Parallel and
Distributed Computation:

Numerical Methods



OPTIMIZATION AND NEURAL COMPUTATION SERIES

1. Dynamic Programming and Optimal Control, Vols. I and II, by
Dimitri P. Bertsekas, 1995 (ISBN 1-886529-11-6, 704 pages, hard-
cover)

2. Nonlinear Programming, by Dimitri P. Bertsekas, 1995 (ISBN
1-886529-14-0, 656 pages, hardcover)

3. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John
N. Tsitsiklis, 1996 (ISBN 1-886529-10-8, 512 pages, hardcover)

4. Constrained Optimization and Lagrange Multiplier Methods, by
Dimitri P. Bertsekas, 1996 (ISBN 1-886529-04-3, 410 pages, soft-
cover)

5. Stochastic Optimal Control: The Discrete-Time Case by Dimitri
P. Bertsekas and Steven E. Shreve, 1996 (ISBN 1-886529-03-5,
330 pages, softcover)

6. Introduction to Linear Optimization by Dimitris Bertsimas and
John N. Tsitsiklis, 1997 (ISBN 1-886529-19-1, 608 pp., hard-
cover)

7. Parallel and Distributed Computation: Numerical Methods by
Dimitri P. Bertsekas and John N. Tsitsiklis, 1997 (ISBN 1-886529-
01-9, 731 pages, softcover)




Parallel and Distributed Computation:
Numerical Methods

Dimitri P. Bertsekas and John N. Tsitsiklis

Massachusetts Institute of Technology

WWW site for book information and orders

http://world.std.com/~athenasc/

Athena Scientific, Belmont, Massachusetts




Athena Scientific

Post Office Box 391
Belmont, Mass. 02178-9998
U.S.A.

Email: athenasc@world.std.com
WWW information and orders: http://world.std.com/~ athenasc/

Cover Design: Ann Gallager

(© 1997 Dimitri P. Bertsekas and John N. Tsitsiklis

All rights reserved. No part of this book may be reproduced by any elec-
tronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without the publisher’s permission in writing.

Originally published by Prentice-Hall, Inc., in 1989. Corrections listed at
the end.

Publisher’s Cataloging-in-Publication Data

Bertsekas, Dimitri P.

Parallel and Distributed Computation: Numerical Methods
Includes bibliographical references and index

1. Parallel processing (Electronic computers)

I. John Tsitsiklis N., joint author. II. Title.

QA76.5.B457 1997 004’.35 97-70648

ISBIN 1-886529-01-9



To Joanna and Daphne






Preface

Parallel and distributed computing systems offer the promise of a quantum leap in the
computing power that can be brought to bear on many important problems. Whether and
to what extent this promise can be fulfilled is still a matter of speculation, but several years
of practical experience with both parallel computers and distributed data communication
networks have brought about an understanding of the potential and limitations of parallel
and distributed computation. The purpose of this book is to promote this understanding
by focusing on algorithms that are naturally suited for large scale parallelization and that
represent the best hope for solving problems which are much larger than those that can
be solved at present.

Work on parallel and distributed computation spans several broad areas, such as
the design of parallel machines, parallel programming languages, parallel algorithm de-
velopment and analysis, and applications related issues. The focus of this book is on
algorithms, and, even within this area, we restrict our attention primarily to numerical
algorithms for solving systems of equations or optimization problems. Our choice of
material is motivated by large problems for which it is essential to harness the power
of massive parallelism, while keeping the communication overhead and delays within
tolerable limits. Accordingly, we emphasize algorithms that admit a high degree of
parallelization such as relaxation methods of the Jacobi and Gauss-Seidel type, and we

Xv



xvi Preface

address extensively issues of communication and synchronization. In particular, we
discuss algorithms for interprocessor communication and we provide a comprehensive
convergence analysis of asynchronous iterative methods.

The design of parallel algorithms can be pursued at several levels, and this explains
to some extent the diversity of the literature on the subject. For example:

(@) One approach is to parallelize an existing serial algorithm, perhaps after modi-
fications, or to develop a new and easier to parallelize algorithm, without being
too specific about the implementation in particular types of machines. Here one
might be concerned with the algorithm’s convergence and rate of convergence (in
either a synchronous or an asynchronous computing environment), and with the
algorithm’s potential for substantial speedup over its serial counterpart.

(b) A second approach is to focus on the details of implementation on a particular
type of machine. The issues here are algorithmic correctness, as well as time and
communication complexity of the implementation.

(¢) In still another approach, the choice of the algorithm and the parallel machine are
interdependent to the point where the design of one has a strong influence on the
design of the other. A typical example is when a VLSI chip is designed to execute
efficiently a special type of parallel algorithm.

We have mostly followed the first approach, concentrating on algorithmic analysis
at a rather high level of abstraction. Our choice of algorithms, however, is such that
in most cases, the methods of parallel implementation are either evident and straight-
forward, or else are covered by our broad discussion of parallel computation given in
Chapter 1. We have not dealt with implementations in specific machines because types of
machines are rapidly changing. Nonetheless, at several points, we have made reference
to computations in regular architectures, such as mesh and hypercube, which are widely
used. We carry out the analysis of various algorithms in considerable depth, guided
by the belief that a thorough understanding of an algorithm is typically essential for its
application to a challenging problem.

The book was developed through a course that we taught to graduate students
at MIT. It is intended for use in graduate courses in engineering, computer science,
operations research, and applied mathematics. We have assumed the equivalent of a first
course in linear algebra and a grasp of advanced calculus and real analysis that most
students are exposed to by the end of their undergraduate studies. Probabilistic notions
beyond the theory of finite-state Markov chains are not needed with the exception of
Section 7.8, which deals with stochastic gradient methods. We have not required any
background in numerical analysis, graph algorithms, optimization, convexity, and duality,
and we have consequently developed this material as needed in the main body of the
text or the appendices. We note, however, that the mathematically mature reader who
has some background in some of these fields is likely to benefit more from the book,
and to gain deeper appreciation of the material.

The book can be used for several types of courses. One possibility is a course
targeted on parallel algorithms, and intended for students who already have some knowl-



Preface xvii

edge of a subset of the fields of numerical analysis, graph theory, and optimization
algorithms. Furthermore, such a course could have either a computer science flavor, by
focusing on Chapters 1 and 8, and parts of Chapters 2, and 4 through 6, or alternatively a
numerical computation flavor by focusing on Chapters 2, 3, and parts of Chapters 1 and
4 through 7. Another possibility is a general course on numerical methods with a strong
bias towards parallelizable algorithms. The book lends itself for such a course because
it develops economically a broad variety of self-contained basic material in considerable
depth.

Chapter 1 contains an exposition of some generic issues that arise in a broad
variety of parallel algorithms and are best addressed without specific reference to any
particular algorithm. In particular, we discuss the scheduling of a set of processors for the
parallel execution of a prescribed algorithm, some basic issues relating to interprocessor
communication, and the effects of the communication penalty on the amount by which an
algorithm can be speeded up. Special attention is paid to a few interesting architectures
such as mesh and hypercube. We then consider issues of synchronization, and we
contrast synchronous and asynchronous algorithms. In this chapter, we also introduce
relaxation methods of the Gauss-Seidel and Jacobi type and some associated issues of
parallelization, communication, and synchronization that are recurring themes throughout
the book.

Chapter 2 deals with parallel algorithms for systems of linear equations and matrix
inversion. It covers direct methods for general systems as well as systems with spe-
cial structure, iterative methods, including their convergence analysis, and the conjugate
gradient method.

Chapter 3 is devoted to iterative methods for nonlinear problems, such as finding
fixed points of contraction mappings, unconstrained and constrained optimization, and
variational inequalities. The convergence theory for such methods is developed in an
economical way and emphasizes the case of Cartesian product constraint sets (in a primal
and a dual setting), which lends itself naturally to parallelization and decomposition.

Chapter 4 deals with the shortest path problem and other, more general, dynamic
programming problems. The dynamic programming algorithm can be viewed as a re-
laxation method and lends itself well for parallelization. We establish (and strengthen
somewhat) the classical results for discounted and undiscounted Markovian decision
problems, and we also discuss the associated parallel computation issues.

Chapter 5 is devoted to network flow problems. In the first four sections, we deal
with the important class of linear problems, and we present some easily parallelizable
algorithms, that are conceptually related to the Gauss-Seidel and Jacobi relaxation meth-
ods. We then discuss related algorithms for network problems with nonlinear convex
cost. The methods of the first five sections can be viewed as relaxation methods ap-
plied in a space of dual (price) variables. In the last section we consider relaxation-like
methods applied to nonlinear multicommodity flow problems in the primal space of flow
variables.

The last three chapters deal with asynchronous algorithms in which each processor
computes at its own pace, using intermediate results of other processors that are possibly
outdated due to unpredictable communication delays. Among other topics, we develop



xviii Preface

asynchronous versions of all the major types of synchronous parallel algorithms that were
discussed in previous chapters.

In Chapter 6, we introduce a general class of asynchronous iterative methods (called
“totally asynchronous”), and we develop a general theorem for proving their conver-
gence. This theorem is used repeatedly to establish the validity of a broad variety of
asynchronous algorithms involving iteration mappings that are either monotone or con-
tracting with respect to a weighted maximum norm. In particular, we show convergence
of linear and nonlinear iterations involving weighted maximum norm contractions arising
in the solution of systems of algebraic or differential equations, discounted dynamic pro-
gramming, unconstrained and constrained optimization, and variational inequalities. We
also discuss iterations involving monotone mappings arising in shortest path problems,
undiscounted dynamic programming, and linear and nonlinear network flow problems.

In Chapter 7, we consider “partially asynchronous” algorithms in which some mild
restrictions are placed on the amount of asynchronism present. We prove convergence
of a variety of algorithms for fixed points of nonexpansive mappings, deterministic
and stochastic optimization, Markov chains, load balancing in a computer network, and
optimal routing in data networks.

Chapter 8 is similar in philosophy to Chapter 1 in that it deals with generic issues
of parallel and distributed computation. It discusses the organization of an inherently
asynchronous network of processors for the purpose of executing a general type of parallel
algorithm. It addresses issues like termination detection, processor scheduling, methods
for taking a “snapshot” of the global state of a computing system, synchronization via
“rollback,” and methods for maintaining communication with a center in the face of
topological changes.

Many of our subjects can be covered independently of each other, thereby allowing
the reader or an instructor to use material selectively to suit his/her needs. For example,
the following groups of sections can be omitted without loss of continuity:

(a) Sections 2.1 to 2.3, that deal with direct methods for linear systems of equations.

(b) Sections 2.8, 4.2, 4.3, 7.3, 7.4, 7.7, and 7.8 that develop or use the theory of
Markov chains.

(c) The material on decomposition methods based on duality in Section 3.4 and Sub-
section 3.5.7.

(d) The dynamic programming material of Sections 4.2 and 4.3.
(e) The material on linear network flow problems in Sections 5.1 to 5.4, and 6.5.

(f) Sections 5.6 and 7.6, dealing with nonlinear multicommodity network flow prob-
lems. '

(g) The material on nonlinear network flow problems in Sections 5.5, 6.6, and Sub-
section 7.2.3.

Each major section contains several exercises that, for the most part, illustrate and
supplement the theoretical developments of the text. They include algorithmic variations,
convergence and complexity analysis, examples, and counterexamples. Some of the



Preface . Xix

exercises are quite challenging, occasionally representing recent research. The serious
reader will benefit a great deal from these exercises, which constitute one of the principal
components of the text. Solutions of all the exercises are provided in a manual that will
be available to instructors.

A substantial portion of our material has not been covered in other textbooks. This
includes most of the last two sections of Chapter 1, much of the last two sections of
Chapter 3, Sections 5.2 through 5.5, the entire Chapters 6 and 7, and most of Chapter
8. Some of the material presented was developed as the textbook was being written and
has not yet been published elsewhere.

The literature on our subject is enormous, and our references are not comprehensive.
We thus apologize in advance to the many authors whose work has not been cited. We
have restricted ourselves to listing the sources that we have used, together with a selection
of sources that contain material supplementing the text.

We are thankful to a number of individuals and institutions for their help. The
inquisitive spirit of our students motivated us to think harder about many issues. We
learned a great deal about distributed computation through our long association and
collaboration with Bob Gallager and Pierre Humblet. We have appreciated our research
collaboration with Michael Athans, David Castanon, Jon Eckstein, Eli Gafni, and Christos
Papadimitriou, that produced some of the material included in the book. Tom Luo and
Cuneyt Ozveren contributed research material that was incorporated in exercises. We are
thankful for the helpful comments of a number of people, including Chee-Seng Chow,
George Cybenko, Stratis Gallopoulos, George Hart, and Tom Richardson. Our greatest
debt of gratitude to a single individual goes to Paul Tseng who worked closely with us on
several of the topics presented, particularly the communication algorithms of Section 1.3,
the network flow algorithms of Chapter 5, and the partially asynchronous algorithms of
Section 7.2. In addition, Paul reviewed the entire manuscript, sharpened several proofs
and results, and contributed much research in the form of exercises. We were fortunate to
work at the Laboratory for Information and Decision Systems of M.L.T., which provided
us with a stimulating research environment. Funding for our research was provided by
the Army Research Office through the Center for Intelligent Control Systems, Bellcore
Inc., the National Science Foundation, and the Office of Naval Research.






Infroduction

As we embark on the study of parallel and distributed numerical methods it is useful
to reflect on their differences from their serial counterparts. There are several issues
related to parallelization that do not arise in a serial context. A first issue is task alloca-
tion, that is, the breakdown of the total workload in smaller tasks assigned to different
processors, and the proper sequencing of the tasks when some of them are interdepen-
dent and cannot be executed simultaneously. A second issue is the communication of
interim computation results between the processors; our objective here is to carry out
the communication efficiently, and to estimate its impact on performance. A third issue
is the synchronization of the computations of different processors. In some methods,
called synchronous, processors must wait at predetermined points for the completion of
certain computations or for the arrival of certain data, and the mechanism used to enforce
such synchronization may have an important effect on performance. In other methods,
called asynchronous, there is no requirement for waiting at predetermined points, and
the corresponding implications for the methods’ validity must be assessed. Other issues
relate to the development of appropriate performance measures for parallel methods, and
the effects of the system’s architecture on these performance measures.

Issues such as the above are important in a variety of contexts and are, therefore,
most economically studied without reference to a specific numerical method. We address
some of them in this introductory chapter, and we develop some results and methodolog-
ical approaches that will be used throughout the book. Our analysis is not always fully

1



2 Introduction Chap. 1

rigorous because we do not always adhere to formal models of distributed computation.
This helps us develop the main ideas in a more accessible and intuitive manner than it
would be possible otherwise. At the same time our analysis is sufficiently detailed to
provide the basis for more rigorous proofs where needed, and to convince most readers
of the essential correctness of our results.

Section 1.1 contains a brief overview of some application domains and of the
presently existing parallel computing systems. In Section 1.2, we consider a simple
model of synchronous parallel computation, in which communication issues are ignored,
and discuss the concepts of time complexity, speedup, and efficiency. We also discuss
issues arising in the parallelization of iterative methods. In Section 1.3, we consider
communication issues in parallel and distributed systems. Following a brief discussion
of data link control and routing, we formulate some basic communication problems
that arise frequently in the algorithms of subsequent chapters, and we provide optimal
or nearly optimal algorithms for these problems. At the same time, we discuss the
properties of some of the more popular processor interconnection networks. In Section
1.4, we consider methods for algorithm synchronization. We also introduce asynchronous
algorithms, compare them informally with their synchronous counterparts, and provide a
glimpse of some of their interesting convergence properties that will be the focal point
of Chapters 6 and 7.

1.1 PARALLEL AND DISTRIBUTED ARCHITECTURES

Parallel and distributed computation is currently an area of intense research activity,
motivated by a variety of factors. There has always been a need for the solution of
very large computational problems, but it is only recently that technological advances
have raised the possibility of massively parallel computation and have made the solution
of such problems possible. Furthermore, the availability of powerful parallel computers
is generating interest in new types of problems that were not addressed in the past.
Accordingly, the development of parallel and distributed algorithms is guided by this
interplay between old and new computational needs on the one hand, and technological
progress on the other. To appreciate this effect, we briefly discuss some application areas
and the types of computing systems that new technologies have made possible.

1.1.1 The Need for Parallel and Distributed Computation

We restrict attention to numerical computation, since this is the major application consid-
ered in this book. Symbolic computation and artificial intelligence applications have also
played an important role in the development of the subject, but are outside our scope.
The original needs for fast computation have been in a number of contexts involving
partial differential equations (PDEs), such as computational fluid dynamics and weather
prediction, as well as in image processing, etc. In these applications, there is a large
number of numerical computations to be performed. The desire to solve more and more



Sec. 1.1 Parallel and Distributed Architectures 3

complex problems has always been running ahead of the capabilities of the time, and has
provided a driving force for the development of faster, and possibly parallel, computing
machines. The above mentioned types of problems can be easily decomposed along a
spatial dimension, and have therefore been prime candidates for parallelization, with a
different computational unit (processor) assigned the task of manipulating the variables
associated with a small region in space. Furthermore, in such problems, interactions
between variables are local in nature, thus leading to the design of parallel computers
consisting of a number of processors with nearest neighbor connections.

More recently, there has been increased interest in other types of large scale com-
putation. Some examples are the analysis, simulation, and optimization of large scale
interconnected systems, queueing systems being a noteworthy representative. Other ex-
amples relate to the solution of general systems of equations, mathematical program-
ming, and optimization problems. A common property of such problems, as they arise
in practice, is that they can be decomposed, but the subtasks obtained from such a de-
composition tend to be fewer and more complex than those obtained in the context of
partial differential equations. In particular, the regular and repetitive structure of PDEs
is lost. Accordingly, one is led to use fewer and more powerful processors, coordinated
through a more complex control mechanism.

In both of the above classes of applications, the main concerns are cost and speed:
the hardware should not be prohibitively expensive, and the computation should terminate
within an amount of time that is acceptable for the particular application.

A third area of application of parallel, or rather distributed, computation is in infor-
mation acquisition, information extraction, and control, within geographically distributed
systems. An example is a sensor network in which a set of geographically distributed
sensors obtain information on the state of the environment and process it cooperatively.
Another example is provided by data communication networks in which certain func-
tions of the network (such as correct and timely routing of the messages traveling in the
network) have to be controlled in a distributed manner, through the cooperation of the
computers residing at the nodes of the network. In this context of distributed computa-
tion, the predominant issues are somewhat different from those discussed earlier. Besides
cost and speed, there is a more fundamental concern: the distributed system should be
able to operate correctly in the presence of limited, sometimes unreliable, communication
capabilities, and often in the absence of a central control mechanism.

1.1.2 Parallel Computing Systems and their Classification

We discuss here how technology has responded to the computational needs just men-
tioned, and we provide a classification of existing systems. An important distinction is
between parallel and distributed computing systems. Roughly speaking, parallel com-
puting systems consist of several processors that are located within a small distance
of each other. Their main purpose is to execute jointly a computational task and they
have been designed with such a purpose in mind; communication between processors
is reliable and predictable. Distributed computing systems are different in a number of



4 Introduction Chap. 1

ways. Processors may be far apart, and interprocessor communication is more prob-
lematic. Communication delays may be unpredictable, and the communication links
themselves may be unreliable. Furthermore, the topology of a distributed system may
undergo changes while the system is operating, due to failures or repairs of communi-
cation links, as well as due to addition or removal of processors. Distributed computing
systems are usually loosely coupled; there is very little, if any, central coordination and
control. Each processor may be engaged in its own private activities while at the same
time cooperating with other processors in the context of some computational task. Often,
the cooperative computation in a distributed computing system is not the raison d’étre
of the system; for example, a data network exists in order to service some data com-
munication needs, and the distributed computation taking place in the network is only
a side activity supporting the main activity. For this reason, while the architecture of a
parallel system is typically under the control of a system’s designer, the structure of some
distributed systems is dictated by exogenous considerations. Our subsequent discussion
in this section is geared toward parallel computing systems. A number of issues more
relevant to distributed systems will be touched upon in Sections 1.3 and 1.4. Still, there
is no clear dividing line between parallel and distributed systems: several algorithmic
issues are similar and we will often use the two terms interchangeably.

Traditional serial computers are characterized by the presence of a single locus
of control that determines the next instruction to be executed. The data to be operated
upon, during the execution of each instruction, are fetched from a global memory, one at
time. Thus, only one instruction is executed at a time, while the speed of mMemory access
and the speed of input-output devices can slow down the computation. Several methods
have been developed for alleviating these bottlenecks, cache memories and pipelining,
for example. The first supercomputers were developed on the basis of such advanced
computer architecture designs. By means of intelligent memory organization and use of
pipelining, supercomputers have been able to execute vector operations (e. g., addition of
two vectors) in time comparable to the time required for scalar operations (e.g., addition
of two numbers). Thus, as far as the user is concerned, supercomputers behave as if the
components of a vector are operated upon simultaneously. Nevertheless, there seem to
be some fundamental limitations to the speed of fast serial computers, notwithstanding
the fact that they are very costly.

Parallel computers have deviated from the above described model in a variety of
ways. The first such computers consisted of a one— or two—dimensional array of proces-
sors, with nearest neighbor interconnections. Such an interconnection pattern is very nat-
ural for spatially decomposable problems like PDEs and image processing. Furthermore,
there was a host computer overseeing and controlling the progress of the computation
by passing to the processors the instruction to be executed next.

Processor arrays are well suited for the applications for which they are designed,
but not necessarily for general purpose computation. Thus, more coarse—grained parallel
computers have been introduced, in which each processor has considerably more control
of its own computations, together with more computational power. Accordingly, the pro-
cessors in such parallel computers are less tightly coupled. Such systems are sometimes
called multiprocessors, and they are designed so that they can flexibly support general
purpose computation.



Sec. 1.1 Parallel and Distributed Architectures 5

Another line of development, resting on recent advances in very large scale inte-
gration (VLSI) technology, has led to closely coupled parallel computing systems (all
computational elements are often placed on a single chip), designed for a special pur-
pose, such as solving systems of linear equations with special structure, or performing fast
Fourier transforms. Here the movement of data is very regular and the traditional notion
of a stored program is not quite applicable; in effect, much of the program is encoded
in the system hardware. Systolic arrays provide a prime example of such computing
systems.

Still, the above discussion is too simple to accurately describe the wealth of parallel
computers available today. For example, there are systems consisting of a large number
of processors connected in some regular fashion, reminiscent of processor arrays, which
are also capable of general purpose computation.

There are several parameters that can be used to describe or classify a parallel
computer and we refer to these briefly.

(@) Type and number of processors. There are parallel computing systems with
thousands of processors. Such systems are called massively parallel, and hold the great-
est promise for significantly extending the range of practically solvable computational
problems. A diametrically opposite option is coarse—grained parallelism, in which there
is a small number of processors, say of the order of 10. In this case, each processor is
usually fairly powerful, and the processors are loosely coupled, so that each processor
may be performing a different type of task at any given time.

(b) Presence or absence of a global control mechanism. Parallel computers almost
always have some central locus of control, but the question is one of degree: At what
level of detail is the operation of the processors controlled? At one extreme, the global
control mechanism is only used to load a program and the data to the processors, and
each processor is allowed to work on its own thereafter. At the other extreme, the control
mechanism is used to instruct each processor what to do at each step, as in the processor
arrays mentioned earlier. Intermediate situations are also conceivable. A related popular
classification along these lines distinguishes between SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data) parallel computers, referring to
the ability of different processors to execute different instructions at any given point in
time.

(c) Synchronous vs. asynchronous operation. The distinction here refers to the
presence or absence of a common global clock used to synchronize the operation of the
different processors. Such synchronization is present in SIMD machines, by definition.
Synchronous operation has some desirable properties: the behavior of the processors is
much easier to control and algorithm design is considerably simplified. On the other
hand, it may require some undesirable overhead and, in some contexts, synchronization
may be just impossible. For example, it is quite hard to synchronize a data communi-
cation network and, even if this were feasible, it is questionable whether the associated
overhead can be justified. Some related issues are discussed in Section 1.4. Finally, it
should be noted that a parallel computing system operating asynchronously can simulate
a synchronous system (see Section 1.4).



6 Introduction ~ Chap. 1

(d) Processor interconnections. A significant aspect of parallel computers is the
mechanism by which processors exchange information. Generally speaking, there are
two extreme alternatives known as shared memory and message—passing architectures,
and a variety of hybrid designs lying in between. The first alternative uses a global shared
memory that can be accessed by all processors. A processor can communicate to another
by writing into the global memory, and then having the second processor read that same
location in the memory. This solves the interprocessor communication problem, but
introduces the problem of simultaneous accessing of different locations of the memory
by several processors. A common approach for handling memory accesses is based on
switching systems, such as the one depicted in Fig. 1.1.1. Naturally, the complexity of
such switching systems has to increase with the number of processors; this is reflected in
longer memory access times. On the other hand, under such an architecture, algorithm
design is simplified, because, on a high level, the system behaves as if all processors
were directly connected to each other.

P, @

Figure 1.1.1 A switching system connecting processors P; to memory elements M;.
Here the intermediate nodes correspond to switches. When a message reaches a switch,
it can continue on either of the two outgoing links, depending on the destination and the
routing algorithm being used. Notice that in this example, there are two alternative paths
from each processor to each memory element, used to reduce the probability that two
processors simultaneously attempt to utilize the same link. Such redundancy improves
reliability, and provides some flexibility which reduces congestion.

In the second major approach, there is no shared memory, but rather each processor
has its own local memory. (Of course, each processor may have its own local memory
even if there is a shared memory.) Processors communicate through an interconnection
network consisting of direct communication links joining certain pairs of processors, as
shown in Fig. 1.1.2. Which processors are connected together is ‘an important design
choice. It would be best if all processors were directly connected to each other, but
this is often not feasible: either there is an excessive number of links, which leads to
increased cost, or the processors communicate through a shared bus, which leads to
excessive delays when the number of processors is very large, due to the necessary bus
contention.

There are also several possibilities for sybrid designs that combine certain features
from the different approaches just described. Some examples are shown in Fig. 1.1.3,
although several more combinations are possible.



Sec. 1.1 Parallel and Distributed Architectures 7

@D\ m,

Figure 1.1.2 An interconnection network
My M,) joining a set of processors P, each one
endowed with its own local memory M;.

P, Ps

(a) (b)

Figure 1.1.3 Examples of hybrid designs: (a) coexistence of a shared memory and
a point-to—point network; and (b) clusters of processors: a high speed bus serves for
intracluster communication, and an interconnection network is used for intercluster com-
munication.

When distant processors communicate through an interconnection network, there
is usually a choice of several paths that can be used. Paths should be chosen so as to
avoid underutilization of some at the expense of congestion of others. Furthermore, path
selection has to be done locally, by processors that have only partial information on the
congestion levels at distant parts of the network. How to do this best is the subject of
the distributed routing problem. Routing in interconnection networks is briefly discussed
in Subsection 1.3.3, and a particular formulation of the routing problem, relevant to data
communication networks, is studied in Chapters 5 and 7. ‘

The structure (topology) of interconnection networks is very important in both
parallel and distributed computing systems, but there is an important difference. In
parallel computers, the interconnection network is under the control of the designer



8 Introduction Chap. 1

and for this reason it is usually designed to be very regular, whereas in some distributed
systems, like data communication networks, the topology of the network is predetermined
and is usually irregular.

1.2 MODELS, COMPLEXITY MEASURES, AND SOME SIMPLE
ALGORITHMS

1.2.1 Models

There is a variety of models of parallel and distributed computation, incorporating dif-
ferent assumptions on the computing power of each individual processor and on the
interprocessor information transfer mechanism. For the applications considered in this
book, formal models of parallel computation are not essential and we refer the reader to
the literature for more detailed expositions (see the notes and sources at the end of the
chapter).

Loosely stated, we shall assume that each processor is capable of executing cer-
tain basic instructions (such as the basic arithmetic operations, comparisons, branching
instructions of the “if ... then” type, etc.), and that there is a mechanism through which
processors may exchange information. Concerning the processors’ computational power,
it will be often assumed that each basic instruction requires one time unit. Concerning
information exchange, we shall sometimes make the simplifying assumption that infor-
mation transfers are instantaneous and cost—free. On other occasions, we shall assume
that the processors communicate through a shared memory or by exchanging messages
through an interconnection network. In the latter case, more specific assumptions on
the delay incurred by messages as they travel through the network will be introduced as
needed.

We postpone the discussion of communication issues for Section 1.3. We now
describe in some detail a simple model that will be used to illustrate certain key aspects
of parallel computation. This model is actually adequate for most of the synchronous
algorithms considered in this book, as long as communication issues are ignored.

Representation of Parallel Algorithms by Directed Acyclic Graphs

A directed acyclic graph (DAG) is a directed graph that has no positive cycles, that is,
no cycles consisting exclusively of forward arcs (see Appendix B). A DAG can be used
to represent a parallel algorithm, as we proceed to show.

Let G = (N, A) be a DAG, where N = {1,...,|N|} is the set of nodes, and A is
the set of directed arcs. Each node represents an operation performed by an algorithm,
and the arcs are used to represent data dependencies. In particular, an arc (z,7) € A
indicates that the operation corresponding to node j uses the results of the operation
corresponding to node ¢. An operation could be elementary (e.g., an arithmetic or a
binary Boolean operation, as shown in Fig. 1.2.1), or it could be a high-level operation
like the execution of a subroutine.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 9

Figure 1.2.1 Representation of an
algorithm for evaluating the arithmetic
expression (z + x2)(z2 + z3) by means
of a DAG. The label at each node indicates
the operation corresponding to that node. In
(xy +x3) (x3 +x3) particular, the label S stands for squaring.

We introduce some graph-theoretic terminology. We say that node 7 € N is a
predecessor of node j € N if (i,7) € A. The in—degree of node ¢ € N is the number
of predecessors of that node. The out—degree of node ¢ € N is the number of nodes for
which ¢ is a predecessor. Nodes with in—degree zero are called input nodes and nodes
with out—degree zero are called output nodes. We use Ny to denote the set of nodes
that are not input nodes. A positive path is a sequence iy, ...,ix of nodes such that
(ik,ik+1) € Afork =0,..., K —1. The number K is called the length of the path. The
depth of a DAG is defined as the largest length of the positive paths, and is denoted by
D. 1t is seen that D is finite, as a consequence of acyclicity, and that a longest positive
path must start at an input node and end at an output node. We assume throughout that
G has at least one arc and therefore D > 1.

Let us denote by z; the result of the operation corresponding to the ith node in the
DAG. Then, the DAG can be viewed as a representation of functional dependencies of
the form

z;=f; ({xj | 7 is a predecessor of z})

Here f; is a function describing the operation corresponding to the ith node. If 7 is an
input node, then z; does not depend on other variables and is viewed as an external input
variable. Thus, the operation corresponding to an input node ¢ essentially amounts to
reading the value of the input variable z;, and we will assume that this takes negligible
time. For any node 7 that is not an input node (i.e., ¢ € Ny), we shall assume that the
corresponding operation (that is, the evaluation of the function f;) takes one time unit.
This assumption is reasonable if each node represents an arithmetic operation. However,
in more complicated numerical algorithms, the execution times corresponding to different
nodes could be widely different. In that case, the assumption of unit time per operation
may be considerably violated, with an attendant complication of the scheduling issues
discussed below.

A DAG is only a partial representation of an algorithm. It specifies what operations
are to be performed, on what operands, and imposes certain precedence constraints on



10 Introduction Chap. 1

the order that these operations are to be performed. To determine completely a parallel
algorithm we have to specify which processor performs what operation and at what time.
Let us assume that we have available a pool of p processors and that each processor
is capable of performing any one of the desired operations. For any node ¢ that is
not an input node (i.e., ¢ € Ny), let P; be the processor assigned the responsibility of
performing the corresponding operation. Also, for ¢ € Ny, we let ¢; be a positive integer
variable specifying the time that the operation corresponding to node 7 is completed. No
processors are assigned to input nodes, and we use the convention ¢; = 0 for every input
node ¢. There are two constraints that have to be imposed:

(a) A processor can perform at most one operation at a time. Thus, if ¢ € Ny, j € N,
i # j, and t; = t;, then P; # P;.

(b) If (¢,7) € A, then t; > t; + 1. This requirement reflects the fact that the operation
corresponding to node j can only start after the operation corresponding to node ¢
has been completed.

Once P; and t; have been fixed, subject to the above constraints, we say that the
DAG has been scheduled for parallel execution, and we call the set {(i, P;, ;) | i € No}
a schedule.

The above described setup could correspond to a variety of actual implementations.
For example, processor P; could store the result z; of its operation in a shared memory
from where it can be retrieved by other processors. Alternatively, in a message—passing
implementation, processor P; sends a message with the value of z; to any processor
P; that needs this value [that is, ({,7) € A]. In practice, a memory access or the
transmission of a message may require some time and this has been neglected in our
earlier discussion. For example, if a transmission of a message requires exactly 7 time
units, and if (i, ) € A, then the constraint ¢; > ¢; 4+ 1 should be modified to

t; >t +1, if P, =P,

and

2t +T7+1, if P; # P;.
In fact, even this requirement is rather crude, because the message delay 7 may depend
on the location of processors P; and P; in an interconnection network. In any case,
memory access times and message delays are assumed to be negligible in this section
and will be addressed in detail in Section 1.3.
1.2.2 Complexity Measures
We first define some notation that is used throughout the text. Let A be some subset

of Randlet f: A+— Rand g : A — R be some functions. The notation f(z) =
O(g(x)) [respectively, f(z) = Q(g(x)) | means that there exists some positive constant



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 1

c and some z such that for every z € A satisfying = > zo, we have |f(z)| < cg(x)
[respectively, f(z) > cg(z)]. The notation f(z) = O(g(z)) means that both f(z) =
O(g(z)) and f(z) = Q(g(z)) are true. We also use logz to denote the logarithm of =
with base 2. Thus, z = 2!°¢% for every nonnegative real number z.

Complexity measures are intended to quantify the amount of computational re-
sources utilized by a parallel algorithm. Some interesting complexity measures are the
following:

(@) The number of processors

(b) The time until the algorithm terminates (time complexity)

(c) The number of messages transmitted in the course of the algorithm (communication
complexity)

Complexity measures are often expressed as functions of the size of the problem
being solved, informally defined as the number of inputs to the computation. (For
example, in the problem of adding n integers, n is a natural measure of problem size.)
If the problem size is held constant, it is still possible that the resources used depend
on the actual values of the input variables. The usual approach in this case is to count
the amount of resources required in the worst case over all possible choices of data
corresponding to a given problem size.

There is a further subtlety in the definition of time complexity. It is conceivable
that an algorithm has terminated, meaning that the desired outputs of the computation are
available at some processors, but no individual processor is aware of this fact. In such
a case, it is natural to count the additional time required for the processors to become
aware of termination.

Time Complexity of Algorithms Specified by a DAG

In the case of parallel algorithms specified by a DAG, time complexity is easy to define
precisely, as we proceed to show. Let G = (IV, A) be a DAG representing some parallel
algorithm. Let {(z, P;,¢;) | ¢ € No} be a schedule for this DAG that uses p processors.
The time spent by such a schedule is equal to max;c v t;. We define T}, as the minimum of
max;e v t;, where the minimum is taken over all possible schedules that use p processors.
We view T}, as the time complexity of the algorithm described by G. Note that T}, is a
function of the number p of available processors.

We define

Too = 1;121111 Tp.

It is seen that T}, is a nonincreasing function of p, and is bounded below by 0. Since T},
is integer valued, there exists a minimal integer p* such that T, = T, for all p > p*.
We view T, as the time complexity of the algorithm specified by G when a sufficiently
large number of processors (at least p*) is available.

We continue with a few observations. The quantity 77 is the time needed for
a serial execution of the algorithm under consideration. Evidently, 77 is equal to the



12 Introduction ~ Chap. 1

number of nodes in the DAG that are not input nodes. Another important fact is that
T is equal to the depth of the DAG, which we proceed to prove.

Let ig,...,7x be a longest positive path in G. Then, node iy is an input node and
K is equal to the depth D, by the definition of D. For any schedule, we have ¢;;, = 0
and t;,,, > t;, +1 (for k = 0,...,K — 1), and it follows that ¢;,, > K = D. We
conclude that T, > D. For the reverse inequality, we assign a different processor P;
to each node ¢ and we let t; be the number of arcs in a longest positive path from an
input node to node 7. (We set ¢t; = O if 7 is itself an input node.) If (i,j) € A then
t; > t; + 1. This is because we can take a longest positive path from an input node to
node 7 and append arc (4, j) to obtain a path to node j. It follows that we have a valid
schedule and the corresponding time is max; t; = D. Therefore, 7o, < D, which proves
that T, = D.

For an arbitrary value of p, we have T > T}, > T,. The exact value of T}, is not
easy to determine, in general. In fact the problem of computing T, given a particular
DAG and a value of p, is a difficult combinatorial problem. This is not necessarily a
concern because, as will be seen, there are some simple useful bounds for T,.

Properties of T,

Let us fix a DAG G. Our first result provides a fundamental limitation on the speed of
a parallel algorithm.

Proposition 2.1. Suppose that for some output node ¢, there exists a positive
path from every input node to . Furthermore, suppose that the in—degree of each node
is at most 2. Then,

To > logn,

where n is the number of input nodes.

Proof. We say that a node j in the DAG depends on k inputs if there exist k input
nodes and a positive path from each one of them to node j. (For completeness, we
also say that an input node j depends on one input.) We prove, by induction on k, that
t; > logk for every node j depending on k inputs and for every schedule. The claim
is clearly true if k = 1. Assume that the claim is true for every k < ko and consider a
node j that depends on ko + 1 inputs. Since j can have at most two predecessors, it has
a predecessor £ that depends on at least [(ko + 1)/2] inputs. Then, using the induction
hypothesis,

ko+1

thtg-i-lZIog[ -‘+12103(k0+1),

and the induction is complete. Q.E.D.

The next result expresses the fact that if the number of processors is reduced by a
certain factor, then the execution time is increased by at most that factor.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 13

Proposition 2.2. If c is a positive integer and g = cp then T}, < cTj,.

Proof. Consider a schedule which takes time T, using g processors. At each stage,
at most ¢ operations are performed, and can be carried out in at most g/p = c¢ time units
using p processors. We have thus obtained a schedule with p processors which takes at
most T, time units. Q.E.D.

Another useful result is the following:

Proposition 2.3. For every p, we have

T
T,,<Too+;1.

Proof. Consider a schedule .S for which the execution time is equal to T, and, for
every positive integer 7, let n, be the number of nodes ¢ for which ¢; = 7. We define a
new schedule S’ that uses only p processors. The schedule S’ proceeds in phases. At the
7th phase, we perform the operations that were scheduled for time 7 under the original
schedule S. Given that there are p processors available, the 7th phase can be completed
in [n./p] time units. Since T}, cannot be larger than the time required by schedule S’,
we obtain

T n T n T,
T, < L (—’+1)=—‘+T,
i [pl > p p =

=1 T=1

where we have used the fact that ZZ°=°1 n, is equal to T, the total number of nodes in
the DAG that are not input nodes. Q.E.D.

The following result is a corollary of Prop. 2.3.

Proposition 2.4. (a) If p > T; /T, then T, < 2T. More generally, if p =
AT /Two), then T, = O(To).
) If p < T, /T, then

B o7, <28
p p

More generally, if p = O(T} /T), then T, = (T} /p).

Proof. (a) If p > T /Tw [respectively, p = T} /Two)], then T} /p < T, [respec-
tively, 71 /p = O(Ts)], and the result follows from Prop. 2.3.
(b) If p < T1/Tw [respectively, p = O(T1/Tx)], then T, < Tj/p [respectively,
Ts = O(T/p)), and Prop. 2.3 yields T, < 2T} /p [respectively, T, = O(T;/p)]. Fur-
thermore, Prop. 2.2 yields T} < pT), from which we obtain T, > T;/p = T} /p).
Q.E.D.



14 Introduction Chap. 1

The last two results are of fundamental importance. They establish that although
Ty is defined under the assumption of an unlimited number of processors, (7} /7o)
processors are actually sufficient to come within a constant factor of T, [Prop. 2.4(a)].
Furthermore, a corresponding schedule is obtained by simply modifying an optimal sched-
ule for the case of an unlimited number of processors (see the proof of Prop. 2.3), as
opposed to solving a generally difficult scheduling problem. This suggests a methodology
whereby we first develop a parallel algorithm as if an unlimited number of processors
were available, and then adapt the algorithm to the available number of processors. The
significance of Prop. 2.4(b) is that as long as p = O(T}/T), the availability of p pro-
cessors allows us to speed up the computation by a factor proportional to p, which is the
best possible. We thus see that for a number of processors nearly equal to T} /T, We
obtain both optimal execution time and optimal speeding up of the computation (within
constant factors).

Finding an Optimal DAG

It is seen that there can be several DAGs corresponding to different algorithms for the
same computational problem (see Fig. 1.2.2). It may then be of interest to find a DAG
for which T}, is minimized, where p is the number of available processors. Let us denote
by T} the value of T}, corresponding to such an optimal DAG and view it as the optimal
parallel time, using p processors, for the computational problem under consideration.
The value of 777 is a measure of the complexity of the problem, as opposed to T}, which
is the complexity of a particular algorithm.

Figure 1.2.2 Another DAG representing
an algorithm for evaluating the arithmetic
expression (z + z3)(z3 + z3). We have
T) = 3 and Too = D = 2. This should
be contrasted with the DAG of Fig. 1.2.1
which solves the same computational
problem and for which T} = 7 and D = 3.
We conclude that the DAG given here

(xy +x3) {xy +x3) represents a better parallel algorithm.

An explicit evaluation of T}, is usually very difficult. However, for several inter-
esting classes of problems, there exist methods for constructing DAGs that come within
a constant factor of the optimal. We do not pursue this issue any further and refer the
reader to the notes and sources at the end of this chapter.

Speedup and Efficiency

We now assume that a particular model of parallel computation has been chosen. This
could be the DAG model considered earlier, or any other model. Let us consider a
computational problem parametrized by a variable n representing problem size. (In the
DAG model, different problem sizes correspond to different numbers of input variables.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 15

Thus, properly speaking, an algorithm is not specified by a single DAG, but rather by a
family of DAGs, one for each problem size.) Time complexity is generally dependent
on n, and we incorporate this dependence in our notation.

We describe a few concepts that are sometimes useful in comparing serial and
parallel algorithms. Suppose that we have a parallel algorithm that uses p processors (p
may depend on n), and that terminates in time T,(n). Let T™(n) be the optimal serial
time to solve the same problem, that is, the time required by the best possible serial
(uniprocessor) algorithm for this problem. The ratio

is called the speedup of the algorithm, and describes the speed advantage of the parallel
algorithm, compared to the best possible serial algorithm. The ratio

Sp(n) _ T™(n)
p pTp(n)

Ep(n) =

is called the efficiency of the algorithm, and essentially measures the fraction of time that
a typical processor is usefully employed. Ideally, Sp(n) = p and E,(n) = 1, in which
case, the availability of p processors allows us to speed up the computation by a factor of
p. For this to occur, the parallel algorithm should be such that no processor ever remains
idle or does any unnecessary work. This ideal situation is practically unattainable. A
more realistic objective is to aim at an efficiency that stays bounded away from zero, as
n and p increase.

There is a difficulty with the above definitions because the optimal serial time
T*(n) is unknown, even for seemingly simple computational problems like matrix mul-
tiplication. For this reason, 7*(n) is sometimes defined differently. Some alternatives
are the following:

(a) Let T*(n) be the time required by the best existing serial algorithm.

(b) Let T*(n) be the time required by a benchmark serial algorithm. For example,
for multiplication of two dense n x n matrices, ©(n®) is a reasonable benchmark,
even though there exist algorithms with substantially smaller time requirements
[AHU74].

(c) Finally, we may let T7*(n) be the time required by a single processor to execute
the particular parallel algorithm being analyzed. (That is, we let a single processor
simulate the operation of the p parallel processors.) With this choice of T*(n),
efficiency relates to how well a particular algorithm has been parallelized, but
provides no information on the absolute merits of the algorithm [in contrast with
our earlier definitions of 7™*(n)].

Notice that if 7*(n) is defined as in (c), and if algorithms are specified by means of
the DAG model, then 7*(n) coincides with T7(n). In particular, if p < O(Tl (n)/ Too(n)),
then Tp(n) = ©(T1(n)/p) [Prop. 2.4(b)] and



16 Introduction ~ Chap. 1

_ Th(n) _

Ep(n) = pr ™) =

o(1).

This shows that if the number of processors is suitably small, then efficient parallel
implementations are possible. Furthermore, if p = @(Tl(n)/Too(n)), we also have
Tp(n) = ©(To(n)) [Prop. 2.4(a)] and we have a parallel implementation that is both
efficient and has a time complexity within a constant factor from the optimum.

The above discussion suggests that efficiency of parallel implementation is not a
concern, at least when an algorithm is specified by a DAG, and as long as communication
issues are ignored. A more fundamental issue is whether the maximum attainable speedup
T1(n)/Ts(n) can be made arbitrarily large, as n is increased. In certain applications,
the required computations are quite unstructured, and there has been considerable debate
on the range of achievable speedups in real world situations. The main difficulty is
that some programs have some sections that are easily parallelizable, but also have
some sections that are inherently sequential. When a large number of processors is
available, the parallelizable sections are quickly executed, but the sequential sections
lead to bottlenecks. This observation is known as Amdahl’s law and can be quantified as
follows: if a program consists of two sections, one that is inherently sequential and one
that is fully parallelizable, and if the inherently sequential section consumes a fraction f
of the total computation, then the speedup is limited by

1

S, — <= Vp.
SR a7 A

On the other hand, there are numerous computational problems for which f decreases to
zero as the size of the problem increases, and Amdahl’s law is not a concern.

1.2.3 Examples: Vector and Matrix Computations

In this subsection, we consider some elementary but very common numerical computa-
tional tasks, present some simple parallel algorithms, and discuss their complexity and
efficiency. All of the algorithms to be considered can be represented by DAGs and
such representations will be occasionally employed. It is assumed that each addition or
multiplication takes unit time and that processors are able to instantly exchange interme-
diate results. In practice, processors may be communicating through an interconnection
network or through a shared memory and our analysis ignores the associated commu-
nication and memory access delays. Nevertheless, the algorithms considered here are
simple enough so that they can be implemented in some architectures with negligible
communication overhead. The communication aspects of such implementations will be
discussed in Subsections 1.3.4 to 1.3.6.

Scalar Addition

The simplest computational task is the addition of n scalars. It is clear that the best se-
rial algorithm requires n — 1 operations. Thus, 7*(n) = n— 1. We now present a parallel



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 17

algorithm under the simplifying assumption that n is a power of 2. We partition the n
scalars into n/2 disjoint pairs and we use n /2 different processors to add the two scalars
in each pair. Thus, after one time unit, we are left with the task of adding only n/2
scalars. Continuing similarly, after logn stages, we are left with a single number and
the computation terminates (see Fig. 1.2.3). This algorithm generalizes easily to the case
where n is not a power of 2: the execution time becomes [log n]| using |n/2] processors
(see Fig. 1.2.3).

Figure 1.2.3 Parallel computation of the sum of 16 scalars. Eight processors are needed
for the parallel additions at the first stage and a total of 4 = log 16 stages are needed.
If the portion of the diagram enclosed in the dashed circle is removed, we obtain an
algorithm for the parallel addition of 15 scalars. Notice that now only 7 = |15/2]
processors are needed.

The efficiency of the above algorithm is

n—1
[n/2] [logn]’

which goes to zero as n increases. An alternative parallel algorithm is obtained as follows
(see Fig. 1.2.4). We assume for simplicity that logn is an integer, and that n/logn is
an integer and a power of 2. We split the n numbers into n/logn groups of logn
numbers each. We use n/logn processors and the ith processor adds the numbers in
the ith group; this task takes time logn — 1. We are then left with the task of adding
n/logn numbers. This can be accomplished by our previous parallel algorithm in time
log(n/logn) < logn, using n/(2logn) processors. This two—phase algorithm requires
time approximately equal to 2logn (the speed is reduced by a factor of 2), but uses only
n/logn processors and therefore its efficiency is approximately equal to 1/2. Notice that
we have chosen the number of processors p to be approximately equal to T7(n)/T e (n).
As discussed earlier, such a choice always leads to efficient algorithms. This example
illustrates that with a small sacrifice in speed, efficiency can be substantially improved.



18 Introduction Chap. 1

Figure 1.2.4 An alternative algorithm for the paralle] addition of 16 scalars. Only four
processors are used and the time requirements increase to 5 stages. Overall, however,
there is an efficiency improvement over the algorithm of Fig. 1.2.3.

In fact, it will be seen later (Subsection 1.3.5) that decreasing the number of processors
can also substantially decrease the communication requirements of an algorithm.

inner Products

The inner product Y ., z;y; of two n—dimensional vectors can be computed in time
[logn] + 1 using n processors as follows: at the first step, each processor i computes
the product z;y; and then the [logn] time algorithm for scalar addition is used.

Matrix Addition and Multiplication

The sum of n matrices of dimensions m x m can be computed in time [logn] using
m?|n/2] processors by letting a different group of |n/2] processors compute a different
entry of the sum. Similarly, multiplication of two matrices of dimensions m x n and
n X £ consists of the evaluation of m{ inner products of n—dimensional vectors and
can be therefore accomplished in time [logn] + 1 using nm¢ processors. In the case
where n = m = £, the processor requirements become n>. The corresponding number
Ty (n) of operations is ©(n?). In fact, there exist more economical algorithms for matrix
multiplication in terms of processor requirements, or in terms of 7j(n), but they are
somewhat impractical and will not be considered here.

Powers of a Matrix

Suppose now that A is an n x n matrix and that we wish to compute A* for some
integer k. If k is a power of 2, this can be accomplished by repeated squaring: we
first compute A%; we then compute A2A% = A%, etc. After log k stages, AF is obtained.
This procedure involves log & consecutive matrix multiplications and can be therefore
carried out in time log k([logn] + 1) using n? processors. A simple modification of this
procedure can be used to compute A* in time @(log k- log n) even if k is not a power
of 2 (Exercise 2.4).



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 19

A consequence of the above discussion is that all the powers A2,..., A™ of an
n X n matrix can be computed in time ©(log® n) using n* processors by using a dif-
ferent group of n® processors for the computation of each power A*. An alternative
method for computing the powers A2,..., A", which avoids unnecessary duplication of
computational effort, is shown in Fig. 1.2.5.

Figure 1.2.5 Parallel computation of the
powers AZ,..., A" of an n X n matrix
A. A node with a label S represents a
<S matrix sguaring operation. At the first
stage, A“ is computed. At the second
A? stage, A> and A* are computed by
multiplying earlier computed matrices.
More generally, at the kth stage, the
S matrices A2°7'+1 ..., A2* are computed.
44 A, Thus, ©(log n) stages suffice for the
computation of A2,..., A™. Each stage
involves at most ©(n) simultaneous matrix
@ multiplications and can be carried out using
n* processors in time ©(log n), leading to
A7 A8 AS an overall time ©(log? n).

»
©

In the previously discussed algorithms, we have strived for the fastest possible
execution times; such an approach often leads to excessive processor requirements and
low efficiency. On the other hand, as discussed earlier, the same algorithms can be
made efficient if the number of processors is chosen so that p = O(Tl(n)/Too(n)).
For example, the product of two n x n matrices can be computed in time ©O(logn)
using ©(n®/logn) processors, and the corresponding efficiency is ©(1). If the number
of processors is reduced even further, the execution time will be @(T1 (n) /p) [Prop.
2.4(b)]. Thus, two n x n matrices can be multiplied in time ©(n) when n? processors
are used, and in time ©(n?) when n processors are used.

1.2.4 Parallelization of Iterative Methods

Many interesting algorithms for the solution of systems of equations, optimization, and
other problems have the structure

z(t + 1) = f(z(t)), t=0,1,..., 2.1

where each z(t) is an n—dimensional vector, and f is some function from R" into itself.
(Several examples will be seen in Chapters 2 and 3.) They are called iterative algorithms
or, in certain contexts, relaxation methods. An alternative notation that is sometimes used
in place of Eq. (2.1) is z := f(z). Notice that if the sequence {z(t)} generated by the
above iteration converges to a limit z*, and if the function f is continuous, then z* is a
fixed point of f, that is, it satisfies * = f(z*). A common special case arises when the
function f is of the form f(z) = Ax + b, where A is a square matrix and b is a vector,



20 Introduction Chap. 1

in which case we are dealing with a linear iterative algorithm. In this subsection, we
make some general observations on the possibilities for parallel execution of iterative
algorithms. It should be mentioned here that the concept of time complexity is not
quite relevant to algorithms of the form z := f(x) unless a termination criterion is also
specified. ’

Let z;(t) denote the ith component of z(t) and let f; denote the ith component of
the function f. Then, we can write z(t + 1) = f(z(t)) as

it + 1) = fi(z1(t), ..., za(®)), i=1,...,n. 2.2)

The iterative algorithm z := f(x) can be parallelized by letting each one of n processors
update a different component of z according to Eq. (2.2). At each stage, the ith processor
knows the value of all components of z(t) on which f; depends, computes the new value
z;(t + 1), and communicates it to other processors in order to start the next iteration.

The communication required for the execution of iteration (2.2) can be compactly
described by means of a directed graph G = (IV, A), called the dependency graph. The
set of nodes NV is {1,...,n}, corresponding to the components of z. For any two distinct
nodes ¢ and j, we let (3, j) be an arc of the dependency graph if and only if the function
fj depends on z;, that is, if and only if processor i needs to communicate the values of
z;(t) to processor j (see Fig. 1.2.6).

Figure 1.2.6 The dependency graph
associated with an iteration of the form

21t + 1) =fi (a10), 23(0))
(t+1)=f (El(t), -’Bz(t))

z3(t + 1) =f3 (22(8), z3(1), 24(1))
za(t + 1) =fa (w20, 2a(®)).

Assuming that the iteration (2.1) is to be carried out only for t = 0, 1,...,T, where
T is some positive integer, the structure of the algorithm can be represented by means of
a DAG. This DAG is essentially an “unfolding” in time of the above defined dependency
graph (see Fig. 1.2.7).

Figure 1.2.7 The DAG corresponding to
two iterations when the function f has the
dependency graph shown in Fig. 1.2.6.
The nodes of the DAG are of the form
(i,t), where ¢ € {1,...,n}, and ¢t is the
iteration count. The arcs are of the form
(G,1), Gt + 1)), where (i, 5) is an arc of
the dependency graph or ¢z = j.




Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 21

Sometimes we may wish to employ a coarse—grained parallelization of the iteration
z := f(z). In particular, we decompose the vector space R™ as a Cartesian product of
lower dimensional subspaces R"i, j = 1,...,p, where Z;?:I n; = n. Accordingly, any
vector z € R" is decomposed as z = (x1,...,Zj,...,Zp), Where each z; is itself an
n;—dimensional vector, called a block—component of z, or simply a component when no
confusion can arise. Similarly, the iteration z(t + 1) = f(z(t)) can be written as

.’L'J(t+1)=f_7($(t)), i=1...,p (2.3)

where each f; is a vector function mapping R"™ into R™/. We assign each one of p
processors to update a different block—component according to Eq. (2.3), and the resulting
parallel algorithm is said to be block—parallelized. A dependency graph G = (N, A) can
be again defined with N = {1,...,p} and A = {(3,7) | f; depends on z;}. There are
several reasons for being interested in block—parallelization. First, there may be too few
processors available, so that we have to assign more than one component to each one of
them. Second, certain scalar functions f; may involve common computations, in which
case it is natural to group them together. Finally, as will be discussed in Subsection
1.3.5, block—parallelization reduces the communication requirements of an algorithm.

In general, a parallelization that assigns the update of different components to
different processors is meaningful when the computations involved in the update of each
z; are different, but could be wasteful otherwise. For example, suppose that each f; is
of the form

1/2

n

E 2
fi($17"'azn)=xi+ x]

i=1

In this example, it is clearly wasteful to let all processors simultaneously compute the
value of (37, a:z)l/ 2. This could be done by a single processor that subsequently

2
communicates the result to the others. Even better, the processors could cooperate in the
computation of this quantity, using, for example, the methods of Subsection 1.2.3. Nev-
ertheless, in many cases, the evaluation of each f; involves very little or no duplication

of effort, and this is the situation in which we are mostly interested.
Gauss-Seidel Iterations

Iteration (2.2), in which all of the components of = are simultaneously updated, is
sometimes called a Jacobi-type iteration. In an alternative form, the components of x
are updated one at a time, and the most recently computed values of the other components
are used. That is, Eq. (2.2) is changed to

mi(t+l)=fi(w1(t+1),...,x,~_1(t+1),a:i(t),...,xn(t)), i=1,....n. (24)

The iteration (2.4) is called the Gauss—Seidel algorithm based on the function f. Gauss—
Seidel algorithms are often preferable: they incorporate the newest available information,



22 Introduction Chap. 1

and for this reason, they sometimes converge faster than the corresponding Jacobi-type
algorithms. (A result of this type will be proved in Section 2.6.)

From now on, we concentrate on a single Gauss—Seidel iteration (sometimes called
a sweep), and investigate its parallelization potential. A Gauss—Seidel iteration may
be completely non—parallelizable. For example, if every function f; depends on all
components z;, then only one component can be updated at a time. On the other hand,
when the dependency graph is sparse, it is possible that certain component updates can
be performed in parallel. An example is shown in Fig. 1.2.8.

Figure 1.2.8 Illustration of the
parallelization of Gauss—Seidel iterations.
Let f be a function whose dependency
graph is as in Fig. 1.2.6. The Gauss—Seidel
algorithm based on f takes the form
1t + 1) =f
@i+ 1)=f
z3(t+ 1) =f3

it + 1) =fs

—_

1(8), z3(1))

o1t + 1), 22(8))

2(t + 1), 23(2), 74 1))
@2t + 1), 2(8)).

—~ A~ o~

The DAG shown illustrates the data
dependencies in one iteration of the Gauss—Seidel algorithm. There are four updates to be performed, but the
depth of the DAG is only 3. In particular, it is seen that z3 and z4 can be updated in parallel.

We notice that there are several alternative Gauss—Seidel algorithms corresponding
to the same function f, because there is freedom in choosing the order in which the
components are to be updated. For example, we might wish to update the components
of z starting with z,, and proceeding backwards, with z; being updated last. Different
updating orders, strictly speaking, correspond to different algorithms and the results
produced are generally different. Nevertheless, in several applications, a Gauss—Seidel
algorithm converges in the limit of a large number of iterations to the same value,
irrespective of the updating order. As long as the speed of convergence corresponding
to different updating orders is not drastically different, it is natural to choose an ordering
for which the parallelism in each iteration is maximized (see Fig. 1.2.9).

We now develop a graph-theoretic formulation of the problem of finding an up-
dating order that minimizes the parallel time needed for a sweep. Given the depen-
dency graph G = (N, A), a coloring of G, using K colors, is defined as a mapping
h: N {1,...,K} that assigns a “color” k = h(i) to each node i € N. The idea is
that similarly colored variables will be updated in parallel. The following result shows
that maximizing parallelism is equivalent to an “optimal coloring” problem.

Proposition 2.5. The following are equivalent:

(i) There exists an ordering of the variables such that a sweep of the corresponding
Gauss—Seidel algorithm can be performed in K parallel steps.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 23

Figure 1.2.9 Illustration of the increase
in parallelism when the updating order
is changed. Here the function f is the same
as in Figs. 1.2.6 to 1.2.8. We consider
the following updating order:
21t + 1) =fi (z1(0), 23(8))
23(t + 1) =3 (22(8), @3(8), 24(1))
za(t + 1) =fa (22(t), 24(1))

ot + 1) =f (a1t + D, 220).

The DAG shown illustrates the data dependencies in a typical iteration. Its depth is only 2. It is seen that a
sweep can be executed in parallel in two time steps using two processors.

(ii) There exists a coloring of the dependency graph that uses K colors and with the
property that there exists no positive cycle with all nodes on the cycle having the
same color.

Proof. We first show that (i) implies (ii). Consider an ordering of the variables
with which a Gauss—Seidel iteration takes K parallel steps. We define h(z), the color of
node ¢, to be equal to k if the variable z; is updated at the kth parallel stage. Consider
a positive cycle 2,1, ..,%m, With ¢, = 2;. Let us choose the node i, in the cycle
(1 < £ < m) that comes first in the assumed ordering. Since 744 is ordered after 7z, and
since (i¢,%¢41) € A, the variable z;,  (t + 1) depends on z;,(t + 1). It follows that z;,
and z;,,, cannot be updated simultaneously and we have h(iy) # h(i¢+1). This shows
that in every positive cycle, there exist two nodes with different colors and (ii) has been
proved.

We now prove an auxiliary result. We show that if G is a directed acyclic graph,
then its nodes can be ordered so that if (¢, j) € A, then j comes before i. The proof is as
follows. For each node ¢, we let d; be the largest possible number of arcs in a positive
path that starts at 5. (We let d; = O if node ¢ has no outgoing arcs.) It is seen that d;
is finite as a consequence of acyclicity. We then order the nodes in order of increasing
values of d;. (Ties among nodes with the same value of d; are broken arbitrarily.) We
see that if (4, j) € A, then d; > d;. [This is because we can take a longest path starting
from j and append the arc (7,j) to obtain an even longer path starting from i.] We
conclude that j comes before ¢ whenever (¢, j) € A, as desired.

We now assume that (ii) holds. Let h be a coloring with K colors and with no
positive cycle in which all nodes have the same color. For every color k, let G be
the subgraph of G obtained by keeping only the nodes with color £ and the arcs joining
them. Each Gy is acyclic and, according to the result of the preceding paragraph, the
nodes in G can be ordered so that j comes before ¢ whenever (7,7) € A. We order
the nodes in G in order of increasing color; ties between nodes with the same color k
are broken by using the ordering of the graph Gj. Consider the Gauss—Seidel iteration
corresponding to this ordering. Let ¢ and j be two distinct nodes with the same color k.
If (4,5) ¢ A and (j,7) ¢ A, then z; and z; can be clearly updated in parallel. The case



24 Introduction ~ Chap. 1

where (i,j) € A and (j,¢) € A is impossible because Gy, is acyclic. If (4,5) € A and
(J,7) ¢ A, then j appears before 7 in the order we have constructed and therefore the
computation of x;(¢ + 1) only requires the value of z;(t) and not the value of z;(t + 1).
Finally, the case where (j,7) € A and (i, 5) ¢ A is similar. We conclude that every z;
with the same color can be updated in parallel, thus proving (i). Q.E.D.

For the dependency graph of Fig. 1.2.6 two colors suffice. In particular, we may
let A(1) = h(3) = h(4) = 1 and h(2) = 2. Since every positive cycle goes through node
2, there exists no positive cycle with all nodes having the same color, as required. In
particular, the subgraph G in which only the nodes with color 1 are kept is acyclic.
With d; defined as in the proof of Prop. 2.5, we have d; =0, d; = 1, and ds = 2. The
ordering of the variables constructed in that proof is (1,3,4,2), and the corresponding
Gauss—Seidel iteration is precisely the one shown in Fig. 1.2.9. According to Prop. 2.5,
this ordering requires the least possible number of parallel stages per sweep, a fact that
is easy to verify directly for this particular example.

Proposition 2.5 can be somewhat simplified in the case where the dependency graph
has a certain symmetry property.

Proposition 2.6. Suppose that (i,j) € A if and only if (j,5) € A. Then, the
following are equivalent:

(i) There exists an ordering of the variables such that a sweep of the corresponding
Gauss—Seidel algorithm can be performed in K parallel steps.

(ii) There exists a coloring of the dependency graph that uses at most K colors and such
that adjacent nodes have different colors [that s, if (i, 7) € A, then h(i) # h(j)].

Proof. 1t is sufficient to show that condition (ii) of this proposition is equivalent
to condition (ii) of Prop. 2.5. Suppose that there exists a positive cycle with all the
nodes on that cycle having the same color. Then there exist two adjacent nodes with
the same color. Conversely, if (i,7) € A, then (j,7) € A and the two arcs (i, j) and
(4, %) form a positive cycle. Thus, if two neighboring nodes have the same color, there
exists a positive cycle with all nodes on that cycle having the same color. This proves
the equivalence of the two conditions and concludes the proof. Q.E.D.

Unfortunately, the optimal coloring problems of Props. 2.5 and 2.6 are intractable
(NP—complete): there is no known efficient algorithm for solving them, neither is it
likely that an efficient algorithm will be found [GaJ79]. Nevertheless, problems arising
in practice often have a special structure and a coloring with relatively few colors can
sometimes be found by inspection. Some interesting cases are the following:

(a) Consider the undirected graph G obtained by ignoring the orientation of the arcs
of G. If G is a tree, then two colors suffice: we choose an arbitrary node in the
tree and we assign color 1 (respectively, 2) to all nodes in the graph that can be
reached by traversing an even (respectively, odd) number of arcs.



Sec. 1.2 Models, Complexity Measures, and Some Simple Algorithms 25

(b) If every node in G has at most D neighbors, then D + 1 colors suffice. To see
this, we color the nodes one by one. Assuming that the first ¢ nodes have been
colored, we consider node 7 + 1. Since we are using D + 1 colors, there is some
color that can be used for node ¢ + 1 while ensuring that it is colored differently
from the already colored neighbors of ¢ + 1.

When a coloring scheme is used for the parallel implementation of a Gauss—Seidel
algorithm, it is wasteful to assign a different processor to each component of x, because
each processor will be idle while variables of different colors are being updated. The
obvious remedy is to use fewer processors, with each processor being assigned several
variables with different associated colors.

Example 2.1. Red-Black Coloring of a Two-Dimensional Array

In a variety of iterative algorithms of the form z := f(z), employed for the numerical
solution of partial differential equations or in image processing, each component of the
vector z is associated with a particular point in a certain region of two—dimensional space.
For example, let N be the set of all points (i, ) € R2, such that  and j are integers satisfying
0<i< Mand0<j< M. Let z;; be the component of the vector = corresponding to
point (z, 7). By connecting nearest neighbors, we form a graph G = (IV, A), as illustrated in
Fig. 1.2.10. We view G as a directed graph, by making the arcs bidirectional, and we assume
that it is the dependency graph associated to the iteration z := f(z). Parallel execution of
this iteration, in Jacobi fashion, is straightforward. We assign a different processor to each
point (z, 7). This processor is responsible for updating z;; and, in order to do so, only needs
to know the values of the components of x associated with neighboring points. Thus, it is
most natural to assume that processors associated with neighboring points are joined by a
direct communication link.

(3,0) (3,3)
o o O— o
h
N ¢ ¢
) T Figure 1.2.10 A common
dependency graph associated with
iterative algorithms arising in the
O —O  solution of partial differential
(0,0) (0,3)  equations and in image processing.

Concerning the implementation of the associated Gauss—Seidel method, we notice that
the graph of Fig. 1.2.10 can be colored using only two colors, as indicated in Fig. 1.2.11. If
we were to assign one processor to each component z;;, each processor would be idle half
of the time. It is thus reasonable to assign two components with different corresponding
colors to each processor. As shown in Fig. 1.2.11 this can be done while preserving the
property that only nearest neighbors have to communicate to each other. In practice, the
number of points involved is often large enough so that each processor is assigned more



26 Introduction Chap. 1

than two components of z. The coloring indicated in Fig. 1.2.11 is commonly known as
red-black coloring and the associated Gauss—Seidel algorithm is known as Gauss—Seidel
with red-black ordering.

Figure 1.2.11 The nodes of the
)t graph in Fig. 1.2.10 can be colored
( using two colors only. We can

assign a pair of nodes with different
colors to each processor and notice
that only neighboring processors
have to communicate.

¢
-
'8

EXERCISES

2.1. Formulate and prove a generalization of Prop. 2.1 under the assumption that the in—degree
of each node is at most B, where B is some positive integer.

2.2. Prove Amdahl’s law. How should 7*(n) be defined for this law to hold?

2.3. (Prefix Problem [LaF80].)

(@) Let ai,a2,...,an be given scalars. Provide an O(logn) time algorithm which
uses O(n) processors and evaluates all products of the form H:;l a;, where k =
1,2,...,n.

(b) Generalize part (a) to provide an O(log . - log m) time algorithm for the case where
each a; is an m X m matrix.

(c) Consider the vector difference equation

z(t + 1) = A@)z(t) + u(t).

Here, for t = 0,1,...,n, z(¢) and u(¢) are vectors in ™, and A(f) is an m x m
matrix. Assume that A(t), u(t) are known for each ¢, and that z(0) is also given.
Use the result of part (b) to obtain an O(logn - logm) time parallel algorithm for
computing z(n).
2.4. Show how to compute the kth power of an 7 X n matrix in time e(logk -log n) using n?
processors, when & is not a power of 2.

2.5. (a) Consider the scalar difference equation
z(t + 1) = a(®)z(t) + b(t)x(t — 1)
and consider the problem of computing x(n). The inputs of the computation are

z(=1), (0), a(0), ...,a(n—1), b0),...,b(n —1). Assuming that enough processors
are available, find a parallel algorithm that takes time ©(logn). Hint: Write the



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 27

difference equation in vector form and reduce the problem to the multiplication of n
matrices of dimensions 2 x 2. '

(b) Repeat part (a) with the only difference that z(—1) is unknown but z(n — 1) is
provided instead as an input to the computation, under the additional assumption
that there exists a unique sequence z(0), z(1),...,z(n — 1), z(n) satisfying the given
initial and final conditions. Hint: Obtain a system of linear equations of the form

L) =2 [0

where D is a 2 x 2 matrix that can be efficiently computed. Solve for 2(n) and z(1).

2.6. Show that a polynomial p(x) = anz™ + - - - + a1z + ao can be evaluated in parallel in time

©(logn). Here the inputs of the computation are the coefficients of the polynomial and the
value of z.

X
X
A

XX
XX
X
X

XX

O— A I J J O

Figure 1.2.12 Dependency graph for nine-point discretizations (Exercise 2.7).

2.7. Consider the dependency graph G of Fig. 1.2.12, where all arcs are interpreted as being bidi-
rectional. Such a dependency graph is obtained from so called “nine—point” discretizations
of partial differential equations with two spatial variables [Ame77].

(a) Show that G cannot be colored with less than four colors.

(b) Find a coloring of G with four colors.

(c) Assuming that a mesh of processors is available (that is, a two—dimensional array of
processors with nearest neighbor connections), show that we can assign four differ-
ently colored nodes to each processor in a way that the execution of the Gauss—Seidel
algorithm requires only nearest neighbor communication.

1.3 COMMUNICATION ASPECTS OF PARALLEL AND DISTRIBUTED
SYSTEMS

In many parallel and distributed algorithms and systems the time spent for interprocessor
communication is a sizable fraction of the total time needed to solve a problem. In
this case we say that the algorithm experiences substantial communication penalty or
communication delays. We can think of the communication penalty as the ratio



28 Introduction Chap. 1

CP = M’ (3.1)
Tcomp

where Tror4r is the time required by the algorithm to solve the given problem, and
Tcomp is the corresponding time that can be attributed just to computation, that is, the
time that would be required if all communication were instantaneous. This section is
devoted to a discussion of a number of factors affecting the communication penalty.

To analyze communication issues, it is helpful to view the distributed computing
system as a network of processors connected by communication links. Each processor
uses its own local memory for storing some problem data and intermediate algorithmic
results, and exchanges information with other processors in groups of bits called packets
using the communication links of the network. The length of packets can be widely
varying, ranging from a few tens of bits, to several thousands of bits. We assume that
when a packet travels on a communication link, the bits of the packet are consecutively
transmitted without interruption. A shared memory can also be viewed as a communi-
cation network, since each processor can send information to every other processor by
storing it in the shared memory. This analogy can be extended to the case where the
shared memory is organized in a hierarchy of memory sections, each, possibly, having
a different access time for different processors. We will emphasize, however, a com-
munication model based on direct processor—to—processor links, since such a model is
somewhat easier to understand and analyze. We will also adopt a store—and—forward
packet switching data communication model, whereby a packet that must travel over a
route involving several processors, may have to wait at any one of these processors for
some communication resource to become available before it gets transmitted to the next
node. In some systems, it is possible that packets are divided and recombined at inter-
mediate nodes on their routes, but we will not consider this possibility in our discussion.
In another approach, called circuit switching (see [BeG87], [Sch87]), the communication
resources needed for a packet’s transfer are reserved via some mechanism before the
packet’s transfer begins. As a result the packet does not have to wait at any point along
its route. Circuit switching is almost universally employed in telephone networks, but is
seldom used in data networks or in parallel and distributed computing systems. It will
not be considered further in this book.

Communication delays can be divided into four parts:

(@) Communication processing time. This is the time required to prepare informa-
tion for transmission; for example, assembling information in packets, appending
addressing and control information to the packets, selecting a link on which to
transmit each packet, moving the packets to the appropriate buffers, etc.

(b) Queueing time. Once information is assembled into packets for transmission on
some communication link, it must wait in a queue prior to the start of its transmis-
sion for a number of reasons. For example, the link may be temporarily unavail-
able because other information packets or system control packets are using it or



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 29

are scheduled to use it ahead of the given packet; or because a contention resolu-
tion process is underway whereby the allocation of the link to several contending
packets is being decided. Another reason is that it may be necessary to postpone
the transmission of a packet to ensure the availability of needed resources (such
as buffer space at its destination). In the case where the possibility of transmis-
sion errors is nonnegligible, the queueing time includes the time for the packet
retransmissions needed to correct the errors. Queueing time is generally difficult
to quantify precisely, but simplified models are often adequate to obtain valuable
qualitative and quantitative conclusions.

(c) Transmission time. This is the time required for transmission of all the bits of the
packet.

(d) Propagation time. This is the time between the end of transmission of the last bit
of the packet at the transmitting processor, and the reception of the last bit of the
packet at the receiving processor.

Depending on the given system and algorithm, one or more of the above times may
be negligible. For example, in some cases the information is generated with sufficient
regularity and the transmission resources are sufficiently plentiful so that there never
is a need for queueing packets, whereas in other cases the physical distance between
transmitter and receiver is so small that propagation delay is negligible.

For most systems, we can reasonably assume that the processing and propagation
time on a given link is constant for all packets, and the transmission time is proportional
to the number of bits (or length) of the packet. We thus arrive at the following formula
for the delay of a packet in crossing a link:

D=P+RL+Q, (3.2)

where P is the processing and propagation time, R is the transmission time required for
a single bit, L is the length of the packet in bits, and @ is the queueing time. (We are
using bits as the packet length unit, but any other unit that requires a fixed transmission
time can be used.)

It is difficult to make general statements regarding the size of the various terms in
the delay formula (3.2). In some systems, the transmission time RL is much larger than
the processing and propagation time P, particularly when L includes a substantial number
of overhead bits. In other cases, the reverse is true. In the great majority of presently
existing systems, even when the packet does not contain much more than overhead, the
sum P + RL is much larger than the time required to execute an elementary numerical
operation such as a floating point multiplication. This means that if a parallel algorithm
requires transmission of a packet for every few numerical operations it performs, the
communication time is likely to dominate its execution time.

Throughout this section we focus on packets as units of communication. It should
be noted, however, that a packet is sometimes part of some “message” that makes sense
only when received as a whole. A message may be segmented into several packets for
transmission for a number of reasons, and it is then appropriate to focus on the delay of



30 Introduction Chap. 1

the entire message (from start of transmission of its first packet to the end of reception of
its last packet). This complicates the situation because the message delay depends on how
the message is segmented into packets, and on whether the transmission of the packets
can be parallelized. For example, if a message is divided into n equal length packets
that are transmitted over n equal delay, independent parallel communication paths, the
message delay will be smaller by a factor n over the case where the entire message is
transmitted over one of the paths. (This accounting assumes that the extra communication
overhead when the message is segmented into several packets is negligible, and that the
processing, propagation, and queueing delays are also negligible.)

Another possibility for parallelizing communication arises when a message is to be
transmitted over a path of k£ > 1 links. If the message is segmented into n packets that
are transmitted sequentially over the k-link path with a transmission time on each link
equal to T per packet, the delay of the message will be (n+k—1)T as compared with the
delay of knT that will be required if the entire message is transmitted as a single packet.
(This accounting neglects the effect of overhead, processing and propagation delays, and
queueing, and assumes that a node must receive a packet in its entirety before relaying
any portion of the packet to some other node.) The delay reduction is achieved by
pipelining the transmission of the packets over the k links as shown in Fig. 1.3.1. It is
seen that by making the packet size very small, the delay can be reduced by a factor
nearly equal to the number of links of the path, to almost the time required to transmit
the message over a single link. This motivates a special type of transmission method,
sometimes called cut—through transmission, where a node can relay to another node any
portion of a packet without waiting to receive the packet in its entirety. This amounts
to segmenting the packet into many smaller packets to take advantage of the type of
pipelining illustrated in Fig. 1.3.1. Naturally, this type of transmission method should be
organized so that packets can be correctly put back together at their ultimate destination.
We will not go into this subject further. We note also that the idea of pipelining of
communication is applicable in other situations such as for example transmitting over a
spanning tree (see Exercise 3.19).

Some of the most important factors that influence communication delays are the
following:

(a) The algorithms used to control the communication network, mainly error control,
routing, and flow control.

(b) The communication network topology, that is, the number, nature, and location of
the communication links.

(¢) The structure of the problem solved and the design of the algorithm to match this
structure, including the degree of synchronization required by the algorithm.

The above factors are discussed in the subsequent subsections.
1.3.1 Communication Links

The precise method by which information is physically transmitted over a communication
channel will not be important for us. It suffices for our purposes to view a communication



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 31

Message segmented
into n packets

[TTT-=TT7
Start of packet Start of packet
transmission at link 1 transmission at link 2
End of packet T
transmission
at link 1 REIN DN
T Start of packet
NN t'ransmission at
) link &
Time End of packet e
1 transmission at link 2
End of packet
transmission at link k
(a)
Message
A

OO~ - =0

Start of message transmission
at link 1

nT

7

. End of message
Time transmission
atlink 1

é Start of message
e transmission at
link k

End of message
transmission at link k
AN

(b)

Figure 1.3.1 Segmentation of a message into packets to take advantage of pipelining
over a path consisting of k£ communication links. In (a) the message is divided into n
packets, each requiring 7" time units for transmission over a single link. The total time
required is (n + k — 1)T. In (b) the message is transmitted as a whole on each link
requiring nT" time units on each link for a total of knT time units. (This accounting
assumes that the overhead per packet and the processing, propagation, and queueing
delays on all links are negligible.)

link as a virtual bit pipe along which bits travel, starting from one point referred to as
the transmitter or the origin, and arriving at another point referred to as the receiver or
the destination. There are several types of such pipes. One is the synchronous bit pipe,
where the transmitter continuously sends bits at a fixed rate; packet bits if a packet is



32 Introduction ~ Chap. 1

available for sending, and dummy bits otherwise. An example is a high speed point—to—
point wire connection; this is the type of bit pipe that is the most common in parallel and
distributed computing systems. A second type is the intermittent synchronous bit pipe,
where the transmitter sends bits at a fixed rate when it has a packet to send, and sends
nothing otherwise. An example is Ethernet, which is a local area network bus (see e.g.
[BeG87]). Finally, a third type is the asynchronous character pipe, where packets are
transmitted in groups of bits called characters (usually eight or nine bits some of which
are used for synchronization); the bits within each character are sent at a fixed rate, but
successive characters can be separated by variable delays, subject to a given minimum.
A typical example involves low speed communication using personal computers, and/or
dial up telephone lines. In all of these pipes, the physical representation of bits can take
many different forms, using a variety of modulation and coding techniques that may
include forward error correction; see [BeG87] and [Sta85].

The capacity of a communication link is the maximum rate at which bits can be
transmitted over the corresponding bit pipe, and is equal to 1/R, where R is the bit
transmision time used in the delay equation (3.2). In the context of a given parallel or
distributed algorithm, the transmission rate of bits that carry algorithm-related informa-
tion is actually smaller due to a number of reasons:

(@) Each packet may carry overhead bits used for detecting the packet’s start and
end, and, possibly, for detecting errors in transmission (see the discussion of data
link control in the next subsection); the effect of the overhead bits can usually be
accounted for in the terms P or L of the delay formula (3.2).

(b) The link may be used in part to transmit packets that are unrelated to the distributed
algorithm under consideration. For example, it may be necessary to transmit pe-
riodically some control packets needed to sustain the organizational structures of
the underlying computing system.

(c) In some links the communication hardware may be time—shared between several
virtual bit pipes, so each of these pipes can be used only part of the time. A
typical example is when a processor can, at any one time, send a packet along at
most one of several incident physical communication channels. Another example
arises in multiaccess communication links, such as Ethernet and other local area
networks, where a physical channel is shared among several virtual bit pipes on a
contention basis. (Multiaccess channels and the algorithms that are used to control
them will not be discussed in this book; see, e.g., [BeG87] and [Sta87].) When
the physical communication hardware is shared between several communication
links, the queueing time @ in the delay equation (3.2) is nonnegligible and must be
taken into account. This complicates seriously the analysis of the communication
penality.

(d) Some scarce resource needed by the packets (such as, for example, buffer space at
a subsequent destination) may be unavailable. Packets are then forced to wait for
the resource to become available even though the communication link is available
for transmission. Thus the rate of transmission of the packets is reduced to the rate
at which the scarce resource becomes available. Algorithms that effect this type



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 33

of rate reduction are called flow control algorithms. Flow control is discussed in
many sources, €.g. [BeG87]. It will not be considered further in this book.

(e) In some communication links, there is a nonnegligible possibility that some bits
are received differently than they were transmitted (e.g., a transmitted O is received
as a 1), or are lost altogether (that is, their presence is not even detected). In such
cases it is necessary to use a scheme that detects these malfunctions and retransmits
the packets involved as many times as is necessary for ultimate correct reception.
This lowers the rate at which information can be transmitted over the link, and
simultaneously affects the queueing time () in the delay formula (3.2), since a
packet that is retransmitted may conceptually be viewed as waiting in queue up to
the start of its first correct transmission.

Regardless of the nature of the corresponding virtual bit pipe, we would like to
view a communication link as an asynchronous packet pipe that packets enter and exit
after a delay D given by Eq. (3.2). The times of entry and exit, and the delay D need
not exhibit any kind of deterministic regularity, but we would like to be able to assume
that packets exit the pipe in the same order that they enter it, and that they are not altered
in any way inside the pipe. This can be accomplished with the use of data link control
algorithms that are discussed next.

1.3.2 Data Link Control

The two principal components of data link control (DLC) algorithms for virtual
bit pipes are the mechanism of recognizing the start and end of packets (this is called
framing), and the mechanism for error detection and retransmission of packets received
in error. We assume throughout that packets arrive in the same order that they are sent,
but that any one of them can get damaged in transmission or can get lost in the sense
that its transmission may not be detected at the receiver.

We discuss framing briefly, and we refer to [BeG87] and [Sta85] for further de-
scription and analysis. A prerequisite for any framing technique, especially important
for intermittent synchronous pipes and asynchronous character pipes, is a mechanism for
recognizing the start of any bit stream following a period of idleness. This is a subject
that relates to the design of the communication hardware, and will not be discussed
further; see [Sta85]. One major framing technique is based on special bit sequences,
called flags, that appear immediately before and after each packet. The receiver scans
the incoming bit stream, and looks for a nonflag bit sequence following (or preceding) a
flag to indicate the start (or end, respectively) of the packet. A technique known as bit or
character stuffing is used to guard against the possibility that the flag sequence appears
inside a packet; see [BeG87] and [Sta85]. A second major technique for framing is to
encode, at the start of each packet, the number of bits of the packet (or to use a fixed
packet length known to the receiver), allowing the receiver to distinguish the end of each
packet. In this scheme a special resynchronization mechanism must be provided for the
system to recover from a situation where a packet length is incorrectly received.

Error detection techniques are based on appending to the packets a sequence of
extra bits, that are used to check for errors in transmission. An example of a primitive



34 Introduction Chap. 1

form of error detection is to form at the transmitter the modulo 2 sum of the bits of each
packet, and add it to the end of the packet in the form of an extra bit (called the parity
check). The receiver also forms the modulo 2 sum of the bits of the received packet,
and compares it with the parity check. Assuming the parity check is received correctly,
this method will detect all damaged packets with an odd number of bits in error, but will
miss all damaged packets with an even number of bits in error. More sophisticated and
reliable error detection techniques are based on adding, at the end of each packet, a bit
sequence [called cyclic redundancy check (CRC) sequence] that is the remainder of the
modulo 2 division of the polynomial having as coefficients the bits of the packet divided
by a fixed polynomial having binary coefficients and called the generator polynomial.
An example of a polynomial that is standard in data networks is z'¢ + z'° + 22 + 1, in
which case the CRC is 16 bits long. More generally, the length of the CRC is equal
to the degree of the generator polynomial. The error detecting capability of the scheme
typically increases with the length of the CRC sequence (see [Gal68] and [BeG87]).
Note, however, that if there is a positive probability that any one bit can be received
with error, there is no scheme that can guarantee foolproof protection against undetected
errors. One must deal in practice with bit pipes where undetected errors are possible but
very rare. Our subsequent discussion assumes that the error detection scheme used is
infallible.

The typical method for correcting transmission errors is based on detecting which
packets have been transmitted in error and retransmiting them as many times as is
necessary for correct reception. In the simplest type of retransmission protocol, called
stop—and-wait, the transmitter A sends a packet and the receiver B replies with a packet
that contains either a positive acknowledgment (ACK) for a correct reception, or a
negative acknowledgment (NAK) for an incorrect reception. If A receives a NAK, it
retransmits the packet, and if it receives an ACK it transmits the next packet. It is
interesting to note that the algorithm is distributed, since it involves two processors that
do not share simultaneously the same information.

Despite its simplicity, the preceding algorithm involves considerable subtleties
which illustrate some of the issues one has to deal with in implementing and justi-
fying a distributed algorithm. The difficulty is that packets from A to B and from B
to A can be delayed unpredictably in the communication channel, and they can also be
lost. To guard against the possibility of a loss, it is necessary for A to take a timeout
following the transmission of a packet, and retransmit the packet if it does not receive an
ACK within a given period of time. On the other hand, it may be impossible to choose a
timeout interval that is sufficiently small to ensure timely retransmission of lost packets,
and is also sufficiently long to preclude retransmission of some packets that are merely
delayed. Fig. 1.3.2 shows how this can lead to confusion at either A or B if the packets
do not carry enough information to allow the unambiguous association of A to B packets
with their corresponding acknowledgments. The remedy is to number sequentially the
A to B packets, and to include on each acknowledgment packet the number of the A to
B packet that is being acknowledged.

A final difficulty has to do with the fact that packet numbers can become arbitrarily
large if transmission continues indefinitely, and can overflow any field with a finite



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 35

Timeout X
Time at A
[ Packet 0 | [ Packet 0 | -
W
! ! —
Packet 0 Packet 0 ime at
correctly received or Packet 1?
(a)
ACK for
packet O or 1?
Time at A
[ Packet 0 | [ Packet0] [ Packet1 ] —_—
——
Time at B
Packet O Duplicate imea
correctly received discarded
(b)

Figure 1.3.2 Illustration of the need to number both the A to B packets and the B to A
packets in the stop—and—wait protocol. (a) Example of the confusion that can arise when
packets from A to B are not numbered. The ACK for packet O is late to arrive, so A
retransmits packet O after a timeout, but B cannot tell whether the second packet received
is a duplicate of packet 0 or whether it is packet 1. (b) Example of the confusion that
can arise when the B to A packets do not identify the packet that is being acknowledged.
Here A cannot tell whether the second ACK is for packet O or for packet 1.

number of bits that will be provided for them. It turns out that it is sufficient to number
packets modulo 2. An intuitive reason is that, at any given time, if there is a copy of
packet 7 in the system (meaning that its transmission has started but its acknowledgment
has not been received), there cannot simultaneously be a copy of packet ¢ + 2 in the
system, so that the former packet cannot be confused for the latter even though they
carry the same modulo 2 sequence number. (All the copies of packet ¢ are transmitted
before all the copies of packet ¢ + 1, so all the acknowledgments for copies of packet 7
are received before all the acknowledgments for copies of packet ¢ + 1. Therefore, if a
copy of packet ¢ is in the system, then no acknowledgment for packet ¢ + 1 must have
been received, which implies that transmission of any copy of packet ¢ + 2 cannot have
started.)

The correctness of the preceding algorithm is intuitively rather obvious, but a
rigorous proof requires a model of the combined state of A and B, as well as a prescription
of how this state changes in response to all the possible packet receptions. The reader who
tries to work out the details of this model (outlined in Exercise 3.1) may be surprised by
the complexity and laboriousness of the argument needed to show rigorously the validity
of a simple distributed algorithm such as the stop—and-wait protocol. This difficulty



36 Introduction Chap. 1

is symptomatic of the complicated nature of distributed algorithms involving several
processors that exchange information along communication links. A detailed model of
such a distributed algorithm requires that each processor be viewed as a system with an
internal state that accepts as inputs packets received from other processors, and produces
as outputs packets sent to other processors. The state changes in response to the input,
and the output depends on the state and the input (see Fig. 1.3.3). While a serial algorithm
consists of a single such system, a distributed algorithm consists of an interconnection
of many such systems, yielding a composite system that can be quite complex to model,
analyze, and implement.

Internal

state of A Figure 1.3.3 Representation of a
BtoA AtoC distributed algorithm as an interconnection
packets Processor A packets of subsystems, one per processor. Each
subsystem/processor has an internal
AtwB CtoA state that changes in response to packet
packets packets receptions from other processors. A
B to C packets description of the distributed algorithm
Internal > Internal must include the rule by which the state of
state of B state of C each processor changes, and the rule by
C to B packets which packets destined for other processors
Processor B Processor C are generated.

The stop-and-wait protocol leads to long delays because a packet must wait in a
queue until the reception of the acknowledgment of the previous packet. A more efficient
scheme, which is widely used, is the go-back-n algorithm. The idea here is to allow
sending as many as n packets following the last packet that has been acknowledged,
while using timeouts to decide when to restransmit packets whose acknowledgment is
late in coming. Thus, assuming that packet ¢ is the highest numbered packet for which
an acknowledgment packet has been received, the transmitter can send any of the packets
t+1,2+2,...,7+ n. The receiver, however, acknowledges packets in order, that is, it
does not acknowledge correct reception of packet  + 1 before it acknowledges correct
reception of packet ¢. In fact, an acknowledgment packet indicates the next packet
expected by the receiver, and thus simultaneously acknowledges all packets already
received correctly. This algorithm yields, for n = 1, the stop-and-wait protocol, but
avoids the long delays of that protocol by using » > 1. It is sufficient to number
packets modulo m for any m > n. A rigorous proof, together with a description of
other implementation details is given in [BeG87]. (For a heuristic argument, note that,
at any given time, the number of consecutively numbered unacknowledged packets at
the transmitter is at most n. Therefore, the range of possible packet numbers that are
next expected at the receiver contains no more than n + 1 consecutive numbers. Hence,
if m > n, packet number k and packet number k + m cannot simultaneously be in
this range, and there is no possibility of the receiver getting confused when packets are
numbered modulo m.) The standard modulo number used for terrestrial communication
links in data networks is m = 8.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 37

We finally note that in some systems, where communication links are very reliable,
an error detection and retransmission scheme is not used in order to save the associated
overhead. On the other hand there are systems where, even with an infallible data link
control scheme, some packets can get lost due to a failure of a node of the communication
network. (Think of a packet that clears the DLC unit of an incoming link to a node,
and waits to enter the DLC unit of an outgoing link of the node. If the node crashes
while the packet is waiting, the packet will be lost.) In such cases, it may be necessary
to provide an additional error detection and retransmission scheme at a network—wide
level rather than at a link level; see [BeG87] and [Tan81]. Furthermore it is necessary
to provide a mechanism, called a topology broadcast algorithm, for informing all nodes
about node or link failures. Such algorithms are typically distributed, and are discussed
in Section 8.5.

1.3.3 Routing

The routing algorithm in an interconnection network is the mechanism by which packets
are guided to their destinations through the network. The main objective of the routing
algorithm is to select paths of small total delay for each packet. If there were no queueing
delays along any link, the path selection would be quite simple. From Eq. (3.2), the delay
associated with every link (z, j) would be equal to P;; + R;;L, where P;; and R;; are
the processing plus propagation time, and the transmission time per bit on link (¢, 7),
respectively, and L is the number of bits of the given packet. The problem of minimum
delay routing from an origin node to a destination node would then be reduced to the
problem of finding a path connecting the two nodes with minimum sum of link delays;
this problem, known as the shortest path problem, will be discussed in detail in Sections
4.1 and 6.4. Unfortunately this method for selecting routes is totally insensitive to a
potentially large packet arrival rate at any one link. As a result, some links may receive
an excessive amount of traffic, thereby invalidating the assumption of negligible queueing
delay.

To alleviate systematic tendencies for data traffic to be concentrated on a few links,
several forms of multiple—path and randomized routing have been suggested. The idea
here is to use more than one path for every origin—destination node pair, and to select,
more or less at random, one of these paths for each packet. In one such method a shortest
path is determined for every origin—destination pair; however, a packet originating at
node A and destined to node B is not routed on the A to B shortest path. Instead, an
intermediate node D is randomly chosen, and the packet is first routed from A to D along
the A to D shortest path, and then from D to the packet’s destination B along the D to
B shortest path. Choosing the intermediate node at random for each individual packet
tends to avoid congestion on links that lie on the shortest paths of one or more origin—
destination pairs with excessive traffic. The randomized routing method just described
is easy to implement in many systems, and is supported by some interesting analysis for
highly regular interconnection networks (see [VaB81], [Val82], [HaC87], and [MiC87]).
It has the drawback that it delivers the packets from A to B out of order, since a different
intermediate destination D may be chosen for two successive packets. Furthermore, by



38 Introduction Chap. 1

randomizing its routes, this method does not use any available knowledge of the traffic
pattern associated with a given algorithm.

The possibility of multiple-path and randomized routing arises also in connection
with a different context relating to storage limitations. In practice, one must deal with
the fact that when the storage space of a node is full, the node cannot receive any packet
along its incident links. Several approaches to cope with this problem include flow control
methods (see [BeG87]), and/or acknowledgment and retransmission schemes, whereby
a packet that cannot be received due to unavailability of buffer space is retransmitted
following a suitable timeout. A different approach modifies the routing algorithm so that
there is always available buffer space to store a received packet at each node [Hil85]. To
understand this approach, let us assume that all links of the communication network can
be used simultaneously and in both directions, and that each packet carries a destination
address and requires unit transmission time on every link. We also assume that packets
are transmitted in slots of unit time duration, and that slots are synchronized so that their
start and end is simultaneous at all links. In a typical routing scheme, based on the
shortest path routing method, each node, upon reception of a packet that is destined for a
different node, uses table lookup to determine the next link on which the packet should
be transmitted; we refer to this link as the assigned link of the packet. It is possible
that more than one packet with the same assigned link is received by a node during a
slot. We refer to this situation as a packet collision. If there is a packet collision in a
given slot at a given node, and we insist that all the packets involved in the collision are
routed through their assigned link, then at most one packet involved in the collision can
be transmitted by the node in the subsequent slot, and the remaining packets must be
stored by the node in a queue. This storage requirement can be eliminated by modifying
the routing scheme so that all the packets involved in a collision at a given node during
a given slot are transmitted in the next slot; one of them is transmitted on its assigned
link, and the others are transmitted on some other links chosen at random from the set
of links that are not assigned to any packet received in the previous slot. It can be seen
that with this modification, at any node with d incident links, there can be at most d
packets received in any one slot, and each of these packets will be transmitted along
some link (not necessarily their assigned one) in the next slot. Therefore, there will be
no queueing, and the storage space needed at the node is minimized. The price paid for
this reduced storage requirement is that successive packets of the same origin—destination
pair may be received out of order, and some packets may travel on long routes to their
destinations; indeed, in this scheme, one may need to take precautions to ensure that a
packet cannot travel on a cycle indefinitely.

An appropriate formulation of the minimum delay routing problem must take into
account the queueing delays at the links, but, unfortunately, these delays cannot be easily
quantified in general. There are, however, simplified models that represent queueing
delay at a link as a function of the packet arrival rate at the link. Distributed optimal
routing algorithms based on such models are discussed in Sections 5.6 and 7.6. They are
useful in data network situations where there are many users sharing the network, with
each user having a data rate that is small relative to the combined data rate of all users.
In such networks, the packet arrival rate at a link is a meaningful quantity that can be



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 39

measured as a time average over a suitable period of time; see [BeG87]. Unfortunately,
in most computing systems, and for most algorithms, there is no meaningful notion of
packet arrival rate at a link, in which case these simplified queueing models are not
appropriate.

On the other hand, the networks of many parallel computing systems have some
regular form, and the routing problem may be posed in connection with a given algorithm
that generates packets in a regular and predictable pattern. It may then be possible to
design a routing algorithm that is tailored to the system and the algorithm at hand. In
the next subsection, we look at some possibilities along these lines.

1.3.4 Network Topologies

In many systems such as data networks, sensor networks, distributed databases,
etc., geographical and other considerations usually lead to interconnection networks with
irregular form. On the other hand, in systems whose principal function is numerical
computation, the network typically exhibits some regularity, and is sometimes chosen
with a particular application in mind. In this subsection we discuss some example
networks, and we focus on their communication properties.

We will represent a communication network of processors as a graph G = (N, A),
also referred to, somewhat loosely, as a topology. The nodes of the graph correspond
to the processors, and the presence of an (undirected) arc (¢, j) indicates that there is a
direct communication link that serves as an error free, asynchronous packet pipe between
processor ¢ and processor j in both directions. We assume that communication can take
place simultaneously on all of the incident links of a node and in both directions. We also
assume in each of the communication analyses of this subsection that, in the absence
of queueing, the delays of all packets of equal length (i.e., with the same number of
bits) are equal on all links. Unless the opposite is clearly implied by the context, we
assume that the delay of each packet is one time unit on every link. A somewhat
restrictive assumption that is implicit in our analysis of some communication algorithms
is that these algorithms are simultaneously initiated at all processors. However, the
qualitative conclusions of our discussion remain largely unchanged even if the preceding
assumptions do not hold. We will often use the notation O(-), Q(-), and ©(-), introduced
in Subsection 1.2.2 and in Appendix A.

Topologies are usually evaluated in terms of their suitability for some standard
communication tasks. The following are some typical criteria:

(a) The diameter of the network, which is the maximum distance between any pair of
nodes. Here the distance of a pair of nodes is the minimum number of links that
have to be traversed to go from one node to the other. For a network of diameter
r, the time for a packet to travel between two nodes is O(r), assuming no queueing
delays at the links.

(b) The connectivity of the network, which provides a measure of the number of
“independent” paths connecting a pair of nodes. We can talk here about the node
or the arc connectivity of the network, which is the minimum number of nodes (or



40

Introduction Chap. 1

arcs, respectively) that must be deleted before the network becomes disconnected.
In some networks, a high connectivity is desirable for reliability purposes, so that
communication can be maintained in the face of several link and node failures.
Another important point is that if the network has arc connectivity &, then com-
munication between any two nodes can be parallelized by making use of at least k£
paths with no pair of these paths having an arc in common (this follows from the
max flow — min cut theorem [PaS82], and will not be proved here). Thus, a long
message can be sent from node A to node B by splitting it into several packets, and
by sending these packets in parallel on the arc—disjoint paths connecting A and B.
In the absence of queueing delays and with negligible overhead and propagation
time per packet, this reduces the communication time between any pair of nodes
by a factor at least equal to the arc connectivity of the network. (However, the
packets may arrive at the destination node in unpredictable order, so they may have
to be put back in order to reconstruct the message. In some systems this may be
undesirable because of the overhead involved, and possibly other reasons.) Note
that the arc and node connectivity is bounded from above by the minimum value
of the degree of a node defined as the number of incident arcs to the node.

(c) The flexibility provided in running efficiently a broad variety of algorithms. As

an example, assuming that we have developed an algorithm that runs on a given
network of processors represented by a graph G’ = (N’, A’), we may want to
run the same algorithm on another network of processors represented by a graph
G = (N, A). This will be possible if G’ can be imbedded into G in the sense that
each node of G’ can be mapped to a node of G in a way that the arcs of G’ are
associated with arcs of G, that is, if there exists a function ¢ : N’ — N such that
o(i) # o(j) if ¢ # j and (a(i), a(j)) € Aforall (i, 7) € A’. In this case we say that
G’ can be mapped into G. The mapping problem also arises in another interesting
context. Given a processor network with a fixed interconnection topology, an
important issue is to divide a given computational task among the processors so
that the communication penalty is kept at a minimum. Assume that the main task
is divided into computational subtasks, and that each subtask will be assigned to
a separate processor. Assume also that certain pairs (7, ) of subtasks interact,
meaning that the execution of subtask ¢ or j occasionally requires knowledge of
certain values computed during execution of subtask j or 7, respectively. It is then
desirable to allocate subtasks to processors so that interacting subtasks are assigned
to processors with a direct communication link. This problem can be formulated as
a problem of mapping the graph G’ = (N’, A’) representing the subtask interactions
into the graph G = (IV, A) representing the processor network. As an example, in
executing the relaxation iteration

.'le(t+l)=fz(l'1(t),,.’l‘n(t)), Vi= la"'an7 (33)

discussed in Subsection 1.2.4, we want to be able to map the dependency graph
(cf. Subsection 1.2.4) into the processor network. We thus see the advantages of
a topology that is flexible, in the sense that many other topologies can be mapped
into it.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 41

(d) The communication delay required for some standard tasks that are important in
many algorithms such as inner product computation, matrix—vector multiplication,
etc. We describe a few such tasks.

Single Node and Multinode Broadcast: In the first communication task,
we want to send the same packet from a given processor to every other processor
(we call this a single node broadcast). In a generalized version of this problem,
we want to do a single node broadcast simultaneously from all nodes (we call this
a multinode broadcast). A typical example where a multinode broadcast is needed
arises in relaxation iterations of the form (3.3). If we assume that there is a separate
processor assigned to each variable, and that each function f; in the right-hand side
of Eq. (3.3) depends on all variables, then, at the end of an iteration, there is a need
for every processor to send the value of its variable to every other processor, which
is a multinode broadcast. A special case of this example arises in matrix—vector
multiplication, and will be discussed in Example 3.1, and in Subsection 1.3.6.

Clearly, to solve the single node broadcast problem, it is sufficient to transmit
the given node’s packet along a spanning tree rooted at the given node, that is, a
spanning tree of the network together with a direction on each link of the tree such
that there is a unique positive path from the given node (called the root) to every
other node. With an optimal choice of such a spanning tree, a single node broadcast
takes O(r) time, where r is the diameter of the network, as shown in Fig. 1.3.4(a).
Note that if a long packet is involved in a single node broadcast, it can be segmented
into smaller packets that can be transmitted sequentially along the spanning tree,
thereby resulting in a potentially significant reduction of the broadcast time; this is
similar to the pipelining effect that we discussed in connection with transmitting
a long packet over a sequence of links (cf. Fig. 1.3.1). Suppose, in particular,
that the packet requires one time unit for transmission on any link, and that it
is segmented into m packets each requiring 1/m time units for transmission on
any link (i.e., there is no extra communication overhead due to the segmentation).
Then it can be seen that the time for the single node broadcast with a worst choice
of the root node and an optimal choice of the spanning tree is reduced from r to
(r + m — 1)/m time units. For a more precise estimate that takes overhead into
account, see Exercise 3.19.

To solve the multinode broadcast problem, we need to specify one spanning
tree per root node. The difficulty here is that some links may belong to several
spanning trees; this complicates the timing analysis, because several packets can
arrive simultaneously at a node, and require transmission on the same link with
a queueing delay resulting. This issue will be discussed later in the context of
specific interconnection networks.

Single Node and Multinode Accumulation: There are two important com-
munication problems that are dual to the single and multinode broadcasts, in the
sense that the spanning tree(s) used to solve one problem can also be used to solve
the dual in the same amount of communication time. In the first problem, called
single node accumulation, we want to send to a given node a packet from every
other node; we assume, however, that packets can be “combined” for transmission
on any communication link, with a “combined” transmission time equal to the



42

Introduction Chap. 1

SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION

(a) (b)

Figure 1.3.4 (a) A single node broadcast uses a tree that is rooted at a given node (which
is node 1 in the figure). The time next to each link is the time at which transmission of the
packet on the link begins. (b) A single node accumulation problem involving summation
of n scalars a1, ...,an (one per processor) at the given node (which is node 1 in the
figure). The time next to each link is the time at which transmission of the “combined”
packet on the link begins, assuming that the time for scalar addition is negligible relative
to the time required for packet transmission. The time for single node accumulation (or
broadcast) is the maximum length of a path from a node to the root (or from the root to a
node, respectively), counting each link as one unit. Thus, the single node accumulation
and the single node broadcast take the same amount of time if a single packet in the
latter problem corresponds to a scalar in the former problem.

transmission time of a single packet. This problem arises, for example, when we
want to form at a given node a sum consisting of one term from each node as in
an inner product calculation [see Fig. 1.3.4(b)]; we can view addition of scalars at
a node as “combining” the corresponding packets into a single packet. The second
problem, which is dual to a multinode broadcast, is called multinode accumulation,
and involves a separate single node accumulation at each node. For example, it
will be seen in Subsection 1.3.6 that a certain method for carrying out parallel
matrix—vector multiplication involves a multinode accumulation.

It can be shown that a single node (or multinode) accumulation problem can
be solved in the same time as a single node (respectively, multinode) broadcast
problem. In particular, any single node (or multinode) accumulation algorithm
can be viewed as a single node (or multinode, respectively) broadcast algorithm
running in reverse time; the converse is also true. The process is illustrated in Fig.
1.3.4; the detailed mathematical proof is left for the reader.

Single Node Scatter, Single Node Gather, and Total Exchange: Another
interesting communication problem is to send a packet from every node to every
other node (here a node sends different packets to different nodes in contrast with



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems : 43

the multinode broadcast problem where each node sends the same packet to every
other node). We call this the rotal exchange problem, and we will see later that
it arises frequently in connection with matrix computations. A related problem,
called the single node scatter problem, involves sending a separate packet from
a single node to every other node. A dual problem, called single node gather
problem, involves collecting a packet at a given node from every other node. An
algorithm that solves the single node scatter (or gather) problem consists of a
schedule of packet transmissions on each link that properly takes queueing into
account. By reversing this schedule as discussed in connection with the single
node accumulation problem, it can be seen that for every algorithm that solves
the single node scatter (or gather) problem, there is a corresponding algorithm that
solves the single node gather (or scatter, respectively) problem, and takes the same
amount of communication time.

Note that in a multinode broadcast, each node receives a different packet from
every node, thereby solving the single node gather problem. Note also that the total
exchange problem may be viewed as a multinode version of both a single node scatter
and a single node gather problem, and also as a generalization of a multinode broadcast,
whereby the packets sent by each node to different nodes are different. We conclude that
the communication problems of the preceding discussion form a hierarchy in terms of
difficulty, as illustrated in Fig. 1.3.5. An algorithm solving one problem in the hierarchy
can also solve the next problem in the hierarchy in no additional time. In particular, a
total exchange algorithm can also solve the multinode broadcast (accumulation) problem;
a multinode broadcast (accumulation) algorithm can also solve the single node gather
(scatter) problem; and a single node scatter (gather) algorithm can also solve the single
node broadcast (accumulation) problem. Therefore, the communication requirements for
these problems decrease in the order just given, regardless of the network being used.

—

Total exchange

Muitinode broadcast Multinode accumulation
Single node scatter Single node gather
Single node broadcast Single node accumulation

Figure 1.3.5 Hierarchy of basic communication problems in interconnection networks.
A directed arc from problem A to problem B indicates that an algorithm that solves A
can also solve B, and that the optimal time for solving A is not more than the optimal
time for solving B. A horizontal bidirectional arc indicates a duality relation.



44 Introduction ~ Chap. 1

We now consider a number of specific topologies.
Complete Graph

Here there is a direct link between every pair of processors. Such a network can be im-
plemented by means of a bus which is shared by all processors, or by means of some type
of crossbar switch. Clearly this is an ideal network in terms of flexibility. Unfortunately,
when the number of processors is very large, a crossbar switch becomes very costly, and
a bus involves large queueing delays. Complete graphs, however, are frequently used
to connect small numbers of processors in clusters in a hierarchical network, where the
clusters are themselves connected via some other type of communication network.

Linear Processor Array

Here there are p processors/nodes numbered 1,2,...,p, and there is a link (7,7 + 1) for
every pair of successive processors [see Fig. 1.3.6(a)]. The diameter and connectivity
properties of this network are the worst possible. Furthermore, one can map a linear
array into most other networks of interest (all networks discussed in this section with the
exception of trees). This means that the communication penalty for a given algorithm
using a linear array can be no better than the corresponding penalty using most other
networks. The time taken by an optimal single node broadcast algorithm depends on
the origin node; at worst, it is p — 1 time units (assuming each packet transmission
requires unit time), since the diameter of the linear array is p — 1. An optimal multinode
broadcast algorithm takes the same amount of time thanks to the possibility of using all
communication links in parallel [see Fig. 1.3.6(b)]. The time taken by an optimal single
node scatter algorithm lies between the times taken by an optimal single node and an
optimal multinode broadcast algorithm, and is therefore at worst p — 1 time units. In fact
it can be shown that the time taken by an optimal single node broadcast algorithm as well
as by an optimal single node scatter algorithm starting at node k is max{k — 1,p — k}
time units (see Exercise 3.9). Finally, an optimal total exchange algorithm takes ©(p?)
time. To see this, consider the link (k,k + 1) that separates the array in two node
subsets with k£ and p — k nodes respectively. Since in a total exchange each node of
one subset must send a packet to each node of the other subset, the link must carry
k(p — k) packet transmissions in each direction. Allowing for the worst possible link
selection, we see that any total exchange algorithm takes at least maxy [k(p — k)] or
(after some calculation) [(p? — 1)/4] time units. On the other hand, one way to solve
the total exchange problem (not necessarily the fastest) is to solve sequentially p single
node scatter problems, one for each of the p processors. Every one of these problems
can be solved in no more than p — 1 time units, thereby showing that an optimal total
exchange algorithm takes ©(p?) time.

Example 3.1. Matrix~Vector Multiplication

Consider the problem of parallel multiplication of an n x n fully dense matrix with an n—
dimensional vector, with subsequent communication of the result to all of the p processors of
a linear array. We assume here that n = pk, where k£ > 1 is some integer, and that processor
¢ knows the vector and the rows (z — 1)k + 1 to ik of the matrix, and calculates coordinates
(= 1)k +1 to ik of the matrix—vector product. At the end of the calculation each processor



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 45

DD

Packet of 1 Packet of 2 Packet of 3

Packet of 2 Packet of 3 Packet of 4
1 2
Multinode N\ —_— o\ —_—
broadcast @ w \E/ 4 ) Second stage
3 4
1
N D
! 2 3 4 ) Third stage
C} - \ZJ 3/
4 (b)

Figure 1.3.6 (a) Linear array with p processors. There is a bidirectional communication
link (3,4 4+ 1) for each ¢ = 1,2,...,p — 1. (b) A multinode broadcast in a linear array
can be conducted in stages. At the first stage, each node sends to its neighbor(s) its own
packet. Each node ¢ € {2,3,...,p — 1} that receives a packet from i + 1 (or 7 — 1) at
some stage, relays this packet to s — 1 (or 7 + 1, respectively) at the next stage. Nodes 1
and p send a packet only at the first stage. Thus, at stage k, node i receives the packet
of node ¢ — k (if < > k), and the packet of node ¢ + k (if i < p — k). The multinode
broadcast is completed after p — 1 stages. The figure illustrates this process for p = 4.

@ sends these k coordinates to all other processors in a single packet. This is a multinode
broadcast. Normalizing the length of a packet, we assume that each packet contains k data
units and w units of overhead. We assume that the delay of each packet on each link is
a(k + w), where « is some constant. (We neglect the processing and propagation delay;
for the purposes of the subsequent calculation, it can be lumped into the overhead w.) The
communication time using an optimal multinode broadcast algorithm is then G(p(k + w)),
whereas the corresponding computation time is ©(pk?). We see, therefore, that for any given
number of processors p, if n = pk is sufficiently large, the time spent for communication is
negligible relative to the time for computation. This phenomenon holds for many problems
of interest (see Subsection 1.3.5), and is significant since it indicates that the communication
penalty does not prevent the effective use of an increased number of processors in matrix—
type problems as their dimension becomes larger. The appropriate number of processors
used, however, should be chosen judiciously; it is not always advantageous to use as many
processors as available. To see this, note that the computation time is ©(nk) and the
communication time is e(n(l +w/ k)). For many practical systems, the size of w is such
that when k is small, the communication time becomes dominant.

Ring
This is a simple and common network that has the property that there is a path between
any pair of processors even after any one communication link has failed. However, the
number of links separating a pair of processors can be as large as |—(p -1 /2] , where p
is the number of processors. It can be seen that all of the basic communication problems
discussed earlier (single node and multinode broadcast, single node scatter, and total



46 Introduction Chap. 1

exchange) can be solved on a ring in a time that lies between the corresponding time on
a linear array with the same number of nodes, and one-half that time (see Fig. 1.3.7 for
the case of a multinode broadcast).

Stage 2
(b)

Figure 1.3.7 (a) A ring of p nodes having as links the pairs (3,7 + 1) for: = 1,2,...,p—1, and
(p, 1). (b) A multinode broadcast on a ring with p nodes can be performed in [(p — 1)/2] stages as
follows: at stage 1, each node sends its own packet to its clockwise and counterclockwise neighbors.
At stages 2,..., [(p—1)/2], each node sends to its clockwise neighbor the packet received from its
counterclockwise neighbor at the previous stage; also, at stages 2, ..., [(p —2)/2], each node sends
to its counterclockwise neighbor the packet received from its clockwise neighbor at the previous
stage. The figure illustrates this process for p = 6.

Tree

A tree network with p processors provides communication between every pair of pro-
cessors with a minimal number of links (p — 1). One disadvantage of a tree is its low
connectivity; the failure of any one of its links creates two subsets of processors that
cannot communicate with each other. Furthermore, depending on the particular type of
tree used, its diameter can be as large as p — 1 (note that the linear array is a special
case of a tree). The star network has minimal diameter among tree topologies; however
the central node of the star handles all the network traffic, and can become a bottleneck
[see Fig. 1.3.8(a)]. It can be shown that the optimal time for a single node broadcast
(or accumulation) and a single node gather (or scatter) on a tree with p processors is
no more than p — 1 time units, whereas the optimal time for a multinode broadcast is



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 47

p — 1 time units (Exercises 3.2 and 3.9). The optimal time for a total exchange depends
on the type of tree considered, and it is O(p®) based on the result for the single node
gather problem stated earlier. An interesting type of tree is the binary and balanced tree
described in Fig. 1.3.8(b). It can be seen that an optimal total exchange algorithm on a
binary balanced tree takes ©(p?) time (Exercise 3.2).

Root Level O
O
Level 1
O Level ¥
Total number of nodes is between 2 and 2k+7—1
(a) (b)

Figure 1.3.8 (a) A star network. (b) A binary balanced tree. Here there is a special node called
the root. Each node i is connected to the root via a unique simple walk. The first node on this
walk is called the parent of i. If j is the parent of i, then 7 is called a child of . In a binary tree
there can be at most two children for each node. A node with no children is said to be a leaf of
the tree. A binary tree with p nodes is said to be balanced if the walk from each leaf node to the
root contains either [log(p + 1)] — 2 or [log(p + 1)] — 1 links.

Mesh

Many large problems of interest are closely tied to the geometry of physical space. Mesh—
connected processor arrays are often well suited for such problems. In a d-dimensional
mesh the processors are arranged along the points of d—dimensional space that have
integer coordinates, and there is a direct communication link between nearest neighbors.
Using the graph formalism, the nodes of a d—dimensional mesh with n; points along the
ith dimension are the d-tuples (z, ..., z4) Where each of the coordinates z;,7 = 1,...,d,
takes an integer value from 1 to n;. The links are the pairs ((z1,...,zaq), (@}, ..., z}))
for which there exists some ¢ such that |z; — z;| = 1 and z; = z} for all j # 4. The

diameter of a mesh—connected network is E;L,(ni — 1), which can be much smaller than
the diameter of a ring and much larger than the diameter of a binary balanced tree with
the same number of processors. A variation with smaller diameter is the mesh network
with wraparound shown in Fig. 1.3.9.

Consider now the time needed to solve various communication problems on a d—
dimensional mesh with p processors, which is symmetric in the sense that it has an equal
number (p'/%) of processors along each dimension. We assume that d is fixed and we
estimate the communication time as a function of p. An optimal single node broadcast
(or accumulation) algorithm takes ©(p'/?) time, since the diameter is d(p!/¢ — 1). It is
easily seen that a linear array with p nodes can be mapped into the symmetric mesh,



48 Introduction Chap. 1

(1,1) ~ (1,2) ~ (1,3)

C D]
(2,1) (2,2) (2,3)

D]
(3,1) (3,2) (3,3)

C D
(4,1) (4,2) (4,3)

C D

(O

Figure 1.3.9 Meshes with wraparound. Here, in addition to the links of the ordinary
mesh, we have the links ((1:1, [ Z i 1,:1:“.1, vy ), (1.l ,zi_l,n,‘,zi_i.],...,zd)).
The diameter is roughly half the diameter of the corresponding ordinary mesh.

and, therefore, the time taken by an optimal single node scatter (or gather) algorithm
and by an optimal multinode broadcast (or accumulation) algorithm do not exceed the
corresponding times for the linear array, which are O(p). On the other hand, any single
node scatter (and, a fortiori, multinode broadcast) algorithm takes Q(p) time since p — 1
packets are transmitted by the given node, and these packets must go over the incident
links to the node, which are no more than 2d. Therefore an optimal single node scatter
(or gather) algorithm, and an optimal multinode broadcast (or accumulation) algorithm
take ©(p) time. Consider, finally, the total exchange problem. Exercise 3.6 gives a total
exchange algorithm that takes O(p¢*1/9) time, and it turns out that any total exchange
algorithm takes Q(p@+1/9) time. To see this latter fact, assume for convenience that p
is even and consider a (d — 1)—-dimensional plane that separates the mesh in two identical
“halves” (a similar argument applies when p is odd). Each half contains p/2 processors,
which must receive a total of (p/2)? packets from the p/2 processors of the other half.
These packets must be transmitted over the p¢~/¢ communication links connecting the
two halves requiring Q(p@*1/9) time. Therefore, an optimal total exchange algorithm
for a symmetric d—dimensional mesh takes ©(p@*1/9) time.

Hypercube

Consider the set of all points in d—dimensional space with each coordinate equal to zero
or one. These points may be thought of as the corners of a d—dimensional cube. We let
these points correspond to processors, and we consider a communication link for every
two points differing in a single coordinate. The resulting network is called a hypercube
or d—cube. Fig. 1.3.10 shows a 3—cube and a 4—cube.

Formally, a d—cube is the d—dimensional mesh that has two processors in each
dimension, that is, n; = 2 for all 7. To visualize better a d—cube, we assume that each
processor has an identity number which is a binary string of length d (corresponding to
the coordinates of a node of the d—cube). We can construct a hypercube of any dimension



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 49

110 111

010 o
101
100
000 001
(a)
0110 1110
101
0010 - 1M1
0011 0111 1011
0100 1100
0000 — 1101
0101
0001 1001

(b)

Figure 1.3.10 Two views of a 3—ube and a 4-cube. The cubes have been constructed by con-
necting the corresponding nodes of two identical lower—dimensional cubes. In the cubes on the left,
a node belongs to the first lower—dimensional cube or the second depending on whether its identity
has a leading O or a leading 1.

by connecting lower—dimensional cubes, starting with a 1—cube. In particular, we can
start with two (d — 1)-dimensional cubes and introduce a link connecting each pair of
nodes with the same identity number. This constructs a d—cube with the identity number
of each node obtained by adding a leading O or a leading 1 to its previous identity,
depending on whether the node belongs to the first (d — 1)—dimensional cube or the
second (see Fig. 1.3.10).

The Hamming distance between two processors is the number of bits in which their
identity numbers differ. Two processors are directly connected with a communication
link if and only if their Hamming distance is unity, that is, if and only if their identity
numbers differ in exactly one bit. The number of links on any path connecting two
nodes cannot be less than the Hamming distance of the nodes. Furthermore, there is a
path with a number of links that is equal to the Hamming distance. Such a path can
be obtained by switching in sequence the bits in which the identity numbers of the two
nodes differ (equivalently, by traversing the corresponding links of the hypercube). For
example, in a 4—cube, to go from node (1101) to node (0110), we can first go to (0101),
then to (0111), and finally to (0110). It follows that the diameter of a d—cube is d or
log p, where p = 2¢ is the number of processors.



50 Introduction Chap. 1

Hypercube Mappings

The hypercube is a versatile architecture with many attractive features, some of which
will be discussed in the sequel. We first illustrate the flexibility of the hypercube by
showing how to map a ring and a mesh into it. Mapping a linear array of 2¢ nodes into
a hypercube amounts to constructing a sequence of 2¢ distinct binary numbers with d
bits each, with the property that successive numbers in the sequence differ in only one
bit. Such sequences are called Gray codes, and have been studied extensively in coding
theory [Ham86]. We can generate a particular type of Gray code, called a reflected Gray
code (RGC), by a construction that is similar to the one used for constructing a d—cube
from two (d — 1)—cubes. This code has the property that the first and the last numbers in
the sequence also differ in only one bit, so it provides a mapping of a ring with 2¢ nodes
into the hypercube. We start with the 1-bit Gray code sequence {0, 1}, and then insert
a zero and a one in front of the two elements obtaining the two sequences {00,01} and
{10, 11}. We then reverse the second sequence to obtain {11, 10}, and then concatenate
the two sequences to obtain the 2-bit RGC

{00,01,11, 10}.
Generally, given a (d — 1)-bit RGC

{b1,b2,...,b,},
where p =241 and by, ..., b, are binary strings, the corresponding d-bit RGC is
{0by,...,0bp,1bp,..., 15 }.

As an example, the 3-bit and the 4-bit RGC, and the corresponding rings on the 3—cube
and the 4—cube are shown in Fig. 1.3.11. The above construction maps a ring with 2¢
nodes into the d—cube. It is also possible to map a ring of any even number of nodes
p into a hypercube with 2/°27] nodes (see Exercise 3.4). It can be shown that every
cycle in a hypercube has an even number of nodes (Exercise 3.4), so a ring with an odd
number of nodes cannot be mapped into a hypercube.

The preceding recursive construction of the RGC sequence can be generalized in
a way that will prove useful later. Let d, and dj be positive integers, and let d =
do + dp. Suppose that {a,az,...,ap,} and {b;,bs,...,by,} are the d,~bit and d,-bit
RGC sequences, where p, = 2% and p, = 2%. Consider the p, x pj matrix of d-bit
strings {a;b; |1 =1,2,...,p,, 5=1,2,...,pp}

albl a1b2 . e albpb
azbl azbz .ee aszb

ap,bi ap by ... apbp,



51

Sec. 1.3 Communication Aspects of Parallel and Distributed Systems
110 111
owo| [y
A
101
100 /
000 001
(ooo 001 011 010 110 111 101 100)
(a)
0110 1110
o010 — 11
{0011 o1 1011
0100 | 1000 1
- 1101
0101 4
0001 1001
0000 0001 0011 0010 0110 0111 0101 0100
1000 1001 . 1011 1010 1110 1111 1101 1100

(b)

Figure 1.3.11 Reflected Gray code sequences, and the corresponding mappings of rings
on (a) a 3—cube and (b) a 4—cube.

It can be proVed that we can obtain the d-bit RGC sequence by sequentially traversing
the rows of this matrix alternately from left to right, and from right to left, as shown:

Ffahy = g = - albpb 7]
4
by = gk &= — aszb
!
ahy, = ah, = = azby,
U
Lap by <= apbp = = ap,bp,

An example is given in Fig. 1.3.12(a). A formal proof is obtained using the definition of
the RGC sequence and induction on d, as illustrated in Fig. 1.3.12(b). The preceding con-
struction also shows that the nodes of a d—cube can be arranged along a two—dimensional
mesh with p, and p, nodes in the first and second dimensions, respectively. The (Z, j)th



52 Introduction Chap. 1
element of the mesh, where ¢ = 1,2,...,p, and j = 1,2,..., ps, is the d—cube node with
identity number a;b;. Each “row” (or “column”) of the mesh corresponds to a hypercube
with p;, (or p,, respectively) nodes.

b;
——
00 01 1 10
00 01 1 10
000 0 o—o o 0| o—o0——0
001 O ) o o | o4& ¢
011 ¢ 1l o i i
a,
" 010 > ) 0] o vl S
110 J— 10| o— A] 1L o
m cﬂ — 1 C 1% ]
101 01| & ! T 0
100 O- < 00| o 0—0—0

(a)

(b)

Figure 1.3.12 (a) Arrangement of the nodes of a 5—cube in a two-dimensional mesh
with 8 rows and 4 columns. The 5-bit RGC sequence is obtained by starting at the mesh
point (000, 00), going right along the first row, then left along the second row, then right
along the third row, etc., as indicated by the arrows. Each row corresponds to a 2—cube,
and each column corresponds to a 3—cube. (b) Construction of the mapping of an 8 x 4
mesh (and the corresponding RGC) into a 5—cube, using two 4 x 4 meshes mapped into
the 4—ube. The row numbering of the second mesh is first reversed as shown, and
then the two meshes are joined, and a leading O or 1 is appended to the row number of
the first or second mesh, respectively. This procedure can be generalized to prove by
induction that the (dq =+ dp)}-bit RGC sequence can be constructed from the d,bit and
the dy-bit RGC sequences, as stated in the text.

We can similarly obtain a general method for mapping a multidimensional mesh
into a hypercube. Suppose we have a k—dimensional mesh with n; points in the ith
dimension, where ¢ = 1,...,k. We assume that n; = 2%, where d; is some integer.
Thus the number of mesh points is 2%, where d = d; +dp +- - - +di, and each mesh point
can be denoted by (1, zs, . .., zx), Where z; is an integer taking values from 1 to n;. We
map the mesh point (z),z3,...,2x) into the hypercube node with identity s;s; - - - s,
where s; is the d;-bit binary string which is the z;th element of the d;—bit RGC. Adjacent



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems

10
110 1

1

010

01 100 {011
001

00 000

0o 1

(a)

(b)

Ll

=
lingl|

L
- — S
~H & 5 & — J\‘ >
- -
= p = = T IR PRSI,
i il
¥y > ¥ )
. \

.
11 \
ALY

(c)

Figure 1.3.13 (a) Mapping a 2 x 4 mesh into a 3—cube. (b) Mapping a 4 x 4 mesh
into a 4—cube. (c) A 6—cube arranged as an 8 x 8 mesh. Note that each row and each
column of the mesh is a 3—cube.



54 Introduction Chap. 1

Binary balanced
tree with 29-1—1
nodes

Binary balanced
tree with 29-1—1
nodes

s I\ N\ 23 ; . TreeT
i \:1/0 \_2]/' 2)jk  with 29nodes

AV /0 N Njx TreeT’
*1 A\ \2) 2)/ (replica of T)

Tree T’ after
reversal of jt# bijt

Permute bits / and j

k
Kk
i 0 J
Es? @ @ f sy t Permute bits/ and k

(c)
()
()

() ()
AN

(d) (e)

S2
T2

sy |81

" "

(f)



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 55

Figure 1.3.14 Recursive construction of a mapping of a two-rooted binary balanced
tree into a hypercube. (a) A two-rooted binary tree with 2¢ nodes mapped into a d—cube.
Node r; is mapped into (00 - - - 0); nodes s; and 7, are mapped into the d—cube nodes
with the ith and jth bits set, respectively; node s, is mapped into the node with the jth
and kth bits set. (b) Method for constructing a mapping of a two—rooted tree with 2¢+1
nodes into the (d + 1)—cube starting with two trees T and 7", mapped into the d—cube.
Three tranformations are applied sequentially to the node identity numbers of T”, all
of which yield mappings of T” into the d—cube. These are a reversal of the jth bit, a
permutation of the ith and jth bits, and a permutation of the jth and kth bits [see part
(c)]. The identity number for node 77 is now (00 - - - 0). The identities of nodes r’, and
sy differ from that of 7' in the 4th and jth bit, respectively. The identity of node s/
differs from that of 7' in the ith and kth bits. A leading zero (one) is next appended to
the identity number of each node of T' (T”, respectively, as transformed above). We now
introduce the links (s1,7{"), (r1,75), (r2,87) as shown in part (d), thereby obtaining a
mapping of the two-rooted tree shown in (e) into the (d 4+ 1)—cube. (f) Illustration of
the mapping for d = 2.

nodes in the mesh differ by a unit in a single coordinate, say z;, so the corresponding
strings s; are adjacent elements of the RGC sequence. Therefore, the corresponding
nodes of the d—cube differ by a single bit in their identities, and must be adjacent. The
desired mapping has thus been obtained. Fig. 1.3.13 illustrates the mapping for meshes
in two dimensions. Note that a mesh with n; points in the ith dimension can be mapped
into a mesh with 2M1g 71 points in the ¢th dimension, and therefore can be mapped into a
d—cube, where d = Zf:x [logn;]. Note also that because the first and the last elements
of a RGC sequence differ in a single bit, the mapping just given can be used to map the
corresponding mesh with wraparound (cf. Fig. 1.3.9) into the hypercube.

One can show that a complete binary tree, that is, a binary balanced tree with 241
nodes, cannot be mapped into a d—cube if d > 3 [BhI85]. On the other hand, a related
tree of 2¢ nodes, called a two—rooted binary balanced tree, can be mapped on the d—cube
[BhI8S]. This tree is obtained from a binary balanced tree by replacing the root node
with two root nodes, each connected with the other and also connected with one binary
balanced subtree as shown in Fig. 1.3.14. The construction of this mapping proceeds
recursively using two trees each mapped into a d—cube to construct a tree mapped into
the (d + 1)—cube, starting with d = 2 (see Fig. 1.3.14). From the point of view of
communication, we may consider the two root nodes, together with the link connecting
them, as a single node that emulates the function of the (single) root of a binary balanced
tree. Thus, using this mapping, it is possible to execute on a hypercube algorithms that
are naturally suited for binary tree topologies.

Hypercube Communications

We now consider issues of communication. We first note that in contrast with tree
topologies, the d—cube provides several “independent” paths between any pair of nodes
(that is paths that do not share any links). The number of such paths is at most d, since
there are d links incident to each node. It turns out that there are exactly d such paths
(see Fig. 1.3.15). These paths, in addition, do not share any node other than the two
end nodes, which shows that the node connectivity of the d—cube is d. If the identity



56 Introduction Chap. 1

numbers of the two end nodes differ by k bits, then k of the independent paths have k
links, and the remaining d — k paths have k + 2 links (see Fig. 1.3.15). This implies that
simultaneous communication between two nodes of a hypercube along several paths can
be done very efficiently.

Another property of the d—cube is that for each node ¢, there is a spanning tree
rooted at 7, and providing a path of d links or less from 7 to every node. Such a tree
is constructed as shown in Fig. 1.3.16, and can be used for a single node broadcast
from the root to all nodes that takes d time units. This is an improvement by a factor
(2¢ — 1)/d over the corresponding time for the linear array with 2¢ nodes. The same
tree can be used to solve the dual problem of a single node accumulation in d time units.
The two-tooted tree of Fig. 1.3.14 can also be used for the same purpose in place of the
spanning tree of Fig. 1.3.16.

Figure 1.3.15 Construction of d
independent paths connecting two nodes A
and B of the d—cube with identity numbers
A differing in k bits [SaS88]. Without loss of
generality, we assume that the first k bits
of the identity numbers of A and B are
8 different, and the remaining d — k bits are
the same.
We first construct k£ paths from A
to B having k links each. The ith path
is constructed as follows: start with the
identity of A; reverse sequentially bit 2
through k; reverse sequentially bits 1
through ¢ — 1.
We next construct d — k paths from
A to B having k + 2 links each. The ith
path is constructed as follows: start with
the identity of A; reverse the (k + i)th
'B bit; reverse sequentially bits 1 through k;
reverse again the (k + 2)th bit.
It can be seen that all these paths do
not share any node other than A and B,
proving that the node connectivity of a
d—cube is d. The figure illustrates the paths
for a pair of nodes in the 3—cube and in the
4—cube.

Consider next the time needed for a multinode broadcast, whereby each processor
sends a packet to every other processor. As in linear arrays, it is possible to exploit
parallel communication on the links. In a d—cube, each node can receive at most d new
packets simultaneously along its d incident links, and, since a separate packet is to be
received from each of the (2¢ — 1) other nodes, we see that (assuming unit time for
each packet transmission) any multinode broadcast algorithm takes at least [(2¢ — 1)/d]
time. There are algorithms that attain this lower bound, and are therefore optimal. We
construct such algorithms by means of a general procedure that generates multinode
broadcast algorithms, starting from a single node broadcast algorithm and exploiting the
symmetry of the network (see also Exercises 3.7 and 3.15).



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 57

0000 0001
Root

mode Figure 1.3.16 Spanning tree of a d—cube

that is rooted at node (00 - - - 0), and
provides a path of d links or less from
the root node to every other node. The
figure shows one possible construction for
d = 4. The tree is constructed sequentially
starting from the root by using the rule
that the identities of the children of each
node are obtained by reversing one of
the zero bits of the identity of the parent
that follow the rightmost unity bit. The
leaf nodes are the ones that have one as the
final bit in their identity. Using this tree,
a single node broadcast from the root to
all nodes, and a single node accumulation
1111 take ©(d) communication time. The tree
corresponding to an arbitrary root node
with identity i can be obtained from the tree corresponding to the node with identity (00 - - - 0) by addition
(mod 2) of the identity of each node on the tree with the identity of node . [Here we use the fact that any
two node identities = and y differ in exactly the same bits as ¢ @ = and @ y, where z @ w denotes the d-bit
string obtained by performing modulo 2 addition of the kth bit of z and w for k = 1,2, ..., d. Furthermore,
we have 7 @ (00---0) = i. As a result, if all identities j in the spanning tree shown are replaced by i @ j,
all links shown will continue to be hypercube links and the resulting spanning tree will be rooted at the node
with identity z.]

We represent an algorithm that broadcasts a packet from node (00 - - - 0) to all other
nodes in m time units by a sequence of disjoint sets of directed links A;, Az,..., Am.
Each A; is the set of links on which transmission of the packet begins at time ¢ — 1
and ends at time i. We impose on the sets A; certain consistency requirements for
accomplishing the single node broadcast. In particular, if S; (E;) is the set of identity
numbers of the start (end, respectively) nodes of the links in A;, we must have S; =
{(00---0)},and S; C {(00---0)}U(Ui_} Ex). Furthermore, every nonzero node identity
must belong to some F;. The set of all nodes together with the set of links (U, A;)
must form a subgraph which is a spanning tree [see Fig. 1.3.17(a)].

Consider now a d-bit string t representing the identity number of some node on
the d—cube. For any node identity z, we denote by ¢ @ z the d-bit string obtained by
performing modulo 2 addition of the jth bit of ¢ and z for j = 1,2,...,d. It can be seen
that an algorithm for broadcasting a packet from the node with identity ¢ is specified by
the sets

A¢(t)={(t€9x,t69y)|(:L',y)eAl-}, 1=1,2,...,m,

where A;(t) denotes the set of links on which transmission of the packet begins at time
i —1 and ends at time 7. The proof of this is based on the fact that ¢ @z and ¢ @y differ
in a particular bit if and only if z and y differ in the same bit, so (t ® z,t @ y) is a link
if and only if (x,y) is a link (see also Fig. 1.3.16).

We now describe a procedure for generating a multinode broadcast algorithm spec-
ified by the sets A;(t) for all possible values of i and ¢, starting from a single node
broadcast algorithm specified by the sets A;, Ay, ..., Ap,. For any link (z,y), let r;(z,y)
be the number of node identities ¢ for which (z,y) € A;(t), or, equivalently, z =t S w



58 Introduction Chap. 1

000 010 | 011
100! 110
(a)
A,(001) A,(001) A,(001)
011 111 101 101 001 011 010 110 100
010 000 001

110 100

111 010 001 100 000 010 110 010 000
110 100 101

10 000

(b)

Figure 1.3.17  Generation of a multinode broadcast algorithm for the d-cube, starting from a single
node broadcast algorithm. (a) The algorithm that broadcasts a packet from the node with identity
(00 --0) to all other nodes is specified by a sequence of sets of directed links A, JAz, oo Am.
Each A; is the set of links on which transmission begins at time i — 1 and ends at time 1. ) A
corresponding broadcast algorithm for each root node identity ¢ is specified by the sets of links

A ={toz,t®Y) | (z,y) € A;},

where we denote by t @ z the d-bit string obtained by performing modulo 2 addition of the 7th bit
of t and z for j = 1,2,...,d. The multinode broadcast algorithm is divided in m stages. Within
stage ¢, the packet of each ¢ is transmitted over the links in A;(¢). Stage i takes time T}. The figure
shows the construction for an example where d =3, T} =1, T, = 2, T3 = 1, and the multinode
broadcast algorithm takes 4 time units. If the link (000,010) belonged to A; instead of Aj, the
required time would be the optimal 3 time units.

and y = ¢t @ z for some link (w,z) € A;. For each of these node identities t, A;(t)
specifies that there is a packet of ¢ to be transmitted over link (z,y). It follows that
for a fixed i, if transmission starts simultaneously in all the links of all the sets A; (@),
then, allowing for queueing delays, the transmissions in all these links will be completed
within time T; given by

T; = maxr;(z, y).
(z,y)

Therefore, the total time taken by the multinode broadcast is at most 7 +7T5 + - - - + Th.
Thus efficient multinode broadcast algorithms can be obtained by choosing the sets
Ay, Ay, ..., Am of the single node broadcast so that T} +T5 + - - - + T}, is small. Figure



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 59

1.3.17(b) illustrates the sets A;(t) corresponding to all possible ¢ and the times T; for the
case where d = 3. Note that T; = 1 means that given any two links (z,y) and (z’,y) of
A;, the bit in which z and g differ is not the same as the bit in which z’ and y’ differ.
Thus, we have T, > 1 in Fig. 1.3.17 because the links ((000), (010)) and ((100),(110))
belong to A, but do not satisfy the preceding requirement. In Fig. 1.3.18 we give a
method for selecting A; so that T; = 1 for all ¢, and the number of elements in each one
of the sets A;, Ay,..., Am_1 is d, while the number of elements in A, is less than or
equal to d. Since the total number of links in the spanning tree specified by U2, A; is
24 1, we conclude that T} + T3 +- - -+ T, = m = [(2¢ — 1)/d], and the corresponding
multinode broadcast algorithm takes the optimal time [(2¢ — 1)/d].

An optimal single node scatter algorithm takes no more than the [(2¢ — 1)/d] time
taken by an optimal multinode broadcast algorithm. Also, since (2% — 1) packets must
be transmitted along the d incident links of the origin node, any single node scatter
algorithm takes at least [(2¢ — 1)/d| time (assuming each packet requires unit time
for transmission). It follows that [(2¢ — 1)/d] is the optimal time to solve the single
node scatter problem and its dual, the single node gather problem. The sets of links
Ay, Ay, ..., A, constructed in Fig. 1.3.18 can be used to define optimal scatter and
gather algorithms for every processor. An alternative, based on a general method for
constructing scatter and gather algorithms, is outlined in Exercise 3.9.

Consider next the total exchange problem, whereby each node transmits a separate
packet to every other node. We can decompose the d—cube into two (d — 1)—cubes

connected by 29! links. We then see that (2"’“1)2 packets from each of the two
cubes must be transmitted to the other cube over these 2¢~! links. Therefore, any total
exchange algorithm cannot take less time than 29-1 ynits. An algorithm that attains this
lower bound within a factor of 2 is given in Fig. 1.3.19. We see, therefore, that an
optimal total exchange algorithm takes ©(2%) communication time on the d—ube.

Table 3.1 compares the performance of a ring (or a linear array), a binary balanced
tree, a symmetric mesh, and a hypercube for the basic communication problems discussed
in this section.

TABLE 3.1 Solution times of optimal algorithms for the basic communication
problems using a ring, a binary balanced tree, a d—dimensional symmetric
mesh, and a hypercube with p processors. The times given for the ring hold
also for a linear array.

Problem Ring Tree Mesh Hypercube
Single node broadcast O®) | OUogp) | O®'/% O(log p)
(or single node accumulation)

Single node scatter Owm | O®m O®) O(p/ log p)
(or single node gather)

Multinode broadcast O | Ow O®m) O(p/ log p)
(or multinode accumulation)

Total exchange O@d) | OrH | Opdth/d) O)




60 Introduction Chap. 1

Ny N, N, Ny
= A ’ - N S
(000) (001) (010) (100) (011) (110) (101) (111) -
oo oo e ]
Rl'l RZ'I
No N, N, N, N,
A\ A \ 7 A \ A \,—'\'ﬂ
(0000) (0001) (0010) (0100) (1000) (0011) (0110) (1100) (1001) (0101) (1010) (1101) (1011) (0111) (1110} (1111)
~ — J \ v J \ J\ v J
Ay R Rz R

m(0001)=1 m(1001)=4 m(1101)=3
O

n Y%

m(0010)=2 / m(0011)=1 IM(10‘|1)=4 m(1111)=3

m(0100)=3 m(0110)=2 m(0101)=1 | m(0111)=1 a=4
=
m(1000)=4 m(1100)=3 m(1010)=2 / m(1110)=2
Ay
A2 A3 A4
No N,
—A A \
(00000) (00001) (00010) (00100) (01000) (10000)
Ry
N,

e —
(00011) (00110) (01100) (11000) (10001) (00101) (01010) (10100) (01001) (10010)
- — J \. J

A Rz

Ny

(00111) (01110) (11100) (11001) (10011) (01011) (10110) (01101) (11010) (10101;

v J O — J

Ry R3;

N, "
s A Al
(01111) (11110) (11101) (11011) (10111) (11111)
- — J

Ra

00001 10001 01001 11001 01101 11101
10011 11010 11011
00009, 00111 10101 10111

01110 01111

01000 01100 01010 01011

10000 11000 10100 11100 10110 11110 1M1

(c)



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 61

Figure 1.3.18 Construction of a multinode broadcast algorithm for a d—cube that takes |-(2d - 1)/d] time.
Let N, k = 0,1,...,d, be the set of node identities having k unity bits and d — k zero bits. The number
of elements in Ny is (Z) =d!/ (k! d - k)!). In particular, Ny and N4 contain one element, the strings
(00---0) and (11---1), respectively; the sets N} and N4_; contain d elements; and for 2 < k < d—2
and d > 5, Nj contains at least 2d elements (when d = 4, the number of elements of N, is 6, as shown
in the figure). We partition each set Ni, k = 1,...,d — 1, into disjoint subsets Ry, ..., Rgn, Wwhich are
equivalence classes under a single bit rotation to the left, and we select Ry to be the equivalence class of
the element whose k rightmost bits are unity. Then we associate each node identity ¢ with a distinct number
n(t) € {0,1,2,...,2¢ — 1} in the order

(00---0)Ri1Ry1 -+ Rapy - - Rig1 -+ Rigmy, -+ Rea—21 * + * Red—2yng_y Ria—1i(11 -+ 1)

[i.e., n(00---0) = 0, n(11---1) = 22 — 1, and the other node identities are numbered consecutively in the
above order between 1 and 24 — 2]. Let

m(t) = 1+ [((®) — 1)(mod d)].
Thus the sequence of numbers m(t) corresponding to the sequence of node identities Ry Raj ... Rg—1y is

1,2,...,d,1,2,...,d,1,2,... (cf. the figure for the case d = 4). We specify the order of node identities
within each set Ry, as follows: the first element ¢ in each set Ry, is chosen so that the relation

the bit in position m(t) from the right is a one (%)

is satisfied, and the subsequent elements in Ry, are chosen so that each element is obtained by a single bit
rotation to the left of the preceding element. Also, for the elements ¢ of Ry, we require that the bit in position
m(t) — 1 [if m(t) > 1] or d [if m(t) = 1] from the right must be a zero. Then property () is satisfied for
all elements of all sets Ry, (see the figure for the case d = 4). For¢ = 1,2,..., [(Zd - 1)/cf| — 1, define

E;={t|G-1Dd+1<n®) <id},
and for i = 0, and i = m = [ — 1)/d], define

Eo={00---0)}, En={t|m-Dd+1<n@)<2%-1}.
We define the set of links A; as follows:

For:=1,2,...,m, each set A; consnsts of the links that connect the node identities ¢t € E; with the
corresponding node identities of U®_ e Ek obtained from ¢ by reversing the bit in position m(t) [which
is always a one by property (x)]. In pamcular the node identities in each set Ry, are connected with
corresponding node identities in R _1y1, because, by construction, the bit in position m(t) lies next
to a zero for each node identity ¢ in the set Ry;. There is an exception to the preceding construction
in the case where m(11---1) = d. The exception is that bit d — 1 of (11---1) (instead of bit d) is
reversed to connect to (101 - - 1) [which must be the last element of E,,_; because of the rule that
the bit in position m(t) — 1 is a zero for all t € R(g—1y with m(t) > 1]; furthermore bit d (instead
of bit d — 1) of the next to last element of E,, [which must be (1101 ---1)] is reversed to connect
to (0101 - - - 1). [Without this exception, (11---1) would be connected to (011 - - - 1), which is the first
element of E,,, and therefore does not belong to U Ek ]

To show that this definition of the sets A; is legitimate, we need to verify that by reversing the specified
bit of a node identity t € E;, we indeed obtain a node identity ¢’ that belongs to U; _ lEk, as opposed to E;. [It
cannot belong to Ey. for k > i, because n(t’) < n(t).] In the case where ¢ = (11 - - - 1), there is no difficulty
if m(11---1) = d because of the way that this exceptional case was handled, while if m(11---1) < d, it
is seen that (11---1) is connected to the node ¢’ € E,,_| for which m(t’) = m(11---1) + 1. In the case
t # (11---1), it is sufficient to show that n(t) — n(t’) > d. We consider two cases: a) If t € Ry, for some
n > 1, then all of the d elements of Ry, are between t’ and ¢, and the inequality n(t) — n(t’) > d follows. b)
If t € Ry then t’ € R;—1) and all of the elements of the sets Rix_1y, ..., R —1)n,_, are between t and
t. There are (k‘_i_l) — d such elements. If 2 < k < d and d > 5, it can be verified that (kil) —d>dand
we are done. The cases d = 3 and d = 4 can be handled individually (see the figure). The cases k = 1,2
create no difficulties because R); = F, R;; = E,. We finally notice that any two links in A; correspond
to reversals in different bit positions, so that T; = 1 for all <.



62 Introduction Chap. 1

C, ~T C,
Total exchanges Total exchanges
within hypercube C, within hypercube C,
during phases 1 and 3 Communication during phases 1 and 3
during phase 2
between hypercubes
C,and C,

Figure 1.3.19 Recursive construction of a total exchange algorithm for the d—cube
requiring time

Ty<2¢-1,

which is within a factor of 2 of the lower bound of 2¢—!. When d = 1, the obvious
total exchange algorithm takes time Ty = 1, so the above inequality holds for d = 1.
Assuming we have a total exchange algorithm for the d-cube satisfying the inequality,
we will construct a corresponding total exchange ‘algorithm for the (d + 1)—cube. Indeed
let the (d-+ 1)—cube be decomposed into two d—cubes denoted C; and Cj. The algorithm
consists of three phases, the first two of which are carried out simultaneously. In the
first phase, there is a total exchange within each of the cubes C; and C; (each node
in Cy exchanges its packets with the other nodes in C) and similarly for C;). In the
second phase, each node transmits to its counterpart node in the opposite d—cube all
of the 2¢ packets that are destined for the nodes of the opposite d—cube. In the third
phase, there is a total exchange in each of the two d—-cubes of the packets received in
phase two. Phases 1 and 2 are carried out simultaneously. Since phase 1 is completed
in time Ty, which is less than 2¢ by the induction hypothesis, both phases 1 and 2
are completed by time 2¢. Phase 3 takes time T}, and the entire algorithm takes time
Ty41 < Ty +2¢ < 29+ — 1, where the last inequality follows from the induction
hypothesis. The induction is complete.

Vector Shift on a Hypercube

We next consider a problem of redistributing data among the hypercube processors,
which arises sometimes in connection with matrix computations. We mentioned earlier
that a ring with 2¢ nodes can be mapped into a d—cube, so that node i of the ring
(:=0,...,29 — 1) is mapped to the node whose identity is the (i + 1)st element of the
d-bit RGC sequence. Let us number the nodes of a d—cube as 0,...,2¢ — 1 according
to this mapping. Given some m € {1,2,3,...,2¢ — 1}, the problem is to send a packet
from node 7 to node (i + m)(mod 29), and to do this simultaneously for all nodes
i=0,...,2¢ — 1. We call this the generalized vector shift problem because it arises
when we have a 2¢—dimensional vector, which is distributed among the processors of a
ring so that processor ¢ holds coordinate i, and we want to shift the vector cyclically by
m positions while preserving the property that processor i holds coordinate i. We will
provide a generalized vector shift algorithm that takes O(d) communication time. For
this, we need an interesting class of ring mappings into the hypercube, which we now
describe.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 63

Consider the RGC sequence and the ring that it defines on the hypercube as just
discussed. Let us define the logical distance of two nodes ¢ and j to be the distance
between i and j on the ring, and let us define the physical distance of i and j to be the
minimal number of links that must be traversed on the d—cube to go from : to j (i.e., the
Hamming distance of i and j). An important fact is that two nodes at logical distance
2k k=1,...,d—1, are at physical distance 2. The proof is given in Fig. 1.3.20, where
it is also shown that for each k = 0, 1,...,d — 1, the nodes that are at logical distance 2k
from each other form a system of subrings called subrings of level k, and each subring
has 29=% nodes. The subrings of level k can also be visualized from the mapping of
the 2%=1 x 24=%+1 mesh on the d—cube given in Fig. 1.3.20. For k > 0, each subring
consists of the elements of a column corresponding to either the even—numbered rows
or the odd—numbered rows. Each node is on exactly one subring of level & for each k,
and successive nodes on each subring are at a physical distance of 2 from each other if
k > 0, and at a physical distance of 1 if ¥ = 0; see Fig. 1.3.21. This shows that each

P,=2k=1 nodes

o o e 3, bpb
?
Pb

a3bﬂb

Elements . .
of a subring : : ab
of level k

ab

i%p
p, = 29~%*1nodes
310,

a;2b, b

Py — 1Py

Pg Pp

Nodes at logical distance 2%

Figure 1.3.20 Proof that two nodes at logical distance 2% are at physical distance 2
on the hypercube. Consider the mapping of the p, X p, mesh into a d—cube as shown,
where p, = 2¢=k+1 and p, = 25~!. Then {a1,az,...,ap, } is the (d — k + 1)-bit
RGC, and {b1,b2,...,bp, } is the (k — 1)-bit RGC. The d-bit strings a;b; ordered as
in the figure are the elements of the d-bit RGC. Two nodes at logical distance 2k have
identity numbers of the form a;b; and a;2b; as shown in the figure, and are, therefore,
at physical distance 2.



64 Introduction Chap. 1

Logical structure Physical structure Logical subrings of level ¥

—J

Level 0
Level 1 i 1010
Jl Level 2
Level 2 @ @
Level 3
o
Level 1
(b)
Level 3 o~ o
[

(a)

Figure 1.3.21 (a) Subrings of level k = 0,1,2,3 on the 4—cube (from [McV87]). (b) The same
subrings imbedded in the corresponding 2F~! x 25—% meshes for k = 1,2, 3.

node i can send a packet to nodes (i +2¥)(mod 2¢) and (i — 2¥)(mod 2¢) simultaneously
with every other node over a path with two links if £ > 0, or one link if k = 0.

An algorithm for solving the generalized vector shift problem is now clear. If
ba—1ba—2 - - - by is the binary representation of m, we move the packets successively on
the subrings of the levels ¢ that correspond to nonzero bits b;. In particular, the packet
of node ¢ is sent to node (i + m)(mod 2°) by first sending it to node (i + 1)(mod 2¢) on
the zero level ring (if by = 1), then to node (i + by + 2b;)(mod 2%) on a level 1 subring
(if b; = 1), then to node (z + b + 2b; +4b,)(mod 29) on a level 2 subring (if b, = 1), etc.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 65

The packet of node 7 traverses by +2 ZZ;: by, links, and travels simultaneously with the

packet of every other node j. Thus, the algorithm takes by +2 ZZ;} by time units, which
is O(d) as claimed earlier. This time, compared with the corresponding time when a ring
of 24 nodes is used for communication, is found much faster for 1 << m << 2¢—1. It
turns out that the worst case communication time for the generalized vector shift problem
can be reduced from 2d — 1 to d via an algorithm that uses backward as well as forward
shifts on the subrings (Exercise 3.12). For example, a shift of 7 can be effected by
a shift on the level 0 subring (logical distance 1), followed by a shift on the level 1
subring (logical distance 2), followed by a shift on the level 2 subring (logical distance
4), requiring a total of 5 time units. Alternately, a shift of 7 can be effected by a shift
on the level 3 subring (logical distance 8), followed by a backward shift on the level 0
subring (logical distance 1 backwards), for a total of 3 time units.

Communication Algorithms Using at Most One Link per Node

We next consider briefly the basic communication problems of this section under a
potential restriction imposed by the transmission hardware of the interconnection network.
We assume in particular that each processor can at any time transmit along at most one
of its incident links. Among the algorithms considered so far, only the generalized vector
shift algorithm on the d—cube satisfies this restriction.

It turns out that we can characterize the times taken by optimal algorithms for each
of the basic communication problems of this section using a broad variety of intercon-
nection networks, and subject to the constraint that each processor can transmit at most
one packet at a time. The main results are collected in Table 3.2. To justify these results,
suppose that d(p) is the maximum degree of a node of a given type of interconnection
network as a function of the number of processors p. Then, any communication algorithm
where simultaneous transmission along all the incident links of a node is allowed can
be emulated by an algorithm where transmission along only one incident link is allowed
at the expense of a slowdown by a factor d(p); in particular, the transmissions within
each time unit of the former algorithm can be emulated by corresponding transmissions
within d(p) time units in the latter algorithm. It follows that for networks where d(p)
is independent of p, such as a ring, a binary balanced tree, and a symmetric mesh, the
order of optimal time to solve a communication problem is the same when transmission
along multiple incident links is allowed and when it is not. This justifies all entries of
Table 3.2, with the exception of the entries for a hypercube where d(p) = logp. For
a hypercube, the preceding argument and the results of Table 3.1 show that any single
node scatter, multinode broadcast, or total exchange algorithm takes time O(p), O(p),
or O(plogp), respectively. The corresponding lower bounds are obtained by counting
the total number of packets that must be transmitted in each problem, and by dividing
by the number of nodes (see also Exercises 3.9 through 3.11). The estimate ©(logp)
for a single node broadcast for a hypercube in Table 3.2 is shown by using the two—
rooted tree mapping of Fig. 1.3.14. We finally note that the estimates of Table 3.2 can
be established under the stronger requirement that each node can transmit at most one
packet, and, simultaneously, receive at most one packet along its incident links. This can
be done by modifying some of the algorithms given so that this stronger requirement is



66 Introduction Chap. 1

TABLE 3.2 Solution times of optimal algorithms for the basic communication
problems using a ring, a binary balanced tree, a d-dimensional symmetric mesh,
and a hypercube with p processors, and assuming that a node can transmit
along at most one incident link. The times given for the ring hold also for a

linear array.
Problem Ring | Tree Mesh Hypercube
Single node broadcast O | Odogp) | O!/%) O(log p)
(or single node accumulation)
Single node scatte ) © O ©
((:?gsi;;le :o%cea ga{her) ® @ ®) ®)
Multinode broadcast O@) | Owm) O®) O(p)
(or multinode accumulation)
Total exchange ) [ O@?) | O@@th/dy | Oplogp)

met, without affecting the corresponding order of solution time. The details are left for
the reader (see also Exercises 3.9 through 3.11).

Optimal Algorithms

We have focused so far on the order of time taken by an optimal algorithm for a given
type of communication problem and processor interconnection network. In every case,
we obtained an algorithm that is optimal within a constant factor; that is, if T, is the
time required by the algorithm, there is a lower bound B on the number of time units
required to solve the communication problem, and a scalar ¢ (independent of the number
of processors) such that

B<T,<cB,

assuming that each packet transmission requires unit time. On several occasions, we
gave exact values for B, T,, and c. If, for a given algorithm, we have ¢ = 1, then the
algorithm attains the lower bound for the time to solve the communication problem, and
is therefore optimal. Several algorithms given either in the main body of this section or
in the exercises are optimal in this sense. Table 3.3 gives the results obtained for the d—
cube in this subsection and in Exercises 3.9 through 3.11 for the case where simultaneous
transmission along all incident links of a node is allowed and for the case where it is
not. It is seen that we have obtained an optimal algorithm in all cases with the exception
of a total exchange when simultaneous transmission along all incident links of a node is
allowed.

Communication Bottlenecks of Interconnection Networks

We have examined so far in this section several communication problems for a variety
of interconnection networks. In each case, we have been able to establish both a lower



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 67

TABLE 3.3 Bounds on the optimal times for solving the basic communication problems on a
hypercube with p processors for the case where simultaneous transmission along all incident
links of a processor is allowed, and for the case where it is not. We assume that each packet
requires unit time for transmission on any link.

Simultaneous Transmission on Simultaneous Transmission on
Problem All Incident Links Allowed Multiple Incident Links
Not Allowed

Lower Bound | Upper Bound | Lower Bound | Upper Bound

Single node broadcast logp logp logp logp
(or single node accumulation)
Single node scatter [f;—;-l [%] p—1 p—1

(or single node gather)

i ' =l =l - -
Multinode broadcast [log p] [,og p.| p—1 p—1
(or multinode accumulation)

Total exchange 2 p—1 Llogp Llogp

bound on the order of time taken by an optimal algorithm and an algorithm that attains
this lower bound. It is interesting to note that for a given communication problem, there
is a particular characteristic, common to all interconnection networks examined, that
determines the lower bound. We may view this characteristic as a communication bot-
tleneck associated with the corresponding type of problem. Based on this viewpoint, we
can obtain insight on the features of interconnection networks that make them desirable
or undesirable for specific types of communication tasks, as we now explain.

In the following discussion we assume that all packet transmissions require one
time unit, and that simultaneous transmission along all incident links of a node is allowed.
Since the diameter of the network is equal to the time taken by an optimal single node
broadcast algorithm with a worst choice of root node, we can view the diameter as the
communication bottleneck for the single node broadcast problem (and, therefore, also for
the single node accumulation problem).

Consider next the single node gather problem for a node with d incident links
(i.e., a degree equal to d). If p is the number of processors, the node must receive
p — 1 packets over its d incident links, so [(p — 1)/d] is a lower bound on the solution
time of any algorithm. This lower bound is tight for a hypercube, as shown earlier
(Table 3.3), and is either tight or nearly tight for the other topologies examined in this
section. We conclude that the minimum node degree in an interconnection network is a
communication bottleneck for the single node gather (and, therefore, also for the single
node scatter problem).

The reasoning used above for the single node gather problem applies also for the
multinode accumulation problem, and it can be seen that the minimum node degree is a
bottleneck for multinode accumulation (as well as for the multinode broadcast problem).

Consider, finally, the total exchange problem. For any partition of the node set N
into two disjoint nonempty subsets N; and Ny, let L, be the number of links connecting
a node of N; with a node of V,. The number of packets that will travel over these L,
links in any total exchange algorithm is at least |IV{|| V|, where |N;| and | V| are the



68 Introduction Chap. 1

number of nodes of V| and V,, respectively. Therefore the corresponding solution time
is bounded from below by

|N1|| V2 |
All partitions (Ny,N2) Ly )

This number, called the cross—section bound, provides a tight underestimate of the order
of time taken by an optimal total exchange algorithm for all the interconnection networks
considered in this section, and may be viewed as a communication bottleneck for the total
exchange problem. We note, however, that the cross—section bound is not valid when
transmission along multiple incident links of a node is not allowed. An appropriate
bound can be developed under these circumstances by lower bounding the number of
link transmissions in any total exchange algorithm and dividing by the number of nodes.
Such a lower bound is tight for the hypercube (see Exercise 3.10).

1.3.5 Concurrency and Communication Tradeoffs

We use the term concurrency as a broad measure of the number of processors that are, in
some aggregate sense, simultaneously active in carrying out the computations of a given
parallel algorithm. The degree of concurrency generally depends on the method by which
the overall computation is broken down into smaller subtasks and is divided among the
various processors for parallel execution. It is important for efficiency purposes that the
computation time of parallel subtasks be relatively uniform across processors; otherwise,
some processors will be idle waiting for others to finish their subtasks. This is known as
load balancing. 1t is reasonable to conjecture that the number of packet exchanges used
to coordinate the parallel subtasks increases with the number of subtasks, and that this
is particularly true when the size of the subtasks is relatively uniform. It then follows
that as the concurrency of an algorithm increases, the communication penalty for the
algorithm also increases. Therefore, as we attempt to decrease the solution time of a
given problem by using more and more processors, we must contend with increased
communication penalty. This may place an upper bound on the size of problems of a
given type that we can realistically solve even with an unlimited number of processors.

For a given problem, there are both general and problem-specific reasons why
the communication penalty tends to increase with the number of processors. A first
reason is the possibility of pipelining of computation and communication. If some of the
computation results at a processor can be communicated to other processors while other
results are still being computed, the communication penalty will be reduced. This type
of pipelining is possible, for example, in relaxation iterations of the form

zit+1) = fi(z1(®),...,2,(), i=1,...,p G4

(cf. the model considered in Subsection 1.2.4), where each z; is a vector of dimension
k that is assigned to a separate processor 7 and n = pk is the dimension of the problem.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 69

Pipelining of computation and communication is more pronounced when there is a large
number of variables assigned to each processor; then the variables that have been already
updated within an iteration can be made available to other processors while the updating
of other variables is still pending. A second reason is that in many systems, a portion of
each packet is used to carry overhead information. The length of this portion is usually
fixed and independent of the total length of the packet. This means that there is a gain in
efficiency when packets are long, since then the overhead per bit of data is diminished.
It is clear that the length of the packets can be made longer if the number of variables
updated by each processor using the relaxation iteration (3.4) is larger, since then the
values of many variables can be transmitted to other processors as a single packet.

Even in the absence of overhead, and of pipelining of computation and communica-
tion, the communication penalty tends to be reduced as the dimension & of the component
vectors z; in the relaxation iteration (3.4) is increased. Suppose that processor i uses
Eq. (3.4) to update the k—dimerisional vector x;, with knowledge of the other vectors z;,
Jj # 1. Suppose also that the computation time for each update is ©(nk) [as it will be for
example when the function f; in Eq. (3.4) is linear without any special sparsity structure].
After updating x;, processor ¢ must communicate the corresponding k variables to all
other processors so that the next iteration can proceed. This can be done via a multinode
broadcast, and if a linear array is used for this purpose, the optimal communication time
is ©(n), assuming that communication of k variables over a single link takes ©(k) time.
Thus, the ratio

Tcomn _ Communication time per iteration
Tcomp Computation time per iteration

is ©(1/k), and the communication penalty becomes relatively insignificant as the number
k of variables updated by each processor increases. The ratio Tcomn/Tcomp is
independent of the problem dimension n; it only depends on k, that is, the size of the
computation task per iteration for each processor.

A further observation from this analysis is that the speedup obtained through par-
allelization of the relaxation iteration (3.4) can be increased as the dimension n of the
problem increases. In particular, the computation time per iteration on a serial machine
is ©(n?) [it is O(nk) based on our earlier hypothesis and, for a serial machine, we have
p =1 and k = n], so the speedup using a linear array of p processors, each updating
k = n/p variables, becomes

om? )
O(n) + O(nk) o®),

where the ©(n) and ©(nk) terms correspond to the communication time and the com-
putation time, respectively.

We have thus reached the important conclusion that for relaxation iterations of the
form (3.4), the communication penalty will not prevent the fruitful utilization of a large
number of processors in parallel when the problem is large, even when a linear array (the



70 Introduction Chap. 1

“least powerful” network) is used for communication. What is needed, as the dimension
of the problem increases, is a proportional increase of the number of processors p of
the linear array that will keep the number & of variables per processor roughly constant
at a level where the communication penalty is relatively small. Note also that when a
hypercube is used in place of a linear array, the optimal multinode broadcast time is
©((pk)/ logp), so the ratio Tconnm /Tcomp decreases from O(1/k) to ©(1/(klog p)).
Therefore, as the dimension of the problem increases by a certain factor, the number
of processors of the hypercube can be increased by a larger factor while keeping the
communication penalty at a relatively insignificant level, and increasing the attamable
speedup at a faster rate than with a linear array.

The preceding analysis does not assume any special structure for the iteration (3.4)
other than the hypothesis that a single variable update takes ©(n) time. In many other
cases where there is special structure, the ratio Tconra /Tcomp is also small for large
k. An important example is associated with problems arising from discretization of
two—dimensional physical space and with the so called area—perimeter effect (see Fig.
1.3.22). As shown in the figure, the number of variables that have to be communicated
by a processor is ©(Vk), and the time taken for communication on a mesh network
or a hypercube is O©(Vk). The time taken for each variable update is a constant, and
the parallel computation time for each iteration is ©(k). The ratio Tcomnm/Tcomp
is ©(1/ VE). Figure 1.3.23 provides another example of a sparsity structure (block-
tridiagonal) where the ratio Tcomm /Tcomp decreases quickly with k. Fig. 1.3.24
provides an unfavorable type of sparsity structure for matrix—vector multlphcatlon where
Tcomm / Tcomp is relatively large.

k%
——

P o S 0 Figure 1.3.22 Structure arising from
discretization of 2-dimensional space.
Here the variables are partitioned in
rectangles of physical space, and we
assume that only neighboring variables
interact (cf. the example in Subsection
1.2.4). Each rectangle contains k variables,
and at the end of a relaxation iteration
of the form (3.4), each rectangle must
exchange ©(v/k) variables with each of its
neighboring rectangles. The communication
O < O time per relaxation iteration, using a mesh
network for communication, is @(\/E), but
the computation time is O(k).

—{)

The preceding discussion has focused on relaxation iterations of the form (3.4)
which are important for the purposes of this book as they appear in the context of many
algorithms. The conclusion is that with proper selection of the size of the computation
task for each processor, the effects of communication can be minimized. Furthermore,
as the size of the given problem increases without bound, the speedup can typically also



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 71

k kK

Figure 1.3.23 A block—tridiagonal
sparsity structure for matrix—vector
multiplication where the communication to
computation time ratio is low when using a
linear array for communication. Each block
is assumed to be dense and to have k
variables. Each relaxation iteration of the
form (3.4) takes ©(k) communication

time (assuming a linear array is used), and
O(k?) computation time.

k k k k k
\ Figure 1.3.24 A matrix sparsity structure
Matrix entries are  for matrix—vector multiplication where
nonzero only along  he communication to computation time
the lines indicated  i6, ysing a linear array of Processors
is relatively large. Here there are p
processors, each computing k = n/p
successive coordinates of the product. The
\ communication and the computation times

are O(kp).

increase without bound by using an appropriate parallel machine. In other words, there
is no a priori bound on the attainable speedup that is imposed by the communication
requirements.

1.3.6 Examples of Matrix—Vector Calculations

In this subsection, we discuss some generic communication aspects of matrix calcula-
tions, and at the same time we illustrate some of the ideas of the previous subsections.
We make the same assumptions as in Subsection 1.3.4 regarding the interconnection
network of processors used. In particular, we assume that communication can take place
simultaneously along all the incident links of a processor, and that in the absence of
queueing, the delays of all packets of equal length are equal on all links.

Our principal examples are inner product formation and matrix—vector calculations
such as

z(t+ 1) = Az(t) + b, Vt=0,1,..., 3.5)



72 Introduction Chap. 1

which arise in iterative methods of the Jacobi and Gauss—Seidel types (Subsection 1.2.4
and Section 2.4). Similar situations arise also in the conjugate gradient method (Section
2.7), and more generally in cases where a sequence of matrix—vector and matrix—matrix
multiplications, inner product formations, and vector additions are required with each
calculation using the results of the preceding ones. Related examples also arise in other
situations involving calculation of the minimum of a set of numbers instead of an inner
product (see the material on shortest paths and dynamic programming in Chapter 4).
An important characteristic of iterative calculations such as (3.5) is that following an
iteration, it is necessary to store the results of the iteration [e.g., the vector z(t + 1) of
Eq. (3.5)] at the appropriate processors as dictated by the needs of the next iteration. In
our analysis, we will not account for the time taken for initial storage of the problem data
[e.g., the matrix A, and the vectors b and z(0) of Eq. (3.5)] at the appropriate processors.
This additional time is negligible, assuming a large number of iterations are executed;
otherwise, the following analysis can be easily modified to take it into account. This time
can be reduced by pipelining the initial data input with the algorithmic computation and
communication. Schemes that take advantage of this possibility are known as systolic
algorithms, and are used for fast execution of highly specialized calculations on VLSI
chips. Such algorithms are beyond the scope of this book (see [MeC80], [Kun82],
[ADMS2], and [Kun88]).

Inner Product

Assume that we have a network of p processors, and we want to form the inner product
of two vectors a and b in R", where n > p. For simplicity, we assume that n is
divisible by p, and we let k = n/p. It is then natural to store at each processor 4 the
k coordinates of a and b numbered (¢ — 1)k + 1 through ¢k, to form the partial inner
product ¢; = Z;’Ic:(i—l)k +14;b;, and then to accumulate the result using a spanning tree
rooted at some node. We recognize this as a single node accumulation problem [cf.
Fig. 1.3.4(b)]. The root node can send the final value of the inner product to all other
nodes if needed; this is a single node broadcast problem. The following analysis can be
generalized to account for this possibility without affecting the associated time estimates,
but to simplify matters, we will assume that it is sufficient to obtain the inner product at
the root node. An alternative to collecting the sum at a single node and then broadcasting
it back to all nodes is given in Exercise 3.22 for the hypercube network.

Suppose that an addition and a multiplication take time «, and that transmission
of a partial inner product along a link takes time 3. Assume first that the processors
are connected in a linear array. Then the optimal choice for the root node is a “middle”
node that is at distance no more than |p/2| from every other node. The time to compute
the inner product at the root node is then

ka+(a+5)[§J.

For a given dimension n = pk, this is written as



Sec. 1.3 Communication Aspects of Paraliel and Distributed Systems 73

%a +(a+p) [gJ : 3.6)

We optimize approximately this expression over p by neglecting the fact that p is integer,
thereby obtaining the approximate optimum value

2 1/2
e (25) )

Thus, the optimal number of processors is substantially smaller than the maximum pos-
sible number n. In particular, when 8 > (2n — 1)a, it is optimal to avoid the high
communication cost associated with parallelism, and to use a single processor. This
illustrates the tradeoff between concurrency and communication (cf. Subsection 1.3.5).
From Egs. (3.6) and (3.7) it is seen that the optimal parallel time to calculate the inner
product grows with n as n'/2 when the processors are connected in a linear array.

Assume now that a hypercube with p nodes is used to compute the inner product
along the spanning tree of Fig. 1.3.16. Then it can be seen that the total time is

Pf + (o + B)log p,

and the optimal number of processors is given approximately by

an
a+f’

p= 3.8)

The optimal parallel time to calculate the inner product grows with n as log n, which
is also the rate of growth when n processors are used and communication is assumed
instantaneous (cf. Subsection 1.2.3). The optimal number of processors is much larger,
and the time to solve the problem is much smaller, than with a linear array, reflecting the
fact that communication on the hypercube is much more efficient. The performance gap
between the two interconnection networks is narrowed when it is required to calculate
several inner products simultaneously. Then a multinode accumulation is required in
place of a single node accumulation. This takes little additional communication time on
a linear array, but a lot more communication time on a hypercube (cf. the discussion of
Subsection 1.3.4, and the following discussion on matrix—vector multiplication).

Matrix—Vector Multiplication

We next consider the parallel calculation of the matrix—vector product Az on a network of
p processors, where A is an n X n matrix, and z is an n—dimensional vector. We assume
that n is divisible by p, and we denote k = n/p. There are two basic methods here,
depending on whether A is distributed by rows or by columns among the processors.



74 Introduction Chap. 1

(a) The row storage method, where processor i stores the k rows of A numbered
(i — 1)k + 1 through ik as well as the vector z. Processor ¢ then calculates the
k coordinates numbered (: — 1)k + 1 through ¢k of the product Axz. We assume
that the product Az is to be used subsequently by all processors, so each node
is required to transmit the updated values of these coordinates to all other nodes.
This is a multinode broadcast problem.

(b) The column storage method, where processor ¢ stores the k columns of A numbered
(¢ — 1)k + 1 through ¢k, and the k£ coordinates of  numbered (i — 1)k + 1 through
tk. Processor ¢ then calculates the corresponding & terms in the sum that defines
each coordinate of the product Az. It is then necessary to accumulate the terms
corresponding to the coordinates (¢ — 1)k + 1 through ¢k at node ¢. This is a
multinode accumulation problem.

Note that converting a matrix from the row storage format to the column storage
format requires solving a total exchange problem as defined in Subsection 1.3.4 [see also
Exercise 3.10(d)].

There is an interesting duality relation between the times taken by the row and
column storage methods, which is illustrated in Fig. 1.3.25. If the matrix A is fully
dense, it can be seen that the two methods take comparable times regardless of the type
of interconnection network used; they both involve an equal number of multiplications,
and either a multinode broadcast or a multinode accumulation, which take equal time
(except for the typically negligible time for a few additions) on any interconnection
network. This conclusion extends to the case where the sparsity structure of A is the
same as the sparsity structure of the transpose of A, for example, when A is symmetric.
To see this, note that for each multiplication and addition performed in the case of the
row storage method when A is used, there is a corresponding multiplication and addition
for the column storage method when the transpose of A is used. Furthermore, if a node
< must send a packet to node j in the case of the row storage method [i.e., the submatrix
of A corresponding to rows (j — 1)k + 1 through jk and columns ( — 1)k + 1 through
tk is nonzero], then node 7 must participate in the summation relating to the coordinates
accumulated at node ¢ in the column storage method when the transpose of A is used.

When A is not symmetric it may be difficult to determine which method is prefer-
able without detailed knowledge of the sparsity structure of A and the interconnection
network used. For an example where the row storage method takes more time than the
column storage method, consider a matrix A with zero elements everywhere except along
the first row and along the diagonal. Then, the row storage method requires a single
node gather operation at node 1, whereas the column storage method requires a less time
consuming single node accumulation at node 1. By using the transpose of the matrix
just described we obtain an example where the row storage method takes less time than
the column storage method. We finally note that when using the column storage method,
each processor stores only a k—dimensional subvector of z, as opposed to storing the full
vector z that is required in the row storage method. Thus the column storage method
has an advantage in terms of memory requirements.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 75

Multinode broadcast along columns
C

A— —
Processor 1| ® ﬂ ﬂ‘ ﬂ ﬂ 4—\
o2 || 8 1 1]~
Row storage method Processor 3 U U, ® ﬂ ﬂ -~ Z:r::;;:ti:?fizn:;;volving e
Processor 4 .U. U U ® ﬂ —~
Processor 5 U U U U R | -

Multiplications involving
the elements of a column

TrY i+

® |||«
=8 |lele|e
Column storage method | —> | =>| @ [<= <= glllg:‘tgir:zc:vesaccumulation
S22 e e
=S| === ®
Proc. Proc. Proc. Proc. Proc. J
1 2 3 4 5

Figure 1.3.25 Duality of matrix—vector multiplication using the row storage and the
column storage methods. In the row storage method, each processor performs multi-
plications involving the stored matrix rows, forms the corresponding coordinates of the
product, and broadcasts these coordinates to the other processors. In the column storage
method, each processor performs multiplications involving the stored matrix columns,
and accumulates the corresponding coordinates of the product. All broadcasts (accumu-
lations) are done in parallel by the processors, so a multinode broadcast (or accumulation,
respectively) is required.

For a discussion of additional methods of matrix storage that can take advantage
of sparsity structure, and corresponding timing analyses of matrix—vector calculations,
we refer the reader to [McV87] and [FJL88].

Consider now the time to compute the product Az using p < n processors arranged
in a linear array. We assume that the row storage method is used with each processor
storing k = n/p rows. Suppose that the time for an addition and a multiplication is c,
and that the time to transmit a packet of k£ numbers over a link is 3 + kv, where o, 3,
and vy are some positive constants. Suppose also that communication starts only after all
computation is completed. Then the time for matrix—vector multiplication using a linear
array is

2
31+(p-1)<,3+21>, 3.9)
p p



76 Introduction Chap. 1

where the first term corresponds to the computation time, and the second term corresponds
to the subsequent multinode broadcast needed to store the product Az at all processors.

The time (3.9) is optimized for
_ 1/2
pen (20)

8

which yields a roughly constant optimal number of rows per processor, k = n/p =
(B/a)'/?, when n is large (cf. the discussion of Subsection 1.3.5). The total optimal
time grows linearly with n. This is the same order of growth as when communication
is instantaneous. Since the optimal multiplication time using any network into which a
linear array can be mapped (such as a hypercube) cannot be more than the one using a
linear array, and cannot be less than when communication is instantaneous, we conclude
that for just about any interconnection network of interest, the time to form the product
Az using an optimally chosen number p < n of processors grows linearly with n.

We next consider the case where the number of available processors is larger than
n. It was seen in Subsection 1.2.3 that when communication is instantaneous, the product
Az can be computed in O(log n) time using n? processors. We cannot achieve this bound
when a linear array is used for communication, since it was seen earlier that the optimal
time for an inner product of two n—dimensional vectors (an easier calculation than the
matrix—vector product) grows as n!/2. We can achieve the bound O(logn), however, by
using a hypercube and the algorithm described in Fig. 1.3.26.

Matrix—Matrix Multiplication

We next discuss the problem of multiplying two n X n matrices. We assume first that
a square mesh of n? processors is used. We also assume that the ijth element of each
matrix is stored in processor (%, j), and the ¢jth element of the product must be eventually
stored in the same processor (see Exercise 3.16 for the case of a different initial storage
specification). Figure 1.3.27 gives an algorithm that takes O(n) time. This is also the
bound obtained when the product of two n X n matrices is formed in the usual way using
n? processors with instantaneous communication. Note also that the kth power of an
n X n matrix can be computed in time O(nlog k) using a square mesh of n? processors
with the ¢jth processor holding initially the ijth element of the matrix. This is done
by successive squaring of the matrix if k is a power of 2. If k is not a power of 2, a
similar procedure works in the same order of time; for example, to calculate A!!, we
calculate successively A2, A*, A8, A0 = A%2A%, and A!! = AA! (see the discussion of
Subsection 1.2.3).

We finally consider the matrix-matrix multiplication problem when n> processors
are available. It was seen earlier that matrix—vector multiplication can be performed in
time O(log n) using a hypercube of n? processors. The product of two n x n matrices A
and B is the matrix having as columns the matrix—vector products Aby,..., Ab,, where
bi,...,by, are the columns of B. These products can be computed in parallel using n3
processors in time O(log n) (the same time as each one of them). One possible algorithm
is formalized below.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems

within each column
hypercube

2'°8"processors
C@COC COCO) Phase I:
parallel single
2on CO =8 S0 = O) node accumulation
processors e e within each row
h b
(O =0 o= ®) ypercube
7\
i
Phase |1:
® parallel single
,U node broadcast

(O&- - <0&w)

CI=E

(®8=---50=0)

Figure 1.3.26 An O(log n) algorithm for multiplying an n x n matrix A with a vector
z € R™ on a hypercube with n? processors, where n is a power of 2. We use the
mapping of the n X n mesh into the hypercube under which each row and each column
of the mesh is a hypercube with n nodes (cf. the construction described in Subsection
1.3.4 and illustrated in Fig. 1.3.12). Initially, processor (3, j) stores the ijth element of A
and the jth coordinate of x, and at the end of the algorithm, it stores the jth coordinate
of the product Az. The algorithm consists of two phases, with each phase requiring
O(logn) time. The first phase consists of a single node accumulation within each row,
whereby the sth diagonal processor (i.e., the ith processor in the ith row) calculates the
ith coordinate of Az. The second phase consists of a single node broadcast within each
column hypercube. Each processor in the jth column receives the jth coordinate of Az
accumulated in the first phase at the jth diagonal processor.

Figure 1.3.27 An O(n) algorithm for

O«=>0«>0<+>0 multiplying two n X n matrices A and B
with elements a; j and b;;, respectively, on
O>0O«>r0—>0 an n X n mesh. Initially, processor (3, j) of
the mesh holds elements a;; and b;;, and
OO Oe>»0 at the end of the algorithm, processor (3, 5)
will hold the ijth element i” =, %imbm;
Or- OO0 of the product AB.

The algorithm consists of three

Phase 1 Phase 2 phases, each requiring O(n) time. In the

first phase, each processor (4, 7) broadcasts
a;; to the processors in the ith row;

these are n multinode broadcasts, one within each row, requiring O(n) time. In the second phase, each
processor (2, j) broadcasts b;; to the processors in the jth column; these are n multinode broadcasts, one
within each column, requiring O(n) time. At the end of two phases, each processor (2, 7) holds the values
a;m and by, for m = 1,2,...,n, and can form the ijth element 2" _, @imbm; of the product AB

in time O(n) (which is the third phase). Note that phases 1 and 2 can Be done in parallel, assuming that
simultaneous communication along all incident links is possible. Also, by appropriately interleaving
additions, multiplications, and communications, the algorithm can be made more economical in terms of time

and storage.



78 Introduction Chap. 1

We assume that n is a power of 2, and that we have a hypercube of n3 processors
arranged in an n x n X n amray. Let a;; and b;; be the ijth elements of A and B,
respectively, and let ¢;x = Z;;l a;jb;r be the ikth element of the product AB. We
assume that each processor (i, j, k) initially holds the elements a;; and b;x, and we re-
quire that at the end of the algorithm, processor (%, 7, k) holds the elements c;; and c;
of the product. Figure 1.3.28 gives a three—phase algorithm that performs the matrix
multiplication in O(logn) time. A similar algorithm works in the same order of time
for different initial and final storage specifications, taking advantage of the possibility

Array (jj k) for fixed k Array (jjk) for fixed k
T
® < <:: = /= =
S e ke Lamn
|
| by mo
A A G ® 0
‘ |
> = » ® bl cha
: |
i k
Phase 1 Phase 2
Array (ij1) Array (i,2) ‘ Array (;3) Array (i 4)
o= o ¢ )
&= = &R
o e
= —
R
&= —®
=
)

Phase 3

Figure 1.3.28 An O(logn) algorithm for multiplying two n X n matrices A and B with elements
a;; and b;;, respectively, on an n X n X n hypercube array. We assume that each processor (¢, 7, k)
initially holds the elements a;; and b;x, and we require that at the end of the algorithm, processor
(3, 3, k) holds the ¢jth and jkth elements of the product. The algorithm consists of three phases, each
requiring time O(log n). In the first phase, the ikth element of the product ¢;;, = Z;=1 a;jbji is
accumulated at processor (3, 2, k) along the array (¢, 7,k), = 1,...,n. In the second phase, each
processor (2, %, k) performs a single node broadcast of c;i along the array (j,%,k), j = 1,...,n,
and also sends c;x to processor (z,k, k). In the third phase, each processor (i, 7, j) performs a
single node broadcast of c;; along the array (i, j, k), k = 1,...,n.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 79

of doing matrix transposition on a hypercube with n* processors in time O(logn) (see
Exercise 3.18).

Consider now the calculation of A*, where A is an n x n matrix and k is an integer.
We can compute A* by O(log k) multiplications of powers of A as discussed earlier.
Thus, by using the preceding O(log n) matrix multiplication algorithm on a hypercube
of n* processors, we can compute A* in time O ((logn)(log k)). This is the same order
of time as the one obtained in Subsection 1.2.3, where all communication was assumed
instantaneous.

Table 3.4 summarizes some of the results of this subsection. The conclusion is that
by using a suitable interconnection network such as a hypercube, we can perform some
of the basic matrix calculations in the same order of time when there are communication
delays as when communication is instantaneous. This is encouraging, but it does not
imply that the communication penalty is negligible for these calculations; it only implies
that the communication time grows with the problem dimension at a rate that is no larger
than the rate of growth of the time needed exclusively for computations. For example,
the communication time can be larger than the computation time by an arbitrary factor
that is constant (independent of n), and still grow at the same rate as the computation
time. Alternatively, in some algorithms, we can make the communication time negligible
relative to the computation time (see the discussion in Subsection 1.3.5), but this requires
a reduction of the number of processors used, and affects the attainable speedup in a
different way.

TABLE 3.4 Upper bounds on the optimal times for matrix—vector calculations in ®™,
and the corresponding interconnection networks with which these bounds can be
achieved. These bounds are the same as those obtained for the same number of
processors in Subsection 1.2.3, where communication was assumed instantaneous.

Problem Time Corresponding Topology

Inner Product O(log n) Hypercube w/ p = n processors

Matrix-Vector Multiplication | O(n) Linear Array w/ p = n processors

Matrix-Vector Multiplication | O(log n) Hypercube w/ p = n? processors

Matrix-Matrix Multiplication | O(n) Mesh w/ p = n? processors

kth Power of a Matrix O(nlog k) Mesh w/ p = n? processors

Matrix-Matrix Multiplication | O(log n) Hypercube w/ p = n3 processors

kth Power of a Matrix o ((log n)(log k)) Hypercube w/ p = n3 processors
EXERCISES

3.1. Use the following model to establish the validity of the stop—and-wait protocol between a
transmitter A and a receiver B as outlined in Subsection 1.3.3 (with packets and acknowl-
edgments numbered modulo 2). The rule for A is that if packet n [numbered n(mod 2)]
is the last packet transmitted by A at a given time, and if A started transmission of that
packet at time ¢, then A will start retransmission of packet n at time ¢t + A if no packet



80 Introduction Chap. 1

from B numbered n(mod 2) is received correctly in the interval (¢,¢ + A), and it will
start transmission of packet n + 1 upon receiving a packet from B numbered n(mod 2) (A
here is some positive number denoting the timeout interval for A). The rule for B is that
upon correct reception of a packet numbered & (k = 0,1) it sends a packet numbered k
to A. Furthermore, B stores in memory only the first correctly received packet numbered k
(k =0, 1) from every sequence of consecutive packets that are all numbered k. Assume that
error detection is infallible, and that each packet is transmitted correctly after a finite time
of tries. Assume also that at time ¢ = 0, A starts sending packet 0, and there are no packets
in transit in the communication channel between A and B in either direction. Show that the
algorithm works correctly in the sense that all packets 0,1,2,... sent by A are stored by B
in the order sent, without errors, and only once. Hint: Let k4 (kg) be the number (mod 2)
of the last correctly received packet by A (B, respectively). Initially, ka = 1, kg = 1.
Model how (k 4, kB) changes in response to packet receptions.

(a) [Top85] Consider a tree with p nodes. Show that an optimal multinode broadcast
algorithm takes p — 1 time units. Hint: Use the following algorithm: at every time
unit each processor ¢ considers each of its incident links (¢, ). If i has received a
packet that it has neither sent already to j nor it has yet received from j, then i sends
such a packet on link (3, 7). If ¢ does not have such a packet, it sends nothing on
@, 7).

(b) Show that the time taken by an optimal total exchange algorithm on a binary balanced
tree is ©(p®). Hint: Count the number of packets that must go through the incident
links of the root node and use part (a). For an upper bound, use part (a) or use the
mapping of Fig. 1.3.29.

[SaS88] Let A and B be two adjacent nodes of a hypercube, and let S4 and Sp be the sets
of nodes adjacent to A and B, respectively. Show that for every node 7 € S, there exists
a unique node j € Sp such that 7 is adjacent to j. '
3.4. [SaS88]
(a) Show that every cycle of a hypercube has an even number of nodes. Hint: Count the
number of bit reversals as the cycle is traversed.
(b) Show that a ring with an even number of nodes p (4 < p < 2%) can be mapped into
a d—cube, and that a ring with an odd number of nodes cannot be mapped into a
hypercube. Hint: If p is even, imbed a ring with p nodes into a 2 x 2¢~! mesh.

3.5. Number appropriately the nodes of the 4—cube in Fig. 1.3.13(b) in order to demonstrate that
a 4 x 4 mesh with wraparound can be mapped into the 4—cube.

3.6. (Total Exchange on a Mesh.) Show inductively that an optimal total exchange algo-
rithm takes O(p®*"/4) time on a d—dimensional symmetric mesh with p processors by

3.2

33

Figure 1.3.29 Mapping a unidirectional
Binary balanced tree Unidirectional ring ring into an undirected binary balanced tree.



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 81

3.7

.

3.8.

39

showing that given a total exchange algorithm that takes O (p*/‘*~") time on a (d — 1)~
dimensional symmetric mesh with p processors, there is a total exchange algorithm that takes
O (p***"/%) time on a d-dimensional symmetric mesh with p processors. Hint: Let the
processors of the d—-dimensional mesh be numbered (1, 2, ..., z4), where z; = 1, ... ,p'/ d
In the first phase of the algorithm, perform in parallel p'/¢ total exchanges within each of
the pl/ ¢ symmetric (d — 1)~dimensional meshes obtained by fixing the value of z;. In the
second phase, perform in parallel p'?~"/ total exchanges within each of the p‘“~"/¢ linear
arrays obtained by fixing 2,3, ...,24. Show that each phase takes O(p@t1/%) time.
(Multinode Broadcast for a Mesh with Wraparound, [Ozv87] and [Tse87).) Consider
an n X n mesh with wraparound, and assume that each packet transmission takes one time
unit. Show that an optimal multinode broadcast algorithm takes (n? — 1)/4 time units if n
is odd, and n? /4 time units if n is even. Hint: For n odd, consider the spanning tree shown
in Fig. 1.3.30 for broadcasting the packet of the middle node. For n even, consider first the
spanning tree of Fig. 1.3.30 for the upper-left (n — 1) x (n — 1) portion of the mesh.

(Two-Node Broadcast.) Show that a two-node broadcast (a simultaneous single node
broadcast from two distinct root nodes) can be performed on the d—cube in d time units.
Hint: Split the d—cube into two halves each containing one of the root nodes.

(Single Node Scatter Algorithms [Tse87).) Consider an interconnection network G with p
processors, a spanning tree T’ of G, and the problem of single node scatter from a node s
of G.

(a) Assume that transmission along at most one incident link of a processor is allowed.
Show that a single node scatter from s takes p — 1 time units using an optimal
algorithm. Hint: Consider sending continuously packets from s along the spanning
tree T', giving priority to the packets destined for nodes that are furthest away from
s (break ties arbitrarily).

(b) Assume that transmission along all the incident links of a processor is allowed. Let r
be the number of neighbor nodes of s in the spanning tree T. Let T; be the subtree of
nodes that are connected with s via a simple walk that lies in T, and passes through
the ith neighbor of s. Let V; be the number of nodes in 7;. Construct an algorithm
for single node scatter from s that uses links of T" and takes max{N;, Ny, ..., N}
time units. Hint: Consider the following rule for s to send packets in each subtree:
continuously send packets to distinct nodes in the subtree, giving priority to nodes
furthest away from s (break ties arbitrarily).

(c) Assume that transmission along all the incident links of a processor is allowed. Con-
struct a spanning tree T for the d—cube such that the time max{Ny, Na,..., N} for
the single node scatter is equal to the optimal time [(2" -1 /d]. Hint: Modify the
construction of Fig. 1.3.18. Define Ryx, n(t), and m(t) as in Fig. 1.3.18, but choose
the first element in each equivalence class Ry, so that all nodes ¢ with the same
value of m(t) belong to the same subtree. Do this by choosing the first element ¢ in
each Ry, so that m(t') = m(t), where ¢’ is ¢ with some unity bit of ¢ changed to a
zero, and the equivalence class of ¢’ has d elements.

3.10. (Total Exchange on the Hypercube [Tse87].) Consider the total exchange problem in an

interconnection network G = (IV, A), where transmission along at most one of the incident
links of a node is allowed.
(a) Define the distance from a node ¢ to a node j to be the minimum number of arcs
contained in walks that start at ¢ and end at j. Suppose that G has a symmetry
property, whereby the quantity



82 Introduction Chap. 1

Phase 1

Phase 2 o 6 © -0 o o
l 0o o— o l 0 0o =<0 O l © o o o o z
o o o ~0 O 0> ©0 0 0 0 0 0 0 0 O ©°
«—0 0 T o o o o i o o— T o 0 o o
T o o o 0o o o—
Phase;" o <0 © o
l 0 -+. O— o (L o o o o .0 i
0o o— o o
o o o o :
-0 --+ 0 o O --- i T o o o
I o o ox

(a)

(b)

Figure 1.3.30 (a) Procedure to generate a spanning tree rooted at node ((n+ D/2,(n+1)/ 2) for
a multinode broadcast algorithm in an n X n mesh with wraparound, where 7 is odd (cf. Exercise
3.7). The tree is generated by labeling nodes starting from the root node ((n +1/2,(n+ 1)/2).

The labeling procedure consists of (n — 1)/2 phases. Phase k starts with a (2k — 1) X (2k — 1) mesh
of labeled nodes and ends with a (2k + 1) x (2k + 1) mesh of labeled nodes. (b) Final spanning
tree for a 5 x 5 mesh.

D@G) = Z(Dista.nce from i to j)
JEN

is the same for all nodes ¢. (Examples of networks that have this property are the
hypercube and the mesh with wraparound.) Show that D(G) is a lower bound for the
time taken by any total exchange algorithm. Hint: In a total exchange, every node i
must send a packet to every other node j. The number of packet transmissions before



Sec. 1.3  Communication Aspects of Parallel and Distributed Systems 83

J receives the packet is no less than the distance from i to j. Therefore, the total
number of packet transmissions is at least

Z > " (Distance from i to ) = pD(G),

t€EN jEN

where p is the number of processors. Since at most one packet transmission per
processor is allowed at a time, the number of simultaneous packet transmissions can
be at most p, thereby establishing the lower bound of D(G) time units.

(b) For a d—ube show that D(G) = d2¢~!. Hint: There are exactly (:) =d!/ (k! (d—

k)!) nodes that are at distance k£ from a given node, so

DG = zd: k (d) =d2°!
= L) = .

k=1

(c) Modify the total exchange algorithm for the d—cube of Fig. 1.3.19 so that phases 1
and 2 are carried out sequentially rather than in parallel, and show inductively that it
attains the lower bound of d2¢~! time units.

(d) Verify that Fig. 1.3.31 correctly interprets the hypercube total exchange algorithms of
Fig. 1.3.19 and (c) above as matrix transposition algorithms. Consider both the case
where it is possible to use simultaneously all incident links of a node and the case
where this is not possible. For d = 4, specify the time that the packet of each of the
16 processors. reaches each of the other processors.

3.11. (Broadcast Algorithms on the Hypercube [Tse87].) Show that an optimal single node
broadcast algorithm and an optimal multinode broadcast algorithm on the d—cube, under
the restriction that each node can transmit at most one packet and simultaneously receive at
most one packet at a time, take d and (2¢ — 1) time units, respectively. Hint: For a single
node broadcast, d is a lower bound for the optimal time, since for every node, there is
another node at distance d from it. Also, since in a multinode broadcast, each node receives
(2% — 1) packets from the other nodes, (2¢ — 1) is a lower bound on the optimal time.
To show that there are algorithms attaining these bounds, argue inductively. For d = 1,
the obvious algorithms work. Assume that there are single node and multinode broadcast
algorithms for the d—cube that take d and (2% — 1) time units, respectively. Consider a
decomposition of the (d+ 1)—cube into two d—cubes. For a single node broadcast, send first
the packet of the root node s to its counterpart s’ in the opposite d—cube; then, perform a
single node broadcast in parallel from s and s’ within the corresponding d—cubes requiring
d time units (by the induction hypothesis) for a total of (d + 1) time units. For a multinode
broadcast, use the imbedding of a ring in a hypercube.

3.12. (Optimal Generalized Vector Shift Algorithm [0zv87].) Show that there exists a gen-
eralized vector shift algorithm on the d—cube that takes no more than d time units. Hint:
For k = 1,2,...,d, consider the set Sy of all integers z(k) that can be generated by the
recursion

ot +1)=2z@) +u), Vt=0,1,...,

where z(0) = 0, and u(t) can take the values —1, 0, or 1. Thus, Sk consists of all integers
xz(k) of the form



84 Introduction ~ Chap. 1
’/'/l' 7 14 ’/l
J/ 4 L~
{f V4, ', /
¥/ 74
,/4 L ’//1 7
L // £ 4 -
7 %
J L\ J
Y Y
Phase 1 Phase 2
/’ A _ ’4
ry v ry
/ // L A4
ry ry
¥ A
4 /' ] J
/ //' 4 pav
¥ ¥/
. ~ P
Phase 3

Figure 1.3.31 Interpretation of a total exchange algorithm for the 3—cube (cf. Fig. 1.3.19) as an
8 x 8 matrix transposition. Long arrows correspond to submatrix moves. The ith processor initially
holds the ith row of the matrix, and at the end, it holds the ith column of the matrix. Assuming
transmission along all the incident links of a node is allowed, phases 1 and 3 take 3 time units,
phase 2 takes 4 time units, whereas phases 1 and 2 can be done in parallel.

3.13.

3.14.

z(k) = u(k — 1) + 2u(k — 2) + 2%u(k — 3) + - - - + 257 '(0),

where u(t) can take the values —1, 0, or 1. Show that S consists of all the integers in the
interval [—(2* — 1), 2¥ — 1))
(The Butterfly.) The butterfly network consists of (d + 1)2¢ processors, where d is some
integer. The processors are arranged in d + 1 rows and 2¢ columns. The links are specified
as shown in Fig. 1.3.32.
(a) Show that if the processors of the top row and the corresponding incident links are
removed, we obtain two identical butterflies of d2¢~! processors.
(b) Show that an optimal multinode broadcast algorithm on the butterfly takes ©(d2%)
time.
(The Cube-Connected Cycles.) The cube—connected cycles network has d2¢ processors,
where d is some integer. It is obtained from the d—cube by replacing each processor with
a cycle of d processors, as illustrated in Fig. 1.3.33. In particular, each processor has an
identity (¢, j), where j is a d-bit binary string which is the corresponding d—cube processor
identity, and i is an integer from 1 to d. There is a link between two processors with



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 85

3.15.

000 001 010 on 100 101 110 111
Row 1 O

Row 2

Row 3

Row 4

Figure 1.3.32 Illustration of the butterfly network consisting of (d + 1)2¢ processors.
The processors are arranged in d+ 1 rows and 2¢ columns, where d is some integer. We
label the rows consecutively as 1,2,...,d 4+ 1, and we label the columns consecutively
from 0 to 2¢ — 1 using the d-bit binary representation. Each processor n of row
i = 1,2,...,d is connected with two processors of row ¢ + 1: the processor below
it (same column), and the processor of the column whose label differs from that of the
column of = in the sth bit from the left. The figure illustrates the case where d = 3.

Figure 1.3.33 Two views of the cube—connected cycles network for d = 3.

identities (z, 7) and (k,m) if and only if a) ¢ = k and j differs from m in the ith bit from
the left orb) j = m and | — k| = 1 or |¢ — k| = d — 1. Derive the order of time taken by an
optimal single node and multinode broadcast algorithm, and by an optimal total exchange
algorithm.

[0zv87] Modify the procedure given for hypercubes for generating multinode broadcast
algorithms from single node broadcast algorithms so that it works for a ring and for a mesh



86 Introduction Chap. 1

with wraparound. Hint: Define the sets A; as for a hypercube, and generate the sets A;(t)
by using an appropriate operation in place of &.

3.16. (Matrix Multiplication.) Given a square mesh of n? processors, show that multiplication
of an n x n matrix A with the transpose of an n X n matrix B can be done in O(n) time. We
assume that the (7, j)th elements of A and B are stored in processor (7, j), and the (z, 7)th
element of the product AB’ must be eventually stored in the same processor. Hint: Show
that transposition of the matrix B can bo done in O(n) time.

3.17. (Matrix Transposition on the Hypercube [Tse87].) Show that transposition of an n x n
matrix can be done in 2logn time units on a hypercube of n? processors arranged as an
n X n array (n is a power of 2 and each packet requires unit transmission time). We assume
that the (2, j)th processor holds initially the (7, j)th element of the matrix, and must hold at
the end of the algorithm the (j, 7)th element of the matrix. Hint: Use the algorithm of Fig.

1.3.34.
n=24

L - AU A4 A4l A
- / p / p 7TV r‘/‘
¥ I4 - 4 v -
/ / // // r:/‘ r//‘ r{ va ri/
/ - - Al A4 A4l A
/ / / / P APAP A%
e AV Tl A4l A4l A4
A A AP AIPA P4

Iteration 1 Iteration 2 Iteration 3

(a)
~——

(b)

Figure 1.3.3¢  An algorithm for transposing an n X n matrix on an n X n hypercube array. Each
of the iterations of (a) takes 2 time units using the links illustrated in (b).



Sec. 1.3 Communication Aspects of Parallel and Distributed Systems 87

3.18. (Matrix Transposition on the Hypercube.) This exercise considers algorithms for trans-

3.19.

3.20

3.21.

3.22

posing 2—-dimensional array data on a hypercube arranged as a 3—dimensional mesh array.
Assume that n is a power of 2, and consider the hypercube with n® processors arranged in
an n X n X n array. Suppose that each processor (i, j, k) (k = 1,...,n) initially stores the
(2, 7)th element a;; of a matrix A.
(a) Show how the algorithm of Exercise 3.17 can be used to move a;; to the processors
G,i, k) fork=1,...,n.
(b) Construct an O(log n) time algorithm that for every (i, 5), moves a;; to the processors
G k,j)fork=1,...,n.
(Pipelining of Computation and Communication in Single Node Broadcast.) Consider
the problem of a single node broadcast of a packet in an interconnection network of n
processors such that the maximum distance from every node to the root node is r. The
packet can be divided in m packets, each requiring (w + 1/m) time units for transmission
on every link, where w represents the extra transmission time required for overhead. Show
that it is possible to perform the single node broadcast in (w + 1/m)(r +m — 1) time units,
and that if w > r — 1, the optimal value of m is 1. Characterize the optimal value of m
when w <r—1.

Consider an iteration of the form
z:=C'Cz +b,

where z € R™, b € R", and C is an m X n matrix that has no special sparsity structure.
This problem deals with parallelization of the iteration using n processors. Assume that
each arithmetic operation takes one time unit and that each packet transmission takes d time
units.

(a) Assume that each processor ¢ knows the entries of the ith column of C, and the ith
coordinates x; and b;. Estimate the time needed per iteration for the two cases where
the n processsors communicate via a hypercube and via a linear array.

(b) Repeat part (a) for the case where the matrix product C'C is given at the beginning
of the algorithm, and processor  knows the entries of the ith row of C’C, the vector
z, and the ith coordinate b;.

(c) Which implementation is better? (The answer may depend on the value of m.)
(Sparse Matrix—Vector Multiplication.) Consider forming the matrix-vector product Az
in R™ using a hypercube of n processors. Initially, each processor stores the vector  and
the ith row of A, and at the end, it must hold the product Az. Assume that each arithmetic
operation and each packet transmission take unit time. Show that if each row of A has no
more than r nonzero elements, there is an algorithm that takes time O (max(n/logn, ).
Provide a similar result for the case where each processor stores a column of A and the
corresponding entry of z, and each column has no more than r nonzero elements.

(Addition of p Scalars on a Hypercube [DNS81].) Consider a hypercube with p processors,
and suppose that each processor 7 holds a scalar a;. We wish to calculate and store the sum
Z:;l a; in each processor. Assume that transmission of a scalar over any link requires one
time unit, and an addition requires negligible time. Consider the following algorithm: each
processor ¢ updates a scalar s; at the end of each of log p stages. Initially, s; = a;. During
the kth stage, each processor i transmits its current value s; to the processor j whose identity
number agrees with the one of ¢ except for the kth bit from the left; processor j then adds
the received value s; to its current value s;, and stores the result in place of s;. Show that



88 Introduction Chap. 1

after log p time units, each processor holds the required sum. (This is faster by a factor of
2 over collecting the sum at a single processor along a spanning tree and broadcasting it
back to all processors.)

(Repeated Matrix—Vector Multiplication on a Hypercube [Tse88].) Suppose that we have
a hypercube with n? processors. Processor (i, j) stores the i jth element ¢;; of an n X n
matrix C and the jth coordinate z; of a vector z.

(a) Use the addition method of Exercise 3.22 in an algorithm that computes the jth
coordinate of C'Cz in 2logn time units. (Each transmission of a scalar over any
link requires one time unit, and each multiplication and addition requires negligible
time.)

(b) Show that if C is symmetric, then the products C*z,k = 1,2,---,r, where r is a
positive integer, can be found in r log n time units.

3.24. (Multinode Broadcast with Packets Combined [KVC88].) Consider the multinode broad-
cast problem with the following difference: we assume that a node can combine any number
k of packets and transmit them on any one link as a single packet in one time unit, rather
than transmit them as k separate packets in k time units, as we assume in our standard
model. Show that this problem can be solved by using a single node accumulation algo-
rithm followed by a single node broadcast algorithm. In particular, an optimal algorithm
for the problem takes at most 2d time units on a d—cube.

3.23

o

1.4 SYNCHRONIZATION ISSUES IN PARALLEL AND DISTRIBUTED
ALGORITHMS

In any parallel or distributed algorithm, it is necessary to coordinate to some extent the
activities of the different processors. This coordination is often implemented by dividing
the algorithm in “phases”. During each phase, every processor must execute a number
of computations that depend on the results of the computations of other processors in
previous phases; however, the timing of the computations at any one processor during
a phase can be independent of the timing of computations at other processors within
the same phase. In effect, within a phase, each processor does not interact with other
processors as far as the given algorithm is concerned. All interaction takes place at the
end of phases. We call such algorithms synchronous, and in this section, we compare
them with other algorithms, called asynchronous, for which there is no notion of phases
and the coordination of the computations of different processors is less strict. Throughout
this section we emphasize the case of a message—passing system. Some of the ideas,
however, are applicable, with proper interpretation, to shared memory systems.

1.4.1 Synchronous Algorithms

Suppose that a sequence of computations is divided into consecutive segments, called
phases and numbered 1,2, 3, . ... The computations within each phase are divided among
the n processors of a computing system. During a phase ¢, each processor 7 does some
computations using the problem data, together with the information that it received
from the other processors during the previous phases 1,2,...,t — 1. Processor i then



Sec. 1.4 Synchronization Issues in Parallel and Distributed Algorithms 89

sends some information in the form of a message to each processor in a given subset
P(i,t) C {1,2,...,n}, and the process is repeated at the next phase t+1. (The method by
which a message is transmitted is not material in our discussion. In particular, a message
can consist of several packets, in which case the time of reception of the message is the
time of reception of the last packet.) An implicit assumption here is that the computations
of different processors can be carried out “independently” within a phase, and that their
relative timing is immaterial. This is necessary for the distributed algorithm to replicate
the results of the original serial algorithm at the end of each phase. Note that in some
cases, a processor may not know from which processors to expect a message during a
phase, that is, a processor j may not know the set {i | j € P(3,t)}.
As an example, consider the relaxation iteration

it + 1) = fi(z1@®),...,2a®),  i=1,...,m, 4.1)

discussed in Subsection 1.2.4, where variable z; is updated by processor i. A corre-
sponding distributed algorithm can be implemented by associating phases with the time
instants ¢. The requirement here is that each processor i updates z; using the relaxation
iteration (4.1) and then sends a message with the updated value to all processors j for
which z; appears explicitly in the function f;. Thus, the subset of processors P(i,t)
receiving a message from ¢ during phase t is the set of all j for which (¢, j) is an arc in
the dependency graph discussed in Subsection 1.2.4.

Consider also the case where the relaxation iteration (4.1) is implemented in a
shared memory machine. Here a processor sends a message to all processors simul-
taneously by writing it in the shared memory. Suppose that a processor will start a
computation of a new phase only after all the messages of the previous phase have been
written in the shared memory. Then, we have a special case of the preceding model,
where

PG,t)={1,2,...,n},

and the reception of a message is simultaneous at all processors.

A distributed algorithm such as the one described above is said to be synchronous.
It is mathematically equivalent to an algorithm governed by a global clock, that is, one
for which the start of each phase is simultaneous for all processors, and the end of the
message receptions is simultaneous for all messages. In order to implement a synchronous
algorithm in an inherently asynchronous distributed system, we need a synchronization
mechanism, i.e., an algorithm that is superimposed on the original and by which every
processor can detect the end of each phase. Such an algorithm is called a synchronizer.
In what follows in this section, we describe two approaches on which synchronizers
are based, called global synchronization and local synchronization. A third approach,
based on the idea of rollback, is discussed in Section 8.4, together with its application
in simulation problems.



90 Introduction Chap. 1

Global Synchronization

The idea here is to let each processor detect when all messages sent during a phase
have been received, and only then to start the computation of the next phase. The
conceptually simplest way for effecting global synchronization is through the use of
timeouts. We assume that there is no global clock accessible by all processors, but
instead, each processor can measure accurately the length of any time interval using a
local clock. Suppose that there is a known upper bound 7}, for the time required for each
processor ¢ to execute the computations of a phase, and for the associated messages sent
by i to be received at their destinations. Suppose also that there is an (unknown) time
interval of known length Ty during which all processors started the first phase. Then
synchronization will be effected if each processor i starts the kth phase k(T + T}) time
units after it started the first phase. Fig. 1.4.1 illustrates this process. The difficulty with
this method is that the bounds T}, and Ty may be too conservative or unavailable.

Another approach is for every processor to send a phase termination message to
every other processor once it knows that all of its own messages for a given phase have
been received. We assume here that each message sent is acknowledged through a return
message sent by the receiver to the transmitter, so each processor knows eventually
that all the messages it sent during a phase have been received, at which time it can
issue a phase termination message. Once a processor has sent its own phase termination
message and has received the corresponding phase termination messages from all other
processors, it can proceed with the computations of the next phase. In a shared memory
system, this method is conceptually straightforward through the use of special variables
that are accessible to all processors. There are a number of possible implementations
(spin locks, semaphores, monitors; see [AHV85] and [Qui87]), which we will not discuss
in detail. The basic conceptual idea is that the special variables should take at the right
times particular values that indicate to the processors that a phase has ended, and it is
therefore safe to proceed with the computations of the next phase.

Starting times in phase 1 Starting times in phase 2
for processors 1, 2, and 3 for processors 1, 2, and 3
! ] 5 ! : Global time
T Tp T T
21 3 12 3
Times when phase 1 Times when phase 2
messages of processors messages of processors
1, 2, and 3 have been 1, 2, and 3 have been
delivered delivered

Figure 1.4.1 Implementation of global synchronization using timeouts. The starting
times of the three processors for each phase are known to be within an interval of length
T. For every processor, the time required for computation and message delivery within
a phase is known to be no more than T}. It is sufficient for each processor to start a
new phase every (T + T)) time units.



Sec. 1.4  Synchronization Issues in Parallel and Distributed Algorithms 91

In a message—passing system, global synchronization can be implemented by using
a spanning tree and a special node designated as the root of the tree. The phase termi-
nation messages of the processors are collected at the root of the tree, starting from the
leaves. Once the root has received the phase termination messages of all processors, it
can send a phase initiation message to all other processors along the spanning tree, and
each processor can begin a new phase upon reception of this message (see Fig. 1.4.2).
It can be seen that this method essentially requires a single node accumulation followed
by a single node broadcast (cf. Subsection 1.3.4). Therefore, the communication time
for phase termination (subsequent to the time when acknowledgments for all proces-
sor messages in the phase have been received) is ©(r), where r is the diameter of the
network.

Root

Phase termination
messages propagate
from the leaves to
the root

Phase initiation
message propagates
from the root

to the leaves

Figure 1.4.2 Global synchronization using a spanning tree, with a special node desig-
nated as the root of the tree. (a) Each node sends a phase termination message to its
parent, when it has received acknowledgments for all the messages it sent during a phase,
as well as phase termination messages from all its children. (b) The root, upon receiving
a phase termination message from all its children, sends a phase initiation message to its
children, who relay it to their children, and so on. Each node, upon receiving the phase
initiation message, can start a new phase.

Local Synchronization

The main idea of this method is that if a processor knows which messages to expect in
each phase, then it can start a new phase once it has received all these messages. In
particular, processor j can start the computation of a new phase ¢+ 1 once it has received
the messages of the previous phase ¢ from all processors ¢ in the set

{i]j € PG,v)}. 4.2)



92 Introduction Chap. 1

It is not necessary for a processor to know whether any other messages sent during phase
t (including its own) have been received, so there is no need to waste time waiting for
these receptions to be completed and to be confirmed. When processor j does not know
the set (4.2) but instead knows a set S;, where

S;o{ilje PG}, Vi,

the scheme can be modified so that all nodes i € S; with j ¢ P(i,t) are required to
send a “dummy” message to j during phase ¢. In this way, the situation is reduced to
the case where the set (4.2) is known by j. Note, however, that with this modification,
the local synchronization scheme may become undesirable if S; contains many more
elements than the set {i | j € P(i,t)}.

When each processor j knows the set (4.2), it can be seen that the local synchro-
nization method leads to no more communication penalty than any global synchronization
method. Often, the communication penalty is considerably less. This is particularly so
when the transmission time of messages on communication links is comparable to the
time needed for computation in each phase, since, for global synchronization, additional
messages may be required for acknowledgments, etc., as discussed earlier. Even with-
out counting the time for acknowledgments, the difference between the execution times
associated with the global and the local methods typically increases with the number
of phases, due to the variability of the times for computation and message delivery by
different processors within each phase. We demonstrate this phenomenon in the case
where the times required by a processor to complete the delivery of messages associated
with a phase are deterministic. For a related analysis when these times are random,
independent, and exponentially distributed, see Exercise 4.1.

Let T;;(t) be the time required for processor i to do the computations of phase ¢
and to deliver the corresponding message to processor j € P(i,t). To simplify notation,
we assume that ¢ € P(%,t), and we denote by Tj;(¢) the time required for ¢ to do just the
computations for phase ¢. Suppose that P(i,t) and T;;(t) are known and independent
of t [i.e., P(i,t) = P; and T;;(t) = Tyj, for all ¢, 4, and j € P;]. We will compare the
local synchronization method with a global synchronization method, whereby a phase is
considered completed as soon as every message of the phase has been delivered. We thus
neglect any time needed for acknowledging the messages of the phase or for broadcasting
the phase termination messages mentioned earlier. Assume that all processors start phase
1 simultaneously, and consider the times L(k) and G(k) required to complete k& phases
at all processors using the local and the global synchronization methods, respectively.

The time for a single phase using the global synchronization method is

G(l) = Tmazn
where

T, = max T;:.
MO = m, e Y



Sec. 1.4  Synchronization Issues in Parallel and Distributed Algorithms 93

Since each phase must be completed at all processors before a new phase can begin, we
have

Gk) = kT 0z 4.3)
To obtain the corresponding time for the local synchronization method, we define

2 pey Tis

Cmaz = m{'}x |Y| )

where the maximum in the preceding definition is over all sequences Y of the form

{(G1,%2), G2, %3), ..., (i, 31D},

where m = |Y|>1andi,4; € P;, fors=1,...,m—1,4; € P, . We form a directed
graph having as node set

N={¢td|t=1,...,k+1,i=1,...,n},

(see Fig. 1.4.3). There is an arc corresponding to each pair ((t, 1), + 1, j)) where
t=1,2,...,k and j € P, and we view T;; as the “length” of such an arc. Consider
the set of all paths p starting at a node of the form (1,¢) and ending at a node of the
form (k + 1,7). Let M, be the length of path p, that is, the sum of the lengths of its
arcs. Then, as seen from Fig. 1.4.3, L(k) is the maximum of M, over all paths p of the
type just described, and for k£ > n, we have

L(k) < [k = (n = 1] Craz + (0 = DTinaa. 4.4

Comparing Eqgs. (4.3) and (4.4) we see that
G(k) — L(k) > [k — (n = 1)] (Trmaz — Crmaz) -
Thus, when
Tmam - Cmaa: > 0,

and k is large, the difference G(k) — L(k) grows, in effect, proportionally with k. Note,
however, that if the time required for message delivery is small relative to the time
needed for the processors’ computation during a phase, that is, T;; ~ T;; for all j, then
the difference T4, — Crae Will be small or zero. (Take, for example, n =2, T7; = 2,

T», = 1, and T}, + 15, < 4, in which case there is no difference in the communication
penalty associated with the global and local synchronization methods.)



94 Introduction Chap. 1

Node n
. Phase 1

L Phase 2

I I I I j Phase k

LR L] Phase k + 1
Figure 1.4.3  Estimating the time to complete k phases using the local synchronization
method [cf. Eq. (4.4)]. We consider the acyclic graph with node set

N={&d|t=1,..,k+1,i= L...,n},

and arcs ((t,4), (t + 1,5)), where t = 1,2,...,k, and j € P;. In the example of the
figure we have Py = {1,2}, P, = {n—1,n},and P, = {i—1,4,i+1}, fori # 1,n.
We view T;; as the length of such an arc. Since all the messages of the k phases must
be. received before the k phases can be completed, and each processor cannot begin a
new phase without receiving the messages of the previous phase, the length of any path
in this graph is less than or equal to L(k). By induction on the number of phases k, it
can be verified that L(k) is equal to the length of some path. Therefore, L(k) is equal to
the length of a longest path. Let {(i1, 1), (:2,2), ..., Grt1,k + 1)} be a longest path.
Assume first that 4mm 7 im4 for all m. Consider the path {i1,%2,...,%k+1} in the
graph with set of nodes {1,...,n} and set of arcs {(5,5) | j € P;, j # 4, i =
1,...,n}. By using the Path Decomposition Theorem of Appendix B on this latter path,
it is seen that the longest path can be broken down in two components:

(@) a (possibly empty) collection of subpaths of the form {G1,0), G2, t + 1),...,
(m,t+m—1),(j1,t+m)}, wherem > 1,and j,, € Pj fors=1,...,m—
L, j1 € Pj,,, corresponding to cycles obtained from the path {i|,4,,... yik+1 )}

(b) a set of at most (n — 1) additional arcs, corresponding to a simple path obtained
from the path {i1,12,...,4k41}-

By bounding from above the lengths of the two components, we obtain the estimate
(44). If im = i1 for some m, the length of the arc ((im,m), (im1,m + D) is

bounded above by Crnaz, and it is seen that Eq. (4.4) remains valid even in the presence
of such arcs.

The preceding discussion suggests that the local synchronization method is usually
superior to the global method in terms of communication penalty. On the other hand,
there may be other factors, such as software complexity, that argue in favor of the
global method, since this method is largely independent of the structure of the algorithm
executed.



Sec. 1.4  Synchronization Issues in Parallel and Distributed Algorithms 95

1.4.2 Asynchronous Algorithms and the Reduction of the
Synchronization Penalty

The communication penalty, and the overall execution time of many algorithms, can often
be substantially reduced by means of an asynchronous implementation. The analysis of
asynchronous distributed algorithms is one of the focal points of this book, and in this
subsection, we provide a preliminary and informal contrast with synchronous algorithms.
A precise model of an asynchronous algorithm will be given later, but for the purposes
of this section the following rough description will suffice.

Given a distributed algorithm, for each processor, there is a set of times at which
the processor executes some computation, some other times at which the processor sends
some messages to other processors, and yet some other times at which the processor
receives messages from other processors. The algorithm is termed synchronous, in the
sense of the preceding subsection, if it is mathematically equivalent to one for which the
times of computation, message transmission, and message reception are fixed and given
a priori. We say that the algorithm is asynchronous if these times (and, therefore, also
the order of computations and message receptions at the processors) can vary widely in
two different executions of the algorithm with an attendant effect on the results of the
computation.

For another contrasting view, which is appropriate primarily for a message—passing
system, we can think of a distributed algorithm as a collection of local algorithms. Each
local algorithm is executed at a different processor and occasionally uses data generated
by other local algorithms. In the simplest case of a synchronous algorithm, the timing of
operations at each processor is completely determined and is enforced by using a global
clock. A more complex type of synchronous algorithm is one in which the exact timing
of operations at each local algorithm is not predetermined, but the local algorithms still
have to wait at predetermined points for predetermined data to become available (cf.
the discussion of local synchronization in the previous subsection). An example of an
asynchronous algorithm is when local algorithms do not wait for predetermined data
to become available; they keep on computing, trying to solve the given problem with
whatever data happen to be available at the time.

The most extreme type of asynchronous algorithm is one that can tolerate changes
in the problem data or in the distributed computing system, without restarting itself to
some predetermined initial conditions. This situation arises principally in data networks,
where the nodes and the communication links can fail or be repaired as various dis-
tributed algorithms that control the network are executed. In some networks, such as
mobile packet radio networks, changes in the network topology can be frequent. In
other networks, such changes may be infrequent, but the execution time of the algorithm
considered may be so long that there is a nonnegligible probability of occurence of a
topological change while the algorithm executes. For example, in general purpose data
networks, some algorithms, such as the routing algorithm, are essentially always oper-
ating, so they must inevitably operate in the face of node and link failures. There are
a number of difficulties here. First, one may have to keep all nodes informed of the
link and node failures and repairs; this information can have a bearing on the distributed



96 Introduction Chap. 1

algorithm being executed. Doing so is not as easy as it may appear since failure informa-
tion must be communicated over links that are themselves subject to failure; Fig. 1.4.4
provides an example. Second, a link or node failure that occurs while a distributed algo-
rithm is executing on the data network will typically affect the algorithm. To cope with
the situation, the algorithm should either be capable to adapt to the failure or it should
be aborted and be restarted. Doing the latter may be nontrivial, since more failures can
occur while the algorithm is being restarted. Such issues will be discussed in Chapter
8, where it will become evident that it is typically far simpler to restart asynchronous
rather than synchronous algorithms, because asynchronous algorithms generally allow
more flexibility in the choice of initial conditions.

Down message Figure 1.4.4 An example of the
Up message difficulties in communicating link failure
information in a data network (from
[BeG87]). Consider an algorithm that
Down message  works as follows: whenever the status of a
Up message link changes, the end nodes of the link send
this information to all their adjacent nodes,
which in turn relay this information to their
own adjacent nodes (if this information
. changes their view of the status of the
Initially up link), etc. Here link L is initially up, then it
;:2: 33‘”" goes down, and then up again. Suppose the
down and up messages on links (C,B) and
(B,A) travel faster than the down message
travels on link (C,A). Also, suppose
that link (C,A) goes down before the up
message regarding link L travels on it.
Then the last message received by A asserts that link L is down while the link is actually up. The difficulty
here is that link failures can cause old information to be perceived as new.

Down message

Link L

An important question is whether or not asynchronism helps to reduce the com-
munication penalty and the overall solution time of a given algorithm. We discuss this
next in the context of the Jacobi and Gauss—Seidel relaxation methods introduced in
Subsection 1.2.4.

Asynchronous Relaxation Methods
Consider an n—processor system and an n—dimensional fixed point problem, whereby we
want to find a vector z = (2, 2, ...,z,) satisfying

z; = fi(z1,Z2,...,Tp), i=1,2,...,n,

where f; are given functions of n variables. Suppose that each processor i updates the
variable x; according to

z; = fi(z1,722,...,25), i=1,2,...,n, “4.5)

starting from a set of initial values for all variables. We will discuss in Chapters 2 and 3
several examples of updates of this type, and we will also consider more general types
of updates.



Sec. 1.4  Synchronization Issues in Paralle! and Distributed Algorithms 97

A synchronous implementation of the algorithm requires that a processor ¢ does not
carry out its kth update without first receiving the results of the (k — 1)st update from the
processors whose variables appear in the function f;. There is a certain inefficiency built
into this requirement, which we call, somewhat loosely, the synchronization penalty. It
is due to two factors:

(a) A processor i upon updating z; must remain idle while waiting for messages to
arrive from other processors (see Fig. 1.4.5). In particular, a slow communication
channel slows the progress of the entire computation, as shown in Fig. 1.4.6(a).

Idle periods Time at processor 1

—

T S
777 2 V777 V%7

—
Iteration 1 Iteration 2 Iteration 3 Time at processor 2

Figure 1.4.5 Illustration of the synchronization penalty due to long communication
delays. Arrows indicate the times of message reception. Shaded areas indicate the idle
periods when a processor is waiting for a message from the other processor.

Idle periods Time at processor 1
—

s T D
N _— A _——) L\
=700 i - T

—

(a) Time at processor 2
Idle periods Time at processor 1
———
1 2 3 4
r 1 2 3
—p
(b) Time at processor 2

Figure 1.4.6 Illustration of the synchronization penalty due to a single slow communication chan-
nel [channel from 2 to 1 in (a)], and due to a single slow processor [second processor in (b)].

(b) Processors that are fast either because of high computing power or because of small
workload per iteration, must wait for the slower processors to finish their iteration.



98 Introduction Chap. 1

Thus the pace of the algorithm is dictated by the slowest processor, as shown in
Fig. 1.4.6(b).

Note that the synchronization penalty contributes to the communication penalty in
view of factor (a). It also contributes to a loss of efficiency when the computational load
of each iteration is not well balanced among all processors in view of factor (b), and this
can happen even if all communication is instantaneous.

Idle periods Time at processor 1

777/87;;/R

S~ o~~~
[ Dz ) 72002 2077 07

:

—

I1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16—|

[1|2|3|4|5’6]7|8|9|1o|11|12|13[14|15|16|

(b)

Figure 1.4.7 (2) Timing diagram for a synchronous algorithm. Arrows indicate the
times of message reception. Shaded areas indicate the idle periods when the processor is
waiting for a message from the other processor. Numbered areas indicate update periods
at each processor. Idle periods are three times longer than computation periods in this
example. (b) Timing diagram for an asynchronous algorithm. Arrows indicate the times
of message reception. Numbered areas indicate update periods at each processor. The
potential advantage of an asynchronous algorithm lies in the fact that it can execute
more iterations per unit time because there is no waiting for message receptions, (three
times more in this example). It is unclear, however, whether the additional iterations
will accelerate convergence, since these iterations are based on out—of—date information.

In an asynchronous version of the preceding algorithm, there is much more flex-
ibility regarding the use of the information received from other processors. What is
required is that the kth update at processor ; is carried out with knowledge of the results
of some past update of every other processor, not necessarily the most recent update.
Thus, for example, processor ¢ may be executing its kth update using the results of the
(k + 10)th update of some other processor j, while at the same time processor j may be
executing its (k + 100)th update using the result of the (k — 10)th update of processor
i. The speed of computation and communication can be different at different processors,
and there can be substantial communication delays. Furthermore, these speeds and de-
lays can vary unpredictably as the algorithm progresses. It is not even required that the
communication links preserve the order of messages, so it is possible for a processor to



Sec. 1.4  Synchronization Issues in Parallel and Distributed Algorithms 99

use the kth update of some other processor at some time, and use the results of, say, the
(k — 10)th update of the same other processor at some later time. There is also flexibility
regarding the initial conditions at each processor; the variables z; available initially at
different processors can differ, for the same <.

An asynchronous algorithm can potentially reduce the synchronization penalty
caused by fast processors waiting for slow processors to complete their updates, and
for slow communication channels to deliver messages (see Fig. 1.4.7). The reason is that
processors can execute more iterations when they are not constrained to wait for the most
recent results of the computation in other processors. There is a danger that iterations
performed on the basis of outdated information will not be effective and may even be
counterproductive. This issue will be considered in Chapters 6 and 7, where it will be
seen that asynchronous iterative methods work only under certain conditions. When they
do work, they typically reduce the synchronization penalty and result in faster problem
solution. Their communication requirements, however, may exceed those of their syn-
chronous counterparts. We provide a simple illustrative example. The conclusions from
this example will be shown in more generality in Section 6.3.

Example 4.1. Convergence Rate Comparison of Synchronous and Asynchronous Methods

Consider the two—dimensional fixed point problem

r = Az,
where
a=[3 o]
The corresponding iteration is
) :=ax) + bz, (4.6a)
T3 :=bx; + axz, (4.6b)

where variables z; and z, are updated at processors 1 and 2, respectively, and are subse-
quently communicated to the other processor. Suppose that each update requires one unit
of time, and the subsequent communication requires D units of time, where D is a positive
integer. (The following conclusions depend crucially on the fact D > 1; see Exercise 4.2.)
We consider a synchronous and an asynchronous algorithm operating as shown in Fig. 1.4.7.

In the synchronous algorithm, values of variables are received at times ¢t = D +
1, 2(D + 1),...; variable updates are also initiated at these times, as well as at time ¢t = 0,
and variable updates are completed one time unit later. If z;(t), ¢ = 1,2, is the value
available at processor ¢ at an integer time ¢, we have

z1(t + 1) =azx(t — D) + bz, (t — D), “4.7a)
z2(t + 1) =bx1(t — D) + azz(t — D), 4.7b)



100

Introduction Chap. 1
where
z;(t) = z:(0), -D<t<0, i=1,2.

In the asynchronous algorithm, processor i updates variable z; as many times as pos-
sible regardless of whether it has an up-to—date value of the variable of the other processor
(cf. Fig. 1.4.7). Then z;(¢) evolves for all ¢ according to

z1(t + 1) =az1(t) + bxa2(t — D), (4.8a)
z2(t + 1) =bz1(t — D) + aza(t), (4.8b)
where
z;(t) = z;(0), -D<t<0, i=1,2.

We now want to compare the synchronous iteration (4.7) with the asynchronous
iteration (4.8) for the same initial conditions z;(0) and z,(0). We first consider the issue of
convergence. This subject will be discussed in detail in Chapters 2 and 6. It can be shown
that if

la| + 0] < 1,

the synchronous iteration (4.7) converges to the unique fixed point z* = (0, 0) starting
from arbitrary initial conditions; let D = 0 in the following argument that applies to the
asynchronous version of the iteration.

For the matrix A considered, convergence of the asynchronous iteration (4.8) is also
guaranteed if |a|-+[b] < 1. We prove this with an argument that we will use in more generality
in Section 6.2 to show convergence of asynchronous fixed point iterations under a broad set
of assumptions. The key idea is that if for some ¢’ > 0 and all ¢ with ¢ — D < ¢ < ¢, the
vector z(t) = (a:l(t), :cz(t)) belongs to the {—sphere of radius r

{xllxll <z <}, 4.9)

then from Eq. (4.8) it follows that z(t) will belong to the (smaller) loo—sphere of radius
(la] + [br for all t > ¢’ + 1. Based on this fact, it follows that z(¢) will belong to the
(even smaller) loo—sphere of radius (Ja| + [b])*r for all ¢ > ¢’ + D + 2, and so on, proving
convergence of z(t) to the zero vector.

We next consider the rate of convergence of the synchronous iteration (4.7). We first
observe that if p > 0 is such that

lalo™" + [blo™" < p,
or, equivalently,

)l/(D+I)

(la| + [8] <p, (4.10)



Sec. 1.4 Synchronization Issues in Parallel and Distributed Algorithms 101

then the sequence generated by the synchronous iteration (4.7) satisfies
lzit) < Cp,  ViE=0,1,..., 4.11)
where
C = max{|z:1(0)], |z2(0)| }- 4.12)

Indeed Eq. (4.11) holds for ¢ < 0. Assume that it holds for all ¢ up to some #. Then, using
Egs. (4.10) and (4.11), we have

|21@ + 1| < lallz1E — D)| + [bl|z2( — D)| < (la| + [6]) Cp*~P < Cp™*,

and similarly |z2(Z + 1)] < Cp**". Therefore, Eq. (4.11) holds for all ¢ < 7 + 1 and the
induction is complete. The smallest value of p for which Eq. (4.10), and hence also the rate
of convergence estimate |x;(t)| < Cp?, holds is

1/(D+1) 4.13)

ps = (la| + |b])

A little thought shows also that there exist initial conditions for which the rate of convergence
estimate |z;(t)| < Cp' fails to hold when p < ps.

A nearly verbatim repetition of the preceding argument can be used to show that if

la| + [8]p™P < p, (4.14)

then the sequence generated by the asynchronous iteration (4.8) satisfies the rate of conver-
gence estimate |z;(t)] < Cp®, with C given by Eq. (4.12). The smallest p satisfying Eq.
(4.14), denoted by p4, is the unique positive solution of the equation

la| + [blo™" = p. 4.15)

The construction of p4 and its relation with ps are illustrated in Fig. 1.4.8. It can be seen
that

PA S PS,

and the convergence rate estimate of the asynchronous iteration is better than the one of
the synchronous version (see also Fig. 1.4.9). This indicates that the asynchronous iteration
typically converges faster. Computational results support this hypothesis.

The preceding conclusions can be generalized as will be shown in Section 6.3. For
example, the matrix A could be any n X n matrix with elements a; satisfying 37_, |as;| <
1 for all . Also, the updating and the communication delays need not be equal for all
processors, communication channels, and iterations. It appears that variability of these
delays favors the asynchronous over the synchronous algorithm, but this seems difficult to
establish analytically.

Consider now the number of messages required to solve the problem to within a given
€ > 0. If for a given t and p, we have |z;()| < Cp', we obtain |z;(t)] < € if Cp* < ¢



102

Asynchronous/synchronous rate {p, /pg)°?*

-
o

0.8

0.6

0.4

0.2

o

Introduction
lalp® + |blpD
P
lal+ 16 1p2 [
I
|
|
| |
Il
o
lal+ b1+ —— —————&——-: ————————
I
' Pl |
é 4 4
01l lal+ bl Pa  Ps 1 p

Figure 1.4.8 Construction of the convergence rate parameter p4 of the asyn-
chronous iteration (4.8), and the corresponding parameter pg for the synchronous
iteration (4.7). We have p4 < ps except when a = 0 in which case pgy = ps.
For a given value of |a| + |b], the ratio p4/ps is minimized when |b| = 0, in

which case,

PA __
A - ]a|D/(D+1).
Ps

More generally, as the strength of the coupling between the two variables x;,
and z; (i.e., the magnitude of |b|) decreases, the advantage of the asynchronous
implementation in terms of rate of convergence increases.

units), and tends to

S U
— (1 ~al)al + [6)

o

as D increases to infinity.

Chap.

Figure 1.4.9 Plot of the value of
(pa/ps)PTY for various values of
the communication delay D, and
the parameters a and b. In this
example we have |a| 4 |b] = 0.8.
The quantity (p4/ps)P+D is the
ratio of error reduction factors per
synchronous iteration (D + 1 time



Sec. 1.4 Synchronization Issues in Parallel and Distributed Algorithms 103

or equivalently ¢ > |log(e/C)|/|log p|. Therefore, if ts and t4 are the times required to
obtain |x;(t)] < €, ¢ = 1,2, based on the convergence rate estimates for the synchronous
and the asynchronous iterations, respectively, we obtain

ts _ |logpal
ta |logps| =

The number ms of message receptions per processor up to ts for the synchronous iteration
does not exceed t5/(D + 1), whereas the corresponding number m 4 for the asynchronous
iteration is t4 (cf. Fig. 1.4.7). Therefore, using Eq. (4.13) for ps, we have

ms . __|logpal _ _ |logpal
ma ~ (D+1)|logps| |log(la| + |b])|

From Fig. 1.4.8 we see that |a| + |b] < pa < 1, so

s <.
ma

The asynchronous algorithm requires more message transmissions because of the requirement
of communication at the end of each variable update. An alternative asynchronous algorithm
communicates the results every kth update, where & > 2 is some integer (but still updates
every variable at each time unit). When k = D + 1 in the present example, the frequency
of communication is the same as for the synchronous algorithm (4.7), and similar analysis
as the one above (Exercise 4.3) shows that the asynchronous algorithm is guaranteed to
solve the problem within any e both faster and with fewer message transmissions than the
synchronous version (but using a larger number of variable updates).

The conclusion in this example is that asynchronism improves the convergence rate
of iteration (4.6) but may increase the number of message transmissions. In other words,
the communication penalty is reduced by asynchronous implementation at the expense of
perhaps more frequent message exchange between processors. This conclusion is consistent
with other conclusions to be reached in related contexts. For example, in Section 6.4
we will see that the asynchronous Bellman-Ford algorithm takes no more time to solve a
shortest path problem than the synchronous version, but may require many more message
transmissions.

Note also that the tradeoff between execution time and number of message transmis-
sions assumes that communication delays are not affected by the frequency of communica-
tion, that is, no queueing of messages occurs along communication links. With substantial
queueing delays, an asynchronous algorithm can be much slower that its synchronous coun-
terpart.

An important disadvantage of asynchronism is that it can destroy convergence
properties that the algorithm may possess when executed synchronously. Indeed we
will see (Section 6.3 and Chapter 7) that in some cases, it is necessary to place limita-
tions on the size of communication delays to guarantee convergence. In all cases, the
analysis of asynchronous algorithms is considerably more difficult than for their syn-
chronous counterparts. We will also see that there are unifying themes in this analysis.
In particular, it is possible to establish simultaneously the validity of important classes of



104 Introduction Chap. 1

asynchronous algorithms with widely varying character through the use of general and
powerful convergence theorems and techniques (see Chapters 6 and 7).

Asynchronous algorithms can offer an additional advantage in relaxation methods,
which can be understood by considering the Jacobi and the Gauss—Seidel methods for
solving fixed point problems (cf. Subsection 1.2.4). The sequential form of the Jacobi
method generates a sequence x(t) = (xl(t),xz(t), ceey xn(t)) according to

xz(t+ 1) = fz(xl(t)yxZ(t)aaxn(t))> 1= 1327an

from a given set of initial values. The Gauss—Seidel method is similar, but uses the most
recently generated values of the variables z; in the update formulas. It takes the form

1t + 1) = fi(z1(t), 22(1), . . ., Tn1(t), TR (D))
T2t +1) = fo(21¢ + 1), 22(), . .., Tpo1(8), Ta(?))

Tt + 1) = fo(z1E+ 1), 220 + 1),...,2p1(t + 1), Ta(?)).

The Jacobi method is better suited for distributed implementation; it is in effect equiv-
alent to the synchronous distributed algorithm described earlier in connection with the
update (4.5). The Gauss—Seidel method is not as well suited for parallel or distributed
implementation. It is inherently sequential, although it can be parallelized to a substantial
degree when the dependency graph is sparse; see Subsection 1.2.4. On the other hand
the Gauss—Seidel method is frequently much faster than Jacobi; see Section 2.6. Gener-
ally speaking, convergence is typically accelerated if the updated values of the variables
are incorporated into subsequent updates of other variables as quickly as possible. With
some thought, it can be seen that in an asynchronous algorithm, updated values of vari-
ables can be incorporated into the computation faster than in a synchronous algorithm,
as illustrated by Fig. 1.4.10. It is therefore plausible that an asynchronous algorithm can
realize some of the speed advantage of Gauss—Seidel over Jacobi, without sacrificing
any of the parallelism potential of Jacobi. This conjecture is supported only by limited
computational experience at present.

EXERCISES

4.1. [PaT87a] Consider a synchronous algorithm operating in phases, and let G(k) and L(k) be
the times required for all processors to complete k phases using the global and the local
synchronization methods, respectively (cf. Subsection 1.4.1). Suppose that P(i,t) = P; for
all ¢ and ¢, and that the times T:;(t) required for processors i to send their messages to
processors j € P; are random, independent, and exponentially distributed with mean equal
to 1. Assume that the number of elements in all the sets P; is equal to some positive integer
d. Show that

E[G(K)] = ©(klog(nd)),



Sec. 1.4 Synchronization Issues in Parallel and Distributed Algorithms 105

Update periods Idle periods
Time at processor 1
1 2
1 2
First cycle of updates Second cycle of updates —

(a) Time at processor 2

-
N
w
IS
3]
(<]
~
—
o]
o
-
h

-
N
I
w
S
4]
o
~
<)
©
-
°]

|

Time at processor 2

(b)
Time at processor 1
—
L1l 2[3s[efs]e[7]8]e]0]

5
>
5
<
)4
S

h
-
N
B
N
B
(<]
N
(o]
o
)

Time at processor 2
(c)

Figure 1.4.10 Illustration of the mechanism by which an asynchronous algorithm can realize the
speed advantage of the Gauss—Seidel method over the Jacobi method. There are two processors
solving a 10-variable problem and updating 5 variables each. The timing diagram in (a) is for a
synchronous method that tries to incorporate new information as early as possible. This method has
a large synchronization penalty. In the synchronous method of (b), the synchronization penalty is
reduced through pipelining of computation and communication, but the updates of each processor are
taken into account every five updates, thereby resulting in a Jacobi-like method. In the asynchronous
method of (c), there is no synchronization penalty, while the result of each update is taken into
account at the other processor after a delay of only one update. In this example, all updates take
equal time. The synchronization penalty is exclusively due to communication delays. Unequal
variable update times increase the synchronization penalty further.

whereas
E[L(k)] = ©(logn + klogd),

where E[-] denotes expectation. Hint: Use Props. D.1 and D.2 of Appendix D.

4.2. Consider the iteration (4.6) for the case where |a| + |b] < 1, b # 0, and the communication
delay D is smaller than the time needed for an update. Show that for D sufficiently small,
the synchronous algorithm has a better rate of convergence than the asynchronous algorithm.



106 Introduction Chap. 1

4.3. Consider the iteration (4.6) for the case where |a| + [b] < 1, a # 0, let D be a positive
integer and consider an asynchronous algorithm with limited communication that works as
follows: values of variables are received at times t = (D + 1), 2(D + 1),... (just as in
the synchronous version of Example 4.1), and variable updates are initiated at each time
t = 0,1,... and completed one time unit later (just as in the asynchronous version of
Example 4.1). Thus, the update for variable x; and for ¢t = 0,(D +1),2(D + 1), ... has the
form

z1(t + 1) = az1(t) + bxa(t — D),
z1(t + 2) = az1(t + 1) + bz (t — D),

zi(t + D + 1) = az1(t + D) + bza(t — D).
Show that for all ¢ = 1,2 and ¢ of the form ¢t = (D + 1),2(D + 1),..., we have
|zi(t — k)| < max{|z:0)], |z200) }p5™°, Vk=0,1,...,D,

where ps = (|a| + [b])!/P*" is the synchronous convergence rate parameter of Example
4.1. Show also that the asynchronous algorithm is better than the synchronous algorithm
both in terms of execution time and in terms of number of message transmissions.

NOTES AND SOURCES

There are several texts and surveys that describe parallel and distributed comput-
ing systems; see, for example, [HoJ81], [KuP81], [HwB84], [Hwa84], [Hoc85], and
[Hwa87]. See [Sch80] and [Hil85] for integrated discussions of several aspects of some
interesting computing systems. There have been a number of special issues on parallel
and distributed computation in several journals, as well as a number of journals deal-
ing exclusively with the subject. There is a number of textbooks dealing with parallel
algorithms, see e.g., [HoJ81], [Sch84], [AkI85], [Qui87], and [FJL88]. See [MeC80],
[KSS81], [Kun82], and [Kun88] for parallel computation using VLSI systems and systolic
algorithms. Finally, different aspects of parallel computation are surveyed in [QuD84],
[OLR85], [OrV85], [KiL86], and [Rib87].

1.1. Interconnection networks and switching systems are surveyed in [BrH83],
[WuF84], and [IEE87]. The classification of parallel computers into SIMD and MIMD
systems is from [Fly66].

1.2.1. The DAG model for parallel computation has been extensively used for
arithmetic problems [BoM75], as well for problems involving Boolean variables.

In another class of models of parallel computation (known as PRAM models, Par-
allel Random Access Machine), each processor is modeled as a random access machine
and processors communicate to each other through a shared memory. There are a few



Sec. 1.4 Synchronization Issues in Parallel and Distributed Algorithms 107

variations here depending on whether different processors are allowed to simultaneously
read or write the same location in the shared memory. Some early references on this
subject are [FoW78] and [Gol78]; see [OLR85] for a survey. For models of VLSI
computation, see [UlI84].

1.2.2.  Propositions 2.3 and 2.4 are from [Bre74]. The problem of finding a
schedule that minimizes T, has been thoroughly studied, see [Cof76] and [OLR85], for
example. It can be. efficiently solved when the number p of processors is 2 or when the
DAG is a tree, but it is NP-complete in general.

The scheduling problem for the case where communication costs are taken into
account has been considered in [PaY88]. In this context, it is sometimes preferable to
let more than one processor perform the operation corresponding to some node, in order
to avoid communication delays.

The construction of optimal or near—optimal parallel algorithms (that is, DAGs
with close to minimal depth) for a given computational problem, has been well studied,
particularly for the case of arithmetic problems (see e.g., [Bre74] and [MuP76]). See
also [MiR85] for a method whereby a tree-like DAG is restructured on—line to obtain
logarithmic depth.

Complexity measures for synchronous parallel computation have provided an in-
teresting extension of the theory of computational complexity that had originated in the
context of serial computation; see [OLR85]. Of particular interest here is the class NC,
which is the class of problems that can be solved in time O(log* ) using O(n*) pro-
cessors, where k is some integer, and n is the size of the problem [Coo81]. This is
sometimes described as the class of problems most amenable to massive parallelization.

1.2.3. Parallel algorithms have been developed for a variety of algebraic problems,
such as polynomial evaluation ([MuP73] and [Mar73]), linear recurrences ([Kun76a] and
[HyK77)), etc.

1.2.4. Proposition 2.6 is well known but Prop. 2.5 seems to be new. For further
references on the application of coloring in the parallelization of Gauss—Seidel algorithms
in the context of the numerical solution of partial differential equations see [OrV85]. The
parallelization of iterations with a particular type of a regular structure is considered in
[KMW67] and [RaK88].

1.3.1. Extensive discussions of communication network issues appear in a number
of textbooks, such as [BeG87], [Hay84), [Sch87], [Sta85], and [Tan81].

1.3.2. For a view of the go-back—n DLC as a distributed algorithm and a corre-
sponding analysis, see [BeG87].

1.3.3. Routing algorithms for data networks are discussed extensively in [BeG87].
For analysis of randomized routing algorithms in regular interconnection networks, see
[VaB81], [Val82], [HaC87], and [MiC87].

1.34. The mapping problem for general architectures has been considered in
[Bok81]. The problem of mapping various topologies on hypercubes is discussed in



108 Introduction Chap. 1

a number of sources including [BhI85], [SaS88], and [McV87]. Communication com-
plexity analyses of various basic algorithms for hypercubes and other topologies can be
found in [SaS85], [SaS86], and [McV87]. Our discussion is motivated by these refer-
ences, and improves upon them in that it provides several new algorithms and problem
complexity estimates. In particular, the multinode broadcast algorithm for a hypercube
is new, and is the first that takes the minimal ([(2¢ — 1)/d]) number of steps (a related
algorithm was given earlier in [Ozv87]; an O(2%/d) time algorithm was first derived in
[SaS85]). The total exchange algorithms of Fig. 1.3.19 and Exercise 3.6 are new. Private
communications by P. Tseng relating to this section have been very helpful.

1.3.5. For a discussion of the concurrency and communication tradeoff in the
context of matrix computations, see [GHN87].

1.3.6. Matrix calculations on hypercubes are discussed extensively in [Joh87a],
and [McV87]. Several matrix multiplication algorithms on a mesh and a hypercube are
given in [DNS81].

1.4.1. The complexity of a number of synchronization algorithms is analyzed
in [AweB5]. Communication analyses of synchronized iterative methods are given in
[DuB82]. The comparison between the local and the global synchronization methods is
new.

1.4.2. An early comparative discussion of synchronous and asyncironous algo-
rithms is [Kun76b]. The convergence rate comparison between synchronous and asyn-
chronous relaxation methods given in Example 4.1 is new; it will be generalized in
Subsection 6.3.5.





