing Richardson’s algorithm for linear equations):
@t + 1) =z(t) — 7VF(x(t)). 2.3)
A Gauss-Seidel variant of the gradient algorithm is obtained if Eq. (2.3) is replaced by
zi(t + 1) = 2:(t) — YViF (23, 1)), i=1,...,n, 2.4)
where z(i,1) is defined as in the Gauss—Seidel algorithm.
Given some = € R" such that VF(z) # 0, any vector s € R" with the property

§'VF(z) < 0 is called a descent direction. The reason is that s’ V F(z) is the directional
derivative of F' along the direction s and therefore, if v is a sufficiently small positive
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constant, then F(z + vs) < F(z). Any algorithm that, given a current vector = sat-
isfying VF(x) # 0, updates x along a descent direction is called a descent algorithm.
The gradient algorithm (2.3) is certainly a descent algorithm; in fact, it is often called
the steepest descent algorithm because the direction of update is such that F' tends to
decrease as fast as possible, in the sense that —VF(z)/||V F(z)| minimizes the direc-
tional derivative s’V F(z) over all directions s with ||s||, = 1. The Gauss—Seidel variant
(2.4) of the gradient algorithm is also a descent algorithm, and the same property holds
for the Jacobi and Gauss—Seidel algorithms of Eqgs. (2.1) and (2.2), respectively, under
the assumption that V% F(z) > 0 for all z € R™. We can think of the Jacobi algorithm
as a scaled version of the gradient algorithm, whereby the ith component of the update
—yVF (z(t)) is scaled by a factor of 1/V%F(z(t)). One can consider more general
scaling methods and this leads to the following algorithm.

Scaled Gradient Algorithm.
ot + 1) = z(t) — 7 (D®) ~ VF(x(t)), 2.5)

where D(t) is a scaling matrix. Quite often, D(t) is chosen diagonal, which simplifies
the task of inverting it. If D(¢) is indeed diagonal, its entries are positive, 7y is positive,
and VF(2(t)) # 0, then it is seen that yVF ((t)) (D) ™' VF(x(t)) > 0 and the
scaled gradient algorithm is a descent algorithm (see Fig. 3.2.1).

Figure 3.2.1 Descent directions of the
gradient and the scaled gradient algorithms.
The curves shown are sets of points

where the value of F is constant. The
vector A indicates the steepest descent
direction. The vector B is another descent
direction obtained by positive scaling of the
components of A, as in the scaled gradient
iteration z := z — YD~ !V F(z), with D
being diagonal and with positive diagonal
entries. With proper scaling, the direction
of B is preferable to that of A.

The parallel implementation of algorithms such as the Jacobi and gradient al-
gorithms of Egs. (2.1) and (2.3), respectively, is straightforward. We assign to the ith
processor the task of updating the :th component of x. After each update, each processor
communicates the newly computed value to those processors that require it. We notice
that the sth processor has to know the current value of z; only if V;F or V F depends
on z;. For many large problems, V,F and V2 F depend on only a few of the remain-
ing components, the corresponding dependency graph is sparse, and the communication
requirements of such algorithms are greatly reduced. The Gauss—Seidel algorithms of
Eqgs. (2.2) and (2.4) are generally unsuitable for parallel implementation except when the
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dependency graph is sparse, in which case, the coloring scheme discussed in Subsection
1.2.4 is applicable.

A related class of algorithms is obtained if instead of using a constant stepsize -,
we use a stepsize that leads to the largest possible reduction of the value of F. For
example, in a modification of the gradient algorithm, we can let z(¢t + 1) be equal to
x(t) — ¥(t)VF (x(t)), where (¢) is the value of ~ that minimizes F(z@) — yVF(z(?)))
with respect to . Such algorithms often converge faster; on the other hand, the one-
dimensional minimization that has to be carried out at each stage is not easily paral-
lelizable in general. For this reason, in what follows, we concentrate attention to the
case of a constant stepsize. We refer to the sources given at the end of the chapter for
convergence analysis using other stepsize rules.

Newton and Approximate Newton Methods

Let us assume that F' is twice continuously differentiable. An important method for
nonlinear optimization is Newton’s algorithm, described by the equation

2t +1) = a(t) - v(V2F (2()) ) TVF (). 2.6)

We notice that if F(z) = 3z’ Az—z'band if v = 1, then z(t+1) = 2(t)— A~ (Az(t) - b)
= A~!'b, which proves convergence in a single step. Accordingly, it can be shown that
for nonquadratic problems, Newton’s algorithm converges much faster (under certain
assumptions) than the previously introduced algorithms, see e.g. [OrR70]. As an illus-
tration of this fact, assume that F is twice continuously differentiable and has a local
minimum z* for which V2F(z*) is positive definite. Suppose that we are given z(t)
which is close enough to z* so that V2F'(z(t)) is invertible. Let (¢ + 1) be the vector
generated by the Newton iteration (2.6) with v = 1. We then have

2t + 1) - * = [V2F(2()] " [V2F (2®)) (2(t) — ) - VF (2(0))]

= [V*F(z(®)] / 1 [V2F (2(t)) — V2F(z* + £(2(t) — %) )] d€ (z(®) — =*),

0

from which we obtain for any norm || - ||
|zt + 1) — z*||

< |[[v*F®) |- (/01 IV2F (2) - VF (2" +€(o(t) - 2*)) | de) - l}ott) - 27|

Using the continuity of V2F(z), it follows that given any o € (0, 1) there exists some
€ > 0 such that

lz@t + 1) — z*|| < allzt) — 2],
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for all z(t) with ||z(¢) — z*|| < e. This is in contrast with the other algorithms we have
been studying for which the preceding inequality cannot be proved for an arbitrarily
small value of «, and establishes the faster convergence of Newton’s algorithm. On the
other hand, the Newton iteration (2.6) involves a matrix inverse that greatly amplifies
the computational requirements per stage. The Jacobi algorithm (2.1) can be viewed as
an approximation of Newton’s algorithm in which the off-diagonal entries of the matrix
V2F are ignored, thereby making the matrix inversion very easy. More generally, in
scaled gradient algorithms of the form z(t+1) = z(t)—v(D(t)) —IVF(a:(t)) , it is usually
desired to let D(¢) be an approximation of V2F (z(t)) that is easy to invert.

We now describe a related and frequently more practical class of algorithms, the
approximate Newton methods, which are based on the Newton iteration (2.6) except that
the inversion of the matrix V2F (z(t)) is not carried out to completion. Let

H = V?F(z())

and
g=VF(z(?)).
Equation (2.6) becomes
z(t + 1) = z(t) + vs, 2.7
where s is computed by solving the linear system Hs = —g. In an approximate Newton
method, we employ an iterative algorithm for solving the system Hs = —g and we

terminate this algorithm after only a few iterations, before it converges. (Some common
choices of iterative algorithms are the SOR method of Section 2.4 and the conjugate
gradient method of Section 2.7, which, incidentally, are well-suited for parallelization.)
This provides us with a direction vector § that is an approximation of s, and Eq. (2.7) is
replaced by

z(t+1) = z(t) + 5. (2.8)

A remarkable fact is that the vector § is guaranteed, under certain assumptions, to be a
direction of descent, which we proceed to demonstrate.

Suppose that g # 0 and that H is positive definite. (Conditions for H to be posi-
tive definite are provided by Prop. A.41 in Appendix A.) Furthermore, H is symmetric.
Several iterative methods for solving the system Hs = —g have the property that suc-
cessive iterates reduce the value of the quadratic form %s’ Hs + ¢g’s. This is the case,
for example, for SOR (see the argument preceding Prop. 6.10 and Fig. 2.6.5, in Section
2.6) and for the conjugate gradient method (see Prop. 7.1 and Exercise 7.4 in Section
2.7). Therefore, if the iterative algorithm is initialized with s = O (or, more generally,
with any s such that %s' Hs < —g's), the vector § produced after any finite number of
iterations satisfies



Sec. 3.2 Unconstrained Optimization 203
1¥H3+4'3<0. 2.9)

Since H is assumed positive definite, we obtain ¢’5 < 0, which shows that § is a direction
of descent.

3.2.2 Convergence Analysis Using the Descent Approach

We now study the convergence of the previous algorithms using the descent approach.
The proofs given will be generalized to the context of partially asynchronous algorithms
in Chapter 7. The main line of argument is simple: we first show that each update
reduces the value of the cost function by an amount that is bounded away from zero if
the magnitude of the update is bounded away from zero. Given that the cost function is
bounded below, it follows that the magnitude of the updates converges to zero. Then,
one uses the formula for the updates to show that VF(:c(t)) must also converge to zero.

The following assumption on F' will be used in most of the results of this section.

Assumption 2.1.

(a) There holds F'(z) > 0 for every z € R".

(b) (Lipschitz Continuity of VF) The function F is continuously differentiable and
there exists a constant K such that

IVF@) - VF@)2 < Kllz = yll2,  Vz,y € R™.
A key consequence of Assumption 2.1 is provided by Prop. A.32 in Appendix A,
which we repeat here for easier reference.

Lemma 2.1.  (Descent Lemma) If F satisfies the Lipschitz condition of Assump-
tion 2.1(b), then

K
F@+y) < F@+y'VF@ +lul},  Va,ye®™

The following convergence result covers a wide class of descent algorithms.

Proposition 2.1. (Convergence of Descent Algorithms) Suppose that Assump-
tion 2.1 holds and let K and K3 be positive constants. Consider the sequence {z(t)}
generated by an algorithm of the form

z(t+ 1) = z(t) + vs(d), (2.10)

where s(t) satisfies

sl > K:i||VF@®)]],, ¥, @11)
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and
s@)VF(z(t) < —Kalls®)3, V. (2.12)
If 0 < v < 2K, /K, then
Jim VF(z(t) = 0.
Proof. Using the Descent Lemma and the assumption (2.12), we obtain
! K 2 2
F(z(t +1)) < F(z(t)) +vst)VF(z(t)) + > lls®l3

K
< F(ow) -7 (K- B2) sl

Let 3 = y(K, — K+/2), which, by our assumptions on =, is positive. We have one
such inequality for every ¢ > 0. Adding these inequalities and using the nonnegativity
condition of Assumption 2.1(a), we obtain

t
0< F(a(t+ 1) < F(z0) - 83 [Is(nl3-

7=0
Since this inequality is true for all ¢, we obtain
> 1
D lIsl < ZF(2(0) < oo.
=0

This implies that lim;_, o, s(f) = 0 and Eq. (2.11) shows that lim;_,o, VF (z(t)) =0.
Q.E.D.

Assumption 2.1 is stronger than necessary for Prop. 2.1 to hold. For example,
instead of the nonnegativity condition on F', we could only assume that F' is bounded
below. The Lipschitz condition on VF' can also be weakened somewhat (see Exercise
2.1). Besides Assumption 2.1, Prop. 2.1 involves two additional conditions, inequalities
(2.11) and (2.12). Inequality (2.11) implies that s(t) # O, and, therefore, z(t + 1) # z(t)
whenever VF(x(t)) # 0. Such a condition is necessary if the algorithm is to make any
progress at all. Inequality (2.12) implies that the direction of update in Eq. (2.10) is a
descent direction.

The conditions of Prop. 2.1 can be verified for a variety of algorithms, as we now
show.

(a) For the gradient algorithm (2.4), we have s(t) = —VF(z(t)). Thus, K; = K; = 1,
and we have convergence for 0 < v < 2/K.
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(b) Consider the scaled gradient algorithm (2.5) for which s(t) = —(D(t)) 'VF (z@®)).
Assume that the sequence { D(¢)} is bounded and that for some K, > 0, the matrix
D(t) — K>I is nonnegative definite for each . We then have

K|s®)]3 < st) D®)s(t) = —s(t) VF ((2))

and inequality (2.12) is satisfied. Let K| = 1/ sup, || D(t)||2. We have D(t)s(t) =
—VF (z(t)), which implies that | D®)||2- [|s(®)]l2 > ||VF ((#))]|,- From the latter
inequality, we obtain ||s(t)[l2 > K||VF(z(t))||, and inequality (2.11) is satisfied.

(¢) Assume that F' is twice continuously differentiable and consider the Jacobi algo-
rithm (2.1). This is a special case of the scaled gradient algorithm (2.5), with D(t)
diagonal. Assuming that V2 F(z) is bounded above by 1/K; and below by K>
for some positive constants K and K>, the discussion in (b) applies.

(d) Consider the approximate Newton method (2.8) and again let g = VF(z(t)) and
H = V?F(z(t)). Whenever g # 0, we assume that 3 is chosen to satisfy 18'Hs+
g'5 < 0 [cf. Eq. (2.9)] and ||3]2 > Ki||g|l2. Then, inequality (2.11) holds. We
assume that F' is twice continuously differentiable and that there exists a constant
K, such that V?F(z) — K>I is nonnegative definite for every z. We then have

and inequality (2.12) is also satisfied.

Convergence of algorithms of the Gauss—Seidel type can also be proved by an
argument similar to that in Prop. 2.1.

Proposition 2.2.  (Convergence of the Gauss—Seidel Algorithm) Suppose that As-
sumption 2.1 holds and that F' is twice differentiable. Assume that there exist constants
d;, D; > 0 such that 0 < d; < V% F(z) < D; for all z € R, If 0 < y < 2d;/D; for
all 4, and if the sequence {z(¢)} is generated by the Gauss—Seidel algorithm (2.2), then
limy oo VF(2(t)) = 0.

Proof. Let s'(t) be a vector with all components equal to zero, except for the ith
component, which is equal to —V;F(2(i,t)) /V%F(2(,t)). Notice that 2(: + 1,t) =
2(4,t) + vs*(t) for 1 < ¢ < n and z(t + 1) = z(n,t) + vs™(t). We use the Descent
Lemma (Lemma 2.1), with the function F' viewed as a function of the single variable
z;; we also use the bound |V;F(x) — V;F(y)| < D;|z; — y;|, which is valid for all z
and y that differ only in the ith component. Then
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With our assumption on +, the quantity ~(d; — yD;/2) is positive. Thus, the steps in
the proof of Prop. 2.1 remain valid and we conclude that

DS IS @5 < oo

t=0 i=1

Therefore, lim;_, . s%(t) = O for all 4, which implies that lim_,c V;F(2(i,t)) = 0 and
that lim;_. o (2(,t) — z(t)) = 0. Using the Lipschitz continuity of VF' [Assumption
2.1(b)], we obtain lim;_,o (Vi F(2(i, 1)) — ViF(2(t))) = 0, from which we conclude
that lim;_,c V;F(z(t)) =0 for all i. Q.E.D.

A similar result is possible for the Gauss—Seidel variant (2.4) of the gradient al-
gorithm, but it is omitted. Notice that in the case of a quadratic cost function of the
form F(z) = %:c’ Az — z'b, we have d; = D; = a;; and the condition on v becomes
0 < v < 2. Assuming that A is symmetric positive definite, F’ is minimized at the
unique solution of the system Az = b and the Gauss—Seidel algorithm (2.2) coincides
with the SOR method for linear equations. We conclude that Prop. 2.2 establishes the
convergence of SOR for 0 < v < 2, which is Prop. 6.10(a) in Section 2.6. Similarly,
Prop. 2.1 establishes the convergence of the JOR algorithm and of Richardson’s method
for solving the system Az = b, when A is symmetric positive definite and ~ is positive
and small enough. This proves Prop. 6.11 in Section 2.6.

The preceding results say nothing about convergence of the sequence {z(t)} and
indeed there is nothing in our hypotheses that ensures boundedness of z(¢). On the other
hand, the convergence of VF to zero and the continuity of VF imply that if z* is a
limit point of z(t), then VF(z*) = 0.

3.2.3 The Case of a Convex Cost Function

The preceding results can be strengthened when F is a convex function (see Appendix
A for a review of convexity notions). In particular, if F' is convex and continuously
differentiable, then any point x such that VF(z) = O is guaranteed to be a global
minimum of F [Prop. A.39(c) in Appendix A]. We then obtain the following result.

Proposition 2.3.  (Convergence of Descent Methods in Convex Optimization) Sup-
pose that F is convex and satisfies Assumption 2.1, and that the sequence {x(t)} is as
in Prop. 2.1 or 2.2. If z* is a limit point of the sequence {z(¢)}, then z* minimizes F.
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The following result uses a more stringent assumption on the cost function F' and
leads to a bound on the convergence rate of the algorithms under consideration.

Proposition 2.4.  (Geometric Convergence for Strongly Convex Problems) Sup-
pose, in addition to Assumption 2.1, that there exists some « > 0 such that

(VF@) - VF@) (@ —y) > allz—yl}, Vz,yeR" (2.13)

Then there exists a unique vector z* € R" that minimizes F. Furthermore, provided that
7 is chosen positive and small enough, the sequence {z(t)} generated by the gradient
algorithm (2.3) converges to z* geometrically.

Proof. Inequality (2.13) implies that the mapping 7" : R" +— R" defined by T'(z) =
z — yVF(z) is a contraction with respect to the Euclidean norm || - ||, provided that
7 is positive and sufficiently small. (Use Prop. 1.12 of Subsection 3.1.3, specialized to
the case of a single block—component.) In particular, the mapping T has a unique fixed
point z* and the sequence generated by the gradient algorithm z := T'(z) converges
to z* geometrically. Such a fixed point satisfies VF(z*) = 0. Inequality (2.13) also
implies that the function F is strictly convex (Prop. A.41 in Appendix A). It follows that
z* minimizes F' [Prop. A.39(c) in Appendix A]. The strict convexity of F' also implies
that no other minimizing points of F' exist [Prop. A.35(g) in Appendix A]. Q.E.D.

Any function F' satisfying the condition (2.13) is called strongly convex. In the
case where F' is twice continuously differentiable, strong convexity is equivalent to
positive definiteness of V2F(z), uniformly in z (Prop. A.41 in Appendix A). Intuitively,
strong convexity amounts to assuming that the curvature of F is positive and bounded
away from zero at every point. It should be also noticed that strong convexity of F is
equivalent to strong monotonicity of V F' (strong monotonicity was defined in Subsection
3.1.3). It turns out that under strong convexity, the Jacobi and Gauss—Seidel algorithms
also converge to the optimal solution geometrically, but the proofs are omitted.

3.2.4 Nonlinear Algorithms

The algorithms considered so far are called linearized algorithms, because the update
is a linear function of VF(z). This is in contrast to nonlinear or coordinate descent
algorithms, which are based on a different idea. In the latter class of algorithms, we fix
all of the components of x to some value, except for the ith component, and then we
minimize F'(x) with respect to ;. This procedure is repeated, leading to an iterative
algorithm. There are two alternative implementations; in the first, called the nonlinear
Jacobi algorithm, the minimizations with respect to the different components z; are
carried out simultaneously (see Fig. 3.2.2); in the second, called the nonlinear Gauss—
Seidel algorithm, the minimizations are carried out successively for each component (see
Fig. 3.2.3). Notice that each step involves the solution of one—~dimensional minimization
problems that are in many cases easy to solve with practically adequate precision.
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Figure 3.2.2 Illustration of an iteration of
the nonlinear Jacobi algorithm. Given

an initial vector =, we obtain the vectors

y and z by minimizing along the first
(respectively, second) coordinate. By
combining the updates of both components,
we obtain the new vector w.

Figure 3.2.3 Illustration of an iteration

of the nonlinear Gauss-Seidel algorithm.

Given an initial vector z, we minimize with
x respect to the first coordinate to obtain

the vector y, and then along the second

coordinate to obtain the vector z.

Mathematically, the nonlinear Jacobi algorithm is described by the equation
zit+1) = argn;iinF(xl(t), ey Tt (©), Ty Tiar (), - .,:cn(t)) .14
and the nonlinear Gauss—Seidel algorithm by the equation
zit+1) = argn;iinF(ml(t F 1), i+ 1), 25, T (B), - xn(t)). 2.15)

We are assuming here that a minimizing x; always exists; if several minimizing x; exist,
z;(t + 1) is chosen arbitrarily from the set of minimizing values.

Proposition 2.5. (Convergence of the Nonlinear Gauss—Seidel Algorithm) Sup-
pose that ' : R™ — R is continuously differentiable and convex. Furthermore, suppose
that for each ¢, F' is a strictly convex function of x;, when the values of the other com-
ponents of z are held constant. Let {z(¢)} be the sequence generated by the nonlinear
Gauss—Seidel algorithm, assumed to be well defined. Then, every limit point of {z(t)}
minimizes F' over R".

The proof of Prop. 2.5 is omitted because it is a special case of a more general
result to be proved later (Prop. 3.9 in Section 3.3). Let us just point out that Prop. 2.5



Sec. 3.2 Unconstrained Optimization 209

is derived using the descent approach for proving convergence. In particular, successive
minimizations cannot increase the value of F. This shows that F(z(t + 1)) < F(z(t))
and implies the convergence of F' (a:(t)) provided that F' is bounded below. If F is not
differentiable, the nonlinear Gauss—Seidel method can fail to converge to the minimum
of F' because it can stop at a nonoptimal “corner” point at which F is nondifferentiable
and from which F' cannot be reduced along any coordinate (Exercise 2.2). This difficulty
will be encountered in the.context of network flow problems in Chapter 5.

The proof just outlined fails altogether in the case of the nonlinear Jacobi algo-
rithm; even though the minimization with respect to each coordinate cannot increase the
value of F, the fact that these minimizations are carried out simultaneously allows the
possibility that F'(z(t + 1)) > F(z(t)). Convergence of the nonlinear Jacobi algorithm
can be established using the results on contraction mappings of Section 3.1, under cer-
tain assumptions. We have, for example, the following result which is proved in more
generality in the next section (Prop. 3.10).

Proposition 2.6. (Convergence of Nonlinear Algorithms under Contraction As-
sumptions) Let F' : R +— R be continuously differentiable, let v be a positive scalar,
and suppose that the mapping T : " — R, defined by T'(z) = z — YV F(z), is a con-
traction with respect to a weighted maximum norm. Then, there exists a unique vector
z* which minimizes F' over R®". Furthermore, the nonlinear Jacobi and Gauss—Seidel
algorithms are well defined, that is, a minimizing z; in Eqgs. (2.14) and (2.15) always
exists. Finally, the sequence {x(¢)} generated by either of these algorithms converges to
z* geometrically.

The contraction assumption of Prop. 2.6 is satisfied if the matrix V2F(z) satisfies
a diagonal dominance condition [see Prop. 1.11 with the identification f(z) = VF(z)].
A weaker condition is diagonal dominance with respect to some set of weights (see
Exercise 1.3).

A different version of the nonlinear Gauss—Seidel algorithm is obtained if instead of
minimizing with respect to a single component at a time, we decompose R as a Cartesian
product []", R™, and at each stage, we minimize with respect to the n;—dimensional
subvector z;. Proposition 2.6 remains valid and such a Gauss—Seidel algorithm also
converges, under a block—contraction assumption on the mapping T'(z) = z — YV F(z).

The machinery of contraction mappings of Section 3.1 could be also used to es-
tablish convergence of linearized algorithms. However, the results thus obtained are not
any stronger than the results obtained using the descent approach.

EXERCISES

2.1. Suppose that the Lipschitz condition on V F' of Assumption 2.1 is replaced by the following
two conditions:
(1) For every bounded set A C R", there exists some constant K such that |VF(z) —
VF(y)l2 £ K|jz — y||; for all z,y € A.
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(ii) The set {z | F(z) < ¢} is bounded for every c € R.

(a) Show that condition (i) is always satisfied if F" is twice continuously differentiable.

(b) Show that Prop. 2.1 remains valid provided that the stepsize ~ is allowed to depend
on the choice of the initial vector z(0). Hint: Choose a stepsize that guarantees that
a(t) stays within the set {z | F(z) < F(z(0))}.

2.2. Show by means of an example that if F' is continuous but not differentiable, then the
nonlinear Jacobi and Gauss—Seidel algorithms can fail to converge to the minimum of F,
even if F is strictly convex and has bounded level sets.

2.3. Suppose that F' is quadratic of the form F(z) = %x'A:v ~ bz, where Aisan n X n
positive definite symmetric matrix and b € R™ is given. Show that the Lipschitz condition
I[VF(z) — VF(y)|l2 < K||z — y|2 is satisfied with K equal to the maximal eigenvalue of
A. Consider also the scaled gradient iteration z(t + 1) = z(t) — vM _lVF(a:(t)), where

M is positive definite and symmetric. Show that the method converges to =™ = A" if
v € (0,2/K), where K is the maximum eigenvalue of M ~'/2AM~'/2,

3.3 CONSTRAINED OPTIMIZATION

We consider in this section the problem of minimizing a cost function F' : R — R over
a set X C R™. Throughout, we assume that F' is continuously differentiable and that X
is nonempty, closed, and convex.

3.3.1 Optimality Conditions and the Projection Theorem

We start with a set of necessary and sufficient conditions for a vector x € X to be
optimal.

Proposition 3.1. (Optimality Conditions)

(a) If a vector z € X minimizes F' over X, then (y — z)' VF(z) > 0 for every y € X.

(b) If F is also convex on the set X, then the condition of part (a) is also sufficient
for = to minimize F' over X.

Proof.

(a) Suppose that (y — )’ VF(z) < O for some y € X. Since this is the directional
derivative of F along the direction of y — z, it fcllows that there exists some
€ € (0,1) such that F(z + e(y — z)) < F(z). Then, z + e(y — z) € X, because X
is convex, which proves that z does not minimize F over the set X.

(b) Suppose that (y —z)' VF(z) > 0 holds for every y € X. Then, using the convexity
of F' (Prop. A.39 in Appendix A), we obtain F'(y) > F(z)+(y—z) VF(z) > F(z)
for every y € X, and, therefore, x minimizes F" over X. Q.E.D.
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The linearized algorithms of Section 3.2 are not applicable to constrained optimiza-
tion because, even if we start inside the feasible set X, an update can take us outside that
set. A simple remedy is to project back to the set X whenever such a situation arises.

We use the notation [z]* to denote the orthogonal projection (with respect to the
Euclidean norm) of a vector z onto the convex set X. In particular, [z]* is defined by

+_ ; _
[2]" = arg min ||z — z[l2. (3.1

The following result ensures that [z]* is well defined and also provides some useful
properties of the projection.

Propesition 3.2. (Projection Theorem)

(a) For every x € R", there exists a unique z € X that minimizes ||z — ||, over all
z € X, and will be denoted by [z]*.
(b) Given some z € R", a vector z € X is equal to [z]* if and only if (y — 2)/(z — 2)
<OforalyeX.
(c) The mapping f : R" — X defined by f(z) = [z]™ is continuous and nonexpansive,
~that is, ||[z]T — [y]1 ]2 < ||z — y]|» for all z,y € R™.

Proof.

(a) Let z be fixed and let w be some element of X. Minimizing |z — z||; over all
z € X is equivalent to minimizing the same function over all z € X such that
|lz — z||2 < ||z — w]|2, which is a compact set. Furthermore, the function g defined
by g(z) = ||z —z||3 is continuous. Existence follows because a continuous function
on a compact set always attains its minimum (Prop. A.8 in Appendix A).

To prove uniqueness, notice that the square of the Euclidean norm is a strictly
convex function of its argument [Prop. A.40(d) in Appendix A]. Therefore, g is
strictly convex and it follows that its minimum is attained at a unique point [Prop.
A.35(g) in Appendix A].

(b) The vector [z]* is the minimizer of g(z) over all z € X. Notice that Vg(z) =
2(z — ) and the result follows from the optimality conditions for constrained
optimization problems (Prop. 3.1). (See Fig. 3.3.1 for an illustration of this result.)

(c) Let z and y be elements of ®". From part (b), we have (v—[z]*)'(z — [z]*) <0
for all v € X. Since [y]* € X, we obtain
()" = [@1%) (= - [217) <.

Similarly,

(21t = w17) (v — w]*) <.
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[x]+

Figure 3.3.1 Illustration of the condition
satisfied by the projection [z]T. When

the vector z is projected on the set X,

the vector  — [z]T is normal to a plane
supporting X at [z]T. Each vector y € X
lies on the other side of that plane, so the
vectors  — [z]1 and y — [z]* form an
angle larger than or equal to 90 degrees or,

equivalently, (y — [z]*) (= - [z]*) <O.
Adding these two inequalities and rearranging, we obtain
1t — 2] < (1" = [217) @ — ) < )+ = (212 - [ly — 2ll2,
which proves that [-]* is nonexpansive and a fortiori continuous. Q.E.D.
3.3.2 The Gradient Projection Algorithm

The gradient projection algorithm generalizes the gradient algorithm to the case where
there are constraints, and is described by the equation

2t +1) = [a(t) - 'yVF(a:(t))]+, (3.2)

where v is a positive stepsize (see Fig. 3.3.2). Let T : X — X be the mapping that
corresponds to one iteration of this algorithm, that is,

T(z) = [x - 'yVF(x)] i

For an equivalent definition of the mapping 7', notice that T'(x) is the unique vector y
that minimizes ||y — z + YV F(z)||3 over all y € X. After expanding this quadratic
function, discarding the term 2|V F(z)||3, which does not depend on y, and dividing
by 2+, we conclude that T'(z) is the unique minimizer of

1
(v =Y VF@) + 5-lly - zj3, 3.3)

overall y € X.
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Surfaces of equal value of F

V F(x(0))

Figure 3.3.2 Illustration of a few
iterations of the gradient projection

method. Here z(1) — YV F (2(1)) and

#(2) — YV F (2(2)) lie outside the feasible
set X. These vectors are being projected
on X in order to obtain z(2) and z(3),
respectively.

We now study the convergence of the gradient projection algorithm under the same
assumptions as in unconstrained optimization.

Assumption 3.1.

(a) There holds F(z) > 0 for all z € X.

(b) (Lipschitz Continuity of VF) The function F is continuously differentiable and
there exists a constant K such that

[VF()- VF®)|: < Kllz —ylo, Vz,ye X. (3.4)

The following result shows that for v sufficiently small, each iteration of the gra-
dient projection algorithm decreases the value of the cost function, unless a fixed point
of the iteration mapping T has been reached.

Proposition 3.3.  (Properties of the Gradient Projection Mapping) If F satisfies
the Lipschitz condition of Assumption 3.1(b), v is positive, and z € X, then:

@ F(T(z)) < F@@) - (/7 - K/2)|T@) - z[}3-
(b) We have T(z) = z if and only if (y — z)’ VF(z) >0 for all y € X. In particular,

if F' is convex on the set X, we have T(z) = z if and only if x minimizes F over
the set X.

(c) The mapping T is continuous.
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(y— T@) (¢ —7VF@) - T@) <0, VyeX. 3.5)
In particular, letting y = z, we obtain
(z - T@) (z —7VF() - T(2)) <0,

which yields v(T'(z) — x)IVF(x) < —||T(z) — z||3. Using the Descent Lemma
(Lemma 2.1), we obtain

F(T@) < F@ + (T@) - 2)' V@) + 5 |T@) - 213

1 K

<F@- (- 5)ire -3

which proves part (a).

(b) By the Projection Theorem, the relation (3.5) can be used as the definition of T'(z).
Thus, if T(z) = x, then (y — z)YyVF(z) > 0 for all y € X. Conversely, if
(y—zYyVF(z) > 0 for every y € X, then (y —z)'(zx —yVF(z) — ) <0, and we
conclude that z = T'(z). In the convex case, the result follows from the optimality
conditions for constrained optimization (Prop. 3.1).

(c) Since F is continuously differentiable, the mapping x — z — YV F(z) is continu-
ous. Given that the projection mapping is also continuous [Prop. 3.2(c)], T is the
composition of two continuous mappings and is therefore continuous. Q.E.D.

From Prop. 3.3, the convergence of the gradient projection algorithm is straight-
forward to establish. Let {z(t)} be the sequence of vectors generated by the algorithm.
Assuming that 0 < v < 2/K, Prop. 3.3(a) shows that the sequence {F(z(t))} is non-
increasing, and if F' is bounded below, this sequence converges, while T(:v(t)) — z(t)
converges to zero. Let z* be a limit point of the sequence {z(t)} and let {z(¢x)} be a
subsequence converging to z*. Then, T(w(tk)) also converges to z* and the continuity
of T implies that T'(z*) = z*. Then, Prop. 3.3(b) shows that (y — z*)'VF(z*) > 0, for
all y € X. We have thus proved the following.

Proposition 3.4. (Convergence of the Gradient Projection Algorithm) Suppose
that F satisfies Assumption 3.1. If 0 < v < 2/K and if z* is a limit point of the sequence
{z(t)} generated by the gradient projection algorithm (3.2), then (y — z*)VF(z*) > 0
for all y € X. In particular, if F' is convex on the set X, then z* minimizes F' over the
set X.

Proposition 3.4 was proved by means of a descent argument. Using the general
convergence properties of contracting iterations (Section 3.1), we can prove the following
result, which provides us with a convergence rate estimate. The proof is omitted because
it is almost identical to the proof of Prop. 2.4.



Sec. 3.3 Constrained Optimization 215

Proposition 3.5. (Geometric Convergence for Strongly Convex Problems) Sup-
pose, in addition to Assumption 3.1, that there exists some o > 0 such that

(VF@) - VF@) @—-y) > alz—y|3, Vz,yeX.

Then, there exists a unique vector z* that minimizes F over the set X. Furthermore,
provided that v is chosen positive and small enough, the sequence {z(t)} generated by
the gradient projection algorithm (3.2) converges to * geometrically.

3.3.3 Scaled Gradient Projection Algorithms

As in the case of unconstrained optimization, we may wish to scale the update direction
VF (m(t)). We thus generalize the gradient projection algorithm (3.2) by letting

2t +1) = [a(t) - 7(M(t))_1VF(z(t))]+, 3.6)

where M(?) is an invertible scaling matrix. Typically, M(t) would be chosen to ap-
proximate the Hessian matrix V2F (x(t)). For example, in a projected Jacobi method,
M(t) would be diagonal, with its diagonal entries being equal to the diagonal entries
of V2F(z(t)), thus generalizing the linearized Jacobi algorithm (2.1) of Section 3.2.
However, the algorithm (3.6) fails, in general, to converge to a minimizing point, as
illustrated in Fig. 3.3.3. For convergence to be obtained, the projection should be carried
out with respect to a different coordinate system (equivalently, with respect to a different
norm) determined by M (t). (An alternative approach is discussed in Exercise 3.3.)

Let us temporarily assume that M (t) is symmetric and positive definite. We con-
sider the norm || - || pr() defined by

el = (' M)z)'"2.

We then define [x]"AjI(t) as the vector y that minimizes ||y — || ¢ over all y € X, and
we replace Eq. (3.6) by the iteration

a(t +1) = [a(®) - Y(M®) ' VF (a(0)] 3.7

+
M(t)

As in the case of the unscaled gradient projection method, we can define z(¢ + 1) as the
solution of a quadratic programming problem [cf. the expression (3.3)]. In particular, it
can be seen that

2(t+1) = argmin § (y — 2®) MO (y — 2®) + (y — z®) VF(z(@®) p . (3.8)
yeX | 2v
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x* =7  F(x*)

x*—Y My Flx*)

[x*—=YMVVFIx*) ]+

Figure 3.3.3 Illustration of failure

Level sets of the of the algorithm z(t + 1) =

function £ [2(t) — vM~1VF (2())] T Here, the
point z* minimizes the convex function F'
over the set X. However, the iteration
z:= [z — yM~'VF(z)]* does not have
xz* as a fixed point.

It is actually preferable to define z(t + 1) by means of the quadratic optimization in
Eq. (3.8) rather than as a projection [cf. Eq. (3.7)], because the quadratic expression in
Eq. (3.8) is well defined even if M(t) is not an invertible matrix. (This provides some
additional flexibility, which is sometimes useful. The algorithm that generates z(t + 1)
according to Eq. (3.8) will be called the scaled gradient projection algorithm. For this
algorithm to be well defined, we need to ensure that the minimum in Eq. (3.8) is attained
at a unique element of X. The following auxiliary result provides sufficient conditions
for this to be the case.

Proposition 3.6. Suppose that a matrix M (t) is symmetric and satisfies the pos-
itivity condition '

@ -y Mit)z—y) >allz—yl}, Vr,yeX, (3.9)

where « is some positive constant. Then, the minimum in the quadratic programming
problem of Eq. (3.8) is attained at a unique vector y € X.

Proof. From inequality (3.9), it can be verified that the expression minimized in
Eq. (3.8), viewed as a function of vy, is a strictly convex function on the set X, which
proves uniqueness. Furthermore, by inequality (3.9), this expression goes to infinity
when ||y||2 goes to infinity. Therefore, the minimization can be restricted to a compact
subset of X. Existence of a minimizing vector follows because a continuous function on
a compact set attains its minimum (Weierstrass’ theorem given as Prop. A.8 in Appendix
A). Q.E.D.
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The positivity condition (3.9) is satisfied if M (t) — al is symmetric nonnegative
definite. In that case, « is a lower bound for the smallest eigenvalue of M(t). However,
this is stronger than necessary. For example, if the set {x —y | z € X,y € X} is
contained in a proper subspace of R, then it is only the action of M(t) on vectors in
that subspace that matters. Roughly speaking, condition (3.9) states that the restriction
of M(t) on such a subspace is positive definite.

The following result generalizes Props. 3.2-3.4 to the case where scaling is used.
The proof is similar to the proof of Props. 3.2-3.4 and is outlined in Exercise 3.2.

Proposition 3.7. (Properties and Convergence of the Scaled Projection Algo-
rithm) Let {M(t) | t = 0,1,...} be a bounded sequence of n X n symmetric matrices
and assume that for some o > 0, each M(t) satisfies the positivity condition (3.9). Let
F : R™ — R satisfy Assumption 3.1.

(a) For every x € R™, there exists a unique y € X that minimizes (z —y)' M (t)(z — y)
over the set X and will be denoted by [z]}tf(t), or [z]] for short.

(b) (Scaled Projection Theorem) Given some x € R™, a vector z € X is equal to [:c];*
if and only if (y — 2) M(t)(z — z) <O for all y € X.
(c) There exists a constant A; such that

et - 32|, < Avliz -y,

for every t and every z,y € R".
(d) If M(¢) is also positive definite, then

(=1 — WI7) M) ([2)F - W) < @ - o) M)z —y),  Vz,y € R™

Let T; : X — X be the mapping that corresponds to the tth iteration of the scaled
gradient projection algorithm. That is, z(t + 1) = T3(z(t)), where z(¢ + 1) is
defined by the quadratic minimization in Eq. (3.8). We assume that v is positive.

(e) We have T;(z) = z if and only if (y—z)'VF(z) > 0 for every y € X. In particular,
if F'is convex on the set X, we have T;(z) = z if and only if  minimizes F' over
the set X.

(f) There exists a constant A, such that
”ﬁ(l‘) - ’Tt(y)HZ S AZHx - y”2a vay € Xa vt.

(g) If ~y is small enough, then there exists a positive constant Az such that F(Tt (:v)) <
F(z) — A;3||Ty(z) — z|[3 for every z € X and every t.

(h) If « is small enough, then any limit point z* of the sequence {z(t)} generated by
the scaled gradient projection algorithm satisfies (y — z*)’VF(z*) > 0 for every
y € X. If F is also convex on the set X then z* minimizes F over the set X.
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3.3.4 The Case of a Product Constraint Set: Parallel
Implementations

The gradient projection algorithm is not, in general, amenable to parallel implementation.
Even though the computation of  — YV F(z) can be parallelized in the obvious manner,
the computation of the projection is a nontrivial optimization problem involving all
components of z. However, in the important special case where the set X is a box (i.e.,
X = H?zl[a,-, b;] for some real numbers a;, b;), the projection of x on X is obtained by
projecting the ¢th component of z on the interval [a;, b;], which is straightforward and
can be done independently for each component (see Fig. 3.3.4).

X Figure 3.3.4 Illustration of the projection
on a box. The ith component of the
projection of a vector is the projection of
its ¢th component.

More generally, suppose that the space R™ is represented as the Cartesian product
of spaces ™, where n; + --- + n,, = n, and that the constraint set X is a Cartesian
product of sets X;, where each X; is a closed convex subset of ®":. Accordingly,
we represent any vector x € R" in the form z = (zy,...,z,,), where each x; is an
element of R™. It is easily seen that the projection of z on X is equal to the vector
([:cl]{", ooy [Zm]}), where [:c,'];" is the projection of z; onto X;. The same discussion
applies to the scaled gradient projection algorithm, provided that the scaling matrices
M(t) are block—diagonal. To see this, suppose that M(t) is block—diagonal, the ith
diagonal block M;(t) being of dimension n; X n;. The quadratic expression minimized
in Eq. (3.8) can be rewritten as

m

> [% (9: — za(®) M) (s — ) + (3 — m(t))’%F(x(t))] SN CAT)
=1

Evidently, when X is a Cartesian product, minimizing the above quadratic expression
over all y € X is equivalent to minimizing the ith summand over all y; € X; for each
1. A parallel algorithm is then obtained because these minimizations can be carried out
independently by different processors.

The assumption that X is a Cartesian product opens up the possibility for a Gauss—
Seidel version of the gradient projection algorithm. We only discuss the case of identity
scaling. The results are similar for the case of block—diagonal scaling, as long as the
scaling matrices M (t) satisfy the positivity condition (3.9).

The Gauss-Seidel algorithm (with identity scaling) is defined by the iteration
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) +
Tyt +1) = [xi(t) — YV,F (26, t))]. , (3.11)

where z(i,t) = (xl(t +1),...,z;1(t + 1), xi(t),...,:cm(t)), 1 < i < m. To simplify
notation in the following, we also let z(m + 1,t) = z(t + 1). ‘

Proposition 3.8. (Convergence of the Gauss-Seidel Gradient Projection Algo-
rithm) If F : R — R satisfies Assumption 3.1 and if v is chosen positive and small
enough, then any limit point z* of the sequence {z(¢)} generated by the Gauss—Seidel
algorithm (3.11) satisfies (y — z*)'VF(z*) > 0 for all y € X.

Proof. We apply Prop. 3.3(a) on the function F’, viewed as a function of z; alone,
to conclude that if v is sufficiently small, there exists some A > 0 such that

F(26G +1,1) < F(2G,0) — A||2G + 1,0 — 2G, )5, V¢

It follows that F(x(t)) is nonincreasing and therefore converges. This implies that
2(i + 1,t) — 2(i, t) converges to zero for each :. In particular, z(¢ 4+ 1) — z(t) converges
to zero. Let z* be a limit point of the sequence {z(t)}. Taking the limit in Eq. (3.11),
along a sequence of times such that x(¢) converges to z*, and using the continuity
of VF and of the projection, we obtain z} = [z} — nyiF(x*)]j for all 5. Thus,

z* = [z* — yVF(z")] * and the result follows from Prop. 3.3(b). Q.E.D.

3.3.5 Nonlinear Algorithms

Assuming that X is a Cartesian product, it is meaningful to consider the nonlinear Jacobi
and Gauss—Seidel algorithms that are the natural extensions to the constrained case of

the nonlinear algorithms introduced in Subsection 3.2.4. The nonlinear Jacobi algorithm
is defined by

zit+ 1) =arg min F(o10),...,2i010, 30,5010, 7a®),  (.12)
and the nonlinear Gauss—Seidel algorithm is defined by
zi(t+ 1) =arg "g)‘} F(&n(t + 1),z + 1)»$ia17i+l(t)w-~7$m(t))- (3.13)

Convergence of the nonlinear Gauss—Seidel algorithm can be established using the
descent approach.

Proposition 3.9. (Convergence of the Nonlinear Gauss-Seidel Algorithm) Sup-
pose that F' : R — R is continuously differentiable and convex on the set X. Further-
more, suppose that for each ¢, F' is a strictly convex function of z;, when the values
of the other components of z are held constant. Let {z(t)} be the sequence generated
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by the nonlinear Gauss—Seidel algorithm, assumed to be well defined. Then, every limit
point of {z(t)} minimizes F over X.

Proof. Let
2@ = (@t +1),..., 2t + 1), 2i1(), - .., 2 (D))
Using the definition (3.13) of the Gauss—Seidel iteration, we obtain
F(z@®) 2 F(z'®) 2 F(Z*®) > --- 2 F(z™7'(®)) > F(z(¢t + 1)),  Vt. (3.14)

Let ¢* = (z},...,z},) be a limit point of the sequence {z(t)}. Notice that z* € X
because X is closed. Let {z(¢x)} be a subsequence of {z(t)} that converges to z*. We
notice from Eq. (3.14) that the sequence {F(xz(t))} converges to either —co or a finite
real number. Using the convergence of z(t;) to z* and the continuity of F, we see
that F(x(tx)) converges to F(z*), and this implies that the entire sequence {F(z®)}
converges to F'(z*). It now remains to show that z* minimizes F over the set X.

We first show that 2 (¢, + 1) — z(¢x) converges to zero. Assume the contrary or,
equivalently, that z'(¢x) — z(tx) does not converge to zero. Let y(tx) = ||z (tx) —z(tg)||2-
By possibly restricting to a subsequence of {t;}, we may assume that there exists some
Yo > 0 such that y(tx) > 7 for all k. Let s'(t;) = (zl(tk) - a:(tk))/’y(tk). Thus,
21 (tk) = x(te) + y(tk)s (), ||s'Er)|l2 = 1, and s'(ty,) differs from zero only along the
first block—component. Notice that s!(¢;) belongs to a compact set and therefore has a
limit point 5'. By restricting to a further subsequence of {t;}, we assume that s!(t;)
converges to 5.

Let us fix some € € [0, 1]. Notice that 0 < eyy < (t). Therefore, z(tx)-+evos' (t)
lies on the segment joining x(tx) and x(tx) + Y(tk)s'(tx) = 2'(tx) and belongs to X
because X is convex. Using the convexity of F, and the fact that z!(t;) minimizes F
over all z that differ from z(t;) along the first block—component, we obtain

F(2'(tr) = F(z(tk) + v(t)s' () < F(2(te) + ev08' t)) < F(x(tx)).

Since F(z(t)) converges to F(z*), Eq. (3.14) shows that F(z'(t)) also converges to
F(z*). We now take the limit as & tends to infinity, to obtain F(z*) < F (z* +esh) <
F(z*). We conclude that F(z*) = F(z* + e703"), for every € € [0, 1]. Since 73! # 0,
this contradicts the strict convexity of F’ as a function of the first block—-component. This
contradiction establishes that z1(tx+1) — z1(tx) converges to zero. In particular, z!(t;)
converges to z*.

From the definition (3.13) of the algorithm, we have

F(2't) < F(z1,22(tk), - ., Tm(tr)), Vz; € X;.
Taking the limit as £ tends to infinity, we obtain

F((Z:*)SF(.’L‘l,ZI);,...,.’II;), VZ‘]EXI.
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Using the optimality conditions for constrained optimization (Prop. 3.1), we conclude
that

V1 F(z*) (z, — z}) >0, vV, € X;.

Let us now consider the sequence {z!(¢;)}. We have already shown that z!(t)
converges to z*. A verbatim repetition of the preceding argument shows that z,(tx+1) —
z,(tx) converges to zero and V,F(z*)'(x2 — x3) > 0 for every z; € X,. Continuing
inductively, we obtain V, F(z*)'(z; — z}) > O for every z; € X; and for every i. Adding
these inequalities, and using the Cartesian product structure of the set X, we conclude
that VF(z*) (z — z*) > 0 for every z € X. In view of the convexity of F, this shows
that * minimizes F over the set X (Prop. 3.1). Q.E.D.

Notice that ‘by letting X; = R™ in this proposition, we have also established
the convergence of the nonlinear Gauss—Seidel algorithm for unconstrained optimization
(Prop. 2.5).

The convergence of the nonlinear Jacobi algorithm can be established under suitable
contraction assumptions on the mapping z := x — YV F(z). (Sufficient conditions for
this to be a contraction mappirig have been furnished in Subsection 3.1.3.) In particular,
the following result extends and provides a proof for the corresponding unconstrained
optimization result (Prop. 2.6 in Section 3.2).

Proposition 3.10. (Convergence of Nonlinear Algorithms under Contraction As-
sumptions) Let F : R* — R be continuously differentiable, let -y be a positive scalar, and
suppose that the mapping R : X — R", defined by R(z) = z — vV F(z), is a contrac-
tion with respect to the block-maximum norm ||z|| = ||(z1,. .., Zm)|| = max; ||z;l;/w;,
where each || - ||; is the Euclidean norm on R™ and each w; is a positive scalar. Then,
there exists a unique vector z* which minimizes F' over X. Furthermore, the nonlinear
Jacobi and Gauss—Seidel algorithms are well defined, that is, a minimizing x; in Egs.
(3.12) and (3.13) always exists. Finally, the sequence {z(t)} generated by either of these
algorithms converges to z* geometrically.

Proof. The contraction assumption on R and the nonexpansive property of the
projection [Prop. 3.2(c)] imply that the mapping T : X — X defined by T(z) =
[z —yVF(x)]", is also a contraction. In particular, T" has a unique fixed point z* € X,
and the iteration z := T'(z) converges to z* geometrically. Our first task is to show that
z* minimizes F’ over the set X.

Since R is a contraction, we have

WVF@)-VF@)| = ||[(z—y) - (R@@)—-R®)|| < llz—yll+||R@=)—R@)|| < 2[|lz—yl.

This proves that VF' satisfies the Lipschitz Continuity Assumption 3.1(b).

We now introduce the notation R® and T to denote the mappings obtained from R
and T, respectively, when the stepsize parameter - is replaced by é. For every 6 € (0,~],
we have R%(z) = (1 — §/v)x + (6/7)R(x). Thus,
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IF@ - Rl < (1= 2)lle -l + 1R - Rl < (1= 2+ 2) e -y,
where « is the contraction modulus of R. Since o < 1, it is seen that R? is a contraction.
It follows that T is also a contraction for every § € (0,v]. By Prop. 3.3(b), we see that
z € X is a fixed point of T¢ if and only if (y — z)’ V.F(z) > 0 for all y € X. Since this
condition is independent of the value of 6, we conclude that the fixed point z* of T is
also the unique fixed point of T for every § € (0, y].

Let us now consider some § € (0, ] which is sufficiently small so that the iteration
 := T%(z) has the property F(T%(z)) < F(z)— A||T%(z)— z|* for every = € X, where
A is some positive constant. [Such a § exists because of the descent properties of gradient
projection iterations; see Prop. 3.3(a).] Consider some z(0) € X different from z* and
let z(t + 1) = T®(x(t)), for t = 0,1,.... Since z(0) # z*, we have T°(z(0)) # z(0),
and the preceding remarks imply that F'(z(1)) < F(z(0)). Furthermore, z(t) converges
to z*, and the sequence {F(z(t))} is monotonically nonincreasing and converges to
F(z*). Therefore, F(z*) < F(z(1)) < F(z(0)). Since this inequality is true whenever
2(0) € X and z(0) # z*, it follows that =* is the unique minimizing point of the function
F.

Let us now fix some index ¢ and represent the vector z in the form z = (z;, %)
where z; € X; and Z is the vector with the remaining block—components of z. We fix
Z and view F(x) = F(x;,Z) as a function of z; alone. The mapping R; : X; — R™,
defined by R;(z;) = z; — vV, F(z;, Z) inherits the contraction property of R. (This is
because a block-maximum norm is employed.) Our previous arguments can be repeated
to establish that for any fixed Z, there exists a unique z; € X; which satisfies z; =
[z; — nyiF(:vi,:E)]:, and such an z; is the unique minimizer of F(z;, %) over the set
X;. This is exactly the type of minimization carried out in Egs. (3.12) and (3.13). Thus,
the nonlinear Jacobi and Gauss—Seidel algorithms are well defined.

We now consider the component solution method for solving the fixed point
problem T(zx) = z. We recall from Subsection 3.1.2 that given some current vec-
tor z(t), the component solution method determines z;(t + 1) by solving the equation
z; =Ty(z) = [z; - ny,-F(z)];." for z; while fixing the remaining block—components of
z at the values determined by x(¢). Given the discussion of the preceding paragraph,
this is equivalent to determining x; by minimizing F over all z; € X; while keeping
the values of the remaining block—components fixed. But this is precisely the nonlin-
ear Jacobi algorithm. Similarly, the nonlinear Gauss—Seidel algorithm coincides with
the Gauss—Seidel version of the component solution method. We now apply our earlier
convergence results for component solution methods for solving fixed point problems in-
volving block—contractions (Prop. 1.7 in Subsection 3.1.2) to conclude that the sequences
generated by the algorithms under consideration converge geometrically to the unique
fixed point of T" which as we have already established, is the unique minimizer of F'
over the set X. Q.E.D.

The nonlinear Jacobi algorithm can be parallelized by assigning a separate pro-
cessor to each block—component z;. The nonlinear Gauss—Seidel algorithm can be also
parallelized, provided that a coloring scheme can be applied (see Subsection 1.2.4).
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‘We may also consider hybrid methods which combine certain features of the Jacobi
and Gauss—Seidel methods. For example, we could split the m block—components of x
into two groups: (zy,...,zx) and (Tk41,...,Zmn) and use the update equations

zit+ 1) = arg min F(1®),.., 2210, 70,0010, -, 2m®)
if1<i<k, and
zi(t+]) = arg min F (21D, 2D, 201D, 20t (0,26, 2041 O, -, TnD)),

if £+ 1 <7 < m. Thus each group of components is updated in Jacobi fashion but the
updates of the second group incorporate the results of the update for the first group, as in
Gauss—Seidel iterations. (Generalizations to more than two groups are clearly possible.)
As long as the number of processors is smaller than the number of components in
each group, we obtain the same parallelism as for the nonlinear Jacobi method, while
convergence could be faster due to the Gauss—Seidel element. The convergence result
of Prop. 3.10 remains true for such hybrid methods as well.

Notice that a nonlinear method can be viewed as a procedure whereby at each
stage, an infinite number of iterations of a linearized algorithm is performed on the same
component, until the cost function is minimized with respect to that component. We
could have also considered intermediate methods whereby a limited number of linearized
iterations on the same component is performed at each stage. Such methods are also
convergent under the block—contraction assumption of Prop. 3.10; their convergence is
most easily established by viewing them as special cases of asynchronous iterations of
the type studied in Chapter 6.

EXERCISES

3.1. (Projection on a Subspace.) Let X be a subspace of ™ and consider the mapping f :
R™ — R, defined by f(z) = [z]*.

(a) Show that y = f(x) if and only if y € X and (y — )’z = 0 for every z € X.

(b) Show that f(ax + by) = af(z) + bf(y) for every z, y € R™ and every a, b € R.
This establishes that the mapping f is of the form f(x) = Pz, where Pisann X n
matrix.

(c) Show that the matrix P defined in (b) has the following properties:

(i) Px =z forevery z € X.

(ii) P* = P.
@ii) ||z|j3 = ||Pz|3 + ||(I — P)z|]3 for every x € R".
(iv) P is symmetric.

(d) Suppose that the subspace X is of the form X = {z | Az = 0}, where Aisanm xn
matrix with the property that AA’ is nonsingular. Find a formula for the matrix P
of part (b) in terms of A.
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Hint: To establish symmetry of P, show that 2’ Py = z’ P’y for all z, y € ™. In part (d),
formulate the problem defining the projection of a vector on X and apply the optimality
conditions.

3.2. Prove Prop. 3.7.
Hints: For part (a), show that (z — y) M(t)(x — y) is a strictly convex function of y when
y is restricted to X. For part (b), use the optimality conditions of Prop. 3.1. For part (c),
mimic the proof of Prop. 3.2 to show that

(WiF - =17) M) () - [21F) < (Wl - [l ) M)z — o). (3.15)

Then use inequality (3.9) for the left hand side of inequality (3.15), and the Schwartz
inequality for the right hand side. For part (d), continue as in Prop. 3.2, using the norm
llz|| = “ (M (t)) l/zm” ,- For part (e), apply Prop. 3.1 to the minimization problem of Eq.
(3.8). For part (f), use the optimality conditions for the problem in Eq. (3.8) and then
proceed as in part (c). For part (g), proceed as in the proof of Prop. 3.3 and use inequality
(3.9). Finally, for part (h), show that

(v—att+ ) (M@ (ot + D - 20) + WF(at)) <0, WyeX,

and take the limit along a sequence {tx} such that z(¢x) and z(tx + 1) converge to z*.
3.3. [Ber82b] As illustrated in Fig. 3.3.3, the iteration (3.6) given by

- +
2(t+ 1) = [2() = 7(M®) " VF (20 (3.16)

may increase the value of F, no matter how v > 0 is chosen. For this reason, the iteration
was modified as in Eq. (3.7), so that the projection on X is carried out with respect to the
norm corresponding to M(t). An alternative for the case where X is the positive orthant is
to suitably restrict the form of the matrix M(¢) in Eq. (3.16) so that for ~y sufficiently small,
a cost improvement is obtained.

Let X = {z | z; > 0, ¢ = 1,...,n}. Suppose that M(t) is symmetric positive
definite and its elements satisfy

[M®)):; =0,  ifi€ I(t)and i # j,

where

I(t) = {z

oF
i) = 0 and 7 (a(t)) <0}

Show that if z(t) is not optimal, there exists some 4 > 0 such that F(m(t + 1)) < F(z(t))
for every choice of +y in (0, 5]. Modify this result for the case where X = {x | a; < z; <
bi, i =1,...,n}, for given scalars a; and b;.

3.4 PARALLELIZATION AND DECOMPOSITION OF OPTIMIZATION
PROBLEMS

In the last two sections, we analyzed several optimization methods that are well suited for
parallelization, such as the Jacobi, Gauss—Seidel, gradient-like, and approximate Newton
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algorithms. These methods are not always applicable, e.g., when there is a constraint
set that is not the Cartesian product of simpler sets. In this section, we show how
to exploit structural problem features and enhance parallelization by means of suitable
problem transformations. We thus switch our focus from parallelization based on method
structure to parallelization based on problem structure.

Our approach is based on the duality theory of Appendix C. The idea here is to
consider a dual optimization problem that may be more suitable for parallel solution than
the original. Related approaches, known as decomposition methods, have been applied
for many years to large problems with special structure (see e.g., [Las70]). These meth-
ods involve the solution of many simple optimization subproblems of small dimension
in place of the original problem. When a parallel computing system is available, decom-
position methods typically become even more attractive because the simple subproblems
can be solved in parallel.

We begin in Subsection 3.4.1 with a strictly convex quadratic programming prob-
lem. This problem arises often in applications, or as a subroutine in more complex
calculations (e.g. the gradient projection method). The dual cost here is also quadratic
and has a gradient that can be conveniently calculated.

In Subsection 3.4.2, we consider another class of problems with special structure.
Here the (primal) cost function is separable and strictly convex. The strict convexity
property is important because it implies differentiability of the dual cost function (see
the Differentiability Theorem in Appendix C). The separability property is important
because it facilitates parallelization.

The remainder of the section is devoted to methods for dealing with lack of strict
convexity of the primal cost, and the attendant lack of differentiability of the dual cost.
This difficulty arises, for example, in the important special case of a linear programming
problem. In Subsections 3.4.3 and 3.4.4, we show how the dual problem can be converted
into a differentiable optimization problem, and can be solved by methods similar to
those used for the separable strictly convex problem of Subsection 3.4.2. An alternative
possibility, which we will not consider in this text, is to solve the dual problem by a
nondifferentiable optimization method (see [Sha79] and [Pol87]). An example of such a
method for linear network flow problems will be developed in Chapter 5.

Throughout this section, we use the duality framework of Appendix C, which is
restricted for simplicity to optimization problems with convex cost functions and linear
constraints. The reader who is familiar with duality theory will have no difficulty applying
the parallelization approaches of this section to more general duality frameworks.

3.4.1 Quadratic Programming
Consider the quadratic programming problem

minimize $z'Qz — b’z @
subject to Az <e¢, .
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where Q) is a given n X n positive definite symmetric matrix, A is a given m x n matrix,
and b € R™ and ¢ € R™ are given vectors. This is an important problem that arises
naturally in many contexts, and also provides a convenient vehicle for reformulation
of other problems. For example, the feasibility problem of finding a point in the set
{z | Az < c} can be formulated as the quadratic programming problem of projecting
any given point on that set. As another example, a solution of a linear programming
problem can be obtained by solving a finite number of quadratic programming problems
(see Subsection 3.4.3).

We use the duality theory developed in Appendix C. The dual of the quadratic
programming problem (4.1) is given by

minimize Ju'Pu+ r'u, 4.2)

subject to u >0,
where

P=AQ'4, r=c—AQ 'b. 4.3)

It is shown in Appendix C that if u* solves the dual problem, then z* = Q! (b— A’u*)
solves the primal problem (4.1). The dual problem has a simple constraint set, so it is
amenable to the use of parallel algorithms.

Let a; denote the jth column of A’. We assume that a; is nonzero for all j
(if a; = 0, then the corresponding constraint a;a: < ¢; is meaningless and can be
eliminated). Since @ is symmetric and positive definite, the jth diagonal element of P,
given by p;; = a}Q“laj, is positive. This means that for every j, the dual cost function
is strictly convex along the jth coordinate. Therefore, the strict convexity assumption of
Prop. 3.9 in Section 3.3 is satisfied and it is possible to use the nonlinear Gauss—Seidel
algorithm. Because the dual cost is quadratic, the minimization with respect to « can be
done analytically, and the iteration can be written explicitly as we proceed to show.

The first partial derivative of the dual cost function with respect to u; is given by

m .
i+ ijkuk, “4.4)
k=1

where p;i and r; are the corresponding elements of the matrix P and the vector ,
respectively. Setting the derivative to zero, we see that the unconstrained minimum of
the dual cost along the jth coordinate starting from w is attained at @; given by

- 1 1 u
uj = ———( 5+ ijkuk) =u; — f(rj + ijkuk).
k#j Pjj k=1

Pjj

Taking into account the nonnegativity constraint u; > 0, we see that the Gauss—Seidel
iteration, when the jth coordinate is updated, has the form
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u; :=max{0,4;} = max{O, uj — 1% (Tj + ipjkuk) }» @.5)
k=1 :

U; = Uy, Vl;éj

We can also consider a linearized projected Jacobi method [cf. the discussion
following Eq. (3.6) in Section 3.3]. This is a special case of the scaled gradient projection
method. In particular, the scaling matrix M (¢) is diagonal and its jth diagonal entry is
equal to p;;. Taking into account the form of the first partial derivative of the dual cost
with respect to u; given by Eq. (4.4), we see that the method is given by

uj(t+1)=max{0,uj(t)—i;(rj+;pjkuk(t))}, j=1,...,m, (46)

where v > 0 is the stepsize parameter. This iteration is more suitable for parallelization
than the Gauss—Seidel iteration (4.5). On the other hand, for convergence, the stepsize v
should be chosen sufficiently small, and some experimentation may be needed to obtain
the appropriate range for 7. Convergence can be shown when v = 1/m (Exercise 4.1)
but this value may be too small for some problems, and can lead to an unnecessarily
slow rate of convergence. A frequently more practical scheme is a hybrid Gauss—Seidel
and Jacobi method, whereby the index set {1,...,n} is partitioned in subsets and at each
iteration, the coordinates of only one of the subsets are updated according to Eq. (4.6).
In this way, one may enlarge the range of stepsizes -y for which convergence is obtained.

The matrix A often has a sparse structure in practice, and one would like to take
advantage of this structure. Unfortunately, the matrix P = AQ~!' A’ typically has a less
advantageous sparsity structure than A. Furthermore, it may be undesirable to calculate
and store the elements of P, particularly when m is large. It turns out that the Gauss—
Seidel iteration (4.5) can be performed without explicit knowledge of the elements p
of the matrix P; only the elements of the matrix AQ~! are needed instead. To see how
this can be done, consider the vector

y=—A'u. @.7)

We have
Pu=AQ 'A'u = —AQ™ 'y,

and the jth component of this vector equation yields

m
> pikue = —wjy, 4.8)
k=1

where w’ is the jth row of AQ~'. We also have
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pij = wjaj, 4.9)

where a; is the jth column of A’. The Gauss—Seidel iteration (4.5) can now be written,
using Eqgs. (4.8) and (4.9), as

or, equivalently,
. 1 '
u =y —min{ uj, ——(r; — w;y) » €, (4.10)
wjaj

where e; is the jth unit vector (all its elements are zero except for the jth, which is unity).
The corresponding iteration for the vector y of Eq. (4.7) is obtained by multiplication of
Eq. (4.10) with — A’ yielding

) 1
y := y + min {Uj,/_(’l"j ——w}y)}aj. 4.11)
U)ja]'

The (nonlinear) Gauss—Seidel method can now be summarized as follows. Initially,
u is any vector in the nonnegative orthant and y = — A’u. At each iteration, a coordinate
index j is chosen and u and y are iterated simultaneously using Egs. (4.10) and (4.11).
For problems with special structure, it is possible to parallelize the Gauss—Seidel method
by observing that the iterations corresponding to any indices j; and j, are decoupled
and can be carried out in parallel if there is no coordinate which is nonzero for both
a;, and wj,. To see this, suppose that starting with the vectors v and y, the iteration
corresponding to index 7; yields u; and y;. Let also u; and y; be the vectors obtained by
an iteration corresponding to index j, starting with the vectors u; and y,. It is seen from
Eq. (4.11) that y and y, differ in a given coordinate only if the corresponding coordinate
of aj, is nonzero. Thus, if there is no coordinate which is nonzero for both a;, and wj,,
we have w}zy = w}zyl. It follows from Egs. (4.10) and (4.11) that the values of u, and
y» will be the same, regardless of whether the iteration corresponding to j; precedes or
is carried out simultaneously with the iteration corresponding to j;.

When Q is the identity matrix and b = 0, the problem is equivalent to projecting
the origin on the constraint set. In this case, iteration (4.11) has a nice interpretation as
a “modified projection” of y on the halfspace H; = {z | az < ¢;}, as illustrated in
Fig. 3.4.1. The Gauss—Seidel algorithm therefore involves, at each iteration, a sequence
of modified projections on a halfspace, to update y, while simultaneously updating the
corresponding coordinates of «. The Jacobi algorithm involves simultaneous projections
on all halfspaces of this type. These and related algorithms have proved successful on
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very large problems arising, for example, in image reconstruction (see e.g., [CeH87] for
a survey).

Figure 3.4.1 Interpretation of iteration
(4.11) as a projection when Q@ = I and
b =20. Then wy; = aj, T; = Cj, and the
iteration takes the form

. 1
y := y+min {uj, -—-—Iz(cJ- - a}y)} a;.
2

llajl

When y ¢ H;, we have c; — a;.y < 0 and,

because u; > 0, y is set to the vector
H, =

. 1
g=y+ ”_ajE(Cj - ajy)ay,

which is the orthogonal projection of y
on H;. When y € Hj, then y is set to
the projection of y on the boundary of
Hj if uj > (1/]la513) (¢; — o), and,
otherwise, is setto § = y + uja;, which
lies between y and the boundary of H;.

3.4.2 Separable Strictly Convex Programming

Suppose that the space R™ is represented as the Cartesian product of spaces R™:, where
ny + -+ + Ny = n, and consider the problem

m
minimize Z Fi(xz;)

—

’ , 4.12)
subject to e;z = sj, g=1,...,r

z; € B, i1=1,...,m,

where F; : ®™ +— R are strictly convex functions, z; are the components of z, e; are
given vectors in R", s; are given scalars, and P; are given bounded polyhedral subsets
of ™. We note that if the constraints ez = s; were not present, it would be possible
to decompose this problem into independent subproblems. This motivates us to consider
a dual problem that involves Lagrange multipliers for these constraints. In accordance

with the theory of Appendix C, this dual problem has the form

maximize q(p)
(4.13)
subject to p € R".
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The dual function is given by
m T m
qp) = min Zl Fiz:) + ;pj(e;x —s5)p = 2%@) —p's, (4.14)
where p's = Y_7_, p;s;, and

.
ai@) = min Q Fi@)+ 3 picuzi 0y i=lo.m (@.15)

j=1

with e;; denoting the appropriate subvector of e; that corresponds to z;. An important
observation is that due to the separable structure of the problem, the evaluation of the
dual function is amenable to parallel computation with a separate processor calculating
each component g;(p) of g(p).

By applying the Differentiability Theorem of Appendix C, we see that strict con-
vexity of F; implies that the dual function is continuously differentiable, and that if the
minimum in Eq. (4.15) is attained at the point z;(p), the partial derivative of ¢ with
respect to p; is given by

0q(p)
Opj

= elz(p) — sj, 4.16)

where z(p) = (xl(p), ceey xm(p)). Since the dual function is differentiable, we can apply
methods considered earlier in this chapter, such as Gauss—Seidel, Jacobi, and gradient
methods, that are amenable to parallel implementation. This is possible because, in
contrast with the primal problem (4.12), the dual problem (4.13) is unconstrained. [If the
primal problem (4.12) had inequality constraints in place of the equality constraints, the
dual problem would have nonnegativity constraints but the parallelizable Gauss—Seidel,
Jacobi, and gradient projection methods would still be applicable.] Note also that the
calculation of the ith component g;(p) of the dual cost [Eq. (4.15)] yields z;(p) and
therefore also the ith components e);z;(p) of the dual cost derivatives 9q(p)/Op; of
Eq. (4.16). In a message—passing parallel computing system, where there is a separate
processor assigned to the ith component, the calculation of the dual cost gradient via Eq.
(4.16) requires a single or multinode accumulation (cf. Subsection 1.3.4). The gradient
Vq(p) can then be distributed to all processors, if necessary, by means of a single or
multinode broadcast [depending on whether all coordinates of Vq(p) are accumulated at
a single node or not].

In some problems where the separability structure of problem (4.12) is not present,
it may be desirable to create this structure through some transformation in order to make
the application of parallel methods possible. We provide an example:
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Example 4.1. Minimizing the Sum of Strictly Convex Functions

Consider the problem

minimize Z Fi(z)
=0 4.17)

subject to z € P;, 1=0,1,...,m,

where F; : ®" — R, { = 0,1,...,m are strictly convex functions, and P, are bounded
polyhedral subsets of ®™. An interesting special case of this problem arises when minimizing
an expected cost E [F(:z:, w)] , subject to z € P(w), where w is a random variable taking a
finite number of values, each with a given probability, F(z,w) is strictly convex for each
w, and P(w) is a bounded polyhedral set for each w.

We consider the equivalent separable problem

m
minimize Fo(z) + ZFi(l'i)
i=1
4.18)
subject to z; = z, i=1,...,m,
T € R, z; € P, i=1,...,m,

where z; € 7, ¢ = 1,...m, are additional (artificial) variables. Based on the theory of
Appendix C, the corresponding dual problem is given by

maximize q(p) = go(p1 +p2 + -+ + pm) + Z qi(p:)

i=1 (4.19)
subject to p; € R", 1=1,2,...,m,
where
Q@ +p2+ -+ pm)= ;reufr,l {Fo@)— @ +p2+ - +pm)z}, (4.20)
(]
. U
¢i(p) = min {Fi(z:) +plai} . 4.21)

By the Differentiability Theorem of Appendix C, the dual cost is continuously differentiable,
and its gradient is given by

—— = zi(p) — z(p), i=1,2,...,m,

where z(p) and x;(p) are the unique minimizing vectors in Eqgs. (4.20) and (4.21), respec-
tively. Note that z(p) and z;(p) can be computed in parallel, and that the dual problem is
well suited for solution using parallel gradient methods. An alternative gradient-like dual
method for this problem that does not require strict convexity of the functions F; will be
given in Subsection 3.4.4.
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3.4.3 The Proximal Minimization Algorithm

We mentioned earlier that strict convexity of the primal cost function is an important
property, since it implies differentiability of the dual cost function. When the dual cost
function is not differentiable, one might try to solve the dual problem using a method
that can handle nondifferentiabilities (see [BaW75], [Sha79], and [Pol87]). A different
approach, considered in this subsection, is to make the primal cost function strictly
convex by adding a quadratic term to it. We use this approach to develop an algorithm,
called the proximal minimization algorithm. We show how this algorithm allows us to
transform a linear programming problem into a strictly convex quadratic programming
problem that can be solved, for example, using the dual methods of Subsection 3.4.1.
In the next subsection we look at the proximal minimization algorithm in a dual setting,
thereby obtaining decomposition methods for separable problems that are not strictly
convex.
Consider the problem

minimize F(x)
4.22)
subjectto z € X,

where ' : R"* — R is a given convex function, and X is a nonempty closed convex
set. We introduce an additional vector y € R", and consider the following equivalent
optimization problem

1
minimize F(z) + lex —y|j3
subjectto z € X, y € R,
where c is a positive scalar parameter, and || - || is the standard Euclidean norm. This
problem can be solved by the nonlinear Gauss—Seidel method of Subsection 3.3.5, which

alternately minimizes the cost over x € X while keeping y fixed, then minimizes the
cost over y € R™ while keeping z fixed, and repeats. The method is given by

. 1 2
2(t + 1) = arg min {F(:v) + 5 lle = y(t)“z} ;
y(t+ 1) = z(t + 1),
or, equivalently,

- ; 1 2
z(t+1) =arg min {F(x) + 2—c||x - a:(t)[|2} . (4.23)

It will be shown as part of the following Prop. 4.1 that the minimum in Eq. (4.23) is
uniquely attained for any given z(t) € R". As a result the method is well defined.
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Figures 3.4.2 through 3.4.4 illustrate how the method converges, and how the parameter

c affects the rate of convergence. Note that when the cost function F is linear, then a
straightforward calculation shows that the iteration (4.23) can be written as

z(t+1) = [2(t) — ¢VF(z®)] ",

where [-]* denotes projection on the set X, so for this case, iteration (4.23) can be
viewed as a gradient projection iteration.

@.(y) =min {Flx)+5-llx—y 12}

2 ) =5 lix—y 112

Figure 3.4.2  Finding the minimum of F(z) + (1/2¢)|[z — y||3 over X for a given y
and c. The minimum is attained at the unique point z(y, c) at which the graph of the
quadratic function —(1/2¢c)||z — yl|? raised up or down just touches the graph of F(z).

Since the cost function F(z) + (1/2¢)||z — y||3 is strictly convex with respect to
z for fixed y, and strictly convex with respect to y for fixed z, our nonlinear Gauss—
Seidel convergence result (Prop. 3.9 in Section 3.3) can be applied assuming that F is
continuously differentiable. Figure 3.4.3 suggests that convergence occurs even if F is
not differentiable, and even if ¢ increases from one iteration to the next. Figure 3.4.5
suggests that convergence is finite under certain circumstances. We show these facts in
the following proposition:

Proposition 4.1. Let F': ®” — R be a convex function, and X be a nonempty
closed convex set. Denote also by X* the set of points that minimize F(z) over z € X

X*"={z"€e X |F@")<F(z), Vz € X}. (4.24)
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(a) For every y € ®" and ¢ > 0, the minimum of F(z)+ (1/2¢)||z — y||3 over z € X
is attained at a unique point denoted by z(y, ¢).

(b) The function ®. : R — R defined by
. 1 2
d.(y) = ;nel)I} {F(x) + fc_”x - y||2} 4.25)

is convex and continuously differentiable, and its gradient is given by

Vo, (y) = wf—) (4.26)
Furthermore, * minimizes ®.(y) over y € R™ if and only if z*
minimizes F'(x) over x € X, that is,
X* = {:c*l ®c(z") = min @C(y)} ,  Ye>0. 4.27)
(c) Assume that X* is nonempty. A sequence generated by the iteration
a(t + 1) = arg min {F(a:) + %(t) |z — x(t)||§} , (4.28)

where {c(t)} is a sequence of positive numbers with liminf;_., c(t) > 0, converges to
an element of X*.

(d) Assume that X* is nonempty, and that there exists a scalar 5 > 0 such that

F(z) > F* + Bp(x; X™), VzeX, (4.29)
where
F* = min F(x), and plx; X*) = z{[él)l}‘ lz — z*|2- (4.30)
Then
o(y,c) = arg min Jlo —yla,  if ply; X7) < cB. (4.31)

In particular, the algorithm (4.28) converges finitely [i.e., there exists ¢ > 0, de-
pending on z(0), such that z(t) € X* for all ¢ > {], and, for a given z(0), it
converges in a single iteration if ¢(0) is sufficiently large.

Note: The condition (4.29) is illustrated in Fig. 3.4.6. It can be shown to hold in
the case of a linear programming problem, that is, when F is a linear function and
X is a polyhedral set (see Exercise 4.3).
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Fix)

@, (x°) — 2 llx —x°||§\>/4
Large Value of ¢ /

(a)

F(x)

1
e (x°) =5 lx = x® N3 —_|

Small Value of ¢

x9 x1 x2 X*
(b)

Figure 3.4.3 Illustration of the role of the parameter c in the convergence process of the proximal
minimization algorithm. (a) Case of large value of c. The graph of the quadratic term is “blunt”
and the method makes fast progress toward the optimal solution set X*. (b) Case of a small value
of c. The graph of the quadratic term is “pointed” and the method makes slow progress.

Proof.

(a) It will suffice to show that for all ¢ > 0 and y € R™, the level sets
1
{3: € X| F(z) + lem —yl3 < a} , a e R, (4.32)

are bounded. It will follow then that we can equivalently search for the minimum
of F(z)+ (1/2¢)||z — y||3 over a compact subset of X instead of X. Weierstrass’
theorem (Prop. A.8 in Appendix A) can then be used to show that the minimum of
F(x)+(1/2¢)||z — y||3 over X is attained, necessarily at a unique point in view of
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Figure 3.4.4 Illustration of the role of the growth properties of the function F' in the
convergence process of the proximal minimization algorithm (see Exercise 4.2). (a) Case
where F'(z) grows slowly, and the convergence is slow. (b) Case where F(z) grows
fast, and the convergence is fast.

the strict convexity of the quadratic term (1/2c)||z — y||3. [Proving boundedness
of the set of Eq. (4.32) is very simple if X* is nonempty or more generally if
F(z) is bounded below over X; the following argument primarily addresses the
case where inf ¢ x F(x) = —o0, and is based on the idea that a convex function
cannot decrease along any one direction at faster than linear rate while the term
(1/2¢)||z — y||3 increases at a quadratic rate.]

We argue by contradiction. Suppose that for some ¢ > 0 and y € R", there
exists a sequence {z*} such that '

% = yll2 — o0, v k.

1
F(z*) + ank —yl3 <, (4.33)

Denote B; = ||z* —y||2, and assume without loss of generality that 3, > 1 for all k.
Define also z* = (z* —y)/B%, and consider the convex function F(z) = F(z +y).
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Fix)
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*
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Figure 3.4.5 Finite convergence of the proximal minimization algorithm when F(x)
grows at a linear rate near the optimal solution set X*. (a) Finite convergence for a
small value of c. (b) Convergence in a single iteration for a large enough value of c.

From Eq. (4.33) we obtain
. 2 1
P+ OL par o Lt — g <a,  vE @39
2¢ 2c
By convexity of F' we have
min F(z) < F(5) < —F (Br2*®) + (1 - i) F(0)
llzll2=1 - = B B ’
from which we obtain

(1= BOFO) + B min F(2) < F (82").
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Figure 3.4.6 Illustration of the condition (4.29). Here F(x) majorizes the function
F* + Bp(x; X*) which grows at a rate 8 > 0 with the distance of x from the optimal
solution set X ™.

Combining this relation with Eq. (4.34), we obtain

2
F©O) + B ("nﬂig 1 F(z) - F(O)) + (gkc) <a, VY k.

Since (B — oo, we reach a contradiction.

(b) To show convexity of ®,, let y; and y, be any vectors in R™ and let o be a scalar
in [0,1]. Denote z; = z(y;,c) and z; = z(y2,c). We have, using the convexity
of F and of the norm function || - ||,

1
a®.(y)) + (1 — )P (y2) = [F(flfl) + 2—0”931 - yl”%]
1
+(1-0) [F(xz) + 5 lle2 - yzllé]
ZF(O{I] +QA- a).’llz)
1
+ 5 lloazs + (1 = @)z — agr — (1 - W
. 1
> mig {F@) + ol - o - 01 - el

=@ (ay1 + (1 — V)y2).

This proves the convexity of ®..
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To show differentiability of ®,, let us consider any y € ", d € R", and o > 0.
We have

1
F(2(y,0) + 3-ll2(y,0) = (v + ad)[[} 2 @c(y + ad) > B.(y) + a®/(y; d)
1
= F(z(y,0) + 312w, 0 = yll3 + 0@ (y; d), (4.35)

where the second inequality follows from the convexity of @, and the definition
of the directional derivative ®/(y;d). By expanding the quadratic form in the
left-hand side of Eq. (4.35), by collecting terms, and then by dividing by o, we
obtain

!
e 09 4t a2 S, Va0, dew

Taking the limit as o — 0, it follows that

I:y - 37(3/, C)

li
- ]d2<1>'c(y;d), YdeRr

By replacing d with —d in the preceding relation, we obtain

- l‘( ,C) !
- [y—cy—] d > ®,(y; —d) > —®(y; d),
where the second inequality follows from Eq. (A.16) in Appendix A. The last two
relations imply that

y—z(y, 0]
[7] d=®,(y;d), VdeR,

or equivalently, that ®. is differentiable with gradient equal to [y - z(y, c)] /c. We
note also that since ®. is a convex function, its gradient is continuous (Prop. A.42
in Appendix A).

We finally show that the minimizing points of ®.(y) over ®" and of F(z)
over X coincide. We first note that the function F(x) + (1/2¢)||z — y||3 takes the
value F'(y) for z = y, from which it follows that

®.(y) < F(y), VyeX. (4.36)

If y* minimizes F'(x) over z € X then using Eq. (4.36) we have

1
P.(y*) < F(y") < F(z(y,0) < F(x(y, c))+2—c||x(y, O—y* 3 = Pe(y), Yy eR®
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which implies that y* minimizes ®.(y) over R™. Conversely, if y* minimizes
®.(y) over R™, then ¢V .(y*) = y* — z(y*,c) = 0. This implies that y* € X
and, using also Eq. (4.36), it is seen that

F) =0(y") < ®(y) < Fly), VyelX.

Therefore y* minimizes F(y) over y € X.

(¢) The proof proceeds in two stages. We first show that all limit points of {z(¢)}
belong to X*, and then we show that {z(¢)} is bounded and has a unique limit
point.

We have, using Eq. (4.28),

F(z(t+ 1)+ E—(t—)llw(t+ ) —z@)|} < F(z) + %% (t)llw @3, VzeX,
(4.37)

from which, by setting x = z(t) we obtain
F(zt+D) + —||a:(t + D) —z®)|} < F(z@®), V¢t (4.38)

2¢(t)

Let {z(t)}:er be a subsequence converging to a vector T, € X. From Eq. (4.38),
it follows that F(:c(t)) decreases monotonically to F'(z.,) and that

Jlim [zt +1) — x| = 0. (4.39)

Furthermore, Eq. (4.39) implies that the subsequence {x(t + 1) };c7 also converges
t0 Too. Let z* € X*, and « € (0, 1). By setting z = az* + (1 — a)z(t + 1) in Eq.
(4.37) and using the convexity of F', we obtain

F(zt+1) + mllw(t +1) - z@)|3
< F(ax + 1 - @)zt + 1)) + 2—(t)||oza: +(1 — )zt + 1) — z(@)|)3
<aF@*) + (- a)F(zt+1) + z—(t)lla(w —z(t+ 1) +zt+ 1) — z@)]3.

Taking the limit as ¢ — oo, t € T, and using Eq. (4.39), we obtain

* CY”l'* - .7700”%

m, Vae (1) (4.40)
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Since this relation holds for all a € (0, 1), it follows that F(z,) = F(z*), implying
that zc € X*. We have thus proved that every limit point of {z()} is an optimal
solution.

There remains to show that {z(t)} converges. From Eq. (4.37) we obtain

|zt + 1) — z@®)]]2 < ||z — z®)||2, V z € X with F(z) < F(a:(t + 1)), 4.41)

from which it follows that (¢ + 1) is the unique projection of z(t) on the convex set
{z € X | F(z) < F(z(t+1))}. From the Projection Theorem (Prop. 3.2 in Section 3.3)
we obtain

(zt+ 1D —z®) (z -2t +1) 20, VzeX with Fz) < F(z(t+1)). (4.42)
For every optimal solution z* € X*, we have
le* — 2@ = llz* -zt + DIF +2 (2t + 1) —2@®) (z* - 2 + D) + [zt + D — @[3,
and by using Eq. (4.42) in this relation we obtain
l* — 2+ D2 < llz" —z®)]2, V2" € X" (4.43)

From Eq. (4.43) we see that {x(t)} is bounded, so it must have one or more limit points.
We have already proved that all limit points of {z(t)} belong to X*. If z* is a limit
point, then Eq. (4.43) implies that the distance of z(t) from z* cannot increase at any
iteration. Therefore, {x(t)} cannot have a second limit point, and must converge to z*.

(d) See Fig. 3.4.7. Q.E.D.

The operator that assigns to y the unique minimizing point z(y, ¢) in the definition
(4.25) of @ is known as the prox operator [Mor65]; this explains the name proximal
minimization algorithm for the iteration (4.28).

Note that when c(t) is constant [say c(t) = c for all ¢], the proximal minimization
algorithm (4.28) can also be written, based on the gradient expression (4.26), as

z(t + 1) = 2(t) — ¢V, (z(2)),

so it can be viewed as a gradient method for minimizing ®.. The rate of convergence
of the iteration depends on c and improves as ¢ becomes larger, as indicated in Fig.
3.4.3 and in Exercise 4.2. Computational experience has shown that using an increasing
sequence {c(t)} often works considerably better than using a constant value of c. Note
that one may not wish to use a very high value of ¢ because this can lead to numerical
difficulties in minimizing F(z) + (1/2¢)||z — y|[3-

The gradient interpretation also suggests the variation

ot + 1) = z(t) — Y&V, (z(t)),
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Figure 3.4.7 Proof of part (d) of Prop. 4.1. We first note that the function p(z; X*) = ming«¢ x~ ||z —z*||2
is convex, and that

z—Z

Vo(z; X*) = ;(;:;T*)’

Vz¢X*,
where % denotes the unique projection of  on X™*. The verification of convexity is left for the reader.

The formula for Vp(z; X*) is obtained by differentiating in the equation p(z; X*) = / 2c¢>c(z) where
b.0)= ming~¢ x~(1/2¢)||z — z*||3, and by using the fact vd.z)= (= - £)/c [cf. Eq. (4.26)].
Consider the function ®. : ®* — R defined by

b.y) = rénn {F* + Bp(z; X*) + —Il:c - y||2}

(compare with the figure). From part (a) of Prop. 4.1, the minimum in the definition of é’c(y) is attained
at a unique point denoted #(y,c). Suppose that Z(y,c) ¢ X*. By setting to zero the gradient of F* +
Bp(x: X*) + (1/20)l|z -yl at Z(y, ) we obtain

B(3w,0) — 23, 9) | H(y,c) -
+
p(2, 5 X*) ¢

Yo

where Z(y, c) is the projection of Z(y, ¢) on X*. It follows that ||Z(y,c) — y||2 = ¢B. Using the analog of
Eq. (4.41) with F(z) replaced by F* + Bp(x; X*), we have that Z(y, ¢) is the projection of y on the set
{i € X | plz; X*) < p(i(y, c);X") }, which contains X*. Therefore, p(y; X*) > ||&(y, ¢) — y|l2 = ¢B.
We have thus shown that Z(y,c) ¢ X* implies that p(y; X™*) > c¢B. It follows that if p(y; X *) < ¢B, then
Z(y,c) € X*.

Suppose now that the condition (4.29) holds. We will show thiat if Z(y, c) € X*, then x(y, c) = &(y,c)
(as can be seen from the figure). Indeed condition (4.29) implies that D (y) < P (y) < F(z)+(1/20)||lz—y|}3
for all z € X. On the other hand if Z(y, c) € X*, then

= 1 1
Sew) = F* + Bp(2w, 0 X*) + 115w, 0 ~ vl} = F(34,0)) + 7 15w, 0 ~ w3,

showing that the minimum of F(z) 4 (1/2¢)||z — y||2 is attained at Z(y, c). Therefore Z(y, c) = z(y,c). It
follows that z(y, c) € X* if p(y; X*) < ¢B. Also since z(y, ¢) minimizes F(z) + (1/2¢)||lz — y||2 over X,
we obtain that ||z(y, ¢) — y||2 < ||z* — y||2 for all z* € X™*, so x(y, ¢) is the projection of y on X*.
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where (t) is a stepsize parameter, possibly different than c. Exercise 4.4 develops a
related convergence result for the choice y(t) € (0, 2c).

We finally note that the cost function F'(z)+ (1/2c)||z — y||? is strictly convex with
respect to x, so when F has the separable form F(z) = E:’;l F;(x;), the dual methods
discussed in Subsection 3.4.2 are applicable. The price for this is that we must solve
a sequence of separable (strictly convex) problems instead of a single problem (which,
however, may not be strictly convex, and may involve a nondifferentiable dual problem).
An interesting alternative will be explored in the next subsection.

3.4.4 Augmented Lagrangian Methods

We now consider a dual approach for overcoming the lack of strict convexity of the
primal cost, which is based again on adding a quadratic term to the cost function. The
resulting algorithm, with proper interpretation, turns out to be equivalent to the proximal
minimization algorithm of the previous subsection.

Consider the constrained optimization problem

minimize F(x)

subject to e}z = s, i=1,...,r (4.44)

T € P,

where F' : R — R is a convex function, e; are given vectors in R", s; are given
scalars, and P is a nonempty polyhedral subset of ®". This is the optimization problem
that we used to develop the duality theory of Appendix C, except that here we have
disregarded linear inequality constraints of the form a;x < ;. It turns out that this does
not involve a loss of generality (see Exercise 4.5). We will also assume for simplicity
that P is bounded; the subsequent analysis, however, can be generalized considerably
(see [Ber82a], [Roc76b], and [Roc76c])).

We can consider in place of the original problem (4.44), the equivalent problem

minimize F(z) + %]le - s”%

subject to Ez = s,
r € P,
where c is a positive scalar parameter, and Ex = s is a compact notation for the

constraints e}:c = sj, that is, E is the matrix with rows 69, and s is the vector with
coordinates s;. The dual problem is

maximize g.(p) = igg L(z,p)
T

subject to p € R™,



244 lterative Methods for Nonlinear Problems Chap. 3

where L.(z,p) is the Augmented Lagrangian function
c
Le(z,p) = F(z)+p'(Ex — s) + -2-||Ex —s|f3.

An important method using the Augmented Lagrangian function, called the method
of multipliers ((HaB70], [Hes69], and [Pow69]), consists of successive minimizations of
the form

— aremi 4
z(t+1)=arg min Lt (z, p()), (4.45)

followed by updates of the vector p(t) according to
pt+1) =p@)+ct)(Ezt + 1) —s). (4.46)

The initial vector p(0) is arbitrary, and {c(t)} is a nondecreasing sequence of positive
numbers. Note that the minimum of the Augmented Lagrangian in Eq. (4.45) is attained
based on our earlier assumption that P is bounded and the Weierstrass theorem (Prop.
A8 in Appendix A). In the case where this minimum is not uniquely attained, the
vector z(f + 1) in Eq. (4.45) is chosen arbitrarily from the set of minimizing points of
Lo (- p@)).

It turns out that the iteration (4.45)—(4.46) is in reality the proximal minimization
algorithm (4.28) in disguise. To see this, we introduce an auxiliary vector z € ®™, and
write

. . , t
min Lec (z,p®) = min {F(:c) +pt)'(Ez — s) + %HEm - SII%}

4.47)

- Ez—s=z, z€P, zeR™ 2

- min {F(z) +p®) 'z + o) IIZII%} .

We view the problem on the right-hand side in Eq. (4.47) as a constrained optimization
problem in the variables x and z. The vector pair (x(t + 1), 2(t + 1)), where

2+ 1)=FEx(t+1)—s, (4.48)
is an optimal solution to this problem. Let § be a corresponding optimal dual solution,

that is,

z€P, z€

§ = arg max { min {F(z) +y'(Bz—s—2)+pt)z + ?Hzllﬁ}}

. ! : / t
= arg max {inelg {F@ +y'(Ez = 9)} + min {(p(t) -9z 4+ —6(2) llzllg}} :
(4.49)
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(An optimal dual solution is guaranteed to exist by the Duality Theorem of Appendix
C.) Then 2(¢ + 1) attains the minimum in the right-hand side of the above equation when
y = g, which implies that

g —pt)

2t+1) = o0

or equivalently using Eqgs. (4.46) and (4.48),
g=pt+1). (4.50)

A straightforward calculation shows that

zZER™

. ’ t
min { (60~ 1)’z + S22} = 31 Iy~ 0,

so from Eqgs. (4.49) and (4.50) we obtain

pE+1) = arg max, {Q(y) - 2—(5||y P(t)”z} 4.51)

where g(y) is the dual functional of the original problem (4.44)
— 1 'z ‘ _
9(v) = min{ F(@) + y'(Ez — )}

Thus, from Eq. (4.51) we see that the multiplier iteration (4.45)—(4.46) is equivalent to the
proximal minimization algorithm applied to the problem of minimizing the real-valued
convex function —q or equivalently to the dual problem of maximizing q.

By applying now the convergence result of Prop. 4.1(c), we see that the sequence
{p()} generated by the method of multipliers converges to some dual optimal solution.
Furthermore, convergence in a finite number of iterations is obtained in the case of
a linear programming problem [cf. Prop. 4.1(d) and Exercise 4.3 applied to the dual
problem, which is also a linear programming problem]. We also claim that every limit
point of the generated sequence {z(t)} is an optimal solution of the primal problem
- (4.44). To see this, note that from the multiplier update formula (4.46) we obtain

Ezt+1)—-s—0, c@®)(Ezit+1)—s)—0.

We also have
Ly (x(t + 1),p(t)) mm {F(x) +p@t) (Ex — s) + 2t) ||Ez — s||§} .

The last two relations yield

limsup F (z(¢ + 1))= lim sup L. (z(t + 1), p(t)) < F(x), YV z € P, with Ex = s,
t—o0 t—oo
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so if z* € P is a limit point of {z(t)}, we obtain
F(z*) < F(z), Yz € P, with Ex = s,

as well as Ex* = s [in view of Fxz(t + 1) — s — 0]. Therefore any limit point z* of the
generated sequence {z(t)} is an optimal solution of the primal problem (4.44).

The method of multipliers of Egs. (4.45) and (4.46) is an excellent general purpose
method for constrained optimization, and applies to considerably more general problems
than the one treated here. For example, it can be used for problems involving nonconvex
cost functions and constraint equations. It involves a sequence of minimizations of
Lt (x, p(t)), but each of these minimizations is subject to fewer constraints and is
presumably easier than solving the original problem (4.44). For this, it is necessary that
the parameter c(¢) is not too large in order to avoid “ill-conditioning” the minimization
of the Augmented Lagrangian. Practical experience has shown that it is best to start with
a moderate value of ¢ (perhaps obtained through some preliminary experimentation),
and either to keep ¢ constant, or to increase ¢ by some factor (say, 2 to 10) with each
minimization of the Augmented Lagrangian. There are a number of practical ways to
use the results of one minimization in the next minimization (see [Ber82a]).

One difficulty with the method of multipliers is that even if the cost function F'(x)
is separable, the Augmented Lagrangian L. (-, p(t)) is typically nonseparable because it
involves the quadratic term || Ex — s||3. With some reformulation, however, it is possible
to preserve a good deal of the separable structure, as shown in the following examples.

Example 4.2. Minimizing the Sum of Convex Functions

Consider the problem

m
minimize Fi(x)
; (4.52)
subject to z € F;, i=1,...,m,

where F; : R" — R, i =0,1,..., m, are convex functions, and P; are bounded polyhedral
subsets of R™. Note the difference with the related Example 4.1; here the functions F; are
not necessarily strictly convex.

We consider the equivalent separable problem

m
minimize E Fi(z;)
1=1
subject to z; = z, i=1,...,m,

z; € P, i=1,...,m,

where z; € R", ¢ = 1,...m, are additional (artificial) variables. We apply the method of
multipliers to this problem. It takes the form

pit+ D =p®) +c®)(zt+ ) -zt + 1), i=1,...,m, (4.53)
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where z;(t + 1) and z(t + 1) solve the problem

R < ¢
minimize E {F’i(afi) +pi®) (x — 7)) + ?Hx - xi”%}
i=1 4.54)
subjectto z € R", =z;€ P, i=1,...,m.

Note that there is coupling in this problem between z and the vectors z;, so this problem
cannot be decomposed into separate minimizations with respect to some of the variables.
On the other hand, the problem (4.54) has a Cartesian product constraint set, and a structure
that is suitable for the application of the nonlinear Gauss—Seidel method. In particular, we
can consider a method that minimizes the Augmented Lagrangian with respect to  with the
iteration

g 2im % Lin PO) (4.55)
m mc(t)

then minimizes the Augmented Lagrangian with respect to z; with the iteration
. . ) ) . C(t) 2 .
T = argzmelg Fi(z;) — pi(t)x; + Tllx —zillz ¢, Vi=1,...,m, (4.56)

and repeats until convergence to a minimum of the Augmented Lagrangian. Note that
the method can be parallelized to a great extent because the minimizations in Eq. (4.56)
can be done in parallel. In a message—passing system, the “averaging” step of Eq. (4.55)
used to update x can be performed by means of a single node accumulation algorithm at
some processor (cf. Subsection 1.3.4). The resulting vector z can then be distributed to all
processors by using a single node broadcast.

The next example is essentially a special case of the preceding one. It has the
property that a single minimization of the Augmented Lagrangian is needed because
the primal cost function is identically zero and the corresponding dual function has the
property of Eq. (4.29) with 3 arbitrarily large [cf. part (d) of Prop. 4.1].

Example 4.3. Finding a Point in a Set Intersection by Parallel Projections

We are given m closed convex sets C1,Cs,...,Cn, in R, and we want to find a point in
their intersection. An equivalent problem is

R R
minimize -Z-ZIIa:i—xllg 4.57)
=1

subjectto z € R", z; €C;, i =1,...,m.
]

Here the variables of the optimization are z, z1, . .., T, and if the intersection C;N---NC,y,
is nonempty, an optimal solution (z*, z}, ..., z7,) of the above problem is such that z* = x}
for all ¢, and =™ belongs to the intersection. The problem (4.57) may also be viewed as a
minimization of the Augmented Lagrangian function (4.54) of the preceding example, where
c(t) =1, Fi(z;) = 0, and p;(t) = 0.
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Let us now apply the nonlinear Gauss—Seidel method to problem (4.57). The order of
variable updating is x, 1, . .. , Zm, repeated cyclically. Minimization of the cost with respect
to each one of z,z1, ..., Zm, while all the other variables are fixed, yields the algorithm

2+ 1= =Y at), 4.58)
i=1

zt+1)=P(z¢t+1), i=1,..,m, (4.59)

where P;(-) denotes projection on C;. Note that the strict convexity assumption of Prop.
3.9 in Section 3.3 is satisfied in problem (4.57), so the convergence result of that propo-
sition applies. Exercise 4.6 refines this result, showing convergence to an element of the
intersection.

Figure 3.4.8 illustrates the parallelizable character of the method and shows that its
convergence rate can be slow under some circumstances.

x(t)

\ t) +xp(t
x4y =22l

2

(a)

x(t)
x(t+ 1)
x(t+2)

Figure 3.4.8 (a) Illustration of the

parallel character of the method of Egs.

(4.58)—4.59) for the feasibility problem

of finding a point in the intersection

CiN---NCp,. (b) Example illustrating

how the rate of convergence of the method
(b) can be poor.
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Example 4.4. Separable Problems

Consider the separable problem of Subsection 3.4.2

m
minimize Z Fi(z;)

i=1

, (4.60)
subject to e;r = sj, j=1...,r

z; € B;, 1=1,...,m,
with the difference that we assume that the functions F; : ™ — R are convex but not
necessarily strictly convex. Recall here that x = (z;...,z.,), where z; is a subvector of
dimension n;, and P; is a bounded polyhedral set.

Let e;; denote the subvector of e; that corresponds to z;, and for a given 7, let I(5)
be the set of indices ¢ of subvectors z; that appear in the jth constraint ejx = s;, that is

I(j)={i|e,~i#0}, j=1,...,7‘.

We transform the problem by introducing additional variables z;;, i € I(j), as follows

m
minimize E Fi(z;)

=1

subject to e}, x; = zj, i=1,...,r i€ I(y), “.61)
sz'i=8j, j=1,...,T,
i€ I()
z; € P, i=1,...,m.
For each j = 1,...,r, we consider Lagrange multipliers p;; for the equality constraints

€5:Ti = zji, ¢ € I(j). The method of multipliers consists of

it + D) =pis®) + @) (€hizit + D) = zist + 1), j=1,...,r, i€ IG), (4.62)

where z;(t 4+ 1) and z;;(¢ + 1) minimize the Augmented Lagrangian

ZF(L) + Z Z pﬂ(t) eﬂavz - zﬂ + — 20} Z Z eﬁz, - zJ, s

j=1i€I(j) j=1i€l(y)

subject to Z el Zit = sj,j = 1,...,r,and z; € P;,s = 1,...,m. Similarly as in
Example 4.2 [cf. Egs. (4.55) and (4 56)], this minimization can be done iteratively by
alternate minimizations with respect to the vectors x;, and the vectors z;;.
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The iteration has the form

. c(t) ,, 2
@i = arg min Fi¢) + Z {pji(t)e;-i& + % (efiti — zji) } )

T {ilseIi}
Vi=1,...,m, (4.63)

{z: |4 € 1)}
. c(t) ' 2
= arg min - Z Pyi®)Gsi + == Z (efszs — i)
{Cjilielo'), zi&!(j) Cji=s; i€l) i€lG)
Vi=1,...,r (4.64)
Note that the minimization with respect to {(j; | ¢ € I(5)} in the above equation involves a

separable quadratic cost and a single equality constraint, and can be carried out analytically.
In particular, the minimum is attained for

pii®) = Aj

FOR ji=1,...,r i€ IQ), (4.65)

’
Gii = €;;Ti +

where A; is a scalar Lagrange multiplier, chosen so that the constraint El cI6) Cji = sj is
satisfied or equivalently

1 c(t) .
A= — Z pii®) + - [Z efixi — s,»J . =1, (4.66)
i€l(j) 1€1(7)
where m; is the number of elements of I(5), that is
m; = [I()].
Using the preceding equations we can simplify the update formula (4.62) for pj;.
Suppose we have found the optimal values x;(t + 1). Then from Eq. (4.65), the optimal

values z;;(t + 1) are given by

pii(t) — At + 1)

zpt+1)= egizi(t + 1)+ ) s

i=1,...,r i€ IQ),

where A;(t + 1) is given by Eq. (4.66) after z; is replaced by z;(¢ + 1). By comparing this
equation with Eq. (4.62) we see that

pis(t+ 1) = XAt + 1), Vji=1,...,r, i € I(j).

Thus the single multiplier variable ); can be used in place of the m; variables pj;, i € I(j).
By writing the multiplier update formula (4.62) for 7 € I(j) and by adding we obtain
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ot)

m;

A+ 1) = A0 + > (imtt+ D= zut+ D) |, G=1.,m

1€1(5)
or equivalently,

c(t)

N+ =X0+ (ot +D=s;),  j=1...r 4.67)
I

By replacing p;i(t) by A;() in Egs. (4.65) and (4.66), we obtain the following updating
formula for z;;

Ai®) — X

FOR ji=1,...,7r, i € I(j),

!
253 = €T +
where )\j is given by

ooy
7 Liery

)\j=/\j(t)+c(t) [Z e;-ixi—sj] ,  j=1...,r

By combining these two equations, the iteration for z;; becomes
s 1, . ‘ . .
zj; 1= eji:ri—;(ejx—s,‘), i=1,...,7m, i € I(j).
J

This relation can be used to eliminate z;; from Eq. (4.63), thereby obtaining the following
highly parallelizable iteration for minimizing the Augmented Lagrangian:

. c(t) 2
soimagmin {F€)+ Y {Mes+ TP (e -z +w)' | b,
{ilie1()}
Vi=1,...,m, (4.68)
where w; is given in terms of = by
1, .
w; = E(ejm—sj), j=1...,r (4.69)

7

Example 4.5. Muitiplier Methods for Linear Programming

Consider the linear program
minimize a’z

subject to Ex = s, 0<z<,
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where a € R™, b€ R™, s € R", and F is a given r X m matrix. The method of multipliers
is given by

c(t)

z(t+1) = argoglziréb {a'z +pt) (Ex — s) + TIlEm - s||§} ,

pt+1) =pt) + c®)(Ezxt + 1) - s).

By expanding the quadratic form ||Ex — s||3, collecting terms, and neglecting those
terms that do not depend on z, we can write the minimization of the Augmented Lagrangian
as

o(t)
2

subject to 0 < z < b.

minimize =*z'E'Ez + [a + E' (p(t) - c®)s)] =

This quadratic program can be solved using the Gauss—Seidel method of Egs. (4.10) and
(4.11), suitably modified to take into account the additional upper bound constraint z < b.
In this modification, the unconstrained minimum of the cost function along each coordinate
i is projected on the interval [0, b;] instead of being projected on the interval [0, co) as in
Eq. (4.5).

Let e; € R™ be the ith column of E. Initially we choose z > 0 and we let y = —Ex.
At each iteration, we select an index ¢ € {1,...,n} and we update z and y according to

1 ) *
T = [xi - m [ai + e; (p(t) —c(t)(s + y))]] Vi, . (4.70a)

where [-]T denotes projection on the interval [0, b;], v; is the ith unit vector, and

1 , "
yi=y+ {z - [z " SO [a: + € (p(®) — e(t)(s + y))]] } ei. (4.700)

Note that similarly as for the Gauss—Seidel algorithm of Egs. (4.10)—(4.11), the iterations
of any two indices ¢, and ¢, are decoupled if there is no coordinate that is nonzero for both
e;, and e;,. Thus the method is highly parallelizable for favorable sparsity structures of the
matrix E. There are a number of variations of this method including hybrid Gauss—Seidel
and Jacobi schemes as discussed in Subsection 3.4.1.

An alternative to the preceding method is obtained by viewing the linear program as
a separable problem and by applying the corresponding multiplier method given by Egs.
(4.67)—(4.69). By using the identifications n; = 1, Fi(z;) = a;zs, P = {z; | 0 < z; < b},
for all 4, it is straightforward to verify that this method is given by the multiplier iteration
[cf. Eq. (4.67)]

N+ 1) = X() + %(e;zi(tﬁ- D-s;), j=1...,m
J
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where z(t + 1) minimizes the corresponding Augmented Lagrangian and is obtained via the
iteration [cf. Egs. (4.68) and (4.69)]

._ . co(®) 2
SRR ] CESD SR YC R S e
{sli€1()} {jlieIG}
i=1,...,m,
where
1, :
'LUJ'="77T(6]‘$—$J'), j=1...,r

7

The above one—dimensional quadratic minimization can be carried out analytically yielding,
after some calculation, the iteration

+

T = |z a; + i (A®) + ctw)] | @.71)

_ ;[
O

where [-]T denotes projection on the interval [0, b;], e; is the sth column of E, and A(%)
and w are the vectors with coordinates A;(t) and wj;, respectively. This iteration bears
considerable resemblance with the alternative iteration (4.70), but it is of the Jacobi type,
that is, it can be executed simultaneously for all 3.

The main potential difficulty with the preceding methods of multipliers is that the
Gauss—Seidel iterations used to minimize the Augmented Lagrangian may converge very
slowly. In such cases, it may be useful to try to accelerate convergence by using Newton—
like methods specially designed for minimizing quadratic functions subject to upper and
lower bounds on the variables (see [Ber82a], [Ber82b], and [Tho87]).

A number of modifications to the method of multipliers have been suggested in
order to make it more suitable for decomposition techniques. One such modification is
discussed in the following.

The Alternating Direction Method of Multipliers

We draw motivation for this method from Example 4.2 which involves the problem

m
minimize Z Fi(z)
i=1

subject to z € F;, i=1,...,m.

We saw that one implementation of the method of multipliers for this problem alternately
updates = and z;, and changes the multipliers p;(¢) only after (typically) many updates
of z and z; (enough to minimize the Augmented Lagrangian within adequate precision).
An interesting variation is to perform only a small number, k, of minimizations with
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respect to = and x; before changing the multipliers. In the extreme case where k = 1,
the method takes the form

ot 4 1) = 2= S0 _ i, P 4.72)
m mc
. = i (2:) — pi(B)zs + & — |2 P —
zi(t +1) = arg min {F,(x,) pit)z; + 52t + 1 x,[[z}, Vi= 1,...2177,3)
pit+ 1) =pi@®) +c(zt+ 1) —zit+1), Vi=1,...,m. (4.74)

Thus, this method operates in cycles, where in each cycle we minimize the Aug-
mented Lagrangian with respect to one set of variables, then minimize it with respect
to the remaining variables, and then carry out a multiplier update. We use the name
alternating direction multiplier method to refer to this type of algorithm. The name
comes from its similarity with some methods for solving differential equations, known
as alternating direction methods (see [FoG83] and [GIL87] for detailed explanations).

Consider next the separable problem of Example 4.4:

m
minimize Z Fi(x;)
=1

subject to ez = s;, j=1,...,m

z; € P, i1=1,...,m.

The natural alternating direction multiplier method is given by [cf. Eqgs. (4.67)—(4.69)]

z(t+ 1) =arg min { F@)+ Y {/\j(t)e;-ixi+E(e;i(xi—xi(t))+wj(t))2} ,

{ilieI(} 2
i=1,...,m, (4.75a)
At + 1D =A@ +cw;t+1),  j=1,...,m (4.75b)
where
1, .
w;() = — (efe®) —s;), j=1,...,r (4.75¢)

J

and the initial vectors z(0) and A(0) are arbitrary. It is seen that this is a highly par-
allelizable method, which applies to convex separable problems that are not necessarily
strictly convex, including general linear programs.

We now formulate more precisely the alternating direction method of multipliers
and prove its convergence. The starting point is the optimization problem
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minimize G;(z) + G»2(Azx)
4.76)
subject to z € Cy, Az € C.

Here, G; : R" — R and G, : R™ — R are convex functions, A is an m X n matrix, and
C; C R and C, C R™ are nonempty polyhedral sets. As in our earlier development,
we are assuming polyhedral constraint sets to be able to use the duality theory developed
in Appendix C. The subsequent algorithm and convergence result can be formulated for
more general convex constraint sets.

We will make the following assumption:

Assumption 4.1. The optimal solution set X™ of problem (4.76) is nonempty.
Furthermore, either C; is bounded or else the matrix A’A is invertible.

A slightly more general version of Assumption 4.1 requires that the level sets
{z € Ci | Gi(z) < a} be compact for all @ € R in place of the condition that C; be
compact. The subsequent convergence result can also be proved under this version of
Assumption 4.1 using a somewhat more complicated analysis.

We introduce an additional vector z € R™ and reformulate the problem as

minimize Gi(x) + G»(2)
4.77)
subjectto z € Cy, z € Cy, Az = 2.

We assign a Lagrange multiplier vector p € R™ to the equality constraint Az = z, and
we consider the Augmented Lagrangian function

Le(z,z,p) = Gi(z) + G2(2) + p'(Az — 2) + §||Ax — 2|5 4.78)

The alternating direction method of multipliers is given by

2(t +1) = arg min {Gl(:c) +p(t) Az + §||A:c - z(t)||§} , (4.79)
2t +1) = arg min {Gz(z) —p®)z + §||Ax(t +1) - z||§} , (4.80)
pit+ 1) = p(t) + c(Az(t + 1) — 2(t + 1)). 4.81)

The parameter c is any positive number, and the initial vectors p(0) and z(0) are arbitrary.
Note that the functions G; and G, and the constraint sets C; and C; have been decoupled
in the minimization problems of Egs. (4.79) and (4.80); this turns out to be very useful
in some problems.

Prop. 4.1(a) shows that the minimum with respect to z in Eq. (4.80) is attained. The
minimum with respect to z in Eq. (4.79) is attained if C; is compact by the Weierstrass
theorem (Prop. A.8 in Appendix A) or if the matrix A’A is invertible, in which case the
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quadratic term in Eq. (4.79) is positive definite, and a slight modification of the proof
of Prop. 4.1(a) applies. Therefore, under Assumption 4.1, the minima in Egs. (4.79) and
(4.80) are attained, and the algorithm is well defined.

Note that we can consider changing c from one iteration of the algorithm to the
next, but there is no clear reason why we would want to do so in the alternating direction
method. (This is in contrast with the method of multipliers, where increasing ¢ is often
useful in practice.) Furthermore, practical experience shows that the proper choice of
¢ may require considerably more experimentation in this method than in the method of
multipliers.

It can be seen that both algorithms of Egs. (4.72)~(4.74) and Eq. (4.75) are spe-
cial cases of the general alternating direction multiplier method of Eqs. (4.79)—(4.81).
Indeed, the algorithm of Egs. (4.72)—(4.74) for minimizing the sum of convex functions
>oiey Fi(z) over £ € N1, P; is obtained with the identifications

Gl(il?) = 0’ Cl = §Rn7
I
A= - | (I is the n X n identity matrix),
I

Gaz1,-- s 2m) = 3 Fi(z), Cr=PixPyx...x Pp.

=1

The algorithm of Eq. (4.75) for minimizing the separable function EZ’;I Fi(z;) subject
to the constraints Ex = s and z; € P; is obtained with the identifications

Gi@) =) Fie), Ci=PixPx..xPy,

=1

Gy(2) =0, Cyp= zI Y zi=s, i=1...,ry,
1€1(j)

’

and with A being the matrix that maps z into the vector having coordinates €5

j=1,...,r, 1€ I().
The following proposition gives the main convergence properties of the alternating
direction method.

xi’

Proposition 4.2. Let Assumption 4.1 hold. A sequence {z(@), 2(t), p(t)} gener-
ated by the algorithm of Eqs. (4.79)—(4.81) is bounded, and every limit point of {z®}
is an optimal solution of the original problem (4.76). Furthermore {p(t)} converges to
an optimal solution p* of the dual problem [cf. Eq. (4.77)]
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maximize H,(p) + Hz(p)

4.82)
subject to p € R™,

where for all p € R",
Hi(p) = 1€n£ {Gi@ +p'Az}, Hp)= leng {Ga(2) —p'2}. (4.83)
x 1 z 2
The following lemma will be useful for proving Prop. 4.2.

Lemma 4.1. If y* = argmingey {Ji(y) + J2(y)}, where J; : ®* — R and
Jo : R™ — R are convex functions, Y is a polyhedral subset of R™, and J; is continuously
differentiable, then

y* =arg z%i{/] {N@) + VL) y}. (4.84)

Proof. We have that

W",y") =arg yey, Min. z=y{J1(y)+ J(2)}.

By the Lagrange Multiplier Theorem of Appendix C, there exists A € R" such that

y* = argmin {J,(y) + Ny}, (4.85)
yeY

y* = arg min {J2(z) — N'z}. (4.86)
ZER™

From Eq. (4.86) we obtain A = VJ,(y*), which together with Eq. (4.85) proves the
result. Q.E.D.

Proof of Prop. 4.2. By applying Lemma 4.1 with the identifications ¥ = (i,
Ji(x) = Gi(z), Jo(z) = p(t) Az + (c/2)|| Az — 2()||? [cf. Eq. (4.79)] we obtain

G (z(t + D) + [p@®) + c(Az(t + 1) — 2()] Azt + 1)

) (4.87)
< Gi(@) + [pd) + c(Azt + 1) — z(t))] Az, VazeCl.
Similarly we obtain [cf. Eq. (4.80)]
Ga(2(t+ 1)) — [pt) + c(Azt + 1) — 2t + )] 2t + 1)
(4.88)

< Gy(2) — [p) + c(Azt + D) — 2t + 1))z,  VzeO.
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Let (z*,2*) be an optimal solution of problem (4.77) and let p* be an optimal
solution of its dual problem (4.82). By applying Eq. (4.87) with z = z*, and Eq. (4.88)
with z = 2*, and by using also the multiplier update formula (4.81) we have

Gi(z(t + 1)) +p(t + 1) Azt + 1) + c(2(t + 1) — 2(t)) Azt + 1)
< Gi(@®) +p(t+ 1) Az* + c(z(t +1) - z(t))'Aa:*,
Ga(2(t + 1)) —plt + 1)'z(t + 1) < Go(z*) — p(t + 1)'2".

By adding these two relations and using also the fact Az* = z*, we obtain

Gi(z(t+1)+G2 (2(@+1)) +p(t+1) (Ax(t+1)—z(t+1))+c(z(t+1)—z(t))’A(x(t+1)—x*)
< Gi(@*) + Ga(2*). (4.89)

By the Saddle Point Theorem of Appendix C, we must have
Gi(&*)+Ga(z*) < G (z(t+1))+G2 (2(t+1) +p* (Az(t+D)—2(t+1)), V. (4.90)
By adding Eqgs. (4.89) and (4.90) we obtain
(Pt +1)—p*) (Az(t+ 1) = 2 + 1) +c(2(t+1) — 2)) A(z(t+ 1) — z*) < 0. (4.91)
‘We now denote for all ¢
Z(t) = z(t) — =¥, Z@) =2 -2,  p(t) =pt) —p*,

and we observe that, since Az* = z*, we can write the multiplier update formula (4.81)
as

Bt +1) = 5t) + c(AZ(t + 1) — 5t + 1)),
and

Pt +1) = pt) + c(Az(t + 1) — 2(t + 1)).
By using the preceding relations in Eq. (4.91), we obtain after collecting terms
:l:ﬁ(t+l)’ (Bt+1)—5(®) +c(2t+1)—2®)) 2+ D+ (2t +1D—2@)) (Ft+1)—p(1)) < 0.

(4.92)
We estimate each of the three terms in the preceding relation. We have

P+ 1Y (Bt + 1) — 5t)) = 3Bt + 1) — B3 + 315¢ + DI3 - 31B®]3,  (4.93)
(2t + 1) = 2) 2t + 1) = L]zt + 1) = 20|53 + L|2¢ + DIE - 3|20)3.  4.94)
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To estimate the third term in Eq. (4.92), we consider the optimality relation (4.88) with
z = z(t), that is,

Ga(2(t+ 1)) — p(t + 1)zt + 1) < Go(2(t)) — p(t + 1) 2(2), (4.95)
and we consider also Eq. (4.88) at iteration ¢ with z = z(t + 1), that is,
Ga(2(8)) — p(t)' 2(t) < Ga(2(t + 1)) — p(t)'2(t + 1). (4.96)

Adding Egs. (4.95) and (4.96) we obtain 0 < (z(t + 1) — z(®))' (p(t + 1) — p(¥)) or
equivalently

0< (2t + 1) - 20) (Bt + 1) — p)). 4.97)
We now use Eqgs. (4.93), (4.94), and (4.97) in inequality (4.92). We obtain

[5t+D-pB)3+ || 2¢+D)—2@®3 < (IIBOI3+NZ@)]3) - (lp¢+D3 4+ 2@+ D) 3).
(4.98)
It follows that

pt+1)—p(t) — 0, Zt+1)—-zZ@) — 0. 4.99)
Since p(t + 1) — p(t) = c(Az(t + 1) — 2(t + 1)), we obtain from Egs. (4.89) and (4.90)

Jim G (2t +D)+G2(2(4D)] = GieNHGo@) = min | {Gi(@) + Ga(2)}
(4.100)

Furthermore, for every limit point (&, ) of {(x(t), 2(¢)) } we have that A% = %, and that
Z is an optimal solution of the original problem (4.76).

From Eq. (4.98) we obtain that {p(¢)} and {z(t)} are bounded, and from Eqs. (4.81)
and (4.99) we see that ||Az(t) — 2(t)||> — 0. In view of Assumption 4.1 it follows that
{z(#)} is also bounded. Consider a convergent subsequence { (z(t), 2(t),p(t)) | t € T},
and let (Z, Z,p) be its limit. Then, as shown earlier, Z is an optimal solution of the
original problem (4.76). To show that {5 is a solution of the dual problem (4.82), define
Bt + 1) = p(t) + c(Az(t + 1) — (t)). From the definitions (4.83), and Eqs. (4.87) and
(4.88) we see that

Hy(pt + 1)) = Gy (z(t + 1)) + (¢ + 1) Azt + 1) < G1(z) + p(t + 1)/ Az, v(f lemc)*l,

Hy(pt+ 1)) = Ga(2(t+ 1)) —pt+ 12t + 1) < Go(2) — pt + 1Yz, V2 e(le'o »

By taking limits in these relations and using the fact that p is also the limit of the
subsequence {p(t + 1) | t € T} [cf. Eq. (4.99)], we obtain
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limsup H,(p(t+ 1)) < Gi(z) + p' Az, YzeC,
t—oo, teT

limsup H,(p(t + 1)) < Ga(z) — §'z, Yz €Cs,
t—oo, teT

SO

limsup H;(p(t+ 1)) < Hy(p), limsup Hy(p(t + 1)) < Ho().  (4.103)

t—oo, teT t—oo, tET

On the other hand by adding Egs. (4.101) and (4.102), and using the fact AZ = Z, we
obtain

lim [H(pt + 1)) + Ho(p(t + 1))] = G1(&) + G2(2)
t—co, teT (4.104)

= min _Z{Gl(x) + Ga(2)}.

- z€C), 2€Cy, Az=

Since by the Duality Theorem of Appendix C, we have

zl)gg}ﬁ{ﬂ(p) + Ha(p)} = seC, znelgz AZ:Z{GI(:‘:) + Ga(2)},

we obtain from Egs. (4.103) and (4.104) that 7 is an optimal solution of the dual problem
(4.82).

We now show that {(2(t), p(¢)) } has a unique limit point. Indeed Eq. (4.98) shows
that

lp®) = p* 13 + =) — 2”13

is a nondecreasing sequence for every choice of optimal solutions (z*, z*) and p* of the
primal problem (4.77) and the dual problem (4.82), respectively. In particular, any limit
point (%, ) of {(z(¢),p(t))} can be used in place of (2*,p*) in Eq. (4.98). It follows
that {(z(t),p(t)) } cannot have more than one limit point. ~ Q.E.D.

Note that in the course of the preceding proof, we showed that the sequence {z(¢)}
converges, and that Az (t) — z(t) — 0. It follows that if the matrix A’A is invertible, then
{x(t)} must also converge, necessarily to an optimal solution of the original problem.

To see what can happen when A’ A is not invertible, consider the case where n = 1,
Cr=1[0,1], C, =R, A =0, and Gi(z) = 0, Ga(z) = O for all z. Here, the optimal
solution set X* is [0, 1] and Assumption 4.1 is satisfied because C| is compact. It can be
verified that the sequence {(z(£),p(t))} generated by the algorithm converges to (0, 0)
in one iteration, but the sequence {z(t)} need not converge; it can be any sequence in
[0,1]. By changing C; to be equal to }, we obtain an example where X* is nonempty,
but Assumption 4.1 is violated and the generated sequence {z(¢)} can be unbounded.

We finally mention that there are several variations of the alternating direction
method of multipliers. An example is the iteration
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2(t + 1) = arg min {61@ +pty 4z + gqu - 2013}, (4.105)

B(t) = p(t) + c(Az(t + 1) — 2(8)). (4.106)
2(t+ 1) = arg min {Gz(z) — Ptz + §||Ax(t +1)— z]|§} . (4.107)
plt+ 1) = pE) + c(An(t + 1) — 2(t + 1)), (4.108)

which is the same as the method of Eqgs. (4.79)—(4.81) given earlier except for the addi-
tional multiplier update (4.106) executed between the updates of z and z. A convergence
analysis and a discussion of this and other related methods is given in [GIL87].

EXERCISES

4.1. Consider the problem

minimize F(z) = %:c’Px +7'z
subjectto = >0,

where P is a nonnegative definite symmetric n X n matrix with positive diagonal elements
and r € R™ is given. Let K be the largest eigenvalue of P and assume that X > 0.
(a) Show that all the limit points of the sequence generated by the gradient projection
method

z(t+1)= [w(t) - vVF(z(t))] g

are optimal solutions provided that v € (0,2/K). Hint: Do Exercise 2.3 in Section
3.2.

(b) Show that the sum of the diagonal elements of P is an upper bound for K.

(c) Consider the linearized Jacobi method

2t + 1) = [e®) — MV F (o(0)] N

where M is the diagonal matrix with diagonal elements equal to the corresponding
diagonal elements of P. Show that if v € (0,2/n), all limit points of the sequence
{z(t)} are optimal solutions. Hint: Consider the transformation of variables y(t) =
M'22(t) and use part (b).
4.2. (Convergence Rate of the Proximal Minimization Algorithm [KoB76].) Assume that
there exist 3 > 0, 6 > 0, and o > 1 such that

F*+6(p(z: X)) < F@), Ve X withplm; X*) <6,
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Let {z(t)} be a sequence generated by the proximal minimization algorithm and assume
that liminf;— o c(t) > 0. Show that:
(@) If o < 2, then
. p(:c(t+1);X*)
lim sup Ty < ©0
== (o X))

This is known as superlinear convergence of order 1/(a —'1).
Hint: Part (a) and the following parts (b) and (c) are based on the relation

p(a(t + 1) X*) + Bett) (p((t + 1: X)) "7 < p(a(t): X*).

To show this relation, let Z denote the projection of any = on X™* and let d =
Z(@ + 1) — z(t + 1). Consider the scalar convex function

1
H(y) = F(z(t + 1)+ ~d) + mnx(t +1) + vd — z@)|3-

Since H is minimized at v = 0, its right derivative H*(0) is nonnegative, from
which we obtain

0< H'O) = F (ot +1:d) + = (att + D = o®)) (3¢ + 1) = ate + 1)

<P = F(att+ ) + o (¢ + 1) = 2) (3 + 1) - o+ D).

Using the hypothesis, it follows that
Bet) (p(zt+ 1% X)) < (2t + 1) — 2(®)) (3¢ + D) — 2t + 1),

for ¢ sufficiently large. We now add to both sides (z(t+1)~2(®))’ (z(t+1)—&(+1))
and we use the fact

2t + 1) — 3¢ + DIE < (2t + 1) — 2@) (2t + 1) — 2t + 1),
(which follows from the Projection Theorem) to obtain
2+ 1=+ DI3+Be®) (p(2(t+1% X)) < llz(®)=2@)|l2l|z(t+1D) -2+ D2,

from which the desired relation follows.
(b) If « =2 and lim¢— o c(t) = € < oo then

. p(x(t +1); X"‘) 1
I :
P P I R

(¢) If =2 and lim;—.o c(t) = oo, then

. p(z(t+l):X*)
limsup —————~ =
t—oo  p(z(t); X*)

This is known as superlinear convergence.
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(d) If F is a positive definite quadratic function, X = R", o = 2 and lim;— o c(t) =
¢ < oo, then

_ p(et+ 1, X*) 1
1 .
1tnls°|:p p(z(t); X*) <7 +28¢

Show by example that this estimate is tight. Hins: Let z* be the minimizing point
of F over z € R™, and let § denote the unique vector that minimizes ||z — z*|| +
(1/20)||lz — yl|3 over z € R™. Show that y — z* = (1 + 28c)(§ — z*), and that
lz(y,0) — z"|l2 < |7 — 2*[|2-

(e) Prove that

. _ p(arx")
Flat+ D) - F* < ==,

and use this relation to show that

p(at+ 15 X7)
llmsup-—z/a
t=oo p(x(t); X*)

For o > 2, this is known as sublinear convergence.

4.3. Show that the condition (4.29) holds when F is a linear function, X is a polyhedral set,
and X™ is nonempty. Hint: Suppose that X has the form {z | ajz < ¢;, j = 1,...,m}
for some vectors a; and scalars t;, and that F(z) = ¢’z for some vector ¢. For z € X, let
p(x) be the projection of z on X*, and consider the cone of R"*!

Cz ={(z,) | 'z <, ajz <0 forall 5 such that ajp(z) = ¢;},

and the cones

Mz = {(z,p) € Cz | p =0},
Zz = {(2, ) € C; | the projection of (z, u) on M, is the origin (0, 0)}.

Show that the collection of distinct sets C,, is finite, and that for each such set there exists
6 > 0 such that ’

lul 2 bzllzll2, VY (2,p) € Zs.

Take B = minge x 6, in condition (4.29).
4.4. Consider the variation of the proximal minimization algorithm given by

ot + 1) = 2(t) — YV (2(2)),
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where «(t) is a stepsize parameter satisfying y(t) € [6, 2¢c — 6] for all ¢ and some 6 € (0, c].
Show that all limit points of the sequences that the algorithm generates are optimal solutions.
Hint: Modify the proof of part (c) of Prop. 4.1.

4.5. (The Method of Multipliers for Inequality Constraints [Roc71].) Consider the problem
of Subsection 3.4.4 for the case where we have the inequality constraints a;a: -t <0
instead of the equality constraints eg-x — s; = 0. Replace these inequality constraints by
the equality constraints a;x — t; +w; = 0, where w; is constrained to be nonnegative, and
show that the method of multipliers takes the form

r

. 1 , 2
zt+1) = arg min {F(z) + 200 4 1 [max{0, p;(t) + c(t)(ajz — t;)} ] } )
J:

pit+1) =max {0,p;(t) + c®)(ajzt + D —t;)}, Vi=1,...,m

4.6. Consider the set intersection problem of Example 4.3 and assume that the intersection is
nonempty. Show that the parallel projection method of Egs. (4.58)-(4.59) converges to
an element of the intersection. Hint: Show that for all z* € C; N --- N Cy,, we have
lz@ + 1) — 27|z < [lz(@) — z7|2.

4.7. Show convergence of the method of Egs. (4.58)—(4.59), if Eq. (4.58) is replaced by

s+ D)= Azit),
i=1

where Ay, ..., Ay, are positive scalars summing to unity.

3.5 VARIATIONAL INEQUALITIES

The variational inequality problem is as follows. We are given a set X C R" and a
function f : R™ — R, and our objective is to find a vector z* € X such that

(z—z*) fz*) >0, Vz € X. G

As a shorthand notation, we will refer to this problem as VI(X, f). It will be assumed
throughout that X is nonempty, closed, and convex.

3.5.1 Examples of Variational Inequality Problems
Several interesting problems can be formulated as variational inequality problems and

some examples follow.

(a) Solution of Systems of Equations. Let X = R™ and let f : R — R™ be a given
function. It is easy to see that a vector * € R™ solves the problem VI(R", f) if and only
if f(z*) = 0. Indeed, if f(z*) = O then inequality (5.1) holds with equality. Conversely,



Sec. 3.5 Variational Inequalities 265

if z* satisfies Eq. (5.1), let z = z* — f(z*). By Eq. (5.1), we have —| f(z*)||3 > 0,
which implies that f(z*) = 0.

(b) Constrained and Unconstrained Optimization. Let X be nonempty, closed,
and convex and let F': R™ — R be a continuously differentiable function that is convex
on the set X. Using the optimality conditions for convex optimization (Prop. 3.1), a
vector * € X minimizes F over the set X if and only if (z — z*) VF(z*) > 0 for all
z € X, that is, if and only if 2* solves the variational inequality problem VI(X, VF).
In particular, if we let X = R™, we see that unconstrained convex optimization is also
a variational inequality problem. In the optimization context, the function f of Eq. (5.1)
has a special structure because it is the gradient of a scalar function F. In particular, the
line integral of f depends only on the end points of the path of integration and not on
the path itself. In more general variational inequality problems, this path independence
property is absent and such problems cannot be formulated as optimization problems; this
restricts the tools available for establishing convergence of an algorithm. In particular,
the descent approach cannot be applied.

(c) Traffic Assignment. We are given a directed graph G = (N, A), which is viewed
as a model of a transportation network. The arcs of the graph represent transportation
links such as highways, rail lines, etc. The nodes of the graph represent junction points
where traffic can exit from one transportation link and enter another. We are also given a
set W of node pairs, referred to as origin—destination (OD) pairs. For OD pair w = (4, j),
there is a known input ,, > 0 representing traffic entering the network at the origin node
¢ of w and exiting the network at the destination node j of w. For each w € W, the
input 7, is to be divided among a given collection P,, of simple positive paths starting
at the origin node of w and ending at the destination node of w (i.e., these paths have
no cycles and their arcs are oriented as in the graph G). We denote by z,, the portion
of 7, carried by path p (also called the flow of path p). Let = be the vector having as
coordinates all the path flows z,, p € P, w € W. Thus, z must belong to the set

X = a:’ 3 &p=ru, YweW, andz, >0, Ype P, Yw e W
pEP,

For each path p, we are given a function ¢,(z), called the travel time of path p. This
function models the time required for traffic to travel from the start node to the end node
of path p as a function of the path flow vector z. The problem is to find a path flow
vector z* € X that consists of path flows that are positive only on paths of minimum
travel time. That is, for all w € W and paths p € P,,, we require that

;>0 = t(z") <ty(x”), vp' € P,. (5.2)
This problem is based on a transportation hypothesis called the user—optimization prin-

ciple, which asserts that traffic network equilibrium is established when each user of the
network chooses, among all available paths, a path requiring minimum travel time.
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We claim that a vector z* € X satisfies the user—optimization condition (5.2) if
and only if z* is a solution of the variational inequality

Y @ -2tz 20, VzeX, (5.3)

weW peP,

which is the variational inequality problem VI(X, f), with f(z) being the function with
components t,(z). To see this, assume that z* € X satisfies the condition (5.2), and let

T; = min t,(z")
We have for every z € X, EPGPw (zp — ) =0, so that

0= Z (xp — mZ)T;, < Z (zp — x;)tp(x*) + Z (xp — )Ty,

pEP,, {pEPw|$p>z;} {pGPWIZp<IC;}

Condition (5.2) implies that t,(z*) = T}, if x;‘, > 0, so T can be replaced by t,(z*) in
the right-hand side of the previous inequality, thereby yielding

0< Y (@p—aptp@), VzeX, VweW.
PEPy,

By adding this inequality over all OD pairs w € W, we see that =* satisfies the variational
inequality (5.3).

Conversely, assume that z* satisfies the variational inequality (5.3). Let p € P,
be a path of some OD pair w with z; > 0, and let p € P, be a path of the same OD
pair with ¢5(z*) = Ty;. Then, either p = p, in which case the condition (5.2) holds, or
p # P, in which case by taking z, =0, 25 = zj + z, and z,» = z, for all other paths
p' # p, p, we obtain from Eq. (5.3) z; (TJ, - p(a:*)) > 0. Since z; > 0, we obtain
tp(z*) < T, thereby showing that the condition (5.2) holds.

(d) Game Theory and Saddle Point Problems. A Nash game is defined as fol-
lows. There are m players. Each player ¢ chooses a strategy x; belonging to a
closed convex set X; C R™:. Then, the ith player is penalized by an amount equal
to E(ml, een, xm), where each F; : ™ — R is a continuously differentiable function.
Asetz* = (z},...,25,) € Hf_’__l X; of strategies is said to be in equilibrium if no player
is able to reduce the incurred penalty by unilaterally modifying the chosen strategy. That
is,

* * * * * * * * * .
Fi<:cl,...,xi_,,xi,xi+1,...,xm) < Fi(xl,...,xi_l,xi,xi_,_l,...,a:m), Vz; € X;, Vi.

Let us assume that each one of the functions F; is convex on the set X; when viewed
as a function of z; alone and the other components are fixed. Using the optimality
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conditions for convex optimization (Prop. 3.1), we see that a set of strategies z* is
in equilibrium if and only if (z; — z7)'V,;F;(z*) > 0 for every z; € X; and every
1. Adding these conditions, we conclude that z* must be a solution of the variational
inequality (z — z*)' f(z*) > 0, where f : []\2, R™ — [[i~, R™ is given by f(z) =
(V1F1 (x),..., VmFm(a:)). In fact, under our convexity assumptions, the reverse is also
true: any solution of the above defined variational inequality provides a set of strategies
- in equilibrium (this can be seen using Prop. 5.7 to be proved later in this section).

A related problem is the saddle point problem, in which we are given a function
F: X xY — R and our objective is to find a pair (z*,y*) € X x Y such that

F(z*,y) < F(z*,y*) < F(z,y"), Vze X, VyeY.

The saddle point problem is seen to be a special case of a Nash game, provided that we
let F1 = F and F;, = —F. Our convexity assumptions for the Nash game translate to a
requirement that the function F' is convex in z for each fixed y, and concave in y for
each fixed z.

An important application of saddle point problems arises in duality theory for
constrained convex optimization. The Saddle Point Theorem of Appendix C shows
that an optimal primal solution z* of a primal optimization problem, and an optimal
dual solution y* = (p*,u*) of the corresponding dual optimization problem can be
found as a saddle point of the Lagrangian function. The latter function has the form
F(z,y), is convex in z for each fixed y, and concave in y for each fixed . It is thus
possible to approach the solution of a constrained optimization problem by considering
the associated saddle point problem, and by subsequently applying variational inequality
algorithms presented in this section. In some situations, where the optimization problem
has separable structure (e.g., the problem considered in Subsection 3.4.2), the saddle
point problem can be amenable to decomposition and parallelization (see Exercise 5.2).

3.5.2 Preliminaries

A useful necessary and sufficient condition for z* to be a solution of VI(X, f) is given
by the following result, illustrated in Fig. 3.5.1.

Proposition 5.1.  (Fixed Point Characterization of Solutions) Let -y be a positive
scalar and let G be a symmetric positive definite matrix. A vector z* is a solution of
VI(X, f) if and only if [z* — yG~! f(rc*)]'c‘; = z*, where [']Z is the projection on X
with respect to norm ||z|¢ = (z'Gz)!/2.

Proof. Suppose that z* = [z* —yG ™! f(z*)]%. Then, the Scaled Projection Theo-
rem [Prop. 3.7(b)] yields (x — z*)’ ( - f(a:*)) < Oforall z € X, and since 7 is positive,
it follows that z* solves VI(X, f). Conversely, suppose that z* solves VI(X, f). Then,
Eq. (5.1) yields

(x— x*)’G(x* —(z* - G"vf(:c*))) >0
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xX* — yf(x*)

ly = yfiy)l+

y —fly)

Figure 3.5.1 Illustration of the necessary
and sufficient condition for x* to be a
solution of VI(X, f). The function f can
be thought of as a vector field on the set X.
At the point z* that solves the variational
inequality (z — =*)’ f(z*) > 0, the vector
field is normal to the boundary and points
inwards. For this reason, the projection of
z* — ~f(z*) is equal to =*, whereas this
property is false for other points, such as y.

for all z € X, and the Scaled Projection Theorem implies that z* = [z* — G~y f(z*)]E.
Q.ED.

For a fixed positive scalar v and a symmetric positive definite matrix G, let Rg :
X — R™ and T¢ : X — X be the mappings defined by

Rg(@) =z — G~ ' f(z)

and

+

To@) = [z =167 f@)] = [Re(@)] 3.
According to Prop. 5.1, solving the variational inequality VI(X, f) is equivalent to finding
a fixed point of the mapping T. This allows us to use all of the results on fixed point
problems developed in Section 3.1. For instance, we obtain the following existence and
uniqueness results.

Proposition 5.2. (Existence) Suppose that X is compact and that f : " — R
is continuous. Then, there exists a solution to the variational inequality VI(X, f).

Proof. Fix a positive scalar v and a symmetric positive definite matrix G. If f is
continuous then R is continuous. Since the projection is a continuous operation (Prop.
3.2), it follows that T is continuous as well, and the Leray—Schauder—Tychonoff Fixed
Point Theorem (Prop. 1.3) shows that T has a fixed point which, by Prop. 5.1, is a
solution of VI(X, f). Q.E.D.

Figure 3.5.2 shows that if X is not convex, VI(X, f) could have no solutions.
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X2

1 2 X4

Figure 3.5.2 Illustration of a variational
inequality that has no solution. Let

X ={z |1 < ||z|]2 < 2}, which is closed
but nonconvex. Let f(z) = (z2, —z;). The
figure shows the corresponding vector field
and it is seen that the variational inequality
(z — z*)’ f(z*) > 0 has no solution.

Proposition 5.3.  (Existence and Uniqueness) Suppose that there exists some v >
0, some symmetric positive definite matrix G, and some a € [0, 1) such that the mapping
R satisfies

|Re(@) = ReWlc < allz —yllg,  Vz,y e X. (5.4

Then, the problem VI(X, f) has a unique solution.

Proof. Proposition 3.7(d) states that the projection [-]2'; is nonexpansive with re-
spect to the norm ||z||¢ = (2’ G:r)l/ ?_ Therefore,

1Te(@) — Te@)lle < [|Re(@) — Re®)|lc < aflz — yl|c.

Thus, Tt is a contraction with respect to the norm || - || and has a unique fixed point
z*. By Prop. 5.1, z* is the unique solution of VI(X, f). Q.E.D.

Recall that some sufficient conditions for the mapping R to be a contraction
mapping have been furnished in Subsection 3.1.3.

3.5.3 The Projection Algorithm

Since our objective is to find a fixed point of the mapping T, it is natural to employ
the iteration

+
2t +1) = Tg (a(t) = [x(t) - 'yG‘lf(x(t))]G, t=0,1,...,  (55)
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y —fly)

x — yf(x)

[x — vflx)]* y

Figure 3.5.3 Illustration of failure of the projection method. Let X = {z | ||z|]2 <
1} and let f(z) = (z2,—z1). The set X is convex and the variational inequality
(z — z*) f(z*) > O has the unique solution z* = 0. (Compare with Fig. 3.5.2.) On
the other hand, if the projection method is initialized on the boundary, it always stays
on the boundary and does not converge. Also, if it is initialized at any nonzero interior
point, it moves toward the boundary.

1

N

which is called the projection algorithm. Here, G is a symmetric positive definite matrix
and ~ is a positive scalar. Notice that in the special case where f is the gradient of
a scalar function F, the projection algorithm of Eq. (5.5) is identical with the scaled
gradient projection algorithm of Section 3.3. Unlike the constrained optimization case,
the projection algorithm is not guaranteed to converge, as illustrated in Fig. 3.5.3. On the
other hand it is guaranteed to converge if the mapping T is a contraction. This is always
the case if the mapping R is a contraction with respect to the norm || - ||, because of
the nonexpansive property of the projection [Prop. 3.7(d)]. Sufficient conditions for Rg
to be such a contraction are provided by Props. 1.12-1.13, specialized to the case of a
single block—component (m = 1). In particular, we obtain the following result.

Proposition 5.4. (Convergence of the Projection Algorithm) Suppose that:
(a) (Lipschitz Continuity) There exists some constant K such that

If@) = fWl2 < K|z — yll2, Vr,y € X.
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(b) (Strong Monotonicity) There exists some a > 0 such that

-y (f@) - f@) > allz—yl3, Vz,yeX. (5.6)

Let G be a symmetric positive definite matrix. Then, there exists some vy > O such that
for any v € (0,7], T is a contraction mapping with respect to the norm I llg- In
particular, the problem VI(X, f) has a unique solution and for y € (0, vo), the sequence
{z(t)} generated by the projection algorithm (5.5) converges to it geometrically.

Proof. We use Prop. 1.12 of Subsection 3.13, for the case of a single block—
component, to see that R is a contraction mapping with respect to the norm || - ||¢,
when 7 > 0 is sufficiently small. We then use the nonexpansive property of the projection
[Prop. 3.7(d)] to conclude that T is also a contraction with respect to the same norm.
The result follows from the convergence theorem for contracting iterations.  Q.E.D.

If f is a function of the form f(z) = Az+b, then the strong monotonicity condition
(5.6) is equivalent to the nonnegative definiteness of A — . In particular, the matrix
A must be positive definite.

For another special case, suppose that f is the gradient of a cost function F : ®"
™. Then, the strong monotonicity assumption is equivalent to the requirement that F
is strongly convex on the set X. Furthermore, for this particular case, the projection
algorithm (with G being the identity matrix) is identical to the gradient algorithm of
Section 3.2 (if X = R") or the gradient projection algorithm of Section 3.3 (if X is a
convex subset of ™). Proposition 5.4 therefore establishes the geometric convergence
of the gradient and the gradient projection algorithms in the strongly convex case (Props.
2.4 and 3.5 in Sections 3.2 and 3.3, respectively).

Strong monotonicity is essential for the result of Prop. 5.4 and its geometric sig-
nificance is illustrated in Fig. 3.5.4. In case f satisfies only the monotonicity condition

(x_y),(f(x)—f(y)) 207 V$,y EX,

then convergence is not guaranteed. For instance, in the example of Fig. 3.5.3, we have
(x—1vy) ( fx)— f(y)) = 0 for all z, y, the monotonicity condition is satisfied, but strong
monotonicity fails to hold and the projection algorithm does not converge. Exercise 5.1
provides a modification of the projection algorithm that converges appropriately under
the monotonicity assumption.

The next result is a restatement of Prop. 5.4 for the case where f is affine.

Proposition 5.5.  (Convergence of the Projection Algorithm for Linear Problems)
Suppose that f(z) = Az + b, where b is a vector in R and A is a positive definite
(not necessarily symmetric) n X n matrix. Then, the variational inequality VI(X, f) has
a unique solution z* and for any positive definite symmetric matrix G, the projection
algorithm z(t + 1) = Tg (a:(t)) converges to z* geometrically, provided that ~ is small
enough.
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Figure 3.5.4 Interpretation of the strong
monotonicity condition (5.6). Let =*
satisfy (z — z*) f(z*) > Oforall z € X.
Suppose that Eq. (5.6) is true and consider
the trajectories determined by the vector
field f. Using Eq. (5.6), with y = z*,
we obtain

@— 2" f@) 2@ - 2" f=")
+allz - 2|3

>alle - z"|3.

In particular, if ¢ # z*, then the angle
between —f(z) and z* — x is smaller
than 90 degrees. This means that if the
trajectories of the vector field are followed
in the reverse direction, the distance from
x* decreases. The projection method for
the case where G is the identity matrix can be visualized as an attempt to follow these trajectories. This is
done most accurately when ~ is very small. Of course, a very small value of + is undesirable because it
slows convergence. In any case, with - sufficiently small, the projection method inherits the properties of the
vector field, that is, the distance from z* is decreased at each step.

Proof. We have (z—y) (f(z)- f(@)) = (z—y) Alz—y) = 3@ —y) (A+ ANz -
y) > af|z — yl||? for some a > 0, because A + A’ is symmetric and positive definite.
The result follows from Proposition 5.4. Q.E.D.

We now discuss an application of the projection algorithm to constrained optimiza-
tion problems with equality constraints. For simplicity, we only consider the case of a
quadratic cost function and linear equality constraints, although the following discussion
generalizes to broader classes of problems. Let B and C be matrices of dimensions n x n
and m X n, respectively. Consider the problem of minimizing the cost function %m’ Bz
over all z € R™ satisfying the equality constraint Cxz = b, where b is a vector in R™.
We assume that B is symmetric positive definite, which implies that the cost function
under consideration is strictly convex. We form the Lagrangian

L(z,p) = 32’Bz + p'Cz — p'b,

where p is an m~dimensional vector. Let VL and V,L be the vectors of partial
derivatives of the Lagrangian with respect to the components of the vectors = and p,
respectively. In the present context, V,L(z,p) = Bz + C'p and V,L(z,p) = Cx — b.
As shown in Appendix C and as discussed in the saddle point example in the beginning
of this section, a possible approach for solving the constrained optimization problem is
to look for a saddle point of the function L. This is equivalent to solving the variational
inequality VI(X, f), where X = R**™ and the function f : R**™ — R"*+™ is given
by



Sec. 3.5  Variational Inequalities 273
_| Vael(z,p) | _ |Bz+C'p| _[ B C']||[= 0
f(x’p)_[—V,,L(x,p)}_[—Ca:+b “l-c oflp|F|s]

The projection algorithm for this problem is given by

z(t + 1) = z(t) — yBx(t) — vC'p(t),
p(t+1) = p(t) + 7Cz(t) — ~b.

Even though the matrix B is assumed positive definite, the matrix

B C
=%

is not positive definite because of the zero block in the lower right—hand corner. For this
reason, the strong monotonicity condition (5.6) fails to hold. A direct calculation yields

, B C
[:r Pl][_c O][;}=m'3x20, Yz, p,

and this shows that inequality (5.6) is satisfied with & = 0. Thus, the monotonicity (as
opposed to strong monotonicity) condition holds. In particular, the extragradient method
of Exercise 5.1 is applicable and is guaranteed to converge. It turns out that the projection
method is also guaranteed to converge for this example, provided that the matrix C has
full rank; a proof can be found in [Ber82a, p. 232].

3.5.4 Linearized Algorithms

Let z° be an element of X and let G be symmetric positive definite. Using the Scaled
Projection Theorem [Prop. 3.7(b)], we see that T (z%) could be defined as the unique
vector z! € X satisfying

@—aYG(c' - " +1G7 f@)) 20, VzeX.
Equivalently, since v > 0, we see that z! satisfies
(@ -2 (fa) +uGG' —a%) 20,  WreX, 5.7)

where p = 1/, which is again a variational inequality. In particular, it is the variational
inequality problem VI(X, g), where g(z) = f(z%)+uG(z—z°). However, it is in general
easier to solve than the original variational inequality VI(X, f) because the function g is
linear in the variable . We can thus think of the projection algorithm as a method that
solves a variational inequality by successively solving a sequence of simpler variational
inequalities. Based on this observation, a variety of different algorithms are obtained
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by choosing differently the variational inequality to be solved at each stage. These
algorithms are classified as linearized or nonlinear, depending on whether the variational
inequality solved at each stage involves a linear or a nonlinear function, respectively.

In a general linearized algorithm [Daf83], having computed z(t), we compute
z(t + 1) by solving the variational inequality VI(X, g;), where the function g; has the
form

9:(@) = f(z®) + A(z(®)) (z — z(®)).

Equivalently, we are looking for a vector x(t + 1) satisfying
(z -2+ D) (£(2) + A(s®) (et + D —2®) ) 20,  Vz € X.

Here, A(x(t)) is a positive definite (not necessarily symmetric) scaling matrix, depending
on z(t). It follows (Prop. 5.5) that the previous variational inequality has a unique solution
and the linearized algorithm is well-defined.

Different linearized algorithms correspond to different choices of the scaling matri-
ces A(z). [Accordingly, we will be referring to “the linearized algorithm determined by
{A(z) | z € X}”.] Once these scaling matrices have been fixed, a linearized algorithm
can be cast into the standard form

z(t+ 1) = T(z(@)),

where T'(z) is defined as the unique element of X satisfying
(¥-T@) (f@ + A@(T@-2)) 20,  vyeX. (5.8)

As a concrete example, if A(z) = uG, for all =, where G is symmetric positive definite
and p > 0, we recover the projection algorithm [see the variational inequality (5.7)]. To
motivate some reasonable choices of A(z), we consider the unconstrained optimization
context, where f(z) = VF(x) for some cost function F' and X = R". In this case, the
solution of the variational inequality (5.8) is

T(z) =z - (A®)) ' VF(z). (5.9)

In this context, it is desirable to let A(z) be an approximation of V2F(zx) = Vf(z).
Generalizing this prescription, a common choice is to let A(zx) be a diagonal matrix
whose diagonal entries are equal to the diagonal entries of the matrix V f(z).

The following is a general result on the convergence of linearized algorithms,
although its conditions are not always easy to verify. The proof is omitted because it is
a special case of Prop. 5.8, which is proved later.

Proposition 5.6. (Convergence of Linearized Algorithms) Suppose that the varia-
tional inequality VI(X, f) has a solution =*. Consider the linearized algorithm determined
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by {A(z) | z € X}. Suppose that there exists a symmetric positive definite matrix G
and some 6 > 0 such that the matrix A(z)— §G is nonnegative definite for every z € X.
Furthermore, suppose that for some o € [0, 1),

|le= (r@ - f& - 4w - ») | <éalz-yle, VryeX, 610

where ||z||c = (2'Gz)!/2. Then the sequence {z(t)} generated by the linearized algo-
rithm converges to z* geometrically, and z* is the unique solution of VI(X, f).

As discussed earlier, in the projection method, we have A(z) = G/v. Thus, if we
let 6 = 1/v, then A(z) — 6G = 0, which is nonnegative definite, and the hypothesis
(5.10) in this proposition is equivalent to the statement that the mapping R, given by
Rg(z) = z — vG~! f(z), is a contraction. Thus, Prop. 5.6 generalizes our earlier results
on the convergence of the projection method (Prop. 5.4).

3.5.5 The Cartesian Product Case: Parallel Implementations

From now on we assume that X is a Cartesian product X = H:’;l X;, where each set
X; is of dimension n; and Zl’;l n; = n. Any vector z € X is accordingly decomposed
as ¢ = (z1,...,Tm), With z; € X;. We still assume that X is nonempty, closed, and
convex, and these properties are then implied for each one of the sets X;. The Cartesian
product assumption holds for several important problems such as the solution of systems
of nonlinear equations in n variables, the traffic assignment problem, Nash games (see
Subsection 3.5.1), as well for many important economic equilibrium problems ([Pan85],
[Ahn79], [Nag87]). As in constrained optimization (Subsection 3.3.4), this assumption
provides the possibility for parallel algorithms, as will be shown next.

A key observation for the product set case is that a variational inequality decom-
poses into m coupled variational inequalities of smaller dimensions.

Proposition 5.7.  (Decomposition Lemma) A vector z* € X solves the variational
inequality VI(X, f) if and only if

(i — z}) fi(z*) > 0, Vz; € X;, Vi. (5.11)

Proof. If Eq. (5.11) is satisfied for each i, we add these inequalities to conclude
that (z — z*)’ f(z*) > 0. Conversely, suppose that z* € X solves the problem VI(X, f).
Choose some vector z such that z; = zj for all j # i and z; € X;. Because of the
Cartesian product assumption, we have z € X and using the inequality (z — z*)’ f(z*) >
0, we see that Eq. (5.11) holds. Q.E.D.

Consider now a linearized algorithm determined by a collection { A(z) | z € X} of
scaling matrices. Such an algorithm is not easily parallelizable in general. For example,
in the case of unconstrained optimization [see Eq. (5.9)], a system of linear equations
has to be solved at each step and this task cannot be easily decomposed into a set
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of independent subtasks. Rather, a parallel algorithm for systems of linear equations is
needed at each step and this requires a greater degree of coordination between processors.
On the other hand, if the matrix A(z) is block—diagonal for each z, the ith block A;(x)
being of dimension n; x n;, the problem decouples naturally, as we proceed to show. Let
T : X — X be the mapping describing one iteration of the linearized algorithm, that is,
T'(x) satisfies Eq. (5.8). Under the assumption that A(z) is block—diagonal, the ith block—
component of the function f(z)+ A(z)(T(x) — z) is equal to f;(z)+ Ay (z)(Ti(x) — ),
and using the Decomposition Lemma, we conclude that T;(x) satisfies

(v: - @) (fi@) + Ai(@) (Ti@) — )20, VheX. (512

This shows that each component of T;(z) can be found by solving a variational inequality
of smaller dimension, and this can be done independently for each 7. In particular, each
one of these smaller variational inequalities can be solved by a different processor.

We return to the convergence analysis of linearized algorithms. Let us fix a choice
of the scaling matrices A(z), assumed to be block—diagonal, as discussed earlier. We
assume that each diagonal block A;(x) of A(z) is positive definite for each z, which
guarantees that each subproblem (5.12) has a unique solution (Prop. 5.5) and the lin-
earized algorithm is well-defined. The following result establishes the convergence of
the iteration x := T'(z) as well as of the associated Gauss—Seidel algorithm, under the
standing assumption that X is a Cartesian product and the scaling matrices A(z) are
block—diagonal.

Proposition 5.8. (Linearized Algorithm Convergence in the Product Case) Sup-
pose that the problem VI(X, f) has a solution z*. Suppose that there exist symmetric
positive definite matrices G; and some 6 > 0 such that A;(z) — 6G; is nonnegative
definite for every 7 and € X, and that there exists some a € [0, 1) such that

|65 (£ - @) - 4w —w) || < bamaxfiz;—y,ll;, oy e X, 5.13)

where ||z;||; = (z}G;x;)!/%. Then, the iteration mapping T of the linearized algorithm
determined by { A(z) | z € X'} has the property

]|T;(:c)—a:;*||iSam]ax||$j—x;||j, VzeX,i=1,...,m. (5.14)

In particular, z* is the unique solution of VI(X, f) and the linearized algorithm z(t+1) =
T (a:(t)), as well as the Gauss—Seidel algorithm based on T, converge to z* geometrically.

Proof. Fix some z € X. Since z] € X, inequality (5.12) yields

(z; - Ti(@))’ (fi(l') + Ai(@)(Ti(z) — :cz-)) > 0. (5.15)
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We also have
(Ti(@) - z})"fi(z") > 0, (5.16)

because z* solves VI(X,, f) and because of the Decomposition Lemma. We add inequal-
ities (5.15) and (5.16) and rearrange terms to obtain

(Ti@)—z})" Ai(@) (Ti(@)—=}) < (Ty(z)—z )'(fi(x*)—fi(a:)—Ai(x)(xZ —ri))- (5.17)

The left-hand side of inequality (5.17) is bounded below by 6| T;(z) — z¥||? because
of the nonnegative definiteness of A;(x) — 6G;. Also, the right-hand side of inequality
(5.17) is equal to

(L@ - 2)' 6|67 (£ - fi@) - A@)et )] G19)

From the Schwartz inequality [Prop. A.28(e) in Appendix A] and inequality (5.13), the
expression (3.18) is bounded above by || T;(z) — z}||; - 6 max; llzj —z3l;. We have thus
shown that

8ITi(@) — 2|} < ITi@) — 2} |); - 6 max [|z; — 7 |l;,

from which inequality (5.14) follows. In particular, T is a pseudocontraction and z* is
the unique fixed point of T'. The rest of the result follows from the convergence theorem
for pseudocontracting iterations and their Gauss—Seidel versions (Props. 1.2 and 1.5 of
Section 3.1). Q.E.D.

Notice that this proof remains valid under the assumption that VI(X, f) has a
solution z* and that inequality (5.13) holds when y = z*. On the other hand, given that
x* is unknown, this weaker version is usually not any easier to verify.

In the special case where A(x) is symmetric positive definite and independent of
x we obtain the projection algorithm and the previous proposition can be strengthened a
little. In particular, we do not need to assume the existence of a solution z*.

Proposition 5.9. Let~y > 0,let G;,i=1,...,m, be symmetric positive definite
matrices, and let || - ||; be the norm ||z); = (z'G;z)'/2. Suppose that

HVGZI (fi@) - fi) = (@ — w2)

7 J

where a € [0,1). Then, the problem VI(X, f) has a unique solution z*. Let G be a
block—diagonal matrix whose ith diagonal block is equal to G;. Then, the sequence {z(t)}
generated by the projection algorithm z(t+1) = [z(t)—vG~! f (z(t))] * converges to z*
geometrically. The same is true concerning the corresponding Gauss—Seidel algorithm.
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Proof. The condition (5.19) states that the mapping Rg(z) = z — yG~! f(z) is a
contraction with respect to the block-maximum norm ||z|| = max; ||z||;. It follows that
the mapping Tg(z) = [z — YG~! f(m)]g is also a contraction and has a unique fixed
point. Existence and uniqueness of a solution follow from our general existence and
uniqueness results (Prop. 5.3). Convergence of the projection algorithm follows from
the convergence theorem for contracting iterations (Prop. 1.1) and their Gauss—Seidel
variants (Prop. 1.4). Q.E.D.

Sufficient conditions for condition (5.19) to hold are provided by Props. 1.10 and
1.11 of Subsection 3.1.3.

3.5.6 Noniinear Algoi'ithms

We still assume that X is a Cartesian product X = []~, X;. According to the De-
composition Lemma, the variational inequality VI(X, f) is equivalent to a system of
m variational inequalities that must be solved simultaneously. A nonlinear algorithm
proceeds by solving for each ¢ the ith variational inequality

(x; —z}) fi(z*) >0, Vz; € X,

with respect to the ith block—component of x*, while keeping the other block—components
fixed. To be more precise, fix some z° € X. Starting from z°, the new value of the ith
block—component, produced by an iteration of a nonlinear algorithm, is equal to some
Qi(z0) satisfying

(2: - Qi) fi(2h o 20, Q@ 2l 35) 20, Vo€ Xi (520)

Notice that (5.20) is itself a variational inequality. It is the problem VI(Xj;, g), where
g(x;) = f(23,...,2%_,2:,2%,,,...,20,). Therefore, Q;(z) can be found using any
one of the algorithms presented earlier. Furthermore, (5.20) should be easier to solve
than the original problem (5.1) because the sets X; are of smaller dimension.

It is assumed in the sequel that for every z% € X, there exists some Q;(z°)
satisfying (5.20). Since (5.20) is itself a variational inequality in the unknown Qi(z%),
sufficient conditions for the existence of a solution are provided by our general existence
results (Props. 5.2-5.3). In case that there are several solutions, we assume that Q"
has been arbitrarily defined to be equal to one of them. Then, the nonlinear algorithm is
well defined.

We let Q(z°) = (Q1(?), ..., Qm(z?)) and this determines a mapping Q : X — X.
Accordingly, the nonlinear Jacobi algorithm is defined by the iteration

z(t+ 1) = Q(z()).
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With the nonlinear Jacobi algorithm, all block—components z;(t + 1) are simultaneously
computed on the basis of z(t). Alternatively, with a nonlinear Gauss—Seidel algorithm,
the block—components of z(t 4 1) are computed in succession. In the terminology of
Section 3.1, the latter is the Gauss—Seidel algorithm based on the mapping Q.

We briefly interpret the above defined nonlinear algorithm in the context of the
specific examples discussed in Subsection 3.5.1.

(a) (Systems of equations) Here X = R™ and the objective is to find a solution of
f(z) = 0. For this example, Q;(x) is the value of z; obtained by solving the ith
equation f;(x) = 0, while keeping the other components of x constant.

(b) (Optimization) Here X is a closed convex set and f(z) = VF(z), where F is a
continuously differentiable convex cost function. Given a current vector z°, the
new value #; = Q;(z°) of the ith block—component is obtained by solving the
variational inequality

(yi - ji)lviF(m(l)"- -7$?—lajiazg+lv'“7z?n) 2 0> Vyz' € Xi~

This is equivalent to minimizing F' with respect to the ith block—component. In
particular, the nonlinear methods of this section contain as special cases the non-
linear methods of Sections 3.2 and 3.3.

(c) (Game theory) Consider a Nash game and let F; be the cost function of the ith
player. Assuming that each F; is convex in the variable x; (the strategy of the
ith player), it is easily seen that at each iteration of the nonlinear algorithm, the
strategy of each player is optimized while holding the strategies of the other players
constant.

In Sections 3.2 and 3.3, we presented certain results on the convergence of the
nonlinear Gauss—Seidel algorithm for optimization problems (Props. 2.5 and 3.9). The
proof of these results was based on the descent property: the value of the cost function
was nonincreasing in the course of the algorithm. For more general variational inequal-
ities, the descent approach is inapplicable. We therefore rely instead on the theory of
contraction mappings of Section 3.1 together with the observation that the nonlinear Ja-
cobi algorithm is identical to the component solution method of Section 3.1.2, which is
proved next.

Proposition 5.10. (Nonlinear Algorithms are Component Solution Methods) Let
T : X — X be the mapping corresponding to one iteration of a linearized algorithm
determined by a collection of scaling matrices {A(z) | z € X} assumed to be block—
diagonal and positive definite. Then, an iteration z := Q(z) of the nonlinear Jacobi
algorithm coincides with an iteration of the component solution method for solving the
fixed point problem z = T'(z).

Proof. We only need to show that Q;(z) solves the ith equation of the system
z = T(x), that is, we need to show that the equality
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Qi) = Ti(z1,..., iz, Qi(T), Tix1y-. ., Tm) (5.21)

holds for every ¢ and every = € X. Let us fix some z € X. From Eq. (5.20) we have
(zi — Qz‘(x))/fz' (xl,---,wi—l,Qi(iv),ziH,u-,xm) >0, Vz; € X;.
This can be rewritten as
(zi — Qi(x))l(fi(xla e Tinl, Qi) Tig 1y Tm)
+ Ai(z1,. ., Tie1, Qi(@); Tit1, - -, Tm ) (Qilz) — Qi(lT))) >0, Vz; € X,

which shows that @Q;(z) solves (for the unknown y;) the variational inequality
(2; — yi)'(fi(ftl,---,iBi—17Qi($),$i+1,---,$m)

+ Ai(z1, ., Tict, Qi@), Ti1s - Tm) (¥ — Qz’(a?))) >0, Vz € X;.
(5.22)
On the other hand this is exactly the variational inequality solved by the linearized
algorithm [see Eq. (5.12)], if the current vector is (z1,...,Z;—1, Qi(Z), Tit1,-- -, Tm)-
Furthermore, a solution is unique, because A(x) has been assumed positive definite (Prop.
5.5). Therefore, by the definition of 7', we obtain Q;(x) = Ti(xy, ..., Ti—1, @:(Z), Tit1,-. .,
Tm), as desired. Q.E.D.

Convergence of nonlinear algorithms can be now demonstrated using our general
results on the convergence of component solution methods (Subsection 3.1.2). In par-
ticular, if the mapping 7" corresponding to a linearized algorithm is a contraction or a
pseudocontraction, with respect to a block—maximum norm, the same property holds for
the mapping () describing the nonlinear Jacobi algorithm (Props. 1.7 and 1.9 in Sub-
section 3.1.2). Furthermore, in the case where T is a contraction, it has been shown
in Section 3.1 (Prop. 1.6) that the component solutions Q;(z) are uniquely defined for
every £ € X. We now state two results that follow directly from Prop. 5.10 and the
preceding discussion.

Proposition 5.11. Let T : X — X be the mapping corresponding to one iteration
of a linearized algorithm determined by a collection of scaling matrices { A(z) | z € X}
assumed to be block—diagonal and positive definite. Suppose also that 7' is a pseudo-
contraction, with respect to a block-maximum norm. Let z* be the fixed point of T
If the nonlinear Jacobi algorithm z(t + 1) = Q(«(t)) is well defined [meaning that the
variational inequality (5.20) always has a solution] then the sequence {xz(t)} converges
to x* geometrically, and the same is true for the nonlinear Gauss—Seidel algorithm.

It should be recalled here that Prop. 5.8 provides sufficient conditions for a lin-
earized algorithm to be a pseudocontraction with respect to a block-maximum norm.
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Proposition 5.12. Let T : X — X be the mapping corresponding to one iteration
of a linearized algorithm determined by a collection of scaling matrices { A(z) | z € X'}
assumed to be block—diagonal and positive definite. Suppose also that T" is a contraction
with respect to a block-maximum norm. Then the problem VI(X, f) has a unique
solution z*, the nonlinear Jacobi and Gauss—Seidel algorithms are well defined, and they
converge to * geometrically.

An example of a linearized algorithm that is a block-maximum norm contraction
is the projection algorithm under the assumption (5.19) of Prop. 5.9. Conditions for the
latter assumption to hold have been presented in Subsection 3.1.3.

3.5.7 Decomposition Methods for Variational Inequalities

Some of the decomposition techniques developed in Section 3.4 for convex constrained
optimization problems can be extended to more general variational inequality problems.
As an example, consider the following natural extension of the separable problem of
Subsection 3.4.4 (Example 3.4), where we want to find a vector z* = (z7,...,z},) ina
product set Py x --- x P, which satisfies the linear coupling constraints

/

€j

* :
x* =sj, i=1..r

and solves the separable variational inequality

m
> i@ (@i—z) 20, Vz€PX---XPp, with ejz=s;, j=1,...,r. (5.23)

=1

Here P; is a polyhedral subset of ", e; € R" are given vectors, and s; € R are given
scalars, where n = n; +- - - +n,,. If fi(z;) = VF;(z;), where F; : R™ — R is a convex
function for each ¢, we obtain a separable optimization problem.

Let e;; be the subvector of e; that corresponds to xz;, let

I(j)={’t|6ﬂ¢0}, j=1,...,’l‘,

and let m; be the number of elements of I(j). In the typical iteration of the natural
alternating direction method of multipliers (cf. Subsection 3.4.4), we obtain for i =
1,...,m, a solution z;(t + 1) € P; of the variational inequality

[ Fl@+D)+ Y e[ + (el (it + 1) — zid) + wj(t))]] (2 — 2t + 1)) 2 0,
{5lieI()}
VY z; €PF;, (5.24)

where

1
w;(t) = m—j(e;x(t) - 55), j=1,...,m (5.25)
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and we update A;(t) according to

Aj(t+ 1) = Ai(t) + cw;(t + 1), j=1...,m (5.26)

Here c is a positive scalar and the initial vectors z;(0) and A;(0) are arbitrary. Note that
this is a highly parallelizable method.

To establish the validity of the preceding method we consider (cf. Subsection 3.4.4)

the variational inequality problem of finding z* € R™ such that z* € C;, Az* € C, and

f*)(z —z*) >0, VzeCin{¢| AL € Cy}. (5.27)

Here A is an m x n matrix, and C; C R®” and C, C R™ are nonempty polyhedral sets.

There is a natural extension of the alternating direction method of multipliers of

Subsection 3.4.4 for the above problem. In the typical iteration of this method, we obtain
z(t + 1) that solves the variational inequality

[f(x(t+1)) +4 [p(t)+c(Aw(t+1)—z(t))]]l(x—x(t+1)) >0, VzeC, (528
and we update z(t) and p(t) by

«(t+1) = arg min {—p(t)'z + §||Ax(t +1) - z||§} , (5.29)

Pt +1) = p(t) + c(Az(t + 1) — 2(t + 1)). (5.30)

The parameter c is assumed positive, and the initial vectors p(0) and 2(0) are arbitrary.

As in Subsection 3.4.4, the method (5.24)—(5.26) is obtained as a special case of
the method (5.28)—(5.30) with the identifications

m

f(x)=Zfi($i), Ci=P X P, x-- %X Py,
i=1

S A P §

€I1()

/

and with A being the matrix that maps z into the vector having coordinates €}

j=1,...,r, 1 € I().
We will make the following assumption (cf. Assumption 4.1 in Subsection 3.4.4):

Z;,

Assumption 5.1. The optimal solution set X* of problem (5.27) is nonempty,
and the function f is Lipschitz continuous and monotone, that is, for some K

If@—fWlz < Kllz—yll,  @—y/'(f@ - f@) =0, Vz,yeCl (531)
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Furthermore, either C; is bounded, or else the matrix A’ A is invertible.

It is possible to show that under Assumption 5.1, a solution x(t+1) of the variational
inequality of Eq. (5.28) exists. Indeed if C; is compact, existence follows from Prop.
5.2. If A’A is invertible the variational inequality of Eq. (5.28) involves a strongly
monotone map because f is monotone and A’ A is positive definite, so existence (as well
as uniqueness) follows from Prop. 5.4. The following convergence result parallels Prop.
4.2 in Subsection 3.4.4.

Proposition 5.13. Let Assumption 5.1 hold. A sequence {z(¢), 2(), p(¢)} gen-
erated by the algorithm (5.28)—(5.30) is bounded, and every limit point of {z(¢)} is a
solution of the original variational inequality (5.27).

Proof. The proof closely resembles the proof of Prop. 4.2 in Subsection 3.4.4.
Let z* be a solution of the variational inequality (5.27), let z* = Az™*, and let p* be a
Lagrange multiplier associated with the equality constraint z = Az in the problem
minimize f(z*)'z
(5.32)
subject to z € Cy, z € (3, z = Azx.

Then (z*, z*) is an optimal solution of the above optimization problem. By using the
multiplier update formula (5.30) we can write the condition (5.28) as

F(z@+D) (z@+D—2)+ [pit+D+c(2t+1)—21)] A(zt+1)-2) <0, Vz e Oy,
while by using the necessary optimality condition of Prop. 3.1 of Section 3.3 we c(itifxz
from Eq. (5.29)

pt+1)(z—2(t+1) <0, VzeOl,. (5.34)

By applying Eq. (5.33) with z = =* we have
Fa+ D) (2t + 1) — ) + [pE+ D + (2t + 1) — 2(0)] A=t + 1) — z*) <0,
and by applying Eq. (5.34) with z = z* we have
pit+1)'(2* — 2t + 1)) <0.

By adding these two relations, and using also the fact Az* = z*, we obtain

Flzt+ 1) (2t + 1) — %) +p(t + 1) (Az(t + 1) — 2(¢ + 1))

. (5.35)
+ec(z@t+1)— 2(t) A(z@ + 1) — z*) <O.
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Since (z*, 2*) is an optimal solution and p* is a Lagrange multiplier for problem (5.32),
we have

0< f(z) (@t + 1) - 2*) +p*(Azt + ) — 2t + 1)), V. (5.36)
By adding Egs. (5.35) and (5.36) we obtain

[f (@ + D) = f@)] (2t + 1)~ ) + (p(t + 1) = p*) (At + 1) — 2(t + 1)

+e(at+1) - 2(0) A(et + 1) - z*) < 0.
(5.37)
Using the monotonicity of f, we see that the first term on the left—hand side of Eq. (56.37)
is nonnegative, so we obtain

(Pt +1) = p*) (Az(t +1) — 2+ 1)) +e(2(t+1) - 2(t) A(z(t+1)—2*) < 0. (5.38)
We now denote for all ¢
IO =z)-z*, ) ==2)-2",  Bt)=pt)-p*,
and we use the calculation given in the proof of Prop. 4.2 to obtain

B+ D-pOl3+S(12¢+D-20E < (IPOIB+ 121 - (15¢-+ DIB+ ¢+ D).
(5.39)
It follows that {2(t)} and {p(t)} are bounded and

pt+1)—p() — 0, Z(t+1)—z() — 0. (5.38)
Since Axz(t) — z(t) = (p(t) — p(t — 1))/c — 0 and {2(£)} is bounded, we obtain by us-
ing Assumption 5.1 that {z(¢)} is bounded. Furthermore, for every limit point (%, 2)
of {(z(t), z(t))} we have A% = 3. Let (%, %,7) be a limit point of the sequence
{(2(®), =(®), p(t)) }. Then by taking the limit in Eq. (5.33) we obtain
f@'@-2)+fAE-2)<0, VYzeq, (5.39)
while by taking the limit in Eq. (5.34) we obtain
P(z—32) <0, vV zeCQC,. (5.40)

By adding Egs. (5.39) and (5.40), and by using the fact A% = 7 we obtain

f@) (x — %)+ §'(Az — 2) > 0, Vzel, z€0,. (5.41)
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By using the Lagrange Multiplier Theorem of Appendix C we see that Eq. (5.41) implies
that # and Z are an optimal solution of the problem

minimize f(%)'z
subject to x € Cy, z € C3, z = Az,

or equivalently that Z is a solution of the original variational inequality (5.27). Q.E.D.

We note that it is possible to show convergence of the sequences {z(¢)} and {p(t)}
as in the proof of Prop. 4.2. Exercise 5.3 provides an alternating direction method of
multipliers for a generalized version of the variational inequality (5.27).

EXERCISES

5.1. (The Extragradient Method [Kor76).) This exercise provides a modification of the pro-
jection algorithm that converges appropriately to a solution of VI(X, f), assuming that the
monotonicity condition

@ -y (f@ - f@®) >0, Vz,yeX,
holds, and that there exists a constant A such that

If@) = fl2 £ Allz —yll2, Vz,yeX.

(As shown in Fig. 3.5.3, the projection algorithm need not converge, for any value of the
stepsize, under the preceding conditions; a strong monotonicity condition is needed.)
Consider the modified projection method

+
#(t+1) = [20) -1 (0)]

where Z(?) is given by

20 = [2() = 11 (o) "

and v is a positive scalar. [Thus, the method, at each iteration, uses the value of f at Z(¢)
rather than the one at z(¢).]
(a) Show that for any solution z* of VI(X, f) we have

ot + 1) — 2[5 < |lz@) — 2| — (1 — ¥ A)||=(t) — )12,
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and conclude that for v € (0,1/A), the method converges to some solution of
VI(X, f), if at least one such solution exists. Hint: The monotonicity condition
and the fact that z* is a solution imply that

0< (f (z®) - f(x*))'(a'c(t) -3") =f(2®) (2() - z*) - F&"Y (2¢t) — ")
<f(z®) (2) - =)
=f(2®) (20 ~ =t + 1))
+ £(z®) (2t + 1D = z*),
and, finally,
F(@®) (=" - 2+ D) < £(z0) (20 — 2 + D). (5.42)

Since (¢ + 1) is the projection of #(t) — vf((t)) on X and z* € X we have, also
using Eq. (5.42),

et + 1) — 2" |3 < lle@®) - 7f (2®) — 2|} — l2@®) - vf (2®) — 2 + D3
= |l2(®) — 2" |2 — ll=(®) — ot + DI + 2 (2®)" (=" — 2t + 1))
< llz@® — 2113 = l2®) — 2|5 - [12) — =t + D3
- 2(2(®) - 30)" (20) - (¢ + ) +2vf (30)’ (2¢) - 2(¢t + 1)
and, finally,

et + 1) — 2|3 < [lz@) — =" |5 = =) — 2D} — ||2(2) — (¢t + D3

) (5.43)
+2(z(t + 1) - 2®) (e — £ (20) - 2()).

Since Z(t) is the projection of z(t) — v f (x(t)) on X and z(t+1) € X we have, also
using the Lipschitz continuity of f,

(2t + 1) = 20))' (2t) — vf (2() — 2(2))
=(2(t + 1) = 2®))  (2(t) — 7 (2(®)) — 2())
+y(z+ D - 20) (f(z0) - F(20)) G4
<v(at+1) - 20) (F (=) - £(2)))

YAl + 1) = Z@)|2 - [|2@) — Z@)2-

Using inequality (5.44) to strengthen inequality (5.43), we obtain
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ot + 1) — 2|} < lle@) — 2" [3 - llz@®) — 2@} - |12¢) — 2(¢ + D3
+ 27 Allz(®) — Z@)||2 - |2@) — z(t + D)2
= |lz@) — =" |3 — (1 = ¥ A)|z(®) — 2O)|I3

2
- ('rAIIx(t) — Z()||2 - |2(¢) — =t + 1)|I2)
< flz@) — 2| = A = ¥ AD)||z(@) — @3-

(b) Demonstrate the convergence of the method when applied to the example of Fig.
3.53.

5.2. (Separable Constrained Optimization Problems.) Consider the separable, convex con-
strained optimization problem

m
minimize E Fi(z;)

i=1
subject to  ajz <tj, j=1,...,7
z€PR, i=1,...,m,
similar to the one considered in Subsection 3.4.4, where F; : R™ +— R is a convex
differentiable function.

(a) Verify that this problem is equivalent to the variational inequality problem of finding
z; € P; and uj > 0 such that

m

Z(Vﬂ'(x’{) + zr:u;aji)l(zi -z + i(tj - ajz")u; —uj) >0,

i=1 i=1 Jj=1

Vz; € P;, uj > 0.

(b) Discuss the use of the extragradient method of Exercise 5.1 for solving the problem.
5.3. Consider the problem of finding z* € R" such that z* € C|, Az™ € C; and

f@"Y (- z*)+ G(Az) — G(Az™) >0, VzeCn{{|ALecC}.

Here G : R™ — R is a convex function, A is an m X n matrix, and C; C R®", C; C R™
are nonempty polyhedral sets. Let Assumption 5.1 hold, and consider the algorithm (5.28)—
(5.30) except that Eq. (5.29) is replaced by

z(t+1)=arg znencnz {G(z) —p®)z+ %HAz(t +1) - z]]%} )

Show that a sequence {z(t), 2(¢), p(t)} generated by the algorithm is bounded, and every
limit point of {z(t)} is a solution of the above inequality.



288 Iterative Methods for Nonlinear Problems Chap. 3

5.4. Develop an alternating direction method of multipliers for the variational inequality

D fe@-a)20,  VzenlP,

i=1

based on the algorithm (5.24)—(5.26).

NOTES AND SOURCES

3.1. Most of the material in this section is classical; see, e.g., [OrR70] and [Lue69].
Some of the sufficient conditions for contraction mappings (Props. 1.10~1.13) are inspired
from related results of [PaC82a].

3.2. Unconstrained optimization algorithms are discussed in many textbooks, e.g.,
[Avr76], [Ber82a], [DeS83], [GMW81], [KoO68], [Lue84], [OrR70], [Pol71], [Pol87],
[Zan69], and [Zou76]. A special type of approximate Newton method, called the trun-
cated Newton method and based on the conjugate gradient method is analyzed in [DES82].
An example showing that some form of strict convexity assumption is needed to guarantee
convergence of the nonlinear Gauss—Seidel method is given in [Pow73]. Parallel con-
jugate direction methods for unconstrained optimization are given in [ChM70], [Sut83],
[Han86], and [BSS88]. For an overview of parallel optimization methods, see [LoR88]
and [MeZ388].

3.3. Many of the above mentioned books on unconstrained optimization also
contain discussions of constrained optimization. The gradient projection method was
proposed independently in [Gol64] and [LeP65]. For some further developments and
analysis see [Ber76a] and [Dun81]. Variants of the gradient projection method that
aim at acceleration of its convergence rate while maintaining its simplicity are given in
[Ber82b], [BeG83], [Bon83], [GaB84], and [CaM87]. The results on the well-posedness
of the nonlinear Jacobi and Gauss-Seidel methods and their global convergence to a
minimizing point (Prop. 3.10) appear to be new.

We have not discussed in this section or elsewhere in this book the simplex method
for linear programming because this method contains some operations that are difficult to
parallelize. In particular each iteration of the simplex method consists of two steps (see
e.g. [Dan63], [Chv83], [Lue84]): a) choosing a new basic variable and b) performing
a pivot operation. The first of these steps lends itself to parallelization but the sec-
ond generally does not. While much depends on the parallelization approach used and
the structure of the problem solved, parallel versions of the simplex method have pro-
duced thus far only limited speedup in computational experiments. For a representative
computational study that discusses various approaches see [Pet88].

3.4. The uses of duality in large—scale optimization are discussed in numerous
sources, including the books [Las70], [MMT?70], [Sin77], and [FBB&0], the edited vol-
umes [Wis71] and [HoM76], and the journal special issue [IEE78].
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The dual quadratic programming algorithm of Subsection 3.4.1 is given in [Hil57];
for related work see [Lue69], [Cry71], [Man77], [MaD86], and [MaD87]. The given
implementation for sparse problems has been used extensively (with some variations) in
image processing applications [HLL78], [HeL78], [Cen81], and [CeH87].

Dual methods have been used extensively for the solution of various types of sep-
arable problems. An early reference is [Eve63]; see also [Las70], [Wis71], [Geo72],
[Las73], [BLT76], and [Lue84]. Nondifferentiable optimization methods (see, e.g.,
[Pol69], [BaW75], [Sha79], and [Pol87]) have also been popular in this context.

The proximal minimization algorithm was introduced in [Mar70], and was also un-
derstood through the studies of its dual equivalent, the method of multipliers. Reference
[Ber82a] provides an extensive treatment of the latter method, and contains a large num-
ber of references on the subject; see also the survey papers [Ber76b] and [Roc76c]. The
finiteness of the method when applied to linear programs was shown independently in
[PoT74] and [Ber75]. The method of multipliers has been advocated for linear programs
with structure that is unfavorable for the use of the simplex method [Ber76c], [BLS83],
[Man84]. An extension of the proximal minimization algorithm for nonconvex problems
is given in [Ber79a]; see also [TaM85].

The problem of solving systems of linear inequalities or, more generally, finding a
point in the intersection of several convex sets has a long history; see [Cim38], [Agm54],
[MoS541], [Bre67], [Tan71], [Aus76], [Jer79], [Elf80], and [Gof80]. References [Spi85a],
[Spi87], and [Han88] are similar in spirit to the material in this section.

The alternating direction method of multipliers was proposed in [GIM75] and
[GaM76], and was further developed in [Gab79]. It was generalized in [LiM79], where
the connection with alternating direction methods for solving differential equations was
pointed out. Discussions of the method and its applications in large boundary—value
problems are given in [FoG83] and [GIL87]. Related work includes [Gol85b], [Spi85b],
[Gol86a], [HaL88], and [RoW87]. An extension which addresses the problem of finding
a zero of the sum of monotone operators is given in [Gol87b]. The decomposition al-
gorithms for separable and linear programs of Subsection 3.4.4 (derived with assistance
from J. Eckstein) are simpler and involve updating fewer variables than other related
algorithms in the literature.

A generalization of the proximal minimization algorithm, called the proximal point
algorithm was introduced in [Mar70] and [Mar72]. This algorithm applies also to vari-
ational inequalities under monotonicity assumptions. An extensive analysis and further
development of the algorithm is given in [Roc76a], [Roc76b]. A rate of convergence
analysis is given in [Luq84]. Extensions are given in [Luq86a] and [Luq86b]; in the
case of the proximal minimization algorithm, these extensions involve the use of a non-
quadratic additive term. The proximal point algorithm solves the problem of finding a
zero of a maximal monotone operator and contains as special cases all of the algorithms
discussed in Subsections 3.4.3 and 3.4.4 together with several other related methods. In
particular the proximal minimization algorithm and the method of multipliers are special
cases as shown in [Roc76a], [Roc76b]. The method of partial inverses of [Spi85b] was
also developed as a special case of the proximal point algorithm. One of the splitting
algorithms of [LiM79] contains as special cases both the method of partial inverses and
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the alternating direction method of Section 3.4.4. It is shown in [Eck88] that the proximal
point algorithm contains as a special case the algorithm of [LiM79] and a fortiori the
alternating direction method. Therefore a substantial amount of analysis can be shared
by all of the methods mentioned above. As an example, we could use known results
on the proximal point algorithm to obtain a more elegant and insightful convergence
analysis for the alternating direction method of multipliers than the one we gave here.
We have not pursued this analysis because of its advanced mathematical character.

As mentioned in Subsection 3.4.4, the quadratic term used in the method of multi-
pliers tends to affect adversely the separability structure of the problem. The alternating
direction method can be viewed as one way of coping with this difficulty for some sepa-
rable problems. A different approach, which also lends itself well to parallelization, was
introduced in [StW75], and was further developed in [Sto77], [WNM?78], and [CoZ83];
see also [Coh78].

3.5. For more background on variational inequalities, see [Aus76], [KiS80], and
[GLT81]. Methods for solving the traffic assignment problem are given in [AaM81],
[BeG82], [BeG83], [CaG74], [Daf71], [Daf80], [FIN74], [HLN84], [HLV87], and [LaH84].
The projection method for variational inequalities satisfying the strong monotonicity as-
sumption of Prop. 5.4 was proposed in [Sib70]. This assumption was relaxed somewhat
in [BeG82]. The extragradient method of [Kor76] (see Exercise 5.1) bypasses altogether
the need for strong monotonicity, and is therefore applicable to linear programs (see
Exercise 5.2). A general class of algorithms, generalizing the projection method has
been introduced and analyzed in [Daf83]. The results concerning the product set case
and nonlinear algorithms are adapted from [PaC82a], [PaC82b], and [Pan85], although
the derivations here, using the general theory of contraction mappings, are different. The
alternating direction method for variational inequalities was proposed in [Gab79]; see
also [Gab83].



