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COBORDISM OF MANIFOLDS WITH Wi, Wy and W), VANISHING

by
Vincent W. Giambalvo

Submitted to the Department of Mathematics on May 13, 1966
in partial fulfillment of the requlrements for the degree of
Doctor of Philosophy.

ABSTRACT

A cobordism theory 1s deflned for manifolds whose
first 4 Stiefel Whitney classes vanish. The classifying
map of the stable normal bundle for such manifolds can be
lifted to the 4-connected coveri BO<4> of BO. The
cohomology of the Thom space MO<4> of the canonical
bundle is partially computed, and the results used to give
information about the cobordism theory.

In analogy with the work of Brown and Peterson, an
invariant % 1is defined on this cobordism theory in
dimensions congruent to 6 mod 16, which reduces to the
Kervaire-Arf Invariant § when the latter is defined. It
is shown that § 1s zero on all stably-parallelizable
manifolds of dimension 22 and 38, and some additonal
results on the vanishing of § are obtained.
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INTRODUCTION

In his thesis Thom [28] defined the relation of
cobordism for closed, compact, ¢® manifolds. Two such
manifolds M and M' are cobordant if there is a compact
¢” manifold W whose boundary is the disjoint union of
M and M'. He also introduced the notion of the Thom
space MV of a vector bundle V, and proved that the
cobordism classes of maﬁifolds form a graded ring'rs %9
which is isomorphic to the stable homotopy the Thom space
MO of the canonical vector bundle EO over BO, the
classifying space for stable vector bundles.

Since then cobordism theory has been generalized in
many directions. All have in common an isomorphism into
the stable homotopy of the Thom space of some bundle.

Thom [28], Milnor [22], Dold [11] and Wall [31], determined
the structure of the cobordism ring of oriented manifolds.
Lashof [16] has shown that a cobordism relation can be
defined with respect to any space X and map f : X —> BO.

A manifold i1s conslidered only if the classlifying map of its
stable normal bundle ¥V : M — BO can be factored through X.
The cobordism relation must then of course preserve this
factorization. The cobordism ring Q£ obtained in this
manner is isomorphic to the stable homotopy of the Thom space

*
of f (EO). This formulation gives as a special case all



2.

cobordism theories associated to a reduction of the structural
group of the normal bundle of a manifold to a subgroup of the
orthogonal group. For example oriented cobordism Q. , Spin
cobordism, Qipin [3], [23], Unitary or complex cobordism,

92 [22], and special unitary cobordism, QEU [21° [1els

The cobordism theory assoclated with manifolds whose

framed

normal bundle is trivial, commonly denoted by

(which will be later dehoted by %), is especially

interesting because Qiramed

is isémorphic to the stable
homotopy o©f the sphere WS. Kervaire and Milnor [11]

study Qiramed in detail. One of the questions they
consider is: Given an n-dimensional framed manifold M,
'is M framed-cobordant to a homotopy sphere. They use the
techniques of surgery, or spherical modifications to show
that the answer is yes if n 1is odd. [20], [33]

In order to approach the problem for even dimensional
manifolds, Kervaire [14] defined an invariant ﬁ(m)sz2 for
2k connected 4k+2 manifolds, and showed that @(M)=0 iff M
is framed-cobordant to a homotopy sphere. In [15] it is
framed

ye+2 2 Zo-

It is unknown whether this homomorphism is O.

shown that @ induces a homomorphism P : 0

In [8] Brown and Peterson prove @ is zero on 8k+2
dimensional manifolds. They deflne an Ilnvariant w;QSU —> Z,

and show that the composition Qgﬁiged > ﬂgg+2 —> 22 is

equal to @, and is O.
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In this work we attempt to adapt the work of [8] to

show that § 1s zero on manifolds of dimension 16k+6. A

Q§4>

cobordism theory is defined, and a map ¢ constructed

- oframed <4>
such that the composition Ql6k+6 > ﬂl6k+6 = Z2 is equal

to §, and some results on the vanishing of § are obtained.



CHAPTER I
STATEMENT OF RESULTS
Unless stated otherwlse, the term "manifold" shall
mean compact manifold, differentiable of class c®. M and N
will denote closed manifolds, W a manifold with boundary.
For an oriented manifold P, the same manifold with opposite
orientation will be denoted by =-P. Cohomology shall always
mean cohomology with coéfficients the field of integers
modulo 2; Hk(x) = HK(X,ZE).

oS>

In section 2, the cobordism ring is defined,

and using results of Lashof [16], its elementary properties
are stated. One of the most useful 1s the following

proposition.

Prop. Every cobordism class Y € Q<4> has a representative M

such that HY(M) = HY(BOK4>) for q < [n/2].

A quadratic operation @, associated to the relation

8k+4 4. 8k

Sq = 8q 'Sq " + SqE(SqMS

862 4

+ Sql(Sq28q48q8k'3)

defined, and Adem's generalizations [1] of the Peterson-Stein
formulae [25] are used to calculate g. The bordism groups
of a space X are introduced [9], and it is shown that #

4>
induces a map B : Q3gp.c (K(2,,8k43)) —> Zy. Then 4

is used to define a map ¢ : Qéiie —> Zy, and 1t 1s shown

that ¥ = § on 8k+2-connected manifolds of dimensions 16k+6.
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Most of the theorems and proofs are modeled after [8].
Chapters 3 and 4 are devoted to technical details

needed to study the structure of 9<4>. In chapter 3 the

cohomology of MO<4> as a module over the Steenrod algebra

is partially determined. There is a monomorphism

a/a(sq”

Thom class U. It is shown that for small dimensions,

, Sq°, Sql) —> H*(MO<U4>) which sends 1 into the

H*(MO<4>) is the direct sum of cyclic modules over A.

In chapter 4, ExtA(H*(MO<4>) is partially determined.

2

Most of the work is in determining ExtA(A/A(Sqq,Sq ,Sql),ZE) =

H**(AE)’ where A, 1s the sub-Hopf algebra of A genefated
by Sqa, Sqe, and Sql. This 1s done by using the spectral
sequence of May [18], which converges to H**(AE), and has
E2 term the cohomology of the associated graded algebra
to A2 wilth respect to the augmentation filtration.
There are many purely technical details, and the proofs
are referred to appendix I.

In chapter 5, some non-zero differentials in the Adams

spectral sequence for T*(MO<U4>) = qu> are computed. 1In

particular there are elements ih the 12 and 15 stems on
which d2 is non-zero. A description is given of the
k stems for k congruent to 6 mod 16.

In chapter 6, the action of ¥ on products is

computed. In particular we have the following theorems.
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Theorem: Let a € Qfg;+6 s b e Qig; , and suppose

a and b have representatives M and N such that

A%520Kt0-q\y _ 0 for q odad, and that APHIOI-P(y) - o

for p odd and less than 8Jj. Then y(ab) = y¢(a)x(k),

where ¥ 1is the Euler characteristic reduced mod 2.

Theorem: Let D € ngi be such that b has a representative

N with X(N) = 0. Let a be the class of S3xS3. Then
¥(ab) = O.
Using these theorems, and the results of chapter 5,

‘ <>
it is shown that 1f a € Q16k+6 has a representative y

in the E2 term of the Adams spectral sequence, such

that y 1liles in the image of the map ExtA(ZE,Z —>

o)
Ext, (H*(MO<H>), 2), then ¥(y) = 0, and that

E(ngramed) =0 if n = 22 or 38.



CHAPTER II

THE COBORDISM THEORY AND
THE KERVAIRE INVARIANT: ELEMENTARY PROPERTIES

Let M be an n-dimensional manifold. Let BOk be the

classifying space for k-dimensional vector bundles. Given

n+k

an embedding of M 1n some euclidean space R s

let Vi denote the normal bundle. vk can be regarded as

a map vk + M- BO,. Let 1 : BO, —> BO be the

k k k+1
canonical map. The map ivk t: M= Bok+l induces the

bundle v, ¢ 1, where ¢ denotes Whitney sum, and 1 the

k
trivial line bundle over M. If k 1is sufficiently large,

the homotopy class of Vio depends only on M, and the

bundle v is called the stable normal bundle. We drop

k
the k and denote it by Vye OF V¥, when no ambiguity may

arise. Similarly BOk, for sufficiently large k will

be denoted by BO. Define [34]

H(B0) = 1im H*™(Bo,) and 7 (BO) = (BO
n —» e B

th

lim T
[+0]

n+k k)'

Let BOLr> denote the r connective covering of BOk.

k

BOLr> is the total space of a fibration Py § BOLr>, —> BO

k k k

such that BO<r> ~ is r-connected, and P 4 : vq(BO<r>k) —>

Wq(BOk) is an isomorphism for gq > r. (For existence and

other properties see [12]). The map i : BO, —> BO, .,
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lifts toamap 1 : BO<r>k X BO<r>k+1 and the diagram

il
B0<r>k —> B0<r>k+1
pr pr
Gl
BOk —> Bok+1

commutes. We have BO<r>, HY(BOo<r>) and Wq(BO<r>)
as for BO.

An r-structure on a manifold M is a 1ifting of the
normal bundle v, to vy : M —> BO<r>. Let <r>" be the
set of all n dimensional manifolds with at least one
r-structure, and <r> = <",

There are several important examples of r-structures
Bok(l) = BSO,, and a l-structure is just an orientation.
BO(2) = B Spin and a 2-structure is a Spin structure.

‘This is a consequence of the following basic fact

about connective coverings.

Pro 12]: A map f : M —> BOLr>
r-1

« has a lifting t.

BO<r+1>, 1ff f£*(H (BOr>, , T)) = O, where

k

T = wr+l(Bo<r>k) 2 Wr+l(BOk). We have vl(Bo) = T,(BO) = 2,

wu(Bo) = Z, and hence a manifold has an orlentation iff

w., = 0, a Spin structure 1ff Wy and Wy = 0, and a

5 §

Y-gstructure iff Wy

cohomology class. If v : M —> BO can be lifted to

and Wy = 0, and W) = 0O as an integral

BOLr> for every 7r, VvV 1is homotopically trivial, and hence
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the bundle v is trivial. An <=«> structure on a manifold
is a trivialization of its normal bundle.

A cobordism relation can be defined on <r> as
follows: Two n-dimensional manifolds Ml’ M2 E <r>
are r-cobordant if there is an (n+l) manifold W such
that |

1) oW =M + (-M,)

2) The diagram beiow commutes for i =1, 2.

BO(T’) B-
A
Ow L
Q;V*JB e
M;, » W
For r = o, the manifold W must be a framed manifold
such that the framing on W restriects to that on Ml and
M2l

Let EOk be the canonical bundle over BOk, and

*
pr”(EQk) = E0<r>k, the induced bundle over B0<r>k. Let

M( 0 be the Thom space of EO, .

k) k
Theorem 1l: The cobordism relation defined above is an
equivalence relation. The set of equivalence classes

Q§r> of elements of <r>" form a group under the operation

induced by disjoint union, and 0§77 = £ 0577 is a graded
n

ring, the multiplication induced by cartesian product.
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<>
The map defined by Thom Qn > 1im wn+k

isomorphism. Set MO<r> = MEQ<r>, . and

(MEOk) is an

lim wn+k(Mo<r>k) = Wn(MO<r>).

Proof: The usual construction [28] gives a map

P> -
Q > Wh+k(MEOk) for large k. Embed M in an
n+k dimensional sphere, k large. The normal bundle v

is induced by a map M —> B0<r>k. This gives a map

Ky M(v)  identify v

with a tubular neighborhood T of M in Sn+k. Then

M(v) = MO<r> . To get the map S

M(v) = T/boundary of T = Sn+k/compliment of T. So there

n+k

is a projection S —> M(v), and by composing with the

map above, we get an element of Wn+k

that thls induces an isomorphism from Q§r> —> Wn(M0<r>)

(MO<r>, ). The proof
k

is given in [16]. It is essentlally the same as Thom's.
Since the Thom space of a bundle over a point is a
900 (= eramed) S (Sk) ’

n n e lim Tk

sphere, we have
the n-th stable stem of the homotopy of the sphere.

There is the obvious map Pp Q: -> Q§r> whiech sends
a manifold in £ into its class in 7°. The trivialization

of s determines a lifting of Y to BOLr>.

It will be very useful to be able to choose representatives

of a given cobordism class such that they have partially

known cohomology.
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<r>
Qh

Theorem 2: Let ® € . There is a manifold M &

such that v* : HY(BO<r>, 22) - HY(M, 22) is an
isomorphism if q < [%/2].

Proof: This uses the technique of surgery, or spherical
modifications. The theorem is proved in Lashof [16] so
we glve only definitions and a brilef outline.

Definition: Let M" be a ¢” manifold without boundary

but not necessarily compact. Let f : sP => M be an
embedding of sP with trivial normal bundle, and

let F : SPx piH

—> M where 1 +p +gq=n be a
specific trivialization.
Let M' = (M - (sPx Dqﬂ))\..Il—,x(DlEH':L x s%) i.e., remove

sP x D3t ong put back DPHx s identifying along

sPx 5% = 3(sP x DQ+1) = 6(Dp+lx s?). (The standard
picture is putting a handle on 82 by starting with an
embedding of SO). Then we will say M' is obtained from
M by the modifiéation. The manifold W given by

W= NIy, P, p3*Hl  phere g : 8P x D9 > M x T

is given by g(x, y) = (£f(x, y), 1), 1s a O-cobordism

between M and M' i.e., OW = M ﬁ'Nﬁ. This is clear
from pilcture. If W 1is an r-modification and M, M' and W
are in <r>, then F will be called an r-modification.

In order to prove the theorem, it is sufficlent to

show that any homotopy class»of-#q(M) can be killed using
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r-modifications, unless v tak)g O In vq(BO(r)), where
g 1s in appropriate dimensions. This is not too difficult.
The entire proof is in Lashof.
Corollary: Let Q;”>. n > 16. Then there is an M & w
which is 7 connected.
Proof: Since 'rr5(Bo) = 7T6(BO) = 7T7(BO) = 1T8(BO) = Z.
BO<4> = BOKT>. There there is a manifold M in w
such that HS(M) = 0 for k < T, HO(M) = Z. Since HO
has no torsion, Hi(M) = 0 Tor. i < 8 => Wi(M) = 0 for
i< 8.

Now we restrict our attention to <4> structures.
For the remainder of this chapter m will be an integer
= 3 mod 8. Sqi"j will denote Sqiqu. Define a secondary

cohomology operation g on a subgroup of Hm(X) with

values in a quotient of Hgm(X) for any space X as

follows: [6].
Theorem 3: Since Sqm+1 is O on m-dimensional cohomology
classes, the relation

2,4,1’1’1—6)

Sqm+1 = Sc_[qum'3 + Sqe(Squ’m'S) + Sql(Sq in the

Steenrod algebra gives rilse to a secondary cohomology
operation g : H'(X) Ker Sqm"3 Ker Squ’m'5 Ker Sq2,4,m-6
> B2(x)/xq" HH(X) + SaPHPR(x) + sqtEPi(x).
Furthermore ¢ is quadratic, i.e., if g(x) and g(y)

are defined, so is #(x+y) and g(x+y) = g(x) + #(y) + xy.
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Proof: This is proved in a more general case in [6].
Recall how g is defined. Let

K = K(Z,, 2m-3) K(Z,, 2m-1) K(Z,, 2m) where

2.’
m=3mod 8, and m > 3. Let f : K(Zy, m) > K

m-3. . o¥
( 21’1‘1 3) lm

% (4 . 2,4 ,m-6
and f (12m) = 8¢’ 7L, vhere 1

be such that f Hom-5,

Em*l) =5 m’

5 & BI(K(2p2) 1s

a generator. Let E be the fibre space over

K(ZE, m) with fibre §K = K(Z,, 2m-4) % IK(Z2, 2m-2) X K(22,2m~1).

2,

Look at the cohomology spectral sequence for this fibre

2 k! 2m(

space. The element x = Squiem_u + Sq igm_2+8q i2m—1 e H™ (0K)

is transgressive, and transgresses to

4 4

Sq Sqm Sim ‘: SqES 2,4 ,m- 6 m+1

3= 51 + Sq Sq—? m = 3q im = O

Therefore there is an element # ¢ Hem(E), such that

i*(g) = x where j : K = E is the inclusion. Consider

the diagram

where X 1s any space, and u e_Hm(X).

sq™ 3y = sq* M5y = 8¢ %Oy - 0 implies fu 1s
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homotopic to 0O, and hence u 1lifts toamap ¥ : X = E.
Define g#(u) = U(#). The indeterminacy of g corresponds
to the différent choicesof the 1lifting V.

The H-space structure on £K and K(zg, m) induces

a multiplication D : Ex E —> E, Let

K(Ze, m) x K(Ze, m) = K(ZE, m) be the multiplication.

By [6], Lemma 2.2, ¢ 1is not primitive, i.e.

v¥(g) =4d®1 + 1@ g + Z, where Z 1is non-zero. But

HI(E) =0 for m< 1< 2m -4, so HIY 2

E) = H(E)®@ 1 e

HYE) ®H(E) ¢ 1@ Ham(E), and HM(E) = Z,, generated by

p*(1,). So v¥(g) = f@1 +1® 4+ p*(1,) ebp*(im).

Suppose #@(u) and g(v) defined by liftings @ and ¥
respectively; Let A :lX —> X x X be the dlagonal map.
Then V(¥ x ¥)A 4is a 1lifting of wu + v, since

ov(T x ¥)a = 'Ir(u X v)A = u + v, since that is how addition
of maps is defined. .It is a standard theorem that

(u +v)" = u* + v*. Then

glutv) = (v(T¥ x mz_\)_w = (A(T x a}j)?v?(,a)

1l

(A(T x”v))f(;d D1 +1®F + p*(im)a: p*(1,))

= #(u) + #(v) + uv modulo the indeterminacy of #.

Lemma 1: Let M e <4>2® 4 : HY(M) —> H(M). Then the

indeterminacy of g is zero.
Proof: Indeterminacy of g = squHam'q(M)ﬁq?HQm-?(M)+Squ2m-1(M)

= vE )+ v PR n) 4 v

lHam_l(M). Here V., denotes

5
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the Wu class in dimension i. [21]. In general, if M is
any manifold of dimension n, v, = v, (M) e E'(M) 1s defined
as that class such that

<v; u, [M]> = <Sqiu, [M]>, for all u e Hn'l(M),

where [M] ¢ Hn(M) is the fundamental class, and
{ , > denotes evaluation. Two useful facts about these

classes are

1) we ='Z Sqi_JvJ , and vy =0 for §> 7/

- d i
In particular Wy = Vq, W =V, + Sq vy etes IE

: §

Wy = 0, then Wo = Voo Similarly if Wy and Wy = (215

Wy = Vye In the case above Wy =Wy =Wy = 0, hence

Vq = Vg =Wy = 0 and the proposition is proved.

We now assume that all manifolds we are dealing with are
connected. This is possible since one can change any
manifold with a finite number of components by framed
spherical modifications (w-modifications) into a connected
manifold. Under this modification disjoint union becomes
connected sum [15]. The connected sum M + M!' of two
n-manifolds M and N 1s obtained by embedding S° in
their disjoint union Mw M' and replacing the normal

bundle by SP°t

x I, or equivalently, by removing a small
n-disc from each manifold and identif&ing the boundary by

a map of degree - 1,
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From g, we want to define a map from Q§$> > Zp.

In order to do this, we need to know something about the

way @# Dbehaves with respect to cobordism, and have some

way of calculating it. But # of course depends on more

than the space it 1s applied to. Being a cohomology operation,
its value #g(u) depends on u e H(M). We want a cobordism
theory to take-this into account. |

Definition:1l: The 4-bordism groups of a space X, denoted

by ﬂ§4>(X) is the set of equivalence classes of pairs
(M, f) where Me <4>™ and £ : M —> X. The equivalence

relation is given as follows: two palrs (lel), (M2f2)

are bordant if there 1s a manifold P € <4> and a map
F : P—> X such that

1) 9P = My W (-ME) and P 1is a 4-cobordism

<3 T T iJ - Mj —> P are the inclusion maps, the diagram

Ml—-—:’Pq-——— M2 commutes.

Then Q;4>(X) is a group with operation of a disjoint unlon etec.
For details see Conner-Floyd [9].
Now if we let x:elc(zz, n), amp £ :M-—=>X 1s,

Just an n dimensional cohomology class of M. The next

two lemmas show that g defines a map
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<h>
Q50 (K(Zg, m)) = Z,, where m = 8k + 3, k > 0. (as above)

Lemma 2: Let [M, u] € ﬂ§i>(K(22, m)). ;Then there is a

manifold M' and an element u' € H'(M') such that
(M', u') € [M, ul, i.e. (M', u') 1is bordant to (M, u)
and M' is 7 connected. Moreover there 1s a 4-cobordism

N, v between (M, u) and (M', u') such that if

i : M—=> N and j : M' => N are the inclusion maps,

iq* is an isomorphism for q > 8 and

jq* is an isomorphism for q < 2m - 8.

Proof: M' is obtained from M by surgery, taking care
to use only 4-modifications. N looks somewhat like

M x I, with cells of dimension 7 or less attached to kill
off the homotopy of M dimensions { 7. So N is Mx I

with some "handles" D" x pam-1i+l

i-1 ; p2m-1+l 5 v x 0. Hence, up to homotopy type N

0 <1< 8 attached by
maps S
is M x I with i cells attached (i < 8). Similarly

N is M' with 2m-i cells (i < 8) atté.ched. The statement
that the inclusion maps induce 1sémorphisms in the appropriate
dimensions follows immediately from this description of N.
Only necessary to check that the map f : M — K(ZE’ m)
extends to amap F : N = K(ZE, m). But f extends to

MxI by F(x, t) = £(x). To exténd to N note that N

is M x I with cells of dimension 1 attached, i < 8 => 1 # m.
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Hence F | (O of an attached cell) is an element of

wi(K(Ze, m)) = 0 and so F extends over the cell. This

completes proof of Lemma.

Lemma 3: The map £ ﬂéi>(K(22, m)) = Z, given by

B([M, ul]) = #(u)[M] is well defined, where [M] denotes
the fundamental cycle in Ham(M) (This lemma is just what
we want. It says g is some sort of bordism invariant.)

Proof: Lemma 2 says that any class o in Qéi> K(ZE, m)

contains a pair (Ml, ul) where M; 1s T connected,

Therefore Sqm'3Hm(Ml) & Hem-B(Ml) = 0 Squ’m-5Hm(M1\ CHEm-l(Ml)

and ng’u’m"6 : Hm(Ml) - Hzm(Ml) is zero since
Sqe-‘u’m"6}{m(Ml) c SquEm-z(Ml) = WEHQm_E(Ml) where
w2 is second Stiefel Whitney class. But since M g <U4>
wy = 0. Hence if wu, € Hm(Ml), ﬁ(ul) is defined. To
show it 1s well defined, only need to know it i1s not
dependent upon the representative of w 1in Q§:>K(ZE, m),
since the zero cobordism class 1s represented by (M, 0)
and g(0) = 0. Let (ME’ u2) € w such that ﬁ(uz) is
defined. Then (M2, u2) is bordant to (Mlul . Let
N, v be a cobordism. If N 1is not 5-connected, we perform
surgery on it, so we may assume N 1s 5 connected. We

show #@(v) 1is defined, and ¢(ui) depends only on g(v).

Since é(ue) is defined, we have
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corresponding relations for v. Let Ji 2 Mi ~> N be

3 u, = 0. We wish to show

the inclusion. Then Ji*(v) = u;. The sequence

J-.* "
Hzm_S(N, ME) - Hem-3(N) ¥ g0 3(M2) is exact. By

Poincard duality H-""3(N, M,)= H(N, M;). But since N
is 5 connected, and M; 1is T connected, HM(N, Ml) is 0.

Therefore je* is a mpnomorphism in dimension 2m-3.

Then O = qum"3u = qum'332*v = JE*Sqem"3v. Hence

2

qum—3v = 0., Exactly similar reasoning gives

Sqq’m'Sv = 0 and Sq2,4,m—6

v = 0. Hence g(v) is
defined. Since ji*(v) = u; we have ji*ﬁ(v) = ﬁ(ui).
But we have just seen that je* is a monomorphism in

2,4,m-6

dimension 2m (the proof of Sq v = O above) and

jl* is an isomorphism in dimension 2m by lemma 2.
Hence ¢(u1) =0 1iff ﬁ(uz) = 0, where = 0 means modulo
the indeterminacy of #. But M, and M, are <4> manifolds,
and by Lemma 1 the indeterminacy of g is 0. Hence the
lemma is proved.

We now state a few lemmas which will help to calculate #
in certain cases.

We can express g as a functional cohomology operatilon

by factoring it as follows: Let A : B{x) -

H(x) ¢ H4(X) + HY(X) be the map A(u) = (g, u, u). Let
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e : BY(x) + BY(x) + BY(X) = HY(X) be the map

e(uy, uy, u3) = Uy +u, + uz. These are defined for all

spaces X and Integers q. Let
b : HY(X) & HNX) & HY(X) - HT3(x) ¢ B 1(X) & H(X)

be given by bm(ul’ Us s u3? = (Sqm_Bul, Sq4,m-5u2’ Sq2,4,m—5u3)

and a : H3(x) ¢ H"H(X) o HT(X) by alvy, v,, v,) =

Squv1 + quv2 + Sq1v3. Let o = ga and Bm = bmA. Then

e (remember m = 8k+3 k > 0) and ttre

of = aabmA = Sq
relation aBm = 0 on classes in dimension m was what
gave us g.

Proposition: Let o and Bm be as above. Let f : X—-> Y

and u & H'(Y). Suppose that f*Bm(u) = 0. We already
know that asm(u) = 0. Then the operations g(u) and
ame(u) are defined, and are equal modulo

sq EH(X) + SqPET2(X) + SqEEE(x) + r*HY(X).

Proof: This is just theorem 5.2 of AdemXV\lIt is basically
the same as the formula of Peterson-Stein but 1n the case
where a 1s an operation which takes several variables
into one. For completeness, we define Cae f: X—=>Y
can be regarded as an inclusion by using the mapping
cylinder. Then the exact cohomology sequence of the palr

Y, X gilves the following diagram.
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o (Y, X) _%> H (Y) o (%)

il

im%S'ﬁkt?;ix) - HY(Y) = HY(X)
Whére A = Hk-d S é s |
Given an element (ui, Uy u3) € Hk-u(Y) er'E(Y) eaif"l(y)
such that f*(ul, U, u3) = 0 and a(ul, Up s u3) =0

define af(ul, Us s u3)' to be the set of all elements in

6'laj*"l(ul, Uy, u3), i.e. pull back along the dotted line.

The vanishing of a(ul, Up s u3? and f*(ul, Us s u3) imply
that this can be done.

Lemma 4: Let a, B be defined as above. Let u e HM(X).
Then u : X —> K(Z,, m). If @(u) is defined, then so 1s

auﬁ(im) and auB(im) - g(u) modﬁlo the indeterminacy of

a -
u

Proof: The above proposition.
In the following we drop the m and write only B.

In general the indeterminacy of auﬁm(im) is too
large. We have already noted that the indeterminacy of #
is zero when it is applied to manifolds M € <4¥. Denote
by I; the indeterminacy of auBm(im). One of the methods
we use will be to choose things so thét IL = 0 whenever
possible. We need to know how @ behaves on products.

Let o be as above.
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Lemma 5. Let f : X —> Y be a map of spaces. Let
P
w = (uy, vy, ug) & H(Y) & HA(Y) o H3(Y) v e ui(y)

with p; + Y =p, +2 % Py + 1. Suppose a(u) = 0,

I
Sqlv = Sq2v = Squ = 0, and f*(u) = 0. Then af(uv)

is defined, and af(uv) - f*(v)af(u).
p2(

P P
Proof: Let HP(Y) = H 2(Y) & H 2(Y) & H ()

Then we have the commutative diagram

P1(x) - #P(¥, X) = HP(Y) - HP(X)

\f*(v) \ v Xv £*(v)

?P1(x) - P y,x) Py) PH(x)

where the horizontal lines are the cohomology sequence of
the pair (¥, X) and vertical maps are multiplication
by the element éhown. Furthermore the operations a and
multiplication by v commute, by Cartan formula since

1v = ngv = Squv = 0, Thus by applying a to above

Sq
diagram, we get a three dimensional diagram, and chasing
around it gives result. We will apply this in the case
Y=Mx N, X= K(ZE, m) x N.

Lemma 6: Let M & <4>16k+6 N € 416J

, k>0, M, N
7 connected. Let u e H8k+3(M), v € HﬁJ(N). Then

g(u® v) 1s defined and g(ud v) = ﬁ(u)qs'vz

modulo some indeterminacy which will come out in the proof.
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Proof: Since M and N are 7 connected, so is M x N,

and

plve v) = a, o Blig(yu)i3) = %y x 1P(Lg 3™ V)

The first equality is of course Lemma 5, the second is
naturality. Note an increase in indeterminacy at each

step. Now apply Cartan formula and fact that N 1is

7 connected to get B(i8k+3® v) =(B 181{_1_3)@ ve,

So glue v) = S 1([3 18k+3®V2)' But this is
a B i8k+3 v = ﬁf(u? Q)VE, by lemma 5.

The indeterminacy is the indeterminacy of «

H16k-|-6

iy which 1is

*prlOKA6

(u x 1)* (K(Z,, 8Kk43))® HOI(N) = u K(Z,, (8k43)))C

A8K+3H8k+3(l‘!l) where a813  genotes all ‘the Steenrod
HOK0(x(z,, 8Kk+3))

operations of degree 8k+3, since

= tSaTig s and I = (13, ooy 1) with Ei, = Bki3, with
suitable restrictions on the i,j}'

Lemma 7: Let N be as in Lemma 5, M = s3 x 83, M e HB(M)
and v € H163(N) such that v= = 0. Then pug@ v) 1is ‘
defined, and ﬁ(u v) = 0 modulo O,

Proof: We have Sqm_3u vV = u® v2 m= 8] + 3

Squ’m_5u® V= Sqe’u’m_6u®v = 0. So vZ = 0 implies

g(u® v) 1is defined. Then by same argument as in lemma 6,

slu@v) = (u)D ve = 0. The indeterminacy is O since
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A3H3(83 X 83) = 0. In fact, all Steenrod operations
on 83 X 83 vanish.

We are now ready to define a map ¢ : Qé$> —> Zp,

the Arf invariant. Let w € Q§$> and M & ® (Recall
m=8k+3, k > 0). Since M 1s a manifold whose dimension
is congruent tol2 mod 4, and M is orientable, the

square of any element in H'(M) is 0, and H'(M) 1is
even dimensional as a ﬁector sﬁace over 22. Hence

we can choose a basis [xi, vy 1=1, ... k} for (M)

with the following property: Xixj = yiyj = 03 xiyJ = 0
iff i # j. Such arbasis is called a symplectic basis for

H(M). We define

(M) by ¢'(M) = g ¢(xi)[M}¢(yi)[M] where =+ indicates
multiplication in %Z} and' () By »'(M) where M is

in ®w. Since there 1s an m inl @ which is T-connected,

we know there is an M such that ¢'(M) = ¥(w) is defined.
There are a few thlings to check to see fhat this definition
makes sense. First that ' 1is independent of the choilce

of basis {x; y;}. This follows from the work of Arft, 4]
since #(x +y) = #(x) + #(y) + xy, and the quadratic form

X, ¥ —> Xy £ uon siﬁgular (Poincaré Duality). So we

need only check that % 1is independent of the representative

chosen.
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Proposition: ¢ is well defined.

Proof: Suppose w‘(Ml) is defined. Then there is a

T connected manifold M2 which is 4-cobordant to Ml

obtalned by surgery. By lemma 2 ], % : HY(N) — Hm(Mi)
is an isomorphism for each i. Hence a symplectlc basis in

Hm(M %=1

l) 1s carried by Jy*J; into a basis for Hm(Ma).

Recall by proof of Lemma 3 Jz* is a monomorphism in

dimension 2m, and by Lemma 2, jl* is an isomorphism,

So Je*jlfnl

basis. ¢ is defined on all of Hm(Mg) since M, is

takes a symplectic basis into a symplectilc

7 connected, so ¥'(M) is defined. By Lemma 3, w'(Ml) =
w'(ME). So we may aséume each representative 7—connecfed.
Next élaim ¥ 1is additive with respect to addition in
gl

Addition was originally defined by disjoint union,
but since we are consldering connected representatives, it
is replaced by connected sum. It 1s clear that the connected
sum is Y4-cobordant to disjoint union, and so the group
structure is the same. If we denote the connected sum of

M and M

1 5 by M

, + My, we know that HY(My + My) =
Hm(Ml) i Hm(ME) and if x € Hm(Ml), y € Hm(Mg), then
Xy = 0 in Hem(Ml + ME). Then a symplectic basis for
M, + M, can be given by [ul,...,ui, Uy geeeUys

ViseessVys vi+l""vk] where {uJ, VJ} J<i area
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symplectic basis for M, and {uJ, vj} jJ>1 area

symplectic basis for ME‘ Then we have, setting

M= Ml + M2
k
gt (Mg 45) 2351 A(uy) [MI(v,) M) = 2 #uy) (M5 16(v,) [y 4]

+ g same thing. But ﬁ(uj)[Ml*ME] = ¢(uj)[Ml] if \j £ %
J=1+1 - - -

ﬁ(uj)[mg] if J > 1 and similarly for the v's. This says

W'(Mi+M2) = w'(Ml) + w'(Me). So to complete the proof we

need onl& show thét Y is.zero on the zero class. Let

MEeOEe n§i> , N & <4> such that M = ON, N is a

Y-cobordism, N l-connected. Sufficeth to show y'(M) = 0.

This will be obvious if we choose a symplectic basis éarefully.

e HYm), u; # 0, 8% : HY M) - H'H(N, n),

j* : HY(N) = H'(M) the inclusion. If &6%(u;) = 0, let

Let u

x; be in H™(N) - such that J*(xl) =u;, and let y, & T (M)

1,
such that yyuy # 0 (yl exists by Poincare duality). If
6*(ul) # 0, then by Poincare duality there 1s an element

= 0. But x a*(ul) =

x, € Hm(N) such that xlé*(u 1

1)
5(Jf(xl)'u1) # 0. Hence Jf(xl)°ul # 0. Set y; =uy.
So we have elements x; & H'(N), y, € H'(M) with

j*(xl)'yl # 0. By using the same technique on the set

(z ¢ H'(M) | Zey, = J*(xl)-z = 0}, we get elements Xps Vo

with jf(xlxeiué ¥195:= O, jf(xe)yl = Jf(xl)yz = 0 and
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j*(xe)y2 # 0. Proceeding similarly we get a symplectic
basis {j*(xi), yi] for H"(M). The proof of Lemma 3

shows § is defined. Then w;(M) = 3 ﬁ(j*(xi))[M]ﬁ(yi)[M].
But B(J*(x;)) = J*6(xy) = 0 since g(x;) & HT(N) = o

Therefore #'(M) = 0 and ¢ is well defined. We drop

the ' and denote both ' and ¥ by ¢.

Q<4>

To complete the definition we define % on 0

gé4> = 1im ﬂk+6(MO§4>k? = 1im Wk+6(sk?’ since

k

Hi(Mo;4> =0 4 ; k; k <1<k +8 and Hk(Mo<4>k) = 2,

1)
and the Whitehead theorem. 1lim T. (Sk) = T (88) = 7

- I Tyl 14 = Gag
It 18 not hard to see that [S3 x 8°] £ 0 in 0é4>. Tt
8 <U>

follows from above that 96 =y 06 = lim Wk+6(Sk) is an
k ]

isomorphism, and [83 X 53] is not zero in ﬂg So

<4>

[S3 x 83] generates 96 . Define TJJ[S3 % 83] to be 1.

16k+6

Theorem 4: Let M & <4> m = 8k+3, M m-1 connected,

stably parallelizable. Then (M) = Q(M), where Q(M)
is the Kervaire invariant.
Proof: The proof is similar to that in [5].

Recall the characterization of § in [15]. @ = Ze(x,)e(y;)

where {x,y,} 1is a symplectic basls for M; and © is

191
. . 2m
the secondary operation © : H (M) —> HT (M) with the
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followling property. Let £ : s™ > M be an embedding,

and Vv the normal bundle. Let v & H™ (M) be the
cohomology class dual to the embedded sphére. Then

o(v) is zero iff v is trivial. So it sufficeth to show
thaf g(v) = 0 iff v is trivial. Let M(v) be the
Thom spacé of v, and U e H*(M(v)) the Thom class. Then
the map g¥* : H*(M(v)) —> H*(M) induced by the projection
g+ M- M(V) i;:akes“ﬁ inﬁo -v, i.e. g*(U) = v, and

g* is an isémorphism in dimension 2m. So we.need only
show that g(u) = 0 iff v is trivial. If v 1is trivial

Em, and hence g(U) = 0. If ¥ is non trivial

2n

M(v) = s% 8

M(v) = Sy e“" , where 1€ T (s™) is the generator, and
_ m

[1,1] i
[i, 1] 4is the Whitehead square [5].
The folding map sy s™ — s™ extends to a map
h: S™x 8™ — M(v), since the obstruction to the extension
is just [1, i1, which 18 0 1in M(v). Let x & HY(s™
be the generator. Then h*(#(U)) = #(h*(¥)) = fx @1 + 1® x)

= B(x® 1) +4(1® x) + x®DX :.;‘c®x #O lHence g(U) # 0,

and the theorem 1is proved.



CHAPTER III

THE COHOMOLOGY OF BO<4> AND MO<4>

In[27], Stong determined the cohomology of BO<Kr>. He
proved the following proposition.

Proposition: H¥*(BO<4>) 1is a polynomial algebra on those

classes wisHl(BO<4>) such that 1-1 has at least three
ones in its dyadic expansion, i.e., such that
1 # o 26 + 1 for any a,B non-negative integers or - «,

Corollary 1: w, = 0 if 1< 8, and if

1 =9, X0, 11, 13, 17, 18, 19, 21, 25, or 33.
Proof': There are no multiples of the generators in those
dimensions.

Corollary 2: If 1 1is any of the integers in corollary 1

then HT(BO<4>) = O.
The operation of the Steenrod algebra A on

H*(BO<4>) is given by tle Cartan formula

Sqnwin =3 Sqn_kwiquwJ and the Wu formulas,

0 e Q-—i-lﬂc)
Sq"w, = & W, I
J uao e i+j-k'k
1
where ké) is binomial coefficient 2°/b!(a-b)! reduced
b

mod 2.

Corollary 3: As a graded group H*(MO<4>) is isomorphic

to H¥*(BO<4>) via the Thom isomorphism H*(BO<4>) —> H*(MO<4>)
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given by w, —> w,U, where U e H(MO<U4>) 4is the Thom class.
The structure of H*(M)<4>), which we now call H for
convenience, as a module over the Steenrod algebra is quite
different from that of H*(BO<4>), since Sq'U = w,U.
Using this, it is possible by brute force to determine
the structure of H as a module over A 1in low dimenslons.
If %X,¥,%,++«+ are slements of A, we denote by
A/A(x,¥,Z,...) the quotient of A by the left ideal generated
by the elemenﬁs x,g,z,..., Ai wlll denote the subalgebra of A

generated by Sqo, Sql,...,ngi. Then the following is true.

Theorem 5: In dimensions less than 55, H 1s the direct
sum of cycllic modules over A of six different types. The
list below gives each type, together with the dimension

in which generators for it appear.

Type dimension
A/AA o)
& 16
32&2 copies;
48(3 copies
A/A(Sq1,8q5,8q6,8q13) 20
36%2 copies;
52(2 copiles
a/A(Sqt,8q°) 40
a/A(Sa*,5q°) 44
A/A(Sq2,8q°5qY) 46(2 copies)
A/AAl 48

We will study a module of the second type briefly at
the end of the next chapter. The remainder of this

chapter and most of the next will be denoted to a study
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of A/AAQ.

Lemma 8: Let A*¥ Dbe the dual of A, (A/AAE)* the dual of
A/AAE. A* 1s a polynomial algebra on generators £, in

degree ghlyl (A/AAE)* is the subalgebra of A* generated

by &5, €4, €5, 6, 12k

Proof: We must show that the annihilator of A, in A*
is precisely the subalgebra described above. This is Just
all those elements in A¥* which are taken intoe O by an
element of A, acting on the right, This action can be
described as follows: Let g%: A¥ — A¥pA* be the

diagonal map. Let iR = &gl---ﬁik, and JT&R) = EESQD QT-

Then ERT = <€S,T>€T, where T € A, and < , > 1is evaluation.

Furthermore the diagonal map g* in A* is gilven by
ol R
é*(ﬁi) = Ei%qu ij. So in order for £ 1T # 0 we must
have <§S,T> # O.‘ Since AE is generated by Sql, Sqe, and
Sqq, it suffices to find which elements of A% are non-zero

on these. But they are exactly those which have a ﬁg, a E%,

or a &1 as the first factor in some term of thelr diagonal

expansion. But these are Just g?, Eg, gg, where

k £0mod 8, m # Omod 4 and n £ O mod 2. Thus the lemma

is proved.
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The Whitney sum of vector bundles induces a map
BO<U> x BO<Uy —> BO<U> just as for BO, which gives H*(BO<4>)
the structﬁre of a coalgebra over ZE‘ Since A2 is.a
sub-Hopf algebra of A, the diagonal map on A induces a
coalgebra structure on A/AAQ. Then we have the following
lemma.

Lemma 9: There is a monomorphism v : A/AA2 —> H such that

v(1l) = U.
Proof: ILet T € A/AAE, a € A which represents T. Define
v(t) to be ali. Let b e AA,. Then b = xSq1 + ySq2 -+ quu,

where X,y,% € A. But Sq'U = 5q°U = Sq*U = 0, and so v

is well defined. By naturality, v 1is a map of coalgebras.
Hence by proposition 3.9 of [24] v is a monomorphlsm if
and only if i1t is a monomorphism on the primitive elements
of A/AAE. If ¢ is the diagonal map on A/AAE, an
element T € A/AA2 is primitive if g(71) = T® 1 + 1® T.
The primitive elements in A/AA2 are juét the duals of
the indecomposable elements in (A/AAQ)*. Let Q,; be the
dual of €&; ;. Then Q;, 12> 3, is primitive in A/AA2.
In fact it is even primitive in A. For 1 < 3 Qi is
zero in A/AAQ. The only other indecomposable elements in
(A/AA,)*  are g?, ﬁg, &g. These have duals Sq8, Squ’B,

2,4,8

and Sq , respectively. So we need to show that none

of these are mapped by v into zero. Since they are all
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in different dimensions, the images are clearly independent.

V(Sq8) = SqBU = W8U- V(Squ’B) = leU’ v(Sqe?ll'JS)

il i
‘We know Q = Qi—lsq2 + Sq2 Q_1- Therefore V(Q3) =

1,2,4,8

Sa U= w,.U. Therest of the proof is by induction.

35
We showfsv(Qi) = wyi_,U + (decomposable elements of H*(BO<M))U.

The Cartan and Wu formulas imply that any Steenrod operation
on a decomposable elemént gives a decomposable element.

We have v(Q3)sw15U. Suppose (¥ holds for 1 1less than k.
' gB Lk ok
Then v(Q) = Q__;8¢° U +8a° @ _;U = Q _,wskU + 897 wpk ;U +
k
(decomposables)U. Show Sq2 w.k .U cannot possibly have

2

2 -1
a term wyk+l, so we have v(Qk) = Q_1WokU + (decomposables)U.

k-1 i
Now Q _;wokU = Q _»Sq WokU + (decomposables)U =

SqISq2 s el wokU + (decomposables)U. But Sql,... Sq Wo

(2"-;-21‘“14-2-1) 2k+2k'1-1)(2k-1
. e @ W k+l +
! k-2 _ k-1 | M2ttt
(decomposables)U by iterated application of the Wu formula.

But all the binomial coefficients above are 1, and therefore

the Lemma 1s proved.



CHAPTER IV
Ext , (H*(MO<h>; 2y 22)

In this chapter we compute ExtA(A/AAg, 22) and
compute Exti’t(A/A(Sql,Sq5,Sq6,Sq13) for t-s‘i 20,
This will give the E2 term of the Adéms spectral sequence
up to dimension 40, since H 1is the direct sum of modules
of the above form in dimensions less than 40.

ExtA(A/AAg,ZE).

Liulevicius [17] has shown that Ext,(A/AA,,Z,) is

isomorphic to Ext, (22, 22), which is commonly called the
2

cohomology of A,, and denoted by H(A), H*(A), or H**(A),
depending on how one writes bigraded objJects. We will use

the usual grading, Hs’t(

8,0
Ae) = Ext,’ (A/AAz, 22), where the

grading in the Steenrod algebra is t, and s 1is the
homological, or resolution degree. By dimension, or stem
we mean t-s. |

We use the techniques of Peter May [18], [19] to
compute H(AE)' In outline it goes as follows: 1. Define
a filtration on A2 such that the associated graded algebra
E°A2 is a primitively generated Hopf algebra. 2. Compute
H*(EOAE) by using the theorem of Milnor and Moore that a

primitively generated Hopf algebra is isomorphic to the
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universal enveloping algebra of its restricted Lie algebra
of primitive elements. 3. Use a spectral sequence to get
from H*(EOAE) to H*(Ag). The process is extremely
technical, and most of the proof's are deferred to the
appendix.

Corollary (To theorem 7 to follow) H*(AE)’ as an algebra
over 22 is a free module over tﬁe polynomial ring

4,8
Zz[m, me] where @ & H'? (AE)

Definition: A graded, restricted Lie algebra over 22
1s a graded Lie algebra L over ZE’ together with a map

B:L —> L such that [p(x),y=Ix,[x,y]], and B(x+y) =

B(x) + e(y) + [x,¥], X,y in L where [ , ] denotes the
multiplication in L, If G 1is an associative algebra

over 22, it can be made into a restricted Lie algebra GL

by the definitions [g,h] = gh-hg and B(g) = g for

all g, h € G. The universal enveloping algebra V(L) of
the restricted Lie algebra L 1is defined by the following
universal mapping property: There is an associative algebra
with identity V(L) and a homomorphism of restricted

Lie algebras 1i:L ¥> V(L)L such that if G is an
assoclative algebra, with identity, and f{:L —> GL a
homomorphism of restricted Lie algebras, then there is a

unique homomorphism g:V(L) — G such that f = gi.
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Theorem (Birkhoff, Witt, Poilncare) Let L be a restricted
Lie algebra over ZE' Order the elements of L in some
way. Then a basis for V(L) is the set of all monomials

T e UL where u. is less than u
! X 4 31

for all J,
i.e., all monomials in elements of L providing the
elements are written in increasing order. [13]

There is a map #:V(L) = V(L) V(L) given by
4(u) = udl + 1®u for ueL, and g(uv) = g(u)g(v). This
maplmakes V(L) into a Hopf algebra.'

Proposition: Let Fp be the increasing filtration of A

2
defined by:

Fp(Ae) = AE if p 1is greater than or equal to 0.
F-l(Az) = I(AE), the elements of positive degree in A

F__(Ay)

2

L(Ap)F_pa (Ap)

This is commonly called the augmentation filtration, I(Ae)

the augmentation ideal. Let

(o]

E
pP,q

o)
— A = [ (A B A where the last
p,q( 2) ( p( 2)/ p-l( 2))19«1
subscript indicates grading in AE‘ Let E? = 3 E° , and
- _ PsQ
ptg=r =4
B 5 E‘I’, Then:

(o}

il is a primitively generated, graded connected

Hopf Algebra.

24 R° - A2 as a vector space over 22.

. 5P

V(P(E®)), where P(E®) 1is the restricted Lie

algebra of primitive elements in E°.
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Proof: 1 and 2 are obvious, where connected means Eg = Z

e
3 1s Jjust the theorem of Milnor-Moore quoted above
(Theorem 6.11).

For the femainder of this chapter we use the Milnor
basis for A. I R.= (rl,...,rk) is a finite sequence of

non-negative integers, let QR eA* be the element

gil ﬁi , and let Sq(R) be the element dual to it in A.

Proposition: A basis for A2 as a vector space over 22

is given by Sq(rl,rg,r3) where 1, < &% r, < 4, and ry < e

Proof: This follows immediately from lemma 7 of
last chapter.

Proposition: P(E®) = {Sq(R) | R has only one non-zero entry

and this is a power of 2} i.e., {Sq(1), Sq(2), Sq(4), Sq(0,1) Sa(g 2)

and Sq(0,0,1)}.
Proof: The filtration on EqS) E° 1is defined by

F (% E°) = = F (E°& F,(E°). It 1s clear that
P i+j=p : : J :
those elements above are primitive. That they are the only

ones i1s not hard to check from the diagonal formula

#(Sq(R)) = = Sq(Rl)QD Sq(Re) where the sum 1s over all

sequences R,, R, such that R, + R, = R(+ denotes

2
componentwise addition).

1
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Let P(L, j) = Sqa(R), where R has one non-zero
entry ei in the jth component. Then the primitive

elements of E° are just P(i,j) for the pairs

(1,3) = (0,1), (1,1), (2,1), (0,2), (1,2), and (0,3).

Proposition: As a restricted Lie algebra P(E°) has

1. Basis given above.

2. [PB(1,3), P(k,m)] = 8, . P(k,J+m)

3¢ p(®,3)) = o.
Proof: Follows.from the multiplication formulas in As.
Let L denote P(E°) as a graded, restricted Lie algebra
over 2,. The grading is given by u € L has degree (0,t),
where t 1s the degree of u in A2.

Proposition A: Let X = V(L)@® I'(L), where TI'(L) is the

algebra of divided powers on L. Bigrade X by degree of
vr(u) = (r,rt), where u € L has degree (0,t), and
requiring that the degree of a product = sum of degrees

of factors. Then there 1s an algebra structure on X, and
a differential, such that X is a V(L) free resolution

of 22.

Proof: See Appendix.

Propositlion B: There is a natural coalgebra structure on

X, D:X = X@® X given by D(ux) = g(u)D(x) if u e V(L)

and x € I'(L), where g is the diagonal map in V(L)
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and D(wr(v)) = 5 Ti(v)QD'yr_i(v). The dual X* of X is

a V(L)*-free resolution of Zy, and X* = Z, @ ! b ok

V(L)
is a polynomial algebra on generators R(i,J) = vl(P(i,J))*.

The differential in X* 1is gilven by
J-1

5R(1,3) = = R(i+k, j-k)R(i,k)
1=1

Proof: See Appendix.

The elements R(i,1) 1=0, 1, 2; R(J,2) Jj=0, 1; R(0,3)
and R(0,2)R(1,2) + R(1,1)R(0,3) in X* are cycles.

Let hi’ aJ,B,v denote their respective homology classes.

Theorem 6: The elements hy, 1=0,1,2, aj, J=1.290, and v

generate H(X*) and hence u**(E®), There are 4 relations:

_ W . _ 2 _
hihi+1 = .0 1=0, 1, heqo = hov, hey = hoal and vy =

2
a0 F hlB.

Proof: This is by inspection. It is clear that the above
elements are cycles. For the relations note for example

6(R(1,2)) = hyhy s 6(R(1,2)R(0,3)) = ha; + hyy, ete.
We are now ready to compute H**(Ae).

Proposition C: There is a spectral sequence whose E2 term

is H*(EOAE) and which converges to H*(A,). Furthermore,

the differentials can be described as follows:
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65(hy) =0 8,(a ) = hy” + h "hy | 85(a) = hy;
6,(8) = hoa., 6.(y) =h h,%. 6. =0, and 6, = O
2 i1 2 o] B0 Byl = except
T = 5 _ L«
6, (B) = hya, . EZ = E .

Proof: See Appendix.
Using the above proposition H**(AE) can be computed
almost by inspection. E2 has non-bounding cycles

- -
hi)aoJal,rY}

h,v, 32, h P, hoB, Y2, ; and these form a
set of generators for the cycles, and for E3. The only
element above which 1s not obviously a cycle is Y

13 2 .2 2
but dy(&;v) = hgy + a;h hS = hgh @, + a,h hS = O.

E3 = EM, and in passing from Eu to E5, 62 is no longer

a cycle, but B4 and h162 are. Name the classes of

the classes of these elements 1n E5 = E by
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name class of grading stem
hy - [h,] (1,2%) s,
cy [hyv] (3,11) 8
® [a °] (4,1ej 8
d, YR (4,18) 14
e, [oqv] (4,21) 17
g [0,5] (4,24) 20
T [h ] (3,15) 12
ot [hop] (3,18) 15
», [n,p°] (5,30) 25
o, (g*] (8,56) 48

Then we have the following theorem.

Theorem 7: H**(A.) = ExtA(A/AAE, Z is generated

2) 2)
(multiplicatively) by the elements above. The relations
are generated by those below. The multiplicative structure
in E” 1is the same as that in H**(Az) except for the
relation BQ&'QE = 0 in E”, which becomes eﬁa—fe = g2

in H**(Az). This is proved as Proposition D in the
Appendix. The elements denoted by roman letters are in the

image of the map ExtA(ZE, Z,) —=> EXtAE(ZE’ Z,), and

multiplication by either w or W, is a monomorphism
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Relations:
I Among the h's

=0 T D e
hy hy ;3 =03 hy” =h "hy

3L 2 _
h,” = 0 h_ h,“ = 0

IT Without h's

(a) c, * x =0 where X £ hp, ©, ®y, oo

(®) a2 -ovg 5 = by oy
eo2 = dog 14 = ho Py
BT = & e T = do
T 5 = 0
(e) ° 4 ody = 0
%> =&
13\2 = ngo
III hyd_ = h_e, hfd, = B0 mydl = )%
hleo = h h2 H hzeo = hog
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Table 1. shows the structure of Hs’t(Ag) for t-s less

than 25.

6

It is possible to compute ExtA(A/A(Sql, sq2, Sq°, sq*3), Zg)

in low dimensions by merely constructing a minimal resolution.

It is a module over H**(Ae), and its structure is given

for t-s <20 by table 2.

s, s+18 6 13)

Corollary: Ext} (A/A(sq’, sa°, sa°, sq'3), z,) 1is

zero if s # 3, and Z, 1if s = 3. Furthermore the

2

generator in Exts’gl is in the image of h2.



CHAPTER V

DIFFERENTIALS IN THE ADAMS
SPECTRAL SEQUENCE FOR T, (MO<L>)

In this chapter two non-zero differentials in the Adams!
spectral sequence [0] for T, (MO<4>) are computed. Recall

the Adams spectral sequence has E;’t = Exti’t(H*(MO<4>), ZE)

and converges to 2TT*(M0<4>), the quotient of T, (MO<4>)
by its subgroup of elements of odd order. Serre [22]
has shown that the standard theorems about homotopy are
also true for 2?. In particular, the homotopy exact
sequence of a fibre space is still exact, and the Whitehead
theorem relating homology and homotopy still holds. In what
follows T will always stand for EW‘

We compute Fn(MO<4>) in low dimensions (n<15) by
using a postnikov system decomposition of MO<4>, and the
known results on the stable homotopy of spheres in low

dimensions [29]. Let k be large and set S = S5, and

g Kk

Then we have the tower of fiber

spaces
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K(Z,, 14) —> E°
!,
K(ZE, 11) —>f
K(Zy, 9) = E
K(Zy, 8) —> Qe
K(Zy, 7) — %1
EC = Mo<l>
where Ei is a fibration over Ei"1 with flbre an

Eilenberg-MacLane space. We have Hq(E5) =0 if q £ O,

q < 16, and H'°(E®, Z) has no 2 torsion, so by the

Whitehead theorem wq(E5) =7 (S) if q < 16.

q
Theorem 8: In the Adams spectral sequence for T, (MO<4>),

there are at least two non-zero differentials d2('r) = hw

and de(}( ) = h d , where the notation is that of chapter 4.

o
Proof: First we calculate dz(b‘\ ). Recall the structure

of Ez’t for t-s = 13, 14, and 15. For t-s = 13 it is

zero, and there are three non-zero entries each for 14 and 15,

given by hido for 14, and hi® for 15, 1 =0, 1, 2,

If there 1s a non-zero differential on &% , then it must be

d, or d3. It de(a{) = h d_, then Eg’t+14 has one

non-zero entry d_, and hence Trlu(MO<4>) = Zy. If
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dzﬁﬂ ) = 0 and d3(aQ) # 0 then we have d, and hd_

are not zero in ES’ and hence E_. Therefore we have

T, (MOH>) = Z) since multiplication by hy dn E_

corresponds to multiplication by 2 in the homotopy.

Now look at the homotopy exact sequence for the fibre

space E5 2 Eu. We have

0 —> W15(E5) —> le(E”) = Wlu(K(Zg,IM)) = Ty (Bg) = 7, (Ey) = 0

But 1r15(]«:5) = 1r15(s) =2y & 25, wllL(ES) = T,(8) = 2, + Z,,

and WlM(Eu) = WIA(MO<4>) so we have

Zp —> Zy & Zy —> T, (MOKH>) —> 0

Therefore

W14(M0<4>) = elther Z, or Z, ¢ Z,.

By the above argument it must be Z,, and therefore de(}() =hd,.

B 2 » 2, _
Now dz(ho‘q\) = h,"d = hy,"» and hoak = hyT, so

2 v
d2(h2T) = h,“w, which implies de(r) = hw.

Corollary: The Eg’t term of the Adams spectral sequence

for w.(MO<4>), t-s = 6 mod 6, can be described as follows:
' ; 4
It is the module over the polynomial ring Ze[w, Do, & ]

e 2

2 20 e
generated by the elements h,", w d_, T°d_, dg", 8",

and T d0g3, in dimensions 6, 22, 38, 54, 70 and 86

respectively.
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Proposition

wi(M0<4>) is given as follows:

i vri(Mo<4>)
0 7

31 Zg
2 Zg

3 48

4 o
5 0

6 Zo

T 0

8 Z e 7,
9 Zy & Zg
11 0

12 Z

13 0

14 Zpy

Proof: The homotopy sequences of the flbre spaces above
and the Adams spectral sequence give the above groups

without difficulty.



CHAPTER VI
PRODUCT FORMULAS FOR ¥

In this chapter we study the behavior of % on
products, and use the results to prove the theorems on the
vanishing of the Kervaire invariant. We need some facts
about quadratic forms.

Let V Dbe a vector space over Ze, and Q a
non-degenerate quadratic form on V. @ 1s anti-symmetric
if Q(x,x) = 0 and Q(x,y) = @(y,x) for all x, y in V.

A collection of subspaces 7V1, ...,.Vh is mutually

orthogonal if x & V;, y € V; 1 # J 1implies Q(x,y) = O.
Lemma: Let V be a vector space over Zz, Q@ a non-degenerate
anti-symmetric quadratic form on V. Then V 1is even
dimensional,and 3 Vi, e vy Vﬁ is a collection of mutually
orthogonal subspaces which span V, a symplectic basis may

be chosen for each Vi’ such that the union of these bases

forms a symplectic basis for V.

We will apply this to the case where V is
HNM), m = 8k+3, M € 4> and Q(x,y) = xy (cup product).
Sincé M 1is orientable, Wy vanishes; and therefore the.
square of any m-dimensional class 1s zero. This and

Poincard duality imply that cup product is a non-degenerate

quadratic form on H"(M).
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The idea of the proof of the product formulae is
simple. Given two manifolds M and N let m = 1/2
(dimension of M x N). In all cases we consider m will
be an integer. Decémpose H'(M x N) into mutually
orthogonal subspaces. Suppose V! We such a subspace,

and V' has a symplectilc basis [xi,yi} i =1,0e0,k,

and g(x;) = O for each i. Then (M x N) 1s completely
determined by the orthogonal complement W of V! where

W=1{xevV=H(MxN)| xv=0 forall veV'}.

(M x N) = 3 ﬁ(wi)[M]ﬁ(wi)[M] where [wi, Wi] is a
symplectic basis for W. We call (wi, wi] an effective
symplectic basis for H"(M x N). A subspace W V is
effective if 1t has an effective basis. Similarly the
orthogonal complement of an effectlve subspace is an

ineffective subspace. We find a small effective basis

for H™M x N) with which we can compute.

Theorem 9: Let N € <1+>16k

, N-T-connected and M = 83 X S3.
Assume that x(N) = Euler characteristic of N reduced mod 2
is 0. Then (M) = O.
' N
Proof: Let m = 8k+3. Then HY(M) = H ¢ H where
m=m3(s> x 83) @ mO¥(N) f=rC(s3 x s3)@ ¥ B(w) o 10(s3 x 53) @K AN)
First we show a symplectic basis for H 1is effective. It is

clear that H and f are orthogonal, since H16k'3(N) = O.
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Also the product of any two elements in the same summand

of B 1s 0. Thus there is a symplectic basis [xi,yi]
-~

ror H, where x, ¢ H%(s3 x )@ o3y = % H3(y).

We need to show ﬁ(xi) is defined, and equal to zero,

with O indeterminacy. But Sq8kxi € H16k+3(N) = 0,

Sqq’Sk-QX - Hl6k+5( H16k+6(N) =

m

1 N) = 0 ete. Moreover ﬁ(xi)

The indeterminacy is also obviously zero.

Let v, € Hi(N) be the Wu class. Then vgu = ue
for all u € HSK(N), and vy =0 1f 1> 8k. Let
X € H3(S3) be a generator.

If vg, = 0, then we = uvg, = 0 for all u e Hak(N),

and by Lemma 7, #(1® xe®u) = g(x® 1l® u) = 0, and

therefore (M) = 0. Suppose Ve # 0, then ng = (.

1 8k
For 2 5q Vvig .4 = 84 Vg, = w16k(N)’ the top dimensional

Stiefel-Whitney class. But w16k(N) = x(N).= 0 by

8kv8k = 0. By Poincare duality

hypothesls, and so ng = 5q
there is a class v' € HBK(N) such that vg, v' # 0., Let

V = subspace of HSK(N) spaﬁned by vg, and v', and let

W be its orthogonal cbmplement. If weW, w2 =W, < Vo < 0
so # | H3(S3 X S3)Gb‘w is O by lemma 2. So an effective
symplectic basis fér M 1s

U@xov&,x@&@v&;x®1®v51®x®(%fwﬂ.

But flex® ng) = f(x® 1@v8k) = 0 since vgk = 0.
So (M) = O and the theorem is proved.
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16k+6 l6p

Theorem 10: Let M & <U>

, N g <4> K, b O,

M and N T7-connected. Let n =28k + 3, m= 8(k + p) + 3.
Suppose A% : H*"Y(m) — HN(M) is zero for q odd, and
a4, Hl6p_q(N) —> Hl6p(N) is zero for q odd and q > 8p.

(Aq denotes the elements of the Steenrod algebra of
degree g.) Then ¢(M x N) = ¢(M)x(N). Compare [8]
Theorem 1.6.

Proof: Let #, = H" i(M)qb H8p+i(N) & Hn+i(M)GD HoP- i(N)

i >0, and H = Hn(M)qg HSP(N) Then H™ (M x N) = H & SH, ,

and all the summands are mutually orthogonal. First we
show H 1is effective.

There are two cases to consider, i even and 1 odd.
Consider i1 even. The hardest case is for 1 = 2. The
proofs for larger i are analogous and easier. Since the

product of any element in one summand of H with another

2
element in the same summand 1s O, a symplectic basis

[xi,yi} for H, can be found such that

x; € H'2(1) @ H8p+2(N). We show g 1s zero on that group.

8p+2 (

Let u e Hn'Q(M)) v € H N). Then #(u® v) =

auxva(iB(k+p)+3) . OLu:vclﬁ(18k+1':b v) .

Sq8(k+p)’ Sq4,8(k+p)-2’ Sqa,lt,B(L«:+-p)--3)(i&wlqn %)

auxl(o’ Squsq8ki8k+1® Sq8p 2 3 BP-EV)

by lemma 4, and fact that N is 7 connected and 16p dimensional.

auxl(

2,4,8k=3 :
ST 1gk+1 @5
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8p-2 8(p- 1)+4 1

28q8(p-l)+4 sqlv =

But Sq v = Sq v + Sq Sq

8(P"1)+4V o wlSqlSq (p- )+48q1v = 0 since N e <U>.

Wy Sq
So g(u® v) = 0. Indeterminacy in above calculation is

2ng ..
(u % 1)* B (K(2p,n-2)) @ HOP(N) = wx #2%(K(2,,0-2))
z A
APRteyn 2(IVI) = 0, by hypothesis. So H,, and similarly ﬁ%i

is ineffective,

To prove Hi ineffective for i odd, it suffices to
show for Hl’ as proofs'for other odd 1 are the same.
Let u € H8k+4(M), € H8p l(N) By same argument as above,
it is sufficient to show ﬁ(udb v) = 0. Again apply lemma U4,
to show that A(u® v) =

8p- 2 4,8p-4

8k+2
(547" ue (807" “ig, 1, Sq 1gp-12 Sa

Otlxv

2,4’8p—5i8p-l))'

But SqoFtPy = 5025¢%u + 5¢t5c™sgtu = 0. S0 Blue v) = 0.

Indeterminacy is (@ v‘9Hl6k+6(M) ®Hl6p(K(228p—l)) -

pBPHEBP-1y) _ 0, So H 1is effective.
; 8p e _
Let Vgp € H (N) be the Wu class. If ¥ = 0, then
reasoning exactly as in proof of theorem 9, together with

lemma 6 implies (M x N) W(M)x(N) So suppose

_ 8p
v8p #0., Let U= {x g H¥(N) | XVg, = 0}. Then by
Lemma 6, H(M)® U is ineffective. Let {xy,y;) bea
symplectic basis for }III(M). Then {xiQ Vep: V1@ V8p}
is an effective symplectic basis for Hm(M x N).
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p(M x N) = 2 g(x;@ vg )M x N]4(y;@ vg )M x W]

= 2 B(x, ) [MIvE [N14(y, ) [MIvE [N]
(2 Ax;) 1) By, [MDIVEIN] = $()x(n).

Corollary 1: Let M e <4>iok+0

N e <4>16p kip > G

M stably parallellizable. M, N T-connected. Then
P(MeN) = ¥(M)x(N).

Proof: Same proof as theorem, except in the proof that

ﬁ; is ineffective for 1 odd. Instead of using

pud v)

auxvﬁ(i) = alxva(quzi) use

dluve v) = auxlﬁ(ﬁuv). Everything goes through, since M
stably parallelizablé implies all Steenrod operations into
the top dimension vanish. Hence everything will be defined
mod O.

Corollary 2: Let M E<4>l6k+6 5 N & <4>16p, N stably

parallelizable. Then (M x N) = (M)x(N) = O.
Proof: N stably parallelizable implies all characteristic
classes of M wvanish, in particular x(M).= 0. The rest
of ‘the proof 1s as above. N

In chapter 3 it was shown that there is a monomorphism

A/AA2 —> H*(MO<4>) given by a —> aU for any a € A/AA2,

where U e H°(MO<4>) 1is the Thom class, and that the image
was an Amodule direct summand in dimensions less than 55.

Now assume that it is an A module direct summand, so we
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have H*(MO<4>) = A/AA2 & K as A modules. Then
ExtA(H*(Mo<4>), zz) - ExtA(A/AAE, 22) & ExtA(K, 22).

The generator f of ?0(M0<4>), corresponding to
the cobordism class of a point induces a map f£¥* : Hn(MO<4>n)—>Hn(Sn)
for n sufficiently large such that £¥*(U) = x, where
x 1is a generator of H'(S"). The map f induces on

framed <>
homotopy is the map pQi —> § . Now f* induces a map

Ext(£*, 1) : ExtA(ZE, 22) —> ExtA(H*(MO<4>, Z,) whose

image lies in the summand ExtA(A/AAQ, 22). So every
element in the E2 term of the Adams spectral sequence for
the homotopy of spheres is mapped into the first direct
summand of the E2 term of the Adams spectral sequence for
the homotopy of MO<4>. It 1s not known whether every
element in the image of p comes from this summand. But

we can say much about those elements which do.

Theorem 11: As a module over the polynomial algebra

U4 8,b
P = Zz[w, & wg], Ext)’ (A/AAE, 22) for t-s = 6 mod 16
has 6 generators, hg, '.udo, 'rzdo, dogg, ugge, and Tdog3.

See chapter 5 for details. Let G be the set of generators

given above, and P' = Ze[u» gq]. Then

1. ¥ 1s zero on all cobordism classes whose repre-

sentatives in the E2 term of the Adams spectral sequence

for ﬂ§4> lie in the P' module generated by G, except
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the class of 83 e 83, which is represented by hg.

2., Ir dr(wg) =0 for all r > 5, P' map be replaced
by P. |
The proof is many ilterations of the proofs of the preceding
two theorems. First we show ¢ 18 zZero on elements
whose representatives lie in G, then apply Theorems 9 and
10 to give the result. The restriction in 2 is necessary
in order to know that products in E, are products in Qiu>.
We need the following lemma.
Lemma 10: Suppose M € w € Qu, and that w 1is represented
by an infinite cycle x 1in E2 of the Adams spectral
sequence, xcchxtz’t(
YR = @,

Proof: Let 1 : Q§4> —>7%, be the map induced by the

H*(MO<L>), Ze) with s > 0. Then

covering Py ¢ BO<4> —> BO. r 1is the map which takes
the 4-cobordism class of a manifold into its ordinary
unoriented cobordism class. The map

Dy Ext(H*(MOKA>), 22) —> Ext(H*(MO), 22) carries x into O,

since H*(MO) 1is a free module over the Steenrod algebra
and thereforé Exti’t(H*(MO), 22) =0 if s > 0. Further-
more, since everything in 77 , comes from something in
filtration O, and r cannot decrease filtration, we have
r(w) = 0, i.e., M is unorientably cobordant to O. Hence

by [21] all Stiefel-Whitney numbers, and in particular
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w, = x(M) are O.

Corollary: Let M e w € Q<4z such that w 1s represented
in E2 of the Adams spectral sequence by an element of
the P module generated by G. Then x(M) = 0.

Proof of Theorem 11:

If x & ExtA(H*(M0<4>), 22) which is an infinite cycle

Q<4>

in the Adams spectral sequence, let [x] e be the

cobordism class it represents.

1 w([wdo]) =0 [o do] = [m][do], since both are

4>

infinite cycles. [w] € Qé 5 [do} € Q§i>. By theorem 2 we

can choose M e [d ], N & [w] such that H(M) # 0
only 1f q = 0, 7, 14 and HI(N) # 0 only if q = O, 4, 8.
Also all Steenrod operations in both N and M are zero.

This is obvious from dimensional reasons and the fact that

Sq4 : HA(N)-> H8(N)A is multiplication by vy (N), which is

O since N e <4>. So we apply proof of theorem 2.
H'(M x N) = H(M) HY(M). Let wue HI(M), v e H(N).

Then ﬁ(ucz) V) » auxvﬁ’(ill) = alxvﬁ(u@ i]_}) Ly

8 4,6

(sq™, 89777, Sq2’4’5)us:>i4 = 0) = 0. Since the

%1xv alxv(

Steenrod operations are 0, the indeterminacy is O and
¥(lwd 1) = o.

e ¢([T2d0]) = O Tedo is in dimension 38. The

only possible non-zero differential on 72 is d3(12)

= hldow'
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2 2
d,“® = h0"g £ 0. So

2
But then d3(T do) = hy

[Tzdo] = [72][do]. Let M € [do] as in 1). Let

N e [v°] with HI(N) = 0 unless q = O, 8, 12, 16, 24.
19 s 12 yi
Then H (M x N) = H (M)& H “(N). Let u e H'(M),

veHPN). Then glu®@v) = oy Blig) = 0y (B(1,®@ v)) =
e 2 |

)
( 4 qu’2 e q’liY)Gb v© = vo(u)® v-,

Sq 17, S 17, Sq—?

where v 1s the secondary operation associated to the

relation Sq48q4 + SqQ(Sqqsqe) + Sql(SqESqHSql) = 0. The

auxl(

indeterminacy is O since all Steenrod operations in M

vanish. Then the same argument as in proof of theorem 10
shows that (M x N) = x(N)(Zo(xi)[M]U(yi)[N]) where

(x5, yi} i{s a symplectic basis for M. But x(N) = O,
by lemma above, since [12] is in filtration 6.

<U>

3. v([ag"]) = 0. This is in g

Both do and g
are infinite cycles, so [dogg] = [do][g][g]. Let

M e [do] as above, N' £ [g] such that HY(N') = 0
unless gq = 0, 8, 10, 12, 20. Let N = N' x N'. Then
Mx Ne [ag”], HY(MxN) = 1/ (M)® H°O(N) and by the

same argument as case 2, w([doge]) = 0.

i, w[a*zge]) = 0. The only possibly non-zero

differential on 5Q2 is d3(a{2) = hjog. If so, then
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d3232g2 = hlwg3 # 0, Choose N € [ge] as above.

Choose M € [)22] such that M has odd dimensional
cohomology in dimension 15. This can be done by
theorem 2, since HY(MO<4>) = 0 for q odd and less
than 15. Then H32(M x N) = H2(M) @ HO(N). TLet

u e H2(M), v e B2O(N), then #(uay V) = o Blasgli=

1,n) = 2 17 2 4,15 2 2,414
Olevﬁ'(uq> 120) C CJLl:’cv(u @ 597 155, WRSG 0, W@ SqTT 120)

2

= a,..(0) since u e Hl5(M) implies u~ = 0. Now [g]

1xv
is in image of p, hence stably parallelizable, and
therefore all Steenrod operations into the top dimension
are zero, hence indeterminacy is O.

<h4>

5. ([~ dog3]) = O e dog3] 3 986 . d, and g are

infinite cycles, but dQ(T) = h,w. Therefore
de(Tg) = h,wg = 0. The only other possible non-zero
differential on 7Tg 1is d6(Tg) - o°h d . If that be so,

1
then dg(7 dg3) = o°h 4 %® = oh.g> # 0. So we have

[T dogB] = [Tg][dogz]. But [Tg] is in 32 stem [dog3] in
the 54 stem, moreover by theorem 10, since [doge] a5 )
image of p, ¥(~t d0g3) = w[dogg]x[fg]) = 0. To complete

the proof of the theorem we apply theorems 9 and 10.

Theorem 1 shows that w([hgp]) = 0 where p e P. Note
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that any element of G has the property that a Steenrod
operation from an odd dimension into the top dimenslon
is 0. Representatives for [a.\e]k and [ga]k can be
chosen with no odd dimensional cohomology, SO

Theorem 2 implies 1. To get 2 we need only to show
AqH48—q(N) = 0 where N € [we] and g odd q > 24.

By Theorem 2, N can be chosen to have non-zero odd
dimensional cohomology.only in dimensions 15, 23, 24 and 33.
Thus it suffices to show AZPHZS(N) = A33H!2(N) = 0. But
this is true since HS3(BOKA>) = HD(BOK4>) = oO.

Theorem 12. Let n = 22 or 38. Then

Proof: We show that ¢ : Q§4> —> 2, 1s O on manifolds

- oo <4>
in the image of Qn-—> Qn A
1. n = 22. There are 2 elements in Q§g>, represented
2 0,0
by wd, and hyx, where x 1s the element in H (A2)

corresponding to the summand of H*(MO<4>) which is
isomorphic to A/AA2 and begins in dimension 16. We have
already shown that ¢[wdo] = 0. It is sufficient to show

that [hgx] cannot contaln a stably parallelizable manifold.

oy Q<4>

But the map o cannot decrease filtration, and

the element [hgx] is in filtration 2, and there are no

elements in o

- in filtration less than 4.
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A = 28,

Let x be as above, y and y' Dbe the elements
corresponding to generators of the summands of
H*(MO<4>) which start in dimension 32, and z the
géneratof of the summand which starts in dimension 20.

Then there are 6 elements in Q§g> to consider.
2 3 A, 2 2
[T do]J [(D do]." [MO] [hey], [hEyI] and [hE'Yg.].

By theorem 11, ¢ 1is zero on the first two. By Theorem 9
'gb(xwdo] = #J(wdo)x(x) = 0, and by Theorem 10,

¢[h§7§] = X(Wg) which is zero by Lemma 10. So we have

only [hgy] and [hgy'] to consider. These are both
in filtration 2, and hence would have to be in the 1mage
of something in filtration 2 or less. There 1s one element

in 938 in filtration 2, [h3h5]. But the map

ExtA(ZQZE) —> ExtAe(Zzzz) on the E, term of the Adams
spectral sequence sends h3 into O, hence h3h5 goes
into 0. Therefore [hgy] and [hgy'] are not in the

image of Q?, and the theorem is proved.
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In this chapter the four propositions of chapter b
are proved. The first three are contalned in May's work
[18], [19], and are included only for completeness. The
last is a consequence of the work of Liulevicilus FAT ) s

and gives the multiplicative structure in H**(AE)'

Let G be a Zz-module. Recall the definifion of
the algebra of divided powers TI(G) on G. I'(G) has
generators wt(x) for each x in G and each

non-negative integer t, subject to the relations

yo(x) =k for all X.

Yol®) Yy = (32 )Vpig

vo(x+y) = 2 v (x)v, (¥) [307.
g . ris=t T L

Proposition A: Let L = P(EOAz), the graded restricted

Lie algebra of primitive elements in EOAQ, and V(L) its
associated enveloping algebra. Let r'(L) be the algebra
of divided powers on L, and X = V(L)GDIF(L). With a
bigrading, algebra and coalgebra struéture, énd differential

as defined as below, X 1is a free V(L) resolution of Z,.

Grading: For any u € L, assign degree (0, t), where
t is the degree of u in AE’ This induces a grading on

V(L), by setting grading uv = sum of gradings of u and v,
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since the Birkoff-Witt-Poincare theorem says that monomials
in the elements of L are a Z, basis for V(L). Let the
grading of vr(u) be (r,rt), where t 1is degree of

u € A2, and agaiﬂ require thét the grading of a product

be the sum of the gradings.

Multiplication: Give V(L) and TI'(L) their natural

algebra structures, and subject the tensor product to

only the following relations:

vo(W)v = vy (u) + v ([v,ul)

Von(WV = vron(w) + vy (wyy ([v,ul)vg gy (w)
Yo(u) =1 '

for all wu, Vv € L.

Diagonal map: Define D : X —> X® X by

D(b,x) = #(b)D(x) where b € V(IJ‘x e (L) and §#

is the diagonal map on V(L).

D(vr(u)) = yi(u)dpw&_i(u) if wuel and D 1is a

homomorphism on I'(L).
Differential: Define d : X = X by

d(bx) = bd(x) for b e V(L), x e L.
d(wltu)) - u for any u € i,
a(Ypn(w) = wry (WVp(n_1)(u), and

d is a derivation on (L).

Proof: The map & : X —> Z, given by e(l) =1 and

e(x) =0 forany x e X, x #1 1is clearly an augmentation.
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So we need only show dd = O and X 1s acyelle. To

show d2 = 0, 1t is enough to show 1t 1s zero on generators.
2 2
d<(u) = 0, d Tl(x) = d(x) = 0 clearly.

Aan(x) = A0V, (X)Vp( 1) (X)) = XX, ()

+ X’Yl(X)X'Yl(X)'YE(n_,g) (X) =0 + XX'Yl(X)‘Yl(S)'Yz(n_g)(X)

= x'Yl([X’X])YI(K)YE(H—E)(X) = 0, since [x,x] = O in L,

and xx 1is O in v(L).
To complete the prbof we need only show X is
acyclic. Consider the filtration Fp defined on X by
1. Fy(X) = = F(v(L))@ F(r(L)).

r+3=p = -
< Fp on v(L) given by
Fl(v(L)) = Z,u L (i.e. identity and elements of L)
F (v(L)) = (7 (v(1))®  p>1

. a
and on F(sL) by yrl(xl) v yrm(xm) e F' 1if r +...4r <q.

clearly d(F¥)< F%, so d induces a differential d  on

XO the associated graded algebra. But XO is Just

v(12) @ I'(L*) where 12 is the abelian restricted lie
algebra on the vector space L, i.e. [u,v] = u, and

g(u) = 0 for all u,v &€ 12, This follows from definitions
abo&e and from the theorem of Milnor-Moore [24] which states

that the associated graded algebra to v(L) with the above
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filtration is v(rL%). 1Ir X, 1s acyclic, so 1s X. So we
need only show XO is acyclic. To show this construct a

contracting homotopy, i.e. a map X, 0t XO = XO such that

Sodo + dos

o= I+ €9 where €_ @ Xo —> 22 is the augmentation.

o}

Since L% is abelian 12 = L1 & ise @ Lk’ where Li are

one dimensional restricted lie algebras and Xo = Xﬁgg ‘o s quk.

Since Xi is isomorphic to XJ for all 1 and J, it 1is

sufficient to show 1) there is a contracting homotopy

on Xl’ and 2) given a contracting homotopy on

dl : Xl —> Xl the differential, 5q ¢ Xl - Xl the

contracting homotopy g, ¢ Xl — 22 the augmentation.

d; and s; are defined by

a (1) = 0 | 8,(1) = 0

dy(u) =0 s,(u) = fyl(u)
dy(v,(u)) = u s1(v;(w)) = 0

dj (uyy (u)) = 0 59 (wyy (W) = vp(u)
dl(vgn(uj) = uyy (W (n.1) (W) s (wyy (u)yp,(w) = 0

for u e Ll’ the 'generator. Note d1 is the same as

d0|x® Z® ...® Z,. Clearly d

355 1

Now suppose Byt g == Z2 is the augmentation d2 the
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differential induced by do t: X > X, and s

o 9 o the

contracting homotopy for Y. Define

s =31®l+51®s

o) 2°

Note do = dl®_1 + 1 @dg.

Then doso = d181® L -+ dlal ® s, T 5D d2 tE ® d232

sodo = sldlq; 1 + sldl @SE + Sl® d2 <+ el@ sed2

adding, and noting that Eldl = dlsl = 0 we have

d S, *+ 8.8, = (dlsl + sldl)m 1+e @ (des2 + Sede)

(1+51? ®1l+e@® (l+€2) =1® 1 + &, @ &y

l+€o.

Hence XO is acyclic, and the proposition is proved.

Proposition B: Let X* be the dual of X, X* = V(L)*@ I'(L)*,
T%* — * ®* 3 * 4
and X""‘ = ZEQV(L)*X . X* is a free V(L)_ resolution of

7., and X* is a polynomial algebra on generators

2’

R(1,3) = ('yl(P(i,j)))*. The differential in X* 1is given
| 1y

by 6(R(1,])) = Jz R(i+k,J-k)R(1,k).

o s k=1 .
Proof: Everything except the last statement follows from
Proposition A and the fact that the dual of an algebra of
divided powers with the natural coalgebra structure
(1.e., that which it has) ia a polynomial algebra.

Grading X* the same as X, we have that 6(R(i,j)) must
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have grading (2,t) for some t. So the only possible
things it could be non-zero on are v (u) or yl(v)wl(v).

8(R(1,3))(vp(w)) = R(1,5)(uyy(w)) = 0.

OR(L,3) (v (wvy (v) = R(1,5)alvy (W), (v)) = R(1,9) (uvy (v) + vy (w)v)

= R(i,j)(vl([u,v]). This is non-zero iff [u,v] = P(4i,]).

Set u= P(k,x) v = P(m,n). Then [u,v] =28

k’m+nP(M,x+n?.

Therefore k=min, m=i, and X+ = J. Solving these we get
the formula above.

Proposition C: The proof of proposition C 1s divided into

two parts, the first setting up the spectral sequence, the
second calculating differentials.

Proposition CI: There is a filtration F of the reduced

Bar construction on A,, ﬁ(Ae) such that ¥ gives rise to
a spectral sequence (E") such thak

1. {E"} converges to H.,.(A,), the homology of A
NN =0 2

e B(E® as a differential graded Z, module

2. E o

1

5)
and hence

3. B = H**(EOAE), the homology of ECA

20
4, The dual spectral sequence £Er} is obtained by
dualizing everything above and

5. [Er} converges to H**(AE) the desired algebra.

B E, is isomorphic to H**(EOAQ), which we have

already computed.
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We will use the homology spectral sequence only to

calculate differentials.
Proof: First we define the filtration on B(A). Let
Fb be the augmentation filtration on A2 defined above.

An element [allazl...|an] is in F, if a; e Fbi,
n

p; £ -1, and b
1=

Py + n = p.. This filtration gives rise
il

in the usual way to a spectral sequence [Er]. Furthermore
the filtration is finlte in each degree, and hence the

spectral sequence converges to H**(AQ). Let E° = Fﬁ/ﬁﬁ-l’

to distinguish 1t from E°. The differential in the bar

construction is given by:

n
d[all...lan] = al[azi...lzn] + %l[all...laiai+1 eeea ]

i
£O - g

Therefore d(Fp)lc. Fp, hence d = 0 and

To prove 3, note that tensor product over Z2 is an exact

functor. The sequences 0 —> FP(AE) —> Ay => AR (Ay) = 0

are split exact as 22 modules, and the filtration on

ﬁ(AE) is the augmentation filtration on each factor.

Hence EX 2 B(E®A as graded Z, modules, and comparing

5)
the differentials one>sees that they are the same. Hence
3 is proved. The rest follows by dualizing.

To calculate the differentials in the cohomology

spectral sequence, we dualize to the homology spectral
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sequence, embed X in E(Ag) and compute the differentials.
Then dualize back to the cohomology spectral sequence.
In order to compute we need an embedding of X in B.

Define the shuffle product in B as follows:

[all...lam]f[am+ll...|am+ﬁ] = E [aw(l) ...Iaw(m+n)]

where the sum is taken over all permuﬁations m éf the
integers 1, ..., nn such that 1f 1 {1 < j<m or
mtc < 1 < jJ < mtn, then 7(1) < 7T(y). This 1s called an
(m,n) shuffle. |

Propésition. There 1is a monomorphism of differential

2) where X = I‘(P(EOAQ)) = Z,® V(L)X

algebras o© : X — B(A

such that

i3 q(vr(u)) =‘[u|...|ul r factors

2. o(xy) = o(x)*o(y) where u e P(EOAE), % & K

3, With the natural coalgebra structure on B,
o 1s a map of coalgebras.
This is theorem 18 of [19].

Lemma: We can trigrade E1 by El

0,4q,t where an element
L

[a,|...|an] has degree [p,q,t] if

n
1. 2 (degree of a, € Ae) =t
1=1 & -

o —
sEAe)-q.

n
2. 3 (filtration degree of a,

1=1

.

11

pHq
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Note that p < 0 always, since the filtration degree is

< =1 for each element a € IOA2 except 1. Furthermore,

the generators of E, = H**(EOAE) are in the following

trigradings:
D a £
hy 0 1 ot 1=0,1,2
oy -2 4 szttt 1) 1=1,2
B - 6 15
Y =2 4 9

Proof: Just look at the definitions of the elements.

6, ¢ Ei’q’t —> E$+r’ q+l—r,t’ so the following corollary

1ls immediate.

Corollary: 6r(hi) =0 forall i, 6, , =0 for 15> 0.

Proposition CII:

- 3 2
52(qo) = Y, By

=i B
= h,

2y 2
5n(5 ) = hyoy
and all other differentials are O.

Proof: The computations are long and messy, and are all in

May's thesils, so we give a sample computation.
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(a) 62(0'0) = h13 & h02h29

-2,4,6 ., . 3 h2n, e 50,3:6 . -2,4,6 _ £0,3,6

o, € E2 3 17 s

so everything is in the right dimension.

ao% is represented by yz(p(O,E)) 3 hy* by wl(p(l,l))
hof by vl(p(O,l)) and hef by yl(p(E,O)).
.Imbedding in E(Ag) we have

o(v,(p(0,2))) = [p(0,2)]p(0,2)]

o(vy(R; 5)) = [p(1,0)].

So (hozhg)* is represented by

x = [p(2,15jf[p(0,1)!p(0,1)] and (h13)* by

y = [p(1,1)|p(1,1) [p(2,1)1.

ax = [p(0,2)p(1,1)[p;°1 + [p(0,1)[p(0,2)p(1,1)]  and
dy = [p(1,1)p(2,1) |p(1,1)1

Now consider the chain: u € ﬁ(Ae), w = [p(2,1)1x[p(0,1)|p(0,1)]
Then du = [p(0,2)|p(0,2)] + [p(0,1)[p(1,1)p(0,2)] +
[p(l,l)p(0,2)|p(0;l)]. So in 'E(EOA) we have ‘
[0(0,2)|p(0,2)] = alp(2,1)1%[p(0,1)|p(0,1)] and therefore

2 * _ *
dy(hy hg)r =",

Similarly we get dz(hls)* = ao*, and the

other boundaries in E°, and this gives the 6, above.

Since 53 = 0, we calculate 64. For dimensional

reasons, 64(2) =0 for Z & E4 except ﬁe. For example

2 Ban |

(04

02 € E;H,S,le and 64a0 & Eg’ 0.
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(@)
52 e EI]-'O,:LE,?)O and 5452 £ El-;)-[r,9,30
h2a12 e E£4’9’3O, and it is the only element. The same
computation as above shows 64(62) = hzale. Once again
dimensional arguments give 6,, = 0 if 1 > 2.

23

Proposition D: In H**(AE), ““2 = 82_

Proof: Note first that thls is possible. In the E_ term

of May's spectral sequence, the above elements are represented

by we B HT18, g e 5781330, ang g2 ¢ 5716,24,48,

ca

Now %% 5 =0 in E_, but 1t 15 (O dn fllcration 12,

and hence it 1s possible that in H** W, = gg. Since

the only elements in H8’u8(A2) are g2 and 0, it follows
that it is sufficient to show BQ%\E # 0.

Let B be the two sided ideal in A2 generated by
Sqi for 1 =1, 2. We construct a map f:H**(AE) —> H¥**%(B),
and show that j(e%)J(&Qg) = J(ge) #Z 0, B 1is a Hopf
sub-algebra of A,, and the quotient AE/B is the module Ag.
As a vector space this quotient is isomorphic to 22 & 22,
with generators 1 and Sqq, and it has the obvious structure
as an AE module. We have the exact sequence of

1
A, modules 0 —> Z, => A" &> 2, —> 0, where 1 1s

2
multiplication by Squ, and J 1s the augmentation. Applying

the functor Ext, ( ’22) to this exact sequence, we get a
2

long exact sequence



T e

d i "
=> ExtAz(zg,ze) —> ExtAe(Ao, 7

3 o
£ ExtAE(Ze, 22) —>

o)

Liulivicius [17] has shown that Ext, (A")~ Ext (Z2,,2,) =
Ayt "o B\“22“2

H**(B), and in the same paper he computed H**(B). The

map f:H**(AE) —> H**(B) given by the composition

5 3
ol 4 ” -
H**(Ae)_ ExtAa(Zg,Zz)ap ExtAe(Ao,ze)—) ExtB(Ze,Ze) = H**(B)

is the same as that induced by the inclusion of B into

A Hence 1t is a ring homomorphism.

2.
In Wit 1s shown that there is an element k in
H1’6(B) such that k* # 0 for any positive integer r.

By constructing minimal resolutions for over A2 for

Z, and A", and 1ifting the map 3, one finds that

TR) = k3, 3( &2) - k5, and 3‘(5;;2) = ku. Hence the

2

result follows.
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TABLE 1

i
Ex‘i’s,_(zz, 2.) for t-s<2b
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