FLUID MOTIONS IN A PERISTALTIC PUMP

-Oy

Thomas Walker;;atham
S.B., California Imstitute of Technology

(1964)

Stbmitted in partial fulfillment -
of the reguirements for the
Degree of Master of
Science
at the
Massachusetts Institute of
Technology
June, 1366

Signature of AULNOY «cuwvsovvssesssenormeerneee o
' Nenartment of Fechgnicml ERTTDFCfinS

e B ® B 8O0 BE e d vDO

Certified by .
o /. 1 Thegly Supervisor

.:‘\CC'Spte‘d bbr ® 8 s 2848 B e Lo a BRI A I e EY e e e o
Chairman, Departmentzl Committee
on Graducts Students



038

Submitted to the Department of Mechsanieal
“ngineering on May 26,.1966, in vartial
fulTillment of the recuirement for the degree of
Master of Science

A peristaltic pump is = biological pump which
employs periodie wavelike squeezing motlions which travel
along a vessel and foree the contents of the vessel
Torward. The purpose of this Investigation was to study
Three aspects of peristalitic vumping:

1) The input-cutput "gross' charactericites of
the pump;

2) The fluid motions within the pump ;

3) Fluild mixing within the pump due to circulsar
or secondary flows,

The investigation proceeded aleng two lines: A
theoretical analysis ws=s made of » simplified model
of peristaltic vumping; rFeristaltic pumping was simulated
with an experimental apraratus, and the data was comparad
to the theory.

The results of the experiment cen be sumnarized as
follows: ‘

1) The pressure rise versus flow rate characteristics
of the experimental pump correlated well with
the theoretical analycsis on & quantitative bagiss

2) The fluid moiions within the pump correlated
with the theoretical analysis on & qualitative
basis;

3) The investisation did ot prceceed far encugh
to produce meore thon speculztive concltisions
ebout fluid mixing within the DPUNp .
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1.

INTRODUCTICH

1.1 ZDefiniticn of Ferstaltic FMotion

in this age of specialization, it is often con-
venient td "let the expert do it". Submitting to
eipediency, this thesis begins with Yebster's de-
finition of peristaltic motion: "the peculiar worm-
like wave motion of the intestines and other hoilow
muscular structures, prcduced by the successive con-
traction of the muscular fibers of their walls, forc-
ing their contents onward".l The human ureter, a tube
which connects the kiduney to the bladder, is one of
those "other hollow muscular structures" which pumps
fluids by means of peristaltic motion. In this case
the fluid is urine. The typical rate at which the
human ureter pumps varies from almest nothing to
about 4 ml. per minute, depending upon the urgency
of the situation. The speed with which the peri-
staltic wave travels down the ureter is typically
3 centimeters per second. The frequency of the peri-
staltic waves can vary from ten per minute to less
than one per minute. Further details about peri-
staltic motion of the human ureter will be contained

in the next section of this paper.



1.2 Motivation of the Investigation

The interest in ureteral peristaltic motion
stems from aﬁ observation which was made by Dr. Kass
of Boston Uity Hospital. Dr. Kass noted that in-
fections can travel from the bladder to the kid-
ney, against the prevailing pumping action of the
ureter, in a surprisingly short time. Experiments con
rats showed that the infection could travel the
length of the ureter (about 1.5 cm.) in about 5 hours.°
The first question to ask is: Could ordinary diffusion
be responsible for this effect? It would seem un-
likely, sincé the infection must diffuse upstream
faster than it is washed downstream by the flow of
urine. However, perhaps the infection can diffuse
up the boundéry layer at the ureter wail. in
order to investigate this possibility) let us deter-
mine if the infection could diffuse from the bladder
to the kidnej in 5 hours.when the ureter is not
_pﬁmping, i.e. when there is no adverse urine fiow.
The diffusion of tre ihfection up the bcecundsary layer
'would certaiﬁly be less rapid than diffusion under
these ccnditions( An order-of-magnitude calculation
is carried out in Appendix. 1. It employs the elemen-

tary transient diffusicn equation, {% A
L

= CI#iiﬁiﬁ?
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gand an order-of-mgnltude diffusivity constant which

is typical for the diffusion of common inorganic mater-

ials in water, This calculation indicates that the

concentration of infectlon &t the kidney after five
hours will be 0.5% of the conceﬁtration at the bladder.
Cne might argue thst since the infection reproduces,
its diffusion rate would be incressed by a source term,
On the other hand, bacterlal and viral particles

are relatlvely large compsred to inorganic melecules
and will probably have & slower diffusivity constant
than the molecules. On the whole, we conclude that
diffusion up the boundsry layer 1s not a convincing
explanation of Dr. Kass's observatlons, The assumption
of this investigatioh became that some other mechan-

1sm of fluid mixing exlsts within a peristaltic pump.

l.3 Purposes of the Investigation

The basic purpose of thls investigation was to
seek plausible mechanlsms of augmented fluild mixing
within a peristltic pump. In order to lay the foundstions
forlthis effdrt, the stb-objectives became:
| a). investigate "gross" pumping charécteristics;

b) 1n§estigate_fluid motions within the pump;
c) 1Investigate secondary fluid motions as =

possible fluid mixing mechanism;




1.4 Methods of Investigation

The investigation was launched on both é

- theoretical and an experimental level. The theoreti-
cal attack was‘based cn a simplified model of peri-
staltic motion and oﬁ the assumption that viscous
forces overshadow the inertial forces in a peristaltic
pump. The experimantal effort involved the con-
struction of an apparatus to simulate peristaltic
Pumping. The theoretical and experimental approaches

were combined in a comparison of the results.

1.5 Content_gg Following Sections

Section 2 will discuss theoretical models of
peristaltic pumping, and their relevanéy to the
"real thing". Section 5 will discuss the basic
‘theoretical approach, outlining the assumptions which
were‘made and the resulté which followed. Section 4
Awill_describe the experimental apparatus and the ex-
perimental procedure. SectionS5 will analyse the re-
sults of the theoretical and experimental investiga-
tions. It will discuss the gross: characteristics
of a peristaltic pump, the fluid motions within

the pump, and the flnid mixing within the pump.




CHOOSING 4 MODTL

2.1 Introduction

rerhaps the most critiecal decision in this type
of investigation is the selection of a model, for the
model strongly influences the subsequent analysis.,
Iq model chooéing, relevancy, which usually implies
complexity, must be compremised with feasibility.
This is the case in both theoretical and experimental
work. The ideal is the model which is most relevant

and yet still feasible.

2.2 BSpecific Information about the Euman Ureteﬁ:5

“hen one wants to develor a relevant ncdel, the
first thing te do is to ask some questicns about the
real world. The following informa%icn sbout the human
uretef is divided into tﬁé categories; the structure

of the ureter, snd the characterisitics of ureteral

‘ ,_u KIDNEY

peristaltic motion. —_

/

a) Structure:

| BLADDER
| Fiqure 1




The significant dimensicns of the ureter are:

-lencsth: 20 cm.

externel diameter: 0.3 ¢m.

internal diameter: 0.0% cm.
Arvalve ig situsted at location 1, at the bladder end
of the ureter (see figure-l), The valve ccneisgts
of muscles in the wall of the bladder which can
clese the ureteral opening. A second valve seems
to be situated at location 2, the kidney end of the
ureter. It consists of a ring of muscles Which ciose
the ureter upon contraction. The wall of the ureter
is composed of radial muscles and longitudinal muscles.
‘The radial muscles form rings which circle the ureter.
The longitudinal muscles lie aleng the length of the

ureter.
b) Characteristics cf ureteral peristaltic motion:

Wwavespeed: varies from 1 tc 6 centimeters per second
Diameter Reynolds Number: about 10 ( g%ﬁ?)
Frequency: varies from 10 to less than cne wave per minute
- Flow Rate: varies from negligible to 4 ml. per minute.
Waveshape: The waveshape derends partially upon the flow
rate and the pressure level of thé system. Under some
circumstances, the wave may constrict the ureter com-
pletely. Under other dircumstances, it may not. The
bulge part.of the wave may vary from 1 centiﬁeter in

3 length for low flow conditions to 10 or 15 centimeters

for high flow conditions. Usually only cne wave is pre-
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sent on the ureter at any time, although occasionally
two waves are present for higher frequencies. X-ray
photographs indicate tyrical waveshapes shown in

figure 2,

direetion ot wave mohan —p

Figure 2

Longitudinal and RadiTal Motions: Both the radial and
the longitudinal muscles are active during a peri-
staltic contraction. Saul Boeyarsky reports, "Obser-
vation of the ureter at surgery or in movies conveys
a definite impression: not only does the ureter
centract during peristalsis, but it also glides to

and fro lenthwise".4

2.3 Posgible Models

We will begin the discussion of possible models
by atating those things which were considered not

feasible.

a) Valves were eliminated from the model. The
characteristics of the biological valves were nct
known. TInclusion of valves did not seem desirable

in this exploratory investigaticn.



b) Longitudinal moticns of the wall were ruled
out. First, longitudinal wall movementslwould have
complicated the theory. Jecond, there was nc easy
way of simulating longitudinal motions experimentally.

c) Axially symmetric models were ruled out.

There was no simple way of experimentélly simulating

an axially symmetric squeeze.

The most feasible model seemed to be the plane
two dimensional model. A plane two dimensional tube

charecteristic
is one which has ::., - : length and width, but infinite

A
height. In this way ncne of the properties of
the system will dépend ugon the third cartesian
coordinate,height. This model seemed feasible on an
experimental level. Furthermore, the cartesisn form

of the equations fer fluid moticn are perbaps the ecasiest

to work with.

Since the shape of peristaltic waves has not
been determined very accurately, and since it changes
‘derending upon the flow conditions, no common simpli-
Tied waveshape seemed outstandinzly more relevant
than any other. Two simplified waveshapes were
arbitrarily picked; the stev waverand the sinuscidal

wave. lhese twc waveshapes are shown in fieure 3.
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] STEP WAVESHAPE

N SINUSOLDAL ‘
\/—\ WAVESHNPE.

figure 3

In conclusion, the analysis will use = =lane two
dimensicnal model with beth a2 step and a sinuseidal
waveshape. The mcdel has ne valves and ne wall motion

in the longitudinal directions




THEORY

3.1 Introduction

Thig seetion will contain two short demonstrations
that peristeltic pumping depends upen a viscous mech-
anism and a somevhat longer discusslon of a

theoretical approach to peristalilc pumping.

2.2 Peristaltic Pumping and Viscosity

The purpose of the following twe demonstratlions
1s to show +that a peristaltlic pump 1s a viscous

pump, in the sense that 1s will not work 1T R=Q ..

a) First, let us consider a »plece of tube
which ecloses upen itsslf to form & ecircle as shown
in figﬁre 4.}

Pallevs
TUBE

”f”‘_
Frichonless [ rasea
Bcawung
Fiqure 4 PLAM E\“;‘UF
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A radizl bar extends from the center of the circle
and has two frictionless rollers attached to it.

The two rollers constrict the tube, thereby producing
a2 soueeze, The bar 1s free to rotate on 2 friction-
less bearing at the center of the circle, so that
the'rollers move along the tube.  The tube is Tilled
with an incompressible fluid. Let us assume that the
rod is rotating with constant angular speed, w,

in the counterclockwise direction. Let us assume
thet the fluid 1s inviscid. Then we ask the question;
Wwill the peristaltic scueeze pump the fluid? The
following line of afgument shows that it will not.
I we change coordinate systems by stendling on the
bar and rotating with it, then the wave will appear
to be fixed with respect to ihe new coofdinate
system, In fact, the system will become a steady
system; nc property of the system will chenge

with regpect to time. If we further assume thatl
gravitational forces are of no consequence, then

the flow inside the tube becomes a slmple Bernoulli
flow in which the pressure is dirceetly related to
the scalar speed of the fluid. In 2 steady systenm
thé scalar speed 1s directly related to the

crossectional area. Since the tube crossectional
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area 1s symmetrical about the plane which contains
the ber and ls perpendicular to the paner,

then the secalar speed must be symmetricel also,

But it the scalar speed 1z symmetrical, then the
pressure must be symmetrical. If the pressure

1s symmetrical with respect to this plene, thén
there can be no resultant force on the rollers
perpsendicular to the plane, and hence pervendicular
to the bar. Now let us jump back to the original
Llaboratory ccordinate system. If there i1s no
resultant foree acting perpendiculer to the bar,
then no work is reguired in order to keep the

bar rotating. But if the bar keeps rotating without
anyone cranking it, then certalinly the bar is hot
doing any work on the fluid. If the bar is not
doing any work on the fluid, then it is not »umping

the fluid.

We notlice that 1T the fluld had been viscid,
then the pressurs distribution would not have been
f symmetrical and a force would have existed perpen-
diecular to the bar. In this case *he bar would havé
been transmitiing energy to the fluid. Pumping would

have occurred.
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b} The second demonstration will give the
reader a physical feel for how a2 peristaltic pump
works., Consider a tube connecting two reservoirs
as shown in figure 5. A squeeze in the tube is

moving towards the right with speed c.

If the squceze completsly closes the tube, then it
is obvious that all of the fluld in the tubs will
be pushed into the reservolr at ithe righﬁ. On

the other hand, 1f the squeeze does not quits close
the tube completely, but lezves a narrow passage,
then most of the fluid will be pushed into the |
reservolr at the right but & small 2mount will

seep back through the passesge. Only a small

amount will seep back since large viscous forces
will cceur in the narrow passage. This demonstraotes

2 Tundamental chare
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pumping. A smell amount of fluid moving backwards
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under the pinch nrovides enocugh force to push

s larzer snount o7 fluid sorward through the tulge.

3.3 Thecrctical Apnlysis of the simusoidal

Plone Two Dimensional Model

As mentioned 2bove, both the sinusoldal aﬁd

step waveshape models were consldered during the
course of this lnuves tigetion. Howevel, experimental
detez was teken only ror the sinusoildal model, Therefore
this sectlion 7111 outline the theoretical approach

only Tor the olﬁuqoidal rmodel. It will specily ry the
assumptions.involved and present the results. The
details of the sheoretical analysis for voth the
ginucoidal and the step waveshapse models are zlven

in appcnd1A 2.
A) WAVES HAPE (‘_poabtm’x'rt' svsreM
Figure 5 showeg the sinuwacidal vesbépe nlane

two dimensional modsl. The analysls begins in 2

coordinate system Tixed to £he wAve, the waleshope coordviote gystem

¢W oA |
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in wheh the system 1ls steady. Tote that in this
coordinate system the itube w2ll moves to the right
with speed c¢. This system . 1s truly steady only if

the wall has no ends,

The theoretilcal analysishwith the most general
form of the Mavier 3tokes equation for fluid motion.
We whittle it down +to & mere shadow of its former

gelf with 7 assuntlons, The assumptions arc:

1) Gravitational forces are of no consequence;
2) The density iz consiant over space and time;

%) ™he viscosity 1= constant over space and time;
J ?

[

43 There 1s no depnendency end no z velocity;

5) Thefé:is no time dependsney (the tube is
ihfinitely long);

6) The wavelength is lonz comparaed to the
width (a<eA);

7) The dlameter Reynolds number 1s small (%ﬂﬂn\);

The first e assumpiions reduce the Novier

Stokes equation tec a2 familliar steady state, two

dimensionel cartesian form with lnertizl terns,

viscous terms, and pressure gradisnt terms. Assumpiions
6 and 7, combined with an ordsr-of-megnitude analysis,

reduce the squation still further to the form:
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gx = )J. é‘g,, Equation 3.1

Thus, the implications of the zbove sssumptions has
een that fully develoned parasbolic Pouseuille

flow exlsts everyvhere in the tube.

Integration of ecuation 3.1 with the approprizte
boundary conditions gives u as a function of x and
V. The conditions of incompressivility znd contin-

ulty cen be used to determine v Ffrom u. They are:

. 2
U.-:-C.—"L' %‘E[d—st Ta 3.2

}L
V= %éﬁ[%%*‘(%c*;})%] Eq 3.3

rom u and v the stream Tunctlion is derived:

4 8
P=gee F20- 0 G-8)]

B} Laboratory Coordinste System

Eg 3.4

Wle now change back toc ths laboratory coordinste

sysiuem, as shown in fizure 7.
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i

The fluid motlons arc not steady in the laboratory

! coordincte system. In this system the walls are
statlonary and the wave moves towards the left
at spced c. The laboratory coordina vstem 1s

related to the waveshpace coordinate system oy the

L
o)
oY
&)

Using these relationships we find th-t:
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where:

4 e RIT 7 A '

ad-= a ()Q-\-Cﬁ‘\ = o<+ Dsun T Q(-ﬁ-t.{‘r) Eq' 3.2
An interest in the gross chareceteristics of the

pump compels us to develop @ relati nship between

2 dimensionless pressurs risc and ) dlmcL31onless
flow outnut. The dimsnsionless pressurc rise, called
the pressure ratio, 1s defin=d as ths »ressure rise

over one wavelength divided by an arbitrarily chosen




refercnce pressure rlse. This is chosen to be the
me ximum pregsure riss whiech the pump cen devzlop
across one wevelength. Similarly, the dimensionless
Tlow output, called the itronsvort ratio, is defined
2.8 the net volume of Ffluid transvorted during one

| : cycle divided by en arbitrarily chosen reference

‘ valume. The referzre volume is thot volume which

ﬂ lies beneath the tulge, as shovn by the shaded

areca 1in figure 8.

For normel pump operations the pressure ratio ean

Fiquve &

; vary between zero, when there is no pressure rise
across the ﬁump, to one, when the pump ls producing
1ts meximum pressure rise. The transport ratio

willl vary betwesn zero, when there is no net flow
emerglng from the pump output, to some other value
which 1s not immedictely apparent, when the maxinum
smount of flow is occurring. The nressure ratio

ls Tound after intsgrating the pressurs gradient

with respect to t over one cycle. Combinztion yields




the following relatlionship between them:
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In conclusion, the theoretical approach

-

consisted of the Tellewing steps. 2 gerics of asssumptions

[

Wa

sed. to slmplify the Nevier Stokes ecouztion.
The fluid veloclties were derived in both the
steady waveshape -coordinagte system and the unsteady
avoratory coordinate system. Finclly, a relation-

ship between dimensionless pumping characteristics

wz s derived.
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4.1 Introducticn

This section will discuss the experimental
aspects of the investigation. 1t wiil ocutline the
limitations and the oﬁjectives of the Zesign of
the experimental apparatus. Then it will briefly
describe the experimental appératus. Finally, it will

outline how measurements were taken.

4.2 4Apparatus Design Limitations and Objectives

a) There were four main limitaticns upon the design
of the experimental apparatus. First, the peristatic
tube had to be substantially two dimensional. In
other words, the z dimension had to be quite lafge
compared tovthe.y dimension. Second, no longitudinal
movement of the tube walls could be allowed. Third,
there.were to bgT?alves. Fourth, the tube had to

have dimensions such that a low Reynolds number

could be obtained.

b) vThere were six main design objeétives. It
was desirasble to be able tec vary: 1) the waveshape,
2) the waveléngth, 3) the wave amplitude, 4) the
wafe speedQ In addition, the peristatic tube was

to be:"5) clear and 6) accessible.



4,3 Description of Exgerimental Apparatus-

The folléwing description of the appartus
will be cursory. Appendix 3 contains more detailed
information about the apparatus, including specific
dimensicns, operating ranges, fluids used, etc. We
divide the appartus into its functional parts for

the following description.

a) Producing the Peristaltic Wave: The part of
the apparatus which produced the peristaltic wave is

shown in Figure 9.

44— Backplate

f | Fiqove

The rigid backplate served as a semi—circular

? template, to which the peristaltic tube was cement-
ed. A rétating disc was positioned so that the
perigtaltic tube was_constrained between it and the
backplate., As shown in the figure, the rofating disc
had lobes on it, so that it was analogous to a cam.

When the disc was turned, the squeeze traveled along
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the tube. ?he disc was constrpcted so that there
was no direct sliding motion aleng the tube wall.
The length, shape, 2nd amplitude of the lobes were
variable. In additicn thé speed of rotaticn of the
disc was wariable. In this way four of the design
cbjectives were éatified, although in the Figure
the curvature of the peristaltic tube seems to

distort its waveshape, in the actual case the

dimensions were such that the curvature was unimportant.

4 b) Measuring the Fressure Rise and Flow Rate:
As shown in Figure 10, a reservoir was attached to

cach end of the Feristalt%g»tube.

AT Percstathe. Tube roaey

Ee3evvoL-

| 2%
mf_‘“\://///, L LT =24, ‘

Sump Reservaiv
1 — . J’
: PN NeNYET )
lf } overflous j
| valve _ tube supply
| | pump
' - Fiquve 10

; . The height of the fluid in thé "low head" reservoir

‘was kept constant. This was asccorplished by using

S B T T e e — " - I SR ST S



a centrifugal supply. pump and an overflow -drain. The
level of the fluid would newver gc above the

overflow drain, but the suvrply puni never allcwed it
te go beneath.  The height of the fluid in the "high
bead" reservoir was measured;”‘Thé differerce in
heighte was a messurement of the Lressure rise

acrogs- the peristaltic pump. The heicht . of the over—
flbw drain iﬁ the "high head" ressrveir could be varied
20 Lhat the peristaltic pump could run with different
Fresgsure rise ccnditions. The overflow frcm tre "high
head" reservoir was the net flow of the peristaltic
pump. The diagram shows a valve on the high head
overflow drain. The net flcow per cycle of the pump
was measured by diverting the overflow through

this wvalve and into a graduated cylinder.

¢) Observing Fluid Motions Within the Feristaltic
Eump; The peristaltic tube was made of clear poly-
vinylchloride. Hence, it was possible to observe the
fluid motions inside the pump by intrecducing dye

through the wall of the tube with an hypodermic needle.

4.4 Bxperimental Frocedure

Six quantities had to be measured to define each
data point.
1) The geometry of the wave (Waveshape, amplitude,

wavelength);

"
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2) Wavespeed;

3) The differential pressure head btetween the
reservoirs;

4) The volume flew per cycle;

5) The viscosity;

€) The density;

First a fluid was poured into the system.
This fixed the density and to a certain extent
the viscosity (the viscosity was heavily dependent
upon temperature). Then the geometry was set.
Tests were made with four different geometries.
Last, the wavespeed and pressure rise were varied;
and the volume flow‘measured for each case. The
procedure was set up in this sequence because the.

flow was the variable least easy to control.
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ANALYSIS OF RESULTS

5.1 Introduction

This section will compére the theoretical and
experimental results for the gross characteristics
of the peristaltic pump, presenting the data on four
graphs. Then it will discuss the theoretical and
observed fluid mofions within the pump. Last, it
will speculate about the pessibility of secondary

flows within the pump.

5.2 Gross Characteristics ¢f the Pump

a) Dimensicnal Uonsiderations:

We will begin the discussion of the BTrosSs pump
characterlstlcs by determining the relevant dimension-
less parameters. 4s a first approximaticn, we emplioy
the Fi Theorem approach to dimensicnal analysis. The
physical variables are: A'P S, JTaRd % o ,b A,
Lrlmary dimensions are mass, length, and time.

Hence, we take u, ¢, and a as independent andfform

dimensionless ratios with the other variables. We
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ol i st an Ha e

find:
pressure __jL. Reynolds No. ?th
ratic Me
a.
Flow geometrical
ratio Eﬁ— ratics 25 , EL
a*c o= O

These are the five groups of relevant dimensionless
parametefs. The ti Thecrem states that any one can
be expressed as a function of the other four . e
note that the gressure ratic and the transport ratio
cefined in secticn %.3% have the same dimensicnal
form as the pressure ratic and tre flow ratio here,
and that the formwer are refinsments which ars mere
approepriate fer bﬂr specific case. The analysis .
demonstrates that the Reynoclds number is a signifi-
cant parameter also. Ve decide to refine it in a
similar manner. Taking the differential fora:

o S dwin
Reynolds nwmbe- - X o

and using u frowm section?.?%, we cbtain the result:

Beguods munder~ 69 ot oy 3(3 - 57010 e
o A b-mRrY B S

The derivation of thkis Reynclds number is “XPlaLBEd
in ApLenL1X 2. Due to assuﬂptlcns rade in the deri-

vatior, this expressicn is wvalid cniy for:

3
ceTr.< ‘5-{ e _}

bja1% +\

This expression shows that the Heynclds number depends




upon 2 sharacteristic jismeter Heynclds number, btwo
gecmetrical ratics, and & coeffecient Iin T..

However, we note that in the o. sraTing IaNgEe of the
pnmp, the cpefficient in T.R. changes onay slowly with

Mmoo
Lails

We will use the refined parametar ETOUVEE, for

precenting the results.

b) Fresentation of Data:

wrom the sbove discussion we have 4 relevant
parameters groups which can be varied. In the presen—
taticn of data, we will portray the variaticn in
each parameter group in trhe following Way-. Tach
graph represents a different geconetry. Graph 1 has
a mediﬁm pinch (bulge thichness to pinch thickness
is 2:1) and & wavelengths between the ends.‘ Graph 2
has a medium pinch and 1 wavelength between the ends.
Graph % has a severe rinch (bulge thickness to pinch
thickness 1s 5:1) and 4 wavelengths between the ends.
Graph 4 has a severe pinch and oné wavelength between
the ends. Un each grarh the variation in Reynolds
numbedis portrayed by different symbols. The pressure
fatio ig plotted on the ordinate and the transport
ratio on the'abscissa. The theorebical relation-
ship betweén them, expressed in equation 3,10,

is shown by the heavy black line on each graph.
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¢) Analysis of the Graphs:

i) End Effects;

The theoretical results rest upon
an assumption of steady state conditions in the wave-
shape coordinate system. This impliés that the tube
je infinitely long, that it has no ends. An
‘experimental test of the end effects was conducted.
Graph 1 shows a medium pinch geometry which has 4
wavelengths between the ends. Graph 2 has only one
wavelength between the ends. We would expect the
effect of thg ends to be more important in the
gecond case. 1t is reasonable that the effect of the
ends would be to lower the effectiveness of the pump
since at the end the fluid squirts into the reservoir
and dissiﬁates agme kinetic pressure head in a
non-productive way (turbulence, etc.) Comparison of
craphs 1 and . 2 shows that the increése in end effect
Jowered the maximum tramsport ratiov by about
%0% but did not affect the maXimum pressure ratic
muqh. Comparison of @raphs 3 and 4, which is the
counterpért situation for the severe pin;h case,
shows the maximum transport ratiorlowered by about

10% and the pressure ratio lowered by about 40%.

s et



-36=

ii) Side Effects;

The theoretical analysis assumed there
was no z depencency in the fluid motions. This
implied that the peristaltic tube wss infinitely
deep in the z direction. Of course, tre experimental
tube had a top and a bottom. In the experiment the
ratio of the depth to the average width was on the
order of 8:1. although this would be adequate from
strictly viscbus considerations, andther effedt apyrears.
Since the tube has a constant perimeter, the depth

must decrease as the width increases when =z bulge

advances. The effect of the decrease in depth at

the bulge was to lower the transpaff ratio because
the volume of the bulge was decreased. Furfhermore,
the stiffness of the tube csused the crossection

to have a rounded to: and bottem, as shown in figure 11.

I\*ﬁll
4 Figure 11

—pwridthe—
This affected the average dimensions of the pinech as
well ae the volume of the bulge. Botk effects tended to

lower the transport ratic,

In tofal, trhe side effects may be a partial

explanati.n of the fact tha’ the maximun theorestical
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wa§ independent of these variables,

tost,

111) Reynolds Number Effect;

The veoriation in Reynolds number 1s
shown by different symbols on the grapns. The theoret-
ical derivation assuvmed a very low Reynolds nunber,
end then shovwed thet the relationship between press-
ure retio and trenspori ratic is indspendsnt of Rey-
nolds number. Hence, we would sxpect 1In the experi-

ments to find thet for low encugh Reynolds numbers,

[6)
0

hange in Reynolds number would not changes the
dete points. We would also expect to find 2 transition

4

Reynolds number whers the theory loges valldity and
vhersz further increzses 1n Reynolds number would
edversely affect the seffsctiveness of the pump. The
graphs seem to indicates that the lowest experimental
Reyholds nurbsrs wers lower than the traznslition point,

within the limitations of sxperimental accurasey. The

highest Reynolds number tested shows a declslve drop

in pump effectiveness, as antlcipated. Zoth ¢ and,g

Fie

were virled inthe experiment. Hence some data points

=
a

present different c¢'s and m's, but the same ratio
c ' : ‘
of /M  cnd hence the seme Reynolds number. This

was a method of checking that Reynolds number influence

iv) OCther Tffccts;

fficulty of obtaining

First, the d4dif =




accurate values of viscosity in the face of temp-
erature changes caused the experimental data to spread
as it approached the maximum pressure rise end of the
curves. wSecond, for some unexplained reason, the
experimental data seemed consistenly to curve slightly
downward as it approached that end. Last, a set of
~data taken on one daj seemed tc cohere better than
data taken on different days. This can probably be
.explained by the temperature differences from day to

day and the relaxation of the apparatus.

5.2 rluid Motions Within The rump

Theoretical expressions for the fluid velocities
inside the pump are given in section 3.3. We can use
.these expressions in order to find the velocity
profiles inside the pump at varicus positions and for
varigus conditions. Let us use the expressions for

the velocities in the laboratory coordinate system,

which we remember is the unsteady coordinate system.

At the risk of creating some initial confusion, we
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change the expressions of 3.3 a0 that the wave is
moving towards the right, and therefore has a
pesitive velocity. we do this so that there will

be nc cenfusion abcut whether a pesitive fluid
velocity is one which is mcving in the direction of
_the wave or in the positive coordinate directicn.
Ndw they are both the same thing. "“he u velocity
rrofile is shown in Figure 12 for wave gecmetry

#l and #3, each for T.R.=o and T.R.= ‘L[zn‘ _H]-.r-'['p__
From these diagrams we notice that ne"atlvm velocities
cecur at the pinch. A4Alsc, the negative velocity is
greater for the T.R.=0 cases. These profiles are
the "instantanccus" profiles. The profile is fixed

to the waveshape, and moves with it to *he right.

These observations help te exwlain how viscosity
causes the peristaltic pump tc werk. Back flow in

the pinch gives enoush pressure rise from viscous

effects to compensate for tre pressure drop due to

forward moticn in the bulsze. At the pump cutlet, as
the pinch passes, the fluid is filewlng backward into
the pump. But as the bulze passes, a large volume

of fluid is expelled, mere than compensating for the

previous back flow, and giving rise to a net flow |
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forward over the cycle. Similarly the fluid within
the tube will meve back and forth, but will mzke an
advance towards the rutlet over the course of each
cycle. This backward and forward motion aoccurs even
when there is no adverse pressure head across the_

)

pump (when T.R. equals T.D. « In that case, the

nax
back flow at ths pinch is Just =nough so that the
associated cressure rise just compensates for the
pressure drop of forward flow in the bulge. If an
adverse pressure head is placed acrcss the gump,

then the back flow will be greater, in order to cause
enough ‘additional pressure rise to compensate for the
adverse iradient. When the adverse pressure head is
so great that no net flow out of the ocutlet occurs
(T.R. equals C), then the fluid within the pump will
not make a net advance towards the outlet over the

course of a c¢yele. OfF cdurse, the fluid still moves

back and fecrth as the wave passes.

OUn a qualitative basis (only the sign, not the
magnitude or profilej, fluid motions within the pump
were observed experimentally by iﬁtroducing dye into
the peristaltic tube and watching visually. The

observed motions corresponded to the theoretical
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expectations outlined above except in one important
group of cases. This group was the no net flow
situation. The expectation was that no net motion

in either direction would occur over the course of a
cycle, but that equal amouﬁts of back and forth motion
woﬁld occur during the cycle. sixperimental observa-
tions showed that net forward flow occurfed in some
parts of the tube and net backward in other parts.
Specifically, the finite z dimension became a critical
factor. At the top and bottom edges of the tube net
flow backwards existed.v At the middle of the tube

net forward flow existed (See figuren 12). Cursory
efforts to explain this effect did not yield

enlightenment.

wave diveets
—_p .

net $low bock wards ot +op

nef flow farwanrds ot wuddle.

net Flow bockunds af botiam

Figure 12
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5.4 Secondary Flows

The original purpose of this investigation was
to determine if motions causing fluid mixing occur
in a peristaltic pump. One way of exploring this area
theoretically is to determine the path lines of fluid
particles. In a steady system the particle paths
are identical to the streamlines, which can be computed
if u and v are known. Unfortunately, for a peristaltic
pump the laboratory coordinate system is not steady.
The position of the streamlines depends upon time. Thevefore.
The path lines must be derived directly by integrating
the velocity of the particle with respect to time,
getting the particle's position as a function of time.
An analytibal way of doing this uses the expression
for the streamlines in the waveshape (steady) coordinate
System, but results in an unmanageable integral
(See appendix 4 for details). A second alterrative is
.toAintegrate the laboratory system velocities over
différentially small periods of time using a successive
stép_iterationlmethod. Tkhis cculd be done with either
a computer or graphically. 1In the end néne of these

alternatives was pursued far enough tc yield results.

ifforts were made to measure fluid aixing




experimentally. A4 salt sclution was intrcduced into

the tube at cne position and the electrcconductivity

¢t the fluid in the tube was measured at another

cosition. However, these experimental efforts were

[

guccessfully thwarted by capriciocus fate.

-

2.5 Coneclusion

This investigation has been, at mcst, an -
exploratory effort. A reascnable cerrelation between
thecry and experiment seems to exist con the groes
characteristics of the peristaltic pump. 4 quaiitative
correlation exists for the fluid motions within the
pPuap. Eowever, this investigaticn hae net cettled
the issue of fluid mixing. If one desires to speculate,
it seems reasonabls that the back and fortt zotion of
the fluid within the pump would cause fluid mixing.

If the pump is running ét the T.R. equals ¢ conditicn,
then one might expect the mixing to be able tc transport
fluid particles from the Pump cutlet to the pump inlet
in a relatively short time, However, whether this
mixing efféct is strong sncugh to buck a net forward

flow is not immediately obvious.
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6. APPENDIX 1

This appendix will demonstrate +the order of magnitude

1

of diffusion in =2 rat urecter which iz not punmvning.,

From page 391 of Heat, Mass, and Momentum Transfer
g

by Rohsenow and Choi (1961) we get the one dimensional

tronsient diffusion squation:

£ a2 eef X

-Ek iLhJI)t:

where:

t = time

Dadiffusivity
1%

X =digtanece
¢ =concentration at x and %

¢: = lnitial concentration
i

C=acCy 2t t<« 0 for =211 =

¢c=0 at t=20 for x=0

- a . . o .
Use D e 3xis® '/ he s & Typical figure for diffusion

of inorganic meterials in water; Take t =5 hours,

X =1.5 cm;

Then: <
CL

Henee the concentration of infection at the kidney after

= erf 2.6 =0.9953

S5.hours will be .0.5% 6f the concéntrztior at the bladder; -




el cmprayensian i

oy TR

7T« APPENDIX 2

Tel Introduction

-

This appendiz will contain s detail theorztical

O
[a]]

(1

analysis of the sinusoidsl weveshape and th

(D

S

o}
g

waveshape plane two dimensionsl nodels. The sinusoidal
waveshape cass will begin with a derivatlon of fluig
velocitlies in the waveshape coordinata systam.

Then it will develop fluid vcloci ies and othe
quantities in the laborztory coordinata Sijwm,
including an ehlrossmon for the vumping churacterﬂstics
end the Reynolds number. The step waveshape case Tollows
essentially the same lines except that velocity in the
¥y direction is completely neglected; An expression
relating analogous dimensionless punping characteristicé

is presented for reference.

Te2 DlﬂUuOidul Javeshape Plane Two Dimensional Theory

a) Waveshape Coordinate System:

The waveshape coordinazte system 1s that sy stem

which is fized to the wave and travels with it. The

ch

model is showm in figure 13. Note that in +this coordinate
system the wall moves to the right with constant speed

CI
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Figure 13

We begin with the most general form of the Navier

Stokes eguation. If we assume:

1) Gravitetional forces are-of no cansequenee;
2) Density 1s constant over space and times

3) Viscosity is constant over space znd time;

Then the Novier Stokes ecustion reduccs to:

Dy | z
ienJUN I +~ M
bt s Ve 3 vy E%;W.l

Where ¥V is the vector velocity.

If we take the cartesian form and assume s

4) Mo z dependencs and no o velocity;

5) No time dependence (tube hes no znds);

Then we get the forms:




Ak oW i

P
U3k TV YT T " ¢ 7_"6_“‘ &.O:.K Eq T2
14 ¥ 2P Ay . v
(Lax'l-va,a:"'l'a-l— zs" S':b,._—& E%T.S

Let the symbol A» reprcsent an order of meznitude

relationship. Using order of maznitude concider tlons,

we find:

w~e v 3¥C
Q! "~ ji‘ CL Qﬂ. SLQ,
X )‘2 u-ag/\"‘,\
v b - 1) b ¢
aa’"z%“‘ VI v ax®
> b Mo 4
A el




If we assume:

6) Wavelength is long compered to widih (x==A);

7) The width Reynolds number is low ( L&

<<\ )3

V<< WU

Y NI 3w M S
lks-x‘v-g‘al/%-—x-:_<< ¢ a.az

v o Y%
BK)VB}QML{'(%?SL

Hence:

Iv.

¥y =M 5
oP 3P

Considering these results, we decide to neglect the
change of p with respect to v, and to coll » a funection

of x only. Hence, the £luid motions are determined by

equation T.4. The boundary conditions arc:




at ﬂ-_-,c: oj-kdzd
T.
;a—q:o % = e Egq s
a‘i .

Integraticn o+ equation 7.4 with Trespeet to vy

twice yields :

Wwky) = ¢ — il,—u 3—5 [GL"-. \f‘:l Eq 1. Ga

An alternative forg Tor U, in which dp/ax is replaced

by an squivalent Sxbresesion in termg of 4, ig nore

convenlent, The reletionship between dp/dx ang q is

found hy integrating U with respect tg y from 0 o g,

d
= — —_ _'_. d -]
% g Wdy = <4 4 =

3 X
Solving for dp/dx, we pot;
dp 3 jprc 2
= ————
dx a= -ﬁ-d;b Eq T.1

The aliernative form feor y becomes;

LT G- ers (3 ~offi- 2] mnes

We proceed o fing v, Using the conditicns fop

continuity ang incomprossibility, which require;

M . v |
®x= -5 g 12

The derivative of u (EqQ[?IGb) with respeet to is

taken, noting that d ig o Tunetion of %, Then 3”H4ax
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is integrated with respect to y, using the boundary

condition that at y=0, v=0. The resuli is:

- 3 a3 L ze- LYy S
V= 2 59 1la 4 *(Be- aXB) | ERte
In a steady system the stream Tuncition ﬂ# is defined

oy . a (q’ y a—’-‘l:
X 63

Integration of v with respeet to x and u with respect

= - E%'I.H

to y leads to the result:

= 12:(‘_0. %[é(l" %a.\ - g’i (z- %z‘)] Eq 1.1z

b) TIlaboratory Coordinate System

We shift back to the laboratory coordinate
system in order to find ths cherscteristics of the
pump. Note that in this coordincte system the wave
travcls'to the left with speed e, and the wall has
no y motion. The model for the Laboratory coordinehe

system is shown In Tlgure 14,




The laborsatory coordinate system is related to

the waveshape cocrdinatc syetem by the squations:
X= x—ct A=Y Eq 13
Hence, we have the reletions:
,A : . A )
d=d (Reet) = o+ bsw "‘;)\'E."(x+q_t)‘ Bq T
A Eq TS
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An interest in the groes characteristics of the

pump compsls us to develop‘a relationshin between the
dimensionless pressurs rise ond the dimsnsionless output
Tlow. First, we call the dimensionlsss flow the
transport ratio, and define it =28 the ratio of the

- net volume output during a cyecls to an arbitrarily
selected reference volume. We chooge the reference
volume to be the volume contained under the bulge,

represented by the shaded arez in fizure 15,

— — ¢

F|'3M¢ 'y
Hence, we represent the trensport ratio as:
t+2

g %’&i: CLL-<B%§

TR. = ——'5;;\—— = = %6_}&] Eq 18

The minus sign in front of the first exXpression is so
that we measure flow towards t
of the wave motion. From this reclationship we notice
that the transport ratio is zero (no net flow) when

g = ac.

M

The pressure rise across a wavelength will be




the same in both coordinste gystens. Integretion of
equation T.7 with regpect to x over ocone wavaelength

glves the expression:
XA XA

XA
4P = 3pue|
-9

dx |
—_— Bvbu% iaBTJq
A ZIAN\ .
(@b 334 (bsinTs )3
A
% .
Evaluation of the integrals on the right leads to:

X+A

l & g |
Sl L AR ICES S

We define a pressure ratio as the ratio betveen

the pressure rise across one wavelength to an
arbitrarily selected reference Pressure rise., We e€hoose
the reference pressurec rise to be the pressure rise
that occurs =cross one wvavelength when there is no-

net flow (T.R. = 0). For this condition, as noted

above, q = ae, and ecuation 7,20 glves:
KA 's)ul L

| <. Cb 24
x

This pressure riss is the laergest one that the Pump

can produce. The pressure ratio becomes:

pRE —A-pl:—:;“= - g %z.[(l - %(‘_(.%1_\1 E% T.2%




Combination of eguaotion T.18 and 7.22, and elimination

|—te

of g yvields a relationship between T.R., F.R.,, and
o 2 L]

geometric factors,

TR.= %[lo—;%—l ][l—-P.E.] Eq 1.23

For normzl pumping, P.R. falls in the renge o©< PR. =\

and T.R. hes the corresponding range %[I%M]E.T.E.?—o .
Zauation 7.23 ghowe the lineoar rslationship between

T.R. and P.,R. In particular, it says that the.

transport ratio is merely a constant term which is

the maximum transport ratic minus a seewags term which

is directly »nrorortional to the adverse pressure head.

¢) Reynolds Number

In its differential form, Reynolds number is:

. ou
nerdol fovees Cw 3x
Reunolds nuomber = % = Ee T.24
E viscous fovres u Ean %
oy*

IT we evaluate thls sexpression formally, using u in
equation 7.6b, we find thet the Reynolds number ranges
from O to infinity depending upon what rosition along
the tube is selected. The physical recson for this
result i1z that the inertizl forces vanish as some

positions and the viscous forces at others. Hence,

we attempt to estasbhlish 2 meaningful guidepost by




computing the maximum inertial forees znd maximm

vizcous forces along ths tubs seperately. The order-—

-~ .

of-magnitude Reynolds number will then be their ratio..

From eguation 7.6b, we hove:

o= c+ ?’_;[33 ‘CIE‘ —~ ‘%‘;]

Where q is related to T.R. by:

4= ¢ La-bT2

Thysical reasoning tells us that the nmaximum inertial

effects will occur along the centerline of the tube,

Evaluating the terms in the numerztor along the

eenterline, we get:

hy= 3elF - gTe - 4]

0, o 5 4
oM _ 3 = _ =TR.  ——
c.‘..l d 4 2] a %

Evaluating the terms in the denominator we have:
N _
é_l." = _ 3 [ a bTiZ :

Y™ d-pd T &

Physical reasoning shows thst for normsl nump

f
)

operatlon the inertizl forces are greatest at the

osition d=a, whereas the viscous forces are crestest
H . O

at position d=o-b, Evaluating the numerator and denom-—

inator at these positions and using a(d)/dx = 48/

at d=a, we get a final expression:




\

o
— -—
A

Reynalds. & = gjio--—w ot aT-b 3l3-2Tedi-5r=]
t=TRY

Eq 0%

Te3 Step Weveshape Plane Two Dimensionzal Model

This nodel will not be presented with 28 muen detzil
as the sinusoidal waveshope model since it did not receive
as muech attentlon during the investigotion. The main
burpose of this section will be to write down the results

for refersnce,

Ageln we start wbth the waveshape coordinate systen,
whleh 1s fixed to the wave and travels with it., Tn this
system the wall 1s moving towards the right with speed

¢ The model is shown in figure 16.

L
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e make the same assumntions we did in the brevious

case,

ational Torces ars of no conscguence;

) t
2) Density is constant over time and ghace;
) Viscosity is constant over time =nd space;
) No z dependence and no z velocity

5) Yo tine depandence;

Again the Navier Stokes equation is reduced to the
forms of equation 7.2 and 7.3. However, becausc of
the discontinuity associated with +the step wavechape,
we will not try to handle the detailed motion of the
fluid within the pump for this nmodel. Specifically,
we negleet velocities in the v direction 2ltogether.

We are left with equation T7.2:

M U 3® Tw . Ju
M LV 3ﬁj1= - gg St }% i_1hx*'k ;] B, 12

We degire to test the crder of nzgnitude of the
viscous term and the inertisl term. I we carry out

én order of magnitude iniszrotion of this expression

E

-

with respect to x across one wavelength, we gzet for

5
o

the pressure rise ccross the wavelength:

X¥A (‘_L -




d.
Width Reynolds number is low (yar <<1)

)
7) Wavelength i1s long comparsd to width (<< A)

Then: -
£ | gedd
AL T A
d’l—

T

Hence we may negleect the inertisl term, and use

the form:

Thus, the implication of these assumptions 1z tha
all departures from porabolic Poiseuille flow are
ingignificent. After a derivation analogous to the
preceding one, we find a reletionship between the

trangport ratio and the pressure ratio:

TR L 2l 5-1

[ \ ~—?.R.] T .26

Ly d?
A-La ?£3'4-l

Where the definition of the transport ratioc is the
volume tronsported in one cycle divided by the
volume under the bulge, shown by the shoded crea

in figurs 173




=51 -

rise acrosg one wavelength whén T.R. ecuals 0. This

s the maximum »nressurs rise the pump can producs,

A

e

and 1s given hy:

KA Lo da A—L:, d. d‘t

= Lol —] &> 279 — {2 1] Eq1.21
A P I Wl B | TR B
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8. APPENDIX 3, EXPERIMENTAIL APPARATUS
This appendix will give some detoiled luformstion about
the experimental apporatus. It will discuss the various

componsnts, giving dimensions, and outlining the

operating rongs.
a) The Tube and Weve Forming Components

& top view of the tube ond the wave forming

components are shovn in figure 108,

ToP VIEW

. K ’ . W . .
TeMew Slidev S — E-"Pﬂ-"\qu L“ﬂkn.aq_
| Fc‘qum -
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The tube was clear polyvinylchloride. Its
dimensions were; wall thickness,'o;OSO“; average
width, 0.3"; length, 45"; depth, 2.5". The tube
wags constrzined between two spring steel bands, The
bands were 3" wide and 0.015" thick. Band A was fixed
to & rigld plece of flakeboard,and Tormed a semi-circle.

6". The out=of-

The radius of the cemi-circle was about 1
round tolerance was about 0.,010". The tube was cemented
to band A. Band B constrained the other side of the tube,
and wes responsible for the squeezing wave motlon. It

was supported by the teflon sliders oh fingers which were

mounted on the rotating disc. For a larger scale

diagram of the fingers, see figure 19.

Adjustable
Fuigev

Rotachung

Dise | 1

N
KON Y AN YY
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The 64 adjustable fingers could be set for a variety of
wave geometries, Two micrometers were used L0 measure
the adjustment. The tolerance of adjustment was about
0.020", Neither band A nor band B could rotate. As

the dise rotated, the Tingerse s1id slong band B, thus
causing the waveshape determined by the fingers to move
along the tube, An expanding linkage in band B allowed
the sliders to p&sé eégily, vyet allowed chanhges in the
total perimeter of‘band B. The disc could roitate from
0.2 rpm to 10 rpm. The corresponding wavesheeds were

1l cm. per second to 50 cm. per gecond. The dlsec was
driven by a % horsepover D.C. motor. Speed variation was
produced by varying the voltage across the armature.
Figure 20 1s o schematic representation of how ths

tube was cormnected to the reservoirs.
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flow fluctuatlions inherent to the »eristaltic pump would
not cause significant pressurs head fluctustion. The
fluid level in the low head reservolr was held constant

rrengement .

4]

O]

by means of a supply pump and overllow tube

0}

0

o that

ot

The flow rate of the supply pump was cnough He
fluid wazsz continuously spilling over into the overflow
tuke. The prescsure rise aercss the peristzltic pump wes
determined by the height of the overflow tube in the
high head reservoir, which could he varied. This
height was measured. The fluld which overflowed into
this tube represented the net flow of the peristzltic
punp and was measured volumetrically, Por this purpose
a valve was placed on the high head reservoir ovérflow
tube, which controlled whether the overflow went to

a graduated cylinder or to the sump reservoir. The
overflow tubes were 1" in diameter. The maximul
pressure head allowable was about 12 inches of fluild.
The working flulds of the experimsnt were corn syrup
in some cases, glycerine in others. On the whole, the
glycerine was more satlisfactory. The viscosity ronged
from 250 céntipoises to 3 centipoises. The viscosity
was measured with a standard viscometer. Pﬁotographs

1 and 2 show the apparatus fron different angles.
Fhotograph 1 wes taken from behind and abovs the
apparatus. Photograph 2 was teken Trom in froant of

the apparatus.
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APPENDIX &4, PATH LINES

This appendix will describe an analytic way of
Tinding particle path lines for +the sinusoidal plane

two dimensionel model.

Let us establish the Tollowing nomenclature:

space space A
coordinates X coordinates X
waveshape \ laboratory 9
system system

particle particle o
coordinates -5 ' coordinates 3
waveshape laboratory A
system ‘7 system Q

We deslre to find the varticle Position as a function

of time, i.e.%=%*) omd ﬁ:- ﬁ(\:) » Slnce the path lines
are described by the successive particle positicns over
‘c....me. Je observe that if €() ana N&) sre known, then
3@:) and Y[Q‘a) follow diﬂ"ectly from the relations

10= 3@ -t ) = pe) TR

We set ourselves the task of finding 3%) ang nel.
At every point in space the velocities of the particle
will coincide with the space coordinate veloeity at

that position. Hence:

%E_ = «(3,9) aq =v(3,) A=




=0

Where u and v are the velocities defined in space
coordinates by ecuations 7.6b a2nd 7.10. Solving equation
9.2 directly would involve solving two simultaneous
integral eqguations., We can avoid this unfavorable gituation
by using the faet that in the waveshspe coordinate system,
T.:arhich 1is gteady, the stream lines azng rath lines are
identical. The pérticle will be an a varticular stream
line, which 1s identified by the associated constant
value of the stream funection, f\pP . For that stream line,
a relationship exists betwsen Q and 3 in terms of

/‘\‘)P s glven by equation 7.l2. Manipulation leads to
isolation of ‘Q y 8lving W} in terms of —3' and I'(IP .

M= \2(3 )’\pp> - tq 9.3

e use this to reduce'u(s.q\ to a function of 3 and

r\h, only. Then equetion 9.2 becomss:

23 _ a3,9Ga4) = a (3, Hp i) Eq

ot

Since the term on the right contains only ¥ and

})

constants, we have reduced the simultcneous inte

P )
#Z1ra 1

AL

equations to a single integral equation. We can seperate

the va‘r'j._-c-ubles and integrate to find a relzationship between _

4 and t. 3 T

3% - (4 s
w(3) * t

3. To




—TO

The relationship will involve APP » Which states which
stream line the particle +“ravels on; and 3, and T, ,

1:

@]
v
ck
i
S
2
0]
h

which state the x bosition of the parti

[
o

H-

Collectively, thesc three constoants define the identity

of the particle.

17 we carry out these operations with the actual
Tunctions, we find that the lef: integral in equstion
9.5 1s impossible to handle analytically., Zouation Tl

2ives us:

wherse;
Hence_: (C— 3 3’:( -\.

Finding Yz as a function cf /\PP and 3 s We have:

—4 ~ Y BJ 4 c-2 44 Eq 4T
-3 %)
LAY Rk
3 s s " POEY:
L 3 [t g4,
~ > s  as?
where; %

3= :ia C(L

From equation 7.6b we have

L= w32 = e+ 21 -Jli- %;] €y .8

Moo= Lea 7 i(\— E—j-\ (3-——)] .Eo;q-k

{
2



Substitution of 9.7 inte 2,8 would zive u as a Funetion

of & only. It is clear from this dsmonstration, howvever,

that 4% could not be handled by enalvtiec methods,

a®
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FOOTNOTES

Webster's New Collegiate Dictionary, vg 627;

G & C Merriam Co., 1959:

Dr. ¥ass, personal communication:

Most of this informstion was tzlken from:

The Function of the Uretsr and Renal Pelvis,

Fredril Kill; Oslo University Press, W.B. Saunders Co.,

1957:

"Surgical Physiology of the Renzl Pelvis and Ureter",

Saul Boyarsky; Monographs in the Surgical Sciences,

June, 1964, pg 181:
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BIELIOGRAPHY

The followlng references are useful mainly to the

extent that they give the laymsn a rough idez of how the

ureter acts.

1)

no

3)

The function of the Ureter and Renal Pelvis,

Fredrik ¥iil; Oslo University Press, W. E. Saunders

Co., 1957: I found this book by far the mos

useful bscause 1t had a series of radiographic

plctures of the ureter and becauses 2 lot of data
1,

about the normal operating characteristics of the

ureter were given.

"The Response of the Ureter and Pelvis to Changing
Urine Flows", Pablo A, Morales et alia: The

Journal of Urology, Vol 67, No. 4, April, 1952:

Observation of the ureter of an unanesthetized

dog under varying urine flows.

"Zur Physiologie des Ureter", Enselmenn; Archiv

Fur dic CGesmpte Physiologieé, Vol IT, g 243—293:

Inglemann was one of the Tirst to meke a thorough

study of the urster.
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Surgical Fhysiology of the Renal Pelvis and Ureter!,

]

Saul Boyarsky; Monozrarhs in the Surgical Sci=nces,

3

o

June, 1964: A valueble zrticle because, if for n
other resason, it has a listing of about 200 reference

in the bibliogrephy.
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