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ABSTRACT
CONSTRAINED STOCHASTIC CLIMATE SIMULATION

by
DAVID CARLETON CURTIS

Submitted to the Department of Civil Engineering
on May 10, 1982, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Water Resources

A stochastic, multivariate, hydrometeorological data
generation algorithm is presented. Hourly values of
precipitation, cloud cover, shortwave radiation, longwave
radiation, temperature, dewpoint, wind speed, and wind
direction are jointly generated for the two-meter level.
The procedure is designed to provide coherent sets of input
data for models of various land surface processes. The
model's flexibility and economy allow the study of land
surface responses to different atmospheric forcings.

Generated data plots, model output statistics, and
generated mean diurnal curves are compared to observations
for the months of January and July at two sites, Boston,
MA and Dodge City, KS. Data representing three ''climates",
normal, wet, and temperature-biased, were generated and
applied to a detailed model of the land surface. The
resulting energy fluxes across the land-atmosphere inter-
face are reviewed and the differences are noted.

Thesis Supervisor: | Peter S. Eagleson

Title: Professor of Civil Engineering
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NOTATION

bulk transfer coefficient for sensible heat
bulk transfer coefficient for momentum

bulk transfer coefficient for water vapor
Julian day

water vapor flux

heat flux into the ground

sensible heat flux

clear sky shortwave radiation

insolation

total direct and diffuse shortwave radiation
eddy transfer coefficient for heat

eddy transfer coefficient for momentum

eddy transfer coefficient for water vapor
radiation attenuation factor

Monin-Obukhov length

turbulent latent heat diffusion into the atmosphere
mean fairweather cloud cover

cloud cover

mean cloud cover for all inter-storm periods

intermediate mean cloud cover during inter-storm
periods

atmospheric pressure
cloud cover transition function

observed cloud cover transition
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NOTATION

time of local sunrise

longwave radiation

total reflectivity of the ground
Richardson number

bulk Richardson number

net all wave radiation
"fairweather'" region

time of local sunset

cloud transition period

temperature

dewpoint temperature

deterministic temperature component
stochastic component of temperature
mean hourly dewpoint temperature
deterministic component of dewpoint temperature
dewpoint deviations

ground surface temperature

mean wind direction

predictors in temperature regression equation
hourly temperature change

solar constant

wind direction
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NOTATION

mean wind speed

wind speed

friction velocity

regression coefficients

molecular scattering factor -

mean atmospheric transmission coefficient for
cloudless,ldust~free, moist air after scattering

only

coefficients of differential equation for
temperature

specific heat of air
total dust depletion

depletion coefficient of the direct solar beam
by dust absorption

regression coefficients for dewpoint temperature
zero displacement plane

depletion coefficient of the direct solar beam
by dust absorption

atmospheric vapor pressure
saturation vapor pressure
relative humidity
acceleration of gravity
storm depth

von Karmon constant

relative thickness of the air mass
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NOTATION

elevation adjusted optical air mass
cloud cover deviations

turbidity factor

specific humidity

longwave radiation

ratio of actual earth-sun distance to mean
earth-sun distance

ds(t)/dt

sine of solar altitude

time between storms

arbitrary initial time

storm duration

mean monthly precipitable water
elevation

empirically determined adjustment factor
for sensible heat profile

empirically determined adjustment factor
for wind profile

random input for wind direction

empirically determined adjustment factor
for water vapor profile

angle of radiation

(mean time between storms)_l

cloud cover decay coefficient - approaching
storms
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NOTATION

skew coefficient of €4

skew coefficient of wind speed
(mean storm durza.tion)'1
declination of the sun
effective atmospheric emittance

random deviate

cloud cover decay coefficient - receding storms

standard normal deviate
(mean storm depth)-1
mean monthly surface dewpoint

is -1 for West longitude
is +1 for East longitude

atmospheric density

lag-1 serial correlation coefficient of
wind direction

lag-1 serial correlation coefficient for
dewpoint temperatures

lag-1 serial correlation coefficient of
wind speed

cloud cover serial correlation function

lag-1 serial correlation coefficient for
stochastic component of temperature

lag-1 serial correlation coefficient of
dewpoint deviations

Stefan-Boltzman constant

standard deviation of hourly dewpoint temperature



13

NOTATION

standard deviation of wind direction

variance of the fairweather cloud cover

standard deviation

standard deviation
of temperature

standard deviation
shear stress, hour

serial correlation
of integration

of wind speed

of stochastic component

of dewpoint deviations

angle of sun, lag in a
function, dummy variable

shear stress of surface

local latitude

standard normal deviate
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CHAPTER 1

INTRODUCTION

1.1 Overview

Motivation for the research outlined in the following
report is the growing need to provide high resolution hydro-
meteorological data for various computer simulation models
of the physical processes taking place near the land sur-
face. Subjects for such modelling include the transfer
of heat and moisture across the land-atmosphere inter-
face, plant growth, plant disease propogation, insect in-
festation, irrigation management, and crop forecasting.

Each of these modelling efforts is becoming more sophis-
ticated as our knowledge of the individual processes grows.
Many of the processes are related, and efforts to couple
related models are being made to study larger and more
comprehensive land surface systems.

Data requirements of these studies include: precipi-
tation, radiation, cloud cover, temperature, humidity, wind,
etc. For many models, data at hourly intervals 1is highly
desirable. This time resolution may be necessary when study-

ing diurnal effects.
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Previously, researchers had only historical obser-
vations from which to draw a statistically coherent set of
input data. While it is true that observed data are the
only data where all of the variable interactions survive
intact, a researcher using such data is limited to a given
set of statistics. If, for instance, a researcher wants
to study the effect of a fundamental change in the statis-
tical parameters of one input ‘variable on a land surface
process, there exists no rational way to modify the other
inter-related input variables whose statistics would nat-
urally be changed by the shift. For example, if the number
of storms was to be increased, how would cloudiness, temp-
erature, and incoming shortwave radiation be adjusted to
accomodate the change?

The physical linkages between the variables that re-
flect the flow of heat, moisture, and momentum across the
land-atmosphere interface are complex. Figure 1.1 pro-
vides some insight into the nature of these inter-relation-
ships. It is clear that simple scaling of one variable
would not be sufficient to realistically study the sys-
tem-wide responses. A more sophisticated adjustment pro-

cedure is required.
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Data could possibly be generated by existing computer
models of planetary weather dynamics. Changing boundary
conditions would produce a number of different weather
scenarios which would provide the appropriate data. How-
ever, for most cases, the computer costs of this approach
are still prohibitive.

Another approach would be to create data using multi-
variate stochastic generation techniques. However, severe
non-stationarities, discontinuities, and unusual data dis-
tributions inhibit the application of multivariate tech-
niques as they have traditionally been applied in hydrology.

Because of these problems, very few researchers have
successfully developed algorithms to stochastically generate
several weather variables simultaneously. Those that exist
make some extreme simplifying assumptions, smooth the data,
are applicable only at three or four specified times per

day, and in general, are quite inflexible.

1.2 Multivariate Climate Data Generation: Previous Work

Kim (1976) generated time series of precipitation and
temperature for use in snowmelt forecasting. However, he
was able to show that, in his case, temperature and precipi-
tation were statistically independent, greatly simplifying

the problem.
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Jones et.al. (1970) formulated an algorithm to generate
rainfall, daily average temperature, and daily evaporation
of water. The functional relationships among his weather
variables can be summarized as

Rainfall = f(time of year, previous rainfall)

Temperature = f(time of year, current rainfall)

Evaporation = f(time of year, current rainfall,

previous rainfall)

The approach of Jones et.al. was to analyze the histor-
jcal data and use fitted high order polynomials to predict
probability distribution parameters (e.g. means and var-
jances) for each variable as a function of the week of the
year. Polynomial equations were obtained based on the
occurrence or non-occurrence of rainfall. For example, one
equation predicting mean daily temperature was developed for
dry days and another equation was developed for wet days.

A similar approach was used to calculate the standard devia-
tion of daily temperatures. The stochastic nature of daily
temperature was then simulated by sampling from a normal dis-
tribution of temperatures having the derived mean and standard

deviation for that particular day.
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The approach of Jones et.al. considers only the day-

to-day variations of

the primary variables. Time varia-

tions of much less than one day are needed.

Ahmed (1974) developed a program to generate rain-

fall, ambient temperature, air humidity, short and longwave

radiation, and wind speed to use in a dynamic simulation

of crop behavior. The weather variable inter-relationships

as specified by Ahmed were

Rainfall =

Radiation

Wind speed

Temperature

Air humidity =

The description

f(location, probability of rainfall

for current day)
f(location, time of day, time
year, rainfall for the day,
or cloudy conditions)
f(location, time of day, time
f(location, time of day, time
rainfall for the day, clear

cloudy conditions)

of

clear

of year)

of year,

f(location, rainfall for the day, air

temperature)

of Ahmed's functional relationships make

this algorithm appear quite attractive, but his formula-

tion and execution of them do not have the desired resolution

and flexibility.
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Rainfall is generated on a daily basis. No consid-
eration is given to storm duration and hence to storm in-
tensity.

Cloud cover, which is one of the most important ingred-
ients in determining the surface energy balance, was
treated by Ahmed as a binary variable. That is, cloud
conditions were assumed to be either fully overcast or
clear, nothing in between.

Ambient temperature was computed by generating weekly
means. Empirical equations were used to convert weekly
means to temperatures at 8:00 AM, 12:00 Noon, and 4:00 PM
for each day of the week.

Two simplifying assumptions were also used in Ahmed's
temperature formulation: 1) ambient temperature decreases
in direct proportion to the amount of rainfall, and 2)
the probability of clear or cloudy sky on any day was
assumed proportional to the rainfall probability of that day.

Nicks (1975) deveioped a model to generate values for
daily rainfall, daily minimum and maximum temperatures,
and daily solar radiation. Rainfall was generated by a
Markov chain process. The temperature and radiation data
were generated individually by lag-1 Markov processes

conditioned by current and preceding wet or dry days.
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Probably the best effort thus far to jointly generate
a set of meteorological data was presented by Richardson
(1981). Richardson developed a procedure to generate
daily precipitation, maximum temperature, minimum temper-
ature, and solar radiation. Precipitation was generated
independently using a Markov chain. Daily max/min temper-
atures and daily radiation data were generated using a
multivariate model with means and standard deviations con-
ditioned on the occurrence of wet or dry days. In this
manner, Richardson was able to preserve the inter-relation-
ships among the four variables.

For most of the models reviewed, time resolution was
on the order of one day. No multivariate hydrometeoro-
logical data generation algorithms with time resolution as

low as one hour have been found in the literature.

1.3 Constrained Stochastic Climate Simulation

The result of the current research is a computer model
to stochastically generate ten hydrometeorological variables

with hourly resolution. Included in the variable set are

1 time between storms 6. longwave radiation
2. storm duration s temperature

54 storm depth 8. dewpoint temperature
4, cloud cover 9. wind speed

5w shortwave radiation 10. wind direction
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The general approach in constructing the model was
to develop a set of stochastic elements that could be
coupled and thus constrained by deterministic relationships
in order to preserve as much of the important cross-corre-
lations as possible. At the same time, the individual
stochastic elements were designed to provide time series
whose statistical properties approximate historical values.

To accomplish this task, several major hurdles had to
be overcome. The two most important dealt with the genera-
tion of hourly cloud cover and the generation of hourly
temperature.

Hourly cloud cover is a highly non-stationary variable.
The first and second moment properties are obviously quite
different during an intra-storm period than during an
inter-storm period. A model was required that constrained
cloud cover during storm events, provided for the proper
transition into and out of storm periods, and permitted
the occurrence of total cloud cover during an inter-storm
period.

A technique was developed that allows the generation
of a time series whose mean and variance at a given point in
time are allowed to vary in a controlled fashion. This

technique is an essential ingredient in providing much of



2.7

the desired coordination between precipitation occurrences,
cloud cover, short and longwave radiation, and. temperature.
It allows the "ripple" effects that would result from a
change in precipitation statistics to be felt throughout
the generated data set.

Hourly temperature also exhibits pronounced non-sta-
tionarities, both diurnally and seasonally. To attack this
problem, a new methodology is used that 1is based on an
expansion of ideas presented in an unpublished report by
Bryan (1964). The technique generates hourly temperatures
as :a function of the previous hourly temperatures, short
and longwave radiation, wind speed, and wind direction.
(Provision was made to include a link to ground temperatures
as well). Stochasticity is introduced by cloud cover as
it affects short and longwave radiation and by superimposing
a serially correlated series of random deviations on the
calculated temperature.

The resolution of the cloud cover and temperature pro-
blemé formed the framework that allowed the remaining ele-
ments to be knitted together to form a rational model. The
model has been named Constrained Stochastic Climate Simu-

lation (CSCS).
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Chapters 2 - 8 present the theoretical development
for each component of the CSCS model. Parameter estimation
is discussed in Chapter 9. The results of four data gen-
eration experiments using the CSCS model appear in Chap-
ter 10. The model has been tested for two time periods
of the year, January and July. These two months were chosen
because they correspond to a common procedure of January-
July comparisons in the climate-modelling literature and
because they represent two significanly different weather
regimes. '

Two different geographical locations were tested:
1) Boston, Massachusetts, and 2) Dodge City, Kansas. Coas-
tal and continental climatic regimes are represented
respectively by these locations.

Output from the CSCS model was also used as input to
a detailed model of the land surface (Milly, 1982) to
show its applicability to studies of land surface response
to various meteorological forcings. (Chapter 12).

The CSCS model generates data that is representative
of the 2-meter level. The land surface model used in Chap-

ter 12 requires data at the surface or zero-meter level.

Chapter 11 describes how the CSCS model is linked to the land
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surface model through the surface boundary layer. Stable,
unstable, and neutrally stable atmospheric conditions are
accounted for in establishing the various flux profiles.

In this project, the generated atmospheric data were
used to directly force the land surface model. Feedbacks
from the land surface model to the atmosphere are not
explicitly accounted for, although the potential for coupling
is built into the CSCS model.

By not accounting for the feedback mechanisms in
this application, the CSCS-land surface system is in
effect an "island'" model. This means that the data repre-
senting the 2-meter atmospheric level at a point are unaf -
fected by the local land surface conditioms. The natural
analogy for this situation would be a small island whose
land surface processes were being forced by a meteorological
data set that derived its properties from the areas
surrounding the island.

Perhaps the most attractive feature of the CSCS model
is its efficiency. On a DEC-10 time-share computer sys-
tem, twelve months of hourly data can be generated in less
than one CPU minute. Overall, the CSCS model should be an
effective, flexible, and cost efficient tool to use in a
wide variety of studies that require large amounts of

hydrometeorologic data.
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Chapter 2

PRECIPITATION MODEL

2.1 Introduction

Many stochastic precipitation models have been devised
over the years to serve a variety of needs. The character
of these models ranges from the simple to the complex. Each
model attempts to satisfy certain statistical properties that
are observable in a historical data base and are important
to a particular application. Most of the precipitation models
used in hydrologic applications, including those used in the
multivariate weather data generators discussed in Chapter 1,
describe the occurrence of daily precipitation. Kavvas and
Delleur (1975) and Nicks (1975) provide good surveys of
stochastic models of precipitation that appear in the liter-
ature.

Generally, these models describe the precipitation
phenomenon in two stages. First, some sort of determination
is made to decide if a wet or dry period has occurred. Second,
if a wet period has occurred, the amount of precipitation
for the period is computed.

For the current application, a precipitation model is

needed that can yield data with hourly resolution, yet not
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overburden the project computationally. One model that sat-
isfies these requirements is an alternating renewal process
for independent, alternating wet and dry periods used by

Grayman and Eagleson (1969).

2.2 Grayman-Eagleson Precipitation Model

Grayman and Eagleson found that a respectable sequence
of synthetic rainfall data could be created by modelling the
times between storms, tb’ storm durations, tr’ and the
total storm depths, h. Detailed investigations of observed
storm sequences by Grayman and Eagleson showed that storm
durations and times between storms could be treated as inde-
pendent events, but that storm depths were highly dependent
on storm durations. Grayman and Eagleson also found that
times between storms and storm durations could often be
described as being exponentially distributed. Storm depths
were found to follow a gamma distribution when conditioned
by storm duration. Thus, the precipitation model can be
expressed by successive sampling from the probability den-
sity functions (pdf) described by the following equations

Time between storms - pdf

£(t,) = e Bt , ty 20 (2.2-1)

where B = (mean time between storms)_1
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Storm duration - pdf

-8t
£(t) =6e T, tpx 0 (2.2-2)

-1
where 8§ = (mean storm duration)

Storm depth given storm duration - conditional pdf

§t_-1 -nh
- n(nh) e -
f(nhlatr) T(5ED) , h >0 (2.2-3)
-1
where n = (mean storm depth)

The solution procedure is as follows. At some initial
time, say t, generate a time between storms, t.. Once ty is
known, the period (to,t0+tb) is considered dry with the
hourly precipitation set equal to zero. Next, when time, t,
reaches ty * tyo the storm duration, t.s is selected. The
period (t0 + tb, ty * ty * tr) is then considered wet. Using
the value just computed for t., a storm depth is selected
from the distribution described by Equation 2.2-3. When time

reaches ty * ty + t the process is repeated to determine the

r?

next storm sequence.
Presently, a uniform precipitation rate is assumed. Later

versions of the CSCS model could easily contain an algorithm

to provide variable intrastorm precipitation rates. But for

now, hourly precipitation is found by dividing storm depth,

h, by storm duration, t

T
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2.3  Data Generation

The data generation technique used for the exponen-
tial distributions of Equations 2.2-1 and 2.2-2 is straight-
forward and is described in Appendix A.

Generation of gamma distributed variates 1s not as easy.
Direct selection of a gamma variate is complicated by the fact
that the gamma probability density function cannot be anal-
ytically inverted. Therefore, indirect methods are required.

If the parameters of the gamma distribution are integer,
a gamma variate can be determined by summing variates chosen
from exponential distributions. However, the parameters of
Equation 2.2-3 will generally be non-integer.

The method used by Grayman and Eagleson (1969) to gen-
erate a gamma variate, nh, involved a mixture of techniques
depending on the value of the product Str. Basically, the
authors used a method of summing exponentially distributed
variates when 6t >1 and a numerical integration technique
when 0<ét_<1. The reason for using a different technique
when 6t£31 results from the fact that for 0<8t_<1, the
peak of the gamma distribution is located at nh = 0, but its
magnitude is undefined. The situation where t_ is less than

one occurs often, meaning that the numerical integration pro-
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cedure is used frequently. A more efficient procedure to
generate gamma variates is desired.

Curtis (1978) investigated three alternative techniques
to generate gamma distributed variates. The first technique
considered was a purely numerical technique used by Thom
(1968) to generate direct and inverse tables of the gamma dis-
tribution. The second technique considered was an acceptance-
rejection technique developed by Curtis (1978) that followed
procedures outlined in Abramowitz and Stegun (1970). The
third technique considered was another acceptance-rejection
method presented by Fishman (1973);

Fishman's approach was by far the most efficient and
worked for both integer and non-integer distribution para-
meters. The solution procedure for the Fishman technique is

given in Appendix A.

2.4 Summary

With the implementation of the Fishman technique to
generate gamma variates, a very efficient precipitation gen-
erator results. One big computational advantage is that this
precipitation model yields hourly values, yet is only run
aperiodically. In each dry-wet cycle, the precipitation

model is '"turned on" only two times. First at tys @ time
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between storms is selected. Second, at tO # tb, a storm dur-
ation and a storm depth are computed. The rest of the time,
the only computation that occurs is a simple check to determine
if a new time between storms or a new storm duration is re-
quired. If no new variate is required the entire generation
scheme is skipped. This contrasts with other methods, such

as Markov Chain techniques, that require a solution of the
generating scheme at each time step.

Another advantage of this particular precipitation model
results from the generation of the'time between storms, tb'

By knowing the times that storms begin, (and end for that mat-
ter), explicit and continuous coordination between the preci-

pitation ﬁodel and other CSCS components such as cloud cover,

temperature, solar radiation is possible.

Previous investigators who have attempted to develop mul-
tivariate meteorological data generators have all recognized
this coordination problem as manifested by the differences
between meteorological variables on dry days as opposed to wet
days. Different sets of equations had to be developed as
"special cases'" depending on whether a particular day was

wet or dry. As will become clear in later chapters, the
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information provided by the precipitation model allows the
development of a generalized set of equations that operate

for all times, wet or dry.
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CHAPTER 3

CLOUD COVER MODEL

3.1 Introduction

The evolution of cloud cover plays a critically im-
portant role in the flux of heat and moisture at the land
surface. Energy balances are greatly affected as cloud
cover continuously alters the transmission and reflection
of radiant energy. Of course, cloud cover is also asso-
ciated with precipitation inputs to the land surface
moisture balance. Yet, cloud cover as a stochastic pro-
cess has received very little treatment in the hydrologic
literature.

Where studies have been performed, (Gringorten, 1971
and 1966; Fox and Rubin, 1965; Chargnon and Huff, 1957) cloud
cover has been treated independently of other meteorologic
processes. Developers of the various multivariate climate
data generators discussed in Chapter 1 circumvented this
issue by modelling net solar radiation, temperature, etc.
The only time the effect of cloud cover was even implied in
these works was through the development of separate sets

of generating equations for wet days and for dry days. The
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lower temperatures and solar radiation levels on wet days
implied the presence of more cloud cover than on dry days.
When interest is in the association of cloud cover and
precipitation, the underlying modelling philosophy has
been to follow the mechanics observed in the atmosphere.
That is, clouds must be present prior to establishing the
quantity of precipitation. However, as many meteorolo-
gists will say, one of their most difficult tasks is to
predict total precipitation amounts when presented with a
given atmospheric situation having precipitation potential.
In the following sections, a new approach will be
used to model cloud cover as a stochastic process. The
new technique overcomes many of the difficulties previous
researchers have encountered when jointly generating meteor-
ological data. It allows the establishment of the essen-
tial relationships between the meteorological variables of

interest.

3.2 General Description

Cloud cover, N(t), is a process that is bounded by
0 (clear sky) and 1 (overcast). Cloud conditions between
these two extremes are reported in tenths. Thus, the
observed cloud cover data set includes 0., .1, .2, ... .8,

.9, and 1.0.
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Since the precipitation model divides time into two
states, an inter-storm period and an intra-storm period,
it seems reasonable to use some of this information to con-
strain the cloud cover model to conform to a certain set of
conditions. One obvious condition that can be imposed
immediately is that during an intra-storm period Rdow® »
(t0+tb,t0+tb+tr)) ploud cover is total (i.e., N(t) = 1.0).
This leaves only the inter-storm period within which to
generate cloud cover.

To develop cloud cover during an inter-storm period,
first consider N(t) as a random process. Next, consider the
expectation of N(t) conditioned on the time between storms,
ty (i.e. E(N(t)[tb)). If the process, N(t), is examined near
the beginning or near the end of an inter-storm period,
E(N(t)ltb) would be close to 1.0. Whereas, if the process
is examined near the middle of the inter-storm period,
E(N(t)ltb) would usually be quite different from 1.0. Ob-
viously, N(t) is non-stationary.

The nature of the precipitation model discussed in
Chapter 2 presents an interesting feature to the development
of a cloud cover model. Generally, in simulation problems,

only the past states of the system are known. The only
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thing known about the future is implied from the assumption
that the statistical properties of future responses of the
physical process being modelled will be identical to those
observed in the past. In this problem, however, one future
state is always known. Since the time until the next storm
is part of the output of the precipitation model, the

state N(t0+tb) = 1.0 is always known in addition to the past
history of-the system states.

The cloud cover process as defined here is very sim-
ilar to the classic Dirichlet problem in mathematics.

There a differential equation is constructed to describe a
process that occurs within a bounded region. The solution
is known initially and the solution at the boundary is
known for all time, t, of interest. A solution is desired
within the specified region.

The development of the cloud cover model will follow
along the lines that are used to solve boundary value problems
in differential equations. The proposed procedure 1s to
acknowledge and analyze the properties of the function at
the boundaries, infer the existence of properties of the
function on the interior of the region, and select one of
a possible set of solutions that satisfies thg prescribed

interior and boundary conditions.
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and Boundary Conditions

Boundary
process occur

the beginning

conditions of the inter-storm cloud cover
at the end of the previous storm event and at

of the next event. At these times N(t) = 1.0.

Overcast conditions (i.e. N(t) = 1.0) will not be precluded

from inter-storm periods. However, no rainfall will be

associated with the inter-storm overcast conditions.

From a statistical point of view, it is important to

determine the moment properties of the process at the

boundaries.

The first moment, or the conditional expec-

tation of N(t) with respect to t  at the end of the pre-

vious storm is

E(N(ty) |ty) = 1.0 (3.3-1)

since N(to) is completely deterministic. Similarly, at

t=t0+tb

E(N(t0+tb)]tb) = 1.0 (3.3-2)

The second moment or conditional variance at the

boundaries will be

VAR(N(tq) |ty) = 0 (3.3-3)

and
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VAR(N(ty+ty ) [ty) = 0 (3.3-4)

since the process is completely deterministic at the boun-
daries.

In the interior of the inter-storm region, imagine
that the given tg is long enough that there exists a sub-
region, R¥*, loosely centered around the midpoint of the
inter-storm period in which the process N(t) can be
assumed stationary. Thus, the first and second moment prop-

erties of N(t) when teR* are

E(N(t)[tb) = E(N(t)) = M, {3:53-5)

and

2

- {3:3-6])

VAR(N(t)ltb) = VAR(N(t)) = o

This implies the existence of a '"fairweather' cloud cover
process that is relatively unaffected by approaching or
receding precipitation-producing systems.

Now that the existence of specific first and second
moment properties of the process at the boundaries has been
established and the existence of first and second moment
properties in a sufficiently large interior region has
been inferred, it is further suggested that there exists

a smooth transition of moment properties from the boundaries
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to the interior region.

There may exist a whole set of solutions satisfying
the established or inferred boundary and interior condi-
tions. It is not the purpose here to find all or even a
part of the set of possible solutions. It is sufficient

to find just one that works.

3.4 Solution Development

One candidate solution is the function
N(t) = M0 + (1-M0)(1—P(t)) + m(t)P(t) (3.4-1)

where MO is the "fairweather'' mean yalue of N(t), P(t)

is the transition function, m(t) is the stationary se-

quence of correlated deviations with E(m(t)) = 0, VAR(m(t))

= Omz and serial correlation function pm(T),where T is lag.
Since by definition, MO’ E(m(t)), and VAR(m(t))

are not functions of time, the properties of the transi-

tion function must induce Equation 3.4-1 to meet the required

boundary and interior conditions. At the boundaries, N(t)

becomes
N(ty) = N(tg+ty) = 1 (3.4-2)

By inspection of Equation 3.4-1 with N(t) = 1, the following

.is required of P(t)

P(to) = P(t0+tb) = 0 (3.4-3)
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Before proceeding further, the first and second
moments at the boundaries of the process defined by Equa-
tion 3.4-1 will be verified. The conditional expected

value of N(t) 1is
E(N(t)ltb) = E(M0+(1-MO)(1-P(t)) + m(t)P(t)) (3.4-4)

For more detail refer to Appendix B. Completion of the
operations indicated in Equation 3.4-4 leads to the expres-

sion for the time varying conditional expectation of cloud

cover.
E(N(t)ltb) =My + (l-MO)(l—P(t)) (3.4-5)

Substitution of Equation 3.4-3 into Equation 3.4-5

at t, and tytty yields
E(N(to)ltb) = E(N(t0+tb)|tb) =1 (3.4-6)

as required by Equations 3.3-1 and 3.3-2.
Equation 3.3-5 specifies the requirement for
E(N(t)]tb) when teR*. Substitution of Equation 3.3-5 into

Equation 3.4-5 gives

My = Mg + (I-MD)(l-P(t)) (3.4-7)

or

(l-MO)(l-P(t)) =0 (3.4-8)
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In order to have a meaningful solution, Equation 3.4-8

requires that

(1-P(t)) =0 , teR*¥ (3.4-9)
or

P(t) =1 , teR¥ (3.4-10)
Thus, a second condition has been inferred for P(t).

The second moment property of Equation 3.4-1 is found

by
VAR(N(t) |t,) = E(NY ()| t,) - EZ(N(t) | ty) (3.4-11)

Again the reader is referred to Appendix B for the details
of evaluating Equation 3.4-11. Evaluation of Equation

3.4-11 leads to
VAR(N(t) [t,) = o "P (1) (5.4-12)

To verify Equation 3.4-12 at the boundaries, substitute

Equation . 3.4-3 into Equation 3.4-12. Thus,
VAR(N(tO)[tb) = VAR(N(tO+tb)Itb) =0 (3.4-13)

as required by Equations 3.3-3 and 3.3-4.
For the interior region, Equation 3.4-10 can be sub-

stituted into Equation 3.4-12 to show that
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VAR(N(t) |t ), px = o ? (3.4-14)

as required by Equation 3.3-6.
It has now been demonstrated that Equation 3.4-1 can
be a desirable solution to the cloud cover problem if the

transition function P(t) has the following properties

P(t = P(t0+tb) =0 (3.4-15)

o)
P(t) = 1 when teR¥ (3.-4-16)

One such function that satisfies the conditions of

Equations 3.4-15 and 3.4-16 has the form

‘C(t'to) 'Y(t0+tb't))

P(t) = (1 - e 3l = = (3.4-17)

where ¢, Y are decay coefficients controlling the transi-
tion rates from the boundaries to R*._ r would apply to
receding storms and y would apply to approaching storms.
These transition rates could be different values, but for

convenience, Y and ¢ are assumed equal. Thus

vy (t-ty) Sy (ty+ty - t)
P(t) = (1 - e TR0 - e 0 "b 7, (3.4-18)

To verify that Equation 3.4-18 satisfies the condi-

tions set forth by Equations 3.4-14 and 3.4-15, the func-
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tion is evaluated at tO* ty*tys and teR¥*.

At t,
¥ (tn=ty) -y (ty+ty-ty)
Pit) = (L -e 0 Pha-e 0P 0
'Y(tb)
= LIFU - » )
P(ty) = 0 (3.4-19)
At t0+tb
-y(ta+tty-ts) -Y(ta*rt -ttty )
Pltgrt,) = (1 - e @ 0 R DA M IRCIRLES
-Yt,,
=1 -e Pya-n
P(ty*ty) = 0 (3.4-20)

Finally, when teR*

Lim P(t) =1
ty > (3.4-21)
Equation 3.4-21 suggests that the condition of Equation 3.4-16
is met only in the limit as P However, this is not a
problem since, for all reasonable values of v, P(t) will

reach a value close to 1.0, say 0.99, sufficiently soon to

permit practical application of the function. The value

chosen for y will be discussed in Chapter 9.
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Another feature of the function N(t), that is shown
in more detail in Appendix B, is the serial correlation
function. The auto-correlation function of the cloud

cover process defined by Equation 3.4-1 1is

pn(t) = pp (1) [Sx#=22)

where pm(T) is the serial correlation function of the
correlated random process, m(t). So, while the mean and
variance of the cloud cover are controlled or modulated by
the time varying function, P(t), the serial correlation

function is unaffected.

3.5 Stationary Deviations Process

The stationary deviations process, m(t), is taken

to be a simple first order Markov process defined by

m(t) = pp(1)m(t-1) + n(e)vl-pp(1) (3.5-1)
where
pn(1) = lag-1 correlation coefficient
n(t) = random deviate with
E(n(t)) = 0

2

VAR(n(t)) = Om
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In order for Equation 3.5-1 to be an appropriate model
for the process, the auto-correlation structure of the

natural process must follow
oy (1) = oy (1) (3.5-2)

It turns out that the observed data used in this study
follows Equation 3.5-2 sufficiently well to warrant the
use of Equation 3.5-1 in the cloud cover model (See

Figures 3.1-3.2).

3.6 Summary

A cloud cover model has been developed that satis-
fies a prescribed set of requirements during both inter-
storm and intra-storm periods. A continuous transition
from one set of conditions to the next is provided. The
first and second moment properties of the cloud cover
process are allowed to vary in a controlled fashion, while
the auto-correlation structure is not affected by the
transition function.

The process is capable of producing values that are
less than zero or greater than one. Model output w1l

however, be constrained to 0<N(t)<l. Actually, the fact



50

DODGE CITY, KS.

JANUARY 1952-1958

1 0 —LAG -1 MARKOV
o OBSERVED

SERIAL CORRELATION

LAG(HR)

10 DODGE CITY, KS.
' JULY 1951 1957

5 | — LAG-I MARKOV
= 08— o OBSERVED
o

oo 0.6

o

o

© 04|

-

<

@ 02—

o)

2 4 6 8 10 12 14 16 I8
LAG (HR)

Figure 3.1 Fairweather Cloud Cover Serial Correlation

(Dodge City, KS)



51

BOSTON, MA.

LG JANUARY 1949-1962
> -
& — LAG -1 MARKOV
5 B o OBSERVED
-l
& o6l
m "
o)
O agf-
4
¢
o s
@& 02
wn

LAG (HR)
L0 BOSTON, MA.
JULY 1951—1963
o8 —— LAG—| MARKOV
o OBSERVED

SERIAL CORRELATION
o
(*)]
I

"LAG (HR)

Figure 3.2 Fairweather Cloud Cover Serial Correlation

(Boston, MA)



that the model described by Equation 3.4-1 can generate

values outside the valid range for N(t) is an advantage.
It mimics the real atmosphere in the sense that the real
atmosphere can assume a range of conditions with a clear
sky, as well as with a totally cloudy sky.

Cloud cover viewed by a weather observer is just
the manifestation of a set of atmospheric conditions that
allows the formation of clouds. A clear sky is not just
one atmospheric state, but a whole continuum of states
"below" the cloud formation threshold. The atmosphere
may be just below the cloud formation threshold or it may
be well below the threshold and require the completion of
a series of evolutionary atmospheric processes in order
to form clouds again.

Similarly, overcast sky is not one state, but a con-
tinuum of states beyond the point where the sky is totally
obscured. Total cloud cover may exist as a single very thin
layer, a single very thick layer, or multiple layers of
variable thickness and cover. A series of events must occur
at the various atmospheric levels to cause the clouds to
break up again.

Parameter estimation for the cloud cover model will be

discussed in Chapter 9.
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Chapter 4
SHORTWAVE RADIATION MODEL

4.1 Introduction

One of the most important variables in the surface energy
balance is, of course, solar or shortwave radiation. Solar
input ié highly variable and nonstationary, both daily and
seasonally. The shortwave radiation model proposed in the
following sections will be used to generate hourly values of
solar input at any time of the year.

Since, for all practical purposes, the sun radiates its
energy at a constant rate, much of the variation in the amount
of radiant energy actually intercepted by the earth can be
described by the mechanics of earth's rotation about its axis
and by its orbital path about the sun. The equations des-
cribing the earth's motion are well known and straightforward.

The real difficulty lies in the description of what
happens to the shortwave radiation as it passes through the
earth's atmosphere on its way to the surface. A multitude of
particulate and molecular atmospheric constituents scatter,
reflect, and absorb radiant energy. Analytical evaluation of
these effects is all but impossible. Fortunately, a number

of empirical relationships have evolved through observation
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and experimentation that allow estimates of radiation finally

reaching the earth's surface.

4.2 Shortwave Radiation

As mentioned previously, the sun radiates energy at a
nearly constant rate. The average intensity of solar radiation
received on a plane unit area normal to the incident radiation
at the outer limit of the earth's atmosphere is called the
solar constant. A commonly used value for the solar constant,
Wbo’ (Eagleson, 1970) 1is:

_ -2 . =1
Wb0 = 2.0 cal-cm ~-.min

S (4.2-1)
The portion of wbo incident on a horizontal surface is
generally of more interest and is referred to as insolationm,

L, s
o]

W
_ bo _. -
I0 = —— sina (4.2-2)

H

The solar altitude or angle of radiation, o, with the horizon-
tal is given by

sino = sindsin¢ + cosdcos¢coOsT (4.2-3)
where 8 is the declination of the sun, ¢ is the local lati-
tude, and Tt is the hour angle of the sun. The variable r is
the ratio of actual earth-sun distance to mean earth-sun dis-

tance and is given by (TVA, 1972)
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r=1.0 + 0.017 cos [%%g (186-D)} (4.2-4)

where D is the Julian day (i.e. 1 < D < 365 or 366).

The sun's declination varies throughout the year and from
year to year. Hence, declination values are usually pub-
lished in tabular form (List, 1963). However, an approxi-
mation formula that is sufficiently accurate for heat trans-
fer computations is available (TVA, 1972). Thus

§ = 23T cos [%%g (172—D]J (4.2-5)
The local hour angle, T, can be computed from

T = ST + 12 - DTSL + ET (4.2-6)
when the sun is east of the observer's meridian and from

T = ST - 12 - DTSL + ET (A:2-7)
when the sun is west of the observer's meridian. The var-
iables in Equations 4.2-6 and 4.2-7 are defined as

ST = standard time in the time zone of the observer
in hours counted from midnight (e.g. 0:00<ST<

25:59).

DTSL time difference between local and standard meri-
dian in hours
= S-(LSM-LLM)

where £ is -1 for WEST longitude, £ is for +1 for
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EAST longitude, LSM is the longitude of the stan-
dard meridian and LIM is the longitude of the ob-
server's meridian.

ET = difference between true solar time and mean solar

time in hours. (Usually neglected for heat trans-

fer computations . ET 0 here).
The total radiation for a given period, At = t, - t;, can
be found by substituting Equation 4.2-3 into Equation 4.2-2

and integrating.

t t
2 ZW
AtIo = J Iodt = J —%9-(sinésin¢ + cosdcos¢cost)dt (4.2-8)
T
t iy
W o ts _ tg
AtIo = ;f_ | sinédsin¢dt + cosdcos¢costdt (4.2-9)
¥y B

In the evaluation of the first integral on the right-hand
side of Equation 4.2-9, § and ¢ are considered constant over

the interval. Thus,

t
Z
J sinésin¢dt = sinésin¢(t2-tl) (4.2-10)

By

In the second integral on the right-hand side of Equation 4.2-9,

§ and ¢ are again held constant, but T is a function of time, t.
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By introducing the change of variables

2T

T=§T

t (4.2-11)

to transform hours to radians, the second integral becomes
t t
3 2

J cosdcos¢costdt = cos@cos¢J COS[%%l]dT (4.2-12)
tl t];
%
J cosécospcostdt = %3 cosécos¢(sin(12) - sin(rl)) (4.2-13)
t

1.
Now by substituting Equation 4.2-10 and Equation 4.2-13

into Equation 4.2-9, the total hourly isolation is computed

as
Yho 12
AtIo = ;7—- (tz—tljsinﬁsin¢ + E—cosﬁcos¢(sin(rz)—sin(Tl))

(4.2-14)
the hour angle T should fall in the range 0<t<2m. However,
when t is near noon standard time, discrepancies may arise
due to the non-synchronization with true solar noon. Thus,
if T < 0 as computed by Equation 4.2-11, just add 27. Sim-
ilarly; if t > 27 from Equation 4.2-11, subtract 2m.

Sunrise and sunset are assumed .to eccur at a=0. Ob-
structions near the horizon and refraction considerations are

ignored.
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4.3 C(Clear Sky Shortwave Radiation

Eagleson (1970) quotes the following equation for the
attenuation of the radiation spectrum under clear skies,

based on the monochromatic arguments of Beer's Law.

- = exp(-na;m) (4.3-1)
o

where IC is clear sky radiation, ay is a molecular scattering
factor (al = 0.128 - 0.054 log m), m is the relative thick-
ness of the air mass (m = coseca), and n is a turbidity
factor (2.0 for clear air, 5.0 for smoggy urban air).

TVA (1972) considers that attenuation relationships of
the form of Equation 4.3-1 to be valid only for monochromatic
radiation and can therefore be considered only as an approx-
imation when used to compute the attenuation of the total
spectral solar radiation flux. However, its simplicity is
attractive. For the current version of the CSCS model, Equa-
4.3-1 is used.

However, it is prudent at this point to present an al-
ternative to Equation 4.3-1 that should be considered in
future versions of the CSCS model. Atmospheric transmission
of the solar beam is a function of a number of variables

including dust, moisture, elevation, ground cover, solar
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altitude, etc. Referring to TVA (1972), a method used by
Klein (1948) incorporates these elements. For clear sky

solar radiation

I a' + 0.5(1-a'-d) - O.Sda

g
—_— = = - (4'3-2)
T, T - 0.5R (I-a'+d)
- (0.465+0.134w) (0.129+0.171e 0-880mpyp
a' = e p (4.3-3)
(-0.981+0.03418 )
w = e (4.3-4)
5.256 -
mp =m((288 - 0.0065z)/288) ) (4.3-5)
~1.253 —~1
m = (sina + 0.1500 (o + 3.885) 3 (4.3-6)
d = ds * da ) (4-3'7)

where a' is the mean atmospheric transmission coefficient
for cloudless, dust-free, moist air after scattering only, w
is the mean monthly precipitable water content in cm, Bd is
the mean monthly surface dewpoint, in OF, measured at the
2m-level, m is the optical air mass,dimensionless,

mp is the elevation or pressure adjusted optical:air

mass,dimensionless, z is the elevation in meters,

o is the solar altitude in degrees, d is the total
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dust depletion, dS is the depletion coefficient of the direct
solar beam by dust absorption, and Rg is the total reflec-
tivity of the ground. Some of the coefficients that appear
in the preceding equations may vary with location and time

of year. TVA (1972) provides brief summaries of coeffi-
cients at different locations and refers to studies providing

more comprehensive lists (e.g. Kimball, 1927, 1928, 1929;

Fritz, 1949; Bolrenga, 1964; Reitan, 1960, etc.)

4.4 Cloudy Sky Shortwave Radiation

The presence of clouds will further reduce the amount
of shortwave radiation reaching the earth's surface. The
amount of additional attenuation depends not only on the
cloud cover but cloud type, thickness and elevation.

The U. S. Army Corps of Engineers (1956) gives the fol-

lowing relationship to estimate the impact of cloud cover.
S =1 - (1-K)N (4.4-1)

where IS' is the total direct and diffuse shortwave radia-
tion, N is the fraction of sky obscurred by clouds, and K is
a coefficient to account for altitude considerations.

3

K = 0.18 + 0.0853(10 )z (4.4-2)

where z is the cloud base altitude in meters.
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Prior to Equation 4.4-1, all equations in Chapter 4
have been deterministic. With the introduction of N and K,
the stochastic element has now entered the solar radiation
generation process. Cloud cover, N, was discussed in Chap-
ter 3,

The stochastic generation of K is not particularly
easy. Any relationships that might logically be expected
to exist between K and N are difficult to identify, due to
the way data for z are reported. Cloud base altitude is
only reported when N > 0.50. For N < 0.50, z is reported as
"unlimited ceiling".

The scale on which z is reported also varies with al-
titude. For example, z may be reported in 30 to 150m
(100-500 ft.) intervals when z is small and 1500-3000m
(5,000-10,000 ft.) intervals when z is large. To avoid the
problems with establishing K, an alternative attenuation
function is desired that is a function of N alone.

TVA (1972) reports that the relationship

]

—~

= 1.0 - 0.65N? (4.4-3)

—
O |n

provides reasonable results. Under certain kinds of cloud
cover, Equation 4.4-3 can give values for attenuation that

are too high. As N+1 for high thin cloudiness, more radiant
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energy passes through than Equation 4.4-3 would indicate.

To help alleviate this problem, total opaque cloud cover 1is
used instead of total cloud cover. Opaque cloud cover data
are also reported at first-order stations where total cloud
cover is recorded and it gives a more accurate indicator of

the current cloud deck's ability to attenuate solar energy.

4.5 Summary

A procedure for generating hourly values of shortwave
radiation has been developed that uses predominantly det-
erministic techniques to establish "potential radiation'.
Stochasticity enters through the introduction of generated
cloud covers that were discussed in Chapter 3. Seasonal
and diurnal variations are handled through the equations
describing the earth's motions about the sun and its own
axis.

Perhaps one of the most important features presented
thus far is that the depressed values of solar input observed
on cloudy days are now accounted for. Since the cloud cover
model is "synchronized" with the precipitation model, the
shortwave generation model automatically follows in step.
Furthermore, an infinite variety of radiation inputs are pos-

sible, even on a day with precipitation. For example, the
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precipitation may occur at night, clouds clear away, and

maximum solar input is observed for the day. Or cloudiness

and precipitation may last all day and a minimum solar input

is generated. Any combination in between is also possible.

This feature is one of the significant elements that 1is

missing from the models in the current literature.
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Chapter 5

LONGWAVE RADIATION MODEL

5.1 Introduction

Atmospheric constituents are heated by conduction,
convection and radiation. These elements in turn emit what
is known as atmospheric or longwave radiation. The incoming
longwave radiation is another significant element of the land

surface energy balance that must be simulated.

5.2 Longwave Radiation with Clear Skies

The temperature, density,and depth of atmospheric water
vapor, carbon dioxide, and ozone largely determine the amount
of longwave radiation at the land surface. The major source
of variability in the total atmospheric emittance is asso-
ciated with the emission of water vapor in the 8-1l4um spec-
trgl_window. (Idso, 1981)

Since atmospheric radiation is a function of the full
depth of the atmosphere, and since routine soundings of
atmospheric properties are not generally available, many
researchers have attempted to estimate longwave radiation
using parameters that can be measured at the land surface.

The two most commonly used parameters are the atmospheric
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vapor pressure and air temperature, both measured at the Zm-
level.
The effective emittance of a cloudless atmosphere is

generally expressed as

R
a
I = (5-2-1)
a GTI

where e, 1s the effective emittance, R, is the longwave

radiation of all wavelengths, o is the Stefan-Boltzman con-

2min"1°K4), and T is the 2m air

stant (0.826(10 1%)cal cm”
temperature in °k.

Brunt (1932) and Angstrom (1915, 1936) developed equa-
tions for estimating €4 based on atmospheric vapor pressure

alone. Brunt's equation is of the form

= + b( )1/."’.
€a a eo

and Angstrom reported

e, = @ - g10~Y®" (5.2-3)

where a, b, a, Yy, and B are empirical constants.

Formulations that depend only on temperature include
those of Swinbank (1963) and Idso and Jackson (1969).
Swinbank developed

e_ = 6T2

a (5.2-4)
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and Idso and Jackson used

-d(273-T) 2
e. =1 - ce (5.2-5)

where 8§, ¢, and d are empirical constants.

Idso, in cooperation with several other researchers,
led a number of investigations into the nature of atmos-
pheric radiation through the 1970's. This work culminated
in a 1981 publication which presented a new equation for
full spectrum thermal radiation. The new equation takes
into account both atmospheric water vapor and temperature.
The new equation was developed to follow the body of evi-
dence that links longwave radiation to the binding energies
of certain hydrogen bonds. Idso's latest approach takes

the form (Idso, 1981)

(1500/T)

*e e (5. 3]

e, = 0.70 + 5.95(10°

where e  is in mb and T is in °K. Idso developed the model

using data that ranged from 245°K to 325°K for T and from
3mb to 28mb for eq-

To stochastically generate values representing longwave
radiation, models to generate temperature and vapor pressure

are required. The temperature generation scheme will be
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discussed in a later chapter. Vapor pressure will be com-
puted as a function of the 2m dewpoint and the 2m temper-
ature. Dewpoint will be a generated variable and will also

be covered in a later chapter.

5.3 Atmospheric Water Vapor Pressure

As mentioned earlier, dewpoint and temperature will be
used to compute vapor pressure as required by Equation 5.2-6.
The path from dewpoint to vapor pressure is not particularly
direct. Several steps are taken.

First, the saturation vapor pressure, € is computed

S,

using an approximation formula found in Rasmussen (1979)

2 & 5

L

" 4 .
ey = C *CqT+C T +C T +C, T +C,T (5:3-1}

where e is in mb and T is in Oc. The coefficients of

Equation 5.3-1 were given as

C, = 6.0689226

c, = 4.4358312(10° 1)

c, = 1.4590816 (107 %) (5 o 5= 2)
Cy = 2.7619554 (10 )

c, = 2.9952590 (10" %)

Cg = 1.4398885(10" %)

Equation 5.3-1 was indicated to be valid over the range

-50°C to +50°C.
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A more computationally efficient form of Equation 5:3=1
was actually used. Equation 5.3-1 can be rewritten as

e = Cy * T(Cy+T(Cy*T(Cy+T(Cy*+TC)))) (5.3-3)

Equation 5.3-3 requires approximately half the effort to
evaluate than does Equation 5.3-1.
The second step is to evaluate the relative humidity.

Linsley, et.al. (1975) provide the following approximation
112 = §.1T - T

117+ 0.9T (5.3-4)

where f is the relative humidity, T is temperature in OC, and
Td is the dewpoint temperature in °c. For the range of

-25°C to +45°C, Equation 5.3-4 approximates relative humidity
to within 0.6 percent.

Relative humidity can be defined as
e
_ 0
f = =i (5:3-5)
S
Since f and e in Equation 5.3-5 are known, the remaining step
is to solve Equation 5.3-5 for 8. and compute the vapor

pressure needed by Equation 5.2-6.

5.4 Longwave Radiation with Cloudy Skies

The presence of clouds will increase longwave radiation

due to the energy emitted by water and ice particles at
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the base of the clouds. Cloud type, temperature, and extent
all have an impact on the total additional contribution.
One correction factor found by TVA (1972) to work reasonably

well for a variety of conditions 1is

K= (1 + 0.178%) (5.4-1)

where N is cloud cover. Applying Equation 5.4-1 and Equa-
tion 5.2-6 to Equation 5.2-1 yields the final relationship
used to generate longwave radiation.

(1500/T)

e e Y(1 + 0.178%)qT?

R, = (0.70 + 5.95(10°

(5.4-2)

5.5 Summary

A generating scheme for longwave radiation has been
developed using the latést results of Idso (1981) to deter-
mine the atmospheric emissivity. Stochastically generated
temperatures and dewpoints are used to "drive'" the longwave

generator.
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Chapter 6

TEMPERATURE MODEL

6.1 Introduction

. In recent years, several researchers have attempted to
generate temperatures stochastically. In some fashion, each
investigator had to deal with the diurnal and seasonal cycles
that appear in the data. These cycles account for much of the
variability in observed temperature.

Because the periodicities are so evident, Fourier or
harmonic techniques have often been used to generate temper-
atures. Kim (1976) and Song et.al. (1973) are two examples.
Kim used Fourier techniques to generate an independent trace
of daily temperatures for input to a snowmelt forecast model.
Song et.al. developed a model to generate daily air temper-
atures and water temperatures for streams in the Missouri
River Basin. Song et.al. proposed that air and water temper-
atures could be considered to contain a deterministic part and

a stochastic part.

AT.
b

KT, + AT! (6.1-1)

WTi WTi

+ WT!
1

where A’I‘.l and WT.1 are the respective average daily air temp-
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erature and the average daily water temperature on the ith
day; AT, and WT; are the deterministic components; and AT}
and WT; are the stochastic components.

The deterministic components, K¥i and WTi, were taken to

have the general form

_ . 2mi 2mi :
Tl = A + Bsin 365 + Ccos L0 (6.1-3)

where the coefficients A, B,and C were derived through
regression analysis.

The stochastic components, AT; and WT& are not purely
random. Serial and cross-correlations exist. Therefore, Song
et.al. proposed that the water temperature departures be

written as a function of the air temperature departures.

| - |

(6.1-4)
where 6 is a random number with zero mean. Substituting Equa-
tion 6.1-4 into Equation 6.1-2 to get a temperature model
(albeit for water instead of air) that enables the output to

be correlated with a second time series.

_ . AMd i ! )
WTi = a + bsin 35T + CCOS === + dATi + 51 (6<1~5)

The coefficients a, b, ¢ and d are evaluated through regression

analysis.
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Other researchers have created temperature generation
models that essentially depend on techniques yielding weakly
stationary processes (e.g. Markov lag-1). Seasonal variation
is introduced by using different parameter sets for different
times of the year. (Jones et.al., 1972; Ahmed, 1974; Nicks,
1975; Richardson, 1979, 1981). With the exception of Ahmed's
model, all of these models generate daily temperatures (either
mean or max-min) that are conditioned on the occurrence of
wet or dry days. This approach attempts to account for the
fact that on wet days temperatures tend to be lower than on
dry days.

Nicks (1975), for example, generated daily maximum and
minimum temperatures using a Markov lag-1 process. Four dif-
ferent sets of parameters were developed depending upon the
current wet/dry sequence. Parameter sets were developed
for a wet day following a wet day, a wet day following a dry
day, a dry day following a wet day, and a dry day following
a dry day.

Richardson (1979, 1981) used a similar approach but also
considered '"maximum temperature, minimum temperature, and
solar radiation to be a continuous multivariate stochastic

process'". Richardson then used a multivariate generating
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approach (Yevjevich, 1972) that was conditioned by the current

day's wet or dry state.

Ahmed (1974) also conditioned temperature by the current
day‘é wet/dry state, but used a somewhat different approach.
Ahmed was studying water-use efficiency in crop production
systems and needed temperatures for time scales shorter than
one day. Instead of continuously generating temperatures
throughout the day, Ahmed simplified the problem by developing
a set of equations designed to yield air temperature at three
specific times each day.

At 8:00 a.m.:
T=T - 3.0 + 1.5Pp - §.5h (6.1-6)

At 12:00 noon:

T = T & 2,0 % l.SPp - 0.5h (6.1-7)
At 4:00 p.m.:
T=T7T + 1.0 £ 1.5Pp - 0.5h (6.1~8)

where T is the air temperature 1in °c, T is the average temp-
erature for the day in OC, Pp is the precipitation probability,
and h is the amount of precipitation in cm. The + or - sign
depends on the clear or cloudy conditions of the sky (i.e. a

binary switch).
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All of the approaches seen thus far eliminate the problem
of diurnal variation by dealing with longer time scales or,
as in Ahmed's case, develop an empirical set of equations for
each time of interest. In effect, Ahmed's approach uses a
daily time scale as well, since each equation is based on
data from only one particular time of day. This is really no
different than a max-min approach.

The literature on stochastic generation of temperatures
at time scales of less than a day is quite limited. Perhaps
that in itself is a statement of the difficulty of the
problem. The literature certainly indicates that the need is
there (Jones et.al. 1972; Nicks, 1975; Ahmed, 1974; Mishoe,
1978; Jones and Smerage, 1978, Baker, 1981) but the solution
is not.

Only one relevant paper was found that approaches the
problem of stochastic generation of temperatures at the hourly
level. Hansen and Driscoll (1977) developed a mathematical
model for the generation of hourly temperatures. They were
able to develop a model of the periodic course of mean hourly
temperatures using the first, 365th, 730th, and 1095th
harmonics which correspond to the annual, daily, 12 hour and

8 hour variations.
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o= 4 (Alsin((Sﬁo/N)t) + Blcos((360/N)t))

t

+

(A36ssin((36O/N)365t) + 8365cos((360/N)365t))

+

A,50Sin((360/N)730t) + B,g5,c0s((360/N)730t)

+

Alogssin((360/N)1095t) + Blogssin((Séo/N)IOQSt))

(6.,1~8)
where Tt is the temperature at hour t, T is tﬁe mean annual
hourly temperature, Ai and Bi are amplitude coefficients, and
N is the number of observations in the fundamental period.

To simulate the irregular-and aperiodic variations of
hourly temperatures, Hanson and Driscoll superimposed a
sequence of serially correlated standard normal deviates upon
the temperatures generated by Equation 6.1-9. A lag-1 Markov
process was used.

For some reason, however, Hanson and Driscoll chose not
to try to estimate what the variance of the superimposed set
of deviations ought to be. Rather, the sequence was assumed
‘to have a variance of one which caused, as the authors acknow-
ledged, the overall model variance to be lower than the observed.

Unfortunately, none of the models discussed so far have
both the refinement in the time scale and the necessary flexi-
bility to rationally include the effects of other variables
(e.g. cloud cover) on a continuous basis. A new approach

must be defined.
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6.2 Bryan's Temperature Forecast Model

In 1967 Gerrity published a report describing a physical-
numerical model for the prediction of synoptic-scale low
cloudiness. The model was designed to permit the investi-
gation of the significance of certain boundary-layer processes
for the development of horizontally extensive areas of low
cloudiness. The model required temperature inputs at the
lower boundary, the 2-m level. Gerrity chose an empirical
method developed by Bryan (unpublished,1964) to estimate the
temporal variation of the air temperature attributed to the
divergence of radiative heat flux and the divergence of

eddy heat flux. Bryan's method uses the equation

where T(t) is temperature, t is time in hours after local

midnight.
s(t) = sindsin¢ - cosécos¢cos%% (R<t<S§) (6.2-2)
s(t) = 0 (otherwise)
r(t) = @%%ﬂ - T cosscosesin [5  (Rgtzl2)  (6.2-3)
r(t) = 0 (otherwise)

and & is the solar declination, ¢ is the local latitude, R 1is
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the local time of sunrise and S is the local time of sunset.
Equation 6.2-1 gives the temperature change as a function of
the current temperature and solar input as represented by the
two terms s(t) and r(t). The solar input is then represented
by the sine of the solar altitude. (This is especially
interesting, since the relationship for the sine of the solar
altitude also appears in the shortwave radiation model of
Chapter 4. The possibility thus presents itself for possible
linkage of the shortwave radiation model with a method for
computing temperatures.)

Equation 6.2-1 can be integrated by using the integrating

blt

factor e Thus

blt blt
(e T(t)) = e (bo + b2 s(t) + b3r(t)) (6.2-4)

Q-nlﬁ-
ct

The solution of Equation 6.2-1 is

—bl(t-t‘) -blt
T(t) = T(t")e i - Bit,t") (6.2-5]

| £ byt L. byt
F(t,t') = bOJ e “dt + bZJ e “s(t)dt + b3 e “r(t)dr
A 4 t!
(6.2-6)
Equation 6.2-5 suggests that temperatures can be calcu-

lated for any time, t, if only the initial temperature is
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known (i.e. T(t')). Before Equation 6.2-5 can be evaluated,
however, the coefficients bi must be determined.

The standard method for determining the coefficients that
arise from the solution of a differential equation is to
apply known boundary or initial conditions and solve for the
respective values of the coefficients. Bryan, however, de-
veloped a procedure to derive the coefficients by fitting the
model to a set of observed data through regression.

The details of Bryan's method can be found in Appendix C.
For readability, only the essential elements are presented
here.

Equation 6.2-5 can be rewritten in the following form

-bl -bl(t-l-t') —bl(t-l)
T(t) = e (T(t')e + e FlE-1,27])

—blt
+ e F(t,t-1)

(6.2-7)
The quantity inside the brackets is just T(t-1). Thus Equation
6.2-7 becomes

-1 byt

T(t) = e IT(t-1) + e T F(t,t-1) (6.2-8)

Equation 6.2-8 gives the current temperature based on the
conditions an hour earlier at t-1. The hourly temperature
change, Y(t), is found by subtracting T(t-1) from both sides

of Equation 6.2-8.
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-bl -blt ;
Y(t) = -(1-e JE{t+1) * € ELE,E~E) (6.2~8)

Next, substitute the expression for F(t,t-1) into Equation

6.2-9. ¢ t
-blt blr -b1 -blt blT
Y(t) = boe e “dt - (l-e YT(t-1) + bze e “s(t)drt

t-1 E~L

t
-blt blr
+ bige e “r(t)dr (6.2-10)

3 t-1

Evaluation of the first integral (Il for convenience) on the
right hand side of Equation 6.2-10 leads to

b -b
I, = E% (1-e 1 (6.2-11)

The last two integrals, I2 and 13, on the right hand side are
complicated by the exponential term inside the integral.

Bryan (1964) indicated that it was sufficient to use the mean

b1T

value of e over the integration interval and bring it out-

side the integral. Thus

b,T -b b,t
E(e 1) =4 (1-ce lye 1 (6.2-12)
1
t
b, “by
I, = — (1 - e 31 sf{r)dT (6.2~13)
2 - B
t-1
and t
LE "By
I, =+ (1 - e ) r(t)dr (6.2-14)
37 B

*g=1



Equation 6.2-10 yields

80

Substituting the expressions for Ile I,, and I3 back into

b0 -b -bl
Y(t) = 5 (1 - e - (1 - e )T(t-1)
1
b, by (© b, by (F
* EI (1 - e Y s{t)dr + FI (1 - e ) r(t)dT
t-1 t=l
(6.2-15)

At this point, it may not be clear that Equation 6.2-15 is
of a form that can be utilized to estimate the coefficients
by regression. To establish this point, compare Equation 6.2-15

with the following term-by-term

Y(t) = a_ + a;X;(t) + a,X,(t) + azXg(t) (6.2-16)
For the constants a;
b -b
_ 0 1 _
a, =5 (1 -e 7) (6.2-17)
e |
_bl
a; = -(1 - e ) (6.2-18)
b -b
a, = E% (1-e 1 (6.2-19)
b -b
_°3 R 1 i
ag = EI (1 -e ) (6.2-20)
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For the predictors, Xi(t)

Xl(t) = T(t-1) (6.2-21)
ct

X, (t) = | s()dr (6.2-22)
t-1

(t »

Xs(t) = r(t)dr (6.2-23)
t-1

Once the ai's have been determined by regression, the bi's can
easily be found since the set of Equations 6.2-17 through
6.2-20 is a system of four equations in four unknowns. There-

fore, the bi's are determined as

b1 = ~ln(al,+ 1) ' (6.2-24)
and
by .
bi = - EI a; , i-= 052,35 (6.2-25)

Now standard regression techniques can be used on the
observed data set of hourly temperature changes to establish
the bi's. Once the bi's are established, Equation 6.2-5
can be used to forecast temperature given only the initial
temperature T(t').

Since s(t) and r(t) operate only during certain portions

of the day, the equations for both Y(t) and T(t) will have
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different forms depending upon the time of day. These dif-
ferent forms and the details of their development appear in
Appendix C.

Bryan's temperature model presents some interesting
possibilities. First, as was noted earlier, a direct linkage
is evident between Bryan's temperature model and the shortwave
radiation model through the joint use of the expression for
the sine of the solar altitude. This allows the temperature
model to continuously respond to the temporal variation of
the solar signal. In addition, two other parameters in
Bryan's approach help account for seasonal variations (i.e.
declination,8) and geographical influences (i.e. latitude,9)
on the solar input.

Flexibility is another key element in Bryan's model.
Modifications could be made to the original Equation 6.2-1
to help account for the effects of cloud cover, longwave
radiation, wind speed, wind direction, ground temperature, etc.
If this could be done, then an expanded Bryan model could be
used to trace a '"deterministic'" component of temperature upon
which a random component could be superimposed as was done by
Hansen and Driscoll (1977). Then an hourly stochastic temp-

erature generator would exist that could be coordinated with
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other stochastic variables in a multivariate process.

6.3 Stochastic Temperature Generation

An expanded version of Equation 6.2-1 can be written

as
ar "
~3%£l- + D T(t) = by + b,K(t)s(t) + bgK(t)T(t)
+ ba(t) + bgT ) + bW, (£) + bW, (t) (6.3-1)

where %(t) is the deterministic component; K(t) is the radia-
tion attenuation factor (K(t) = 1 - 0.65N°(t)); N(t) is the
cloud cover; q(t) is a longwave radiation estimate; Tg(t)
is the ground temperature; Ws(t) is the wind speed; and Wd(t)
is the wind direction.

The longwave radiation estimate, q(t) is not the same
as the longwave radiation calculated by Equation 5.4-2.
Rather, the simpler Swinbank (1963) formulation was used with

a cloud cover correction factor (TVA, 1972).

q(t) = 0.937(107°)(1 + 0.17N%(£))aT®(t) (6.3-2)

where o is the Stefan-Boltzman constant, 0.826(10-10

Znin"1°k"%. One of the main reasons for including the

) cal
cm
term b4q(t) in Equation 6.3-1 was to insure that a term res-

ponding to the effects of cloud cover was present throughout
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the entire day. The other two terms that respond to cloud
cover are only present during certain portions of the day.
The term b4q(t) will be available all day and should be use-
ful in explaining some of the differences in cooling observed
on clear nights as opposed to cloudy nights.

Wind speed and wind direction were added as possible
indicators of an advected temperature component. Wind direc-
tion, in particular, might give an indication of the sign of
the advection (i.e. warming or cooling).

Wind direction is often reported in degrees azimuth
measured from the north (Ooiazimuth§360°). Inclusion of wind
azimuth in Equation 6.3-1 can cause some inconsistencies in
parameter estimation. For example, an azimuth report of
360° or 10° physically indicate practically the same prop-
erty, a northerly flow. However, statistically the two
reports would indicate something quite different. The 10°
report would be a value that is considered well below the
mean value and the 360° report represents a value well above
the ﬁean. This problem will most notably affect the serial
correlation estimates.

A transformed wind speed is used instead where

(0°< azimuth <180°) (6.3-3)

bl

Wd(t) = azimuth



85

and

Wy(t) = |azimuth - 360°|, (180<azimuth<360°) (6.3-4)

This approach unfortunately filters out east-west influences
but the relative impact of the north-south component remains.
To solve Equation 6.3-1, first note that q(t) is a non-
linear function of temperature. Since q(t) is really only
being used as in index, it is linearized using q(t-1) and
bringing it outside the integral. Now the solution to

Equation 6.3-1 becomes

v r\, -bl(t"t') ’blt
T(t) = T(t")e + e G(t,t'") (6.3-5)
where
t blr t blT
G(t,t') = b0 e ~dt + b2 e "K(t)s(t)dr

e t'

t blT K blr
+ b3 e K(t)r(r)dr + b4 i tt=1]} e dt

tl tl

% blr t blt
+ b5 e Tg(T)dT - b6 e WS(T)dT
t

1 tl

t blT
e Wd(T)dT (6.3-6)
t
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Parameter estimation can now proceed as was demonstrated in
the previous section. The details appear in Appendix D.

The hourly temperature change can now be expressed as

t
-bst { b.T by v
e e

Y(t) Var = {3 - & 1)Te-13

il
o

=1

3

+
o

bt (T byt
+ bse e Tg(T)dT
t-1
rt

-b, t blT
e Ws(r)dT

J
t~1
X blT
e Wd(r)dT (6.3-7)

J
t=1

T
The term e L that appears in the integrals containing s(t)
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and r(t) is treated by using the mean value argument shown
in the previous section (see Equation 6.2-12). The integra-
tion interval is short enough that the values K(T1), Tg(T),
ws(r), and Wd(r) can be evaluated at time t and brought out-
side the respective integrals.

The regression formula for Y(t) 1is now

Y(t) = a, * alxl(t) # 5 5o a7X7(t) (6.3-8)

where the coefficients a, are

b

= = (1 -~ & 1

a; ) (6.3-9)

By
2 % - By by, 1=0,2,3,...,7 (6.3-10)

and the predictors Xi(t) are

X, (t) = T(t-1) (6.3-11)
t

X,(t) = K(t) [ s(t)dt (6.3-12)
t-1
t

XS(t) = K(t) [ r(t)dr (6.3-13)
t-1

X, (t) = q(t-1) (6.3-14)

Xs(t) = Tg(t) (6.3-15)
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Xg(t) = W (t) (6.3-16)

X7(t) = Wd(t) (6.:3+17%]

Note that since the temperature at time t is the variable
being computed, T(t-1) is used in Equation 6.3-14.

Once the ai's have been estimated, the bi's are easily

found
b1 = -:Ln(a.1 + 1) (6.3-18)
b1 )
by = - EI a; 1=0,2,3,...,7 (6:5<19)

Now Equation 6.3-5 can be used to estimate the "deterministic"
component of hourly temperatures.

The bi's are developed for each period of interest. In
the current application, observed hourly values of temperature
change, opaque cloud cover, wind speed,and wind direction for
a particular month were used to estimaté the b;'s. Ground
temperature data were not available. Thus,b. was set to 0.0.

Equation 6.3-5 is applied each day to compute tempera-
tures at t = 0 (midnight), 1, 2,...,23. The initial temper-
ature, %(t'), for the period is the 11:00 p.m. (t=23) temp-

erature for the previous day.
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The "deterministic' component is essentially the expec-
ted temperature given the set of predictor values. All of
the temperature variability is not explained by the model.
To represent the random element, a serially correlated set
of random variates will be added to the ''deterministic"

trace. Thus, the hourly temperature, T(t),

T(t) rl\"(t) + T'(t) (6.3-20)

N
where T(t) is the "deterministic' element and T'(t) is the
random element.

The random element is defined as
av]
Té(t) = To(t) - T(t) (6.3-21)

where Té(tj is the observed deviation, To(t) is the observed
v

temperature and T(t) is the deterministic component. The

deviations are assumed to be approximated by a lag-1 Markov

process.

' 2
T'(t) = prT'(t',l) + CtGT"/l__DT' (6.3'22)
where P is the lag-1 serial correlation, Lt is the standard

normal deviate, and O is the standard deviation.

6.4 Summary

The stochastic temperature model generates hourly temper-
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atures as a function of the time of day, time of year,
latitude, longitude, cloud cover, wind speed, longwave
radiation, shortwave radiation, ground temperature, and wind
direction. Also, because the precipitation model in effect
"drives" the cloud cover generation, the temperature output
is appropriately affected by the occurrence of precipitation.
These features make the proposed stochastic temperature

algorithm the keystone in the framework of the CSCS approach.
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Chapter 7

WIND MODEL

7.1 Introduction

The wind component of the CSCS model is composed of two
parts, wind speed and wind direction. Wind speeds are re-
quired as input to flux computations of the land-air inter-
face. Wind speeds may also quantify, somewhat, advection
processes for the temperature model. Wind direction is're-
quired as an advection indicator for the temperature model
as described in Chapter 6.

For the most part, the cross-correlation coefficients
between wind speed, wind direction,and the other variables
in the CSCS model are relatively low, generally less than
0.35 (see Tables 7.1-7.4). Therefore, for this version of
the CSCS model, both wind speed and wind direction are treated

as independent lag-1 Markov processes.

7.2 Wind Speed

The frequency distributions of wind speeds tend to be
positively skewed. A variety of probability distributions
with this property have been applied to wind speeds. Among
them are the Planck, Rayleigh, gamma and the Weibull.

(Hennessey, 1977; Justus et.al., 1977; Sherlock, 1951). The
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Weibull appears to be the most popular.

It is apparent then, that not only must the mean and
variance of the generated data be reproduced, but the gen-
erated data should be skewed as well. One often-used approach
in hydrology to generate skewed serially correlated data
is the Thomas-Fiering method (Haan, 1977).

The equation for a lag-1 Markov process can be written

= 1y - W — 2
ws(t) = W, * ps(ws(t 1) Ws) + .0 V1 Ps

% (7.2-1)

where Ws(t) is the hourly wind speed, Ws is the mean hourly
wind speed, Py is the lag-1 serial correlation coefficient,

and O is the wind speed standard deviation. The variable

€t is random and defined by Thomas and Fiering as

2 3
2 {1 " VeV Ye 2

By ™ = g o (7.2+%)

£
where Ye is the skew coefficient of e and by is a standard

normal deviate. The skew coefficient of € in turn is defined

as

3
(1 - Py,
Y. = (7.2-3)
€ (1 - ps2)1.5

where Vo is the skew coefficient determined from the wind

speed data.
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In some applications, the mean and standard deviation
of hourly wind speed may not be independent of the time of
day. This can result when surface-generated instabilities
promote vertical exchanges. This allows greater momentum
transfer from faster moving air aloft and increases sur-
face winds. Since atmospheric stability follows a charac-
teristic diurnal curve, wind speeds may as well. (Oke, 1978).

To approximate this property, the mean and variance
in Equation 7.2-1 will be allowed to vary with time.

Since there is a relatively smooth transition of the observed
hourly means and standard deviations throughout the cycle,
the minimum and maximum parameter values are entered with
their respective times of occurrence. Parameter values for

each hour are then found by linear interpolation.

7.3 Wind Direction

As mentioned previously, wind direction is generated as
input to the temperature model as an indicator of advected
heating or cooling components. Advection is due to variations
in the spatial properties of the atmosphere. When dealing
only with point data, however, it is quite difficult to
identify the nature of advection, particularly for future

time steps. Wind direction appears to be about the only
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point variable that could indicate advection. This 1is
largely due to the fact that air masses coming to a loca-
tion from different directions may have characteristically
different properties. For instance, winds with a large
northerly component may, on the average, bring cooler
weather conditions than winds from the south.

The transformed wiﬁd direction discussed in Chapter 6

is generated by a lag-1 Markov process.
Wd(t) = wd + pd(wd(t-l) = Wd)

* @t/l - Pg (7.3-1)

where Wd(t) is the hourly transformed wind direction,
W& is the mean hourly transformed wind direction, and
Pq is the lag-1 serial correlation coefficient. The var-
iable ¢, is a random input with zero mean and standard
deviation equal to o4, the standard deviation of the trans-
formed wind direction. ‘

The distribution of transformed wind direction is, of
course, bounded on the left by 0° and on the right by 180°.
To generate a random variate for Equation 7.3-1, an algorithm

was developed that will generate a random variate from an

arbitrary frequency histogram. (See Appendix Aj Curtis 1978;
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Abramowitz and Stegun, 1970). Utilizing the observed
frequency histogram of transformed wind direction, a random
value, 6., representing wind direction (Wd,cd) is selected.

Thus, ¢, can now be defined as

®t = @t = Wd (F+5=2)

to complete the wind direction model.
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Table 7.1 Data Correlation Matrix for

July 1951 - 1957

Dodge City, KS -

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 =0.22 -0.28 0.31 0.26
1.00 0.23 -0.10 -0.10

1.00 -0.08 «0.25

1.00 0.20

1.00

Table 7.2 Data Correlation Matrix
January 1952 - 1958

for Dodge City. KS -

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 0.66 -0 510 0.10 0.20
1.00 0.11 0.08 0,12

1.00 0.12 ~-0.03

1.00 ~0.08

1.00
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Table 7.3 Data Correlation Matrix for Boston, MA -
July 1951 - 1963

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 0.26 -0.21 0.35 0.18
1.00 .30 -0.12 0.28

1.00 -0.05 0.06

1.00 0.04

1.00

Table 7.4 Data Correlation Matrix for Boston, MA -
January 1949 - 1962

TEMP DEW CLOUD WIND WIND
COVER SPEED DIR.

1.00 0.88 0.33 -0.04 0.36
1.00 0.48 -0.07 0.28

i1 {13 0.10

100 -0.08
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CHAPTER 8

DEWPOINT MODEL

8.1 Introduction

Some measure of atmospheric moisture is required to
establish a gradient for moisture transport processes at
the land surface. Specific humidity, vapor pressure, rela-
tive humidity and dewpoint temperature are all common
descriptors of atmospheric moisture content (Eagleson,
1970). Relative humidity and dewpoint data are more
generally available since they are measured at National
Weather Service first-order stations.

To simulate on an hourly basis, relative humidity
appears to be the more diffiéult due to the strong diur-
nal variations attributed to temperature (Oke, 1978).
Dewpoint, on the other hand, is much more stable during
the course of a day (Lorenz, 1978). Therefore, dewpoint
temperature is a more likely candidate for simulation.

Ahmed (1974), however, generated air humidity for his

multivariate model in the following fashion

H, = Has . Hr (8.1-1)

where I-Ia is the air humidity (i.e. vapor density) in
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g/ms, H is the saturated air humidity (i.e. saturation

as
vapor density) in g/ms, and H_ is the relative humidity.
Relative humidity for a particular time of day (8:06 AM, .
12:00 Noon, 4:00 PM) was computed by linear interpola-
tion between weekly mean values of Hr for the indicated
times. H_ . is a function of temperature and was computed
using Murray's adaption of the Goff-Gratch equation (Van
Bavel, et.al., 1973). This approach is quite simplistic
since. any natural stochasticity is filtered out by the
use of weekly mean relative humidities. Also, humidities
are computed only at three specified times of the day.
Higher resolution is required in this study.

Gringorten (1966), in.a study simulating the fre-
quency and duration of weather events, suggested that
dewpoints could adequately be generated by a lag-1 Markov
process. This would be a reasonable approach if the mean

hourly dewpoints did not change materially during the

course of a day.

8.2 Dewpoint Generation

From the plots of observed hourly dewpoints in Fig-

ure 10.13 and Figure 10.15, it is clear that the mean diurnal
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variation of dewpoint is quite small. The difference
between the maximum and minimum hourly dewpoints in
‘Boston, MA was 1.1°C for January and July. For Dodge
City, KS, the difference was 2.49C for January and 1.7°%C
for July.

It is also apparent from Figure 10.13 and Figure 10.15
that the hourly variation in dewpoint is not random.
Rather, the hourly trahsitions are quite smooth. These
variations where they are noticeable, can generally be
explained by the short term dynamics at the land-air
interface. For example, the pronounced morning minimum in
the Dodge City data for January is likely due to the
removial of atmospheric moisture near the surface due to
frost formation. During the day, rising temperatures cause
the moisture to return to the lower atmosphere, elevating
the dewpoint again.

During July, the morning rise in dewpoint is probably
due to the addition of moisture from evaporating dew. The
subsequent dip in dewpoint temperatures in the afternoon
is likely the result of instability-generated mixing with
dryer air aloft. As the strength of the vertical instabil-

ity subsides in late afternoon, moisture builds up again
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in the lowest atmospheric layer and the dewpoints rise.
Tables 7.1 - 7.4 present the lag-0 cross-correlation
matrices for the observed data. The generally weak cross-
correlations exhibited by the July data indicate that
dewpoints could be generated independently.
Since the daily variation of July dewpoints for Boston
and Dodge City are small, and since the July dewpoints
are only weakly correlated with the other model variables,
July dewpoints could be generated independently by a first-
order Markov model as suggested by Gringorten (1966).

Therefore, the July dewpoints will be generated by
Td(t) = -T-d + pd(l)(Td(t-l)‘Td) +

Voo (1-p5 (1)) (8.2-1)

where Td(t) is the hourly dewpoint in oL, Ta is the mean
hourly dewpoint in OC, pd(l) is the lag-1 serial correla-
tion coefficient, ¢t is the standard normal deviate, and
04 is the standard deviation of hourly dewpoint in °¢.

To affirm the -choice of a first order Markov process
to represent the July dewpoints, the observed serial corre-

lation functions for July hourly dewpoints are plotted in
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Figure 8.1 in comparison with the appropriate theor-

etical curve (i.e. p(1) = pT(l)). The theoretical curve
follows the Boston data very well. For the Dodge City
data, the theoretical curve follows the observed data

quite well only for the first six to eight hours. Beyond
that point the theoretical curve falls faster than the
observed. Overall, Equation 8.2-1 seems to be a reasonable
choice for July dewpoints.

Since the January dewpoints appear to have a stronger
cross-<correlation structure with other CSCS model variables,
January dewpoints will be assumed to be composed of a
"deterministic" component and a random component. This
approach follows that established for temperature genera-
tion in Chapter 6. The deterministic component, ¥d(t)’

will be estimated by linear regression. Thus
AY] V]
Td(t) = d0 + led(t—l) + dzT(t) ¥ dSN(t) + d4ws(t)
+ dcWy (t) (8.2-2)

v
where Td(t-l) is the previous hourly "deterministic' por-
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tion in OC, T(t) is the currént temperature in OC,
N(t) is the cloud cover, W_ is the wind speed in ms'l,
and Wd is the wind direction in degrees (Ooiwd i180°).
The di‘s are coefficients to be estimated by standard linear
regression techniques.

The random component will be treated as a lag-1

Markov process which represents a deviations process

defined by
A
Téo(t) = Tdo(t) - T(t) (8.2-3)

where Tdo(t) is the observed dewpoint in OC, %(t) is the
dewpoint in °c generated by Equation 8.2-3 using observed
data as input, and Téo(t) is the observed dewpoint temper-
ature deviation in °C.

The dewpoint deviations are generated by

2 Y
TY(t) = ooy (1)TY(t-1) + Y op, (l-pp, (1))° (8.2-4)
d Tio d " Tis T s

where P (1) is the observed lag-1 serial correlation co-

do
efficient of the deviations, wt is the standard normal de-
viate, and Ot is the standard deviation of the observed

do
deviations in ©C.
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The January dewpoint model can now be written as

Td(t) = ¥d(t) + Té(t] (8.2-5)

8.3 Skewed Data

The dewpoint data tend to be negatively skewed. For
example, the July data were found to have skew coefficients
of -0.55 and -0.67 for Boston and Dodge City respectively.
To be correct in modelling hourly dewpoints in July, the
random deviate wt should be modified according to the
Thomas-Fiering approach described in Chapter 7 for wind

data. The transformed random variate, e, was defined pre-

t

viously as

23
2 TeVe Ve 2
Sl [1 P2t 2 ] - (7.2-2)
where
LA - e3a) X
e T W etay IO T4 (7.2-3)

where Yq is the skew coefficient of the observed data.
This approach does not work well for dewpoint genera-

tion because the lag-1 serial correlation coefficients for
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.dewpoints are very high. (0.96 for July in Boston and
0.95 for July in Dodge City). To see the problem more
clearly, let us look at the modifier of ¥ in Equation

7.2-3 and call it F. Thus

(1 - 03(1))
F = 7 2(1)) S (8.3-1)
-
d

Examination of Equation 8.3-1 shows that the denominator
decays to zero faster than the numerator as o4 approaches
one. Therefore, as pd[1)+1, F+x, The skew adjustment
factor, F, is plotted against lag-1 correlation on Figure
8.3. Generally, when lag-1 correlation is less than about
0.9, there is no problem. But for lag-1 correlation values
greater than 0.9, F gets very large. For example, for
p(1l) = 0.95, F = 4.7,

To see the full impact of such an extreme adjustment
factor, we must examine the last term of Equation 8.2-1

using e, from Equation 7.2-2 instead of the standard normal

t

1

deviate wt. On Figure 8.4 the value of stod(l-pi(l))2
is plotted against a wide range of values for wt.

During the course of generating a large number of

random standard normal deviates, wt, a few values selected
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from the tails of the distribution are expected. If,

for instance, a large negative value for by is selected,

a very large value for the etod(l - pg(l))% term results.
In this case, the last term of Equation 8.2-1 so dominates
the output that very large and sudden negative shifts of
dewpoint occur. From Figure 8.4, it is seen that nega-

0 to 14°C are possible. If

tive shifts on the order of 10
two or more large values of be happen to be generated

close in succession, totally unrealistic sequences can

be generated. Therefore, the Thomas-Fiering approach

was not used for dewpoints. Instead, the process was
approximated using normally distributed deviates. Be-

cause dewpoints are constrained by temperature, (i.e. Td £ T)s

some of the skew is recovered. In future studies, other

ways of preserving dewpoint skewness should be examined.
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CHAPTER 9

PARAMETER ESTIMATION

9.1 Introduction

In Chapter 2 through Chapter 8 the individual compon-
ents of the CSCS model were developed. However, the de-
tails of each required parameter estimation were not dis-
cussed. Rather, it seems more reasonable to treat the
parameter estimation issues in a separate comprehensive
chapter. Hopefully, future users of this report will find
it more convenient to refer to a single chapter on para-
meter estimation instead of searching all chapters to
seek the necessary information.

In the following sections, the procedures used to
identify the parameters used in each component are described.
A different set of parameters was derived for each month
studied (i.e. January and July).

Hourly observations of rainfall, total opaque cloud
cover, wind speed, wind direction, temperature, and dew-
point were obtained from the National Climate Center in
Ashville, North Carolina for Boston, MA, Dodge City, KS and
Phoenix, AZ. These locations were chosen to represent a

variety of climatic and geographic conditions. Unfortunately,



112

the Phoenix records had too many missing observations and
the data set was not used in this study. However, adequate
records were obtained for January (1949-1962) and July
(1951-1963) at Boston and January (1952-1958) and July
(1951-1957) at Dodge City.

For each location, data for each January (or July)
were stripped from the master data file and combined to
create 'mew" time series containing only January (or July)
data. Parameters were then estimated from the January

(or July) time series for each location.

9.2 Precipitation

The required parameters for the precipitation compon-
ents include the mean time between storms, EE, in hours,

the mean storm duration, t in hours, and the mean storm

9
depth, h, in mm. Calculation of the arithmetic mean values
is obviously straightforward. The difficulty here lies in
the assumptions used in developing the precipitation compon-
ent, namely that successive storms are treated as independent
events and that the times between storms follow an expon-
ential distribution.

During times of precipitation activity, there may occur
periods of no recorded precipitation. This is not unusual

since a single synoptic scale disturbance can have multiple

mesoscale precipitation events imbedded within it. Since
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the periods of precipitation emanate from systems evolving
within a common parent some dependence is expected. As

the times between recorded precipitétion increases, casual-
ity arguments suggest that this dependence decreases. The
key then is to establish some minimum time between recorded
precipitation that could be used to discriminate between
"independent" storm events.

Restrepo and Eagleson (1982) studied long-term hourly
precipitation records for six locations in the continental
United States and found minimum times between recorded
precipitation required for independence that ranged from 8
to 76 hours. In general, dry climates had high values for
this minimum separation interval while humid climates were
found to have lower values. Using a procedure outlined by
the authors, the minimum separation intervals for Boston,
MA and Dodge City, KS would be on the order of 13 hours and
47 hours respectively. Restrepo and Eagleson concede,
however, that for precipitation models like the one used
here, such a strict requirement on independence is opera-
tionally impractical and probably unnecessary.

If these long separation intervals were imposed, long
storm durations would result and the storms would contain

many periods without precipitation. This would produce
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unrealistically low average storm intensities. Restrepo
and Eagleson (1982) suggest that a shorter separation
criterion could be used operationally.

Grace and Eagleson (1967) found that a two hour separ-
ation interval was sufficient for identifying separate storms
in New England under a sharply limited definition of in-
dependence. Using the same criterion Sariahmed and Kisiel
(1968) found a three hour separation interval sufficient
for an analysis of convective storms in Arizona. For this
study, a two hour separation interval was used.

The parameter estimation procedure used in this study
defined a storm duration to include the hours with recorded
precipitation plus any non-precipitation separation intervals
of two hours or less. Once the storms were defined then the
appropriate mean storm durations, the mean times between
storms, and the mean storm depths were determined by the

usual techniques.

9.3 C(Cloud Cover

Cloud cover, as indicated in Chapter 3, is represented
by a modulated non-stationary stochastic process composed
of intra and inter-storm sequences. Parameter estimation
for cloud cover during intra-storm periods is trivial since

total cloud cover is assumed (i.e. N(t) = 1.0). For inter-
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storm periods several parameters must be identified.

In Chapter 3, the existance of a stationary inter-
storm '""fairweather" cloud cover process was assumed. It
was also assumed that the conditional mean and variance
of the cloud process follow a smooth transition from their
intra-storm values to their inter-storm '"fairweather"
values. Therefore, parameter estimation for the cloud cover
process must include the following: 1) the identification
of the appropriate fairweather sequences, 2) the estimation
of the mean, variance, lag-1 serial correlation coefficient,
and the frequency histogram of the fairweather cloud cover,
and, 3) the decay coefficient for the transition period.

For convenience, the cloud cover model is rewritten

here as

N(t) = M, + (1+M0)(1-P(t)) + m(t)P(t) (9.3-1)

0
where M0 is the fairweather mean cloud cover, P(t) is

the transition function, and m(t) is a stationary sequence
of serially correlated deviations. P(t) and m(t) are res-

pectively defined as

Y (t-ty) ¥ (ty*ty-t)

P(t) (1 - e }J(1 - e ) (9.3-2)

n(t) = o (1)m(t-1) + n(t) (1-p 2 (1)) (9.3-3)
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where vy is the transition decay coefficient in hrt, t,
is the time of beginning of the inter-storm period in hr,
tb is the time between storms in hr, pm(lj is the lag-1
serial correlation coefficient of the fairweather cloud
cover, n(t) is a zero-mean random deviate with variance,
Umz, and omz is the variance of the fairweather cloud
cover.

The nature of the hypothesized transition of the
cloud cover mean and variance is shown in Figure 9.1. In
this example where By = 100 hr, the function describing
the mean is U-shaped. The variance is represented by the
trace of + 1 standard deviation about the mean. The var-
jance narrows to zero at each end and attains its maximum
value in the middle as it follows the general curvature of
the mean.

The values for the mean and variance that we are look-
ing for are those that represent the stable or fairweather
central region during the time between storms. In other
words, we are interested in that region described by the
bottom of the U-shaped functions shown in Figure 9.1.

To explain the procedure used to identify the faiyp-

weather sequences, it is best to again refer to Figure 9.1.

Here we have an inter-storm period of 100 hours. If we cal-
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culate the mean cloud cover for the entire 100 hour period,
we would get a value say ﬁlOO' Next, if we eliminate two
hours from each end of this 100 hour period and calculate

a new mean for the remaining 96 values, we would get ﬁgﬁ
where Ngé < ﬁiOO since some of the highest values of N

were eliminated. If we continue to eliminate values at

each end, the mean values will continue to decrease, al-
though at a slower rate. When the mean value has stabilized,
it is assumed that the fairweather sequence has been iden-
tified.

To handle the entire data set, the procedure is to
first compute the mean value of cloud cover for all inter-
storm periods. Then after successively eliminating values
from both ends of the available inter-storm periods, new
means are computed. Eventually after some Tr hours have
been eliminated, the mean value stabilizes. The value Tr
is the length of the transition period. Once Tr is es-
tablished, the fairweather sequences contained in inter-
storm periods of length greater than 2Tr are combined in
a new time series containing only fairweather values.

After the fairweather cloud cover time series has been

2

determined, MO’ O

P (1) and the frequency histogram

can be estimated by the traditional methods.
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In general, the frequency histograms of the fair-
weather cloud covers tend to be U-shaped with spikes at
zero and one. Part of the reason for this result is that
visual observations of both zero and one actually encompass
broader ranges of causétive atmospheric conditions than
do the other observations (i.e. N(t) = 0.1, 0.2,...,

0.9, etc., see Chapter 3.6). This distortion causes peaks
at zero and one that can be two to four times greater than
the values obtained for the other levels of cloudiness. As
a result the random variate generating scheme described

in Appendix A becomes very inefficient.

In addition, the lag-1 Markov model  (Equation 3.5-1)
used to generate the fairweather cloud cover sequence
preserves the first and second moments of the input distri-
bution but does not necessarily preserve the distribution
itself. For strongly peaked U-shaped input distributions,
the tendancy is to produce output distributions that are more
uniform (i.e. lower peaks and higher mid-ranges).

An example of a cloud cover histogram is presented in
Table 9.1. Except for zero and one, all elements represent
a cloud cover range of 0.10. Because cloud cover observations
are bounded by zero and one, histogram elements for zero and
one represent a range of only 0.05. To make the histogram
a probability mass function, the magnitudes of the histogram

elements for zero and one would have to be doubled to get
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the proper mass contribution for these elements. However,
this would compound the peakedness problem discussed earlier.

Another alternative would be to expand the range of the
representative histogram elements for zero and one. (Remem-
ber that the outcome of the cloud cover process is still
constrained to be between zero and one). If these two
ranges are expanded such that the resulting histogram ele-
ments take on values of the same order as the mid-range
values, three positive results occur. First, the data
generation efficiency roughly doubles. Second, the output
histogram is less distorted and third, the broader causative
atmospheric conditions are better represented. An example
of the adjusted input histogram is shown in Table 9.2.

The remaining parameter to be estimated for the cloud
cover model is the transition decay coefficient, v. To
estimate y we can use the value found for the length of
the transition period, Tr,during the identification of the
fairweather sequence.

The transition function P(t), as shown in Equation 9.3-2,
is a symmetric function. To examine the transition rate, we
need only to look at one side of the function since for
analysis purposes we can assume that ty, is large enough to

eliminate the influence of the second side of the function.
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Table 9.1 Observed Cloud Cover Histogram: July, Boston

RANGE FREQUENCY (%)
0.00 < N < 0.05 32
0.05 < N < 0.15 11
0.15 < N < 0.25 12
0.25 < N < 0.35 10
0.35 < N < 0.45 7
0.45 < N < 0.55 3
0.55 < N < 0.65 3
0.65 < N < 0.75 3
0.75 < N < 0.85 4
0.85 < N < 0.95 3
0.95 < N < 1.00 11
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Table 9.2 Adjusted Cloud Cover Histogram: July, Boston

RANGE FREQUENCY (%)
-0.25 < N < -0.15 10
-0.15 < N < -0.05 el
-0.05 < N < 0.05 t
0.05 < N < 0.15 11
0.15 < N < 0.25 12
0.25 < N < 0.35 10
0.35 < N < 0.45 !
0.45 < N < 0.55 3
0.55 < N < 0.65 »
0.65 < N< 0.75 B
0.75 < N < 0.85 .
0.85 < N < 0.95 3
0.95 < N < 1.05 4
1.05 < N < 1.15 4
1.15 < N < 1.25 .
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Thus, for convenience, the right-hand side of P(t) is
ignored and Equation 9.3-2 can be rewritten (after setting
the arbitrary initial time t, to zero) as

-yt
P(t) = (1 - e ) (9.3-4)

According to the criterion established in Chapter 3,

P(t) = 1.0 within the fairweather regime. But according

to Equation 9.3-4 P(t) » 1.0 as t = «». This requirement

is impractical operationally. However, this problem is
overcome by simply choosing a value of P(t) that is suf-
ficiently close to 1.0. Thus, for the present study, the
fairweather regime exists for P(t) > 0.99. This definition
of the beginning of the fairweather regime (i.e. when P(t) =
0.99) also implies that the length of the transition period,

T is equal to the time it takes P(t) to go from 0.00 to

r’

0.99. Using P(t) = 0.99 and t = T Equation 9.3-4 can be

r’
written as
_'YTr
0.99 = (1 - e ) (9:3-5)
After rearranging and taking the natural logrithm of both

sides of Equation 9.3-5, and solving for y gives

I~ 1n (0.01) (9.3-6)
T

v

or

Y = f (9:3-7)

-
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Table 9.3 Mean Cloud Cover Transition

10
12
14
16
18
20
22

24

Dodge City
January July
0.367 0333
0.354 0.306
0.344 0.282
0.340 0.265
.33 0.250
0.327 0.242
0.326 0.234
0.320 0.229
0.317 0:.225
0.317 0.225
0.315 0.221
0.314 0.219
0.314 0213

Boston
January July
‘0.572 0.432
0.534 0.403
0.506 0.379
0.483 0.362
0.464 0.348
0.449 0.338
0.439 0.332
0.432 0.327
0.429 0.325
0.425 0.326
0.424 0.328
0.425 0.328
0.430 0.324
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Thus, by knowing the length of the transition period, Tr’
that was used to identify the fairweather regime earlier,
the transition decay coefficient can be estimated easily.
Another interesting way to look at the transition is
worth noting. The transition can be observed by studying
the rate by which the mean cloud cover varies from its
value for all inter-storm periods to its fairweather values.
In normalized form, the '"observed" transition can be
expressed by
Na - Nt

Na - MO

PO(t) = (9.3-8)

where Né is the mean cloud cover for all inter-storm periods.
(This corresponds to NIOO in the earlier example), M0 is

the fairweather mean, Kt is the mean cloud cover for an
intefmediate region.

The value of Equation 9.3-8 is that we can now plot
observed data to see the smooth transition hypothesized in
Chapter 3. Figure 9.2 shows the observed values of Po(t)
for the four data sets used in this study. Based on the
observed values for N(t) shown in Table 9.3, 24 hours was
judged to be a reasonable value for the length of the transi-

tion, Tr. This value was used in computing the PO[t)'s
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shown in Figure 9.2 and in Equation 9.3-7 to determine Y
for the hypothesized transition function P(t) which is

also plotted in Figure 9.2. The transition function, P(t),
represents the overall shape of the observed transitions
quite well. However, the theoretical curve appears to it
the Boston observations slightly better than for Dodge City.
The Dodge City_transitions are slightly slower than Bos-

ton's.

9.4 Shortwave and Longwave Radiation

As shown in Chapter 4, shortwave radiation is com-

puted by
IC = I0 exp(—nalm) (9.4-1)
and
- ) 2 .
I,' = I_(1 - 0.65N%) (9.4-2)

The variables in Equation 9.4-1 and 9.4-2 have been defined
earlier in Chapter 4. The only variable that must be sub-
jectively selected prior to simulation is the turbidity
factor, n, which was indicated to vary from about 2.0 for
clear air to about 5.0 for smoggy urban air. Because no
prior information was available to make anything more than
a subjective decision regarding the value of n, its value

was set to 2.0 for both Boston and Dodge City.
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For longwave radiation, we have

s (1500/T)

R, = (0.70 + 5.95(10 e e J(1 + 0.17N%)oT?

a
(9.4-3)
where the principal variables, ey T, and N are generated

by the CSCS model. No other parameters are required by

the longwave component.

9.5 Temperature

The temperature model requires the estimation of sev-
eral regréssion coefficients, bi’ for the 'deterministic"
portion along with the variance and the lag-1 serial correla-
tion coefficient of a superimposed deviations process. Since
the methods used to estimate the parameters of the temperature
model were an integral part‘of the model development detailed
in Chapter 6 and Appendices C and D, they need not be dis-

cussed again here.

9.6 Wind Speed and Wind Direction

Wind speed and wind direction are both generated inde-
pendently by lag-1 Markov models. The wind speed model re-
quires as input the mean, the variance, the lag-1 serial corre-
lation coefficient and the skew coefficient of the observed
wind speeds. The wind direction model requires the mean, the

variance, the lag-1 serial correlation coefficient, and the
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frequency histogram of the observed wind directions. All

parameters are estimated by the traditional methods.

9.7 Dewpoint

Two methods have been employed to generate dewpoints
depending upon the circumstances. The first method gener-
ates dewpoints independently using a lag-1 Markov model
and requires the mean, the variance, and the serial correla-
tion coefficient of the observed dewpoints. These parameters
are estimated by the usual techniques.

The second option available to generate dewpoints uses
a linear regression model with a superimposed deviations
process. The coefficients of the regression model are esti-
mated by standard regression methods. The deviations pro-
cess is again modelled by a lag-1 Markov approach which
requires the variance and the lag-1 serial correlation of
the observed deviations. The regression model and the method
used to determine the observed deviations are discussed in

detail in Chapter 8.

9.8 Summar
The parameters required by the CSCS model that are

estimated from the observed data are summarized as follows:
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Precipitation
* mean time between storms
« mean storm duration
+ mean storm depth
Cloud Cover
+ fairweather mean
« fairweather variance
. fairweather lag-1 serial correlation
« fairweather frequency histogram
. transition decay coefficient
Temperature
-« regression coefficients
« deviations variance
. deviations lag-1 serial correlation

Wind Speed

mean
» yvariance

« lag-1 serial correlation

skew
Wind Direction
*+ mean
- variance
« lag-1 serial correlation

- frequency histogram
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Dewpoint
* mean
*+ variance
- lag-1 serial correlation
or
- regression coefficients
-« deviations variance

. deviations lag-1 serial correlation
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CHAPTER 10
CSCS RESULTS

10.1 Introduction

After estimating the parameters as described in Chap-
ter 9, January and July data sets were generated by the
CSCS model for both Dodge City, KS and Boston, MA. Three
different aspects of the output will be reviewed. First,
plots of the hourly data values generated by the model
will be examined to see at least qualitatively that the
various output elements are coordinated. Second, model
output statistics will be presented to determine how well
the observed statistics are reproduced. Third, the mean
diurnal curves of generated temperatures and dewpoints will

be compared to their observed counterparts.

10.2 Generated Data Plots

Figures 10.1-10.11 each represent three-day segments
of the generated data sets. Presentation of hourly plots
for the entire simulation period is obviously impractical
due to space limitations. The selected three-day segments

will be sufficient for demonstration purposes.
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Looking first at Figures 10.1-10.2 for January in
Dodge City, KS, we have plots of hourly temperature in i 7
hourly dewpoint in °c, hourly shortwave radiation in
langleys (ly), hourly longwave radiation in langleys, hourly
cloud cover in tenths, and hourly precipitation in mm.
Perhaps the most dominant features of these plots are the
obvious diurnal structures of shortwave radiation and
temperature.

Beginning with shortwave radiation, the generated
hourly values are zero through the night as they should be.
At sunrise, solar radiation starts its steady increase to
its peak around noon. After the peak at solar noon, short-
wave radiation decreases to zero again at sunset.

Shortwave radiation is dramatically affected by the
presence of cloud cover. This is seen clearly by comparing
the shortwave radiation curves for the two cloudy days
(1/19, 1/20) and the mostly sunny day (1/21) in Figure 10.1.
The peak solar radiation value on 1/21 was approximately
38 1y when cloud cover was 0.1. This compares to a peak
of approximately 14 1ly on 1/19 when cloud cover was 1.0,
This also represents the 65% reduction of shortwave radia-
tion due to total cloud cover that is dictated by Equation

4.4-3.
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The trace of hourly temperature also shows a strong
diurnal signature. In general,lminimum temperatures
occurred in the early morning hours near sunrise and maximum
temperatures occurred in mid to late afternoon. However,
just as an observed temperature trace can deviate signi-
ficantly from its characteristic diurnal curve, the CSCS
model is capable of generating temperature traces for
particular days that lack the characteristic diurnal
signature. Witness day 1/20 in Figure 10.1. For the
first 16 to 18 hours of this stormy day, the temperature
curve stayed relatively flat. This is especially interesting
when compared to the temperature curve of day 1/19 which
was also stormy. In both cases the radiation inputs were
at minimum values yet the temperatures of day 1/19 are
substantially higher than on 1/20 and follow a more charac-
teristic curve. This behavior of the CSCS model is
explained by the stochastic component in the temperature
scheme. On day 1/20, the stochastic components were appar-
ently negative which served to counter the positive influ-
ence of the radiation input and to stabilize the temperature.
The CSCS model has the capacity to generate a wide range of
daily temperature patterns, making for a more natural appear-

ing long-term trace of generated temperatures.
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Figures 10.3-10.5 show segments of the generated data
for July at Dodge City. Immediately, the increase in
generated shortwave radiation over that of January 1is
apparent, not only in magnitude, but in hours of sunshine
as well. Peak shortwave radiation values at Dodge City

1

increased from approximately 40 1ly hr ~ in January to

about 86 1y hr™! in July. In addition, the number of hours
of significant shortwave radiation (i.e. IS' > 1.0 1y hr'l)
increased from about 9 hours in January to about 14 hours

in July.

The cloud cover transitions into and out of storm
periods can be seen in Figures 10.3 to 10.5. In Figure 10.3,
cloud cover increases steadily in anticipation of the first
storm on day 7/4. After the first storm, the cloud cover
remains high due to the close proximity of a second storm.
Once the second storm passes, the cloud deck breaks up and
clears for day 7/5 before building again for the approaching
storm on day 7/6.

In Figure 10.5, we see a short intense storm preceded
by and followed by periods with little cloudiness. It is
significant to note here that although a storm occurred on
day 7/8 (Figure 10.5), the total shortwave radiation was

only slightly reduced. The storm occurred before sunrise
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and the cloud deck decayed quickly to minimize the impact
on shortwave radiation. Contrast this result to that of
day 7/4 when the storms occurred during the day and to that
of day 7/6 when the storm occurred before sunrise but the
cloudiness remained through the day. This behavior of the
CSCS model is a significant improvement over previous
models that implied specific reductions of shortwave
radiation for stormy days regardless of when the precipi-
tation occurred.

Figures 10.6 - 10.8 show segments of data generated
for January in Boston, MA. As expected, low values for
shortwave radiation are generatéd. Although the number of
hours with significant shortwave radiation is the same as
for January in Dodge City, KS, the peak values are slightly

lower. Shortwave radiation peaks of about 40 1y hr1

1 was the

were generated for Dodge City but 36 1y hr~
maximum value generated for Boston in January. The reduction
is explained by the difference in the latitudes of the two
sites since the same atmospheric attenuation parameters were

used in both cases. Boston is located at 42022' N while

Dodge City is located at 37946' N.
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The characteristic diurnal temperature curve is not
as strong for January in Boston as it is for the other
examples. Looking ahead to Figure 10.12 shows that the
difference between the average minimum and maximum hourly
temperatures is only about 5°C for Boston, compared to
about 10°C for Dodge City (Figure 10.14).

The temperatures generated by the CSCS model for
January in Boston appropriately do not exhibit a strong
diurnal signature. This is especially true for days
1/26 - 1/29 in Figures 10.7 and 10.8.

It is also interesting to note the general downward
trend from a maximum of +5°C on day 1/22 (Figure 10.6)
to temperatures in the -6° to -3°C range on day 1/24.
This is consistent with the movement of large synoptic-
scale weather systems through the region.

Longwave radiation also shows a general downward
trend during the period 1/22 - 1/24. This is the result
that should be expected witﬁ a general drop in atmospheric
temperature and dewpoint.

Figures 10.9 - 10.11 show the segments of data for
July in Boston, MA. Again, the notable increases in short-
wave radiation and temperature over January levels are

evident. Although the diurnal signature of the July temp-
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eratures is strong, cloudiness coupled with a negative
stochastic element can flatten the temperature curve for
short periods of time (see day 7/6, Figure 10.9 and day
7/13, Figure 10.11). Expected downward trends in temper-
ature are also occasionally countered by a positive stochas-
tic component as evidenced by the temperature pattern
during the evening hours of day 7/14 (see Figure 10.11).
Although visual examination of various segments of
CSCS model output does not constitute a rigorous verifi-
cation, it does provide a framework for a qualitative inter-
pretation of model component coordination. In this res-
pect, the CSCS model seems to be working properly. That
is, cloud cover impacts shortwave radiation, shortwave
radiation affects temperature, cloud cover is total during
storms, etc. These effects might not be apparent from an
analysis of model output statistics alone. The next step
is, however, to verify that the model is working well

statistically.

10.3 CSCS Model Output Statistics

Tables 10.1 - 10.4 contain the statistics of the model
output and the statistics of the observed data for compari-
son. The generated data sets used in the statistical analy-

sis are each 20 months in length. (i.e. 20 July's, 20 Jan-
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uary's, etc.) Thus, 620 days or 14,880 hours of data
were generated and analyzed for each experiment.

For temperature, dewpoint, cloud cover, wind speed, and
wind direction, the means, standard deviations, and lag-1
serial correlation coefficients were computed. Since the
observed skew coefficients were used in the wind speed
component, the skew coefficients of the generated wind
speeds were also computed. For the precipitation analysis,
the mean times between storms, the mean storm durations,
and the mean storm depths were computed. Observations of
hourly shortwave and longwave radiation were not available
for the periods of record used in this study. However,
Getz and Nicholas (1979) provide estimates of mean daily
shortwave radiation by climatic week based on data for
the period 1952-1975. The estimated mean daily shortwave
radiation was found from Getz and Nicholas by averaging
the radiation values for the climatic weeks that span
January and July.

Examination of Tables 10.1 - 10.4 shows that the
statistics of the CSCS output compare favorably with the
observed statistics in each case. The means and standard

deviations of the respective generated temperatures and
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Table 10.1 Output Statistics: January, Dodge City, KS

TMP DEW CLD
MEAN 0.3%C -6.5°C 0.41
(0.0) % (-6.8) (0.38)
STANDARD ¥.39¢ g 4% 0.35
DEVIATION (7.4) (5.7) (0.41)
LAG-1 0.98 0.97 0.87
(0.98) (0.98) (0.91)
SKEW - s s g
PRECIPITATION
£, t, h
MEAN 207.7 hr 4.9 hr 2.2 mm
(184.8)  (4.8) (2.3)
RADIATION
SWR LWR
MEAN 190 ly/d 507 1y/d
(228) =

®( ) denotes observed value .

WSP

5.5 m/s
{5.5)

2.3 m/s
(2.4)

0.87

0.55
(0.54)

WDR
90.5°
(86.3)

43.9°
(59.2)

0.89
(0.92)
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Table 10.2 Output Statistics: July, Dodge City, KS

TMP DEW CLD WSP
MEAN 26, 390 15.5%¢ 0.33 5.3 m/s
(26.8)%  (15.4) (0.34) (5.6)
STANDARD 5.5% 3.5°¢ 0.32 2.1 m/s
DEVIATION (5.5) (3.5) (0.36) (2.3)
LAG-1 0.96 0.94 0.90 0.77
(0.96) (0.95) (0.89) (0.78)
SKEW i — - 0.54
--- i w o (0.51)
PRECIPITATION
MEAN 63.4 hr 2.5 hr 6.0 mm
(66.9) (2.5) (6.1)
RADIATION
SWR LWR
MEAN 598 1ly/d 826 1ly/d

'

(626) = g

denotes observed value.

WDR

112 .6%
(129.5)

41.9°
(50.3)

0.81
(0.84)
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Table 10.3 Output Statistics: January, Boston, MA

TMP DEW CLD WSP WDR
MEAN «1 e - . 49 0.58 5.5 m/s 82.8°
(-0.9)*  (-7.4) (0.61) (5.7) (74.4)
STANDARD 6.7°C 7. 29 0.36 2.6 m/s 40.3°
DEVIATION  (5.9) (8.2) (0.44) (2.7} (49.0)
LAG-1 0.99 0.99 0.88 0.88 0.85
(0.99) (0.99) (0.89) (0.88) (0.87)
SKEW - - = 0.68 o
s " R (0.61) % #
PRECIPITATION
ty t, h
MEAN 51.1 hr 7.2 hr 7.0 mm
(55.3) (8.8) (9.0)
RADIATION
SWR LWR
MEAN 126 1y/d 497 1y/d
(131) s

* ( ) denotes observed value.



Table 10.4

MEAN

STANDARD

DEVIATION

LAG-1

SKEW

MEAN

MEAN

Output Statistics:

TMP

zg 8%
(22.8)%

0.97
(0.97)

ty

66.1 hr

(64.5)

SWR

551 1y/d

(479)

154

July,

DEW CLD
15.3°C 0.42
(15.5) (0.45)

3.5 0.35
(3.8) (0.40)

0.96 0.89
(0.97) (0.88)

PRECIPITATION

tr h

4.1 hr 7.9 mm

(3.9) (7.2)
RADIATION

LWR

797 1ly/d

%( ) denotes observed value.

Boston, MA

WSP

4.4 m/s
(4.4)

0.82
(0.8&1)

0.453
(0.45)

WDR

101.6°
(102.4)

388
(46.1)

0.77
(0.78)
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dewpoints are almost always within 0.5°C of the observed
values. These results are particularly satisfying, since
the temperature component is by far the most complex part
of the CSCS model. In essence, the temperature component
is the keystone of the CSCS approach since almost all of the
other elements in the model influence or interact with the
temperature generation algorithm. For the CSCS model to
work as a whole, it is most important that the temperature
component performs properly.

Statistically, the cloud cover model worked well too.
The means of the generated cloud covers were quite close to
the observed values. Remember that the final generated
cloud covers are a combination of the generated fairweather
sequences, the transition periods, and the storm periods.
The input parameters for cloud cover generation were the
fairweather statistics and the transition decay coefficients.
To obtain the proper output statistics, the CSCS model
relies on the transition functions into and out of storm
periods that were described in Chapter 3 to create the pro-
per evolution of the entire cloud cover process.

To see how well the generated cloud cover mean values

evolved from the fairweather mean values, refer to Table 10.5
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where the mean observed fairweather cloud cover, the mean
observed cloud cover for the entire record, and the mean
generated cloud cover are presented. It is apparent that
the CSCS is capable of producing an evolutionary cloud
cover process whose statistics are quite close to the
observed values.

Reviewing the statistics for wind speed in Tables
10.1 - 10.4 shows that the reproduction of the observed
statistics by the CSCS model is excellent. However, repro-
duction of the wind direction statistics is only fair.
This is not really unexpected, given the procedure used
to represent wind direction in this study (see Chapter 7).
To be more correct, wind direction should, at the very
least, not be treated independently. However, for the
data sets used in this study, wind direction did not appear
to be a particularly strong predictor. Therefore, more
sophisticated wind direction generation algorithms were
not investigated.

The precipitation statistics were also adequately re-
produced. The only significant departure was for the mean
time between storms for January at Dodge City. However,

January in Dodge City is quite dry. Only about 70-75 storms
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Table 10.5 Evolution of Mean Cloud Cover

MEAN VALUES

Fairweather Total
Observed Observed
Boston, MA
January 0.43 0.61
JHLY 0.32 0.45

Dodge City, KA
January 0.31 0.38
July .41 0.34

Total

Generated

0.58
0.42

0.41
0.33
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were generated for the 20 month simulation period for
January in Dodge City, compared to about 250 storms for
the other data sets. With fewer storms to analyze,
higher variability in the statistics is expected.

It is difficult to draw many conclusions regarding
the shortwave output since the records used by Getz and
Nicholas (1979) to obtain the mean daily shortwave radia-
tion cover a much longer period than the data sets used in
this study. It is unclear whether any differeﬁces noted
between observed and generated values could be attributed
to modelling deficiencies‘or to natural statistical varia-
tion. Nevertheless, the generated values are near the
observed values and the model is making the correct sea-
sonal adjustments.

Observed data were not available for longwave radia-
tion. However, to the extent that the Idso (1981) expres-
sion for atmospheric emissivity (see Chapter 5) represents
the conditions at Boston, MA and Dodge City, KS, the gen-

erated longwave radiation values should be reasonable.

10.4 Diurnal Curves for Temperature and Dewpoint

In the previous section, statistical evidence was pre-



159

sented to suggest that the temperature and dewpoint com-
ponents of the CSCS model performed well. It is also
important that the two temperature components produce

the proper diurnal variations. Figures 10.12 - 10.15
show the observed and generated diurnal curves of temper-
ature and dewpoint (i.e. mean hourly values) for January
and July at Boston and Dodge City.

Overall, the generated temperature curves compare
quite well with the observed values. The generated min-
imum and maximum temperatures are all within 1°C of
the observed values and their timing is about right. The
only timing discrepancy occurs for the maximum January
temperatures at both Boston and Dodge City. The generated
mean maximum temperature occurs around 4:00 PM in January.
The observed maximums occur near 5:00 PM at Boston and near
3:00 PM at Dodge City. The variation of the two observed
January maximums is probably due to the difference between
the coastal climate of Boston and the continental climate
of Dodge City. Since the timing of all the minimums and
the July maximums is quite good, the exact reason for the
generated maximums to be an hour off in January is not

readily apparent.
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In Boston, the model in its present form does not
appear to be accounting for all of the modifying influences
of the nearby ocean in the late afternoon. The observed
temperatures remain elevated slightly longer in the after-
noon before starting the downward trend to the morning
minimum. This results in a six-hour period during the
evening hours where the model slightly underestimated the
temperatures.

Given that the diurnal curve of temperature for Janu-
ary in Boston is so flat (NSOC variation), it is a pleasant
surprise that the CSCS model performed as well as it did.
0f the four data sets, the January - Boston experiment
probably offered the most severe test of the CSCS model's
ability to adapt to a variety of climate conditions.

As for the January - Dodge City experiment (Figure
10.14), the observed temperatures in this continental cli-
mate drop more sharply in the late afternoon than during the
evening and early morning hours. During this period, the
temperature model gave a steadier transition for the down-
ward 1imb of the temperature curve. The exponentially-
dominated functions used in the temperature algorithms are
not quite able to express the sharp drop observed near

sunset in the January - Dodge City experiment.
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The CSCS model reproduced the observed diurnal
temperature curve for the July experiments quite well.

The maximum departure of the generated curve was about 1°¢
for Boston and 1.5°C for Dodge City.

Dewpoint temperatures are shown in Figures 10.13
and 10.15. The reader is reminded that an independent
stochastic process was used to generate dewpoint tempera-
tures for July and that a regression model was used for
January dewpoints.

For July at Boston, (Figure 10.13) the resultant mean
generated curve is essentially '"flat" as expected and
represents the observed dewpoints well. For July at
Dodge City, the mean generated curve is again nflat®™ as
expected. However, in the Dodge City observed data there
is a subtle wave that is not represented by the stationary
lag-1 Markov process. During the forenoon, temperatures
rise causing dew to evaporate. This increases the moisture
content of the lower atmosphere and elevates the dewpoint
temperature. As temperatures continue to rise, more evapor-
ation occurs but by late morning increased instabilities

cause mixing with drier air aloft, causing dewpoints to fall.
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By early evening, instability decreases again and continued
evaporation causes the dewpoints to rise again. To capture
this feature, alternative dewpoint generation techniques
will have to be explored.

For January, the regression model output represented
the observed data well, especially in capturing the morning
"dip" in the dewpoint curve. The observed '"dip'" coincides
with the morning temperature minimum. The depressed
dewpoints at this time are likely due to moisture -driven
from the lower atmosphere by frost formation.

Another interesting diurnal curve to review is for the
dewpoint depression, defined as the difference between the
temperatures and dewpoints. Figures 10.16 and 10.17
present the observed and generated dewpoint depression
curves for Boston and Dodge City respectively.

Dewpoint depression is interesting because it 1is
sometimes used as an indicator of the atmosphere's ability
to take up moisture. High dewpoint depression values indi-
cate a high capacity to take'up moisture. For low dewpoint
depression values, the opposite is true. Under the right
circumstances then (e.g. with sufficient moisture at the

surface), dewpoint depression could also be interpreted as
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an indicator of surface moisture flux.

Dewpoint depression is not explicitly generated by
the CSCS model. It is derived from the output from the
temperature and dewpoint components. For the observed and
derived dewpoints to compare favorably, the temperature
and dewpoint. components must be synchronized correctly.
In addition, deviations between observed and generated
dewpoint depressions can appear more glaring than with
either temperature or dewpoint. For example, if a generated
temperature and a generated dewpoint differ from their
observed values by IOC, the difference might not be con-
sidered significant. However, if the 1°C differences are
opposite in sign, the error in dewpoint depression would
be 2°C.

Thus far we have seen that the CSCS model satisfac-
torily reproduces the desired characteristics of the
meteorological data sets. The next step is to examine the
target land surface processes that the CSCS output data
are designed to force. An application of the CSCS output
to a detailed model of the land surface is presented in

Chapter 12.
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Before we get to the detailed analysis in Chapter 12,
it is instructive to make a quick examination of one par-
ticular land surface process to see that it is correctly
forced by the CSCS model output. Evaporation is perhaps
the most important process at the land-atmosphere inter-
face, being the basic mechanism for the restoration of
both atmospheric moisture and energy. Solar radiation,
temperature, dewpoint, and wind speed all contribute to
evaporation. If an estimate of evaporation could be made
using these meteorological data, the result would, in essence,
be an integration of the joint interactions of the input
variables: It is of particular interest to make a compar-
ison of the evaporation estimates computed using the ob-
served meteorological inputs with the estimates computed
using the generated CSCS data. In this fashion, we can
see to what degree any errors in the CSCS output have an
effect on the results of the target process.

Linsley et.al. (1975) present a nomogram solution for
the estimation of shallow-lake evaporation as a function
of solar radiation, air temperature, dewpoint, and wind
movement. Using the mean values of the observed and gen-
erated (CSCS) data for July at Boston, MA and Dodge City, KS,
evaporation estimates were made with the nomogram of Lins-

ley et.al. The results appear in Table 10.6.
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For the Dodge City experiment, the observed and gen-
erated evaporation estimates agreed to within 3%. For
the Boston experiment, the observed and generated estimates
varied by about 9%. The principal source of error in the
Boston evaporation estimate stems from the roughly 15%
over-estimation of the shortwave radiation input. The
shortwave radiation error is likely due to error in the

atmosphere attenuation function that was discussed earlier.

10.5 Summary

The results of CSCS model experiments for January and
July at Boston, Massachusetts and Dodge City, Kansas have
been presented. Hourly data plots, model output statistics,
and selected mean diurnal curves were reviewed.

Overall the CSCS model performed well. The results indi-
cate that the CSCS model is capable of generating well coor-
dinated sets of meteorological data with high time resolution
(i.e. hourly values). This represents a significant improve-
ment over existing techniques in both the number of variables
generated and in the time resolution of the generated data.

Two individual components, cloud cover and temperature,
were especially critical to the successful completion of the

CSCS model. The modulated non-stationary stochastic process
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Table 10.6 Comparison of Shallow Lake Evaporation
Estimates for July

Dodge City Boston
Data Units 0BS cscs 0BS cscs
Temperature [OC) 26.8 2643 22,8 22.9
Dewpoint °0) 15.4 15.5 15.5 15.3
Wind (m/s) 5:0 543 4.4 4.4
Shortwave (1y/d) 626. 598. 479. 551y

Evaporation (mm/d) 8.1 7.9 543 5.8
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derived to represent cloud cover enabled the linking of

the precipitation, the shortwave radiation, the longwave
radiation, the temperature, and the dewpoint regression
components with the cloud cover component on an hourly
basis. The temperature model enabled the generation of
hourly temperatures that were linked to other meteorological
variables and'that reflected seasonal and geographical

changes.
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CHAPTER 11

ATMOSPHERIC BOUNDARY LAYER

11.1 Introduction

Vertical transfer of momentum, heat, and moisture
between the earth and the free atmosphere occurs through
the atmospheric boundary layer. Continuous small scale
turbulent fluxes in the boundary layer appear to be the
basic mechanism of the exchanges between the atmosphere
and the earth. (Bhumralkar, 1979)

Although relatively thin, 10 to 50m (Anderson, 1976),
the boundary layer can account for significant atmospher-
ic effects. For example, the boundary layer contains only
about 2% of the total atmospheric kinetic energy on an
annual basis, yet it contributes up to 25% of the total
generation and more than 35% of the total dissipation of
atmospheric kinetic energy. (Kung, 1963)

Attempts to quantify earth-atmosphere exchanges have
led to a relatively large body of boundary layer literature.
General descriptions of turbulent processes of the lower
atmosphere can be found in a number of books (e.g., Oke,

1978; Rose, 1966; Priestly, 1959; Sutton, 1953, 1954;
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Lumley and Panofsky, 1969).

Two basic approaches to flux estimation commonly
appear in the literature. The eddy fluctuation method
seeks to describe the instantaneous properties of eddies
as they pass a specified level in the boundary layer.
Profile or flux-gradient methods infer the flux based on
average atmospheric profiles and on the degree of atmos-
pheric stability.

The eddy fluctuation method describes flux using the
observation that atmospheric entities exhibit short-term
fluctuations about their longer term means. Since the
properties contained by an eddy are its density (pe),
its vertical velocity (wv), and the concentration of the
atmospheric entity (s), the mean vertical flux density

of the entity (S) can .be written as (Oke, 1978)

S = E (Eé * pé)(ﬁ& + w&)(g + s') (11.1-1)

where the overbars indicate the mean values and the primes
indicate the short-term fluctuations about the means. Ex-
pansion of Equation (11.1-1) followed by a term by term

evaluation leads to
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S = E(pw&s‘) (11.1~2Z)

For the vertical transfer of momentum, sensible heat, and

latent heat, Equation 11.1-2 is used to give

T = ~E(peW§wé) (11.1-3)
QH = E(pecpwéT') (11.1-4)
Qg = Eleg L,wyay) (11,1~ 5]

where T is the shear stress in Pa, o, is the eddy den-
sity in kgm's, Wé is the horizontal wind speed fluctuation

in ms'l, cp is the specific heat of air in Jkg °¢ , T
is the temperature fluctuation in OK, Ly is the latent

heat of vaporization in Jkg !

, and qﬁ is the specific hum-
idity fluctuation in kgkg '

The fluctuation terms represent changes in the at-
mospheric properties over periods on the order of seconds.

Data collection for time intervals this short is not

routine. In addition, the basic time unit of the CSCS model

is one hour. Therefore, eddy fluctuation methods were
not used in this study.

In the profile or flux-gradient approach, the flux is



generally described by (Oke, 1978)

Flux of Ability of the medium Gradient of
= X
an entity to transport the entity a relevant
property

Through the turbulent surface layer, momentum transfer

can be described by

a M 23z {11.%~6)

where o, is the atmospheric density in kgm'S, Ky is
the eddy transfer coefficient for momentum in mzs'l, and
z is elevation in m.

For sensible heat flux

(o3

H = -p e Ky -E- (11.1-7)

where H is in Wm'z, K, is the eddy transfer coefficient

for heat in mzs_l, and T is the air temperature in °k. Nor-
mally, potential temperature is used in Equation 11.1-7.
However, in this study, only temperature differences over
the lowest 2 meters are of interest. Over this range,
potential temperatures and air temperatures are essentially

the same. Finally, for water vapor, the turbulent flux

transfer can be described by
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aqh
E = -paKw —a (11.1-8)
where E is the water vapor flux in kgcm-zs_l, Kw is the
AR |

eddy transfer coefficient for water vapor in m“s ~, and

qy is the specific humidity in kgkg™'. Equations 11.1-6
to 11.1-8 show that the desired fluxes can be ‘estimated if
the appropriate gradient and the associated transfer coef-
ficient are known.

The lower atmosphere is a very active zone with var-
iations in heating and cooling resulting from instantaneous
variations of fluxes with height. Over longer periods,
such as a half-hour or more, flux variations with height
are very small (Oke, 1978). Therefore, the surface layer
is often called the layer of constant flux. Practically,
this means that estimates of flux at any point in the low-
est 50m over a suitable site are assumed equal to their
surface values. Atmospheric variables generated for the
two meter level by the CSCS model can then be used to help

estimate transfers across the land-atmosphere interface.

11.2 Profile Method for Flux Estimation

In a neutrally stable atmosphere, (i.e., one with an
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adiabatic lapse rate), under fully turbulent conditionms,

the wind profile is logarithmic and expressed by

-d
s _ 1 Z 0
W; = E'ln[ ZO ] (11.2-1)

where dg is the zero displacement plane in meters, zg is
the roughness length in meters, k is the von Karman con-

stant (0.40), and W, is the friction velocity defined by

Wy = (1,/0,) (11.2-2)

where Tes is the shear stress at the surface in Pa.
The vertical profile of the horizontal wind speed 1is

found by differentiating Equation 11.2-1 and rearranging

to give
W W,
S
5z  kz (11.2-3)

Remembering that the boundary layer is also assumed to be

a layer of constant flux, we can write

T = T, = constant (11.2-4)

Using Equations 11.1-6, 11.2-2, 11.2-3, and 11.2-4, an

expression for the eddy transfer coefficient for momentum
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can be written as
Ky, = k2" —= (11.2-5)

Equation 11.2-5 shows that the transfer coefficient for
momentum is also a function of the vertical gradient of
the horizontal wind.

The problem of establishing the transfer coefficients
Ky and K, can be simplified by invoking the 'principle
of similarity". (Oke, 1978). Under this assumption, an

atmospheric eddy can transport any conservative entity

with equal facility. Therefore,

Ky = Ky = K

H W {11.2~8)

M
Using Equations 11.2-5 and 11.2-6, a new expression for

sensible heat flux can be written as

oW
_ 2.2 °"s a7 i
H = pacpk 2" o 837 (11.2-7)

Likewise, an expression for water vapor flux can be written

as
2 2 Mg 39y

E = 'iOak Z -Tz—' 5z (_11.2"8)

Equation 11.2-8 can also be written in terms of vapor
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pressure by using an approximation for specific humidity

0.62290

. = = (11,2-9)
h P,

where ey is the vapor pressure in mb, Pa is the atmospheric
pressure in mb, and the constant, 0.622, is the molecular
weight ratio of water vapor to dry air. Substitution of

Equation 11.2-9 into Equation 11.2-8 gives

0.6220a 2 2 BWS aeo

E = - —Pa-'-'—*-— k“z 3z Bz (11.2"10)

The equations for t, H, and E presented so far, are
strictly valid for neutral stability only. For stable
and unstable conditions, the wind profile is not generally
logarithmic. Stable conditions dampen free convection
and, using the logarithmic wind profile, cause the fluxes
to be overestimated. The opposite is true for unstable
conditions.

Monin and Obukhov (1954) have generalized the loga-

rithmic wind profile for all conditions, giving

(112111

where Y is an empirically determined adjustment factor

that is related to atmospheric stability. Obviously, for



182

neutral conditions, &y 1is unity.
Similar functions can be defined for the sensible

heat and water vapor profiles, giving

oT _ H
— = - ——— 0 {(11:2<=12)
EYA pacpKH H
and
aq
h E
—_— = - o) (11.2-13)
9z paKw W

where &, and ¢, are the stability related profile adjust-
ment functions. According to Monin and Obukhov (1954) , the
functions QM’ QH! and @W should be functions of a dimen-
sionless height ratio z/L. L is constant with height in
the boundary layer and is presented by Anderson (1976)

as

Wic paT

[ = - g%___ , (11.2-14)
where g is the acceleration of gravity in ms 2. The
ratio z/L is positive for stable atmospheric conditions,
zero for neutral, and negative for an unstable atmosphere.
Several studies,conducted under the assumption that the
transport mechanisms of conservative entities are similar,

and therefore, that their profiles are similar, have resulted
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in empirical relationships for @(%}. (Dyer, 1967;

Dyer and Hicks, 1970; Dyer and Grant, 1978; Businger et.
al. 1971; McVehil, 1964; Oke, 1970; Yamamoto and Shim-
anuki, 1966) Not all researchers agree on the form of the
¢-functions, but the so-called Businger-Dyer formulae

are frequently used. For stable conditions, these give

(1l.2-15)

i~

which implies that KM = KH = Ky-

the equalities of the eddy transfer coefficients and the

For stable conditions,

&-functions are supported by the studies of Saugier and
Ripley (1978) and Monji and Businger (1972). For unstable

conditions

= ¢, = &, = (1-16

W (11.2-16)

e
N~

The studies of Saugier and Ripley (1978) and Monji and
Businger (1972) also provide observational support for
Equation 11.2-16.

Since the information required to evaluate L in Equa-
tion 11.2-14 is not generally available, some other stabil-
ity-related procedure to compute z/L from routinely
measured data is needed. Richardson (1920) developed a

criterion that '"reflects the ratio of the consumption of
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energy by:buoyancy forces to the rate of its production
by wind shear." (Anderson, 1976)
Anderson gives the gradient form of the Richardson

number as
Ri = g(3T/3z) ; (11.2-17)
T(Bws/az)
Thus, the Richardson number can be computed from observa-
tions of wind speed and temperature. Anderson (1976)
also shows that the ¢-functions can be written in terms of

the Richardson number. For stable conditions

1

Oy = Oy = Oy = (1-5Ri)" (11.2-18)
and for unstable conditions
-
2 . =
¢M = @H = @w = (1-16R1) (11.2-19)

Comparison of Equation 11.2-19 with Equation 11.2-16 shows
that, in the Businger-Dyer formula for unstable conditions,

the height ratio, z/L, is equal to the Richardson number, Ri.

11.3 Computation of Turbulent Transfer Using Measurements

at One Level

The CSCS model generates representative data at the
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2-meter level only. Therefore, it is not possible to
evaluate the various gradients described in the previous
section. Similarly, observations of wind, temperature,

and humidity are made at one level for most data collection
sites. To overcome this problem, the flux equations must
be used in their integrated form. If these equations are
integrated between z, and Z,s (assuming WS =0, T = Tb’

and e = ey at the bottom of the boundary layer), the flux

equations become

2

T = paCMWS (11.3-1)
H = pacpCHWS(T-Tb) ) (11.3=2)
and
0.6229a
E= - ——-P";.— was(eo - eb) (11.3‘3)

where W. is the 2-meter wind speed in ms Y, T is the 2-
meter temperature in °k, and - is the 2-meter vapor
pressure in mb. CM’ CH’ and Cw are the dimensionless
transfer coefficients for the integrated flux equations and
are called the "bulk" transfer coefficients. Under neutral

conditions, and using the similarity assumption, we have
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2
(Cdy = €y = Gy = [ k (11.3-4)

z-d i
1n( O)J

Z
e}

where the subscript N denotes neutral conditions.
Deardorff (1968) developed ratios of the bulk trans-

fer coefficients for the general case to their neutral

values. For stable conditions where it is assumed &, = ¢

H
= @w, the ratios can be written as

C C C
W __ “H _ M ) ) 9 ]
Con Cy © (1.0 - 5(Ri)yg) (11.3-5)

MIN
where (Ri)B is the bulk Richardson number given by Anderson

(1976) as

Zgz(T—Tb)

(Ri)B = (11.3-6)

4
(T+Tb)ws

For unstable conditions, Deardorff (1968) gives

;/2
VU PPN 10 PP €= P 1+X]
fempe ; X 2 2
J
-1 r )| 7?
- zean"t(x) + T ] (11.3-7)

and
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-1
1
Cy Cyy Cy ]2 2. F L 1ax?
@iy o { Ty |10 F Oy 1n (5=
(11.3-8)
where
% = [1 = 16 %)’ﬁ (11.3-9)

If Equations 11.3-1 and 11.3-2 are substituted into
Equation 11.2-14, the Monin-Obukhov length can be written
as

3/2 2
CM TWS

= - (11.3-10)
C kg (T-Tp)

3/2

Dividing the numerator and denominator by (CM)N and

using Equation 11.3-6 gives the relationship between the

height ratio z/L and the bulk Richardson number.

KCyof (Cip)
u/ (Cydy .
E Oy 577 (Ri)g
(Cy ()

(G

(11.3=11)

(el

By knowing the wind speed, temperature, and vapor pressure

at the two meter level and the temperature at the bottom
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of the boundary layer (i.e., at the land surface), the
fluxes can‘be estimated. The wind speed, temperature, and
vapor pressure at the two meter level are generated by

the CSCS model. If the temperature, Tb’ is available from
a model of the land surface, the fluxes across the earth-

atmosphere interface can be generated.

11.4 Solution Procedure

For neutral and stable conditions, the bulk transfer
coefficients are easily computed. Finding the coefficients
for unstable conditions is not quite as straightforward.
The coefficients depend on the ratio z/L. But from Equa-
tion 11.3-11, it is seen that the coefficients are needed
to determine z/L in the first place.

The problem of caiculating the transfer coefficients
is solved in two phases. First, a table is constructed
that relates the ratio z/L to the bulk Richardson number
given values for z, Zys and do. Second, during program
execution, (Ri)gy is computed from Equation 11.3-6 and z/L
is found directly from the table. Once z/L is known, the

coefficients are easily found.
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CHAPTER 12
LAND SURFACE APPLICATION

12.1 Introduction

To demonstrate the utility of the CSCS model, gen-
erated data were used as input to a detailed model of the
land surface. The resulting fluxes are plotted here to note
any trends that occurred due to different meteorological
forcings given identical initial conditions. Also, the
mean daily fluxes are presented to show how the partition-
ing of energy in the surface heat balance changed for each

experiment.

12.2 CSCS Generated Data Sets

Three different generated data sets were used. First,
the observed statistical parameters found for July in
Boston, MA were used to generate a ''mormal' meteorological
data set. The output from the land surface model that
results from the '"normal" forcing serves as a baseline for
comparison with the results from the other experiments.

A second data set was generated that represents a
weather scenario which is much wetter than normal. This
was accomplished by changing only the input parameters, Eb’

3

r? and h for the precipitation component. The precipitation
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statistics were estimated from the July 1959 data for Bos-
ton, the wettest month in the record.

Finally, a third data set was generated using the
observed statistical parameters but adding a constant
2.2°C (4°F) bias to the temperature component. The bias
was introduced by adding a constant to the stochastic
term in the temperature component represented by Equation
6.3-22.

Due to the rather large computational requirements
of the land surface model, the length of simulation was
limited to one month for each data set. Table 12.1 pre-
sents the statistics obtained from the three CSCS data
sets compared to the observed values for the period of
record.

Selecting the 'mormal'" data set presented some diffi-
culty. Since the CSCS output is stochastic and since one
month is too short a period for statistics to stabilize,
it is essentially impossible to generate one month of data
with all statistics identical to the historical values.
Therefore, several monthly runs were made and the monthly
data set whose statistics were judged to most closely repre-
sent the historical values was selected as the '"mormal"

data set.



Table 12.1

SET

OBS
NORM
WET
BIAS

EM
EC

22.8
2247
24.4
25.5

DEW
oC

15.
14.
L5.
17.

4
4
7

CLD

0.45
0.46
0.50
0.45

July, Boston, MA

WSP
m/s

4.4

WSR
deg

102.

99.
106.
101.

SWR
ly/d
479
522
534
523

LWR
ly/d

784
808
842

64.
575
44 .
45.

5
3
4
8

Data Set Statistics For the Land Surface Application:

ty h

hr mm
5.9 7.2
5sd 6.0
5.6 18.6
4.1 9.0

I6T
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For the "wet' data set, the input precipitation para-
meters were changed from the observed values presented in
Table 12.1 to ty = 52.3 hr, t. = 5.3 hr, and h = 17.2 mn.
Decreasing the time between storms and increasing the storm
duration caused the mean cloud cover to increase. In
fact, the observed mean cloud cover in July 1959 in Bos-
ton was 0.51. This compares with a generated value of
0.50 (see Table 12.1).

It is interesting to note that in spite of the increased
mean cloudiness for the "wet" data set, the mean daily
shortwave radiation was actually higher than for the
"normal'" data set. This can occur when, over short periods
of time such as one month, the higher levels of cloudiness
happened to occur during the night or during times when
shortwave radiation is low (e.g. early morning or late after-
noon). Existing meteorological data generation algorithms
are unable to capture the stochastic feature.

The temperature-biased data set has a mean temperature
that is 2.8°C higher than the mean temperature of the
"normal'" data set. The only other model output variable
that is directly influenced by the temperature bias is the

longwave radiation. Table 12.1 shows that the longwave radia-
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tion is significantly higher for the "biased' data set
than for the '"mormal" data set. The independently generated
dewpoints happened to be high for the 'biased" data set

and also served to drive up the longwave radiation.

12.3 Land Surface Model

The computer model of the land surface used in this
study numerically simulates moisture and heat transport in
a hysteretic, inhomogeneous porous media (Milly, 1982).

In particular, the model is used to represent a vertical
column of soil that begins at the land surface and extends
downward to a depth of 500 cm.

The atmospheric forcings represented by the CSCS data
sets (translated from the 2-meter level to the surface
by the boundary layer component described in Chapter 11)
define the surface boundary conditions. At the lower boundary,
no diffusion of soil moisture or heat is assumed and water
leaves the soil column only by gravity drainage, advecting
sensible heat with it. Only vertical variations of heat
and moisture are considered.

The soil parameters are based on hypothetical silt
loam soil. A summary of the soil parameters appears in

Table 12.2.
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The initial conditions were the same for each exper-
iment. Initially, temperature, matric potential, and
volumetric liquid water content were assumed uniformly
distributed over the entire soil column. The starting
values for these parameters were chosen based upon the mean
temperature and mean precipitation for July in Boston as
well as upon the properties of the silt loam soil (Milly,
1982). The initial conditions chosen for the current
study are:

23, 298

1. temperature, T

2. matric potential, V¥ -1000 cm
3. volumetric liquid

0.233 cm3/cm3

]

water content, 5

The output from the land surface model includes plots

of the time history of the components of the surface heat
balance:

Rn - G =H + LE (12:3%-1)

where Rn is the net all-wave radiation, G is the heat flux
into the ground, H is the turbulent sensible heat diffusion
into the atmosphere minus the sensible heat carried into

the soil by water that infiltrates during precipitation, and

LE is the turbulent latent heat diffusion into the atmos-
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phere. All values in Equation 12.3-1 are expressed in
langleys/day (ly/day). In addition to the time histories
of the surface energy balance components, their average
daily values are also available for comparison.

The surface moisture balance equation is written as

dhd

qg/e; = "B+ E+ 5= + R (12.3-2)

where Ay is the upward mass flux of water in gcm_zd_l,

P is the precipitation rate in cm/d, E is the evaporation
rate in cm/d, ha is depression storage depth in cm, RS is
the surface runoff in cm/d, and o1 is the liquid mass den-
sity in g/cms. The surface heat balance and the surface

moisture balance equations are linked by the evaporation

terms, LE and E. Thus, the latent energy term represents
an energy form of the evaporation rate which adds another

interpretive element to the plots of LE.

12.4 Results

Figures 12.1-12.6 present the 31 day plots of the indi-
vidual terms in the surface heat balance equation that
result from the land surface simulations using the different
meteorological data sets (i.e. ''mormal', "wet", and "biased').
Obviously, some of the fine details in the plots were

sacrificed in order to plot all the data. However, the sig-



Table 12.2
Parameter Value
n 0.46
B 0.414
K 10 %cm/s
a 0.210
b -495.
c -0.147
d 0.0
& -0.0489

Soil Constituent

Liquid water
Air

Quartz

Other minerals

Organic matter

196

=

Parameter

8

3
94

1.0
510~ Y
0.46

0.46

Summary of Soil Parameters (ref. Milly, 1982)

Value
0.16
0.33
0.05

0.11

5 1

10°cm”
0.20
0.10

0.5cm

1.37(1077) ==

® *

2.1(1072) 0.125

3

7(10 ) 0.125

4

6(10 1) 0.5

* yariable - see Milly (1982), Chapter 2
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Table 12.2 (continued)

Parameter Definition

soil porosity

proportion of medium occupied by water upon rewetting
to zero matric potential

hydraulic conductivity at saturation and temperature
T
0

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function
volumetric soil fraction of quartz

volumetric soil fraction of "other' minerals
volumetric soil function of organic matter
moisture content at which liquid flow becomes negligible
specific surface

albedo of soil when dry

albedo of soil when wet

maximum depression storage

volumetric heat capacity of the i-th constituent
thermal conductivity of the i-th constituent
shape factor of the i-th constituent

initial temperature of arbitrary reference temperature
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nificant trends can still be examined. All of the data

are plotted in units of 1ly/d. Periods of precipitation are
indicated by the "tic" marks just above the time line. The
tic marks do not indicate intensity, just the occurrence

of precipitation.

The most significant feature of all the plots is the
strong diurnal signature. This is obviously due to the
radiation input which is dominated by the shortwave compon-
ent. Figure 12.1 presents the plot of net radiation for the
"normal'" run. The peak net radiation values represent a
positive contribution to the surface heat balance of on the
order of 1000 1y/d. At night there is a slight radiational
loss as expected. Cloud cover significantly affects net
radiation. This is especially clear during the relatively
stormy period from day 9 to day 15. The increased cloudi-
ness during the period cut the peak radiational input nearly
in Kaif.

Overall the ground flux (Figure 12.1) is the smallest
contributor to the heat balance. Although quite variable,
the flux away from the surface during the day is very nearly
balanced by flux toward the surface at night. During the
summer months, such as July, there is a slight positi#e

net ground flux.
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The latent heat flux for the 'normal" experiment is
shown in Figure 12.2. A diurnal signature is present in
the latent heat flux plot, however, its magnitude depends
heavily on the availability of liquid water to evaporate.
During the two dry periods (days 1-8 and days 20-28), the
latent heat flux steadily decreases as the supply of avail-
able liquid water is exhausted. As soon as the available
water supply is replenished, the latent heat flux increases
sharply again.

The sensible heat flux (Figuré 12.2) runs essentially
counter to the latent heat flux. As the latent heat flux
decreases, the excess heat 1s transferred to the atmos-
phere as sensible heat. Once the water is available again
to evaporate, the sensible heat flux decreases in response
to the increased latent heat flux (see days 9-15 and
days 29-31).

Figures 12.3-12.4 present the results of the experi-
ment using the '"wet' data set. In this data set, the input
short and longwave radiation were higher (as discussed
earlier) which is reflected in the net radiation plot.

The biggest change between the results of the experi-
ment using the '"normal" data and the experiment using the

"wet" data set is evident in Figure 12.4. A much higher
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amount of water was available for evaporation. Thus, high
rates of evaporation were sustained throughout the month
and sensible heat flux remained at fairly 16w levels.

Figures 12.5-12.6 present the results from the experi-
ment using the temperature-biased input data. Net radia-
tion levels were even higher for this experiment due to
the significant increase in longwave radiation input.

This leads to very high peak fluxes of latent heat (Fig-

ure 12.6) but the water supply was not able to sustain those
rates for very long. Accordingly, the sensible heat fluxes
(Figure 12.6) were higher than for the '"wet' case (Figure
12,43,

Table 12.3 summarizes the average values for all four
terms in the surface heat balance. For the experiment
using the '"mormal' input data, the sensible and latent heat
fluxes were portioned almost equally. However in the "wet"™
experiment, sufficient liquid water was available to allow
the latent flux to dominate. In the "bias' experiment,
increased radiant energy coupled with a higher than '"nor-
mal' supply of available water allowed the latent flux to
dominate the convective transport but not to the extent of

the "wet'' case.
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Table 12.3 Average Heat Flux For the Land Surface Simulations

(A1l values in 1ly/d)

Rn G H LE
NORMAL 262 6 126 131
WET 302 1.2 20 279
BIAS 304 12 102 190

NOTE: R_ - G = H + LE



208

12.5 Summary
Three different data sets generated by the CSCS model

were used as input to a detailed model of the land surface.
In each case, the initial soil column conditions were iden-
tical. Thus the differences noted in the resulting surface
fluxes were caused by the variations in the input data sets.
The variations in the input data set were in turn
caused by varying the input parameters of the CSCS model.
This demonstrated the use of the CSCS model to study the
response of a land surface to a particular change in a
climate or weather scenario. The stochastically generated
data set resulting from such experiments will include many
of the '"ripple" effects that might evolve in a naturally
occurring scenario due to the physical coupling of the

atmospheric processes.
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CHAPTER 13

SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS

13.1 Summary

A computer model representing a new methodology
called Constrained Stochastic Climate Simulation has been
presented. The CSCS model jointly generates ten meteoTr-
ological variables with hourly resolution.

Two significant problems were overcome during the.
development of the CSCS mddel. As a result, new procedures
for the generation of cloud cover and temperature were
proposed. These procedures account for the severe non-
stationarities in the cloud cover and temperature data
and allow the necessary linkages to other CSCS model com-
ponents.

The CSCS model was tested on four data sets (January
and July for Boston, MA and January and July for Dodge City,
KS). In each case, hourly output data plots, model out-
put statistics, and mean diurnal curves were examined. The
CSCS generated data were shown to represent the historical
data well. In addition, estimates of shallow-lake evapor-
ation were made using observed and generated data statis-
tics for July at Boston and Dodge .City. This tested the

joint use of several CSCS output variables. Again, the
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results using the CSCS data were satisfactory.

To demonstrate the utility of the CSCS model, three
different data sets were generated to use as input to a
detailed model of the land surface. Simple changes to the
input parameters of the CSCS model were all that were
required to create new data sets needed to study how the

land surface system responded to different forcings.

13.2 Recommendations

Several recommendations for future work have been dis-
cussed in previous chapters. These and several additional
recommendations are summarized here.

The precipitation regimes of certain climates exhibit
significant diurnal variations. Warm humid climates dom-
inated by late afternoon rain showers illustrate this point.
Ways of incorporating this feature into the CSCS need to be
explored.

Since the precipitation model 'drives' the cloud cover
model in the CSCS, diurnal variations in cloud cover due
to the precipitation regime will also be accounted for. This
"ripple'" effect will continue through the CSCS model to
the other components linked by cloud cover. (i.e. shortwave

radiation, longwave radiation, temperature and dewpoint).
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The methodology used to determine an appropriate input
probability mass function for the fairweather cloud cover
generation algorithm needs to be reviewed. The difficulties
in regenerating as well as interpreting the observed fre-
quency histogram were discussed in Chapter 9. Either a
more effective way of preserving the strongly U-shaped
distribution or a way to quantitatively express the unobser-
vable physical processes needs to be developed.

An alternative shortwave radiation attenuation algorithm
was presented in Chapter 4. This method should be imple-
mented in the CSCS model and the results compared with those
of the current technique. Both meth;ds need to be compared
with more detailed shortwave radiation data than were
available for this study. This would help determine whether
the use of the more complex alternative is warranted.

The longwave radiation model uses the latest results
of Idso (1981). However, his model apparently has been
tested at only one site (Phoenix, AZ). Idso's results are
promising, but the generality of his model is still open
to question. More testing of Idso's approach is needed.

The temperature model has been shown to perform well
for two different months, January and July. Although these

months represent two climate extremes, the other months
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should also be tested, particularly the more volatile
transition months during Spring and Fall.

In this study, temperature model parameters were
estimated for each month. Since the temperature model
includes terms that reflect the day of the year, experi-
ments are needed to determine if parameters should be
estimated monthly or if parameters could be used that repre-
sent longer periods such as a season. If parameters could
be developed seasonally, the total parameter estimation
chore would be significantly reduced.

Wind speed and wind direction were generated indepen-
dently in this study. For some locations, the assumption
of independence would not be valid. It may be more appro-
priate to condition wind speeds on wind direction.

In future versions of the CSCS model, wind direction
should be generated from its vector component form instead
of its azimuth form. By using the x-y components of the
wind vector, a continuous bivariate probability distribu-
tion function such as the bivariate normal distribution
might be used. This should produce a more realistic wind
direction specification than currently possible.

July dewpoints were generated independently. This

assumption was reasonable for Boston but in Dodge City,
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stability-related effects in the diurnal dewpoint curve
were not reproduced. If it is important to capture this
feature, other generation techniques such as the regression
model used for January dewpoints should be explored.

In addition to the recommendations relating to the
individual components, there is a broader concept that
should provide an interesting topic for future research.

It relates to the purely stochastic portions of the CSCS
model components.

One common way of handling non-stationarities in
data that are to be represented by a stochastic generation
procedure is to remove the non-stationarities from the
data analytically and to treat residuals as a stationary
stochastic process. This is essentially the procedure
used in the CSCS approach, particularly in regard to cloud
cover, temperature, and dewpoint. In the CSCS model these
residuals were assumed to be independent. This assumption
should be explored more carefully. If significant correla-
tions exist between the residuals, standard multivariate
techniques might be used to joilntly generate the residuals
and thus further improve the coordinated output of the CSCS

model.



214

13.3 Conclusions

The CSCS model is a flexible and efficient tool that
can provide high resolution meteorological data to be used
in a variety of applications including land surface flux
studies, plant disease propogation modelling, insect
infestation modelling, irrigation management, and crop
forecasting. A variety of possible input weather or climate
scenarios could be applied to a system simulation and the
outputs could be used to develop probability statements
about future events. Various management decisions could
be made accordingly.

The flexibility that is inherent in the CSCS model was
achieved without great computational cost. This 1is very
desireable since the CSCS model will generally be a tool
of the study, not the primary system of interest.

Even for very long simulation periods (e.g. 100 months),
the CPU times required on a DEC-10 computer are on the order
of minutes. Contrast this to the execution times of the
land surface model by Milly (1982) and the model of sur-
face hydroclimatology by Sellers and Lockwood (1981) which
are on the order of hours (or days). Thus, the use of the
CSCS model in these cases would add an insignificant com-

putational burden to the simulation studies.
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APPENDIX A
RANDOM NUMBER GENERATION

A.1 Introduction

Random numbers drawn from a variety of different dis-
tributibns are required in the CSCS model. Fortunately,
the stochastic behavior of the CSCS components can be
generated by transformations of independent random numbers
that are uniformly distributed over (0,1) (Fishman, 1973).
This is important, since most computer systems have an
algorithm for generating random numbers from U(0,1)
resident in the system library. By using transformations of
U(0,1) to yield random numbers from uniform (U(a,b)), normal,
exponential, and gamma distributions, as well as any ar-
bitrary distribution, the generality of the CSCS model 1is
increased. The following sections outline the techniques
used to generate the required random numbers for the CSCS

model.

A.2 Uniform Distribution, (a < x < b)

The uniform probability distribution of variable, X, 1s

defined by
1
_ | b-a ; a<x<b
2 (A-1)
0 y elsewhere
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The cumulative distribution, Fx(x), is defined as

Fy (x) = gi, = F8 (A-2)

a
FY(XJ can have any value between zero and one. Therefore,
when FX(x) is represented by a random variate U from U(0,1),

Equation A-2 becomes

U= 5 (A-3)
Solving for x gives

x = a + (b-a)U (A-4)
where x is a uniformly distributed number from U(a,b).
(Fishman, 1973).

The generation procedure is to simply select U from

U(0,1) and use Equation A-4 to generate x from U(a,b).

A.3 Exponential Distribution

The exponential probability distribution function can

be written as

1 -X/B
£ (x) =| e yDEx AR (A-5)
0 :x<0

The cumulative probability distribution, Fx(x), is
X
-u/B ~%f B

Fy(x) = e du =1 - e (A-6)

w| =
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If Fx(x) is represented by a random number, U, from
U(0,1), Equation A-6 can be written as

Joml =g E (A-7)
Solving for x gives

x = -81n(1-U) (A-8)
Since U is a uniform variate, it's easy to see that (1-U)
ijs also uniform. Therefore, Equation A-8 can be written
as

X = -gln(U) (A-9)

The generation procedure is to select U from U(0,1)
and use Equation A-9 to obtain the exponentially distributed

variate x. (Fishman, 1973).

A.4 Normal Distribution

In the previous sections, the generating technique
relied on the invertability of the appropriate cumulative
probability distribution. Unfortunately, the cumulative
distribution function of the normal is not analytically
invertable.

The generating algorithm for normally distributed var-
iates in the CSCS model is based on the direct transformation

of uniform variates. (Fishman, 1973). Let U, and U2 be

1
independent variates from U(0,1). Then the variates
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5
(-Zanl) cos(ZnUz)

X, = (-Zanl)%sin(ZﬂUz)

(A-10)

(A-11)

are independent and each is from a normal distribution with

zero mean and unit variance.

To demonstrate this,

Fish-

man (1973) indicates that the joint probability distribu-

tion function of Xl and Xz is

£y x, (x10%3)

1273

where

The joint distribution in Equation A-13 is that of two

Jf

-—

U

1.
2m

Zﬁ(x12+x22)

(A-13)

(v, s80,) = J (A-12)
12Uy 1072
—(xlz . xzz)/z
xzz)/Z ~(x12+x22)/2
-
2
X1
7

Zw(xl +x22)

(A-14)

independent normal deviates, each with zero mean and unit

variance.

The generating procedure is to select Ul and U2 from

U(0,1) and use either of Equations A-10 and A-11 to yield a
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normally distributed variate X with zero mean and unit
variance. 'Note that in previous sections, one uniformly
distributed variate was selected for each generated random
number. Now, two uniformly distributed variates are re-
quired for each normally distributed variate. Therefore,
an'efficiency rating can be defined as the number of ''target"
variates generated divided by the number of uniformly
distributed variates required. Since two uniformly dis-
tributed variates are required for each standard normal
deviate desired, the generating Equations A-10 and A-11 have

an efficiency rating of 50%.

A.5 Gamma Distribution

Consider the variate, X, to be gamma distributed with
shape parameter, o, and scale parameter, B. (denoted as
Ga(a,B)). The probability distribution function of the
gamma variate, X, 1s

,

-x/B . _
1 e xa 1

o
£,(x) = Fia)B , 0 <x < (A-15)

0 , x <0

L
Like the cumulative distribution function (cdf) of the nor-

mal distribution, the gamma cdf cannot be analytically
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inverted. Therefore, transformation of uniformly dis-
tributed variates will be used to generate gamma distributed
random numbers.

Fishman (1973) outlines a technique to generate gamma
variates that is valid for both integral and non-integral
shape factors. According to Fishman, if X is from Ga(a,B),
then X can be considered '"to be the sum of k + 1 independent
gamma variates, all with scale parameter 8, but the first
k of which have unit shape parameter and the k+1lst has shape
parameter vy = o - (a).'" (Note that k = (a) where e 38
denotes ''the largest integer in').

The first k independent gamma variates are from Ga(l,8).
With unit shape parameter, the gamma distribution reduces
to the exponential distribution. Thus, the sum of k in-
dependent gamma variates from Ga(l,8) can be expressed as
the sum of k independent exponentially distributed variates.
Using Equation A-9,

k
Xq =.§ (-Banj) (A-16)
I=l
which can also be written as
k
Xl = «BlIn [jlej] (A-17)

where Uj is the jth variate selected from U(0,1).
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The k + 1lst variate is distributed according to
Ga(y,B). To obtain the k + 1st variate, let Y and Z be
independent variates from a beta distribution, Be(y,1-v),
and a gamma distribution, Ga(l,1), respectively. Then, as
Fishman (1973) shows, the variate W = B8YZ is distributed
according to Ga(y,8). Thus, the gamma variate, X, from

Ga(a,B) is found by
k
X = -Bln I U, + BYZ (A-18)
ja1 ¢
Since Z is exponential with a unit parameter,

Z = 1nUp, (A-19)

and Equation A-18 becomes
k
I

X = -8ln U; | - YBIn(Uy,q) (A-20)

j=1
The remaining task is to select Y from Be(y,1-Y).

The probability distribution function for a beta dis-
tributed variate with shape and scale parameters a and b res-
pectively is

-1 b-1
I'(a+b) a
:“Ly——j-y (1-y) , 0<x<1

0 , elsewhere

ty(y) =
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I'm general, the parameters a and b will be nonintegral in the
CSCS model, therefore, an acceptance-rejection technique
for generating Y from Be(a,b) will be used, (Fishman, 1973).

Consider the transformations

Y, = u,t/® (A-22)
and

1/b

Y, = U, _ (A-23)

where Uy and U, are independent uniformly distributed
variates from U(0,1). If Yl #* Yz'i 1, then Fishman shows

that the variate

S i A-23
T o

is distributed according to Be(a,b).
To find the beta variate required by Equation A-20,
first find the transformed variates

1/y

Yl = U1 (A-23)

- Uzl/(l'Y) (A-24)

Next, determine if Y, + Y, < 1. If Y, + Y, <1, then

"accept' the variates Y1 and Y, and compute the beta variate,
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Y, using Equation A-23.

If Y1 & Yz > 1, reject the variates Y1 and YZ. Select
new variates, U, and U,, and repeat the process until a
(Yl,Yz) pair are accepted to compute Y. Once a valid beta
variate, Y, has been identified, Equation A-20 is exe-
cuted to give the required gamma variate X from Ga(a,B).

If Ng is the number of uniformly distributed variates

required to generate one beta variate, the total number,

np of uniformly distributed variates required to generate one

gamma variate from Ga(a,B8) 1is
Nr = Ng *+ K+ 1 (A-25)

The expected value of Ny is then

E(ny) = E(ng) + E(k) + 1 (A-26)

Since the number of trials for success in the beta
generation procedure follows the geometric distribution,
the expected number of uniformly distributed variates re-

quired to generate a Be(a,b) variate is

_ 2(a+b)I'(a+b
E(ng) = a%?(;)T%b))

(A-27)

Substitution of a = y and b = 1-y into Equation A-27 leads

to
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- 2
Eng) = yowmrmram

(A-28)

From Hildebrand (1976), the following identity can be used

to further simplify Equation A-28

F ORI (L-1) = s (A-29) .
Thus
Efn.) = 2sin(my) (A-30)
Mg (I-v)=

Equation A-30 has a maximum when y = 0.50. Therefore, the
maximum expected value of Ng is approximately 2.5.

Comparison of Equations A-15 and 2.2-3 gives

o = dtr (A-31)
Since k = (a), then

k= (8t.) (A-32)

Taking expected values of both sides of Equation A-32 gives

E(k) = (SE(t.)) (A-33)
However, since t. is exponential
ot
E(tr) =38 (A-34)

and Equation A-33 becomes

E(k) =1 (A-35)
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Now using the Equations A-30 and A-35, Equation A-26

becomes
_ 2sin(my) %
and
E(nt)maX = 4.5 (A-37)

A.6 Arbitrary Distribution

Occasionally, it becomes necessary to generate a
random variable from a distribution for which there 1s no
conveniently available mathematical formula. To generate
a random variate over a finite domain (a,b), the following
steps are used. (Abramowitz and Stegun; 1970).

Let f be the maximum of f(y), the probability distri-
bution function of the variate y. Generate a pair of
uniform deviates, U1 and U2 from U(0,1). Compute a point
y = a+(b-a)U1 in (a,b). If U2 < f(y)/f, accept y as the
random deviate, otherwise reject the pair (UI’UZ) aﬁd start
again. The expected number of uniformly distributed var-
iates, ng, required to generate the appropriate random

deviate is

E(n,) = 2(b-a)f : (A-38)
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In the CSCS model where this approach was used,

f(y) was approximated by a histogram.
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APPENDIX B
STATISTICAL PROPERTIES OF N(t)

B.1 Introduction

The cloud model developed in Chapter 3 was required to
have certain statistical properties. These properties
were discussed in Chapter 3, but their development is
presented here. The cloud cover model has the form

N(t) = M, + (l-MO)(l—P(t))+ m(t)P(t) (B-1)
where M is the "fairweather' mean value of N(t), P(t)
is the storm transition function, m(t) is a serially
correlated random sequence with the following characteristics

E(m(t)) =0 (B-2)

2

VAR(m(t)) = o

(B-3)

The sequence, m(t), also has a serial correlation function

Dm(r) where T is the lag.

B.2 Expected Value of N(t)

The first required property of N(t) is its expected
value. More specifically, the expected value of N(t)
given the time between storms, t,, is required. The condi-

tional expected value of N(t) is found by
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E(N(E) [t,) = EQMy + (1-M)) (1-B(t))

+ m(t)P(t)) (B-4)
Since Mo is a constant and P(t) is a deterministic func-
tion of time, Equation B-4 becomes

E(N(t)[ty) = My + (1-M ) (1-P(t))

+ P(t)E(m(t)) (B-5)
Substitution of Equation B-2 into Equation B-5 results in
the expression for the time varying conditional expected

value of cloud cover shown earlier as Equation 3.4-5

E(N(t)|ty) = My + (1-MJ) (1-P(t)) (B-6)

B.3 Variance of N(t)

The conditional variance of N(t) is defined as

VARCN(E) Jt,) = ECONCE) [ty -BON(E) [0 %) (B-7)
which can also be written as

VAR(N(t) [t) = BE(ON(®) [£,)D)- BEN()]e,)  (B-8)
First find (N(t)|ty)%.

(N(E) [ t) 2 = @1 + (1-M_) (1-P(t))

s m(8)P(t)) > © (B-9)
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2
(N(E) [ = M7+ 2M (1M (1-P(E))
+ 2m ()P (LM, + (1—M0)2(1~P(t))2
+ 2m(t)P(t) (1-My) (1-P(t)) (B-10)
+ m(t)P2(¢)
Taking expected values of both sides of Equation B-10

gives

2

ECONCE) [£g) ) = M2+ 2M) (1-M,) (1-P (1))

+ (1«MD)2(1—P(t))2 " amsz(t) (B-11)

Since

]
o

E(2m(t)P(t)M,) = 2P(t)M E(m(t))

E(2m(t)P(t) (1-M ) (1-P(t))) =

I
(=]

= 2P(t) (1-M) (1-P(t))E(m(t))
and

Em? (0)P2(8)) = PEOEM@? (1)) = PA(t)o,’”
For EZ(N(t)|t,), Equation B-6 is used to give

EZ(N(E) [tg) = (M, + (1-M)) (1-P(£)))° (B-12)

Expansion of Equation B-12 and substitution into Equation

B-8 along with Equation B-11 gives
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2

VAR(N(t) [ty) = MJ" + 2M (1-M_ (1-P(t))

2

+ cmsz(t) - M

- 2M_(1-M,) (1-P(¢t))
- (1-\10)2(1-P(t))2 (B-13)

Equation B-13 reduces to the expression for the time vary-

ing conditional variance of N(t)

VAR(N(t) |t,) = o 2p% (1) (B-14)

B.4 Serial Correlation Function (B-15)

The serial correlation function of a time series is
found by normalizing the covariance function of the time
series. The covariance is defined as

COV(N(t),N(t+T1)) -

E((N(t)-uy(£)) (N(t+T) -uy(t+1))) (B-16)
As in previous sections, the process is conditioned by ty -

For ease in writing, the designator ”ltb” has been dropped.

Also, for convenience

uy(t) = E(N(E) | ty) (B-17)

Expansion of Equation B-16 leads to
COV(N(t),N(t+1)) = E(N(t)N(t+1))

“E(N(E)uy (t+1)) - E(uy(£IN(t+1))

+E (uy (£ (£+1)) (B-18)
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Since uN(t) and UN(t+T) are deterministic functions of
time, the third and fourth terms on the right-hand side

of Equation B-18 become respectively

E(uyg (EIN(t+1)) = uy(t)uy(t+T) (B-19)
and
E(uy () (£+1)) = my(£)uy(t+) (B-20)
Substitution of Equations B-19 and B-20 into Equation B-18

gives
COV(N(t),N(t+1)) = E(N(t)N(t+t)) (B-21)
~uy (t+T)E(N(E))

The next step is to substitute Equation B-1 evaluated at

times t and t+t into Equation B-21. This leads to
COV(N(t+t)) = P(t)P(t+T)E(m(t)m(t+T)) (B-22)

The serial correlation function of N(t) is defined as

COV(N(t),N(t+1))
cN(t)UN(t+r)

py(T) = (B-23)

where GN(t) is the standard deviation of the process at

time t. The standard deviations are defined as

ON(t) = /VAR(N(t)[tb) = P(t)om (B-24)
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and

GN(t+r) = /VAR(N(t+T)ltb) o= P(t+t)o (B-25)
Substitution of Equations B-22, B-24, and B-25 into Equation
B-23 yields

P(t)P(t+t)E(m(t)m(t+1)) (B-26)
P(t)P(t+t)o *

py(T) =

With the definition
E(m(t)m(t+t)) = COV(m(t)m(t+1)) (B-27)

Equation B-26 can be written as

QN(T) = COV(m(S)m(tﬂ)) (B"Zg)

o}
m

The right-hand side of Equation B-28 is just the defin-
ition of the serial correlation function, pm(T), of the

random process m(t). Therefore, Equation B-28 reduces to

oy (1) = pp (1) (B-29)
Equation B-29 states that the process N(t), whose mean and
variance are modulated in a controlled fashion by P(t),
will have a serial correlation function identical to the

process m(t).



245

APPENDIX C
BRYAN'S TEMPERATURE FORECAST MODEL

C.1 Introduction

Since Bryan's 1964 report was unpublished and since
the writer knows of no formal presentation of the details
of Bryan's technique in the literature, a detailed mathe-
matical description of the approach will be included here.

Bryan's approach is represented by the following

equations
$e T(t) + byT(t) = by + b,s(t) + bgr(t) (C-1)
s(t) = sindésin¢ - cosécos¢cosT%t) ,
(R<t<5) (C-2)
s(t) =0 > otherwise (C-3)
r(t) = [zcosdcos¢sin(fzt) ,  (R<tsl2)  (C-4)
r(t) =0 5 otherwise (C-5)

where T(t) is the temperature at time t, & is the solar
declination, ¢ is the local latitude, R is the local time
of sunrise (note the difference between local time and
standard time), and S is the local time of sunset.

Equation C-1 can be solved by using the integrating

blt

factor e Thus
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a blt blt
Ic |© T(t) = e bo +‘bzs(t) : b3r(t) (C-6)

and for the interval (t',t)

-bl(t-t') -blt
T(t) = T(t")e + e F(t,t') (C-7)
where t t
blr blT
F(t) = bo e ~dt + b2 e “s(t)drt
t! t tl
blt
+ b3 e "r(t)drT (C-8)
t!

Equations C-7 and C-8 represent the solution to Equation
C-1. Once the coefficients, bi’ are known, a temperature
forecast can be made given only the initial temperature

i i 2

C.2 Parameter Estimation

Bryan manipulated Equations C-7 and C-8 into a form
that leads to a linear regression formula used to estimate
1
the bi S.
First, note the following identities

-b,t -b, -b,(t-1)
e = e 1e 1 (C-9)

-b,(t-t") ) -by(t-1-t7)

e e (C-10)
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F(t,t') = F(t-1,t") + F(t,t-1) (C-11)

Using these identities, Equation C-8 can be rewritten as

-b1 -bl(t-l-t‘) -bl(t-l)
T(t) = e T(t")e + e F(t-1,t")
—blt
+ e F(t,t-1) (C-12)
The quantity inside the brackets is just T(t-1). Therefore,
-b -b,t
T(t) = e IT(t-1) +e * F(t,t-1) (C-13)

The hourly temperature change, Y(t), is found by sub-

tracting T(t-1) from both sides of Equation C-13.

-b o

Y(t) = -(l-e 1)T(t-1) + e T E(t,t-1) (C-14)

Substitution for F(t,t-1) leads to

t
-b, t b, -b
e 1 J e 1 dr - (il-e 1yT(t-1)

t+1

e 1r(r)dT | (C-15)

Evaluation of the first integral (I1 for convenience) on



248

the right-hand side of Equation C-15 leads to
) (C-16)
The last two integrals, I, and I;, on the right-hand side

of Equation C-15 are complicated by the exponential term

inside the integral. Bryan indicated that it was sufficient

o PR :
to use the mean value of e L and bring it outside the
integral. Thus,
b, T -b b,t
E[e i } =L e hel (C-17)
1
Thus, I2 and 13 respectively, become
t
by "0y
I, = +— (l-e ) s(t)dr (C-18)
2 bl '
t-1
and
by by ("
I; = E; (1-e ) s(t)drt (C=19)
t-1

Substitution of the expressions for Il’ IZ’ and IS’ back

into Equation C-15 yields



b
- (1-e DT(t-1)

2 (1-e D) s (t)drt

b -b

3
—(1-e
by

+

Equation C-20 is now in the required regression form

) 2(7)ydr (C-20)

from which the bi's can be estimated. To see this more

clearly, compare Equation C-20 term by term with the fol-

lowing

Y(t) = i, * alxl(t) + aZXZ(t) + a3X3(t) (C-21)

The comparison gives for the coefficients

a, = E% (1~8 (C-22)
_bl .
a; = -(1-e ) (C-23)
b -b
a, = b_zi (1-e 1) (C-24)
b -b
a; = E% (l1-e 1) (C-25)

For the predictors
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Xl(t) = T(t-1) (C-26)
rt

Xz(t) = s(t)dT (C-27)
t-1
rt

X3(t) = i it (C-28)
t-1

Once the ai's have been determined by regression, the
bi's can easily be found, since the set of Equations C-22
through C-25 is a set of four equations in four unknowns.

Therefore, the bi's can be found from

b, = -in(a1+1) (C-29)
by .
bi = - Ezai , 1 =20,2,3 (C-30)

Now that the bi's are established, Equation C-7 can
be used to forecast temperatures, given only the initial

temperature, T(t').

C.3 Evaluation of Predictors

From the definitions of s(t) and r(t), it is seen
that Equation C-20 and, ultimately Equation C-7, will have
different forms, depending upon the time of day. The

ranges over which each form will be valid are delimited by
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several "critical' times. These times must be identified
in order to coordinate the data observation times which occur
at regular intervals according to standard time, and the
occurrence of events in the local solar day (e.g. sunrise,
sunset, etc.) which vary in time throughout the year. Five
critical times are identified: 1) to is the value of t in
local time corresponding to midnight in standard time, 2)
T is the value of t which corresponds to the earliest
standard hour that does not precede local sunrise, R (TSiR):
3) tis is the value of t at the earliest standard hour that
does not precede local noon (t12312), 4) S is the value of
t at the earliest standard hour that does not precede
local sunset, S (sSzS), and, 5) toz is the value of t cor-
responding to 11:00 p.m. local standard time.

For all times, t, predictor Xl(t) will equal T(t-1).
But the forms of Xz(t) and X3(t) will change with t. The

individual forms of Xz(t) and X3(t) for each range follow.

Range 1 t_ <t <rT

o - 1 for Xz(t)

S

t

[ s(t)dt
o)

X, (t)

t

|
fan]

Xz(t) (€-31)
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Range 2 t = T (first observation hour after sunrise)
For Xz(t)
ft
Xz(t) = s(t)dr
J
i1
rR L
= s(t)dtr + s(t)dr
)
t-1 R (C-32)

s = 12 g TTI‘S TR
X,(t) = (rg-R)sindsing - —=cosécos¢ (singz— - )

(C-33)

Range 3 rs+1 2 f % ss-l (daylight hours) for Xz(t)

(t
Xz(t) = s(t)drt
t-1
X,(t) = sindsin¢ - lzcosécos¢(sin££ - sinl—(t-l))
2 i 12 12

(C-34)

i

Range 4 t s for Xz(t) (near sunset) for Xz(t)

S
s
s
J s(t)dr
s

X, (t)
1

S -
5 S
= [ s(t)dt + s(t)drt
S

1 S
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Xz(t) = (S-ss+1)sinﬁsin¢

- l% cosécosd (cos %TS = cos%7(ss-l)) (€-=35]

Range 5 s.*1 < t < t,; (after sunset) for X, (t)

t
Xz(t) = s(t)dr
t-1
Xz(t) =0 (C-36)
Similar ranges exist for X (t).
Range 1 t_ <t <rg -1 (before sunrise) for X;(t)
- t :
Xs(t) = J I‘(T)d":
t-1
Xs(t) = 0 (C-37)
Range 2 t = T (near sunrise) for XS(t)
Ts
XS(t) = r{t)dT
rs-l
R Ty
= J-r(r)dr + r(t)drt
r. =1

1]
el
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. W
Xs(t) = cosécos¢ (cos %% - COS 175-) « (C-38)

Range 3, r_ + 1 <t < ty, - 1 (before noon) for Xs(t)

Xs(t) = cos&ces¢(cos%7(t-l) - cos%ﬁt) (C-39)

Range 4, t = t,, (near noon) for Xs(t)

ti2

Xs(t) = r(t)dr

B12-1

= r(t)dr + r(t)dr

Xz (t) = c056c05¢(cos%§(t12-1) + 1) (C-40)

Range 5, t12+1 St <ty for X3(t)

t
J r(t)dr

E-1

%g (£

X3(t) = 0 (C-41)

For each hour of the day, the hourly temperature change,

Y(t), is computed from the observed data and the
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predictors Xi(t) are evaluated. Standard linear regres-
sion techniques can be used to estimate the coefficients a;

which in turn are used to finally yield the b;'s.

C.4 Evaluation of F(t,t')

As with the predictors Xi(t), the function F(t,t")
will have different forms, depending on the time of day.
The general solution for F(t,t') will be shown first. Then
the individual forms applicable in each range will be
developed.

Consider again Equation C-8, where

t t

b b,T

lt 1
F(t,t') = bO e dt + b2 e gs{t)dr

+ by e r(t)dr (C-8)

For convenience, let

F(t,t') = I, + I, + Ig (C-42)

where

blt
I1 = b0 e dt (C-43)
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I, = b2 e s(t)dr (C-44)

( bt
3 e r(t)dr (C-45)

)
tl
Evaluation of I is straightforward and can be written

directly as

I, = 5 (e - e ) (C-46)

For I,, begin by substituting the full expression for s(t)

inside the integral. Thus,
t
b,T

12 = b2 e L (sindésin¢ - cos&cos¢cos(%?))dT

1 (C-47)

The declination & is actually a function of time and, in a
strict sense, ought to be evaluated in the integral.
However, the interval (t,t') is sufficiently short so that
the variation in & is ignored. Equation C-47 can now be

rewritten as
t Tt
b,T b,T TT

I, = b,sindsing Je 1ar - b,cosdcos¢ |e . COS(Tf)dT

A £h

(C-48)
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Completion of the integration finally yields

b b,t b t*
I, = E% sindsing (e 1" e 1 )
b,t
1
) e blbzcosacos¢cos(%%0
2. T 2
b1 +(T7)
bt
1 .
] e bz(%f)cosécos¢51n(%%0
2 T 52
bl + (T§J
b,t'
e 1 blbzcosdcos¢cos(%%')
* 2 s 8
by" * (1)
b,t!
e 17 p (Em)cosacos¢sin(lgl)
2412 12
+ (C'49)
b2+ (p°
1 12

Similarly, for 13, substitute the full expression for

r(t) into the integral.
t
( b,t

3 e 1 (%7 cosdcosésin %%)dr (C-50)

Again, the short term variation in § is ignored. Thus
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t

—
|

byT
1° o
5™ bs(%f)cosacos¢ J e 51n(%%)d1 (C-51)
tl
and
—? b1b3c056c05¢ blt

13 = e 51n(
+(12)

ﬁt

by (I cosscoss byt
- sy e cos( )
bl +('i"§')

12 b b cochos¢ blt'

- e sin( )
by +(T%)2 12

b (%?)Zcosﬁcos¢ blt'
* e cos( )

( ) (C-52)

To simplify the writing of Equations C-49 and C-52Z, the

following definitions are used

3

P =17 (C-53)
b
= _O _
K1 = 5 (C-54)
1
bzsinésin¢
Kz = 5 (C-55)

1



blbzcosdcos¢
Ky = 72
bl * @
pb2c056c05¢
K, = >
4 blz + p
2
P b3c056cos¢
K =
5 b12 v p?
) pb1b3c056c05¢
Ke = 72
b1 +p

239

(C-56)

(C-57)

(C=58)

{C~59)

Using the definitions in Equations C-46, C-49, and

C-52, the general form of F(t,t') can be written as

b,t b, t' b, t bt
F(t,t') = Kl(e ™. e 1 ) + Kz(e W e £ )
blt blt
- (K3+K5)e cos(pt) + (Kﬁ-K4)e sin(pt)
blt‘ blt
+ (K3+K5)e cos(pt') + (K4—K6)e sin(pt')
(C-60)
Note that t' = to - 1.
For the range t <t <R
t t
blr blT
F(t,t"') = b0 e dt + b2 e s(t)dr
t! t!
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blT
+ bs e r(t)dt (C-61)
tl
In this range s(t) and r(t) are both zero Thus,
t .
blr
F(t,t') = bO e dt
-t!
blt blt'
F(t,t') = Kl(e - e ) (C-62)
For the range R <t < 12
| by byt
F(t,t') = bO e dr + b2 e s(Tt)drt
! £
t
b1T
+ b3 e r(t)dr (C-63)
t'
Equation C-63 can also be written as
R
blr blr
F(t,t') = b0 e + b2 e s(t)dr
t e
t R
blr blr
+ b2 e sT)dt + b3 e r(t)dr
R t!
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+ b3 e r(t)dr

Remembering that prior to sunrise, s(t) and r(t) are zero,

carrying out the integration leads to

blt blt' ‘-bl(t-R)
Flt,t'] = Kl(e - & ] # Kz(l-e

(K3+K5)cos(pt) + (KG-Ka)sin(pt)

-bl(t-R)
+ (K3+K5)e cos (pR)

b, (t-R)
+ (K,-Kgde © sin(pR) (C-64)

For the range 12 <t < S

t R
blT b

F(t,t') = b0 e dt # b2 e s(t)dr
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R 1.2
blt blr
+ b3 e r(t)dt + b3 e r(t)dr
b R
k blr
+ b3 e r(t)dr
12
Evaluation of Equation C-65 gives
b.t byt' b,t b,R

F(t,t') = Ky (e el ) + k(e 17 1y

b,t bt

- K ) cos(pt) + K4e 1 sin (pt)

38

b;R
1 blR

* K3 7 cos(pR) + Kye * sin(pR)

blR blR
- K6e sin(pR) + Kse cos (pR)

For the range S <t < t,4

;o R
blr T
F(t,t') = bo e dt + b2 e s(t)dr
tl‘

tl

(C-65)

(C-66)
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s(t)dr + b2

R
[ b.T

e T r(r)dr + by

* b3 e r(t)dt

12

(C-67)

During the evaluation of the integrals in Equation C-67,

the following identities prove
S = 24-R
sin(2m-pR) = -sin(pR)
cos(2m-pR) = cos(pR)

The final form for F(t,t') is n

| byt byt
F(t,t') = K;(e = -e ) +

bIS

blS
- Kse cos(pR) + K4e

b.R blR
+ K3e cos (pR) + K4e

bR s b,R
6 sin(pR) + K'e

useful

oOw written as
bh.8 b.R
Kz(e 1 -e 1 )

12b

sin(pR) + Kce

sin(pR)

L cos (pR)

(C-68)
(C-69)

(€-70)

(C-71)
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The forecast temperatures are now found by substi-
tuting the appropriate form of F(t,t') into Equation C-7
and solving for T(t), t, = t < t,z. Note that declination,
§, was assumed constant over the interval (to’tzs)' Thus,
variations within a day are ignored. Variations in § for
longer periods cannot be ignored. Therefore, the declin-
ation is recomputed for each day in which temperature fore-
casts are made (see Equation 4.2-5). This accounts for

longer term variations in solar input.
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APPENDIX D

DETERMINISTIC TEMPERATURE COMPONENT

D.1 Introduction

The deterministic component of the temperature model

is represented by
dTgt) + blT(t) = bO + sz(t)S(t) + bSK(t)I‘(t)
+ byq(t) + bSTg(t) * bW, (t)

* bWy (t) (D-1)

where %(t) is the deterministic component, K(t) is the solar
radiation attenuation factor (K(t) = 1 - 0‘6SN2(t)),
N(t) is the cloud cover, q(t) is a longwave radiation esti-
mate (see Equation 6.3-2), Tg(t) is the ground temperature,
Ws(t) is the wind speed, and Wd(t) is the wind direction.

As indicated in Chapter 6, the general solution to
Equation D-1 can be written as

" - -b, (t-t") -byt
T(t) = T(t")e + e G(t,t") (D-2)

where
t t

blr blT
G(t,t") = bo e dt + b2 e K(t)s(t)dr

t? £t
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t t
b1T blT
+ b3 e K(t)r(t)dt + b4q(t-1) e dt
t! £
T t
blT blT
+ bS e Tg(r)dr + b6 e WS(T)dT
t! t!
-t
blT
# b7 e Wd(T)dT (D-3)

t\‘

D.2 Parameter Estimation

The procedure for estimating the coefficients bi
through a regression involving hourly temperature changes,
Y(t), has been described in Appendix C. The resulting

coefficients a, are

b
a; = -(1-e LA
ay (D-4)
ai=-b'—1'bi N i=0,2,3,...,7
The predictors Xi(t) are
X () = T(t-1) (D-5)
t
Xz(t) = K(t) J s(t)dt (D-6)
t-1
Xs(t) = K(t) J r(t)dr (D-7)

-1
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X,(t) = q(t-1) (D-8)
Xg(t) = Tg(t) (D-9)
Xe(t) = W, (t) (D-10)
X, (t) = Wa(t) (D-11)

The one hour integration interval was considered short
enough to allow the variables K(t), q(t-1), Tg(t), Ws(t),
and Wd(t) to be brought outside their respective integrals.
Predictors Xz(t) and Xs(t) are used only during se-
lected parts of the day. These times have been defined in
Appendix C and will not be discussed again here. The
indicated integrations in Equations D-6 and D-7 have also
been discussed in Appendix C. The only difference in the
final forms of X, (t) and X;(t) for the present case is
the multiplier K(t). The remaining predictors are used

throughout the night and day.

D.3 Evaluation of G(t,t')

For convenience, let the seven integrals of Equation



D-3 be written as

t

b.,T
[e i dt
tt

t
T
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K
e K(t)s(t)dr

t‘

t

J blr
e K(t)r(t)dr

(D-12)

(D-13)

(D-14)

(D=15)

(D-16)

(D-17)

(D-18)
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The integration indicated for I; is straightforward

and results in

’ bO blt blt'
o= 2lel - (D-19)
1

The remaining integrals contain terms such as K(t),
qit], Tg[T), WS(T), and Wd(T). Except for reasonably short
intervals, treating these terms as constants is not sensi-
ble. To deal with integration intervals that are large
énough for these variables to vary significantly, the
following approach is taken.

Consider 12, where
t

blT
I2 = b2 e K{t)sl1)dx (D-13)

tl

I2 can also be written in an equivalent form as
t
blr
I2 = b2 e K(t)s(t)dr
t~1
t-1
blr
+ b2 e K(t)s(t)dr (D-20)

t!
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In the first integral on the right-hand side of Equation
D-14, the integration interval is short enough such that

K(t) can be brought outside the integral. Thus

t
blT
I2 = bZK(t) e s(t)drt
t-1
t-1
blt
+ b2 e K(t)s(t)dr (D-21)

-tl

Now the first integral in Equation D-22 is in the same
form as the integrals evaluated in Appendix C (see Equa-
tion C-47).

The same argument can be used to successively evaluate
the second integral of Equation D-21. Following the pro-
cedure hour by hour back to t', a series of the following
form results.

t

blr
I2 = bZK(t) e s(t)dr

tt=t blr
+ b2 . I K(n) e s(t)dr (D-22)
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Since the series of integrals defined in the second term
on the right-hand side of Equation D-22 is just the value
of I2 at t-1, the following computational form is used
) t
b1T
Iz(t) = sz(t) e s(t)dt + Iz(t—l) (D-23)

t-1

Concluding the integration of Equation D-23 yields

bz blt bl(t—l)
I,(t) = K(t) |—sinésin¢ (e -e )
2 b1
b, t
) = 1 b1b2c056c03¢c05(%%)
2 ﬂ 2
b” * (g7)
b, t
) e 1 bZ(T%)cosécos¢sin(%%)
2 i
b,(t-1)
e 1= blbzcosscos¢cos( (t 1) —— e
+
2

b, (t-1) -
e L b2(%ﬁ)cosécos¢sin(li%§ll—)

bt (g7

+

Iz(t-l) (D-24)
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Using the definitions for Ko’ Kl’ —_— K6 defined in

Appendix C, Equation D-24 can be written as

blt bl(t—l)
I,(t) = K(t) (K, (e - e

s 9 b, t

1= mt 1" . 7Tt

- K3e cos(Tfl - K4e 51n(i§J
bl(t-l)

+ K39 cos (———

W(t 1))

b (t-1
¥ K,e .t )sin(E%%lil))+ I,(t-1) (D-25)

4

Similarly, the remaining integrals, Ii, can be obtained.

bat bt

I.(t) = K(t)(Kee 1 sin(F5) - Kee 1 cos (F5)
b, (t-1)
- K6e 1( 51n(ﬂ(t 1))
b. (t=-1
+ Kee 1 )cos(”(t Lyy+ 1.(t-1) (D-26)
b, by byt
I,(t) = EI q(t-1)(1-e )e + 14(t-1) (D-27)
be b, byt
Ig(t) = §= Ty(t)(l-e e + I(t-1) (D-28)
1
bg by byt
I (t) = b W (t)(1-e e + I (t-1) (D-29)
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i

7 -b b
+ I7(t-1) (D-30)

I.(t) = b Wi(t)(l-e e

1

The specific form of G(t,t') still depends on the time

of day for which the integrals are evaluated. (Note that

t' = to-l).
For Range 1, t <t <R
bt b.t? b b b.t
G(t,t') = Kj(e T - el )+ = a(t-1)(1-e el
1
bS -b1 blt
+ 14(t—1) + EI Tg(t)(l-e )e + Is(t-l)
b -b b,t
. E% W, (t) (1-e e b+ 1.(e-1)
b7 b1 blt
+ E{ Wd(t)(l‘e )e + I7(t—1) (D-31)

Actually, the terms on the right-hand side of Equation
D-31 retain the same form throughout the day. For conven-
ience then, the terms on the right-hand side of Equation
D-31 will be collectively referred to as H(t,t').

For Range 2, R < t < R+l

blt by R
G(t,t') = H(t,t') + K(t) Kz(e -~
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[ bt
1 t 17 .
- Kse cos(%ij - K4e 51n(%%)

b,R b,R
1 TR 1 ; TR
ng cos(T7)+ K4e 51n(T7)]

+

b,t b, t
1- . _ 7t 1 Tt
sin(3z) - Kce © cos(yzx)

+

K(t) K6e

b.R
1= . mR b.R
- Kge 7 sin(gz) Kee 1 cos(%%)] (D-32)

For Range 3, R+1 < t < 12

_ { bt by(t-1)
Glt,t*] = H{t,t"] + K{t) Kz(e -e

b,t b,t
t ;
- K3e 1 cos(%f) - K4e 1 51n(%%)
b, (t-1) _ b, (t-1) -
+ K3e 1 cos(l%%—ll) % K4e 1 sin(“(i 1 )
blt blt

+

I,(t-1) + K(t)[K6e sin(%%) - Kce cos(%%)

LS L B Te s B

6 sin( 15

b, (t-1) -
+ Kce 1 cos(ﬂi§7£l)] + I (t-1) (D-33)
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For Range 4, 12 <t <12 + 1

blt bl(t-l)
G(t,t') = H(t,t') + K(t) Kz(e - e )
b,t b,t
t 1™ .
- Kse 1 cos(%f) - K4e 51n(%%)
b, (t-1) _ b, (t-1) _
+ Kze 1 cos(W{t L ) o+ K4e 1 sin(ﬂlg 3
12b b, (t-1)
+ I, (t-1) + K(t) [Kse S sin (L5 1),
b= (t=1]) .
+ Kse 1 cos(ElE-llJ] + Is(tél) (D-34)

For Range 5, 12 + 1 <t < S

[ byt b, (t-1)
G(t,t') = H(t,t') + K(t)|K,(e - e )

blt blt

Tt . t

- Kse COS(TE) - K4e 51n(%7)
b (f=1) _ b

+ K3e 1 cos(E%%QLl) + K4e 1

+ I,(t-1) + I3(12)

(t-1)

sin(

w(t- 1))
i

(D-35)
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For Range 6, S <t < S +1

b. 5 bl(t-l)

G(t,t') = H(t,t') + K(t) |K,(e © - e )
b,S b5
1 S 1= . S
- K3e cos(%f) - K4e 51n(%7)
b, (t-1) b, (t-1)
1 t-1 1 . t-
+ K3e cos(i%f——l) + K4e 51n(E£T§ll)
+ I,(t-1) + I5(12) ' (D-36)
Finally, for Range 7, S + 1 < t < 23
G(t,t') = H(t,t") + IZ(S) + 13(12) (D-37)

Now with- the appropriate form of G(t,t'), Equation
D-2 can be used to find the deterministic component, T(t),

at any time of day.
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APPENDIX E
CSCS PROGRAM LISTING
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CARD INPUT SUMMARY FOR THE CS5CS MODEL
CARD COLUMN FORMAT DESCRIPTION
1 1-80 - USER INFORMATION CARD USED ONLY TO SEPARATE
CARD GROUPS IN THE DECK (OR FILE)
2=4 1-80 15A5 THREE TITLE CARDS. THE TEXT ON THESE CARODS

WILL BE PRINTED OUT AT THE SBEGINNING OF
THE INPUT DATA SUMMARY. ‘

5 1=148 10X SPACE FOR CARD LABEL. BOT READ RY CS5C3.
11-20 AlO QUTPUT FILE NAME FOR INPUT DATA SUMMARY AND
QUTPUT DATA ANALYSIS. FILE NAME HAS THE
FORM XXXXXXeYYY
21-30 A10 QUTPUT FILE NAME FOR GENERATED DEWPOINT
DEPRESSTIONe XXXXXXeYYY
31-40 A10 OUTPUT FILE NAME FOR DEBUG INFORSATION
AXXXXXYYY
& 1-10 10X CARD LABEL
11-12 12 INITIAL MOMTH = MM
14-15 12 INTITIAL DAY - Db
17=-20 I4 INITIAL YEAR = YYYY
22-23 iz ENDING MONTH = ##
25-26 12 ENDING DAY - DG
28=-31 14 ENDING YEAR - YYYY
33-35 F3e9 LATITUDE - DEGREES
37-358 F2.0 LATITUDE - MINUTES
40-41 F2.0 LATITUDE - SECONDS
43-45 F3e0 LONGITUDE - DEGREES
47-48 F2e0 LONGITUDE - MINUTES
50-51 F2e0 LONGITUDE - SZCceNbs
53-62 Al0 TIME ZONE (UeSe TEASTERN'y *CENTRAL?,
YMOUNTAINYy DR YPACIFIC*) LEFT JUSTIFY.
7 1-80 e USER INFORMATION CARD
a 1-10 10X CARD LABEL
11-20 F10.0 MEAN FAIRWEATHER CLOUD CGVER
21-30 F10.0 STe DEV. OF FAIRWEATHER CLOUD COVER
31-40 Fl0.0 LAG-1 CORRELATION COEFe JOF FAIRWEATHER
CLOUD CoVER.
41-50 Fi10.0 CLOUD COVER TRANSITION DECAY COEFFICIENT
51=-60 Fl0e0 ATMOSPHERIC TURBSIDITY FACTOR
9 1-10 10X CARD LABEL
1l1=12 12 NUMBER OF FAIRWEATHER CLGUD COVER HISTOGRAM
ELEMENTS

21-30 F10.0 LOWER BGUND OF FAIRWEATHER CLOUC COVER
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10

11

12

13

14

15

16

17

18

19
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31-40

1-10
11-70

1-10
11-70

(e
|
w
(=]

1-10
11-20
21-30
31-40

1-10
11-58

1-10
11-20

21=310

31-40

1-10
11=-20
21-30
31-40
41~-50

1-10
11-20
21-30

31=40
41-50

1-10
11-20
21-30

F10.0

10X
EF10e0

10X
£F10.0

10X
F10.0
F10.0
F10.0

10X
4E12.5

10X
Fi0.0

F10.0

F10.0

10X
F10.0
F10.0
Fi10.0
F10.0

10X
F10.0
F10.0

F10.0
F10.0

16X
F10e8
F10e0
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HISTOGRAM
UPPER BOUND OF FAIRWEATHER CLOUD COVER
HISTOGRAM

CARD LABEL
HISTOGRAM ELEMENTSe. USE AS MANY CARDS AS
NEEDED. REMEMBER THAT THE FIRST 10 SPACES

ON EACH CARD ARE RESERVED FOR THE CARD LABEL

CARD LABEL
RIGHT HAND COORDINATE OF EACH HISTOGRAM
ELEMENT FROM™ LOWEST TQ HIGHEST.

USER INFORMATION CARD

CARD LABEL

MEAN TIME BETWEEN STORMS
MEAN STORM DURATION

MEAN STORM DEPTH

USER INFORMATION CARD

CARD LABEL

REGRESSION COEFFICIENTS FOR THE UETER-
MINISTIC COMPONENT OF THE TEMPERATUREL
MODEL (B0=B7)e USE T&0 CARDS.

CARD LABEL

TEMPERATURE BIAS FOR THE STOCHASTIC
COMPONENT OF TEMPERATURL

ST. DEVIATION FOR THE STOCHASTIC COPONENT
OF TEMPERATURE

LAG-1 SCRIAL CORRELATIGAN COEFFICTIENT FOR
THE STOCHASTIC COMPONENT OF TEMPERATURE

USER INFORMATION CARD

CARD LABEL

MINIMUM HOURLY WIND SPEED

TIME OF MINIMUM HCURLY wIND SPEED
MAXIMUM HOURLY WIND SPEED

TIME OF MAXIMUM HOURLY WIND SPEED

CARD LABEL

MINIMUM HOURLY ST, DEVIATION COF wIND SP
TIME OF MINIMUM HOURLY STe DEVIATION OF
WIND SPEED

MAXTMUM HOURLY ST. DEVIATION OF WIND SPEELD
TIME OF sAXIMUM HOURLY STe. DEVIATION OF
JIND SPEED

CARD LABEL

WIND SPEED SKEW COEFFICIEMNT

LAG=1 SERIAL CORRELATION COEFFICIENT OF
4 IND SPEED
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21

22

23

24

25

26

27

LR

28

* Wk

29

30

1-10
11-20
21-30
31-40

1-10
11-12

21-30
31-40

1-10
i1-70

1-10
11-70

1-80

10X
F10.0
F10.0
F10a.0

F10.0
I2

F10.0
Fi0.0

10X
6F10.0
10X
5F10.0

AS
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USER INFORMATION

CARD LABEL

MEAN TRANSFORMED WIND DIRECTICON

STe DEVIATION OF TRANSFORMED WIND DIRECTION
LAG-1 SERIAL CORRELATION COEFFICIENT OF
TRANSFORMED WIND DIRECTION

CARD LABEL

NUMBER OF ELEMENTS IN TRANSFORMED WIND
DIRECTION HISTOGRAM

LOWER BOUND OF HISTOGRAM (USUALLY 0.30)
UPPER BOUND OF HISTOGRAM (USUALLY 180

CARD LABEL
HISTOGRAM ELEMENTS. USE AS MANY CARES AS
NEEDED

CARD LABEL
RIGHT HAND COQRODINATE OF EACH HISTOGRAM
ELEMENT s LOWEST TO HIGHEST

USER INFORMATION CARD
DEWPOINT MODEL TYPE

*REGRS* = REGRESSION MOODEL
*INDEP* = INDEPENDENT MODEL

FOR INDEPENDENT DEWPOINT GENERATION QNLY **x%*

1-10
11-20
21-30
31-40

FOR REGRESSION

1-10
11-58

1-10
11-20
21-30

31-40

10X
F10e0
F10.0
F10.0

10X
4E12.5

10X
Fl0.0
F10.0

F10.0

CARD LABEL

MEAN DEWPOINT TEMPERATURE

STe DEVIATION OF DFE=FOINT TEMPERATURE
LAG-1 SERIAL CORRELATION COEFFICIENT OF
ODEWPOINT TEMPERATURE

DEWPOINT GENERATION ONLY  *xx

CARD LABEL
REGRESSION COEFFICIENTS FOR THE DETER-
MINISTIC CoMPONENT OF DEWPQINTS (DO=CF)

CARD LABEL

BIAS OF STOCHASTIC COMPONENT OF DEWPOINTS
STe DEVIATION OF STCCHASTIC COVPONENT OF
DEWPOINTS

LAG=1 SESTAL CORRELATICAN COEFFICIENT aF
STOCHASTIC COMPONENT OF DRE«PCINTS
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PROGRAM CSCS

CONSTRAINED STOCHASTIC CLIMATE SIMULATION

PROGRAMMER: DAVID C. CURTIS
NORTHEAST RIVER FORECAST CENTER
705 BLOOMFIELD AVENUE
BLOOMFIELDs CT 06002-2478

TELEPHONE: (203) 244-2520

THE CSCS MODEL GENERATES HOURLY VALUES OF PRECIFITATIONs CLOUD
COVERy SHORTWAVE RADIATIONs LONGWAVE RADIATICAN, TIMPERATURL
DEWPOINTe WIND SPEED AND WIND DIRECTIONe THE PROGRAR CCDE IS
FORTRAN AND HAS BEEN DEVELOPED ON A DEC-1C TIME-3HARE COMPUTER
SYSTEM. STANDARD FORTRAN CODE WAS USED AS MUCH AS POSSIBLE T3
AVOID TOO MANY PROBLEMS WHEN TRANSFERRING THIS CCDE TO OTHER
MACHINES. HOWEVER SOME MACHINE DEPENDENT CODE IS INEVITABLES
SUCH AS:

~= ®OPEN® STATEMENTS FOR DATA FILE ACCESS

-= 5 CHARACTER WORDS FOR ALPHANUMERTC DATA MANIFULATION
-=- IMPUT/OUTPUT UNIT NUMBERS

-- RANDOM NUMBER GENERATION (SEE SUBROUTINE RANDU)

DATA INPUT AND INTERNAL COMPUTATIONS HAVE BEtn CARRIED CUT IW
ENGLISH UNITS. DATA QUTPUT CAN BE IN ENGLISH OR METRIC UNITS. (SEE
THE METRIC CONVERSION SECTION IN THE MAIN PROGRAM) THE PLOT SUB-
ROUTINE IS SCALED FOR METRIC OUTPUT.

THE PROGRAM IS CURRENTLY SET UP FOR GENERATING ANY NUMBER OF SETS

OF DATA FOR A PARTICULAR MONTHs IN DTHER WORDSe 20 JULYSse 30 APRILS
15 JANUARYS ETCe CAN BE GENERATED. IF THE INPUT PARAMETERS

REPRESENT OTHER PERIQODS 3UCH AS SIMONTHLYe SEASCNALLYs ETCes THE

DATE COUNTERS MUST BE ADJUSTED ACCORDINGLY (SEE SUBROUTINE DATEL)
JULIAN DATES ARE USED INTERNALLY. THE PROGRAM® HAS BEEN FULLY

TESTED FOR JANUARY AND JULY ONLY.

TO ALL USERS: GOOD LUCK!!!?

DIMENSION TITLE(16+3)s BCOEF(8)y ACOEF(8)

DIMENSION CCPDF(30)e CCORDC20)y TTPDF(Z0)s TTORDC3G)

DIMENSION DRPDF(30)+0R0ORD(30)

DIMENSION DWPOF(30)y DWORD(ZD)

DIMENSION ZERO(1U0)e SPB(24)45P5D(24)

DIMENSION RAWSUM(5)e XXT(SeS)s MEANC(S)

DIMENSTION COVMAT(S+5)s CORMAT(S5s5)

DIMENSION TCODATAC24)4DWDATA(24)¢CLDOATAC24) +WSDATA(24)+WDDATACZ4)
DIMENSION TCTITL(S) +0WTITL(S) oCLTITL(S) +WSTITL(3) #WDTITL(D)
DIMENSION TCRHO(24) ¢DPRHOC24) ¢CLRHO(Z4) +wSRHO(24) $WORHO(24)
DIMENSION TCHIST(50) ¢DPHIST(S0)eCLAIST(11) ¢WSHISTC40) 9 wDHIST(T)
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DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

DOUBLE PRECISION
DouBLE PRECISION

REAL KBARs
Il,
REAL LAT(3)s

REAL I0.

INTEGER TCHISTe DPHISTs CLHISTS
INTEGER TCHOIM,
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ASWRS(24) g ACLDS(24) 9 ALWRS(24) ¢ ATHPS(24)+ADEWS(24)
AWSPS(24)sAWDRS(24) sASWRB(24) 4ACLDB(24) s ALWRE(24)
ATMPB(24) 9 ADEWB(24) s AWSPB(24) ¢ AWDRB (24D

ASWRSQ@(24) ¢ ACLDSA(24) ¢ ALWRSA(24) y ATHPSO(24) ¢ADENSGH(24)
ASWRSD(24) ¢yACLDSD(24) ¢ ALWRSD(24) yATHPSD(24)yADEWSD(24)
AWSPSQ(24) yAWDRSAQ(24)

AWSPSD(24)4AWDRSD(24)

DEP(24)s PTEXT(16]}

WRITEFes BUGOFFy OUTPUTs TZONEs TZ(4)s DEBUGKT)

DAFILEs RADTYPs PNFILE

Lde MEAN
[24 13y
LONG(3)

l4e I5e l6s 17

#OHIST
WOHDIM

WSHIST,

DPHDIMy CLHDIMs WSHDIM,

EQUIVALENCE (ZERO(C1)¢I0)9(ZERO(2) 4113 (2ZERC(3) «I2) ¢ (ZERQOCG)9I3)
(ZERO(S5) 914) 9 (ZERO(EI +IS) 9 (ZERTC(T7) 4184 (ZERD(B)#IT)

COMMON /TITLES/ TITLE

COMMON /FILES/ WRITEFe OUTPUTs BUGOFF

COMMON /DATES/ IYRsIMOLIDAYs LYR4LMOGLDAY

COMMON /LOCATE/ LATe LOGNGe TZONE

COMMON /DBUG/ NEUG+DEBUG

COMMON /CLOUDS/ CCBARsCCSDeCCRHOSBETASGAM

COMMON FATMOS/ EN

COMMON /PDFCLD/ NUMCC+CCPDF+CCORDSCCASCCR

COMMON /RAINS/ THBBARe TRBARs DBAR

COMMON /TEMPAR/ TDBIASe TDSODEVe TDRHOs BCOEFs TEMBAR

COMMON /POFTEM/ NUMTTe TTPDFs TTORDe TTAe TTB

COMMAON /WINDSP/ SPBAR1eSPBARZ+SPBT1,SPET245PEDV1eEPSOVEs
SPSDT1+SPSDT2¢SPSKEWe SFRHO

COMMON /WINDIR/ DRBAR.DRDEVsDRRHO

COMMON /PDFDIR/ NUMDR¢ORPDF+ORORDDRA4DRB

COMMON /DEWONEZ TYPEe ACOEF

COMMON /DEWTWO/ DW3AR¢DWSDEVeDWSKEWsOWRHO

COMMON /DEWDVS/ DWBIASs DWDEVe DWORHO

COMMON /ORBIT/ PHISTHETASeTHETALEP+ET 4w

COMMON /SUN/ DELTAs DTSLs SReSS

COMMON /JDATES/ JULDATs JULRELs JBEGINy JULENDe JRANGEs NXLPY®
yJSTARTe JSTOPs JRENDs JYEAR

COMMON 710/ INsIS»IB

COMHMON /RAINI/ ITRSITE

COMMON /SEED/ ISEED

CoMMON /CLDCOV/ CCLAGI

COMMON /SEAS/ NSEAS

COMMON /RTYPE/ RADTYP

COMMON /STORMS/ STORM
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COMMON /INTEG/ I04I1912¢I3¢14sI5+16917
COMMON /LINES/ NLINES

COMMON /VAPORP/ VP

COMMON /PUNCHD/ PTEXTePNFILEs IPUNCH

DATA TZ/SHEASTERN +8HCENTRAL o+8HMOUNTAIN +8HPACIFIC
DATA TCTITL /5HHOURLe 5HY TEM, SHPERATs SHURE o SH
DATA DWTITL /5HHOURLe SHY DEWs SHPOINTs O5H s+ SH
DATA CLTITL /S5HHOURLs 5HY CLOs S5HUD COs SHVER 4 5H
DATA WSTITL /5HHOURLs SHY WINes SHD SPEs SHED y 5H
DATA WDTITL /SHHOURLe SHY WINs SHD DIRs SHECTIOs S5SHN
DATA ON /2HON/e OFF /3HOFF /

OUTPUT VARIABLE DEFINITION

VARIABLE DIMENSION DESCRIPTION
SWR LY/HR SHORTWAVE RADIATIOWN
LW LY/HR LONGWAVE RADIATION
WDIR DEGREES WIND DIRECTION
cekh 00 meee= CLOUD COVER

exxxxx  ENGLISH UNITS wewaws

RAIN IN/HR PRECIPITAION
WSP MI/HR WIND SPEED
TEMP DEG F TEMPERATURE
DEW DEG F DEWPCINT

ewxusx  METRIC UNITS  wwwaxw

RAINM MM/HR PRECIPITAION
WASPM M/S WIND SPEED
TEMPM DEG C TEMPERATURE
DEWM DEG C DEWPOINT

CALL INTERACTIVE INPUT SUBROUTINE TO GET UNIT NUMBER AND
DATA FILE INFORMATION NEEDED TN BEGIN OPERATTON

CALL INTER (DAFILE«ISsDPLOT,IPL)
CALL START (ISEED)

i sl A e i . itk ok, oo s S, oy W R W ST TD
N T SN T L N T L I LS L o o S L eSS e e rc e e e Em e esEE - A E s mS S-S —-————-—_—_—_————

e i i S, S i o i, e | W D ot e a o Sy o o WP W SN SR BT S SO S0
. T i o o o T .y o . o s e i o e . s W et | S el A, o, s i L k| s WL b g S [ S g 6

ESTABLISH THE INPUT DATE FILE UNIT HUMBER AND OPEN FILE FOR

IN = 21
OPEN (UNIT=INsDEVICE='DSK®*¢ACCESS=*SEQIN*+FILE=DAFILE)

N N N NN

e s == —
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IF (IPUNCH o LE. 0) GO TO 100
OPEN (UNIT=IPUNCH+DEVICE=*DSK®*4ACCESS=*SEGUCUT*+FILE=PNFILE)

WRITE (IPUNCH¢50) PTEXT
50 FORMAT (16A5)

100 CONTINUE
IU = 26

OPEN (UNIT=IUsDEVICE="DSK*9ACCESS=*SEGQOUT"4FILE=QUTPUT]

e o T T T . o o —— ——— —————————— . . —— i — A ——— . ——— . —— o ——— . o —

——— e Y e A S e — o — - — o - —
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READ INPUT DATA FILE

CALL READF (IN+IS.IB)

——— ———— . —— R S e . R S M e o M SN W W W M e T M e e o e
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CONVERT LATITUDE AND LONGITUDE DEGREESIMINUTESISECONDS TG
THEIR DECIMAL EQUIVALENTS.

PHI = DHMS(LAT)
THETAL = DMS(LONG)

CHECK IF VALID TIME ZONE HAS BEEN REQUESTED

IF (TZONE.NELTZ(1)) GO TO 200
THETAS = T750#2.0%#3,14159/360.0
GO TO 300

200 IF (TZONE.NE-TZ(2)) GO TO 210
THETAS = S0e0%2.0%3414159/360.
GO0 TO 300

210 IF (TZONE.NE.TZ(3)) G0 TO 220
THETAS = 105.0%*20%*3414159/36040
GO TO 300

220 IF (TZONENE.TZ(4)) GC TO 230
THETAS = 120.0#2.0%3.,14159/3560.0
GC TO 300

230 WRITE (IS+240)

240 FORMAT (1HL1s°TIME ZOWNE REQUESTED IS HNOT VALIOY///)
WRITE (IS9250) TZONE«(TZ(I)eI=1e4)

250" FORMAT (1HOeT10s*REGUESTED TIME ZONE® T heOHN*xk*,
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1AB8¢S5H*#x+#+/T104 Y"AVAILABLE TIME ZONESYsTI6s5SHA*dk*,
2A8.5H*i**i/TEﬁ,SH*i*tt,AS,SHtt**t/TSG,SHt*t**,
ZIABeSHA A ¥ xx / TI6 9 5H X kA X2 gAB g SHA kxR %)
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INITIALIZE DATE COUNTERS
CALL DATE1
INITIALIZE RAINFALL MODEL PARAMETERS

CALL RAINST (TBeTReDeJSINCE+STORMeJHREOS 9 JHNEXT)
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VARIABLE INITIALIZATION SECTION
STATISTICAL VARIABLES

~ac
NDATA
NRDATA =
TCSUM
DWSUM
CLSUM
WSSuM
WDSuUM
TRSUM
TBSUM
DHSUM
DRY
STORMS
TCSMSG
DWSMSQ
CLSMSG
dSSMSu
WwDSMSGQ
TTSUM3
DWSUM3
CLSUM3
SPSUM3
JDSUM3

oo

coooooooQooOo

OO0 OoOOOOCOQe ¢« ¢ ¢« ¢ & & & & O

L T T A O '

2 ® ¢ % 8 & 8 ® 8 ¢ ¢ COOOCOOOO

oo ooooDoo oo

L O O T I I A AR I

DO 375 IA = ls24
TCRHOCIA) = 0.0
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[a e Ne

DPRHOC(IA)
CLRHO(IA)
WSRHO(IA)
WDRHOC(IA)
ASWRS(IA)
ASWRSG(IA)
ACLDS(IA)
ACLDSGQ(IA)
ALWRSC(IA)
ALYRSG(IA)
ATMPS(IA)
ATMPSQ(IA)
ADEWS(IA)
ADEWSG(TIA)
AWSPS(IA)
AWSPSdA(TIA)
AWDRS(IA)
AWDRSG(IA)

375 CONTINUE

270

271

272

HISTOGRAM VARIABLES
TCHOIM = 50

OPHDIM = 50

CLHDIM = 11

YSHDIM = 40

WDHDIM = 9

TCOY = 240

OPDT = 2.0

CLDTY = 0.10

WSOT = 1.0

WobDT = 2060
TCBASE = =30.0
DPBASE = -30.0
CLBASE = =.05
WSBASE = 00.0

SUMSW = 00.0

SUMLW = 00.0
WOBASE = 0040

DO 270 I = 1¢TCHDIM
TCHIST(I) = 0O

DO 271 I 1+CPHDIM
OPHIST(I) = 0

D0 272 I = 1+CLHDIM
CLHIST(I) = 0

D0 273 I = 1+WSHDIM
WSHIST(I) = 0O

DO 274 I = 1«WDHDIM
OHIST(I) = O

MISCELLANEQUS VARIABLES

TR

ACE = OFF

NLINES = 0

I0

Y =1

L T A A A 1 e 1 T

oo o

OO0 O0DOOOCOOes ¢ ¢ @
* 0 PR e ODODOO

oo oooc Qe

o
[
oo

oo
oo

0.0
0«0
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MLAG = 24
JHOQUR = 0
NSEAS = 1
NMAX = &4
RADTYP = *CLOUDYSKY?®
EP = =1.00
BETA = GAM
ET 0.00
W 2.00

IF (TRACE «EQe ON) WRITE (ISs2000)
9000 FORMAT (* M1%)

—— ——— — - — ——— - — T ———— — . - o . W G e W e e S M e e M W e o == o SR o TR TR TR
oo e il syt it — g ——————pe—=ge G B 1B B B st e
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it ————————————————————ie— S L el e

SET UP VARIABLE MEAN AND STANDARD DEVIATION ARRAYS FOR
wIND SPEEDe.

OO OO0O0n

o

"

(@]

ST = 0.0
DO 330 IV = 1e24
CALL VARYX (SPBAR1+SPBARZ2+SPBT1e4SPBT2¢STeSPBECIV))

CALL VARYX (SPSDV14SPSDV2+SPSDT143PSDT29ST4SFID(IV))
ST = ST + 1.0

OO O0O0n0

OO

far]

OO0 N0

330 CONTINUE

——— ————— ———— — — i —— - —— - ———— S - = s e
el et iy —_——_———————pegE el i E e

- ——————— ———— - ————————— i ———— —— i ——— o — —— .~ ——
pifecfleeseel s i i —————————— e —_—————p g g P S Sl E e 8 et

BEGIN CYCLES FOR DATA GENERATION
THE *400" LOOP REPRESENTS THE DAY CYCLE

400 CONTINUE

UPDATE ORBIT PARAMETERS
CALL DECL (JULREL#DELTASsSReSS)?

DTSL = EP*(THETAS-THETAL)*3.81972

T S —————————epepe e e R A B R e e B by e nid

S e A e W W R W A M A e D N S S . S e e S M e W W S S e W W am ow e e v e o
P L L L L T S L S S T L L LR L LN L T S m m m e m e s o e s o o o o = o e = = o o U o am coe o S o o — — —————

STARTING VALUE SELECTION

FOR THE FIRST TIME PERIOD OF EACH MONTH,
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GET INITIAL VALUE FOR THE VARIOUS NOISE TERMS BY SELECTING A
RANDOM VARIATE FROM THE APPROPRIATE PDFe.

D00

IF (IDAY GTe 1) GO TO 310
IF (JHOUR.GTe 0) GO TO 310

GET CLOUD COVER STARTING VALUE

o000

CCLAG1 = ARVA (CCPDF#NUMCCoCCACCBoCCORDeNIEAS)

CALL NORMAL (VN)
TTLAGl = TDSOEV=xVN

GET WIND SPEED STARTING VALUE

OO0

CALL MARGAM (NUMTTeTTPOFeTTORD«TTA9TTBeSPBAR«SPSDEVsOalo
% SPSKEW90e0¢SPLAGLeWwNOISE)

GET WIND DIRECTION STARTING VALUE

S Om

DRLAG1 = ARVA (DRPDF+NUMDRyDRAGJDRBoDRORDS$NSEAS)

GET DEWPOINT STARTING VALUE

O ON

IF (TYPE «EGe °®*REGRS®) GO TO 350
CALL MARGAM (NUMTTeTTPOFsTTORD«TTA«TTB4DW3ARsDWSOEVeDely
3 DWSKEW»0aDeDWLAG14ENOTISED
GO TO 355
350 CONTINUE

CALL NORMAL (DwWX)
DWLAGLl = 0.85*DWBAR + DWX*DWSCEV

CALL NORMAL(DWX)
DWDLAG = DWBIAS + DUX*DWDEV

]

355 CONTINUE

COMPUTE INITIAL TEMPERATURE AND CONSTRAIN JDEWPOINT IF MNECESSARY

st RNy

TPR = TEMBAR + TTLAGL
IF (DWLAGl «GEe TPR) DWLAGL = 0.99*TPR

IF (TRACE «EQe ONJ) WRITE (IS42001)
S601 FORMAT (* M2%)

310 CONTINUE

———— ——— WS e R e W G n M S N M e e e S M M A i e A e e e - S — - — o ——

C
C ESTABLISH THE LAG-1 TEMPERATURES FOR THE TEMPERATURE AND LONG
C WAVE RADIATION MODELS.
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320
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THE

2602

RAI

3003
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SHO

$
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TEMP1 = TPR
TMPLAG = TPR

PUTE TODAY®*S COEFFICIENTS FOR THE TEMPERATURE MODEL.

CALL TEMPK (DELTAs PHIs BCOEFs TPRy
CO0¢ Cle C2¢ C39 Chs Se¢ CB)

TIALIZE THE INTEGRATION VARIABLES FOR THE TEMPERATURE MODELS.
SEE THE EGUIVALENCE STATEMENT AT THE BEGINNING OF THE FROGRAM)
DO 320 K = 1410
ZERO(K) = 0.00
CONTINUE

*500% LOOP REPRESENTS THE HOUR BY HOUR DATA GENERATICA
STl = 0.0

DO 500 I = 023

IF (TRACE .EQe ON) WRITE (IS,3002)
FORMAT (* M3%)

JP =1 + 1
ST2 = FLOAT(I)

- —— i —— - — - — - T - e . - o S A T —— - —
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NFALL SECTION
CALL PCPN (TBesTRsDeSTORMeJHOQUR g JHREOS y JHNEXTsJSINCE ¢RATIN)
TSINCE = FLOATC(JSINCE)?

IF (TRACE .EQe. ON) WRITE (ISs9003)
FORMAT (¥ Mav)

- R e e e G A A S M - i —
- e - e M R S S - T S T M - R R M T S o S — o T R M W R W M T b e e S S el e e o S
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RTWAVE RADIATION SECTION

CALL SOLRAD (JULREL¢ST1e¢ST2sTSINCE s TB+NMAXeCCA4CCRB4CCPDF ¢NUMCC y
CCORD9SWReCLDBETAsGAM«CCBARCCSDeCCRHU9SEASDON)

IF (TRACE eEQe ON) WRITE (IS«2C04) -
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OO0

9004 FORMAT (* MS°*)

—— ——————— - — W W - —— -
e o o v e i — — o — e ————
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WIND SPEED SECTION

-
-—

SPB(JP)
SPSD(JP)

SPBAR
SPSDEY

CALL MARGAM (NUMTTLTTP
3 SPSKEWs
IF (WsSP WSP

SPLAG1

.LT.
4SP

8«0)

IF (TRACE
9C05 FORMAT (°

«EQe WRI

MeT)

GN)

———
—_————

- - W - ——
o ——— — —— . — —— ————

——— - — i —— - — o - —
e o o e o o ot o S . — .

WIND DIRECTION SECTION

CALL MARKOV (NUMDR+DRP

- ——————— — o ——— - — - - e
e e s o o s e  —— ——— o —— e ——— o —— i ——— ——
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P T T T T L L L o e e m e E o m e e e v i o v o o e o o ot e e e e o ot e e o —

DOF s TTORD«TTAs TTBsSPEAR«SPSODEVeSPRHO »
SPLAGLleWSPeWNOISE)

-
-

0.0

TE (IS+9035)

- —————— ——— A — - — - A N S S W e e . wm
e e o o o o . ————— i —————————— i ——— — i —— " —
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DF s DRORD oDRA9DRBeDREBARGDRDEVSDRRHD s

% DRLAG191+WDIR)
505 CONTINUE
510 IF (WDIR «GTe 180.0) WDIR = 360.0 - WDIR
IF (WDIR +GTe 18040) GO TC 510
528 IF (4DIR «LTe 0.0) WDIR = ABGSC(WDIR)
IF (WDIR +LTe 0.0) GO TO 520
ORLAG1 = WwDIR

IF (TRACE +EQe ON) WRITE (ISe23506)
3006 FORMAT (' MT7*)

- —— — - — — o — . —————— . — . — -
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TEMPERATURE SECTICHN

COMPUTE THE SHORTWAVE RAD

- ————————— - — A —— - ———
et —————————————— L

IATION ATTEWUATIONM DUE TC CLOUD COVER.

KBAR 1.00

COMPUTE HOURLY TE

CALL TEMPSHN

]

NOGTE THAT TEMP1 A

0«.65*CLD*CLD

MPERATURES

(ST2sDTSLsSReSS+ECCEF S
CO9C1leC23C34C4+C5¢CEeCLDIKEARSGTO
WSPeWDIRgTMPLAG«THTST)

ND TMPLAG ARE DIFFERENT VARAIBLES!! TMPLAG
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C DOES NOT HAVE THE DEVIATIONS TERM ADDED IN AND IS USED ONLY
C IN THE *REGRESSION® PORTION OF THE TEMPERATURE GENERATION
¢ COMPONENT. TEMP1 IS USED WHEN THE ACTUAL LAG-1 TEMPERATURE
C 1S REQUIRED.
c

TMPLAG = THT

TPR = TMPLAG
(o
C ADD THE RANDOM COMPONENT TO THE TEMPERATURE JUST COMPUTED.
c

CALL NORMAL (ARVY)
C

TDEV = TDBIAS + TDRHO*(TTLAGL - TDBIAS) +

3 ARV+TDSDEV*SQRT(1.00 - TDRHO*TORHO)

c
C
C

TTLAG1 = TOEV

TEMP = THT + TOEV
c
C
C

IF (TRACE +EQe ON) WRITE (ISe2007)
3007 FORMAT (* M8")

c
C::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
C:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
C
C DEWPOINT TEMPERATURE SECTION
c
IF (TYPE .EQe *REGRS®) GC TO 560
IF (TYPE .EQe *INDEPY*) GO TO 570
C
C
WRITE (ISe80) TYPE
80 FORMAT (//1Xe *INVALID DEWPOINT MODEL TYPEeses®eAD)
C
STOP
c
o
C AR KA E A A RAAFR TR ALITA A A X A A Ak hk &k
c xxx RFGRESSINON DEWPOINTS 2=
C dedd o ddk dok o ook oh ok bk ok odok ok ok ok ok ok ok kA
C
C
560 CONTINUE
C
CALL DEWSIM (ACOEF sDWLAGL+TEMP sCLD ¢ WOIRWWEP9DEWR)
Cc
C ADD DEVIATIONS TO GENERATED DEW POINTS
C

CALL NORMAL (ARV)
DEWDEV = DWBIAS + DWORHO*(DWOLAG - DWBIAS) +
3 ARV*DWDEV*SGRT(1400 - D«DRHO*DWIRHO)



= 292 =

DWDL = DWDLAG
DWDLAG = DEWDEV
DEW = DEWR + DEWDEV
C
IF (DEW oGEe TEMP) DEW = 099*TEMP
DWL = DWLAG1 + DWOL
DWLAGL = DEWR
&
GO TO 580
Cc
570 CONTINUE
C
C Ak kA A Ak b hhkhrhhdbh it k&
c *x INDEPENDENT DEWPOINTS =&
C AR A T A A A A AR AR AT A AR RN A AR b ok
C
£
CALL NORMAL (0%X2
DWL = DWLAG1
DEW = DWBAR + DWRHO*(DWLAG1-DWEBAR) + DWX*DWSDEVASGRT(1le=DUWRHO*%x2)
DYLAG1 = DEW
c .
IF (DEW «GEe TEMP) DEW = 0.9F+TEMP
c

5806 CONTINUE

]

IF (TRACE +EQ. ON) WRITE (IS+300%)
3G09 FORMAT (¥ M3%)

c
C
(=-=======s====s=-=S==S==SS=SC-ZCZIZ=SSSS2SSSSZTSCSITTIISSSSSISSSSSEESSIEIIZSIZSISS
(======zs=s=====-=-==-=-=-=-=-SS=SSSSZTCSSSSSSSSSSSSESSSSISSSSSSSIISSISSSIIZSISSS
C
C LONGWAVE RADIATION SECTION
c
CALL LONGWV (TEMPLlsTEMP+DEWsDWLoCCLAGI9CLD L W)
C
TEMP1L = TEMP
c
c

IF (TRACE +EQs ON) WRITE (IS5.9008)
3008 FORMAT (' M10°%)

c
(Z=================TZ=SS==Z===-=SSTZZSSSSZSSSSSSSSSSSSSSISISISSSISSISSSES=ES
{==============zZ===Z===S=Z-=S--=-S-S-S-=SSZIZSSIZZZSSTSSSSSTSIZESSSSSSITISTISISSEZ
C
C METRIC CONVERSION SECTION
c

TEMPM = (TEMP = 32.00)}*(5.00/3.00)

DEWM = (DEw = 32.003%(5.00/9.00)

WSPM = WSP*0.4470

RAINM = RAIN#*25.4
C

STORE DATA IN THE HCURLY ARRAYS FOR AUTOCORRELATION ANALYSIS

O,
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CLDATACJP)
WSOATA C(UP)
WODATACJP)
DWDATA(UP)
TCDATACJP)

([T TR I 1]
.
o
bt
-}
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COMPUTE DEWPOINT DEPRESSION AND OUTPUT FOR LATER ANALYSIS

DEP(JP) = (TEMPM - DEWM)I*WSPM

IF ¢ JP «EGe 24 ) WRITE (1Us582) DEP

582 FORMAT (15F51/8F5.1)

e p— e W T 8 K S e i anmalenerippoedien e el el e s
[ty eipen gueippgeespepine e gL e, et

—— e ——— — o ———— - - ————

——
TN L N T L I oL L T oL T S S S e RS RS T e e e e r e s e r e e_mE-E-_ s EEEm S Em——_——————

QUTPUT DATA FOR LAND SURFACE MGDEL

IF(IPUNCHeGT«0)CALL PUNCH (IPUNCHs RAINMoVPe wWSPMe SWRe LWy TENMPH)

- —————— A - S G i - S = =

i ———— ———— i — — -
R T R T T N T e R e e e E e s S T n e e m e m e e o o o o o o = 0 e B - Sm S mm———
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GO TO 506

DEBUG STATEMENT

WRITE (ISe600)JHOURGJHNEXT 9T oRAINMgCLD 9SWR ¢ dSPMeWDIR$TEMPM LW 4 DEWH

600 FORMAT (1H 9I1594XeI6e3Xel293XeF5e293XaFGe292X9Fdels2XeFbely

$ 2X9F5e092X9F5e032XeF5:192X9F440)

506 CONTINUE

@ ——————— ———— . - ——— - - . e e ewew e AATReESRem o= m T T R
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DATA PLOT SECTION

IF (DPLOT NE. *Y®*) GO TO 507

PLOTL = =20.
IF (IMOWeGEe4 oANDe IMOeLE«10) PLOTL = Ce
PLOTU = PLOTL + 40.

CALL PLOT (IMO9ICYsIHsBOsTEMPM4DEWMaSWRaLWCLDsRAINMeWSPMewdIRY
3 STORMeIPLsPLOTLSPLOTU)
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IF (TRACE .EQ. ON) WRITE (IS+9010)
9010 FORMAT (* M11%)

c
C=======-=====S=====Z=zz==S=SSSS=SSSSSSEXSSSSSSISSSSISISITISSISSSZIIIISESS=SS
(z=======z===========ZTZZSSSSSSZSITITISISSSSISSSISSSSSSSIIISISSESSSSESSS
C
507 CONTINUE
g
IF(I .EQe 23) IDY = IDY + 1
IF (IDY «G6T+31) IDY =1
C
JHOUR = JHOUR + 1
§T1 = §T2
NDATA = NDATA + 1
c
C UPDATE THE STATISTICAL ANALYSIS
C
CALL MSTAT (1loTEMPM¢DEWMyCLD 2 WSPMaWDIRSRANSUMXXT)
c

IF C(TRACE +EQe ON) WRITE (1S+5020)
ag20 FORMAT (°* 11A*%)

_--—_—-———_—-9—-.-————.-..-.—-——-_—-.--..———--—._—-..._-.__-_...—.—.———-.——-—-———.—_——--———-—-
_---uq.-———---....-—-————-——_—-.-—----..-—.——--—.....-—-..-..._—-......--——.._—_--.——_—_.—_..—__._—
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—dﬂ—---——--*-—-————---ﬁ---———--“ﬂ---—-vl-—.---————-—‘-——--“—h‘-—-“-——“d—-————“

UPDATE AUTOCORRELATION ANALYSIS

THE FIRST 24 HOURS OF THE MONTH ARE NEEDED TQ FILL UP THE DATA
ARRAYS TO BEGIN THE AUTOCORRELATION ANALYSIS.

OO OO0O0N0

IF (JHOUR oLEe 24) GO TOQ 550
NRDATA = NRDATA + 1
CALL RAHLAG(MLAG;JP,TCDATA,TCSUM|TCSMSG;TCSUM3:TCE;TCVqTCKsNRDATA;
% TCRHG)
CALL RAULAG(MLAGQJP’DUDATAvDHSUM9DUSHSQ;D%SUM510PE;DPV!DPKoNRDATA.
s DPRHG)
CALL RA%LAG(MLAGQJP;CLDATA,CLSUM:CLSMSG;CLSUMS;CLBqCLVqCLK;NRDATA;
s CLRHO)
CALL RAMLAG (MLAG ¢ JP o WSDATAsWSSUM s WSSMSQAeNSSUM3 e WSBsWSVsWSKeNROATA,
$ WSRHO)
CALL RAWLAG (MLAG s JPyWDDATA yHOSUMsNDSMSH s WDSUMI 4 UDR WDV WOK ¢ NROATA
3 WORHO)
c
IF (TRACE <.EQe ON) WRITE (ISs9021)
9021 FORMAT (* 11B*)
c
550 CONTINUE

_._,_,___,_...__.,...._._,__.______.__.,________...__.____._,_,____.________,__.___.______._____,_______.,._‘___
-_-———————m*...--—-—--—_—_.........—__—..—————-o-———_y--...-_.-———-...—.———-—_--.—--.-—_-.....--—..--

...-.--.—-———.___-—.—..._a.-_.—.—.-—_---—-....—__....p..—_—_-u_——.-.-—--_._—_-_—_.——__————_—__._.....-.—-_
_*-_-——.——————__—...—..-—-—_-—-...-.—-—_-.-....-__-—---—--——.—.—_-_...__...--._———-—-———_-._--.-...«—

DIURNAL CURVE SECTIGHN

OOOO0O0O 00
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c

-

C

62

COMPUTE
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MEAN AND STANDARD DEVIATIONS FOR EACH HOUR OF THE DAY.

SKEWS ARE NOT COMPUTED.

IF ¢

CALL
3
CALL
$
CALL
$
CALL
$
CALL
$
CALL
%
CALL
3

IF (TRACE
9022 FORMAT (°*

1 «EQe 0 ) NDC = NDC + 1
STAT (SWReASWRS(JP)sASWRSG(JP) ¢22ZsASWREC(JP) ASWRSD(JIP I
 =999,04NDC)

STAT (CLDeACLDS(JP)eACLDSG(UP) ¢Z2Z9ACLDB(JP) »ACLDSD(JP )
=959 ,04NDC)

STAT (WSPMeAWSPS(JP) s AWSPSA(UP)ISZZZ9AUSPB(JP)SAUSPSD(JUP )
-399,04NDC)

STAT(WDIReAWDRS(JP) s AWDRSG(UP) 4222+ A¥DRBIUP) s AWCRED(JP )y
-999,04NDC)

STATCTEMPMoATMPS(JP) yATMPSQ(UP ) 92ZZ+ATMPE(JP) ¢ATHFSD(JP ) »
=999 ,0¢NDC)

STAT (DEWMeADEWS(JUP) s ADEWSQ(UP) ¢ZZZ+ADEWB(JP) ¢ADEWSD(JP )

-399,04NDC}

LWeALWRSCJP)I s ALWRSG(UP) 9Z2Z y ALWRBUJUP) s ALWRED(JP ) »

~999,04NDC)

STAT «

«EQe
11C*)

ON) WRITE (I5+39022)

o e = s e . M ] S e i o s . s . W o v o, W o

—— e  —— -
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UPDATE RAINFALL STATISTICS

CALL RSTAT (TRSUMsTBSUMsDHSUMsTRSBAR+TSSBARyDHBARGRATINM9STORMS .
$ DRYes STORM)
IF (TRACE «EGe ON) &RITE (IS5+3%323)

9023 FORMAT (*

110"

- —— . — - - — A S T e S G S M e = e o M mm m wm e T oew oom T T
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UPDATE THE HISTOGRAMS

CALL
CALL
CALL
CALL
CALL

IF (TRACE
3011 FORMAT «(°*

HGRAM
HGRAM
HGRAM
HGRAM
HGRAM

(TCHISTTCHDIMeTEMPMTCDTo TCHASED
(DPHISTy»OPHDIMsDEWMsDPDT+DPBASE)
(CLHISTsCLHDIMSCLD +CLDTSCLBASE)
(WSHIST¢WSHDIMyWSP4MaWSDT4WSBASE)
(JDHIST+WDHOIMsWD IR WODT9WDBASE)

.EQ.
M12%)

ON) WRITE (IS43011)

500 CONTINUE
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c
C======z===============-=ZSSSSSSSSSSSSSSTTSSSSSSSSEISIISISISSSSSSISSIES
(================-=Z=S====SS2ISSSSSZSSSTSSSSSSSISESSSSISTISSISSISISSSSSSSS
c
C
IF (JULREL «LTe JREND) GO TO 390
C
C RESET MONTHLY COUNTERS
c
JHOUR = 0
c
C RESTART STORM SEQUENCE
52
CALL RAINST (TBeTReDeJSINCE«STORMeJHREOS ¢ JHNEXT)
c
330 CONTINUE
c
C UPDATE THE DAY COUNTERS
c
CALL DATEM
c
C CHECK FOR END OF RUN
c

IF (TRACE <EQe ON) WRITE (ISe9012)
2012 FORMAT (% M13%)

c
IF (JULDAT <LE. JULEND) GO TO 400
C
c
C========S=S==========Z=S2=3SSSSSZ=-SSSSTSSSISSTSSSSISSSSSSISISSSSISISERSES
f===============S========Z-=C-SSZSSSSISSSSSSSSSSSSSSSSSSISISSIISSSIZISSISSES
E .
€ CALL THE FINAL STATISTICAL ANALYSIS SUBROUTINE
c
CALL FSTAT (54RAWSUMeXXTeMEANsCOVHMATeCORMATSNTATA)
£
€ CALL THE AUTOCORRELATION SUBROUTINE
C
CALL AUTOCO (MLAGyTCRHOsTCByTCVaNRDATALTCTITL)
CALL AUTOCO (MLAGsDPRHOsDPB#DPVeNRDATASDWTITL)
CALL AUTOCO (MLAGsCLRHO+CLBsCLVeNRDATALCLTITL)
CALL AUTOCO (MLAGsWSRHOWWSBeWSVeNRDATA«WSTITL)?
CALL AUTOCO (MLAGsWDRHOWDBsWDOVeNRDATASWOTITL)
c .

IF (TRACE +EQe ON) WRITE (ISs2013)
9013 FORMAT (* M1l4°)

- i i " T W e = = SR TR TR MRS == AT

——— S - e  —— —— — —
...-..——-———_--_———-—-—_—..-—-———-.....-.a—-.——-.—-.a.——_—--.-._——.._—--—..‘._——__—.-...---_-—._.___

e e e — ——— —— —— ——— v~ - i —— —— o = M aw s e =R OO OO T O DN DT oD
-q---———_-._----—-——--*——q—-——---..-—...._—.-—-.—.--——-—-.—-.-—--.---_—....—_.—-;-4-.-.-—-.-.—..-___
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WRITECISeT715) (MEANCI)+I=1+5)
715 FORMAT(1H1////T728s *MEAN VALUES®*/ TS99 *TCBARY 9 T21+"DWBAR"
$ T334 CLBAR®sT454 WSBART$TS579*WDBAR®/1Xe5F1242/)

WRITE(ISe720) C((COVMATC(IsJ)sJ=143)91=145]}
720 FORMAT(1XsT244*COVARIANCE MATRIX'#/(5(1Xe5F12.2/)))

WRITECISe740) C((CORMAT(IsJ)sd=195)91=1+5)
740 FORMAT(1XeT249°CORRELATION MATRIX®e/(5(1Xe5F122/)))

WRITE (ISe745) TCKeDPKeCLK9WSKeWDK
745 FORMAT (/T2S5e*SKEW COEFFICIENTS®/T8e*TCSKEWT s T204*DUSKEW? 9 T332y
$ PCLSKEW®sT44 ¢ WSSKEW? s TS6 9 *WOSKEW?/1Xe5F12.2)

WRITE (ISe747) TBSBARse TRSBARs DHBAR
747 FORMAT (///T20s*RAINFALL OUTPUT STATISTICS*//
$ T24;'TB',T329'TR'gT#Og'D'I/T22oF5.2-T31;F5.2;T37nF5.2///)

——— . — - ——————
_-n.-uq——.————_.——--—_—--.—-.——-—-....-——-———-.-_—-._---.-.....——-——-—-..-————_-...—-——_—_-w..-

.—.-———-----.o—-——_—.--_.‘——-__------.—...-——_——..p-.-———.—-—.———.__—--—-u_-_k--.__‘——..—__-._—-..
-....--.——-—--...—a..-_—-—_--.--_———_--....-u.—-———-_-..-.-_——-—.-—-—.....——.._.-——_......-——-,-——....———__—...,__

PRINT HISTOGRAMS OF THE GENERATED DATA

CALL PRINTH (TCHIST¢TCHDIMsTCOTeTCBASESTCTITLSNDATA)
CALL PRINTH (DPHISTeDPHDIMeDPDTyOPBASEDWTITLNDATAY
CALL PRINTH (CLHIST4CLHDIMeCLDTeCLBASESCLTITLsNDATA)
CALL PRINTH (WSHISTeWSHDIMeWSDTeWSBASEswSTITLsNDATA)
CALL PRINTH (WDHISTeWDHDIMeWDDTeWD3ASE«WDTITLSNDATA)

...—....-._——-——.——..—-———-—--»—————_-._4--.——————_—_..‘u——_-—-*-..—_.-.-—...«.—-.-_——.-.._-...——
_-—u—_—-_-——*——-‘——.—-.——-———..—.--u....—.a.————-——-——-.—.——_—-_—-.—__--...-.-...-——_--.._..-.-.

._-.-—_..-..-———_--—_.—....——_—--——-———__-..-.--_...-.—._—-.-..--.-_—_—-...__--_-—.-....-.-—-.-_..-—_-.--
__—-—--q-—_—--—_.————--——.pq—-—.—————-.-._————---..n—---_.-......-u--—-.-.-.—..-—--m———-...——-—«..

CONVERT VARIANCES TO STANDARD DEVIATIONS.
DO 800 IG = 1s24

ASWRSD(IG)
ACLDSD(IG)
AWSPSD(IG)
AWORSD(IG)
ATMPSO(IG)
ABEWSD(IG)
ALWRSD(IG)

SQRTC(ASHRSD(IGY)
SQGRT(ACLDSD(IG))
SGRT(AWSPSO(IG))
SGRT(AWDRSDCIG))
SGRT(ATMPSD(IG))
SQRTC(ADEWSD(IG))
SARTCALWRSD(IG))

L N O I T

800 CONTINUE

--._.—-—_———_—_—__--—-..-.—.——-..——u.—_-._—..———_-_......._-.-—-.—.—--—.....-—_—-.—-p--—-.__—..._—_
—-..*-—..——_———.-_-..-_...—-...—_...—.....-_.--_..—--———__.—-.-..-—_.-.....__...-..———__-o.-_—.-n——...-...—...

__.________-__,.__...,___..___,_,___._.,.._____,____..__,____-__._,____________._.________.._.__,_._,__,__,,__._
_.....____.._-___--.._..........__-_...—.._..-.-..,_.._....___..__.......-___.__.....__.____............_.__._._..__.._.._...
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COMPUTE TOTAL DAILY SHORT AND LONGWAVE RADIATION

8180

Do 3810 1I6

SUMSY
SUMLW

CONTINUE

= le24

SUMSW + ASWRB(IG)
SUMLMW + ALWRB(IG)

e —————— T — T — - - - e e e kS e = e e wm e SR S S R S E T T T
I L S L I L N T L TS L T T e R S S SN LS E S S e e m s e e me e —_; - _,— - e — = S G —— - e —————

- ———————— T — - e i S S T 4 . . am . W TR e TMTE N S TR RS TR oom e Tm XD
L L L L L T L o o T o S S S m e eSS s e S S S s m s e e e e m rE e s - - - - - ——— I I ——————

PRINT HOURLY MEANS AND STANDARD DEVIATIONS.

811

3014

750

CALL HGOUR
WRITE (
FORMAT

CALL HOUR
WRITE

CALL HOUR

CALL HOUR

CALL HOUR

CALL HOUR

CALL HOUR

IF (TRACE
FORMAT (*

WRITE (IS
FORMAT (1
STOP

END

(ASWRBeASWRSD+?*SWR?*)
ISe811) 3UMSW
(T29+*TOTAL="9T37eFT7e2)

(ALWYRBoALWRSDeTLUWR?)
IS«811) SUMLW

(ACLDBSACLDSDs'CLD")

(AWSPB+AWSFSOstWSPY)

(AWDRBsAWDRSD ¢ *WDR")

(ATMPB+ATMPSDe*TMP®)

(ADEWBsADEWSD+*REWT)

«EQe ON) WRITE (ISe9014)
M15%)

s 760)
Hle15(15(5SH Y/2)

C'.........QO.......‘........I.........Q.'.II..IQ....'...I..I....'..'..

o~
o

0 OMm

SUBROUTIN

E VARYX (X1eX29T19T29STeX)

ROUTINE TO LINEARLY INTERPOLATE A VALUE OF X

100

200

RANGE1
RANGEZ2

[T}

IF (ST G
X = X2 =
RETURN

IF (ST G
X = X1 +
RETURN

CONTINUE
X = X2 -

T2 - T1
24.0 = RANGE1

Te« T1) GO TO 100
(X2 = X1)*((2440 = T2 + ST)I/RAMNGEZ)

Te T2) GO TO 200
(X2 = X1)#((ST - T1)/RANGEL)

(X2 = X1)*((ST = T2)/RANGE2)
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RETURN
C
END
c
C.-o...o.o...oo-too...o.too...n..ncltotoot...-luot...u......ooo..t...i-
&
SUBROUTINE HOUR ¢ BARs DEVse TITLE )
C
C PRINT HOURLY MEANS AND STANDARD DEVIATIONS.
c
DIMENSION BAR(1)e DEV(D)
c
COMMON 710/ INeIS,IB
c
C
WRITE (IS»100)
100 FORMAT (1H1+15(5H }/1H +15(5H 1)
C

WRITE (IS+200) TITLE
200 FORMAT (////T41eA3// T30 HOUR® +T409 *MEAN®$T499*STeDEV"/)

DO 300 I = 1le¢24

I1 =1 -1

WRITE (ISs250) IIs BAR(I)s DEV(I)
250 FORMAT (T314I124T384F6e29T47sF6e2)
300 CONTINUE

WRITE (IS4400)
400 FORMAT (/277171

c
C
RETURN
END
€
C........-.-.-.....-..-l......-...C...'.-............'.....Q....-....Q.
c
SUBROUTINE RSTAT (TRSUMsTBSUMsDHSUMeTReTBeDHeRAINsSTORMS 43R
$ DRYsSTFLAG)
c
5
C COMPUTE STATISTICS FOR RAINFALL MODEL
c TReeeoseMEAN STORM DURATION
G TBeeeoss™EAN TIME BETWEEN STORMS
C DHeeeseoMEAN STGRM DEPTH
C
c
COMMON /SFLAG/ RSTORM
c
DATA ON/*ON/s OFF/YOFF*/
C
£

IF (STFLAG «EGe ON) GO TO 350



- 300 =-

C STORM FLAG IS OFF. THEREFORE WE ARE BETWJEEN STORHMS.
c
IF (RSTORM .EQe OFF) GO TO 316G

g FIRST HOUR OF INTERSTORM PERIOD.
‘ RSTORM = OFF
DRY = DRY + 1.0
‘ 310 CONTINUE
‘ TBSUM = TBSUM + 1.0
G0 TO 300
- 350 CONTINUE
g STORM FLAG IS ON. THEREFOREs WE ARE IN A STORM.
- IF (RSTORM .EQe. ON) GO TO 360
g FIRST HOUR OF NEW STORMa.
‘ RSTCGRM = ON
g PUT STATEMENTS HERE IF THERE IS SOME MINIMUM TIME BETWEEN STORMS
C CRITERION THAT MUST 8E CHECKEDe.
‘ STORMS = STORMS + 1.0
C

360 CONTINUE

TRSUM = TRSUM + 1.0
DHSUM = DHSUM + RAIN

300 CONTINUE

IF (STORMS <LTe 0.01) GO TO 400
TR = TRSUM/STORMS
DH = DHSUM/STORMS

400 IF (DRY eLTe 0.01) GO TO 5C0
T8 = TBSUM/DRY

(@]

500 CONTINUE

C

RETURN

END
C
C'..........................l........-..........‘..'..".....‘.....Q..'
C
c

SUBROUTINE NORMAL (XD

GENERATE A NORMALLY DISTRISBUTED RANDOM DEVIATE FRO® N(Celle
REFERENCE: FISHMANSGEORGE S.3CONCEPTS AND METHODS IN DISCRETE EVENT
DIGITAL SIMULATIONs WILEY AND SONSe 1973, PP 211.

OO0
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10 Ul = RANDCD)
eLTe 0.00001) GO TO 10
U2 = RAND(G)
X = SGART

IF (Ul

RETURN
END

.O..‘..-.....'.l.........l..‘l‘."‘......‘l....‘...‘l......""".“..

(-2.0*ALOG(UL))I*COS(65.28319%U2)

SUBROQUTINE VAPOR (TeTDsE+ES)

ROUTINE TO COMPUTE ATMOSPHERIC VAPOR PRESSURE GIVEN
TWO METER TEMPERATURE AND DEWPOINT.

T L
TD see
E eece
ES see
CO0=-CSewe
R eee

TEMPERATURE - OEG C

DEWPOINT TEMPERATURE - DEG C

VAPOR PRESSURE = MILLIBAR

SATURATED VAPOR PRESSURE = MILLISAR
COEFFICIENTS IN SAT. VAPOR PRESS. APPROX.
RELATIVE HUMIDITY

DOUBSLE PRECISION CO0sC1eC22C29CHeCO

DATA CO0/6.0689226 /
DATA C1/4.4358312e-01/
DATA C2/1.4590816E-02/ !
DATA C3/2.7619554E£=-04/
DATA C4/2.9952590E-06/
DATA C5/1.4398885E£-08/

COMPUTE RELATIVE HUXAIDITY

R = ((112s = 0o1%T7 + TDI/(112. + 0.9*%T))*23,0

COMPUTE SATURATION VAPOR PRESSURE

X = C4
X = C3
X = Cc2
X = C1
FsS= CO

- + + + +

T*C5
T*X
T*X
T*X
T*X

COMPUTE ATMOSPHERIC VAPOR PRESSURE

E = R+ES
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c
RETURN
END
c
C-.O..-..00...C.I......O..‘.....O..II.'...CQQI-.-....C...........t.....
c
SUBROUTINE INTER (DAFILE+ISsDPLOTLIPL)
c
C ROUTINE TO READ THE NECCESSARY RUNTIME INFORMATION FROM THE
C CONSOLE.
c
DIMENSION PTEXT(16)
C
COMMON /SEED/ ISEED
COMMON /PUNCHD/ PTEXTe PNFILEs IPUNCH
(on
DOUBLE PRECISIOGN DAFILEs PNFILE
Cc
C
¢ SET THE CONSOLE UNIT NUMBER FOR THIS MACHINE.
Cc
I1IC = 5
C
DAFILE = °*DCCMOD.DAT®
WRITE (ICs90) DAFILE
90 FORMAT (//1Xs*THE CURRENT DATA FILE IS *eAl0/
% 1X4*D0 YOU ®ISH TO READ A DIFFERENT QME? (Y/N)*)
C
READ (ICe110) ANS
IF (ANS <NEe *Y®) GO TO 115
L
C

WRITE (ICe100)
100 FORMAT (//1Xe*sHAT DATA FILE CONTAINS THE INPUT DATA2Y/
$ 1Xe? ENTER FILE NAME IN THE FORM  XXXXXXeYYY %)

READ (IC+110) DAFILE
110 FORMAT (A)

115 CONTINUE

HRITE (IC+120)
120 FORMAT (/1Xe%00 YOU WANT TQ PRINT THE INPUT SUMMARY TC THE *.
$ ®*CONSOLE? (Y/N)*®)

READ (IC+130)ANS
130 FORMAT (A)

IF (ANS <EGe®Y®") IS = IC

WRITE (ICe140)

140 FORMAT (/1Xe'INPUT SEED FOR THE RANDOM NUMBER GENERATOR')
READ (ICe1%0) ISECZD

150 FORMAT (I)
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WRITE (ICe160)
160 FORMAT (/1X,*DO YOU WANT A PLOT? (Y/N)')

€
READ (ICe130) DPLOT
IF (DPLOT NEe *Y®*) GO TO 185
(o
WRITE (ICe170)
170 FORMAT (/1Xe®*WHICH PLOT? 1 FOR 6-VARIABLE®*/
: IXe? 2 FOR 4-VARIABLE*/)
g
READ (ICe180) IPL
180 FORMAT (I?
c
c
185 CONTINUE
c
IPUNCH = 0
WRITE (IC+130)
190 FORMAT (/1Xs*CREATE LAND SURFACE M™ODEL DATA FILE? (Y/N)*)
(o
READ (ICe130) ANS
IF (ANS eNEe *Y*) GO TO 230
c
IPUNCH = 27
WRITE (IC,200)
200 FORMAT (/1X9®ENTER DATA FILE NAME eee XXXXXXeYYY?)
£
READ (ICe110) PNFILE
c
WRITE (IC+210)
210 FORMAT (/1Xe *ENTER COMMENTS TO IDENTIFY CUTPUT DATA %
3 *(80 CHAR. MAX)?*)
READ (ICe220) (PTEXT(I)eI=1lsls6)
220 FORMAT (156A5)
c
WRITE (ICe240) IPUNCHePNFILE9(PTEXT(I)sI=1el6)
240 FORMAT (1XsI5/1XeA10/1Xs16A5)
230 CONTINUE
€
RETURN
END
c
C.C....................Q..."....C.......-...".'I..'.-.......'.l.......
c
SUBROUTINE START (ISEED)
C
C ACTIVATE RAMND ISEED TIMES TO PROVIDE A OIFFEREN
c STARTING POINT IN THE GENERATION OF RANDOM NUMBERS
C JITH EACH INPUT OF ISEED
c
c
DO 100 I = 14ISEED
c

X = RAND(O?



100 CONTINUE

c

c
RETURN
END

c
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c.-.................0.......-.......-...Q.-...-......I..I....'...DI....

c

SUBROUTINE READF (IN«IS+IB)

OoOO0O0O0O0n

DIMENSION TITLE(16+3)y

THIS SUSPROGRAM READS THE INPUT DATA FOR THE STOCHASTIC
HYDROMETEOROLOGICAL MODELe.

BCOEF(8)s ACOEF(8)

DIMENSION CCPDF(30)s CCCRD(30)

DOUBLE PRECISION
DOUBLE PRECISION

DIMENSION DRPDF(30).

DRORO(3ID)

WRITEF, TZ{4)Ys DEBUG(T)

QUTPUT

BUGOFFe TZONES

REAL LAT(3)s LONG(3)

COMHMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON
COMMON
COMMON
COMMON
COMMON

NOTE:

nmOOOOOO000n

*DUMMY *
THE MAJOR SECTIONS OF THE
MAKE HANDLING THE DATA DECK EASIER
EXAMINATION OF THE DATA DECK EASIER.

/TITLES/
/FILES/
/DATES/
FLOCATE/
/DBUG/
/CLOUDS/
/ATMOS/
/POFCLD/
/RAINS/
/TEMPAR/
/WINDSP/

/WINDIR/
/PDFDIR/
/DEWONE/
/DEHTHO/
/DEWDVS/

READS ARE INSERTED TO READ THE

TITLE

WRITEFs OUTPUTs BUGOFF

IYReIMO+IDAYs LYRWLMOsLDAY

LATy LONGs TZONE

NBUG+DEBUG

CCBAR¢CCSD9CCRHO#BETASCGAM

EN

NUMCCoCCPDF+CCORDCCASCCB

TEBARs TREBARs DBAR

TDBIASe TDSDEVs TORHOs BCOEFe TEMBAR
SPBAR1¢SPBAR2+SPBT1+SPBT2+3PSOV14SPELVLy
SPSDT14SPSDT24SPSKEWs SPRHO
DRBARyDRDEVeDRRHO

NUMDR ¢« DRPDF #DRORD DRA 4DRB

TYPEs ACOEF

D BARgDWSDEV s DUSKEW s DURHO

DWBIASe DWDEVe DWDRHO

READ THE GENERAL DATA SECTION

*CARDS® THAT SEPERATE
IT IS DESIGNED TO
AS A MEANS TO MAKEL

INPUT DATA.
AND

READ (INe10) DUMMY

10 FORMAT

(A)
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READ THE TITLE CAROS (3)

DO 15 1 = 143
READ (INs20) (TITLE(JeIdsd=1415)
20 FORMAT (15A5)
18 CONTINUE

READ THE DATA FILE NAMES FOR THE GENERAL OUTPUT AND DEBUG INFO

READ (INe30) WRITEFs OUTPUTs BUGOFF
30 FORMAT (10Xe3A10)

.-_-—.—_.-———_—.-.n-—-_—_-_..-...—..—-...---—————--—--.———-—....——-—--n---‘.__—-._-——-—q——-————-——-
...--———.--—_—-—--.---——_.--_—.-—-——--.—...———-—-—q-—.—-.___...—.-—-..._..---.pu-.-_—«-—__—.._.--..——...--

OPEN FILES FOR OUTPUT

18 = 22

GPEN (UNIT=IBsDEVICE=*DSK®sACCESS="SEGOUTYFILE=BUGOFF)

IF (IS <EGe 5) GO TO 35

IS = 23

OPEN (UNIT=IS+DEVICE='DSK*4ACCESS="SEQOUT*+FILE=WRITEF)
25 CONTINUE

—...-—..._—.....—-...——_—-—.-.—--.-—-—...--_-——-.-—_.—n-.—..—-.._—-.-—..._—..-.——-.-.-—-——-.—.—-n-._-.—_..—_—
.....--———-_----—————--..--————-—-.—-__-_...————----—..-.a--.-..—.-.—--.-..-.—————.—_—-t.-._-_.-.....—_

READ DATESs LATITUDE, LONGITUDE, AND TIME ZONE

READ (INe40) IMOeIDAYSIYRLMOSLDAYsLYRSs
3 (LATCI)oI=193) 9 (LONG(I)eI=1e3)eTIONE

60 FORMAT (10XeI2e1XeI2¢1XeldeIXeI2s1XeI2+1XsT4elXe
% 2(F3e091X9F2.09s1XsF2e041X)sA1D)

READ DEBUG INFO
DEBUG INFORMATION CAN BE OUTPUT FROM SEVERAL SURRQUTINES 8Y SIMPLY
READING IN THE APPROPRIATE SUEROUTINE NAME. THESE SUBROUTINLS
INCLUDE: TAUs DECLs SOLRADy CLRSKYs COVERe ARVAs AND TEMPSN.
NAMES ARE LEFT JUSTIFIED.
THIS FEATURE IS CURRENTLY DISABLED.
NBUG = D
GO 7O 51

READ (IN¢S0) NBUGs (DEBUG(I)sI=1sNBUG)
50 FORMAT (10XeI2s6A10)
51 CONTINUE
READ CLOUD AND RADIATION DATA

READ (INe10) DUMMY

READ PARAMETER CARD
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READ (INs60) CCBARy CCSDs CCRHOy9 GAHMa

60 FORMAT (10X96F10.0)

READ ¢INe62) NUMCCs CCAs CCB
62 FORMAT (10Xel298X92F10.0)

READ (INs64) (CCPDF(I)seI=14sNUMCC)
READ (INe64) (CCORD(IDoI=14NUMCC)
64 FORMAT (10X e6F10.0)
READ RAIN MODEL PARAMETERS

READ (INe10) DUMMY
READ (INe#50) TBBARs TRBARs DBAR

READ TEMPERATURE DATA

READ (INe10) DUMMY

READC ¢INe+70) (BCOEF(I)sI=1s3)
70 FORMAT(10Xe4E1245)

READ (INe60) TDBIASy TDSDEVe TDRHO
READ WIND SPEED PARAMETER DATA

READ (INe10) DUMMY )
READ (INe50) SPBAR1lsy SPBARZs SPBT1ls

READ (INe60) SPSDV1e SPSDV2s SPSDT1y

READ (INe¢60) SPSKEWe SPRHO
READ WIND DIRECTION DATA

READ (INe«10) DUMMY

READ (INe60) DRBARe DRDEVe DREHO
READ (INe62) NUMDR+DRASDRB

READ (INe64) (DRPDF(I)»I=14NUMOR)
READ (INe64) (DRORD(I)eI=1eNUMDR)

READ DEWPOINT MODEL PARAMETERS

READ (INe10) DUMMY
READ (INe10) TYPE

EN

SPBT2
SPSDT2

IF (TYPELEQ.*REGRS® .0R. TYPE.EQ.YINDEP®) GO TO 100

WRITE (ISe95) TYPE

95 FORMAT (///¢TSev#x+rxx DEWPOINT MODEL TYPE -=%9ASs*-- IS INVALIDW*/

$ T1l1l, *ONLY t*INDEP®?®

STOP

DF *YREGRS'®* ARE ACCEPTABLE®Y)

100 IF ¢ TYPE <EQe *INDEP* )} READ (IN+60) DwBARy DWSDEVe DWRHO

IF ¢ TYPE +EQe *REGRS® ) READ (INs70)

(ACOEF(I)eI=1e6)

IF ¢ TYPE <EQe $REGRS® 3 READ (I%Ns60) UWBIASe DWDEVe DWORHD
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LA
e
as
pe
()
LR
L]

st INPUT DATA SUMMARY

LR
e
e
"e
LK
LR
(3]
e8
LR}
LR}
LA
.y
LR
[ X]
ae
e
e
LR
e
LA
e
LR

PRINT GENERAL DATA

WRITE (1S+490)
430 FORMAT (1H143¢15(5H 3/

WRITE (ISe491)
491 FORMAT (1Xe79(1H=*)/)

WRITE (IS+492)
492 FORMAT (1XeT204*CONSTRAINED STCCHASTIC CLIYATE SIMULATION®/
3 T334 *INPUT SUMMARY?®/)

WRITE (IS+491)

DO 510 J = 1le3

WRITE (ISe500) (TITLE(Isd)eI=1e13)
500 FORMAT (lH +15A5)
510 CONTINUE

WRITE (ISe491)

[F (IS.EQeS) WRITEF = 9¥CONSOLE?®
WRITE (ISe515) WRITEFs OUTPUTs BUGOFF
51% FORMAT (//1XeT314*0UTPUT FILE NAMES®*//T31+*WRITEF: *¢A10/
$ T31.*0UTPUT: *4A10/
$ T31+*"BUGOFF: Y4A10/)

WRITE (ISe491)

WRITE (ISe520) IMOsIDAYsIYRWLMOSLDAYSLYR
520 FORMAT (//T12+*BEGINNING DATE *92Xel29%/ %4124/ %9e1445X,
$ SENDING DATE %¢2X o128/ %4I24%/%14)

WRITE €(IS9530) (LATC(IN2I=143) o (LONGCI}I=1e3)+TZONFE
530 FORMAT(//1Xe®LATITUDE = *92XeFb4e0sF3e09eF 305Xy
$ YLONGITUDE = "42X9F84e0¢9F3e09sF3e045X 9 " TIME ZONE = *9A10/1}

WRITE (IS.491)

IF (NBUG.ERa0) GG TO 545
WRITE €IS+54C)(DEBUGICI)I=1,NBUG}

540 FORMAT (//1Xe*DEBUG SUBROUTINES = "+7A10)
WRITE (IS+491)

545 CONTINUE

PRINT CLOUD AND SKY PARAMETERS
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WRITE (ISe550)
550 FORMAT (1XeT284°CLOUD AND SKY PARAMETERS*/)

WRITE (IS+551) CCBAR+CCSDsCCRHO
551 FORMAT (1XeT28¢°*FAIRWEATHER CLOUD COVER®/

3 T31¢*MEAN®eT424F6e2/
% T319?STe DEVe?sT424F6e2/
$ T314"LAG=1 COEFe "9T424F6e277)

WRITE (ISe552)
552 FORMAT (1XeT234*FAIRWEATHER CLOUD COVER HISTQGRAM®/)

CALL PRDIST ( CCPDFes CCORDs NUMCC )

WRITE (ISe562) CCA+CCB
562 FORMAT (//TSe"LEFT BOUND OF HISTe = ®*eF10e49+5Xs
3 'RIGHT BOUND OF HIST. = *9Flle4?

WRITE (IS+553) GAMe EN
553 FORMAT (//1XsT234*CLOUD COVER DECAY COEFFICENT
$ T23¢*ATMOSPHERIC TURBIDITY FACTGR

*eFGed

*sFaasl/)

o

WRITE (IS+451)
WRITE (IS+490)
WRITE (ISs491)
WRITE (IS+492)
“RITE (ISe431)

PRINT PRECIPITATION MODEL PARAMETERS

WRITE (ISs565) TBBARsTREARGDBAR
565 FORMAT (/1X»T25«*FRECIPITATION MODEL PARAMITEIRS®//

3 T234YMEAN TIME BETWEEN STORMS®4TS04F7.2/
3 T239*MEAN STORM DURATION®9TS0eFT7e2/
$ T234*HMEAN STORM DEPTH®eT504F7e2/)

WRITE (IS#491)

PRINT TEMPERATURE MODEL PARAMETERS

WRITE (ISe+5T70)(BCOEF(I)eI=14+8)
570 FORMAT (//71XeT26¢*TEMPERATURE MODLL PARAMETERS®//
3 T229"B0¥e2XeE12e594Xe"B1l%42X9E1245/
$ T224%B2% 32X eE12.544X9"B3%e2XsE12a5/
3 T22¢9'B4% 42X eE12e5¢4X9?B5%42XaE12657
$ T224'B6ve2XeE124594X9"BT7%42XsE12e5/7)

WRITE (IS+580) TDBIASs TOSDEVse TDRHO
580 FORMAT (1Xo» T3C+*STOCHASTIC COMPONENT®*//
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% T28 9 *TEMPERATURE BIASY42XsFEe2/
£ 3 T28+*STe DEVIATION *y2X9Fbe2/
3 T284*LAG=1 CORe COEFa®e2X9F6.27)

WRITE (ISs+491)
WRITE (ISe430)
WRITE (ISe4°91)
WRITE (IS44932)
WRITE (ISs491)
PRINT WIND SPEED MODEL PARAMETERS
WRITE (IS+600) SPBAR1+SPBT14SPBAR2+sSPBT 2
3 SPSDV1¢SPSDT14SPSDV243SPSDT2
600 FORMAT (/T29s*WIND SPEED PARAMETERS®//
3 T214*MIN HOURLY MEAN = *4F4els® AT ®9F35.24* HOURS®/
3 T219*MAX HOURLY MEAN = "sF4ely® AT *9FSe2s% HOURS®Y//
3 T214"MIN HOURLY ST DEV= veF4ele® AT *sF3.24+*% HOURSY/
$ T21¢?MAX HOURLY ST DEV= "yF4els?® AT "9FS5.29+* HOURS®//)

WRITE (ISe601) SPSKEWs SPRHO
601 FORMAT (//T294"SKEW COEFFICIENT *s¢FSe2/
£ 4 T294*LAG-1 COEFFICIENT®*+FSe2/)

WRITE (IS.491)

PRINT WIND DIRECTION MOOEL PARAMETERS

WRITE (ISe620) DRBARsDRDEVeDRRHQO
520 FORMAT (//T27+*%IND DIRECTION PARAMETERS®//
3 T319*MEANT9T42sF6a2/
3 T319*STe DEVe'"sT424F6e2/
$ T314*LAG=1 COEF®*sT424F5e2//)

WRITE (IS+630)

630 FORMAT (/T284*WIND DIRECTICN HISTOGRAMY/)
CALL PRDIST ( DRPDFs DRORDe NUMDR )
WRITE (ISe632) DRALDRB

6£32 FORMAT (//TSe"LEFT BOUND OF HISTa
3 *RIGHT BOUND OF HISTe

*9F10s4e5Xy
'!Fl.ﬂn“/’

I i

WRITE (IS+491)

IF (TYPE +EQe YREGRS') GO TO 665

PRINT DEWPOINT MODEL PARAMETERS eee *INOEPENDENT GENERATION®

WRITE (I1Ss640) DWBARs JWSOEVe DWRHO
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640 FORMAT (//T27+*CEWPOINT MODEL PARAMETERS*//

$ T319"MEAN?9T424F 62/
$ T319*ST DEV*sT42+F6.2/
3 T31¢*LAG-1 COEF*+T424F0e2//)

WRITE (IS+491)
GO TOo 700

665 CONTINUE

PRINT DEW POINT MODEL PARAMETERS eee "REGRESSION TYPE *

WRITE (ISe6T70)CACOEF(I)el=146)
670 FORMAT (/T21.*DEWPOINT MODEL REGRESSIUN COEFFICIENTSY//
$ T22¢YA0® 42X eE12.544Xe'A1l¥42XsE12e5/
T T22e%A2% 42X eE12.594Xe A3t 32X 9E12.5/
1 T22§'A4'12X1512o514xv'ﬁs'vex!E1205//}

WRITE (ISe+680) DWBIASe DWDEVe DWORHO
680 FORMAT (//T244*STOCHASTIC COMPONENT PARAMETERS*/

$ T28¢*DEWPOINT BIAS *92XsFEe2/
3 T289°*ST DEVIATION *92XeFbe2/
3 T289*LAG=1 COR COEF '"92XeFne2//)

HRITE (1S+491)

700 CONTINUE

RETURN
END

...-........-C.I....l.....I...........U"IID...‘.....'..'..&IICD.‘t..t

SUBROUTINE PRDIST ( He ORDs NMAX)

PRINT OUT THE INPUT PROBABILITY MASS FUNCTION

COMMON /I0/ IN#IS.IB

DIMENSION ORD(NMAX)
DIMENSION H(NMAX)
DIMENSION FMT(6)4FMT1(10]

DATA FMT /0(T8 9%9%4%9®  10°%4*(TH==*y*-——== tet))t/
DATA FMT1 /° 1%, 20,0 ey 4949 5%,
$ ' 6ty T, gre? CLI 10/

.DO 100 U = 1eNMAXelD
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IMAX = 10
IFC J*10 «GTe NMAX ) IMAX = NMAX - J + 1
C
C
WRITE (ISe200)(H(I+U=1)eI=1+IMAX)
200 FORMAT (1H #1Xe'HIST *410C(1XsFGe2))
C
FMT(3) = FMT1(IMAX)
c
C
WRITE (ISeFMT)
c
c
WRITE (ISs400) (CRD(I+J=12eI=1,IMAX)
400 FORMAT(1H ¢1Xe®ORD *410C1XeF6.2)7/)
C
c
100 CONTINUE
c
c
RETURN
END
c
Cooocolc.o.o-‘..o-.onooo--..c.&co-----cooo-ou--u.t.caoo..oan--c-oooouc-
C

SUBROUTINE DATEL

DATE1 INITIALIZES THE DATE COUNTERS.
JULIAN DATES ARE USEDe.

IYR ses INITIAL YEAR
1Mo eee INITIAL MONTH
IDAY «es INITIAL DAY
LYR eee LAST YEAR

LMO ees LAST MONTH
LDAY «ee LAST DAY

JULDATeee CURRENT JULIAN DATE -

JBEGINeee JULIAN DATE AT BEGINNING CF RUN

JULENDsee JULIAN DATE AT END OF RUN

JRANGE«ee LENGTH OF RUN

JULREFaee JAN 1 OF INITIAL YEAR

JULRELwee JULIAN DATE RELATIVE TO JAN 1 OF CURRENT YEAR

JSTARTeee RELATIVE JULIAN DATE TO BEGIN MONTHLY PARAMETER
ESTIMATION RANGE

JSTOP eee RELATIVE JULIAN DATE TO END MONTHLY PARAMETER
ESTIMATION RANGE

JYEAR .ee YEAR COUNTER

NXLPYReee JULIAN DATE CF DEC 31 OF MEXT LEAP YEAR

O OOOMAOO000OON0O0N0O0O0NO00nN0O0aO0n

COMMCN /DATES/ IYRs IMOs IDAYe LYRs LMOs LOAY
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COMMON /JDATES/ JULDATe JULRELy JBEGINy JULENDs JRANGE. NXLPYR
3 sJSTARTe JSTOPs JRENDe JYEAR
COMMON /I0/ IREADy IWRITEs IWBUG
INTEGER IDBUGs CALC(12)
DATA CAL /3192B931930931¢30931431930931+30+31/
SET DEBUG FLAG

10BUG = O

DETERMINE INITIAL JULIAN DATES

CALL JULIAN (IMO¢IDAYsIYR9JBEGIN)
CALL JULIAN (LMOSLDAYSLYRsJULEND)
CALL JULIAN ( 1y 19 1YR9JULREF)

JULREL = JBEGIN = JULREF
JRANGE = JULEND - JBEGIN + 1
JULDAT = JBEGIN -1

DETERMINE THE NEXT OCCURANCE OF 12/31/(LEAP YEAR)
(IE. THE 3&6TH DAY DF THE YEAR)
LASTLP = IYR - HMOD(IYRs4)
CALL JULTIAN (12431 ¢LASTLPeNXLPYR)
IF C(JULDAT oGEe NXLPYR) NXLPYR = NMXLPYR + 1461
NOTEeee 1461 = 365 + 365 + 365 + 366
THIS SECTION DEFINES VARIABLES NEEDED FOR MONTHLY
PARAMETER ESTIMATION
JYEAR = IYR
JSTART = JULREL + 1
LD = CALCLMO)
CALL JULIAN ( LMOs LOs IYRe JDATE

JSTOP
JREND

JDATE - JULREF =+ 1
JSTOP

IF (JYEAR - MUD(JYEARs4)) 65470465
IF (IMOEGe2 «ANDe IDAY.EQe28) JREND = JSTOP + 1
CONTINUE



O ™M (o Mg O0OOM0 o) elw! ¢ e OO OO0 OO0 OO0

OO0 0

o0

50

200

100

ENTRY DATE

THE NEXT SECTION IS USED EACH DAY TO UPDATE
THE JULIAN DATE COUNTERS IF ANNUAL PARAMETERS ARE USED.

JULREL
JULDAT

Hn
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JULREL + 1
JULDAT + 1

CHECK FOR END OF YEAR

IF (JULREL +LEe. 365%) GO TO 100
IF (JULREL «GTe 366) GO TO 200

CHECK FOR LEAP

YEAR

IF (JULDATNESNXLPYR) GO TQ 20C

YESe THERE ARE

366 DAYS THIS YEARe.

UPDATE NXLPYR TO NEXT LEAP YEAR.

NXLPYR = NXLPYR + 1461

IF( IDBUG «NEe 0 ) GO TO 900

CONTINUE

RETURN

RESET RELATIVE JULIAN DATE

JULREL = 1

CONTINUE
IFC IDBUG oNEe
RETURM

ENTRY DATEM

THIS SECTION IS USED EACH DAY TO UPDATE THE JULIAN DATE CRUNTERS
IF MONTHLY PARAMETER ESTIMATION IS USED.

JULREL
JULDAT

JULREL
JULDAT

uwon

IF (JULREL «LEe

UPDATE THE JULIAN

0 ) GC TO 900

+ 1
+ 1
JREND) &0 TO 400

COUNTERS
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c
JYEAR = JYEAR + 1
c
CALL JULIAN (IMOs01leJYEARSJBEGIN)
CALL JULIAN (01+01¢JYEAReJULREF)
c
JULREL = JBEGIN - JULREF + 1
JSTART = JULREL
c
CALL JULIAN (IMOs01¢JYEARS$JULDAT)
c
LD = CAL(LMO)
c
CALL JULIAN ¢ LMOs LDy JYEARs JDATE )
C
JSTOP = JDATE - JULREF + 1
JREND = JSTOP
c

IF(JYEAR = MOD(CJYEAR94)) 400+4104400
411 IF (LMOeEQe2 oANDe LDAYEGRe28) JREND = JREND + 1
500 CONTINUE

IF ¢ IDBUG .NEes O )} GO TO 900

RETURN

900 CONTINUE

DEBUG INFORMATION FOR JULIAN DATE CALCULATIONS

e o R

WRITE (IWRITELS20) JULDAT ¢ JULREL ¢JBEGINeJULEND «JRANGE 9 NXLPYR
$ ¢JSTARTsJSTOP+JRENDsJYEZAR
920 FORMAT (1H Q'JULDAT='9110q3Xg'JULREL='QI1013X1'JBEGIN=‘9118,3X9
$ /2X1'JULEND='111093X!'JRANGE='QIlﬂvSXt'WXLPYR='11180
% 72X e *JSTART="9T11043Xe*JUSTOP =%+I110+3Xs*JREND =¢4e110
3 3Xe?JYEAR="4110)

€

RETURN
(&

END
C
C.....‘I........"..'...-C.............‘........-.'.I.'.I..‘...‘....O‘.
C

SUBROUTINE DATTC(IDATE «IMOSIDAYSIYR)
C
€ CONVERT JULIAN DATE TO CALENDER DATE
c

INTEGER CAL(1242)

DATA CAL/093195993091209151918192125243927343044334,
1 093196099191219152¢1829213+244927493059335 /
I1=(IDATE-1)/1461
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I2=IDATE=-(I1x1461)

1<=I2<=1461

OO0

IF(I2.LE«365) GO TO 10
IF(I2.LE«730) GO TO 20
IF(I2.LE«1095) GO TO 30
13=3
14=12-1095
GO TO 40
10 I3=0
I4=1I2
14=12-365
GO TO 40
20 13=1
GO TO 40
30 13=2
14=12-730
40 IYR=1900+I35+(4=x11)
INDX=1
IF(I13.EQa3)YINDX=2
DO 100 I=2+12
IF(I4«LE«CALCI«INDX)) GO TO 200
100 CONTINUE
IM0=12
IDAY=164-CAL(12sINDX)
RETURN
200 IM0=I-1
IDAY=14-CAL(I-14INDX)

RETURN

END
c
c
Cooco-o--ocooooo.---.aoo..-co.oo..oo-.o.o-c-o.t.---Gcotcoaoconnctv.o-nc
c

SUBROUTINE JULIAN(MO«DA3YR9ANS)

INTEGER ANSsCAL(12)+DAsYR

DATA CAL /3192893193093143093193193031+3031/
C
C COMPUTE JULIAN DATE FROM JANe 1l 1973
C

ANS=0

I=YR=-1900

ANS=ANS+365*1

CAL(2)=28

IF(MOD(YRs4)eEQa0) CALC2)=27

J=M0-1

IF(JeEQe0) GO TO 20
DO 10 I=1l.J
ANS=ANS+CAL(I)

10 CONTINUE

20 CONTINUE
ANS=ANS+DA
RETURN
END
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c
c.......“...-‘........'..‘....I’..’.'...‘.-....‘.I.‘..................
c
FUNCTION DMS(A)}
C
c FUNCTION DMS CONVERTS ANGLES EXPRESSED IN
c DEGREESs MINUTES AND SECONDS TO RADIANS
C
DIMENSION A(3)
REAL MINUTE
C
c
DEGREE = A(1)
MINUTE = A(2)
SECOND = A(3)
€
DMS = DEGREE*3414159/180C. + MINUTE*#3414159/180./60
1 + SECOND*3.14159/180./60./60
RETURN
END
c
C-'.l.....-.....‘..‘........l‘..'....'.........I.‘......C..-I........‘..
C
FUNCTION TAU(ST)
C

COMMON /ORBIT/ PHI ¢THETASSTHETAL +EPsETeW
COMMON /10/ IREADs IWRITEs IWBLUG

COMMON /DBUG/ NBUG.DEBUG

DOUBLE PRECISION ITAU$DEBUG(1)

DATA ITAU /°TAUY/

THETAS = LONGITUDE OF STANDARD MERIDIAN (2ADIANS)
75TH MERIDIAN FOR EASTERN STANDARD TIME
90TH MERIDIAN FOR CENTRAL STANDARD TIME
105TH MERIDIAN FOR MOUNTAIN STANDARD TIME
120TH MERIDIAN FOR PACIFIC STANDARD TIME

THETAL = LONGITUDE OF OSSERVERS MERIDIAN (RADIANS)

TAU = LOCAL HOUR ANGLE

ST = STANDARD TIME IN THE TIME ZONE OF THE
GBSERVER IN HOURS COUNTED FROM
MIDNIGHT (EGe 0400 TO 24,003

EP = +1 FOR EAST LONGITUDEs -1 FOR WEST LONGITUDL

ET = DIFFERENCE BETWEEN TRUE SOLAR TIME

AND MEAN SOLAR TIME (USUALLY NEGLECTED
FOR HEAT TRANSFER COMPUTATIONS)

FUNCTION SUBROUTINE TAU CONVERTS THE OBSERVERS
STANDARD TIME TO LOCAL HOUR ANGLE IN RADIANS

OBTAIN TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND
OBSERVERS MERIDIAN (HOURS)

OO0 0O00000O000O0n
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DYSL = EP«{(THETAS = THETAL)* 12.0/3.14139

COMPUTE OBSERVERS HOUR ANGLE (RADIANS). E = +1 FCR

MORNING AND E = =1 FOR AFTERNOON (IeEe SOLARNOON)
IF (STeGTel2e + DTSL =ET) E = =1.0000
IF (STeLEel2. + DTSL =-ET) E = +1.0000

TAU = (ST + E%12e = DTSL + ET) * 3,14159/12.0

IF (TAU«GTe6283185) TAU = TAU - 6.283185
IF (TAU«LTe040) TAU = TAU + 6283185

DEBUG OPTION

IF (NBUGeEQeO0) GO TO 100
DO 200 I = 1eNBUG

IF (DEBUG(I).NE.ITAU) GO TO 200
WRITE (IWBUGs2E0) STePHI e THETASsTHETAL«FPsEToWeDTSLTAU
250 FORMAT (//7/7/71H «*FUNCTION TAU®s 2Xe
1 *ST =YeF5e392Xe"PHI =*gF6e3e2Xs YTHETAS SV F6e3¢2X s *THETAL =*
2 FEa392XeEP =" 4F6a392Xe'ET =P 4F6e392Xe i =V yFHheSe2Xe
3 ODTSL = eFGele2Xe*TAU =?9F6e3)
280 CONTINUE

100 CONTINUE

RETURN
END

‘.'.-...........-.....O..I‘...COCOCOO...'I.........l.....t.....l.....l

SUBROUTINE DECL (RJD+DELTA9SR#SS)
INTEGER RJD

COMMON /ORBIT/ PHITHETASTHETALsEPsETewW
COMMON 710/ IREADs IWRITEs IWBUG

COMMON /DBUG/ NBUG+DEBUG

DOUBLE PRECISION IDECLsDEBUG(L)

DATA IDECL/°®DECL®*/

DELTA = DECLINATION OF THE SUN (RADIANS)
PHI = OBSERVERS LATITUDE (RADIANS)
THETAS = LONGITUDE OF STANDARD MERIDIAN (RADIANS)
75TH MERIDIAN FOR EASTERN STANDARD TIME
90TH MERIDIAN FOR CENTRAL STANDARD TIME
105TH MERIDIAN FOR MOUNTAIN STANDARD TIME
120TH MERIDIAN FOR PACIFIC STAMDARD TIML
THETAL = LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)
RJD = RELATIVE JULIAN DATE (I.E. WITH RESPECT TC JAN 1)
ST = STANDARD TIME IN THE TIME ZOWNE OF THE OBSERVER
IN HOURS COUNTED FROM MIONIGHT (£.Ga0a00 TG 24.00)
EP = +1 FOR EAST LONGITUDEs -1 FOR WEST LONGITURE
ET = DIFFERENCE SETWEEN TRUE SOLAR TI®E ANMD
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MEAN SOLAR TIME (USUALLY NEGLECTED FOR
HEAT TRANSFER COMPUTATIONS)

COMPUTE TIME OIFFERENCE BETWEEN STANDARD MERIDIAN AND
OBSERVERS MERIDIAN (HOURS)

DTSL = EP*(THETAé - THETAL)Y* 3.81972
COMPUTE DECLINATION OF THE SUN (RADIANS)

DELTA = 0.4093*C0S(0e0172%(172e - FLJIAT(RJD)) )
COMPUTE HOUR ANGLE AT SUNSET (RADIANS)

TSS = ACOS(-TANC(DELTAY*TAN(PHI))

COMPUTE STANDARD TIME OF SUKNST (HOURS)

Ss = TSS*3.81972 + 12. +DTSL =-ET
COMPUTE HOUR ANGLE OF SUNRISE (RADIANS)

TSR = £e283185 -~ TSS

COMPUTE STANDARD TIME OF SUNRISE (HOUR)

SR = TSR*#3481972 -12. + DTSL =-ET

CONVERT SUNRISE IN STANDARD TIME 7O LOCAL TIME
SR = SR - DTSL
CONVERT SUNSET IN STANDARD TIME TO LOCAL TIME

S8 = 8§ = DTsSL

DEBUG OPTION

IF (NBUG.EGe0O) GO TQO 300
00 108 I = 1¢%NBUG

IF (DEBUG(I).NE.IDECL) GO TG 1400
WRITE (IWBUG200) RUDsDTSLeDELTAsTSSeSSeTSRe3ER
200 FORMAT (///7/791H $*SUBROUTINE DECL ®etaxxx%ya? R0 =%,
1 I5e* DTSL ="4F6e39" DELTA ='4F6e39¢" TS5 ='eF6elds
2 ¢ SS TP 4F6e392Xe?TSR =%4F5e2+2Xe"SR = P yFfhel)
100 CONTINUE

300 CONTINUE

RETURN
END
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C—..‘...............-.......‘.Q‘..I..GQ......O...'.‘....l......‘.!..l..-

C
SUBROUTINE RAINST (TBeTReDesJSINCE+STORM ¢ JHREOS ¢ JHNEXT)

C
c
C ROUTINE TO INITIALIZE THE RAINFALL MODEL. THIS ROUTINE INCSURES
C THAT THE BEGINNING OF THE MONTH OCCURS RANDOMLY DURING EITHER
¢ AN INTRA=- OR AN INTER-STORM PERIOD ACCORDING TO THE APPROPRIATE
C PROBABILITY DISTRIBUTION.
c

COMMON /RAINS/ TOBMEANe TRMEANs DMEAN

COMMON /RAINI/ ITR.ITB

DATA ON/YON®/4 OFF/®OFF*/
c

TSUM = 0.0

DEBUG = OFF
€
C GENERATE THE TIME SINCE THE LAST STORMe
c

CALL EXPO (TBMEANSTSINCE)}
c
C NOW BEGIN TO GENERATE A SEQUENCE OF STORMS THAT &ILL BRING US UP
C TO THE BEGINNING OF THE MONTH.
c

100 CALL EXPO (TBMEANsTH)
TSUM = TSuUM + TB

5
C ARE WE UP TO THE STARTING POINT YET?
C
IF (TSUM .GE. TSIHWCE) GO YO 2C0
C
Cc IF NOTe GENERATE A STORM DURATION.
C
CALL EXPO (TRMEAN+TR)
TSUM = TSUM + TR
C
C ARE WE UP TO THE STARTING POINT YET? IF NOTs GO BACK AND
C GENERATE THE NEXT INTERSTORM PERIOD.
C
IF (TSUM «LT. TSINCE) GO TO 100
C IN THIS CASEe THE MONTH BEGINS ODURING A STORM. ODETERMINE TIME
C TILL END OF STORM (TTEOS) AND TURN STORM FLAG O%Ne
C
TTEOS = TSUM - TSINCE
STORM = ON
JSINCE = 0
TB = 0.0
C
C COMPUTE THE STORM DEPTH GIVEN STORM DURATION.
c
ALPHA = TR/TRMEAN
BETA = DMEAN

CALLkGAMMAD (ALPHASBETALD)
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C
C ADJUST STORM DEPTH T0 REFLECT ONLY THE PORTION DURING THE
C CURRENT MONTH.
C
D = D*(TTEOS/TR)
TR = TTEOS
c
C CONVERT TR TO NEAREST INTEGER VALUE
o
CALL ROUND (TReITR)
IF (ITR «EQe 0) ITR =1
JHREOS = ITR
C
c
RETURN
c
c
200 CONTINUE
B
C IN THIS CASEs THE MONTH BEGINS DURING AN INTER-STORM PERIGD.
C DETERMINE TIME TILL NEXT STORMe TURN STORM FLAG OFFe.
c
TTNEXT = TSUM = TSINCE
STORM = OFF
TR = 0.0
0 = 0.0
c
C
C CLOUD COVER MODEL WILL ALSO NEED THE TIME SINCE THE LATEST STORM
C ENDEDe.
C
TSINCE = TB = TTNEXT
c
C CONVERT TTNEXT TO NEAREST INTEGER
c
CALL ROUND (TTNEXTITB)
JHNEXT = ITB
CALL ROUNDCTSINCEsJSINCE)
C
c
€
C
RETURN
END
c
Co.ooo-o-'po--.oococo.o--oouos-o.ococc-ooo-.-...-ooo-----o.-nooo-o-.-c-
c
SUBROUTINE ROUND (XeIX)
c
C ROUND IS A ROUTINE THAT CONVERTS A REAL VALUE +Xs TG THE MNEAREST
C INTEGER VALUE. IN OTHER WORDSe IX IS ROUNDED LP WHEN MECESSARY .
c
IX = INT(X)
RX = AINT(X)
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c
£ CHECK IF X IS NEGATIVE QR POSITIVE.
C

IF (X) 10042004300

100 IF (ABS(X-RX) «GTe 0.30) IX = IXx -1
200 RETURN
300 IF (ABS(X=RX) «GTae 0503 IX = IX + 1
c
C
RETURN
END
c
C.......‘..’.."'.........."'........-......................'...........
c
SUBROUTINE PCPN (TBqTRvDySTORM;JHOURsdHREOSquNEXT;JSINCE;RAIN)
c
C PCPN CHECKS TO SEE IF WE ARE CURRENTLY IN A STORM OR BETWEEN
C STORMS AND COMPUTES THE HOURLY RAINFALL TOTAL ACCORDINGLY.
C WHEN NECESSARYs PCPN SELECTS NEW TIMES BETWEEN STORMSe STORM
C DURATIONSe AND STORM DEPTHS. THE HOURLY COUNTERS ARE ALEO
C UPDATED FOR TIME TILL NEXT STORM AND TIME TILL END OF CURRENT
C STORM.
C
COMMON FRAINI/ ITReITB
COMMON /RAINS/ TBMEAN TRMEAN s DMEAN
C
DATA ON/Z*0ON®/y OFF/®*QFF*/
C
c
C CHECK 1F STORM FLAG IS ON OR OFFe IF STORM FLAG IS ONe GO TO THE
C STORM SECTION.
C
IF ( STORM «EGe ON ) GO TG 2040
c
C STORM FLAG IS OFFe NOW CHECK IF WE HAVE ENDED THE LATEST IMTER-
C STORM PERIQD.
C
IF ( JHOUR oGTe JHNEXT ) GO TC 100
C
c STILL IN BETWEEN STORMS. THEREFORE SET RAIN = 0.0 AND RETURMN
C ALSO INCREMENT THE COUNTER FOR TIME SINCE LAST STORMe
JSINCE = JSINCE + 1
c
D = 0.0
RAIN = 0De0
RETURN
C
C
C

100 CONTINUE

GENERATE A NEW STORM. FIRSTe TURN STORM FLAG GN. SECONDs SELECT A
STCRM DURATIONe THEN SELECT A STORM DEPTH

e e NeRe]

STGRH_: oN
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CALL EXPO (TRMEANsTR)
ALPHA = TR/TRMEAN
BETA = DMEAN
CALL GAMMAD (ALPHASBETALD)}
CONVERT STORM DURATION TO THE MNEAREST INTZIGER VALUE.
CALL ROUND (TReITR)
MINIMUM STORM DURATION IS ONE HOUR.
IF (ITR eEQe 0) ITR = 1
UPDATE THE TIME TILL END OF STORMe.

JHOUR + ITR = 1
0

JHREOS
JSINCE

COMPUTE THE HQURLY RAINFALL DEFTH
RAIN = D/FLOAT(ITR)

RETURN

200 CONTINUE

STORM FLAG IS GNe NOW CHECK TO SEZ IF THE STURM ZNDED.

IF (JHOUR «GTe JHREOS) GO TO 300

THE STORM IS STILL GOING ONe THEREFOREs COMPUTE RAIN AND RETURN.

RAIN = D/FLOAT(ITR)
JSINCE = @

RETURN

300 CONTINUE

STORM = OFF

STORM ENDEDe SELECT THE NEXT TIME BETWEEN STORMS.
CALL EXPO (TBMEAN.TB)

CONVERT TIME BETWEEN STORMS TO NEAREST INTEGER VALUE.
CALL ROUND (TB.ITH)

MINIMUM TIME BETWEEN STORMS IS ONE HOUR.
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c
IF (ITR LEGe 0) ITB =1
c
C UPDATE THE TIME TILL NEXT STOR#e
c
JHNEXT = JHOUR + I78B - 1
JSINCE = 1
c
RAIN = 0.0
c
RETURN
END
c
c....................‘.D...‘.......-...‘...‘l."..C.........‘......-....
c
SUBROUTINE EXPO (EMeT)
€
COMMON /SEED/ ISEED
C
c SUBROUTINE TO GENERATE EXPONENTIALLY OISTRIBUTED RANDON NUMBERS
& EM = MEAN OF THE DISTRIBUTION
€ T = RANDOM VARIABLE
c
C GENERATE U(0.1)
c

IX = ISEED
CXXXXXCALL RANDU (IXsISEEDsR)
CALL RAND1 (IXsISEEDsR)

C
C TAKE THE INVERSE OF THE EXPONECNTIAL POF
C
T = =EM=ALOG(R)
RETURN
END
C
c‘..'..’...'...'.‘...‘..-.‘.......'........."...............-.......-..
C
SUBROUTINE GAMMAD (ALPHABETA+X)
C
COMMON /WARN/ IWARN
COMMON /SEED/ ISEED
comMmMeN f10/ INsISHIE
C
U = 1.0
X = 0.0
K = IFIXCALPHA)
GAM = ALPHA - FLOAT(K)
c
C WRITE (594900) UsXeKsGAMeALPHAWBETA
300 FORMAT (1HO'U=%4E12.3¢2X 9 ITX=? el 12.5¢2Xe ¥H=PeIGe2Xe
1 CGAMZYeE12.5e¢2Xs PALPHAS?3E12.542Xe TYEETA=T".
2 £12.5)
C
c
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IF (KeEGe 0) GO TO 100

DO 50 I = 1K
IX = ISEED

CXXXX CALL RANDU (IX+ISEEDsR)
CALL RAND1 (IX+ISEEDsR)

U = R»U
c
C WRITE (5¢920) lIs Re U
320 FORMAT (1HOe ®TRACE 1 ®*¢% I= "3I5¢2Xs *R= "sE12.5¢2X0e
1 U= *4E12.5)
C
50 CONTINUE
C
X = =ALOGC(U)
C .
IF (GAMLGE. 0.000001 ) GO TO 100
C
X = BETA=xX
c
C WRITE (54930) X
93¢0 FORMAT (1HO9*TRACE 2 %42Xe "X= %4£1245)
C
RETURN
C
100 CONTINUE
IX¥ = ISEED

CXXXX CALL RANDU (IXeISEEDeR)
CALL RAND1 (IXeISEEDeR}

Z = =ALOG (R}
C
C WRITE (5+340) ReZ
340 FORMAT (1HOe® TRACE 3 ®9® R= "4E12e5¢* I= "4£12.5)
C
C
c

DO 200 J = 1+100
IX = ISEED

CXXXX CALL RANDU (IXoISEED.UL)
CALL RAND1 (IX+ISEEDsU1)
IX = ISEED

CXXXX CALL RANDU (IX+ISEED.U2}
CALL RAND1 (IXeISEEDeU2)

A MACHINE UNDERFLOW OR OVERFLOY CAN EASILY OCCUR. THECE
CONDITIONS CAN BE ANTICIPATED BY FIRST CALCULATING ThE
LOG (BASE 10) OF EMN AND ENe. THE VALID RANGE OF LOG(EM)

C

c

G COMPUTE THE VALUES OF EM AND EN
c

c IF EM AND EN ARE COMPUTED DIRECTLY AS:
C

£ EM = Ul**(1.0/GAM)

C EN = U2x%(1.0/(1e0~GAM))

o

C

C

€
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c AND LOGCEN) IS MACHINE DEPENDENT BUT HAS NEVERTHELESS
C BEEN SET TO BETWEEN =37.0 AMD +37.0 IN THIS PROGRAM.
c IF A VALUE OF HAS BEEN FOUND BELOW THIS RANGEs A DEFAULT
C OF LOG(EM OR EN) = =37.0 IS USED. IF A VALUE OHAS BEEN
c FOUND ABOVE THIS RANGEes THEN LOG (EM OR EN) = +37.0.
c EM AND EN ARE THEN FOUND BY TAKING THE APPROPRIATE ANTILOGS.
c
c
EMLIO = (1.0/GAM)*ALOGLO(UL)
c
IF ( EML10 «GEes =Z7e0 «ANDs
1 EML1I0 eoLEe +3740 ) GO TO 1190
c
ILARN = IWARN + 1
IF ¢ EML10 oGTe +37.0 ) EML10 = +37.0
IF ¢ EML10 oLTe =37.0 ) EML10 = =37.0
c
110 EM = 10.0x~EML1O
c
c
ENL1I0 = (1.0/(1.0 = GAM))*ALOG10(U2)
c
IF ( ENL10 «GEe =370 «ANDe
1 ENL10 eoLEe #3740 ) GO TO 12¢C
€ ;
I4ARN = IWARN + 1
IF ¢ ENL10 .6T. +37.0 ) ENL1IOD = +37.8
IF ¢ ENL10 oLTe =370 ) ENL10 = =37.0
c
120 EN = 10e0~*ENLLD
€
C
c .
C WRITE (5e950) JeUlsU2sEMeENIEMLIOSENLILO
350 FORMAT (1HO#*TRACE 4 ®9® J= 945I5s" Ul= "9E12.5y
1 v U2z Y4E12459 ' EM= V4E12.5¢* ENZ *4E12.5
2 * EML1I0="4E12.5¢" ENL1O0="yE1265

IF (EM +EN oLEe. 1.0) GO TO 300
200 CONTINUE

WRITE (ISe500)
500 FORMAT(® END OF DO LOOP IN BETA SUBSECTION OF GAMMAD *)

STGOP

c

C

300 Y = EM/ZC(EH + EN)

c
X = BETA*(X + Y=*2Z)
RETURN
END

c

C-.IC....’.-....-..II'.‘..........O..I..‘.."..'...U.....‘I.‘O..UOD..‘I.
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C
SUBROUTINE RANDU (IXsIYeYFL)
€
C GENERATES A UNIFORM DISTRIBUTION
C
IY = IX*65539
IF (1Y) 10420420
10 IY = IY + 2147483647 + 1
20 YFL = IY
YFL = YFL*.4656613E-9
c
RETURN
c
c
ENTRY RAND1 (IXeIYsYFL)
c
YFL = RAND(O)
c
{
RETURN
END
c
C.".......‘....‘O‘...............'.l"...................'..'.........
c
SUBROUTINE STAT(XsSUMySUMSGeSUMI9XBARSXVARSXSKEWSN)
c
¢ ROUTINE TO COMPUTE THE FIRST THREE MOMENTS OF INTEREST
C === MEAN === VARIANCE =-=-- SKEW COEFFICIENT ===========
C XBAR XVAR XSKEM
c
TRACE = 'OFF*
IF (TRACE oEGe TONT®) WRITE (S.901)
901 FORMAT (* STAT1®)
c
SUM = X + SUM
SUMSG = X*X + SUMSQ
SUM3 = X#x3.0 + SUM3
C
IF (TRACE «EQe *ON®) WRITE (54902}
902 FORMAT (* STATZ2")
c
<
C UPDATE THE MEAN AND VARIANCE COMPUTATION
£
XBAR = SUM/ N
XVAR = SUMSG/N - XBAR#XBAR
IF (XSKEW «LTe -990.0) RETURN
X43 = SUM3/N - 3402XBAR*SUMSG/N + 2+.0+#XBAR**3.0
5
IF (TRACE +EGe "ON') WRIJTE (5+303)
303 FORMAT (* STAT3")
c
IF (N oLEs 2) RETURN-
C

¢ COMPUTE SKEW COEFFICIENT
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C
IF (XVAR «GTe 0o00001) GO TO 100
XSKEW = 0.0
GO TOo 999
100 CONTINUE
E
FACTQOR = FLOAT(N*N)/FLOATC(N=1)*(N=-2))
XSKEW = FACTOR=*XM3/(XVAR*SQART(XVAR))
c
IF (TRACE +EQe TON®) WRITE (5+904)
904 FORMAT (* STAT4*)
IF (TRACE oEQe *ON*') WRITE (5+4905) Ne XSKEWs FACTORy XVAR
905 FORMAT (I10e3(E1l2e592X))
599 RETURN
END
c
C.....l6...O!..“..................0...0...‘.......-0...0..l....l..t.t.
Cc
SUBROUTINE HGRAM (HeIAg¢XeDTeBASE)
C
C SUBROUTINE TO UPDATE THE FREGUENCY HISTOGRAMS
c _
COMMON /IO/ INeISsIB
INTEGER H
DIMENSION H(IA)
C
DO 100 I = 1e1IA
IF(XeGT«RASE+I*DT) GO TO 100
H(I) = H(I) + 1
RETURN
100 CONTINUE
C
H(I)Y = H(I) + 1
AMAX = BASE + IA=*DT
C

WRITE (ISe3900)AMAX eX
900 FORMAT (1H ¢®A VALUE GREATER THAN *3E1245+* WAS FOUNDe X = *»

1 E12.5)
c :

RETURN

END
C
CQ.'C.I..0.‘..-..c....on...dco-.tt..'.C.t....-.‘..t.l..lcca-....OQOOI-Q.
c

SUBROUTINE PRINTH (HeNMAX+DTeBASE«TITLESNDATAY
C
C PRINT OUT NORMALIZED HISTOGRAMS OF GENERATED DATA
c
c
C

COMMON /1I0/ INeISHIB
C
C

INTEGER H

DIMENSION HCNMAX)



DIMENSION TITLEC(1)
DIMENSION TA(10)

NORMALIZE THE HISTOGRAM ELEMENTS

OO0On

60 TO 60

DO 50 I = 1eNMAX

N o= HCOI)

X = 100.0+(FLOAT(N)/FLOAT(NDATA))

CALL ROUND (XeIH)

C IF(NMAXeEQeal11)WRITE(Se501) I eNMAX oNeXoIH

501 FORMAT(ISs1XeISe¢1XeI1l5¢1XsE12e521XsI15)
H(I) = IH

50 CONTINUE

60 CONTINUE

WRITE (IS»910)
210 FORMAT (1H1415(5H }/1H+4 15(5H
JRITE (IS4900) (TITLE(I)eI=1+5)

)

900 FORMAT (1H #»14Xe®HISTOGRAM OF *95A54* (PERCENT)I'/)

DO 100 J = 1eNMAXe10
IMAX = 10
IFC J¥10 «GTe NMAX ) IMAX = NMAX = J + 1

GO TO 199
196 D0 198 II=1,IMAX

12 = I1 + J -1

WRITE (59197)1Z¢I1sJs IMAXsNMAXSH(IZ)
197 FORMAT(5I5+120)
198 CONTINUE
199 CONTINUE

WRITE (ISe200)(H(I+J=1)eI=1+IMAX)
200 FORMAT (1H +10(2Xs15))

€
C
WRITE (IS.300)
300 FORMAT (1H ¢10(T7H===w==-=- 1)
C
c

DO 350 K = 1410
350 TA(K) = (K-1+J)*DT + BASE

WRITE (IS9400)(TA(K)aK=1510)
400 FORMAT(1IH 910(1XsF6e2)//)

c
€
100 CONTINUE
c
c
RETURN

END
& .

C......‘...............'.Ol..l'..0.......‘...I
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SUBROUTINE SOLRAD (RUDsST19ST2sTsTBsNMAX9CCA9CCBoPDF oNsCIORDY
1 SWReCLDeBETAsGAMeCCBAR$CCSD«RHO«SEASON)

SUBROUTINE SOLRAD COMPUTES INCIDENT SOLAR
RADIATION ON THE GROUND OR ON THE TOP QF A
VEGETAL CANOPY DURING A SPECIFIED INTERVAL OF TIME

ST1 = BEGINNING OF INTERVAL - STANDARD TIME
sT2 = END OF INTERVAL - STANDARD TIME
CSKY = CLEAR SKY RADIATION - LANGLY
CLD = CLOUD COVER (0.0 = CLD - 1.0}
SWR = TOTAL INCIDENT SOLAR RADIATION = LANGLY
SR = SUNRISE
SS = SUNSET
T1 = BEGINNING OF INTERVAL OF INTEGRATION - LOCAL HOUR ANGLE
T2 = END OF INTERVAL OF INTEGRATION - LOCAL HOUR ANGLE
RJD = RELATIVE JULIAN DATE
SIALPH = SINCALPHA)
POF = PROBABILITY DENSITY FUNCTION (DISCRETE)
FOR NOISE TERM IN CLOUD COVER MODEL
RADTYP = INDICATES IF USER WANTS CLRSKY CALCULATIONS ONLY
COORD = COORDINATES OF THE INTERVALS OF PODF
DOUBLE PRECISION CLEARsRADTYP
DOUBLE PRECISICN ISOLRDsDEBUG(L)

DIMENSION PDF(1)e COORD(1)

DIMENSION RHOC1)9CCBARC1)sCCSD(1)43ETA(L)«GAM(L)
INTEGER SEASON(1)

INTEGER RJD

COMMON /ORBIT/ PHISTHETASeTHETALSEPeETeW
COMMON /RTYPE/ RADTYP

COMMON /SEED/ ISEED

COMMON /DBUG/ NBUG.DEBUG

COMMON /I0/ INeISeIB

DATA ISOLRD /*SOLRADY/

DATA CLEAR /*CLEARSKY®*/

COMPUTE DECLINATIONs SUNRISE AND SUNSET

CALL OECL (RJDJDELTA+SReSS)

SCREENING TO DETERMINE THE PROPER INTERVAL OF INTEGRATION

IF (ST2.LEeST1) GO TO 100

IF (ST1.LE«SReANDaST24LE«SR) 60 T3 120

IF (ST1eLEeSReANDeST2eGEeSReANDeST24LESS) GO TO 130
IF (STleLEeSRANDeST2.GE«SS) GO TO 140

IF (ST1.GE«SR.ANDeST24LE«SS) GO TO 150

IF (ST1leLE«SSeANDeST2eGEeSS) 60 TO 160

IF (ST1.GEeSSeANDeST2.GE«SS) GO TO 12606
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ST2 IS IN THE AM WHILE ST1 IS STILL IN PM™

CONTINUE
IF (ST2.GT«SR) GO TO 130

NO SHORTWAVE RADIATION IN THIS INTERVAL

CSKY = 0.0

T1 = TAU(ST1)
T2 = TAU(ST2)
SIALPH = 999%.
GO TO 800

PART OF INTERVAL COMES AFTER SUNRISEe. SET BEGINNING
OF INTERVAL EQUAL TO THE LOCAL HOUR ANGLE OF SUNRISE.
THEN CONVERT ENDING TIME TO LOCAL HOUR ANGLE.

Tl = TAU(SR)
T2 = TAU(STZ2)
GO TO 500

INTEGRATION INTERVAL INCLUDES ENTIRE INTERVAL FROM SUNKRISE
TO SUNSET

Tl = TAUCSR)
T2 = TAU(SS)
GO TO 500

INTEGRATION INTERVAL IS ENTIRELY WITHIN SUNSHINE PERIGC

Tl = TAULSTL1)
T2 = TAU(ST2)
GO TO 500

ENDING TIME OCCURS AFTER SUNSET

T1
T2

TAU(STI1)
TAUCSS)

COMPUTE CLEAR SKY SOLAR RADIATION FOR THE
INTERVAL T1 T0 T2

CONTINUE
CALL CLRSKY (RUDeT19T24NMAXeCSKYeSIALPHSDELTA}

DETERMINE CLOUD COVER

CONTINUE

IF (RADTYP.EQ.CLEAR) GJO TG 900

GO To 801

CALL COVER (RJUD¢CCA4CCBePDFeNoCOORDySEASON ¢TByToBETA$GAM9CCRAR S
CCSDeRHOSCLD)

CONTINUE

COMPUTE CLOUDY SKY SOLAR RADIATION
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c
SWR = CSKY*(1.0 = 0465+CLD*CLD)
GO TO 950 '
c
300 SWR = CSKY
C
950 CONTINUE
c
c DEBUG OPTION
c
IF (NBUGe<EGQGe0) GO TO 1100
DO 1000 I = 1,NBUG
c

IF (DEBUG(I).NE.ISOLRDY GG TO 1000 ‘

WRITE (IB91050)RJUDeST1eST2¢SReSSeT1eT29CSKYeSIALPHSCLD
1050 FORMAT (//7+1H o*SUBROUTINE SOLRAD®#2Xe*RJC =*

1 T492Xe?ST1 ="4FT7e392Xe?ST2 =*sFT7e342Xs*SR =*

2 F7e382Xe"5S =9 gFTa392Xe?"T1l =*4FT7.392XetT2 =%y

3 FTe3/T20¢CSKY =®9F12.2¢2Xs*SIALPH =%eFB8alys

4 2Xe°CLD =%9F7.3)
1000 CONTINUE

c
1100 CONTINUE
RETURN
END
c
C.’Q.-...............OQ‘-.‘........l...‘...I..l.l.."'.l.'.l..l.Q.'.t.-
c
C

SUBROUTINE CLRSKY (RJUDeT1leT2eNMAXsCSKYaSTALPHLOELTA)

c

c SUBROUTINE TO NUMERICALLY INTEGRATE THE

£ EGUATION FOR CLEAR SKY RADIATIONe. SIMPSONS

c RULE IS USEDe.

c

c DELTA = DECLINATION OF THE SUN (RADIANS)

C PHI = OBSERVERS LATITUDE (RADIANS)

C EN = TURBIDITY FACTOR

c = 240 FOR CLEAR MOUNTAIN AIR

c = 4-5 FOR SMOGGY URBAN AREAS

€ W = SOLAR CONSTANT = 120« LANGLY/HFE

c ¥ IS READ IN AS A VARIABLE TO ALLAW THE USER TO CHOOSE
C WHICH VALUE OF W IS APPROPRIATE.

c RJD = RELATIVE JULIAN DATE

c Tl = HOUR ANGLE AT BEGINNING OF INTERVAL

c T2 = HOUR ANGLE AT END OF INTERVAL

€ NMAX = NUMBER OF SUBINTERVALS = 29¢4s6eee

C CSKY = FINAL VALUE OF F IS CLEAR SKY RADTATION
¢ SIALPH = SIN (ALPHA)s WHERE ALPHA IS THE ANGLE

c OF RADIATION WITH THE HORIZONTAL (RADIANS)
C ALPHA = ANGLE OF RADIATION (RADIANS)

c

C REFERENCE FOR SIMPSONS RULE

C TI PROGRAMMABLE 58/59 MASTER LIBRARY

c

TEXAS INSTRUMENTS INCORPORATEDs 1977 P29=31
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COMMON /DBUG/ NBUGSDEBUG
COMMON /ORBIT/ PHIsTHETASeTHETALSEP+ETa N
COMMON /ATMOS/ EN

COMMON /10/ INoISsIB
INTEGER RJD
DOUBLE PRECISION ICSKY+DEBUG(1)

DATA ICSKY /°*CLRSKY?Y/

1S DEBUG REGUESTED FOR SUBROUTINE CLRSKY?

IBUuG = © :
IF (NBUG.EG.O0) GO TO 910
DO 900 I = 1eNBUG

IF (DEBUG(I)NEICSKY) GO TO 900
IBUG = 1

GO TO 210

CONTINUE

CONTINUE
IF (IBUGeEQReO) GO TO 10

WRITE (IB9930) RUDeTleT2eNMAX
FORMAT (///7/+1HO4*SUBROUTINE CLRSKY®42Xe*3J0 =%«

1 T562Xe®Tl =t gF6e34%T2 =¥4F6a322Xs"NMAX =%,1I5)

10 CONTINUE

DO LOOP PERFORMS INTEGRATION BY SIMPSON®S RULE
X = 0a0

IMAX = NMAX + 1

D = (T2 = T1l)/NMAX

IF (DeGEe0.D0) GO TO 70

D = ( 6628318 = T1 + T2 »/NMAX
CONTINUE

DO 190 NN = l1eIMAX

N=NN=-1

COMPUTE CURRENT HOUR ANGLE

T = T1 + N=*xD

COMPUTE SINCALPHA)

SIALPH = SIN(DELTA)I*SINCPHI) + COSCDELTAI*COS(PHII*COS(T)
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CHECK TO PREVENT DIVISION BY ZERO OR USING ZERO
AS THE ARGUMENT OF A LOG FUNCTION

CONSIDER THE TERHM

Y = € 0Del28 = 04054*AL0G10(1/SIALPH))

WHEN ALPHA APPROACHES ZEROes THE DECAY FUNCTION STARTS TO GROW.
THIS OCCURS DUE TO POLES THAT EXIST AT THE ENDS OF THE INTERVAL

OF INTEGRATION. AN APPROXIMATION TO THE DECAY FUNCTION 4AS
MADE THAT CONSISTED OF A STRAIGHT LINE EXTRAPOLATION OF THE
DECAY FUNCTION FROM ALPHA = 0.0l6 TO ZEROe

ALPHA = ASIN(SIALPH)

IF (ALPHA «GTe 0e016) GO TO 40

IF ¢ ALPHA o+LTe 040 ) ALPHA = 0.0
IF ¢ STALPH oLTe 0e0 ) SIALPH = 0.0

X = 1.293454*ALPHA*SIALPH

GO TO 45

CONTINUE

X=(EXP(=-EN*(0.128 = 0.054*AL0G10C1a/STALPH))/STIALPH) I *STALPH
CONTINUE

IF (MOD(Ne2)eNESO)Y GO TC 200
M=2

IF (Ne.EQ.0) M=1

IF (NeEQGehNMAX) M=1

Fz=F + M=*X

60 TO 50

F=F ; 4 x )

DEBUG OPTION

IF (IBUGeEGe0) 60 TO 100

WRITE (IBe920) osNeTeSIALPHeXeF
FORMAT (1H ¢T25¢*N =0 I442Xe"T 3'9[‘-6-3'2XQ‘SIALPH =%y F5e2%

1 2Xe®X ="40124332Xe"F =%9E12.3)

CONTINUE
F = F*xD/3.90

COMPUTE CORRECTION FACTOR FOR CLLIPTICAL ORBIT
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R = 1.000 + 0.017%C0S(6.2832*FLOAT(186 - RJDI/365.)
CSKY = (12.0%6040/3e1416)*F*i/(R*R)
DEBUG CPTION

IF (IBUGe.EGe0) GO TO 3CO0
WRITE (IBe940) FeRaeWeCSKY

940 FORMAT (1H ¢T254F =94E124342Xe"R =T 9F5.30
1 *W =P oF8e392Xe*CSKY ='9E12.3)

300 CONTINUE
RETURN
END

.‘.‘.........'........O......l.....’......0..0......'..l.l....‘.".'..

SUBROUTINE COVER (RUDsAyByPDF yNeCOORDsSEASCNyTEsTIEETAIGAM4CCEAR S
1CCSDeRHO«CLD)

INTEGER RJDSEASON(L)

DIMENSION PDF(1),COORD(1)

DIMENSION RHOC1)sCCBAR(1)¢CCSDU(1)¢BETACL)GAM(L)
COMMON /CLDCOV/ C1

COMMON /LEAP/ LCHECK

COMMON /SEAS/ NSEAS

COMMON /DBUG/ NBUG.DEBUG

COMMON /1I0/ INsISe1IB

COMMON /STORMS/ STORM

DOUBLE PRECISION ICOVERDEBUG(L)
DATA ICOVER /®*COVER®Y/

DATA ON/Z®*ON®/e OFF/YQFF*/

SEASON = ARRAY CONTAINING RELATIVE JULIAN DATES OF THE FIRST DAY
OF EACH SEASON

PDF = DISCRETE PROBABILITY DENSITY FUNCTION OF CLOUD COVER

COORD = COORDINATES OF PDF (I.Ee INTERVALS)

N = NUMBER OF INTERVALS IN PDFe DIMENSION OF POF
AND COORD IS N* (NUMBER OF SEASONS OF CLOUD
COVER PARAMETERS)

ISEAS = CURRENT SEASCN

T8 = TIME BETWEEN STORMS (HOURS)

T = TIME SINCE LAST STORM (HOURS)

CCBAR = MEAN CLOUD COVER

CCsD = STANDARD DEVIATION OF CLOUD COVER

RHO = LAG-1 AUTOCORRELATION COEFFICIENT

BETA = TRANSITION DECAY PARAMETER

GAM = TRANSITION DECAY PARAMETER

NSEAS = NUMBER OF SEASONS PER YELAR

ARV = RANDOM VARIATE FOR THE NOISE TERM IN THE CLCUGC COVER
“0DEL

Cl = PREVIOUS VALUE OF THE AR(1) PROCESS

c2 = CURRENT VALUE OF THE AR(1) PROCESS

P = VALUE OF THE MODULATION FUNCTION
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CLD = CLOUD COVER
DETERMINE THE CURRENT SEASON

IF (NSEAS.GTe1) GO TO 50

ISEAS = 1
GO To 150
CONTINUE

IF (RJD oLTe SEASON(NSEAS+LCHECK=+NSEAS)) GO TO 60
ISEAS = NSEAS
GO0 TO 150

CONTINUE

DO 100 I=1sNSEAS

IF (RJDeGESSEASON(I + LCHECK*NSEAS)) GO TO 100

ISEAS = I-1

GO TO 150

CONTINUE

WRITE (IS+160)

FORMAT (1H19///4°SEASON SELECTION FAILED IN SUBROUTINE COVER®Y)
SToP

CONTINUE

COMPUTE STOCHASTIC COMPONENT
ARV = ARVA(PDFsNoeA+sBeCOORDeISEAS)
C2 = RHOCISEAS)*C1l + SGRT(1.-RHO(ISEAS)*RHC(ISEAS))I*

1 (ARV = CCBAR(ISEAS))
2 + CCBAR(CISEAS)*(le - RHO(ISEAS))

CHECK TO SEE IF A STORM IS GOING ONe. IF NO STORMs COMPUTE THE
MODULATION FUNCTIONe. IF STORM IS ONs SET CLD = 1.0 AND BY=PASS
THE MODULATION FUNCTION.

200

IF (STORM +EQe OFF) GO TO 200
CLD = 1.0
Ga TO 300
CONTINUE

COMPUTE MODULATION FUNCTION

BEXP
GEXP

BETACISEAS) *T
GAMCISEAS)*(TB~T)

LTI

CHECK TO SEE IF BEXP OR GEXP WILL CAUSE A MACHINE

UN

DERFLOW WHEN USED AS THE ARGUMENT IN THE EXF FUNCTICN.

IF (BEXP «GTe 37«0*xAL0GC10e)) BEXP =237.0%AL0G(10.0)
IF (GEXP +GTe 3740%ALOG(10e)) GEXP =37.0%ALCG(10.0)
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P = (10 =EXP(=-BEXP))*(1le0 -EXP(=GEXF))

g

€ COMPUTE AVERAGE CLOUD COVER FOR INTERVAL

c

e
CLD = CCBAR(CISEAS) + (1.0 — CCBARCISEAS))*(1l.0 =P) <+ C2+*P
IF (CLD<GTsle0) CLD = 1.00
IF (CLDeLTe0e0) CLD = 0400

300 CONTINUE
c DEBUG OPTION

"IF (NBUG.EQ.0) GO TO 91C
DO 900 I = 14NBUG
IF (DERUG(I)«NE.ICOVER) GO TO 9S00
WRITE (IB+920) RJUDyISEASsC19C29sARV #PoCLD
920 FORMAT (///1H +*SUBROUTINE COVER®$2Xs*RJD =+1592X e
1 YISEAS =%91442Xe%C1l =%4F7e392Xs%C2 =%9FT7ely
2 YARVA =?eF6e392X9"P ="3F6e342Xe®CLD =%4F3.3)

WRITE (IB¢930) BETACISEAS) ¢GAMUISEAS) ¢TBsT

930 FORMAT (1H ¢"BETAS *4E12.542X9?GAM= ¥4E12.542Xs
$ *TB= "9E12.5e2XeT= "4E12.5)

900 CONTINUE

C
910 CONTINUE
€
c SAVE CURRENT VALUE OF THE STOCHASTIC COMPONENT FOR
& USE IN THE NEXT TIME PERIGD
C
Ci1 = C2
C
RETURN
END
C
C........’.....-‘.......'..‘...I..............O...l'-..-'..........Il..
c
c
FUNCTION ARVA (PDFyNysAsByeCOORDSISEAS)
c
c FUNCTION ARVA SELECTS A RANDOM VARIABLE FROM AN
c ARBITRARY DISCRETE PROBABILITY MASS FUNCTION
c
C PDF = DISCRETE PROBABILITY DENSITY FUNCTION
C N = NUMBER OF INTERVALS
C A = LOWER LIMIT OF U(A+B)
C 8 = UPPER LIMIT OF UCA4B}
C ISEED = SEED FOR RANDU
C COORD = CONTAINS COORDINATES CF THE INTESVALD
C OF PDFe (COORD(I-1)eLToeXeANDeXeLECOORDCIN)
c
c

REAL PDFt1)s PEAKs COORD(1}
COMMON /SEED/ ISEED
COMMON /DBUG/ NBUG+DEBUG
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COMMON /I0/ INeISs1IB
DOUBLE PRECISION IARVASDEBUG(L)
DATA TARVA /*®ARVA®/

FIND THE PEAK OF THE DISTRIBUTION

PEAK = 00

00 100 I = 1leN

IF (PDFCC(ISEAS-1)*N +I1)eGT4PEAK) PEAK = POF((ISEAS=1)*N +I)
100 CONTINUE

SELECT THE FIRST RANDOM NUMBER FROM U(CA+B)

150 IX = ISEED
CALL RAND1 (IXeISEEDsR}
CALL RANDU (IXsISEEDeR)
Ul = A + (B=-A) *» R

FIND WHICH INTERVAL Ul BELONGS TO

00 200 I = 1eN
IF (Ul +GTe. COORD(CISEAS-1)=N + I )) GG T9 200
J= (ISEAS-1)=*N +I
60 TO 300
200 CONTINUE
WRITE (IS,250)

250 FORMAT (1H1ls * SUBROUTINE ARYA == Ul IS GFTATER %,
1*THAN THE MAXIMUM INTERVAL FOR THE DISCRETE PDF*®)
STOP

300 CONTINUE
CALCULATE THE SELECTION CRITERION

F= PDF(J)/PEAK

IX = ISEED

CALL RAND1 (IXeISEEDsUZ2)
CALL RANDU (IX.ISEED.U2)}

DEBUG OPTION

IF (NBUG.EG«0) GO TO 600
Do 5€0 I = 1le+MBUG
IF (DEBUG(I).NE-IARVA) GO TO 500
WRITE (IB+550) PEAKsULlsU2sF
550 FORMAT (///1H «'FUNCTION ARVA 92X s*PEAK =*4FSels
1 UL S%9F6e302X0%U2 =*9F6e392Xs'F ="9F6.3)
500 CONTINUE

600 CONTINUE
ACCEPT OR REJECT Ul
IF (U2.GT«F) GO TOQ 150

ARVA=U1
RETURN
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END
c
c..‘.....'..........-........‘.....‘........O..-I.......‘....'.....‘C.‘.
c
SUBROUTINE MARKOV (N+PDF ¢COORD 9AsB9XBARXDEVyXRHO9XLAGIsK s X)
C
C MARKOV IS A GENERAL ROUTINE TO COMPUTE A STOCHASTIC VARIATE
C GENERATED BY A FIRST ORDER MARKOV PROCESS.
C
DIMENSION PDF(1)¢9COORD(1)eXBAR(1) «XDEV(1)9XRHO(1)
c
c
NSEAS =1
c
GO TO (200+4300) K
c
200 CONTINUE
C
C SECTION 1 -- USE THIS SECTION WHEN ARV IS SELECTED FROHM
C AN ARBITRARY PDF WITH MEAN = XBAR AND
C STANDARD DEVIATION = XDEV
c
¢ DETERMINE THE RANDOM VARIATE
c
ARV = ARVA (PDFoeNyAsByCOORDSNSEAS)
c
X= XBAR(NSEAS) + XRHO(NSEAS)A(XLAG1 - XBARIMNSEAS)) +
3 SART(1e0=-XRHO(NSEAS)*XRHO(NSEAS) I * (ARV=XEAR(NSEAS))
£
<
GO TO 800
300 CONTINUE
c
C SECTION 2 -- USE THIS SECTION WHEN ARV IS FRAM A
c STANDARDIZED NORMAL OISTRIBUTION € N{(Os1) )
c ARV = ARVA (PDFoeNsAsBeCOORDSNSEAS)
CALL NORMAL (ARV)
X= XBARCNSEAS) + XRHOCNSEAS)I*{XLAG1 - XBARINSEAS)) +
$ SART(1.0-XRHO(NSEAS)*XRHO(NSEAS) Y *# (ARV*XDEV(NSEAS))
C
c

200 CONTINUE

XLAG1 COULD BE SET EGUAL TO X AT THIS POINT QR CHECKED FO¥
NEGATIVE NUMBERS. HOWEVER THE NATURE OF THESE CHECKS CEPENDS
ON THE VARIATE BEING GENERATED. THEREFOREs THESE CHECKS ARE
MADE IN THE CALLING ROUTINE WHERE THE IDENTITY OF THE VARTATE
IS KNOWN ALONG WITH THE PECULIARITIES ASSOCIATED WITH ITe.

OMOOO0OOQO0O0

IDEBUG = 0

IF (IDEBUG «EQ.0) RETURN

WRITE (54100) XBAR(NSEAS) ¢XDEV(NSEAS) ¢XRHO(NSEAS) 9 ARV eXLAGLeX
100 FORMAT (/1Xe6(E11e44s1X)) :
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RETURN
END
c
c...’.'.......'..'.....-'..‘..D.O.-.'.................."........-‘..C.
e
SUBROUTINE LIMITS (DTSLsRsSeTOsRHO9T12eSIG4A4T23)
C
c FIND LIMITS FOR TEMPERATURE INTEGRATION
C
c
T0 = - DTSL
T23 = 23.00 = DTSL
IF (DTSLeLTe0.0) GO TO 50
o ;
C FIND LIMITS OF INTEGRATION WHEN OBSERVER IS
C WEST OF THE STANDARD MERIDIAN
c
c FOR SUNRISE
C
RHO = AINT(R+1.0) - DTSL
IF (RHG oLTe R) RHO = RHO + 1
C
c FOR SUNSET
c
SIGMA = AINT(S+1) - DTSL
IF (SIGMA oLTe S) SIGMA = SIGMA + 1
C
C FOR LOCAL NOON
<
T12 = 13.0 = DTSL
c
GO TO 75
c
50 CONTINUE
c
c FIND LIMITS OF INTEGRATION WHEMN O0BSERVER
c 1S EAST OF THE STANDARD MERIDIAM
c
RHO = AINT(R) = DTSL
IF (RHO «LTe R) RHO = RHO + 1
r
SIGMA = AINT(S) = DTSL
IF (SIGMA .LT. S) SIGMA = SIGMA + 1
c
Ti2 = 12.0 = DTSL
c
75 CONTINUE
C
RETURN
END
c

r.:...-..‘.‘.".....‘........‘..‘...I.......'.‘-‘I....I..........l.....‘.'
~

g :
SUBROUTINE TEMPK (DELTAsPHIsBe TPRIMEy KDy Kls K29 K39 Kée K5y K&I
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Cc
C SUBROUTINE TEMPK COMPUTES THE COEFFICIENTS
Cc FOR THE TEMPERATURE EQUATION
c
Cc
G
c DELTA = DECLINATICN OF SUN IN RADIANS
c PHI = LATITUDE IN RADIANS
c B = VECTOR OF REGRESSION COEFFICIENTS
E TPRIME = YESTERDAY'S TEMPERATURE AT 11 PHM
C K3-Ké = COEFFICIENTS IN TEMPERATURE EGUATION
c Bo-Bs = FEQUIVALENCED VARIABLES WITH B VECTOR ELEMENTS
Cc P = CONSTANT = 2=PI/24
C B2P2 = INTERMEDIATE VARIABLE USED FREQUENTLY
Cc
C
C
REAL KOgyK1eK2eK3sKAeKSeKE
DIMENSION B(1)
C
BO = B(1)
Bl = B(2)
B2 = B(3)
B3 = B(4)
C
P = 3.14159/12.0
B2PZ = B1#B1 + P=xP
€
KO = TPRIME
C
K1 = BO/B1
£
K2 = B2*SINC(DELTA)X*SIN(PHI)/B1
~
K3 = B1*B2+*COS(DELTA}Y*COS(PHI)/B2PE
E
K4 = P*B2+«COS(DELTAY*COS(PHI)/B2P2
54
K5 - P*P*B3*COS(DELTA)*COS(PHI)/B2P2
C
Ké = PxB1+*B3*COS(DELTA)I~COS(PHI)/FR2P2
~
RETURN
END
€
C
C‘....."‘.......‘......'...'...'......‘.......'.....‘...-‘.......‘...-.
c
SUBRROUTINE TEMPSN ( STe DTSLe ReSeBo KOeKlaK2eK3eKboeKSeKb s
% CLDe KBARs GTO4s WSPs WDRs THPLAGs THATe T )
c
£

INTEGER IDBUG
DOUBLE PRECISION DEBUG(1)s DTEMPS
REAL KOgK1eK23K39K49K50KE
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REAL IO09I19I124I3+149I5+I69I79 KBAR

c
DIMENSION B(1)
c
COMMON /INTEG/ ID0eIlleI2913e149I5+I6¢17
COMMON /10/ IREADs IWRITEs IWBUG
COMMON /DBUG/ NBUGs DEBUG
COMMON /SWITCH/ SWICH1s SWICH2
e
DATA DTEMPS / YTEMPSN * [/
C
c
C STATEMENT FUNCTIONS FOR INTEGRALS I2 AND I3
C
C
FUNC1(A4B) = K2*(EXP(B1*A) - EXP(B1%B))
FUNC2CA) = EXP(B1*#A)*(K3*COS(PxA)Y + K&*TIN(PxA))
FUNC3(B) = EXP(B1*RB)*(K62SIN(P*B) = KS5*COS(P*B))
E
C
C
C
C SET DEBUG FLAG
C
IDBUG = 1
£
Cc
C
c SET SWITCHES THAT DETERMINE W&HICH PREDICTORXES ARE USED
C .
SWICHL = 1
SWICHZ2 = D
C
C
Bl = B(2)
B4 = B(5)
BS = B(s)
Be = B(T)
B7 = B(8)
C
€

£8000 WRITE (S,2000) (B(J)sd=14s8)
C9000 FORMAT (1HOs*TEMPS B VECTOR®e5Xe 4(E125¢5X)/T2044(E124505X))

€

IF ¢ SWICH1 +EQe 0 ) KBAR = 1.000000
c
c

P = 3.14159/12.00000

C
c
C CONVERT STANDARD TIME TO LOCAL TIME
€

T = TAUCST)I* 1240/314159 - 12.0

g]



OO0 00

OO OOoOoO0nn

o0

sNeER]

OO0

10

40

50

IF
IF
IF
IF
CON

- 342

ST oLTe 025 «ANDe T oLTe 00
ST e6Te22e5 eANDe T oGTe 24
T eLTe 00 ) T =T + 24400

( TeGTe 24400 3 T = T - 2400
TINUE

o~ P N

) GO T
) GO T

B
B

Q
0

IN ADDITION TO SUNRISE AND SUNSET DETER#MINT THE LIMITS
OF THE RANGES OF THE TEMPERATURE EQUATIQNS

AND I7 ARE THE SAME

T0 = -DTSL
T12 = 120 - OTSL
T23 = 23.0 - DTSL
TP = T0 = 1.0
IFCIDRUG.ER.0) WRITE (IWRITEs10) TO eReT12¢3¢T234TF
FORMAT (1H 9T40+6(2XeE106337)
THE FORM OF INTEGRALS Ils I4e ISe I6e
FOR ALL TIMES OF THE DAY. I2 AND I3 WILL VARY 1IN
FORM DEPENDING ON THE TIME OF DAY.
COMPUTE Ile I4s I5e I6s I7
I1 = K1*#CEXP(B1*T) = EXP(B1*TP))
IF ( SWICH1 +EGe 0 ¥ GO TO 40
PP = (1.0-EXP(~81))*EXP(B1*T)/B1
AB = 1e579E=8%(1e0040e17*CLD**2,)*x(TMPLAG*4E0e)**00
14 = B4xGE*PP + 14
CONTINUE
IF ( SUWICHZ JEGe § ) 50 TO 2D
I5 = B5xGTO0xPP + IS
CONTINUE
16 = B6*WSP*PP + 16
17 = B7»WDR*PP + 17

CALCULATE SUBTOTAL
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SUBTOT = I1 + I4 + IS5 + I6 + I7

C
c
c
IF ¢ T «GTe« R ) GO TO 100
C
C
Cexskansxs RANGE 1 -- AFTER MIDNIGHT AND BEFORE SUNRISE
c .
c
c
GTT = SuBTOT
c
GO TO 900
c
c .
100 IF ¢ T «GTe R + 1.00 ) GO TO 200
c
c
Ce*xx+xxx RANGE 2 --FIRST HOUR OR FRACTION AFTER SUNRISE
c
c
€
c
12 = FUNC1(TeR) = FUNC2(T) + FUNC2(R)
12 = I2+KBAR
€
I3 = FUNC3(T) - FUNC3(R)
I3 = KBARXI3
c
GTT = I2 + I3 + SUBTOT
4
GO TO 900
C
c
C ;
200 IF( T «GTe T12 ) GO TO 250
c
c
Craaxxxrxx® RANGE 3 -- AFTER SUNRISE AND BEFORE NOON
c
31 = FUNC1(T+T-1.0)
@2 = FUNC2(T)
Q@3 = FUNC2(T-1.0)
c
TI2 = FUNC1(TeT=1.0) = FUNC2(T) + FUNC2(T=1.0)
12 = TI2*KBAR + 12
c
IF(IDBUG.EQ0)WRITE(IWBUGyI21)KBARy 12
991 FORMAT (2Xs *KBAR %4 2(E124543X))
c
TI3 = FUNC3(T) = FUNC3I(T=1e0)
13 = TI3*KBAR + I3
C
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GTT = 12 + I3 + SUBTOT

c
G0 TQ 900
&
C
c
250 IF ( T «GTe T12 + 1.0 ) GO TO 300
C
C
C
Cxasxvxxsxwk RANGE 4 =-- FIRST HOUR AFTER LOCAL NOON
C
TI2 = FUNC1¢(TeT=140) = FUNC2(T) + FUNC2(T-1.0)
I2 = TI2*KBAR + 12
C
TI3 = FUNC3(1240) = FUNC3(T-1.0)
I3 = TI3*KBAR + I3
C
GTT = I2 + 13 + SUBTOT
GO TO 900
Cc
300 IF ¢ T «GTe S ) GO TO 400
o
C
Caxewnxexx RANGE 5 == AFTER LOCAL NOGN BUT BEFORE SUNSET
7
E
TI2 = FUNC1(TeT=1e0) = FUNC2(T) + FUNC2(T=1.8)
12 = TI2*KBAR + 12
c
C
GTT = 12 + I3 + SUBTOT
C
G0 TO 90C0
c
54
£
400 IF (T «GTe S+140 ) GO TO 500
c
Cc
Crrxx®xaxx* RANGE & == FIRST HOUR AFTER SUNSET
P
Cc
TI2 = FUNC1(SeT=1e0) = FUNCZ2(S) + FUNC2(T-1.0)
I2 = TI2*KBAR + 12
C
C
GTT = 12 + I3 + SUBTOT
C
GO TO 300
C
C
C

500 CONTINUE
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c
c
Crxxxaxxx+ RANGE 7 =--— AFTER SUNSET
C
C
C NOTE: 12 DCES NOT CHANGE WHEN T «GTe S
c I3 DOES NOT CHANGE WHEN T «GT. 12.0
C THUS USE THE PREVIOUSLY COMPUTED VALUES FOR I2 AND 13
c THAT HAVE BEEN STORED IN THE COMMON /INTEG/
C
C
6GTYT = I2 + I3 + SUBTOT
c
c
c
300 CONTINUE
E
c NOW THAT THE FUNCTION GTT HAS BEEN EVALUATED,
c COMPUTE THE TEMPERATURE AT TIME Te.
g
c
IF(IDBUG.EGeO)WRITE(S59990) GTTalleI2¢I3eI4+I5s16917
330 FORMAT € 2Xy YGTT *48(E12.5+3X))
c
c
THAT = KO*EXP(=B1*(T=TP}) + GTT+EXP(=81+T)
c
c

C8010 WRITE €549010) THATeKOeBlsTeTP+GTT
C9010 FORMAT (1HOs ®TEMPSN®y 6(E12e5¢35X))
c

c
r

~

C**l‘***i’*****ii***tti**************iii****i*i***i*i’kt*****f*t****t***i*

RETURN
5539 CONTINUE

i*i*i**'kitii**t**ttti*ii*t*i*i***************i***************tf*****i*

DEBUG IMNFORMATION FOR TEMPSN

OOMOON

WRITE (546000)
6000 FORMAT (1H1/2(1H+9100(1H }/)s1H*a25(4H**2%x})

¥RITE (5,6005)
6005 FORMAT (1H +10(4H*xx%)4T444*DE3UG TEMPSN®sT61910C4H*%xx%)//)

WRITE (546010) Te TPs Rs S
6010 FORMAT (1H o*TIME PARAMETERS e 7Xe1HT 912X 2HTP 13X e1HR e
$ 13Xe1lHS/15Xe4(3X9F1llab))

WRITE (S5+£020)



- 346 -

6020 FORMAT (//1H 97Xse®KO0®el12Xe"K1®s12Xe " K2%912Xs?K3%e12Xs
$ PK4?312Xe'K5 912X *KE")
c .
WRITE (5¢6030)K0sK1gK2eK39K4sKSeKE
£030 FORMAT (1H #8(3XeE11.4))

WRITE (5+6040)
6040 FORMAT (//791H 97Xe2HBRO912Xs2HB1912Xe2HB2912X92HB3912X+2HB4
$ 12X92HB5¢12Xe2HBG 912X 92HBT)

WRITE (546030) (B(M)sM=1+8)

WRITE (56035)
6035 FORMAT (//1H 96X e3HCLD 910X o 6HTHMPLAG ¢ 93X 3HWSP 512X ¢ 3HWDR)
WRITE (546030) CLDe TMPLAGy WSPe WDR
C
WRITE (5+6050)
6050 FORMAT (//1H s EXe3HGTTe12X e 2HI1912X92HI2912Xe2HIZg12Xe2HIG
3 12Xs2HIS5¢12Xe2HI6+12X s 2HIT)
C
WRITE (595030) GTTyI19I2¢I3eI4+I5416417
WRITE (546060}
6060 FORMAT (//71H oS5Xe4HTIMES11IXe4HTEMP)
C
WRITE (5¢6030) TeTHAT
c
WRITE (546070}
6070 FORMAT (//71H +25(4H#%%%x))

o0 0

C******t******t*ii*********i***i*i***********i‘*******it*tt***ti‘*‘*tt****'
C**i*ii**********ii****i‘**i**i****iﬁ*******t*t***i* ' TEXEEEEZERER R B S S E S SR

C
Cc
RETURN
END
C
Coesoosassosssecsstsessisss st sasettssesssstesssssrsnsnscssosnsccosncsssocasns
C
SUBROUTINE LONGWV (TF14TF2sTDF1eTOF24CLD1+CLDZ2sLY)
C
(o} COMPUTE LONGWAVE RADIATION
C
c TCeesse TEMPERATURE IN DEGREES CELSIUS
C LdeeeeeCOMPUTED LONGWAVE RADIATION
C TDCeee-DEWPOINT TEMPERATURE IN DEG C
C VP ewsee VAPOR PRESSURE IN MILLIBARS
& SVPeeeeSATURATED VAPOR PRESSURE IN MILLIBARS
c
REAL LU
c

COMMON /VAPORP/ VP
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CONVERT DEG F TO DEG C

TDAVE = (TDF1+TDF2)/2.0
TAVE = (TF1+TF2)/2.0

TC = (TAVE = 32.0}*(5.0/9.0)
TDC = (TDAVE = 32.0)*(5.0/9.0)
CONVERT CELSIUS TO KELVIN

TK = TC + 273.16

DEFINE THE VALUE OF THE STEPHEN-BOLTZ®AN COMSTANT

(CAL/(CM**2 > MIN * Kx*4))

S = 0-826E"10

DEFINE THE VALUE OF ATMOSPHERIC EMISSIVITY

CALL VAPOR (TCoTDCyVPySVP)

E = 0e70 + 5.95E-05*VP*EXP(1500s/TK)

COMPUTE LONGWAVE RADIATION

L = ExS*TKx+4,.0

ACCOUNT FOR CLOUDINESS
C = ( 1a0 + 0.17+CLD#**2.0 )

L. = CxLW

COMPUTE TOTAL LONGWAVE FOR ONE HOUR

LW = LWw*60.0

RETURN
END

(IEe 60 MINUTES)

.l.l.‘.....‘..‘......C.l................O..-'l-..I‘........O....l...‘.

SUBROUTINE DEWSIM (ACOEFeDEWLAGeTEMPeCLO9#WDIRSWSFeDOEW)
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DEWSIM USES THE FOLLOWING MODEL TO GENERATE DEWPOINTS

TDCT) = AD + A1*TD(T-1) + A2+TMP + A3+CLD + A4»¥DIR + AS*uSP

DIMENSION ACOEF(1)

GENERATE TODAY®S DEWPOINTS

DEW = ACOEF(1) +ACOEF(2)*DEWLAG +ACOEF(3)*TEMP +
3 ACOEF(4)*CLD + ACOEF(S)*WDIR #+ACOEF(c}*WSP

RETURN
END

c...‘...'.....‘........‘I....II..-.........l....‘l‘.....O...Q.!......I.

c

OoOO0O0O0

aom

Q00

o000

(@]

SUBROUTINE MSTAT (NgAsBeCoeDsEsRAUSUMXXT)

ACCUMULATE RAW SUMS AND RAW SUMS OF SGUARES AND CRGSS PRODUCTS

DIMENSION ACN) ¢BCN) g CUN) ¢ DUIN) o EA(N) ¢ RAUSUMIS) « XXT(595)9X(53)

DO 100 I = 1eN

LOAD DATA INTO WORK ARRAY

X(1) = ACI)
X€(2) = B(I)
X¢3) = C(I)
X(4) = DCI)
X(5) = E(I)

COMPUTE RAW SUMS
DO 200 J = 145
RAWSUM(J) = RAWSUMGJ) + X(J)
DO 200 K = 1ls5
XXT(Ked) = XXT(Ked) + X(KI*xX(J)
200 CONTINUE
100 CONTINUE

RETURN
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END
c
CO..'.--................I......I‘....'.I...&l...'...'.‘.‘......-.l‘l".
c
C
SUBROUTINE FSTAT (IDIMsRAWSUMeXXTeMEANSCOVHAT»CORMAT9NDATA)
C
C
C COMPUTE THE MEAN VECTORe THE COVARTANCE MATRIXs AND THE
G CORRELATION MATRIX
(o
DIMENSION RAWSUMCIDIM)e XXT(IDIMSIDIM)s MEANCIDIM)
DIMENSION COVMAT(IDIMeIDIM)y CORMAT(IDIMsIDIM}
DIMENSION MMT(5,4+5)
REAL MEANSMMT
C
c
c COMPUTE MEANS AND AVERAGE CROSS PRODUCTS
(=

DO 100 I = 1.IDIM
MEAN(I) = RAWSUM(I)/NDATA
DO 100 J = 1.1DIM
XXTCJeI) = XXT(JsID)/NDATA
100 CONTINUE

c
c
c MULTIPLY THE MEAN VECTOR BY ITS TRANSPOSE
c
DO 200 I = 1+IDIM
DO 200 J = 1+1IDIM

MMT(Jel) = MEANCJI*MEANCI)
200 CONTINUE

COMPUTE COVARIANCE MATRIX

aoOnnn

DO 300 I = 1+IDIM
DO 300 J = 14IDIM
COVMAT(JeI) = XXTtJeI) = MMT(Je1)
300 CONTINUE

COMPUTE THE CORRELATION MATRIX

SO O0

DC 400 I = 1e4IDIM
DO 400 J = 1,1I0IM
CORMAT(JeI) = COVMAT(JoI)/SGRTUICOVMAT(JsJI*COVMAT(ININ)
400 CONTINUE

oo

RETURN
END

.O..'...‘......l..'.........."t....II.....'....OD....‘-‘.....--..I.0.
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SUBROUTINE RAWLAG (IDIMeJP eDATA9SUMeSUMSAeSUMIeXBARGXVAReXSKENW
3 NReR)

UPDATE ARRAY FOR AUTOCORRELATION ANALYSIS

IDIMeoeoes DIMINSION OF DATA ARRAY AND MAX LAG

dpoooo.o.PUINTER FOR CURRENT OR LATEST DATUM

DATAeeses DATA ARRAY ( A ®*CIRCULAR® DATA ARRAY )
ReeeseessSUM OF SQUARES AND CROSS-PRODUCT ARRAY

DIMENSION DATACIDIM)e RCIDIM)
COMMON /I0/ INe+ISHIB
BUG = *OFF*
IK = JP
REFERENCE FOR THE EGQUATIONS TO COMPUTE AUTOCORRELATION:
HAANs CHARLES Te$3STATISTICAL METHODS IN HYDROLOGYs

IOWA STATE UNIVERSITY PRESS¢1977s PAGE 228s EQ (11.13)

IF (BUG +EQe YON') WRITE (5+910)
910 FORMAT (* RAWLAGL*")

X = DATACJP)
CALL STAT (XeSUMeSUMSQeSUMIsXBAReXVAR¢XSKLWaNR)
DO 100 K = 1loIDIM
IF (BUG <EQe 'ON') WRITE (543520)
920 FORMAT (* RAWLAGZ2")

IF (BUG «EQe. °*ON* ) WRITE (IBe900) KeJPsIK

REX) = R(X) + DATAC(JPYI*DATA(IX)

IK = IK = 1
IF (IK «LEes 0) IK = IK + IDIM

100 CONTINUE

300 FORMAT (1Xe®K= % 4I242X e JP=veI242Xe*IK="41I2)

RETURN
END
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o
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c

SUBROUTINE AUTOCO (MLAGe RHOs XBARs XVARs NNs TITLE)

DETERMINE THE AURTOCORRELATION FUNCTION. THE MAXIMUM LAG IS MLAG .

REFERENCE FOR THE EQUATIONS TO COMPUTE AUTOCORRELATION 2

HAANe CHARLES Te3STATISTICAL METHODS IN HYDROLCGYs
IOWA STATE UNIVERSITY PRESSe1977s PAGE 228s EG (11413}

MLAGeeeseseMAXTMUM LAG

RHOeossssRAW DATA IN === AUTOCORRELATION OUT
XBAReeeeseMEAN OF CURRENT DATA TYPE

XVARsseee VARIANCE OF CURRENT DATA TYPE
NNeessesese NUMBER OF DATA POINTS IN MONTH

DIMENSION RHO(MLAG)
DIMENSION TITLE(1)
COMMON /I0/ INes ISe 1B

BUG = "OFF® |
IF (BUG oEQe. *ON®) WRITE (IB93500) (TITLE(HM)eM=145)
IF (BUG .EGe *ON') WRITE (IB29910) (RHOCK)+K=1aMLAG) 4 NNsXBAR,
$ XVAR
DO 100 K = 1sMLAG
RHOC(K) = (RHO(K) = NN*XBAR*XBAR)/((NN=1)*XVAR)

100 CONTINUE

IF (BUG oEQe YON®') WRITE (IB99910) (RHO(KI+K=14MLAC)
“RITE (IS.900)
900 FORMAT (1H1+15(5H })

WRITE (ISs310) (TITLE(M)eM=143)
910 FORMAT (1H +15Xs *AUTOCORRELATION FUNCTTON FOR *5A5/)

WRITE (IS9920) (KeK=0411)s(RHO(K) ¢K=1+12)
920 FORMAT (T7Xe®LAG *912I5/6X913(5H-===~ Y/TXe*RHO *4912F5e2/)
WRITE (IS+920) (KeK=12423) ¢ (RHO(KIsK=13924)

3300 FORMAT (1Xe.16A5)
3910 FORMAT (1Xe4(6F1042/)/1Xe?NN= %915e5Xe*XBAT= "4F1042y

3 *XVAR= *4F10e2//)

RETURN
END
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SUBROUTINE MARGAM(N¢PDF9COORD 9A 9B 9XBARsXDEVsXRHO9SKEWeXLAGL ¢ X9 ARV)

GENERATE THE NEXT DATUM OF A FIRST ORDER MARKOV PROCESS WHOSE
VARIATES ARE GAMMA DISTRIBUTED.

Neeesoses NUMBER OF ORDINATES IN POF

PDFeseeesARRAY CONTAINING ELEMENTS OF PROBABILITY DISTRIBUTION
FUNCTION (HISTOGRAM FORM) WHICH IS N(DOesl)e

COORDeees COORDINATES OF PDF

Asesesess LEFT BOUND OF POF

BeesseeeeRIGHT BOUND OF PDF

XBAReoeee PROCESS MEAN

XDEVeoeeoe PROCESS STANDARD DEVIATION

XRHOeeees PROCESS LAG-1 AUTOCORRELATION COEEFICIENT

XLAGleasePREVIOUS VALUE OF PKOCESS

SKEWessesGAMMA DISTRIBUTION SKEW COEFFICIENT

Xesesoseas CURRENT VALUE OF THE PROCESS

REFERENCE: -
HAANs CHARLES Te3STATISTICAL METHODS IN HYDROLCGYs
IOWA STATE UNIVERSITY PRESSs 1977
DIMENSION PDF(1)4CO0ORD(1) ¢XBAR(1) ¢XDEVC1)4XRHO(1) $SKEWCL)
SET NUMBER OF SEASONS TO ONE
NSEAS = 1

EVALUATE RANDOM COMPONENT DISTRIBUTED ACCORDING TO PDF

10 ARV = ARVA (PDFe¢N2A+sBesCOORDWNSEAS?
10 CALL NORMAL (ARV)

TO CONTERACT THE PROBLEM OF SUDDEN SHIFTS IN A GENERATED TIME SERIES
WHOSE VARIATE IS SKEWED AND HAS A HIGH (EG. GREATER THAN .8} LAG-1
AUTOCORRELATION COEFFICIENTe RESTRICT THE USAGE OF THE TAIL OF THE
N(Os1) THAT CAUSES THE PROBLEM.

BY RESTRICTING EXCURSIONS INTO THE OFFENDING TAIL TO ABSOLUTE VALUES
BELOW 2.8y ONLY 0.26 PERCENT OF THE DISTRIBUTION IS RESTRICTED

1« IF THE SKEW 1S NEGATIVEs RESTRICT THE NEGATIVE TAIL OF N(Ds1)
2, IF THFE SKEW IS POSITIVEs RESTRICT THE POSITIVE TAIL OF N(Os1)

IF (ABSCARV) .LEe 2.8) GO TO 40
IF CARV) 20s 40¢ 30

20 IF (SKEW(NSEAS)) 10« 40s 40

30 IF (SKEWC(NSEAS)) 40¢ 40s 10

40 CONTINUE
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C
C -
of
C EVALUATE RANDOM COMPONENT
r~
CSE = (10 =XRHO(NSEAS)*%x3.0)*SKEW(NSEAS)/
$ (1le0 = XRHO(NSEAS)I*x2,0)2x%1,.5
C
E = (2e0/CSE)*(1+0+CSE*ARV/ 60 ~ CSE*CSE/36)**x3.0
$ - 240/CSE
C
C GENERATE THE NEXT VALUE OF THE PROCESS
C
X = XBAR(NSEAS) + XRHO(NSEAS)*(XLAGl - XBAR(NEEAS)) +
% E+*XDEV(NSEAS)*SQRT(1.0=-XRHO(NSEAS)»*XRHO(NSEAS))
&
C
o XLAG1 COULD BE SET EQUAL TO X AT THIS POINT OR CHECKED FOR
c NEGATIVE NUMBERS. HOWEVER THE NATURE OF THESE CHECKS DEPENDS
C ON THE VARIATE BEING GENERATED. THEREFOREs THESE CHECKS ARE
£ MADE IN THE CALLING ROUTINE WHERE THE IDEMTITY OF THE VARIATE
c IS KNOWN ALONG WITH THE PECULIARITIES ASSGCIATED WITH IT.
c
IDEBUG = 0
1IF (IDEBUG <EQe0) RETURN
WRITE (5¢100) XBAR(NSEAS) 9XDEV(NSEAS) ¢XRHOCNSEAS) s ARV XLAGL#X
3 s SKEWLCSESE
100 FORMAT (/1XeH6(ElledselX))
RETURN
END
C
C....-....‘...'.......-‘.....-.'..........'....'.............‘.'...‘.‘.
C

SUBROUTINE PUNCH (IPUNCHe RAINMg VPes WSPMe SWRae Lus TEMPH)

C
C CONVERT THE DATA GENERATED BY THE CSCS MODEL TO DATA WITH UNITS
€ COMPATABLE WITH MILLY®S LAND SURFACE MODEL.

TEMPM eee TEMPERATURE IN DEG C

c

Chah kR A AR A AR AR RN A AR AR AR AR R AR AN A AR AR AR AN b Ak ARk a ok F kA A d A AR A AT Ak a Tk rhast
Crhkdan INPUT VARIABLES e 2 LR 2R 2222222 RS2 R R R A2 2 R R A2 2 0 2 k8 b b
ChhhkkAkdhhrr kb kA kAN R R A A A A AR AN RN AR TR AN kA A A Ak Ak bk kd A A A Ak L rhd R
.

C IPUNCH eee UNIT NUMBER FOR OUTPUT DATA FILE

C RAINM <ae PRECIPITATION IN MM/HR

c VP ess VAPOR PRESSURE IN MILLIBARS

C WSPH eee WIND SPEED IN M/SEC

C  SWR ees SOLAR RADIATION IN LANGLEYS/HR

C LW ese LONGWAVE RADIATION IN LANGLEYS/HR

c

c

Chadmdhkdhbhr Ak bkt khh bk Akt kAN kk ok r kA kb kb ko kdrk kA A Ak Xk kb kb darddd
Chrxhak QUTPUT VARIABLES gtk A KA AN A A A Rk AR A A A A AR R T AR AR RN AR A A A A AR AT A Ak &
Camh kA kA kR AR R RN AR AN R R AR R RN AN KA AR AR AN A AR AR AR ATk h kA bk kb ek Ak ok
C :

C PRECIP «ee PRECIPITATION IN CM/SEC
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RHOVA eee WATER VAPOR DENSITY IN GRAMS/CM##*3

c
C UA ess WIND SPEED IN CM/SEC
C RADS eee SHORTWAVE RADIATION IN LANGLEY/SEC
C RADLD ees LONGWAVE RADIATION IN LANGLEY/SEC
C TEMPM eee TEMPERATURE IN DEG C
€
C*i*i*it*****t***i********ti********i********i*********t***i*****i*t***i
C .
REAL LW
c
C
Cxxx+*x PRECIPITATION CONVERSION
45 - CM/SEC = (MM/HR)*(CM/10MM)#* (HR/36005EC)
c
PRECIP = RAINM/36000.00
£
c
Cx#xx%x VAPOR DENSITY CONVERSIOM
C
RHOVA = (0e622/2.876E+06) * VP / (273.16 + TEMPM)
g
c
C
Cxx*xx+ WIND SPEED CONVERSION
c CM/SEC = (M/SEC)*(100CM/M)
€
UA = WSPM=+100.00
C
C
Crxxxx RADIATION CONVERSION
C LANGLEY/SEC = (LANGLEY/HR)*(HR/36030.)
c
RADS = SWR/3600.
RADLD = LW/3600.
C
c

Cx*x%xx DATA OQUTPUT SECTION

-~

c
C WRITE (IPUNCH+900 ) PRECIPs RHOVAs UAy RADSe RADLDs TEMPHM
WRITE C(IPUNCH990G) RAINMs VPs WSPis SuWRe LWy TEMPM
900 FORMAT (6E10e32)
C

Cﬁ*******i*i***ﬂ*i!if***i**l!i*******i************#***t***i*****t**ii***

c

RETURN

END
C
C.-oooo-.t.ootoooo.o.o.cotnao..o-ooa--ooo-oon-.....-0'.uono.-o.Q-otctoo
c

SUBROUTINE PLOT (IMeIDsIHaNMAXeTEMP s DEWeSHE9WRL9CLDaRAIN,

% WSPsWDIReSTORMsIPLeTHTE)
€
C DATA PLOTTING SUBROUTINC
c
C IMeeeoees CURRENT MONTH
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IDesssees CURRENT DAY
IHeesssea CURRENT HOUR
NMAXeoeee MAXIMUM NUMBER OF LINES BEFORE NEW TITLE ANO HEADING
TEMPeeees TEMPERATURE
DEWeeese e DEWPOINT TEMPERATURE
SWReoeeoees SHORT WAVE RADIATION
WRLeeesoeasLONG WAVE RADIATION
CLDeeceseasCLOUD COVER
RAINeeseses RAINFALL
WSPeeesssWIND SPEED
WDIReewsssWIND DIRECTION
IPLesesesFLAG FOR WHICH COMBINATION OF DATA IS PLOTTED
IPL 1 TEMPe DEWs SWRe WRLe CLDe AND RAIN PLCTTED
IPL 2 SWRe WRLy CLDs RAIN PLOTTED
IPL 3 WSPy WDIR PLOTTED
STORMeoeesON/OFF FLAG TO DETERMINE IF IT IS RAINING
TBeoseases BEGINNING OF TEMPERATURE RANGE FOR ORDINATE SCALE
TEeeoseesLND OF TEMPERATURE RAND FOR ORDINATE SCALE

Hwumn

OOOO0OOMNOONONOOONOOO0O0000

DIMENSION SYMBOL(135)
INTEGER CAL(12)
INTEGER PPTEMPs PPDEWe PPOFFs PPSWRs PPLWRs PPCLD

COMMON /LINES/ NLINES
COMMON /10/ INgISHIB
DATA CAL /31428¢31930423193043131 39931150§31/

[N

IC = 5

SET UP PAGE HEADINGS

OO on

IF (NLINES «GTe 0) GO TO 200

)

WRITE (IC.870)
870 FORMAT(1H19110C1H )/1H+ »110¢C1H ))

GO TO (100¢1204140) IPL
100 CONTINUE

CALL ROUND (TESITE)
CALL ROUND (TB.ITB)

***i‘ii***tt*‘l***t****i*******ttt**i****!i**i**********i** ITEEEE SRR L & & & &

HEADINGS FOR PLOTTING & DATA POINTS

e e NeNe N ey

WRITE (ICs880)
880 FORMAT (1H +112¢1H:))
WRITE (1Cs881)
881 FORMAT (1H »35Xs® CONSTRAINED STOCHASTIC CLIMATE SIMULATION®,
$ _ *  (CSCS)  *98X)
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WRITE (IC+882)
882 FORMAT (1H #112C1HZI}/)
WRITE (ICs501) :
301 FORMAT (1H #T15¢*HOURLY TEMPERATURES (DEG C)'y T71le *RADIATION *e
3 *(LANGLY/HOUR) "y T10S5+*CLOUD (*)*)
WRITE (ICe902)
902 FORMAT (1H ¢T184%(T = TEMPs D = DEW PT)"4T68¢*(S = SHORT WAVES *

$ ofL = LONG WAVE)®*4T104s ##*RAIN*#%")
INCR = 10
WRITE CIC+903) (I+I=ITByITESsINCR)s (I5I=20480420)
903 FORMAT (1H »T6951109T6094110eT1034%0 o5 1)
WRITE (ICs904)
904 FORMAT (1H 9"MM/DD:HRe®9F(SH====4)g¥===¢¥38(5H====4)s
$ 4Hem=eg2(5H====2))
c
NLINES = NLINES + 8
c
GO TO 200
C
C*ii*****i**********ti******t*titt*****i*ftti#****i********t*********t**
C
c

120 CONTINUE

WRITE HEADINGS FOR 4 VARIABLE PLOT

Moo

WRITE (IC.890)

890 FORMAT (1H +63(1HZ))

900 FORMAT (1H +8Xe? CONCEPTUAL STOCHASTIC CLIMATE SIMULATION®
$ 2* (CSCS)Y *.8X)
WRITE (ICe300)
WRITE (IC,891)

891 FORMAT (1H ¢63(1HI)}/)
WRITE (ICs3910)

510 FORMAT (1H oT18s*RADIATION (LANGLY/HOURD}*s T55+°CLOUD (*)*2
WRITE (ICs911)

911 FORMAT(1H ¢T15¢%(S = SHORTWAVEs L = LONGUAVE) "+T34y

L txkx RAIN *x%)
WRITE (ICe912) (I+41=104+70+20)
912 FORMAT (1H ¢T694110+T549%0 D 1")
WRITE (IC+213)
913 FORMAT (1H s'HH/DD:HR.'gB(SH-‘--+)s@H-——.yQ(SH—-——+1)
c
NLINES = NLINES + 8
c
GO TO 200
c
C**ii*t**t*****t**iiit****i**iiit***tit****it**t****i*i**i***#t*t*t**i**
C

140 CONTINUE
c
C RESERVED FOR HEADINGS FOR WIND AND WIND DIRECTION
ez
C
c

*i*******‘ii**i********l‘***ii**i******i!i*k*t******i**'i**ii**i*****i*i*
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200

CONTINUE

DETERMINE PLOTTING POSITIONS

INITIALIZE

PPOFF

1
IRMIN 1

60 TO (210+2209230) IPL

DETERMINE PLOTTING POSITIONS

210

TT = TEMP

CALL ROUND (TT<IT)
DD = DEW

CALL ROUND (DOD.IDW)

ADD PLOTTING POSITION OFFSET

FIRSTe

ACCOUNT FOR THE OFFSET FROM THE LEFT SIDE OF THL GRAPH TO TSe.

TB1 = T8 .
CALL ROUND (TB1ls17B1)

ITBO = ITB1L - 5

ADD PLOTTING POSITION OFFSET

220

PPTEMP
PPDEW
PPOFF

IT - ITBO
I0W - ITBO
49 + PPOFF

LI LI 1

IRMIN = PFOFF

IF (PPTEMP GTe PPOFF) PPTEM
IF (PPDEW +GT« PPOFF) PPOEW

CONTINUE

SW = SWR/Z2.0
CALL ROUND (SWeISUW)
WL = WRL/2.0
CALL ROUND (WLeIWL)

PPSUR
PPLUR
PPOFF

IS + PPOFF
I4L + PPOFF
44 + PPOFF

oo

IF (PPSWR «GT« PPOFF) PPSUR
IF (PPLWR «GTe PPOFF) PPLWR

p

357 =

THE PLOTTING POINT OFFSET

CONVERT TB TO UNITS OF 2 DEGREES

PPOFF
PPOFF

PPOFF
PPOFF
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c _
CLDY = CLD*10.
CALL ROUND (CLDY4ICLD)
c
IF CICLD «LTe 0) ICLD = 0
IF C(ICLD «GT. 10) ICLD = 10
c
PPCLD = ICLD + PPOFF
PPOFF = PPOFF + 10
c
IF (PPCLD «GTe PPOFF) PPCLD = PPOFF
NPMAX = PPOFF
GO TO 250
e
C

C*t*****i*i*‘ii***ti***t*****i**t****** T T PR 222t 22 222 R 2 R A 8 B B BB 0 |

C
C
230 CONTINUE

RESERVED FOR SETTING PLOTTING POSITIONS FOR WIND AND WIND DIRECTION

sNeNe

250 CONTIMUE

****t*#*ii*i*iit**i*ii********i*iii*******t*****i*i****** 2RSS SRS SRS

SET UP SYMBOL ARRAY

AN OO

DO 300 I = 10135
SYMBOL(I) = ¢ ¢
IF (IH «NEs 23) GO TO 300
IF (NLINES GEe NMAX=1) GO TO 30C
SYMBOL(I) = *_°¥
300 CONTINUE

GO TO (305+320.600) IPL

305 CONTINUE
GO TO 315
IF (IDW «LTe 10) GO TO 315
DO 310 I = 10:IDWs10
SYMBOL(I) = vt°*

310 CONTINUE

315 CONTINUE

DO 330 I = PPDEWPPTEMP
SYMBOL(I) = ®-¢
330 CONTINUE

[

SYMBOL(PPDEW) = *0°*
SYMBOL(PPTEMP)= *T°*
320 CONTINUE
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DO 360 I = IRMINGPPSWR
SYMBOL(I) = *7°
360 CONTINUE

SYMBOL(PPSWR) = *5¢

SYMBOL(PPLWR) = *L*
c

SYMBOL (NPMAX) = *I°*

SYMBOL(NPMAX=10) = *I°?
SYMBOL(PPCLD) = ®x°*
SYMBOL (1) = e
SYMBOL (NPMAX-54) = *I°*

C*i’i‘*i**i***i*t***l‘***t***it*tt***t***t*i’t***t***it***t***i*i’t*it*ti***t

IF (STORM <EQe *OFF*) GO TO 370
NPMAX = NPMAX - 10
c
C PLOY DATA IF STORM IS *ON®
c
60 TO (4004410) IPL
400 WRITE (IC9950) IMeIDsIHe(SYMBOL(I)eTI=1sNPMAX) +RAIN
950 FORMAT (1H 9I2s%/%9I129 %29 T29F4Ale A a¥gFbelplXe?*xt)
GO TO 500
410 WRITE (IC9960) IMeIDsIHe(SYMBOLCI)eI=1oNPMAX) 4RATIN

960 FORMAT (1H sI2e%/%9129% %, I2945A1 0% *%x®yFaalelXe®*x")
GO TO 500 :

]

370 CONTINUE

WRITE (IC9970) IMeIDsIHe(SYMBOL(II9I=14NPMAX)
570 FORMAT (1H «+I29%/%eI2+%2%912+,120A1)

500 CONTINUE
NLINES = NLINES + 1

IF (IDEQeCAL(IM) oANDe IHsEGe23) NLINES = O
IF (NLINES oGE. NMAX) NLINES = 0

3]

IF (NLINES 6T« 0) GO TO &00
GO0 TO (56045701 IPL
560 WRITE (IC+S504)
WRITE (IC3303) (I4I=ITBeITE«INCR)» (1eI=20e80+20)
GO TO 6CO
E70 WRITE (ICs213)
WRITE (ICe912) (I+41=104570+20)
600 CONTINUE
RETURN
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c

OO0 00000000

]

oon

PROGRAM TEMPER

PROGRAM TEMPER IS USED TO ESTIMATE THE REGRESSICN COEFFICIENTS FOR
THE DETERMINISTIC COMPONENT OF THE TEMPERATURE MODEL. THE PROGRAM
IS CURRENTLY SET UP FOR MONTHLY PARAMETER ESTIMATION. IF ANY OTHER
PERIODS ARE TO BE USEDs SUBROUTINE DATE1l wILL HAVE TO BE APMODIFIED
IN ORDER THAT THE DATE COUNTERS ARE UPDATED PRCPERLY.

PROGRAMMER?
DAVID Ce CURTIS
NORTHEAST RIVER FORECAST CENTER
705 BLOOMFIELD AVE
BLOOMFIELDs CT 05002

(203) 244-2520

INTEGER RANGE
INTEGER SEASON(12)

REAL*8 DEBUG(20)
REAL*8 TZONELTZ(4)
REAL KBAROB

DIMENSION XY(8)eXXT(848)

DIMENSION A(3)4B8(3)

DIMENSION TPRIME(25)s THAT(25)

DIMENSION KBAROB(25)s GRTEMP(25), CLOUD(25)
DIMENSION WSPEED(25)s WDIR(25)

DIMENSION ACOEF(8)s BCOEF(8)

COMMON /107 IREADSIWRITE«IWBUGesIPARMs IBCOE

COMMON /DBUG/ NBUGs DEBUG

COMMON /SEAS/ NSEAS

COMMON /ORBIT/ PHIsTHETASeTHETALEPeETeW

COMMON /SUN/ DELTAe DTSLe SReSS

COMMON /JDATES/ JULDATs JULRELe JBEGINe JULENOs JRANGEs NXLPYR
3 ¢JSTART, JSTOP, JRENDe JYEAR

COMMON /DATES/ 1YRs IMOs IDAYs LYRs LMOs LODAY

COMMON /YSTAT/ YSUMe YSUMSQe YMEANe RSQUAR

DATA TZ/8HEASTERN +8HCENTRAL +8HMOUNTAIN +BHPACIFIC /

SET INPUT/OUTPUT UNIT NUMBERS

IREAD = 21
IW4RITE= 5
IWBUG = 23
IPARM = 24
IBCOE = 25
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MOOOO0ONOOOn OO 000

85

C

CALL TRANS

= 362 =-

LATOR PROGRAM FOR INTERACTIVE INPUT

CALL TRTEMP (IREAD)

DCCTMP<DAT
DCCTMP.OUT
DCCTMP.BUG
DCCTMP «PRHM
DCBCOF «DAT

OPEN (UNIT
IF (IWRITE
OPEN (UNIT
CONTINUE

OPEM (UNIT
OPEN (UNIT
OPEN (UNIT

000000000000000000000eeeeces0PENccesssses00000000000000000C0CT

DATA FILE DEFINITIONS

ese INPUT DATA FILE

ese OUTPUT DATA FILE

eee DEBUG DATA FILE

ees OBSERVED UDATA FILE

eee REGRESSION COEFFICIENT OUTPUT FILE

=IREADSsDEVICE="DSK® yACCESS=*SEQIN®4FILE="DCCTMPDAT")
«E3e B5) GO TO 85
=IURITE,DEVICE='DSK';ACCESSZ'SEGOUT'gFILEZ'DCCTﬁP.OUT‘)

=] WBUGyDEVICE=*DSK®*3ACCESS=*SEGQOUTY«FILE=*0CCTMP.BUG")
—IPARMeDEVICE="DSK®yACCESS=YSEQINY¢FILE="DCCTMP PRM¥)
=I3COE+DEVICE="DSK*9ACCESS="SEACUT*«FILE=*0CECOF «DAT*)

CO00G00000000000000000ecesesesesOPENcseeeees00GGOCU000GEO0C0CGODTT

c
c

C INPUT DATA SECTION

C

CXXXXXREAD (IREAD#100) IREADs IXRITEs IWBUG

cx1io00
o

110

C
§000
2489

Mo

120

OO0 N

FORMAT (31

READ (IREA
FORMAT (IS

WRITE (IwR
FORMAT (1H

READ (IREA
FORMAT (2¢(
WRITE (IWR

READ (IREA

)

De110) NBUGs (DEBUGC(I)s I=1NBUG)
25XeT(ABS2X I/ (10X e T(AB92X)))

ITE,S000) NBUG

D PNEBUG=®42XI10)

De120) IDAYSsIMOsIYRGLDAYSLMOALYR
IXel243Xs1241Xs14))
ITE9120) IDAYSIMOeIYRILDAYsLMOsLYR

D9140) C(ACI)sI=193)9tBCI)eI=193)sTZONE
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140 FORMAT (2(3F5045X)sT514A8)

CONVERT DEGREES TO RADIANS

PHI = DMS(A)
THETAL = DHMS(B)

CHECK THE TIME ZONE TO GET THE PRCPER STANDARD MERIDIAN OF

OBSERVER LOCATION

IF (TZONEeNE.TZ(1)) GO TO 200
THETAS = 75.0*2.0%3.14153/360.0
GO TO 300

200 IF (TZONESNETZ(2)) GO TO 210
THETAS = 90e0%2.0%3.1415%/360.
Go TO 300

210 IF (TZONE.NE.T2(¢(3)) GO TO 220
THETAS = 1050#%240%3.14155/360.0
GO TO 300

220 IF (TZONE.NE.TZ(4)) GO TO 230
THETAS = 120.0%2,0%3.14159/360.0
GO TO 300

230 WRITE (IWRITEe«240)
240 FORMAT (1H1le*TIME ZONE REQUESTED IS NOT VALIG®// /)
HRITE (IWRITE«250) TZONES(TZ(IdeI=14s4)

250 FORMAT (1HOoT104*REGUESTED TIME ZONET«TI6eTH*axx%,
1A8¢SH**#*#xx/T109g YAVAILABLE TIME ZONES?eTI6aSH**xak,
OABeSH* A x*2 /T30 eSHr *A 2k g A8 g SH N 2w w2 /T35 9 GHA* AN %y
TAB¢SH* A xkx/T35¢H* At ak g A8 ¢ SHA Ak k)

300 CONTINUE

READ (IREAD«260) EP+EToW
260 FORMAT (16FS5«0/9F5.0)

READ DATA BOUND VALUES
TLBeee TEMPERATURE LOWER BOUND
TUBaee TEMPERATURE UPPER BOUND
WUBe.eeWIND SPEED UPPER BOUND

READ (IREADs260) TLBs TUBs WUB

...b..l.l'.-.'I'..00'.....-...'-.l‘--.l-..t...l.'..
o..—to.....l...-.-o.t---.'-.....-.o-l---t.-t.t--.cl
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INITIALIZE THE ARRAYS USED IN THE REGRESSIGH ALGORITHM

DO 100 I = 148
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XY(I) = 0
po 100 J =1
XXTCJs 1)

00 CONTINUE

0
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I Coe

0.0

YSUM
YsSuMsa
YMEAN

i on
oo o
* ° 8
oao

IRANK = 7

INITIALIZE THE DATE VARIABLES

CALL DATE1
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EVALUATE OBSERVED DATA To DEVELOP COEFFICIENTS FOR THE
TEMPERATURE MODEL.

325 CONTINUE

OoOOOOO0O0O0n

OO0 0O0n

(@]

FOR EACH DAYs 25 OBSERVATIONS OF EACH DATA TYPE ARE USED IN THE
PARAMETER ESTIMATION. THE DATA TIME SEQUENCE ISt

11PMe MIDNIGHTs 1AMy eee s 11AMe HOONe 1PMs ees o 11P¥e.
IN THIS FORMATs THE 11PM OBSERVATION APPEARS TWICEs IN THE 25TH
LOCATION FOR DAY N AND IN THE 1ST LOCATION F2F DAY M o+ 1.

READ C(IPARMy260+END=345) TPRIME
READ (IPARM+260+END=345) CLOUD
READ (IPARM.260sEND=345) WSPEED
READ (IPARMe.2600END=345) WDIR

CHECK INPUT DATA TO MAKE SURE DATA ARE WITHIN
REASONABLE BOUNDSe.
DD 326 LL = 1425
L = LL

IF (TPRIME(L) «GESTLB oAND. TPRIME(L)LE.TUEIGD TC 327
CALL OCHECK ( JULRELs ls TPRIMEs L )

327 IF (CLOUD(L) «GEo0eD0eANDLCLOUD(L) eLES1C0) 63 TO 328

CALL DCHECK ¢ JULRELs 29 CLOUD s L

328 CIF (WSPEED(L)eGEe0e00eANDedSPEED(L) eLE«WUB)} GO TO 329

CALL DCHECK ¢ JULRELs 3+ WSPEEDe L

4 08 ae
Be 08 oy
LT
e 9 se
e B8 s
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329 IF (WDIR(L)eGE«Oe00ANDeWDIR(L)eLE360.00) GO TO
CALL DCHECK ( JULRELs 49+ WDIRS L

326 CONTINUE

ESTIMATE RADIATION ATTENUATION DUE TO CLOUD COVER

DO 330 I = 125
KBAROB(I) = 1le = 0465+CLOUDC(I)#22.
IFCWOIR(I) oGTe 1804) WDIRCII=ABS(WOIR(II=360.)
330 CONTINUE

CALL DATA ANALYSIS ROUTINES

CALL PRMEST (TPRIME+KBAROBeCLOUDSGRTEMPsWSPEEDSWOIRsIRANK .
3 XXTeXY)

UPDATE THE DATE COUNTERS
ENTRY DATE eee FOR YEARLY PARAMETER ESTIMATION
ENTRY DATEMeee FOR MONTHLY PARAMETER ESTIMATICH
————— CALL DATE
CALL DATEM

™M
m
&
A
™
b3
4]
I
m
(o]

CHECK TO SEE IF END OF TEST PERIOD HAS B

IF ¢ JULDAT oLEe JULEND ) GO TO 325

345 CONTINUE

DETERMINE THE *A* COEFFICIENTS

CALL COEF ( IRANKs XXTs XYs ACOEF)

DETERMINE THE *8°* COEFFICIENTS

CALL ATOB (ACOEF «BCOEF)

o8 e 2
aes &8 o8
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sa 80 00
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e 58 be
ae 54 o
*es 20 09
e e Ao
s o0 39
e PR B
se ne en
"y 2o 8
te op RS
e 8a e
a8 a0
" " o
e 8 ah
er 20 BP

LRl
.o

WRITE (IWRITEs600Q)
500 FORMAT_(1H1/|2(1H+9100(1H Y/)s1H «*TEMPERATURE MODEL PARAMETER "o
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3 *ESTIMATION PROGRAM OUTPUT®///)

WRITE (IWRITEe610) (ACOEF(I)YeI=148)
610 FORMAT (1H #T24s *A COEFFICIENTS®//

3 1H 912X92HAD912X92HAL 912X 92HA2912Xe2HAZ/
3 1H 94Xe4(2XsE1245)//
3 1H ¢12Xe2HAG912X92HASe12Xe2HAG912Xs2HAT/
$ 1H ¢4X94(2XsE12e5)/77/7)

c

c

WRITE (IWRITEe620) (BCOEF(I)eI=1¢8)
620 FORMAT (1H #T24e °*B COEFFICIENTS®*//
1H 912X92HB0912X92HB1412X92HB2412Xe2HB3/
1H ¢4Xe4(2XeE1245)//
1H ¢12X92HB4+12X92HBS 912X 92HB6E912Xs2HBT/
1H o4Xea(2XeE12.5)/7/)

[N

WRITE (IBCOE+625) (BCOEF(I)sI=14s2)
625 FORMAT (*BCOEF 0=3 ®44E12.5/°BCOEF 4=7 %94E12.5)

WRITE (IWRITE.630) YMEANs RSGUAR
630 FORMAT (1H o4XsTHYMEAN = 92XeF5e2s 10X

3 10HRSQUARED = 92XeF5.2)
C
£
STOP
END
c
c
c...-......’..............-...‘...‘..........‘-.i....'......l..l...
C
SUBROUTINE TRTEMP (IREAD)
c
c
INTEGER Al(8)
REAL*8 FILE
REAL*8 DEBUG(20)+TZONEs TZ(4)
DIMENSION A(3)3s8(3)+8C(T7)
DIMENSION TPRIME(25)
c
IC = 5
c
c
c
c

WRITE (IC+905)
305 FORMAT (1HOeT10s *IF AN INPUT DATA FILE EXISTSe Y3U CAN DO THE®.
1 * FOLLCWINGZ®"/
2 T15¢ *ACTIONYsT30¢*RESPCONSE®/T15¢%ccecee’eT30s%cscconsa?/
3 T10e "1e TYPE ®9CGLDFILE®**"4T304EXISTING INFUT FILE IS USEDY/
4 T10e *2. TYPE **NEWFILE"®"4T30s *INPUT NEW DATA AS REGUESTED®*//)
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READ (ICe906) FILE
906 FORMAT (2A)

C
C
C
c
1F ( FILE .EQe YOLODFILE® ) RETURN
IF ( FILE oEQe *NEWFILE®* ) GO TO 14
c

WRITE (ICe907) FILE
907 FORMAT (1HOs*INVALID INPUT FILE DESIGNATIONY oT3Det*sx2x® 418,

2 Yexxnxx? /CX o *VALID DESIGNATIONS ARE*",

3 T35¢txax**xOLOFILE *xawa?/

4 T3S YaxxuxxNEWF ILE***x2v//)

SToP
c
€
C
14 CONTINUE

C
C
€ SET UP OUTPUT FILE TO RECIEVE TRAMSLATED INPUT CATA
C
c
CH00000000000000000000cesccsselPENescesese3000003000000000000C0D
p -

OPEN (UNIT=IREADSDEVICE="DSK®4ACCESS=*SEQOUT*»FILE=*DCCTMP<DATY)

C000000000000000000000eeeseeselPENacseeeee3000000G0000GOT00CUEEO

C
C
C
C
c
C
Cc
WRITE (ICe.920)
920 FORMAT (1HO+*INPUT DEBUG INFO = NBUGs ¢(DEBUGCID«I=1¢NEUGI®)
c
C
READ (ICe20) NBUGe ( DEBUG(I)y I = 14NRBRUG )
20 FORMAT ( Ie TAZCTA))
C
C
Cc
JRITE ( IREAD¢25 ) NBUGe ( DEBUG(I)sI=14NEUG)
25 FORMAT ( IS5s SXe T(A8¢2X)/ (10X oT7(ABs2X)))
C
c

WRITE (ICe230)
330 FORMAT (1HOe*INPUT BEGINNING DAYs MONTHe YEAR (4 DIGITS IN Y
3 *YEAR AND ENDING DAYy MONTHe YEAR?®) 3
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READ (ICe30) IDAYeIMOSIYEARWLDAY «LMOWLYEAR
30 FORMAT (61)

C
C
C
WRITE (IREADe¢35) IDAYs IMOse IYEARe LDAYe LMCe LYEAR
35 FORMAT (2(3XeI2+3XeI2e1Xe1I4M0)
c
c
o
C
WRITE (IC+950)
950 FORMAT (1HO+*INPUT STATION LAT-LONG IN DMS AND TIME ZONE OF *
1 *STATION®)
C
C
READ (ICe50) (A(CI)eI=1s3)y (B(IYsI=1eZ)s TZONE
S0 FORMAT ( &Fs A)
Cc
C
C
WRITE (IREAD®55) (ACI)eI=143)y (BCI)eI=1e3)e TZONE
55 FORMAT (2(3F5.2+5X)2T51+A8)
C
c

WRITE (ICs960)
960 FORMAT (1HO+* INPUT EPy ETe N°*)

c
c
READ (ICe60) EPs ETs W
60 FORMAT (3F)
c
c
c
WRITE (IREADs65) EPe ETe W
65 FORMAT ( 3F5.2)
c
c
WRITE (IC,70)
70 FORMAT (1HOs* INPUT DATA CHECK VALUES®*/
$ v TEMP LOWER BOUNDs TEMP UPPER B0UNDs WIND SPEED UPPER BOUND®)
C
READ (ICe60) TLBs TUB, WUB
c

WRITE (IREADsS70) TLBs TUBe WUB
970 FORMAT (3F5.0)

c
CCCCCCCCCCCCCCCCCCCCCCanesenseCLOSEceseeeeCCCCCCCCCCCCCCCCCCCC
C

CLOSE (UNIT=IREADyDEVICE=*DSK*4ACCESS=*SEQQOUT*+FILE="0CCTMP.DAT®)
€
CCCCCCCCCCCCCCCCLCCCClanennseslLOSEaseseeeaCCCCCCLLCLCCLCLCLCCCCLL
L
c

RETURN
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...".......Q..............l..‘..‘........O...COQI.I.........'.I..
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SUBROUTINE DATE1

DATE1l INITIALIZES THE DATE COUNTERS.
JULIAN DATES ARE USEDe

IYR coe
IMO ses
IDAY -e e
LYR cos
LMO ece
LDAY eee
JULDOAT cn e
JBEGINese
JULENDeos
JRANGE e e e
JULREF ee e
JULREL e
JSTART eee

JSTOP wee
JYEAR eee

NXLPYReoo

INITIAL YEAR
INITIAL MONTH
INITIAL DAY
LAST YEAR
LAST MONTH
LAST DAY

CURRENT JULIAN DATE

JULIAN DATE AT BEGINNING GF RUN

JULIAN DATE AT END OF RUN

LENGTH OF RUN

JAN 1 OF INITIAL YEAR

JULIAN DATE RELATIVE TO JAN 1 OF CURRENT YEAR
RELATIVE JULIAN OATE TO BEGIN MONTHLY PARAMETER
ESTIMATION RANGE

RELATIVE JULIAN DATE TO END MONTHLY PARAMETER
ESTIMATION RANGE

YEAR COUNTER

JULIAN OATE OF DEC 31 OF NEXT LEAP YEAR

)
COMMON /DATES/ IYRs IMOs IDAYs LYRe LMOs LDAY
COMMON /JDATES/ JULDATe JULRELe JUBEGINy JULENDs JRANGEs MXLPYP

CoMMON /IO0/

v JSTARTy JSTOPe JRENDs JYEAR e
IREADs IWRITEs IWBUGe IPARMs IBCOE

INTEGER IDBUG

SET DEBUG

IDBuUG = 0

DETERMINE

CALL JULTIAN
CALL JULIAN
CALL JULIAN

FLAG

INITIAL JULIAN DATES

(IM0+IDAYeIYRSJBEGIN?
(LMO+LDAYsLYR«JULEND)
C 1o 1e¢IYR$JULREF)

JULREL_= JBEGIN - JULREF
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JULEND - JBEGIN + 1
JBEGIN = 1

JRANGE
JULDAT

DETERMINE THE NEXT OCCURANCE OF 12/31
(IE. THE 366TH DAY OF THE YEAR

LASTLP = IYR - MODCIYRe+4)

CALL JULIAN (124314LASTLP+NXLPYR)

IF (JULDAT .GEe NXLPYR) NXLPYR = NXLPYR

NOTEese 1461 = 365 + 365 + 365 + 366

THIS SECTION DEFINES VARIABLES NEEDED FO
PARAMETER ESTIMATION

JYEAR = IYR
JSTART = JULREL + 1
CALL JULIAN ( LMOs LDAYs IYRe JDATE )}
JSTOP = JDATE = JULREF + 1
JREND = JSTOP
IF (JYEAR = MOD(JYEAR$4)) 65¢70965

IF (IMOLEQGe2 oANDe IDAY.EQ28) JREND
CONTINUE
ENTRY DATE
THE NEXT SECTION IS USED EACH DAY TO
THE JULIAMN DATE COUNTERS.
JULREL = JULREL + 1
JULBAT = JULDAT + 1

CHECK FOR END OF YEAR

IF (JULREL +LEe 36%) GO TO 100
IF (JULREL «GT7e 386) 60 TO 200

CHECK FOR LEAP YEAR
IF (JULDAT.NESNXLPYR) GO TO 200

YESey THERE ARE 366 DAYS THIS YEAR.
UPDATE NXLPYR TO NEXT LEAP YEAR.

NXLPYR = NXLPYR + 1461

IFC IDBUG oNEe 0 ) GO TO S00

/(LEAP YEAR)
)

+ 1461

R MONTHLY

= JETCP + 1

UPDATE
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50 CONTINUE

RETURN

RESET RELATIVE JULIAN DATE
200 JULREL =1
100 CONTINUE
IF( IDBUG «NEe. 0O ) GO TO 9060
1190 RETURN
ENTRY DATEM

THIS SECTION IS USED EACH DAY TO UPDATE THE JULIAN DATE COUNTERS
IF MONTHLY PARAMETER ESTIMATION IS USEDe.

JULREL
JULDAT

JULREL +
JULDAT +

nH

1
1
IF (JULREL .LE. JREND) GO TO 400

UPDATE THE JULIAN COUNTERS

JULREL JSTART

JYEAR JYEAR + 1

CALL JULIAN (IMO+IDAYSsJYEARsJULDAT)

JREND = JSTOP

IF(JYEAR = MODC(JYEARes4)) 40044104400
410 IF (LMOEQe2 oANDe LDAYSEQe28) JREND = JREND + 1
400 CONTINUE

IF ¢ IDBUG <NEe 0 ) GO TO SOO

RETURN

500 CONTINUE

DEBUG INFORMATION FOR JULIAN DATE CALCULATIONS

WRITE (IWBUG9920) JULDAT4JULRELsJBEGINsJULEND ¢JRANGE #NXLPYR

3 o JSTART+JSTOPsJREND«JYEAR

920 FORMAT (1H "dULDATz'QI1003XQ'JULREL='QI1393X1'JBEGIN='QIIGQEXQ
: 3 /2X9'JULEND='911013XQ'JRANGE='911013XQ'NXLPYR='91139
3 /72X e ?JSTART=v9I1093Xe USTOP =t91109e3X«*JREND =%9I1Ce

$  3Xe*JYEARZ,110)
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C

RETURN
c
C

END
o
C..........-.......-..-’........‘...‘......-...‘...................'
C

SUBROUTINE DATTCIDATESIMOsIDAYSIYR)
c
c CONVERT JULIAN DATE TO CALENDER DATE
G

INTEGER CAL(12+2)

DATA CAL/0+3195999091209151¢1819212¢2432730304933640

1 0031960991121 9152¢18292139244+27493059335 /

I1=(IDATE=-1)/1461

I12=IDATE=(I1*14€61)

1<=12<=1461

OO0

IF(I2.LE-365) GO TO 10
IF(I2.LE«730) GO TC 20
IF(I2.LE«10%5) GC TO 30
13=3
I14=12-1095
GO TO 40

19 I3=0
I4=12
14=12-365
GO TO 40

20 13=1
GO TO 40

30 13=2
14=12=-730

43 1YR=1900+I3+(4xI1}
INDX=1
IF(I3.EQe3)INDX=2
DO 100 I=2.12
IFC(I4.LE«CAL(I«INDX)) GO TO 200

100 CONTINUE

IMo=12

IDAY=T14=-CAL{12+INDX)
RETURN

200 IMO=I-1
IDAY=14-CAL(I=14INDX)
RETURN
END

c
c

C..--.......Q......'.C..t..-.‘..l...‘..O...l...tl..'t..‘.......l‘..
r

(3

SUBROUTINE JULIANC(MO2U0A9YReANS)
INTEGER ANSsCALC12)4DAsYR
DATA CAL /319289319309 51930931931330+31930+31/
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c COMPUTE JULIAN DATE FROM JANe 1ls 1973

ANS=0
I=YR=-1900
ANS=ANS+365*1
CAL(2)=28
IF(MOD(YRe4)eEQal) CAL(2)=29
J=MQG=-1
IF(JesEQeD) GO TO 20
DO 10 I=1.J
ANS=ANS+CAL(]I}

10 CONTINUE

20 CONTINUE

ANS=ANS+DA
RETURN
END
C
C..O.....-............I-.......-"‘......‘..C....‘ll.'..i..‘...'t..
c
FUNCTION DMS(A)
o
C FUNCTION DMS CONVERTS ANGLES EXPRESSED IN
C DEGREESs MINUTES AND SECONDS TO RADIANS
-~
DIMENSION A(3)
REAL MINUTE
c
C
DEGREE = A(1)
MINUTE = A(2)
SECOND = AC(D)
C
DMS = DEGREE*3414159/180e + MINUTE*3414159/180./600
1 + SECOND*3.14159/1804/60./60.
£
RETURN
END
c
c..........‘..........'.-........QI......‘......O‘Q-............'..
Cc
FUNCTION TAUCST)
COMMON /ORBIT/ PHIGTHETASe THETAL+EPsETaW
COMMON /107 IREADs IWRITEe IWBUGs IPARMs IRCOE
COMMON /DBUG/ NBUG<DEBUG
REAL*8 ITAULDEBUG(20)
DATA ITAU /*TAU*/
C
C
C THETAS = LONMGITUDE OF STANDARD MERIDIAN (RADIAMNS)
8 75TH MERIDIAN FOR EASTERN STANDARD TIME
C 90TH MERIDIAN FOR CENTRAL STANDARD TIME
c 105TH MERIDIAN FOGR MOUNTAIN STANDARD TIME
c 120TH MERIDIAN FOR PACIFIC STANDARD TINE
C THETAL = LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)
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LOCAL HOUR ANGLE

STANDARD TIME IN THE TIME ZONE OF THE
OBSERVER IN HOURS COUNTED FROM

MIDNIGHT (EGe 0«00 TO 24400)

+1 FOR EAST LONGITUDEs -1 FOR WEST LONGITUDE
DIFFERENCE BETWEEN TRUE SOLAR TIME

AND MEAN SOLAR TIME (USUALLY NEGLECTED

FOR HEAT TRANSFER COMPUTATIONS)

TAU
ST

EP
ET

FUNCTION SUBROUTINE TAU CONVERTS THE OBSERVERS
STANDARD TIME TO LOCAL HOUR ANGLE IN RADIANS

OBTAIN TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND
OBSERVERS MERIDIAN (HOURS)

OO OO0 O0O000nN0On0n

DTSL = EP*#(THETAS - THETAL)* 12.0/3.14159

COMPUTE OBSERVERS HOUR ANGLE (RADIANS). E = +1 FOR
MORNING AND E = -1 FOR AFTERNOON (T.E. SOLARNGON)

OO0

IF (ST.GTel2. + DTSL =-ET) E
IF (STeLEe1l2. + DTSL =ET) E

-1.0000
+1.0000

0w

TAU = (ST + E#12. = OTSL + ET) * 3.14159/12.0

IF (TAUGT«54283185) TAU = TAU - 6.283185
IF (TAULTe0e0) TAU = TAU + 64283185

DEBUG OPTION

OO0

IF (NBUG.EGeO) GO TO 100
DO 200 I = 1+NBUG

IF (DEBUG(I).NE-ITAU) GO TO 200
WRITE (I1WBUG.250) STePHIsTHETASe THETAL«EPsETeuwoDTELSTAY
250 FORMAT (///7/1H o *FUNCTION TAU®*s 2Xe
1 ST =93F6e392X e 'PHI ='4F6e392Xe*THETAS ="9FEa392Xe*THETAL =°
2 FBe392Xe%EP =%9F6e392X s ET ="4F6e3s2Xe? ="sFHe392Xy
3 *DTSL =9 eF6e392Xe*TAU =?9F6e3)
200 CONTINUE
€
100 CONTINUE
c
RETURN
END
c

C'...‘....................‘.Cl.'.........-.I..-.......'.’.I.'......

~

e

SUBROUTINE PRMEST ( TPRIMEs KBAROBs CLOUDe GRTEMPs WSPEED,
$ WDIRy IRANKse XXTe XY)

c PRMEST IS THE CONTROLLING SUBROUTINE FOR THE PARAMETER ESTIYATI
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FOR THE TEMPERATURE PROJECTION ROUTINE

BASED ON TODAY®S OBSERVED TEMPS.s CLD COVERs ETCe PRMEST
DETERMINES THE PARAMETERS MECESSARY TO PROJECT
TEMPERATURES FOR TOMORROWe

DIMENSION TPRIME(1)e XXT(B8s8)s XY(B)
DIMENSION KBAROB(1)s CLOUD(1)s GRTEMP(1)
DIMENSION WSPEED(1)s WDIRC1)

REAL KBARs KBAROB

INTEGER RANGEs IDBUG

COMMON /SUN/ DELTAs DTSLe SRe SS

COMMON /ORBIT/ PHIe THETASe THETALs EPs ETek

COMMON /JDATES/ JULDATe JULRELs JBEGINe JULENDs JRANGEs NXLPYR
+JSTARTs JSTCPs JRENDe JYEAR

COMMON /DATES/ IYRs IMOs IDAYs LYRs LMOs LDAY

COMMON /107 IREADs IWRITEs IWEBUGe IPARMs IRECOE

SET DEBUG FLAG

IDBUG = 0

COMPUTE THE ANGLE ADJUSTMENT BETWEEN THE
STANDARD MERIDIAN OF THE OBSERVER'S TIME ZONE AND THE
OBSERVER®*S LOCAL MERIDIAN.

DTSL = EP+(THETAS-THETAL)*3.81972

COMPUTE THE DECLINATION OF THE SUN

CALL DECL (JULRELsDELTAs SR¢SS)

DETERMINE THE LIMITS OF INTEGRATION FOR THF TEMPERATURE
GENERATION ALGORITHM

CALL LIMITS (DTSLy SRsSSeTOsRHOeT124SIGMAST23)
IF ( IDBUG <EGe0 ) GO TO 951
WRITE(IWBUGy950)DELTASDTSLeTOsRHO$SReT1293IGMA9SSeT23+PHI
FORMAT (T24°SUBROUTINE PRMEST*/T2+*DELTA="91XeF1Uede

T204*DTSL =%¢1XsF10e49T404*T0 =%y 1XeF10abe
TE09*RHO =%¢1XeF10e49T80s*SH =*telXeF1l0e4/
T2 %712 =%41XeF10e49T20¢*SIGMAT 91X eFiCety
T40s*SS =P e1XyF10e4eTHED4%T23 ="elXeF1llats

T80e*PHI =vy1XeFl0a4)
CONTINUE
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INITIALIZE THE STANDARD TIME COUNTER.
= 0.0
BEGIN LOOP TO ANALYZE TODAY®S TEMPERATURES. COMPUTE
THE SET OF COEFFICIENTS FOR THE TEMPERATURE PRCJECTIONS.

200 I = 2425

TMPLAG = TPRIME(I-1)
KBAR = KBAROB(I)
TGD = GRTEMP(I)
CLD = CLOUD(I)
WSP = WSPEEDC(I)
WDOR = WDIR(I)

COMPUTE THE PREDICTORS X1ls X2s X3 X4e X5¢ X669 X7

CALL X1X2X3 (STeTMPLAGsPHIsDELTA9TO«SRsT12+5SSeT234RH0
SIGMAs CLDs KBARs TGDe WSPs WDRs X1eX2eX39X49X5eX6aXTe
RANGEs T)

IF ¢ IDBUG .EQ« 0 ) GO TO 961
HRITE(IHBUG;?GO)ST,TMPLAG;PHIgXIyX2nX3;X49X5;X61XTQRANGE
FORMAT (T29°%ST="9F5e0s* THPLAG=*9FSele? PHI="oF1Ce4s
¢ X=%4T7(1XseF10s5)e® RANGE="4I1I2)
CONTINUE

DETERMINE THE HOURLY TEMPERATURE CHANGE

Y = TPRIME(I) - TPRIMECtI~-1)

UPDATE REGRESSION MATRIX AND VECTOR

CALL REGRES (YoeX1eX2eX339XG9X5eX69XTeXYe IRANKeXXT)
G2 T0 830
IF(STeLTe22e5) GO TO 830

ARITE(54850) JULDAT g CCXXTCIZoIY)gIY=19IRANK)+IZ=19IRANK)

FORMATC(1XeTHJULDAT= 91X eI7/T(1XsT7(E11e4)/))
CONTINUE
CONTINUE

IF ¢ IDBUG +ERQ. 0 ) GO TO 962
WRITE (IWBUG»965) STeToeYsTPRIME(I) « TPRIMECI=1)9X1eX29X3
s X492 X5eX6eX7
FORHAT('STZ"F400'2Xv'T='1F7.392X1'Y2'1F7.30' TPI=®yFTelyXys
'TPII="F7-312X1'X1=';F7-302X1'X2='§E12-5!2Xg'x3=‘9512-51
le'x4='157¢2’2X1'Xﬁz'yﬁfoEQZXQ'Xb='9[702'2X9'X7:';F?.E)
CONTINUE
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IF ( IDBUG «EGe 0 ) GO TO 916
DEBUG STATEMENTSeeeeCHECK MATRIX OPERATION RESULTS
DO 910 II = 1,IRANK
WRITE (IWBUG9900) (XXT(ITeJ)eJ=1+IRANK)
FORMAT (1X/* XXT="91Xe6(F124593IX)})
WRITE (IWBUGs 903> (XY(J)eJ=1sIRANK)
FORMAT (1X/® XY="elXe6(F1l2e593X))

CONTINUE

UPDATE THE STANDARD TIME COUNTER

ST = ST + 1.0

CONTINUE

RETURN
END

...........Q...'.....I...CD‘C.'.I..‘..........D...‘.......-..

SUBROUTINE COEF (IRANKs XXTs XYe ACOEF )

SUBROUTINE COEF DETERMINES THE REGRESSION COEFFICIENTS
REQUIRED FOR THE TEMPERATURE MODELe.

DIMENSION LWORK(8)s MWORK(8)s AlB4)

DIMENSION XXT(8¢8)s XY(8)s ACOEF(8) +XXTINV(B48)

INTEGER RANGEs IDBUG

COMMON /10/ IREADs IWRITEs IWBUGs IPARM, IBCOE

COMMON /JDATES/ JULDATs JULRELs JBEGINs JULEND. JRANGEs NXLFYR

¢+JSTARTe JSTOPs JRENDe JYEAR
COMMON /ZYSTAT/ YSUMs YSUMSQs YMEANs RSGUAR

SET DEBUG FLAG

168UG = 0O

WJHEN IRANK IS LESS THAN THE PROGRAM DIMENSIONS
FOR XXTe PROBLEMS WILL OCCUR WHEN XXT IS INVERTED»
THESE PROBLEMS ARISE DUE TO THE WAY DATA IS STORED
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IN MATRIX FORMe THE SOLUTION IS TO CONVERT XXT(JeI)

TO VECTOR FORMs A(L).

DO 285 1
D0 205 J

19 IRANK
1o IRANK

Hon

JJ = (I=-1)*IRANK + J
ACJJ) = XXTCJeI)

IFCIDBUGeEQel) WRITE (IWBUG204) JeIedJesAlJJIeXXT(JeI)

FORMAT (1HO043I59 2(2XsE125))
COMTINUE

INVERT THE REGRESSION MATRIXe XXTe

CALL MINV C(AyIRANK+DXXTeLWORKs MWORK]

DO 305 I = 1eIRANK
DO 305 J = 1+IRANK
XXTINV(JeI) = ACCI=-1)*IRANK + J)

IF ( IDBUG «EGe 0 ) G0 TO 9Z1

DO 920 I = 1e¢IRANK

WRITE (IWBUGsS04) (XXTINV(IsdJ)ed=1sIRANK)
FORMAT (1X/% XXTINV='42Xe6(F12.593X))

CONTINUE

DETERMINE THE REGRESSION COEFFICIENTS

CALL MATMLT (XYeXXTINVeACOEF» IRANK)

SINCE PREDICTER X5 IS NOT BEING USEDs THE ELEMENTS OF ACOEF
HAVE BEEN REARRANGED SLIGHTLY (SEE SUBROUTINE X1X2X3)e.

NOW

REORDER ACCEF.

ACOEF(8) = ACOEF(7}
ACQEF (7)) = ACGEF (&)
ACOEF(E) = 0.0
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AXY = 0

COMPUTE MULTIPLE COEFFICIENT OF OETERMINATION

DO 400 I = 148
400 AXY = ACOEF(I)*XY(I) + AXY

XXTYY = XXT(lel)*YMEAN*YMEAN

RSGUAR = C(AXY=XXTYY)/(YSUMSQ-XXTYY)

IF ( IDBUG <Efie 1 ) GO TO 919
WRITE (IWBUGs918) JULRELs DXXTs (ACOEFCIJ) »TJ=1+IRANK)
318 FORMAT (1H s*JULREL="915¢5Xs*DETe OF XXT=?4E12.5/
$ * ACOEF=%*48(2XeElle4))

WRITE (IWBUGe93I0) AXYeXXTYYeXXT(1lel)aYSUMSH
530 FORMAT (1H o3HAXY ¢1XeE12e595XsSHXXTYY 91X E12e595X
$ BHXXT(19l) ¢1XeE12.595Xe6HYSUMST91XeE1245)
919 CONTINUE

RETURN
END

.-.............-.‘.......'............l.....‘...Ill....'...‘......

SUBROUTINE DECL (RJUDsDELTAeSR#SS)

INTEGER RJD

COMMON /ORBIT/ PHISTHETASeTHETALGEP +ETeH
COMMON 710/ IREADe IWRITEs IWBUGe IPARMe IBCOE
COMMON /DBUG/ NBUG.DEBUG

REAL=*8 IDECLsDEBUG(2D)

DATA IDECL/*DECL®/

DELTA = DECLINATION OF THE SUN (RADIANS)
PHI = OBSERVERS LATITUDE (RADIANS)
THETAS = LONGITUDE OF STANDARD MERIDIAN (RADIANS)
75TH MERIDIAN FOR EASTERN STANDARD TIME
S0TH MERIDIAN FOR CENTRAL STANDARDI TIME
105TH MERIDIAN FOR MOUNTAIN STANDARD TIME
120TH MERIDIAN FOR PACIFIC STANDARD TIME
THETAL = LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)
RJD = RELATIVE JULIAN DATE (I.Ee WITH RESPECT TO JAN 1)
ST = STANDARD TIME IN THE TIME ZONE OF THE OBSERVER
IN HOURS COUNTED FROM MIDNIGHT (E«Ge0+00 TO 24.00)
EP = +1 FOR EAST LONGITUDE, -1 FOR WEST LONGITUDE
ET = DIFFERENCE BETWEEN TRUE SOLAR TIME AND

MEAN SOLAR TIME (USUALLY NEGLECTED FGOR
HEAT TRANSFER COMPUTATIONS)

COMPUTE TIME DIFFERENCE BETWEEN STANDARD MERIOIAN AKND
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C OBSERVERS MERIDIAN (HOURS)

c
DTSL = EP*(THETAS = THETAL)* 3.81972
c
C COMPUTE DECLINATION OF THE SUN (RADIANS)
c
DELTA = 0.4093%C0S(040172%(172. = FLOAT(RJDI) )
c
C COMPUTE HOUR ANGLE AT SUNSET (RADIANS)
c
c
TSS = ACOS(=TAN(DELTA)*TANCPHI))
c COMPUTE STANDARD TIME OF SUNST (HOURS)
c
sS = TSS#3.81972 + 12. +DTSL -ET
c
C COMPUTE HOUR ANGLE OF SUNRISE (RADIANS)
c
TSR = 6.283185 - TSS
c
c COMPUTE STANDARD TIME OF SUNRISE (HOUR)
c
SR = TSR*3.81972 -12. + DTSL -ET
. ,
c
c CONVERT SUNRISE IN STANDARD TIME TO LOCAL TIME
.
SR = SR - DTSL
c
c CONVERT SUNSET IN STANDARD TIME TO LOCAL TIHE
C
Ss = SS - DTSL
c
c
c DEBUG OPTION
c
IF (NBUG.EG.D) GO TO 300
DO 100 I = 14NBUG
c
IF (DEBUG(I).NE.IDECL) GO TO 100
WRITE (IWBUGs200) RUDsDTSLeDELTASTSSeSSsTSReSR
200 FORMAT (////+1H $*SUBROUTINE DECL ®s®#*#%"«® RJD =%,
1 IS5e® DTSL ='+F6e3¢* DELTA =t9F6e39® T35 =v4F6e3s
2 % SS =*9F5a392Xe?TSR =?9F6e392Xs*SR = "aF6e3)
100 CONTINUE
c
300 CONTINUE
c
RETURN
END
c
C‘-........II‘.'.‘....'.OI‘..‘...‘.....'..‘.....Q.'.ID'...C.....‘..
c

SUBROUTINE LIMITS (DTSLeRsSeTOsRHGeT124SIG%A9T23)
C FIND LIMITS FOR TEMPERATURE INTEGRATION
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cC
c
To = - DTSL
T23 = 23.00 = DTSL
C
IF (DTSLeLT0.,0) GO TO S50
C
c FIND LIMITS OF INTEGRATION WHEN OBSERVER Is
c WEST OF THE STANDARD MERIDIAN
C
c FOR SUNRISE
C
RHO = AINT(R+1.0) - DTSL
IF (RHO oLTe R) RHO = RHO + 1
Cc
C FOR SUNSET
e
SIGMA = AINT(S+1) - DTSL
IF (SIGMA .LT. S) SIGMA = SIGMA + 1
c
C FOR LOCAL NOON
C
Ti2 = 13.0 - DTSL
C
GO TO 75
c
50 CONTINUE
c
C FIND LIMITS OF INTEGRATION WHEN OBSERVER
C IS EAST OF THE STANDARD MERIDIAW
C
RHO = AINT(R) - DTSL
IF (RHO «LTe R) RHO = RHO + 1
&
SIGMA = AINT(S) - DTSL
IF (SIGMA «LTe S) SIGMA = SIGMA + 1
C
Ti2 = 12.0 - DTSL
c
75 CONTINUE
c
RETURN
END
C
C............'.......-..-.............‘.-.'....."..-..'..........‘
Cc
SUBROUTINE X1X2X3 ( STy THMPLAGs PHI» DELTAs TOs Re T12s Ss T23
$ RHOes SIGMAe CLDe KBARs TGDs WSPe WORe X1aXZ2eX3eXbagXDeXHaXTe
$ RANGE:T?
(o
C
Cc COMPUTE THE PREDICTERS XlseeesX7e
C
c ;
c Sr eee LOCAL STANDARD TIME
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T ess LOCAL
TMPLAG «ee TEMPER
PHI «es STATIO
DELTA sees DECLIN
R a8 LBCAL
S eee LOCAL
T0 ese YALUE
RHO . eee FIRST
T12 eee FIRST
SIGMA eee FIRST
T23 ese VALUE

INTEGER RANGEe IDBUG
INTEGER SWICH1s SWIC
REAL KBAR '

COMMON /SWITCH/ SWIC
COMMON /I0/ IREADe I

SWICH1
SWICHZ2

nu
o=y

A 0.0005
PI 3.14159
IDBUG = 0

Hon

CONVERT STANDARD
T = TAU(ST)I*(12.0/P1

IF ( T oGTae 2440
IF ¢ T «LTe 040

X1 IS JUST THE LA

X1 = THMPLAG
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TIME

ATURE AT PREVIOUS TIME
N LATITUDE (RADIANS)
ATION (RADIANS)
SUNRISE

SUNSET

OF T AT LOCAL STANDARD
OBSERVATION HOUR AFTER
OBSERVATION HOUR AFTER
OBSERVATION HOUR AFTER
OF T AT LOCAL STANDARD

H2

Hle SWICHZ

PERIOD

MIONIGHT
SUNRISE

LOCAL NOON

SUNSET
2300 HR

WRITEs IWBUGe IPARMs I2COE

TIME TO LOCAL TImME

Y - 12.0
) T = T - 2460
) T = T + 243

G-1 TEMPERATURE

DETERMINE THE APPROPRIATE RANGE FOR X2 AND X3

eee BEFORE SUNRISE

IF ¢ TO oLEe T &AND

eee SUNRISE

IF ¢ RHO= A oLEs T
RHO+ A <GEs T

* e &

e T oLTe R ) GO TO 100

s ANDe
Y GO To 200

(IE

11 PM)
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aagon

eee MORNING HOURS cse
IF ( RHO#+A +LEe T o<ANDe T oLEe 12 ) GO TO 300
eee NOON ssse
IF ( T12= A +LEe T «ANDe
1 T12+ A «GEe T ) GO TO 400
ees AFTERNOON HOURS sese
IF ( T12+ A oLEe T «ANDe T oLTe S ) GO TO 500
ess SUNSET see
IF ‘ SIGHA"' A OLE. T cAND.
1 SIGMA+ A «GEe T Y GO T0O 600
ees EVENING HOURS coe
IF ( SIGMA+A oLE. T <ANDe. T «LE. T23 ) GO T0 760
100 X2 = 0.0
X3 = 0.0
RANGE = 1
GO TO 3500
200 A = PI*R/12.0
B = PI*RHO/12.0
X2 = (RHO-R)*SIN(PHI)*SINC(DELTA)}
X2 =X2 = (12.0/PI)*COS(DELTA)*COS(PHII*(SINC(E) = SIN(A) 3
X3 = COS(DELTA)*COS(PHI)*(COSCA)Y~-CJS(B))
RANGE = 2
GO TO 200
300 A = PI*T/12.0
B = PI*(T-1.0)/12.0
X2 = SIMN(DELTA)I*SINC(PAHI)
X2 = X2 - (12.0/P1)*COS(DELTA)*COS(PHI)*(SIN(A)‘SIN(B}}

- 383 -
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X3 = COS(DELTA)*COS(PHII*(COS(B)=COSCA))

RANGE = 3
GO TO S00
400" A = PI*T/12.0
B = PI*«(T=-1.0)/12.0
C = P1#(T12=-1.0)/12.0
X2 = SINC(DELTA)*SIN(PHI)
X2 = X2 = (12e40/PI)*COS(DELTA)I*COS(PHI}*(SINCA)=-STIN(B))
X3 = COS(DELTA)*COS(PHI)*(CO0S(C)+1.0)
RANGE = 4
Go TO 900
500 A PI+T/12.0

B = PI*x(T-1.0)/1240

X2
X2

SIN(DELTAI*SIN(PHI)
X2 = (12e0/PI)*COSCDELTA)I*COS(PHII*(SINCAI=SIN(B})

0non

X3 = 0.0
RANGE = 5
Go To 300

P ————————— st T e e e - A AP SR S e .

'

= PI*S/12.0
= PI*(SIGMA-1.0)/12.0

W >

X2
X2

(S-SIGMA+1.0)*SIN(DELTAI*SIN(PHI)
X2 + (12«0/PI)*COS(DELTA)*COS(PHII*(SIN(BI-SINCA))

X3 = 0.0
RANGE = 6
GO TO 9S00

————-——-—-n--------—---—-.—-—----—--ﬂ-—---—————-—s-—----—--—--——-l--'—-—-——-—

500 CONTINUE

IF ¢ SWICH1 +EQe 0 ) GO TQ 905
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X2
X3

X4
X5
X6
X7

RET
END

KBAR*X2
KBAR* X3

i

TGD*SWICH2
WSP
WOR

Hoan

IF ¢ IDBUG.EG.0) RETURN
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WRITE (IWBUG9S909) CLDs KBARs TGD
FORMAT (1HOy *CLD=*4E1245+2Xe *KBAR=®4E

£E12.5)

WRITECIWBUGs310) STe Xl X2 X390 X4s XIWBUGe RANGEs Tse Ao 8

1e57SE~8%2(1e00+0e17*CLD**24) *{ TMPLAG+460a)%*6.

12.5¢2X

TGOz,

FORMAT(1X9F5e091XsS5(E12:591X)9154F10542(1X9E12.5))

URN

SUBROUTINE REGRES ( Ye Xl X29 X3s Xb&s X5«

DINM

COMMON /YSTAT/ YSUMe YSUMSQe YMEANs RSQUAR

X(1

SET UP THE VECTOR XY AND THE MATRIX XXT THAT ARE

Xe6e XTo

S e P8BSO E0SEeTE eSS

XYe Ne XXT

NECESSARY TC ESTIMATE THE REQUIRED TEMPFRATURE EGUATION
COEFFICIENTS. THIS SUBROUTINE IS CALLED ONCE EACH
TIME PERIODe (IeEe EVERY TIME THE TEMPERATURE CHANGEs Yo

IS COMPUTED)

Yeesoeoee TEMPERATURE CHANGE IN LAST TIME

Xleeoeee « PREDICTOR
X2eee0ee PREDICTOR
X3eesss PREDICTOR
X4e0ee e« PREDICTOR
X5aeeee PREDICTOR
X5eeeeePREDICTOR
XT7eeee e PREDICTOR

X1
X2
X2
X4
X5
X6
X7

IN
IN
IN
IN
IN
IN
IN

XYeeese VECTOR OBTAINED
BY THE OBSERVED TEMPERATURE CHAMNGES.
ELEMENTS OF XY ARFE SUMMATIONS)

Nesoeas DIMENSION

OF

XY

THE
THE
THE
THE
THE
THE
THE

TEMPERATURE
TEMPERATURE
TEMPERATURE
TEMPERATURE"
TEMPERATURE
TEMPERATURE
TEMPERATURE

PERIOD
MODEL
MODEL
MODEL
O0DEL
MODEL
“0DEL
MOCEL

BY MULTIPLYING THE PREDICTOGR VALUES

( THE

XXTeeeeMATRIX OBTAINED BY POSTMULTIPLYLING THE VECTCR
X BY ITS TRANSPOSE. (THE ELEMENTS OF XXT ARE
SUMMATIGNS) ‘

ENSION XY(8)s XXT(8s8)s X(8)

PUT PREDICTOR VALUES

)} ‘:_ 1.0

In PREDICTOR VECTOR

)
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X€2) = X1
X€3) = X2
X(4) = X3
X{5) = X4
Xt6) = X6
XC7)y = X7
X(8) = X5

c
C8000 WRITE (549000) (X(J)sJ=198)
C9000 FORMAT (1HO¢®REGRES X VECTORT¢5X94(E12e545X)/T2244(E12595X))

UPDATE THE XY VECTOR

OO n o0

DO 100 I = 1N
XYCI) = X(I)*Y + XY(I)
100 CONTINUE

c
c
g UPDATE THE XXT MATRIX
€
DO 200 I = 1leN
DO 200 J = 1leN
XXTCJIgI) = XCJI*X(I) + XXTCJe1)
200 CONTINUE
c
c
c UPDATE Y STATISTICS
c
YSUM = Y + YSUM
YSUMSQ = Y*Y + YSUMSQ
YMEAN = YSUM/XXT(1le1)
-
3
RETURN
END
¢
C-‘...‘.........-.‘.........'..l........‘..‘....‘.-.....I.......I..
c
C
C -..'.........'.........'..l.....-......Q.......I....."‘......'..‘
c
c SUBROUTINE MINV
¢
c PURPOSE
e INVERT A MATRIX
¢
c USAGE
c CALL MINV(AeNoDyLaM)
c
5 DESCRIPTION OF PARAMETERS
c A - INPUT MATRIXs DESTROYED IN COMPUTATION AND REPLACED BY
c RESULTANT INVERSE.
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N - ORDER OF MATRIX A

D - RESULTANT DETERMINANT

L - WORK VECTOR OF LENGTH N

M - WORK VECTOR OF LENGTH N
REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REGUIRED
NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USEDe THE DETERMINANT
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
THE MATRIX IS SINGULARe '

...’.....‘Q.....-‘.................l..'...'..........‘........U...

SUBROUTINE MINV(AgNeDeLoeM)
DIMENSION A(1)eL(1)eM(1)

..I..............‘l.."......"‘..‘.I'........0...........’....

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIREDs THE
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FOLLOWSe

DOUBLE PRECISION Ae+DsBIGA#HOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE FRECISION STATEHENTS
APPEARING IN OTHER ROUTINES USED IN COHJUNCTION WITH THIS
RCUTINE.

THE OOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAMN FUNCTIONSe. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

......-'I.....‘I..-I....‘..........0'.'.‘.-...l.‘..l'.........'.

SEARCH FOR LARGEST ELEMENT

N=1.0
NK==N
DO 80 K=1eN
NK=NK+N
L(K)=K
MIK) =K
KK=NK+K
BIGA=A(KK)
DO 20 J=KeN
IZ=N*(J=1)
DO 20 I=KeN
IJ=1Z+1
10 IF( ABS(BIGA)=- ABS(A(IJ))} 15+20420
15 BIGA=A(IJ)
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30

35

38

40

45
46

48

56

55

&0
62

LIK)I=I
M(K)=J
CONTINUE

INTERCHANGE ROWS

J=L(K)

IF(J=K) 35435425
KI=K=N

DO 30 I=1eN
KI=KI+N
HOLD==A(KI)
JI=KI=-K+J
ACKI)=AGJID
A(JI) =HOLD

INTERCHANGE COLUMNS

I=M(K)

IF(I-K) 45445938
JP=N*(I-1)

DO 40 J=leN
JK=NK+J

JIZJP+J
HOLD==A(JK)
ACJKI=AC(JI)
ACJI)» =HOLD

DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT

CONTAINED IN BIGA)

IF(BIGA) 48446448
D=0.0

RETURN

DO 55 I=1eN

IFCI=-K) S5Ge55+50
IK=NK+1
ACIK)I=ACIK)/(=BIGA?
CONTINUE

REDUCE MATRIX

DO 65 I=1leN

IK=NK+I

HOLD=A(IK)

IJd=I=N

DO 65 J=1eN

IJ=1IJ+N

IF(I-K) &C¢465460
IF(J=K) 624¢65¢62
KJd=IJd=1I+K
ACTJY=HOLD*A(KJ)+A(TIU)

388

IFCABS(ACTIU)) eGTelal 37e0RABS(ACTUI)I LTl aE-ZT7TIHRITE(EL236IALTIL)
936 FORMAT(IXe*A(IJI)='elXsE1245)
65 CONTINUE



Onon

Nz Ns!

MM

- 389 -

DIVIDE ROW BY PIVOT

KJ=K=N

DO 75 J=1sN
KJ=KJ+N

IFCJ=K) T70+475+70

70 ACKJ)=A(KJ)/BIGA
75 CONTINUE

800

77

235
76

80

100

105

108

110
120

125

130

3
3

PRODUCT OF PIVOTS
IFCCALOG10(DI+ALOGI0(BIGA) oL Te370) GO TO 77
IF (IFLAG.GT.0) GO TO 76

IFLAG=1

WRITE(S+800)

FORMAT(///+1X9 *SUBROUTINE MINV: DETERMINANT SIZE EXCEEDS

*MACHINE CAPACITYs CALCULATION IS GREATER THAN
*PROCESSING CONTINUES®*///)

GO TO 76

CONTINUE

D=D+BIGA

IF (DeGTeleE 3DIWRITE(Se935)D

FORMAT(1Xe®D=%41XeE1245)

CONTINUE

REPLACE PIVCT BY RECIPROCAL

A(KK)=1.0/BIGA

CONTINUE

FINAL ROW AND COLUMN INTERCHANGE
K=N
K=(K=-1)
IF(K) 1504150105
I=L(K)
IF(I-K) 12041204108
\JG::N*(K-I)
JR=N#*#(I-1)
DO 110 J=1eN
JK=Jdgrd
HOLD=A(JK)
JIZJR+dJ

ACJKI==ACJI)
A(JI) =HOLD
J=M(K)
IF(J=-K) 10041000125
KI=K=N

DO 130 I=1eN
KI=KI+N
HOLD=A(KI)
JIZKI=K+J
A(KI)==ACJI)
A(JI) =HOLD

1eE+37.

*t./1Xy
"leQ
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GO T0 10
150 RETURN
END
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SUBROUTINE MATMLT (Ae Be Ce N}

MATMLT POST MULTIPLIES AN

VECTORY
OF LENGTH Ne

hey OF LENGTH N

DIMENSION A(8)s B(Be8)y C(8)

Do 50 1

530 C(I) = 0a0

Do 100 J
DO 100 I

C(I)

100 CONTINUE

RETURN
END

W H

1aN

1eN
1ot

BCIsJd)*ALJ) + C(I)

N X N HMATRIX BY A
THE RESULT IS A VECTORs Co

...........-O........-.............0....'.........I...I.......l-..

SUBRCGUTINE ATOB (A4B)

DERIVE THE TEWPERATURE MODEL COEFICIENTS (IeEe
ELEMENTS OF VECTOR B) FROM THE REGRESSION VECTOR A

AeoseaeREGRESSION COEFFICIENT VECTOR
Beseese VECTOR OF TEMPERATURE MODEL COEFFICIENTS

ACL)
AC2)
AC3)
AC4)
A(S)
ACs)
ACT)
ACB)

T T Tt I TR T 1

AD
Al
A2
A3
A4
AS
A6
A7

B(1)
B(2)
B(32}
B{(4)
3(5)
8(6)
B(T7)

B8(8)

(O T Y T T T A [ |

80
Bl
B2
83
E4
B5
B6
B7
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DIMENSION A(1)4B(1)

DETERMINE Bl

B(2) = =ALOG(1l.0+A(2))

BA = B(2)/(=-A(2))

DETERMINE BI®*S

DO 100 I = 1.8
IF ¢ T +EQe 2 ) GO TO 100
BCI) = ACI)+*BA

CONTINUE

YRITE (54900) (B(J)eJd=1e8)
FORMAT (1HOs *3 VECTCOR®"e S5Xe4(E12e545X)/T15¢4(E125¢5X))

RETURN
END

SUBROUTINE OCHECK (JULRELs IDs DATAs L )
DIMENSION DATACL)s TYPE(4)s FMT(15)

DATA FMT /Z9(1H 8HJULREL =91X413. ®*oXXXX DATA OUT COF EQUNDSY
$2XeE12e593Xe "L =7*92Xs12)°/

DATA TYPE(1)/*TEMP*/y TYPE(2)/°CLD*/, TYPE(Z)/*WSPY/
3 TYPEC4)/*WDIRY/

WRITE (54100) FMT
FORMAT (1H ¢10(1XsA527)

FMT(6) = TYPE(ID)

WRITE (SeFMT) JULRELs DATA(L)s L
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RETURN
END
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