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Abstract—Many vehicle emission models are overly simple, such 

as the speed dependent models used widely, and other models are 
sufficiently complicated as to require excessive inputs and 
calculations, which can slow down computational time. We 
develop and implement an instantaneous statistical model of 
emissions (CO2, CO, HC, and NOx) and fuel consumption for 
light-duty vehicles, which is simplified from the physical load-
based approaches that are gaining in popularity. The model is 
calibrated for a set of vehicles driven on standard as well as 
aggressive driving cycles. The model is validated on another 
driving cycle in order to test its estimation capabilities. The 
preliminary results indicate that the model gives reasonable 
results compared to actual measurements as well as to results 
obtained with CMEM, a well-known load-based emission model.  
Furthermore, the results indicate that the model runs fast and is 
relatively simple to calibrate. The model presented can be 
integrated with a variety of traffic models to predict the spatial 
and temporal distribution of traffic emissions and assess the 
impact of ITS traffic management strategies on travel times, 
emissions, and fuel consumption. 
 

Index Terms—Instantaneous emissions modeling, integration of 
dynamic traffic and emission models, vehicle emissions and fuel 
consumption. 
 

I. INTRODUCTION 

NTELLIGENT Transportation Systems (ITS) have many 
potential societal benefits ranging from congestion relief to 

reduction of energy consumption and air quality control. 
Vehicle emission models are necessary for quantifying the 
impact of traffic flows on air quality. 

It has been widely recognized that models based on the 
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average speed from fixed driving cycles, such as the US EPA 
MOBILE6, do not adequately capture the effects of driving and 
vehicle dynamics on emissions [1]. Therefore their 
applicability is limited to the estimation and forecast of large-
scale emissions inventories.  

In order to predict traffic emissions more accurately and with 
a higher spatial and temporal detail, instantaneous or modal 
emission models are necessary. They are based respectively on 
instantaneous vehicle kinematic variables, such as speed and 
acceleration, or on more aggregated modal variables, such as 
time spent in acceleration mode and time spent in cruise mode. 
These models can be classified into emission maps 
(speed/acceleration lookup tables), purely statistical models, 
and load-based models. 

Although easy to generate and use, emission maps are not 
satisfactory because they can be highly sensitive to the driving 
cycle that was used to calibrate them. They are also sparse and 
not flexible enough to account for such factors as road grade, 
accessory use, or history effects. Properties and limitations of 
emission maps are discussed in more detail in [2]. 

Purely statistical models typically consist of linear 
regressions that employ functions of instantaneous vehicle 
speed and acceleration as explanatory variables. These models 
can lack a clear physical interpretation and can also overfit the 
calibration data due to a large number of explanatory variables. 
There is work in the literature which uses this approach [3], [4]. 

Load-based models simulate, through a series of modules, 
the physical phenomena that generate emissions. The primary 
variable of these models is the fuel consumption rate, which is 
a surrogate for engine power demand (or engine load). They 
have a detailed and flexible physical basis, which defines the 
variables and parameters that should be included when 
modeling emissions. On the other hand, these models are quite 
complex and, when applied to the entire flow of vehicles in a 
network over a period of time, the computational effort can be 
high. Ultimately, they too can be sensitive to the calibration 
data, though they are more robust as a result of their physical 
basis. 

It is valuable to design a model that simultaneously obtains 
realistic results, is fast to run, and is easy to calibrate in 
different situations. This paper presents EMIT (EMIssions 
from Traffic), a simple statistical model for instantaneous 
emissions ( HCCOCO ,,2 , and xNO ) and fuel consumption. 
In order to realistically capture the emissions behavior, the 
explanatory variables have been derived from a load-based 
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approach. The model, due to its simple structure, is relatively 
easy to calibrate and requires less computational time. 

The paper is organized as follows. Section II presents the 
structure of the model. Section III describes the data used to 
calibrate and validate the model. Sections IV and V analyze 
respectively the results of calibration and validation. Section VI 
provides conclusions and directions for future work. 

II. MODEL STRUCTURE 

EMIT is composed of two modules, as shown in Fig.1: the 
engine-out emissions module and the tailpipe emissions 
module. Although modeling two modules adds a level of 
complexity, it is interesting to predict not only tailpipe, but also 
its precursor, engine-out emissions. This allows for the 
modeling of engine and catalyst technology improvements and 
vehicle degradation, as well as for the quantitative assessment 
of the effectiveness of inspection and maintenance programs. 

Given the vehicle category and its second-by-second speed 
and acceleration, the first module predicts the corresponding 
second-by-second fuel consumption rate and engine-out 
emissions, which are the input of the second module that 
predicts second-by-second tailpipe emissions. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Model structure. 

 
In order to define the variables and relationships used in our 

model, we employ a load-based formalism. The reader 
interested in a more comprehensive description of the physical 
and chemical phenomena that generate emissions is referred to 
[5] and [6]. 

 

A. Engine-out emissions module 
Let i  denote a generic emission species (i.e. 

xNOHCCOCOi ,,,2= ). Let iEO  denote the engine-out 

emission rate of species i  in g/s, and iEI  the emissions index 
for species i , which is the mass of emissions per mass unit of 
fuel. By definition of iEI , engine-out emissions are given by:  

FREIEO ii ⋅=  (1) 
where FR  denotes the fuel consumption rate (g/s). 

 
In a typical load-based formulation, fuel rate is modeled as: 
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where: 
φ : fuel/air equivalence ratio, which is the ratio of 

stoichiometric air/fuel mass ratio (~14.5) to the actual air/fuel 
ratio, 

K : engine friction factor (kJ/rev/liter), 
N : engine speed (rev/s), 
V : engine displacement (liters), 
η : engine indicated efficiency, 

idleK : constant idle engine friction factor (kJ/rev/liter), 

idleN : constant idle engine speed (rev/s), and 
P : engine power output (kW). 
When the engine power is zero, the fuel rate is equal to a 

typically small constant value. Otherwise, fuel consumption is 
mainly dependent on engine speed and demanded power. 

The stoichiometric ratio corresponds to the mass of air 
needed to ideally oxidize a mass of fuel completely. Under 
higher power conditions, engines are typically designed to 
operate with a mixture rich in fuel ( 1>φ ) in order to prevent 
the catalyst from overheating. This can have a significant effect 
on emissions, as discussed later. Enrichment also often occurs 
during cold-starts to heat faster the engine and exhaust so that 
the catalyst can light-off sooner. During long deceleration 
events, the mixture can go lean ( 1<φ ) because engines are 
often designed to shut off the fuel since power is not required. 
Though less significant than enrichment, enleanment conditions 
can also affect emissions [7], as discussed later in this section. 

 
The engine power is modeled as: 

acc
tract P

P
P +=

ε
 (3) 

where: 

tractP : total tractive power requirement at the wheels (kW), 
ε : vehicle drivetrain efficiency, and 

accP : engine power requirement for accessories, such as air 
conditioning. 
The quantities K , N  and ε  depend on vehicle speed (and 

on other quantities), as discussed in [5]. 
Positive tractive power is given by: 

vgMvaMvCvBvAPtract ⋅⋅⋅+⋅⋅+⋅+⋅+⋅= ϑsin32  (4) 
where: 

v : vehicle speed (m/s), 
a : vehicle acceleration (m/s2), 
A : rolling resistance term (kW/m/s), 
B : speed-correction to rolling resistance term (kW/(m/s)2), 
C : air drag resistance term (kW/(m/s)3), 
M : vehicle mass (kg), 
g :  gravitational constant (9.81 m/s2), and 

ϑ : road grade (degrees). 
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When the right hand side of (4) is non-positive, tractP  is set 
equal to zero. All parameters ( A , B , C , and M ) are known 
and readily available for each vehicle. 

 
Emission indices iEI  are modeled in the literature in various 

ways as a function of φ  (see [5] and [6]) or φ  and FR  (see 
[8]). However, generally, as more fuel is burned, more 
emissions are formed; thus to first approximation iEO  is a 
linear function of FR : 

FREOi ⋅+= µλ  (5) 
In particular, every emission species has a particular 

behavior, which is summarized as follows: 
• 2CO  is the principal product of complete fuel combustion; 

thus, it increases linearly with FR . 
• CO  is sensitive to φ . Under enrichment conditions, the 

combustion is not complete due to the lack of oxygen. 
Much of the carbon present in the excess fuel is partially 
oxidized to CO  instead of 2CO . Note that CO  is 
generated even under stoichiometric conditions, due to 
possible partial oxidation of HC . 

• HC  is a product of incomplete combustion and is also 
usually proportional to FR . Under enleanment conditions, 
HC  emissions can be higher, in particular during long 
deceleration events [7]. During decelerations, the dramatic 
drop in fuel results in a cessation of combustion, and hence 
virtually all of the remaining fuel (what little is left) is 
emitted unburned. However this fuel excess is typically 
oxidized in the catalyst. This is an example where history 
effects can be significant. 

• xNO  is mainly  dependent on the combustion temperature, 
because the dissociation and subsequent recombination of 
atmospheric 2N  and 2O  that generate NO  and 2NO  is 
induced by high temperatures [9]. For small values of FR , 
very little xNO  is emitted. During stoichiometric 
conditions, the combustion temperature, and consequently 
the emission, increase as fuel is burned at a higher rate. 

 
Fig. 2 shows the trends of engine-out emission rates versus 

fuel rate for the data considered in this study (see Section IV). 
Fuel rate is estimated using the carbon balance formula: 

HCCOCOFR +⋅+⋅+= ]85.1112[]28/44/[ 2 , where 44, 28, 

12 and 1 are the molecular weights of 2CO , CO , C , and H  
respectively, 1.85 is the approximate number of moles of 
hydrogen per mole of carbon in the fuel, and 2CO , CO , and 
HC are the measured engine-out emission rates [8]. 

With the exception of CO , the trends of the emission rate as 
a function of FR  are approximately linear, though sometimes 
somewhat scattered. CO  presents a linear trend for low to 
medium values of FR , and increases more rapidly for larger 
values of FR  corresponding  to the enrichment conditions. 
 

EMIT is developed and calibrated for conditions of zero 

road grade ( 0=ϑ ) and without accessory usage ( 0=accP ). 
Also, the model does not represent history effects, including 
cold-start and HC  enleanment puffs. These factors would be 
included in future developments of the model. Nevertheless, 
considering only hot-stabilized conditions is not a critical 
limitation for highway applications since most vehicles are hot 
by the time they reach the highways. Moreover, the HC  puffs 
do not affect significantly tailpipe emissions in normal emitting 
vehicles, since in enleanment conditions the catalytic converter 
is usually effective [7]. 

 
Fig. 2 – Engine-out emission rates versus fuel rate. Plot (b), in addition to 
engine-out CO rates, represents also tractive power versus fuel rate (in gray). 

 
EMIT employs the following assumptions: 

• The effects on fuel rate of K , N , ε  and φ  can be 

aggregated into the effects of v , 2v , 3v , and av ⋅ , which 
are the independent variables in (4). 

• Since there is a direct correlation between fuel rate and 
emissions, we assume that the variables that govern 
emissions are the same variables that govern fuel rate. 

• Since in this study we do not consider accessory usage 
( 0=accP ), we use tractP  as a surrogate for P  to test if the 
vehicle is in idle mode. 

Based on these assumptions, combining equations (2), (3), 
and (4), FR  can be expressed as follows: 
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From  (5) and (6), iEO  can be expressed as follows: 
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where tractive power is calculated using (4). 
Equations (6a), (6b), (7a), and (7b) are calibrated using 

ordinary least square linear regressions. The load-based model 
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of engine-out emissions involves a multi-step calibration 
process of many (~20) parameters, and the prior knowledge of 
several publicly available specific vehicle parameters [5]. 
Instead, the approach proposed here collapses the calibration 
into just one or two linear regressions for each pollutant. This 
has advantages and disadvantages. First, the calibration is 
simpler and less time consuming, mainly due to the bypassing 
of the transmission (engine speed) model. More importantly, 
compared to a multi-step calibration, here the parameters 
directly optimize the fit to engine out emissions, avoiding error 
accumulations. Moreover, while for particular applications it is 
useful to have a complex and disaggregate emission model, for 
many transportation applications, this is not always necessary. 
On the other hand, the model does not take into account 
explicitly some variables that may affect the emissions 
significantly. In particular, while road grade and accessory use 
can be easily introduced in the estimation of tractP  and P  in 
(4) and (3) respectively, it is not trivial to incorporate such 
variables into our more aggregated model. This issue would be 
addressed in future research. 

 

B. Tailpipe emissions module 

Tailpipe emission rates iTP  (g/s) are modeled as the fraction 
of the engine-out emission rates that leave the catalytic 
converter: 

iii CPFEOTP ⋅=  (8) 
where iCPF  denotes the catalyst pass fraction for species i . 

Catalyst efficiency is difficult to predict accurately, and 
varies greatly from hot-stabilized to cold-start conditions. In 
order to model cold-start or intermediate soak catalyst 
efficiencies, it would be necessary to take into consideration 
history effects, such as soak time, time elapsed since the 
beginning of the trip, and possibly cumulative fuel 
consumption. As mentioned, at this time cold-start conditions 
are not considered in the model of this paper. 

Hot-stabilized catalyst pass fractions are modeled in the 
literature in various ways as a function of φ , FR , and/or 
engine-out emissions [5], [8]. Since the physical and chemical 
phenomena that control catalyst efficiency are challenging to 
capture, often these functions are purely empirical. 

 
EMIT calculates tailpipe emissions as follows: 

• Tailpipe 2CO , which is not much different from engine-

out 2CO , is modeled as: 









=′
>

+++
=

0,
0

,

2

2222

2

3

tractCO

tract

COCOCOCO

CO

Pif

Pif

avvv

TP

α

ζδβα
 

 
(9a) 
(9b) 

• Catalyst pass fraction for CO , HC  and xNO  are 
modeled empirically as piecewise linear functions of 
engine-out emission rates. 

III. DATA 

The database used in this study is the National Cooperative 
Highway Research Program (NCHRP) vehicle emissions 
database, developed by the University of California at 
Riverside [5]. It includes dynamometer measurements of 
second-by-second vehicle speed, engine-out and tailpipe 
emission rates of HCCOCO ,,2 , and xNO  for three driving 
cycles: the Federal Test Procedure (FTP) cycle, the high-speed 
aggressive US06 cycle, and a cycle developed at the University 
of California at Riverside, called Modal Emission Cycle 
(MEC01). The chassis dynamometer tests were conducted on 
more than 300 automobiles and trucks. 

The primary objective of EMIT is to predict emissions from 
average vehicles representative of a given vehicle category, 
rather than from specific makes and models. Thus, a 
compositing procedure similar to that used in [5] has been 
implemented. The same 26 vehicle/technology categories 
defined in [5] have been adopted, with minor modifications. 
The categories are defined in terms of fuel and emission control 
technology, accumulated mileage, power-to-weight ratio, 
emission certification level, and finally by normal or high 
emitter. The compositing procedure was conducted as follows. 
For each vehicle category, the available vehicles data were 
time-aligned by speed for each driving cycle. Then, the average 
second-by-second speed, acceleration, emission rates, and fuel 
consumption were calculated averaging the values of the 
individual  vehicles to create the composite vehicle data for 
each driving cycle. 

IV. CALIBRATION 

The results presented refer to the composite vehicle 
characterized by Tier 1 emission standards1, accumulated 
mileage greater than 50,000 miles, and high power/weight 
ratio. For this vehicle/technology category the values of the 
parameters needed in (4) are the following: A =0.1326 
kW/m/s, B =2.7384e-03 kW/(m/s)2, C =1.0843e-03 
kW/(m/s)3, and M = 1,325 kg  (from [5]). 

The calibration of EMIT has been conducted on a large 
spectrum of data, including stoichiometric, enrichment and 
enleanment conditions, in order to capture the emissions 
variability. The following set of composite data has been used: 
(a) FTP bag 2, (b) FTP bag 3, excluding the first 100 seconds 
(warm-up), and (c) first 900 seconds of MEC01. 

 

A. Engine-out emissions module 
An initial calibration of (6a) indicates that the coefficient of 

2v  is negative, which is counterintuitive, but not statistically 
significant. This second order speed term should be small, 
since it mainly represents a higher order correction to the 
rolling resistance term. We then drop it in the calibration 

 
1 Tier 1 emission standards have been defined for light-duty vehicles in the 

Clean Air Act Amendments of 1990 and were phased-in progressively between 
1994 and 1997. They are tested over the FTP cycle and expressed in g/mile. 
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process. Dropping it, the goodness of fit of the regression (6a) 
is practically unaffected (adjusted R-squared~0.96) and all 
coefficients are positive and statistically significant. 

All regressions, with the exception of CO , give satisfactory 
results in terms of statistical significance and sign of most 
coefficients, as well as adjusted R-squared. For CO , the effect 
of enrichment is too distinct to be incorporated in the same 
equation. For enrichment conditions the emission rates are 
calculated as a linear function of the corresponding 
stoichiometric emission rates: 
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(10a) 

(10b) 

(10c) 

The enrichment threshold enrich
tractP  is determined based on the 

cut-point in the trend of COEO  versus FR  (see Fig. 2). For 
(10a) it is necessary to employ a more ‘robust’ calibration, by 
removing a few outliers from the calibration data.  

For HC , the emissions puffs data is omitted in the 
calculation of α ′ . 

The calibrated parameters for Equations (6), (7), and (10) 
are shown in Table I. Engine-out emission rates ( iEO ) are 
expressed in g/s, vehicle speed ( v ) is expressed in km/h, speed 
times acceleration ( av ) is expressed in m2/s3, and power is 
expressed in kW. We note the following: 
• All coefficients have high t-statistics (greater than 2), 

except for HCβ  and COβ  which have been dropped. 

• All coefficients are, as expected, positive, except for 

NOxα . The negative sign of NOxα  is consistent with the 

negative intercept of xNO  versus FR  (see Fig. 2). 
 

TABLE I 
CALIBRATED PARAMETERS FOR THE ENGINE-OUT EMISSIONS MODULE. 

 CO2 CO HC NOx FR 

α  1.02 
(40.8) 

0.0316 
(22.8) 

0.00916 
(58.1) 

-0.00391 
(-3.7) 

0.365 
(26.1) 

      
β  0.0118 

(20.7) 
(dropped) (dropped) 0.000305 

(11.4) 
0.00114 

(6.5) 
      

δ  
1.92e-06 

(48.4) 
1.09e-07 

(49.9) 
7.55e-09 

(33.3) 
2.27e-08 

(14.0) 
9.65e-07 

(44.0) 
      

ζ  0.224 
(195.5) 

0.00883 
(43.0) 

.00111 
(60.5) 

0.00307 
(64.9) 

0.0943 
(150.3) 

α ′  0.877 0.0261 0.00528 0.00323 0.299 
      

κ   -6.10 
(-14.3)    

      

χ   21.8 
(18.9) 

   

enrich
tractP   34    

t-statistics are reported in parentheses 
 
 

B. Tailpipe emissions module 
Equations (9a) and (9b) are calibrated using least square 

linear regressions. The calibrated parameters are shown in 
Table II. 

 
TABLE II 

CALIBRATED PARAMETERS FOR THE TAILPIPE CO2 EMISSIONS MODULE. 
α  1.11  (47.0) 
β  0.0134  (19.3) 

δ  1.98e-06  (47.0) 

ζ  0.241  (42.0) 

α ′  0.973 

 t-statistics are reported in parentheses 
 
 
The catalyst pass fractions for CO , HC  and xNO  are 

modeled with the following piecewise linear functions.  
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Equations (11), (12) and (13) have been calibrated by 

minimizing the sum of the squared errors of the predicted 
tailpipe emissions obtained as the product of modeled catalyst 
pass fraction and measured engine-out emissions. The catalyst 
pass fraction functions are represented in Fig. 3. The calibrated 
coefficients are reported in Table II. 

HCCPF  and NOxCPF  are challenging to model  [8], [10]. 

HCCPF  is scattered especially for medium levels of engine-out 
emissions, where the highest values are related to high power 
episodes. NOxCPF  is especially noisy for very low engine-out 
emissions, with values ranging from nearly zero to ~0.95. 

 
TABLE II 

CATALYST PASS FRACTION CALIBRATION 

COm′  1.15  
COq ′  -0.006  

COz ′  0.005 

COm ′′  0.045  
COq ′′  0.746  

COz ′′  0.705 

   
HCq ′  0.0011  

HCz ′  0.011 

HCm ′′  3.69  
HCq ′′  -0.031  

HCz ′′  0.047 

HCm ′′′  23.39  
HCq ′′′  -0.977    

NOxm′  0.124  
NOxq ′  0.067    

 
 



 6

Fig. 3. Catalyst pass fraction for CO (a), HC (b), and NOx (c). The points 
represent the calibration data; the line represents the modeled CPF. 
 

C. Results 
The results of the calibration have been assessed looking at 

statistics such as the total percentage error over the cycles, and 
R2 calculated on a second-by-second basis (see Table III and 
Table IV). 

The estimated fuel consumption and 2CO  match the 
measurements satisfactorily (0.0% error and R2~0.97). 

For CO , the model fits the measurements quite well (R2 

~0.90), resulting in a percentage error equal to -2.5% in engine-
out and –6.4% in tailpipe emissions. 

For HC , the model has a less desirable performance 
(R2~0.60). For engine-out, as expected, the principal problem 
is represented by the enleanment puffs, which are not modeled, 
resulting in an underestimation of approximately -12%. For 
tailpipe, there is a tendency to overestimate the low emissions 
and underestimate the higher peaks. The resulting percentage 
error (-23.6%) is due not to enleanment puffs (which are not 
present in the measured tailpipe emissions), but to the 
underestimation of some peaks. 

For xNO , engine-out emissions fit well, while the fit for 
tailpipe emissions is lower (R2 drops from 0.87 to 0.67 for 

category 9), due to the scattered behavior of NOxCPF . 
However, the percentage error is very small (less than 2% in 
absolute value). 

The predicted fuel consumption and tailpipe emissions are 
represented in Fig. 4 for a subset of the calibration data (FTP 
bag 2). 

V. VALIDATION 

The validation of EMIT has been carried out on the 
composite US06 data. The results (see Table V, Table VI, and 
Fig. 5) are quite satisfactory, and comparable with those 
obtained using the output of the load-based model CMEM 
(version 2.01) [11] for the same vehicle/technology category2. 

 
TABLE III 

EMIT CALIBRATION STATISTICS - ENGINE-OUT EMISSIONS 
 CO2 CO HC NOx FR 
Error (%) 0.0 -2.5 -12.3 0.9 0.0 
R2 0.97 0.90 0.63 0.87 0.97 

 
 

TABLE IV 
EMIT CALIBRATION STATISTICS - TAILPIPE EMISSIONS  

CO2 CO HC NOx 
Error (%) 0.0 -6.4 -23.6 -1.4 
R2 0.97 0.88 0.58 0.67 

 
TABLE V 

EMIT AND CMEM VALIDATION STATISTICS – ENGINE-OUT EMISSIONS 
EMIT CO2 CO HC NOx FR 
Error (%) -0.5 -2.2 -22.3 -0.4 5.3 
R2 0.95 0.50 0.22 0.83 0.95 

 

CMEM CO2 CO HC NOx FR 
Error (%) -4.5 20.6 4.7 -16.6 -2.2 
R2 0.90 0.48 0.17 0.67 0.81 

 
 
 

TABLE VI 
EMIT AND CMEM VALIDATION STATISTICS – TAILPIPE EMISSIONS 

EMIT CO2 CO HC NOx 
Error (%) -2.2 6.5 26.5 -3.0 
R2 0.95 0.43 0.32 0.53 

 

CMEM CO2 CO HC NOx 
Error (%) -6.5 36.1 80.3 32.0 
R2 0.88 0.33 0.20 0.33 

 

 
Total fuel consumption and 2CO  are estimated with an error 

of 5.3% and -2.2% respectively, with a very high R2 (0.95). 
For CO , both the engine-out and the tailpipe modules 

overestimate some medium peaks and underestimate some high 
peaks. R2 is higher than 0.40, and the percentage error is less 
than 7% in absolute value. 

The HC  model has the poorest performance among all 
species. In engine-out the principal problem is related to 

 
2 EMIT and CMEM are calibrated using similar sets of data. In EMIT this 

vehicle/technology category includes 9 vehicles, while it can be inferred from 
the documentation [5] that in CMEM one additional vehicle, which we 
omitted for lack of available data, is included. For the calculations reported in 
Tables V and VI we compared the output of the models with the composite 
vehicle data that we calculated aggregating the respective sets of vehicles. 
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enleanment puffs (total error equal to -22.3%) that, however, 
disappear in the measured tailpipe emissions. For tailpipe 
emissions there is a tendency towards underestimation of the 
high values and overestimation of the low values (total error 
equal to -26.5%). 

For xNO , engine-out emissions are well predicted, while the 
fit for tailpipe emissions is lower (R2 drops from 0.83 to 0.53). 
However, the tailpipe total error is small (-3%). 

VI. CONCLUSIONS 

In this paper we presented EMIT, a dynamic model of 
emissions ( HCCOCO ,,2 , and xNO ) and fuel consumption 
for light-duty vehicles.  The model was derived from the 
statistical and the load-based emissions modeling approaches, 
and effectively combines some of their respective advantages. 
EMIT was calibrated and validated for one vehicle category. 
The results indicate that the model gives reasonable results 
over an extensive range of operating conditions, compared to 
actual measurements as well as to results obtained with 
CMEM, a state-of-the-art load-based emission model.  In 
particular, the model gives results with good accuracy for fuel 
consumption and carbon dioxide, reasonable accuracy for 
carbon monoxide and nitrogen oxides, and less desirable 
accuracy for hydrocarbons.   

The structure and the calibration of EMIT are simpler 
compared with load-based models. While load-based models 
involve a multi-step calibration process of many parameters, 
and the prior knowledge of several readily available specific 
vehicle parameters, the approach presented in this paper 
collapses the calibration into few linear regressions for each 
emission species. Compared to a multi-step calibration, here 
the parameters directly optimize the fit to the emissions, 
avoiding error accumulations. Moreover, due to its relative 
simplicity, the model runs fast. 

EMIT should next be calibrated for all categories available, 
including diesel cars. Moreover, data on heavy trucks, buses, 
and more recent vehicles, including possibly real-world 
measurements, are required in order to represent the actual 
emissions sources present on roadways. When data is available, 
particulate matter and air toxics will be modeled as well. Future 
studies should also address how to account for road grade, 
accessory usage and cold-start. 

EMIT is suitable for integration with a variety of traffic 
models. Its capability of generating time-dependent estimates, 
given the time-dependent operating conditions of each vehicle, 
allows for applications that require a high spatial as well as 
temporal resolution. For example, it is possible to integrate in a 
straightforward fashion EMIT with a microscopic traffic 
simulator and a microscopic dispersion model to assess the 
impact of traffic management strategies on air quality. 

Moreover, we have recently investigated the integration of 
instantaneous emission models such as EMIT with non-
microscopic traffic models. We have proposed a methodology 
for this type of integration [12]. The methodology has been 
applied to integrate EMIT with a mesoscopic dynamic traffic 

flow model, which is developed in [13]. The integration is 
realized through an acceleration model, based on the statistical 
distribution of real-world acceleration data, which is developed 
in [14]. The combined traffic-acceleration-emission model has 
been applied to a hypothetical case study to illustrate its 
potential to estimate the effects of route guidance strategies, 
which are one of numerous examples of dynamic traffic 
management strategies, on traffic travel times and vehicle 
emissions. The first results of this application are presented in 
[12]. 
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Fig. 4.  Second-by-second fuel consumption and tailpipe emissions on FTP bag 2. Speed (a), FR (b), CO2 (c), CO (d), HC (e), and 
NOx (f) are represented. Light line: measurements; dark line: EMIT predictions.
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Fig. 5.  Second-by-second fuel consumption and tailpipe emissions on the US06 cycle. Speed (a), FR (b), CO2 (c), CO (d), HC (e), 
and NOx (f) are represented. Light line: measurements; dark line: EMIT predictions; dotted line: CMEM predictions. 
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