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ABSTRACT

CONSTRAINED STOCHASTIC CLIMATE SIMULATION

~\/

DAVID CARLETON CURTIS

Submitted to the Department of Civil Engineering

on May 10, 1982, in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Water Resources

A stochastic, multivariate, hydrometeorological data

generation algorithm is presented. Hourly values of
precipitation, cloud cover, shortwave radiation, longwave
radiation, temperature, dewpoint, wind speed, and wind
direction are jointly generated for the two-meter level.

The procedure is designed to provide coherent sets of input
data for models of various land surface processes. The

nodel's flexibility and economy allow the study of land

surface responses to different atmospheric forcings.

Generated data plots, model output statistics, and

generated mean diurnal curves are compared to observations

for the months of January and July at two sites, Boston,

MA and Dodge City, KS. Data representing three ''climates',

normal, wet, and temperature-biased, were generated and

applied to a detailed model of the land surface. The

resulting energy fluxes across the land-atmosphere inter-
face are reviewed and the differences are noted.
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Peter S. Eagleson

Professor of Civil Engineering
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CHAPTER 1

INTRODUCTION

1.1 Overview

Motivation for the research outlined in the following

report is the growing need to provide high resolution hydro-

meteorological data for various computer simulation models

of the physical processes taking place near the land sur-

face. Subjects for such modelling include the transfer

of heat and moisture across the land-atmosphere inter-

face, plant growth, plant disease propogation, insect in-

festation, irrigation management, and crop forecasting.

Each of these modelling efforts is becoming more sophis-

ticated as our knowledge of the individual processes grows.

Many of the processes are related, and efforts to couple

related models are being made to study larger and more

comprehensive land surface systems.

Data requirements of these studies include: precipi-

tation, radiation, cloud cover, temperature, humidity, wind,

etc. For many models, data at hourly intervals is highly

desirable. This time resolution may be necessary when study-

ing diurnal effects.
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Previously, researchers had only historical obser-

vations from which to draw a statistically coherent set of

input data. While it is true that observed data are the

only data where all of the variable interactions survive

intact, a researcher using such data is limited to a given

set of statistics. If, for instance, a researcher wants

to study the effect of a fundamental change in the statis-

tical parameters of one input ‘variable on a land surface

process, there exists no rational way to modify the other

inter-related input variables whose statistics would nat-

urally be changed by the shift. For example, if the number

of storms was to be increased, how would cloudiness, temp-

erature, and incoming shortwave radiation be adjusted to

accomodate the change?

The physical linkages between the variables that re-

flect the flow of heat, moisture, and momentum across the

land-atmosphere interface are complex. Figure 1.1 pro-

vides some insight into the nature of these inter-relation-

ships. It is clear that simple scaling of one variable

would not be sufficient to realistically study the sys-

tem-wide responses. A more sophisticated adjustment pro-

cedure 1s required.
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Data could possibly be generated by existing computer

models of planetary weather dynamics. Changing boundary

conditions would produce a number of different weather

scenarios which would provide the appropriate data. How-

ever, for most cases, the computer costs of this approach

are still prohibitive.

Another approach would be to create data using multi-

variate stochastic generation techniques. However, severe

non-stationarities, discontinuities, and unusual data dis-

tributions inhibit the application of multivariate tech-

niques as they have traditionally been applied in hydrology.

Because of these problems, very few researchers have

successfully developed algorithms to stochastically generate

several weather variables simultaneously. Those that exist

make some extreme simplifying assumptions, smooth the data,

are applicable only at three or four specified times per

day, and in general, are quite inflexible.

1.2 Multivariate Climate Data Generation: Previous Work

Kim (1976) generated time series of precipitation and

temperature for use in snowmelt forecasting. However, he

was able to show that, in his case, temperature and precipi

tation were statistically independent, greatly simplifying

the problem.
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Jones et.al. (1970) formulated an algorithm to generate

rainfall, daily average temperature, and daily evaporation

of water. The functional relationships among his weather

variables can be summarized as

Rainfall = f(time of year, previous rainfall)

Temperature = f(time of year, current rainfall)

Evaporation = f(time of year, current rainfall,

previous rainfall)

The approach of Jones et.al. was to analyze the histor-

ical data and use fitted high order polynomials to predict

probability distribution parameters (e.g. means and var-

iances) for each variable as a function of the week of the

year. Polynomial equations were obtained based on the

occurrence or non-occurrence of rainfall. For example, one

equation predicting mean daily temperature was developed for

dry days and another equation was developed for wet days. |

A similar approach was used to calculate the standard devia-

tion of daily temperatures. The stochastic nature of daily

temperature was then simulated by sampling from a normal dis-

tribution of temperatures having the derived mean and standard

deviation for that particular day.
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The approach of Jones et.al. considers only the day-

to-day variations of the primary variables. Time varia-

tions of much less than one day are needed.

Ahmed (1974) developed a program to generate rain-

fall, ambient temperature, air humidity, short and longwave

radiation, and wind speed to use in a dynamic simulation

of crop behavior. The weather variable inter-relationships

as specified by Ahmed were

Rainfall =

Radiation

Wind speed

Temperature
—

Air humidity =

f(location, probability of rainfall

for current day)

f(location, time of day, time of

year, rainfall for the day, clear

or cloudy conditions)

f(location, time of day, time of year)

f(location, time of day, time of year,

rainfall for the day, clear or

cloudy conditions)

f(location, rainfall for the day, air

temperature)

The description of Ahmed's functional relationships make

this algorithm appear quite attractive, but his formula-

tion and execution of them do not have the desired resolution

and flexibility.
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Rainfall is generated on a daily basis. No consid-

eration is given to storm duration and hence to storm in-

tensity.

Cloud cover, which is one of the most important ingred-

ients in determining the surface energy balance, was

treated by Ahmed as a binary variable. That is, cloud

conditions were assumed to be either fully overcast or

clear, nothing in between.

Ambient temperature was computed by generating weekly

means. Empirical equations were used to convert weekly

means to temperatures at 8:00 AM, 12:00 Noon, and 4:00 PM

for each day of the week.

Two simplifying assumptions were also used in Ahmed's

temperature formulation: 1) ambient temperature decreases

in direct proportion to the amount of rainfall, and 2)

the probability of clear or cloudy sky on any day was

assumed proportional to the rainfall probability of that day.

Nicks (1975) developed a model to generate values for

daily rainfall, daily minimum and maximum temperatures,

and daily solar radiation. Rainfall was generated by a

Markov chain process. The temperature and radiation data

were generated individually by lag-1 Markov processes

conditioned by current and preceding wet or dry days.
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Probably the best effort thus far to jointly generate

a set of meteorological data was presented by Richardson

(1981). Richardson developed a procedure to generate

daily precipitation, maximum temperature, minimum temper-

ature, and solar radiation. Precipitation was generated

independently using a Markov chain. Daily max/min temper-

atures and daily radiation data were generated using a

multivariate model with means and standard deviations con-

ditioned on the occurrence of wet or dry days. In this

manner, Richardson was able to preserve the inter-relation-

ships among the four variables.

For most of the models reviewed, time resolution was

on the order of one day. No multivariate hydrometeoro-

logical data generation algorithms with time resolution as

low as one hour have been found in the literature.

Constrained Stochastic Climate Simulation

The result of the current research is a computer model

to stochastically generate ten hydrometeorological variables

with hourly resolution. Included in the variable set are

lL. time between storms 6. longwave radiation

2 storm duration temperature

3.

A

S

storm depth

cloud cover

shortwave radiation

] dewpoint temperature

wind speed9.

10. wind direction



26

The general approach in constructing the model was

to develop a set of stochastic elements that could be

coupled and thus constrained by deterministic relationships

in order to preserve as much of the important cross-corre-

lations as possible. At the same time, the individual

stochastic elements were designed to provide time series

whose statistical properties approximate historical values.

To accomplish this task, several major hurdles had to

be overcome. The two most important dealt with the genera-

tion of hourly cloud cover and the generation of hourly

temperature.

Hourly cloud cover is a highly non-stationary variable.

The first and second moment properties are obviously quite

different during an intra-storm period than during an

inter-storm period. A model was required that constrained

cloud cover during storm events, provided for the proper

transition into and out of storm periods, and permitted

the occurrence of total cloud cover during an inter-storm

period.

A technique was developed that allows the generation

of a time series whose mean and variance at a given point in

time are allowed to vary in a controlled fashion. This

technique is an essential ingredient in providing much of
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the desired coordination between precipitation occurrences,

cloud cover, short and longwave radiation, and. temperature.

It allows the "ripple" effects that would result from a

change in precipitation statistics to be felt throughout

the generated data set.

Hourly temperature also exhibits pronounced non-sta-

tionarities, both diurnally and seasonally. To attack this

problem, a new methodology is used that is based on an

expansion of ideas presented in an unpublished report by

Bryan (1964). The technique generates hourly temperatures

as ‘a function of the previous hourly temperatures, short

and longwave radiation, wind speed, and wind direction.

(Provision was made to include a link to ground temperatures

as well). Stochasticity is introduced by cloud cover as

it affects short and longwave radiation and by superimposing

a serially correlated series of random deviations on the

calculated temperature.

The resolution of the cloud cover and temperature pro-

plems formed the framework that allowed the remaining ele-

nents to be knitted together to form a rational model. The

nodel has been named Constrained Stochastic Climate Simu-

lation (CSCS).
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Chapters 2 - 8 present the theoretical development

for each component of the CSCS model. Parameter estimation

is discussed in Chapter 9. The results of four data gen-

eration experiments using the CSCS model appear in Chap-

ter 10. The model has been tested for two time periods

of the year, January and July. These two months were chosen

because they correspond to a common procedure of January-

July comparisons in the climate-modelling literature and

because they represent two significanly different weather

regimes.

Two different geographical locations were tested:

1) Boston, Massachusetts, and 2) Dodge City, Kansas. Coas

tal and continental climatic regimes are represented

respectively by these locations.

Output from the CSCS model was also used as input to

a detailed model of the land surface (Milly, 1982) to

show its applicability to studies of land surface response

to various meteorological forcings. (Chapter 12).

The CSCS model generates data that is representative

of the 2-meter level. The land surface model used in Chap-

ter 12 requires data at the surface or zero-meter level.

Chapter 11 describes how the CSCS model is linked to the land
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surface model through the surface boundary layer. Stable,

unstable, and neutrally stable atmospheric conditions are

accounted for in establishing the various flux profiles.

In this project, the generated atmospheric data were

used to directly force the land surface model. Feedbacks

from the land surface model to the atmosphere are not

explicitly accounted for, although the potential for coupling

is built into the CSCS model.

By not accounting for the feedback mechanisms in

this application, the CSCS-land surface system 1s in

effect an "island" model. This means that the data repre-

senting the 2-meter atmospheric level at a point are unaf-

fected by the local land surface conditions. The natural

analogy for this situation would be a small island whose

land surface processes were being forced by a meteorological

data set that derived its properties from the areas

surrounding the island.

Perhaps the most attractive feature of the CSCS model

is its efficiency. On a DEC-10 time-share computer sys-

tem, twelve months of hourly data can be generated in less

than one CPU minute. Overall, the CSCS model should be an

cffective, flexible, and cost efficient tool to use in a

vide variety of studies that require large amounts of

hydrometeorologic data.
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Chapter 2

PRECIPITATION MODEL

2.1 Introduction

Many stochastic precipitation models have been devised

over the years to serve a variety of needs. The character

of these models ranges from the simple to the complex. Each

model attempts to satisfy certain statistical properties that

are observable in a historical data base and are important

to a particular application. Most of the precipitation models

used in hydrologic applications, including those used in the

multivariate weather data generators discussed in Chapter 1,

describe the occurrence of daily precipitation. Kavvas and

Delleur (1975) and Nicks (1975) provide good surveys of

stochastic models of precipitation that appear in the liter-

ature.

Generally, these models describe the precipitation

phenomenon in two stages. First, some sort of determination

is made to decide if a wet or dry period has occurred. Second,

if a wet period has occurred, the amount of precipitation

for the period is computed.

For the current application, a precipitation model is

needed that can yield data with hourly resolution, yet not
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overburden the project computationally. One model that sat-

isfies these requirements is an alternating renewal process

for independent, alternating wet and dry periods used by

Grayman and Eagleson (1969).

2.2 Grayman-Eagleson Precipitation Model

Grayman and Eagleson found that a respectable sequence

of synthetic rainfall data could be created by modelling the

times between storms, ty storm durations, t., and the

total storm depths, h. Detailed investigations of observed

storm sequences by Grayman and Eagleson showed that storm

durations and times between storms could be treated as inde-

pendent events, but that storm depths were highly dependent

on storm durations. Grayman and Eagleson also found that

times between storms and storm durations could often be

described as being exponentially distributed. Storm depths

were found to follow a gamma distribution when conditioned

by storm duration. Thus, the precipitation model can be

expressed by successive sampling from the probability den-

sity functions (pdf) described by the following equations

Time between storms - pdf

¢ (t.) = 8e Pty t° 1
)

&gt; 0  A  A -1)

where RB = (mean time between storms) 1
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Storm duration - pdf

-ot.
f(t.) = Ge » ty 2 0

vliere § = (mean storm duration)

f

(2.2-2)

Storm depth given storm duration - conditional pdf

§t.-1 -nh
_ n(nh) e

€(nh|st) = Tt) h

ra
vhere n = (mean storm depth)

0  2 7 3)

The solution procedure is as follows. At some initial

time, say t_, generate a time between storms, t,. Once ty 1s

known, the period (trtotty) is considered dry with the

hourly precipitation set equal to zero. Next, when time, t,

reaches ty * tys the storm duration, t., is selected. The

period (t, + ty ty * ty, + t.) is then considered wet. Using

the value just computed for t., a storm depth is selected

from the distribution described by Equation 2.2-3. When time

reaches ts + ty * t., the process is repeated to determine the

next storm sequence.

Presently, a uniform precipitation rate is assumed. Later

versions of the CSCS model could easily contain an algorithm

to provide variable intrastorm precipitation rates. But for

now, hourly precipitation is found by dividing storm depth,

h, by storm duration, t
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2.3 Data Generation

The data generation technique used for the exponen-

tial distributions of Equations 2.2-1 and 2.2-2 is straight-

forward and is described in Appendix A.

Generation of gamma distributed variates 1s not as easy.

Direct selection of a gamma variate is complicated by the fact

that the gamma probability density function cannot be anal-

ytically inverted. Therefore, indirect methods are required.

If the parameters of the gamma distribution are integer,

a gamma variate can be determined by summing variates chosen

from exponential distributions. However, the parameters of

Equation 2.2-3 will generally be non-integer.

The method used by Grayman and Eagleson (1969) to gen-

erate a gamma variate, nh, involved a mixture of techniques

depending on the value of the product dt... Basically, the

authors used a method of summing exponentially distributed

variates when §t_&gt;1 and a numerical integration technique

when 0&lt;6t &lt;1. The reason for using a different technique

when 6t_&gt;1 results from the fact that for 0&lt;§t &lt;1, the

peak of the gamma distribution is located at nh = 0, but its

magnitude is undefined. The situation where t. is less than

one occurs often, meaning that the numerical integration pro-
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cedure is used frequently. A more efficient procedure to

generate gamma variates is desired.

Curtis (1978) investigated three alternative techniques

to generate gamma distributed variates. The first technique

considered was a purely numerical technique used by Thom

(1968) to generate direct and inverse tables of the gamma dis-

tribution. The second technique considered was an acceptance-

rejection technique developed by Curtis (1978) that followed

procedures outlined in Abramowitz and Stegun (1970). The

third technique considered was another acceptance-rejection

method presented by Fishman (1973).

Fishman's approach was by far the most efficient and

worked for both integer and non-integer distribution para-

meters. The solution procedure for the Fishman technique is

given in Appendix A.

2.4 Summary

With the implementation of the Fishman technique to

generate gamma variates, a very efficient precipitation gen-

erator results. One big computational advantage 1s that this

precipitation model yields hourly values, yet is only run

aperiodically. In each dry-wet cycle, the precipitation

model is "turned on' only two times. First at t,, a time
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between storms is selected. Second, at ty * ty, a storm dur-

ation and a storm depth are computed. The rest of the time,

the only computation that occurs is a simple check to determine

if a new time between storms or a new storm duration is re-

quired. If no new variate is required the entire generation

scheme is skipped. This contrasts with other methods, such

as Markov Chain techniques, that require a solution of the

generating scheme at each time step.

Another advantage of this particular precipitation model

results from the generation of the time between storms, t.

By knowing the times that storms begin, (and end for that mat-

ter), explicit and continuous coordination between the preci-

pitation nodel and other CSCS components such as cloud cover,

temperature, solar radiation is possible.

Previous investigators who have attempted to develop mul-

tivariate meteorological data generators have all recognized

this coordination problem as manifested by the differences

between meteorological variables on dry days as opposed to wet

days. Different sets of equations had to be developed as

"special cases' depending on whether a particular day was

wet or dry. As will become clear in later chapters, the
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information provided by the precipitation model allows the

jevelopment of a generalized set of equations that operate

for all times, wet or dry
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CHAPTER 3

CLL.OUD COVER MODEL

Introduction

The evolution of cloud cover plays a critically im-

portant role in the flux of heat and moisture at the land

surface. Energy balances are greatly affected as cloud

3.1

cover continuously alters the transmission and reflection

of radiant energy. Of course, cloud cover is also asso-

ciated with precipitation inputs to the land surface

moisture balance. Yet, cloud cover as a stochastic pro-

cess has received very little treatment in the hydrologic

literature.

Where studies have been performed, (Gringorten, 1971

and 1966; Fox and Rubin, 1965; Chargnon and Huff, 1957) cloud

cover has been treated independently of other meteorologic

processes. Developers of the various multivariate climate

data generators discussed in Chapter 1 circumvented this

issue by modelling net solar radiation, temperature, etc.

The only time the effect of cloud cover was even implied in

these works was through the development of separate sets

of generating equations for wet days and for dry days. The
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lower temperatures and solar radiation levels on wet days

implied the presence of more cloud cover than on dry days.

When interest is in the association of cloud cover and

precipitation, the underlying modelling philosophy has

been to follow the mechanics observed in the atmosphere.

That is, clouds must be present prior to establishing the

quantity of precipitation. However, as many meteorolo-

gists will say, one of their most difficult tasks 1is to

predict total precipitation amounts when presented with a

given atmospheric situation having precipitation potential.

In the following sections, a new approach will be

used to model cloud cover as a stochastic process. The

new technique overcomes many of the difficulties previous

researchers have encountered when jointly generating meteor-

ological data. It allows the establishment of the essen-

tial relationships between the meteorological variables of

interest.

3.2 General Description

Cloud cover, N(t), is a process that is bounded by

0 (clear sky) and 1 (overcast). Cloud conditions between

these two extremes are reported in tenths. Thus, the

observed cloud cover data set includes 0., .1, .2, ... Q

,9, and 1.0.
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Since the precipitation model divides time into two

states, an inter-storm period and an intra-storm period,

it seems reasonable to use some of this information to comn-

strain the cloud cover model to conform to a certain set of

conditions. One obvious condition that can be imposed

immediately is that during an intra-storm period (i.e.

(to*ty,tgtty*ty)) cloud cover is total (i.e., N(t) = 1.0).

This leaves only the inter-storm period within which to

generate cloud cover.

To develop cloud cover during an inter-storm period,

first consider N(t) as a random process. Next, consider the

expectation of N(t) conditioned on the time between storms,

ty, (i.e. E(N(t)[ty))- If the process, N(t), is examined near

the beginning or near the end of an inter-storm period,

E(N(t) ty) would be close to 1.0. Whereas, if the process

is examined near the middle of the inter-storm period,

E(N(t) | ty) would usually be quite different from 1.0. Ob-

viously, N(t) is non-stationary.

The nature of the precipitation model discussed in

Chapter 2 presents an interesting feature to the development

of a cloud cover model. Generally, in simulation problems,

only the past states of the system are known. The only



40

thing known about the future is implied from the assumption

that the statistical properties of future responses of the

physical process being modelled will be identical to those

observed in the past. In this problem, however, one future

state is always known. Since the time until the next storm

is part of the output of the precipitation model, the

state N(t, +t) = 1.0 is always known in addition to the past

history of-the system states.

The cloud cover process as defined here is very sim-

ilar to the classic Dirichlet problem in mathematics.

There a differential equation is constructed to describe a

process that occurs within a bounded region. The solution

is known initially and the solution at the boundary is

known for all time, t, of interest. A solution is desired

within the specified region.

The development of the cloud cover model will follow

along the lines that are used to solve boundary value problems

in differential equations. The proposed procedure is to

acknowledge and analyze the properties of the function at

the boundaries, infer the existence of properties of the

function on the interior of the region, and select one of

a possible set of solutions that satisfies the prescribed

interior and boundary conditions.
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3.3 Interior and Boundary Conditions

Boundary conditions of the inter-storm cloud cover

process occur at the end of the previous storm event and at

the beginning of the next event. At these times N(t) = 1.0.

Overcast conditions (i.e. N(t) = 1.0) will not be precluded

from inter-storm periods. However, no rainfall will be

associated with the inter-storm overcast conditions.

From a statistical point of view, it is important to

determine the moment properties of the process at the

boundaries. The first moment, or the conditional expec-

tation of N(t) with respect to t, at the end of the pre-

vious storm 1s

E(N(tg) ty) = 1.1 (3.3-1)

since N(tg) is completely deterministic. Similarly, at

t=t, +t

E(N(ty+ty) ty) = 1.0

The second moment or conditional variance at

(3.3-2)

the

boundaries will be

VAR(N(t,) ty) = 0 (3 .3-3)

and
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VAR(N(ty+ty) ty) = 0 (3.3-4)

since the process is completely deterministic at the boun-

daries.

In the interior of the inter-storm region, imagine

that the given ty is long enough that there exists a sub-

region, R*, loosely centered around the midpoint of the

inter-storm period in which the process N(t) can be

assumed stationary. Thus, the first and second moment prop-

erties of N(t) when teR* are

4
x

Lb
F

1

E(N(t) | ty) = E(N(t)) = M,

VAR(N(t) |t,) = VAR(N(t)) = o, ?

(3.3-5)

(3.3-6)

This implies the existence of a 'fairweather' cloud cover

process that is relatively unaffected by approaching or

receding precipitation-producing systems.

Now that the existence of specific first and second

noment properties of the process at the boundaries has been

established and the existence of first and second moment

properties in a sufficiently large interior region has

been inferred, it is further suggested that there exists

a smooth transition of moment properties from the boundaries
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to the interior region.

There may exist a whole set of solutions satisfying

the established or inferred boundary and interior condi-

tions. It is not the purpose here to find all or even a

part of the set of possible solutions. It is sufficient

to find just one that works.

3.4 Solution Development

One candidate solution is the function

N(t) = Mj + (1-Mj) (1-P(t)) + m(t)P(t) (3.4-1)

where Mg is the '"'fairweather' mean value of N(t), P(t)

is the transition function, m(t) is the stationary se-

quence of correlated deviations with E(m(t)) = 0, VAR(m(t))

= 0? and serial correlation function p(T),where T is lag.

Since by definition, Mg, E(m(t)), and VAR(m(t))

are not functions of time, the properties of the transi-

tion function must induce Equation 3.4-1 to meet the required

boundary and interior conditions. At the boundaries, N(t)

becomes

N(ty) = N(ty*ty) = 1

By inspection of Equation 3.4-1 with N(t) = 1, the

(3.4-2)

following

is required of P(t)

2 ta) = P(t,*t,) 0 (5.4 3)
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Before proceeding further, the first and second

moments at the boundaries of the process defined by Equa-

tion 3.4-1 will be verified. The conditional expected

value of N(t) is

E(N(E) [t,) = E(Mg*(1-Mg) (1-P(t)) + m(£)P(t)) (3.4-4)

For more detail refer to Appendix B. Completion of the

operations indicated in Equation 3.4-4 leads to the expres-

sion for the time varying conditional expectation of cloud

cover.

E(N(t) ty) = My + (1-My) (1-P(t)) (3.4-5)

Substitution of Equation 3.4-3 into Equation 3.4-5

at tj, and ttt, yields

E(N(ty) ty) = E(N(tp+ty) ty) = (5 4-6)

as required by Equations 3.3-1 and 3.3-2.

Equation 3.3-5 specifies the requirement for

E(N(t) | ty) when teR*. Substitution of Equation 3.3-5 into

Equation 3.4-5 gives

A. = My + (1-M;) (1-P(t)) (3.4-7)

YY

(1-M,) (1-P(t)) = 0 (3.4-8)
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In order to have a meaningful solution, Equation 3.4-38

requires that

(1 -P{t)) = 0 -eR*
r=
Lo 4-9)

YT

P(t) = 1 ee R# (3.4-10)

Thus, a second condition has been inferred for P(t).

The second moment property of Equation 3.4-1 is found

1

VAR(N(t)|ty)=ENS(1)[t)-EZ(N(t)|ty) (3.4-11)

Again the reader is referred to Appendix B for the details

of evaluating Equation 3.4-11. Evaluation of Equation

3.4-11 leads to

VAR(N(t)|t,) = o,P?(t) (3.4-12)

lo verify Equation 3.4-12 at the boundaries, substitute

Equation. 3.4-3 into Equation 3.4-12. Thus,

VAR(N(t,) | ty) = VAR(N(ty+ty) | ty) = 0
q 43 13)

1s required by Equations 3.3-3 and 3.3-4.

For the interior region, Equation 3.4-10 can be sub-

stituted into Equation 3.4-12 to show that
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_ 2

VAR(N(t) | ty) ter = Cm (3.4-14)

as required by Equation 3.3-6.

[t has now been demonstrated that Equation 3.4-1 can

be a desirable solution to the cloud cover problem if the

transition function P(t) has the following properties

P(t,) = P(tgy+ty) = 0

P(t) = 1 when teR*

(3.4-15)

(3.-4-16)

Jne such function that satisfies the conditions of

Equations 3.4-15 and 3.4-16 has the form

-z(t-ty) -y (ttt,-t)
P(t) = (1 - e J (1 - e ) (3.4-17)

where z, Y are decay coefficients controlling the transi-

tion rates from the boundaries to R*. ¢¢ would apply to

receding storms and y would apply to approaching storms.

These transition rates could be different values, but for

convenience, vy and ¢ are assumed equal. Thus

-y(t-ty) -y (tg*ty mt)
P(t) = (1 - e )(1 - e ) (3.4-18)

To verify that Equation 3.4-18 satisfies the condi-

tions set forth by Equations 3.4-14 and 3.4-15, the func-
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tion is evaluated at too tyttys and teR*.

At

At

£,

p(

+
" 4

-Yy (th-ty)
Prt) = (1 - e 0 "0%y(1 -

/
pr

“nth to)

 ] &lt;1

=v (t.
 Y (1 - e &gt;),

ho

-

1 :
\

| ~y(ta+t tn) - tLe =} 0 y(tat+t

(tat) = (1 - e b "0p ee OD

1

ra

Cd e

-¥1
b
(1-1)

P(ty+ty) = 0

(3.4-19)

boty)

(3.4-20)

Finally, when teR*

Lim P(t) = 1

t, &gt; (3.4-21)

Equation 3.4-21 suggests that the condition of Equation 3.4-16

is met only in the limit as ty &gt;. However, this is not a

problem since, for all reasonable values of vy, P(t) will

reach a value close to 1.0, say 0.99, sufficiently soon to

permit practical application of the function. The value

chosen for y will be discussed in Chapter 9.
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Another feature of the function N(t), that is shown

in more detail in Appendix B, is the serial correlation

function. The auto-correlation function of the cloud

cover process defined by Equation 3.4-1 is

y(t) = eo (1) (3.4-22)

where pn (1) is the serial correlation function of the

correlated random process, m(t). So, while the mean and

variance of the cloud cover are controlled or modulated by

the time varying function, P(t), the serial correlation

function is unaffected.

3.5

to

wh

Stationary Deviations Process

The stationary deviations process, m(t), is taken

be a simple first order Markov process defined by

n{ = = 0 (1)m(t-1) + n(t)/1-p2(1) (3

-

 os

5-1)

0 (1) = lag-1 correlation coefficient

7(t) = random deviate with

E(n(t)) = 0

VAR(n(t)) = o_°
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In order for Equation 3.5-1 to be an appropriate model

for the process, the auto-correlation structure of the

natural process must follow

Oa ( =N T) = py (1) (3.5-2)

[t turns out that the observed data used in this study

follows Equation 3.5-2 sufficiently well to warrant the

use of Equation 3.5-1 in the cloud cover model (See

Figures 3.1-3.2).

3.6 Summary

A cloud cover model has been developed that satis-

fies a prescribed set of requirements during both inter-

storm and intra-storm periods. A continuous transition

from one set of conditions to the next is provided. The

first and second moment properties of the cloud cover

process are allowed to vary in a controlled fashion, while

the auto-correlation structure is not affected by the

transition function.

The process is capable of producing values that are

less than zero or greater than one. Model output will,

however, be constrained to 0&lt;N(t)&lt;1l. Actually, the fact
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that the model described by Equation 3.4-1 can generate

values outside the valid range for N(t) is an advantage.

It mimics the real atmosphere in the sense that the real

atmosphere can assume a range of conditions with a clear

sky, as well as with a totally cloudy sky.

Cloud cover viewed by a weather observer 1s just

the manifestation of a set of atmospheric conditions that

allows the formation of clouds. A clear sky is not just

one atmospheric state, but a whole continuum of states

"below" the cloud formation threshold. The atmosphere

may be just below the cloud formation threshold or it may

be well below the threshold and require the completion of

a series of evolutionary atmospheric processes in order

to form clouds again.

Similarly, overcast sky 1s not one state, but a con-

tinuum of states beyond the point where the sky is totally

obscured. Total cloud cover may exist as a single very thin

layer, a single very thick layer, or multiple layers of

variable thickness and cover. A series of events must occur

at the various atmospheric levels to cause the clouds to

break up again.

Parameter estimation for the cloud cover model will be

discussed in Chapter Q
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Chapter 4

SHORTWAVE RADIATION MODEL

4.1 Introduction

One of the most important variables in the surface energy

balance is, of course, solar or shortwave radiation. Solar

input is highly variable and nonstationary, both daily and

seasonally. The shortwave radiation model proposed in the

following sections will be used to generate hourly values of

solar input at any time of the year.

Since, for all practical purposes, the sun radiates 1ts

energy at a constant rate, much of the variation in the amount

of radiant energy actually intercepted by the earth can be

described by the mechanics of earth's rotation about its axis

and by its orbital path about the sun. The equations des-

cribing the earth's motion are well known and straightforward.

The real difficulty lies in the description of what

happens to the shortwave radiation as it passes through the

earth's atmosphere on its way to the surface. A multitude of

particulate and molecular atmospheric constituents scatter,

reflect, and absorb radiant energy. Analytical evaluation of

these effects is all but impossible. Fortunately, a number

of empirical relationships have evolved through observation
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and experimentation that allow estimates of radiation finally

reaching the earth's surface.

1.2 Shortwave Radiation

As mentioned previously, the sun radiates energy at a

nearly constant rate. The average intensity of solar radiation

received on a plane unit area normal to the incident radiation

at the outer limit of the earth's atmosphere is called the

solar constant. A commonly used value for the solar constant,

Wy oo (Eagleson, 1970) is:

= 2 ide

Wyo 2.0 cal.-cm ~-min

The portion of Wo incident on a horizontal surface 1s

senerally of more interest and is referred to as insolation,

Ly
W

L = _bo sino
0 2

T

( 4 2-2)

The solar altitude or angle of radiation, ao, with the horizon-

tal is given by

sinc = sindésin¢ + COSSCOSPCOST

where § is the declination of the sun, ¢ is the local lati-

(4.2-3)

tude, and Tt is the hour angle of the sun. The variable r is

the ratio: of actual earth-sun distance to mean earth-sun dis-

tance and is given by (TVA, 1972)
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2r = 1.0 + 0.017 cos 2 (186-0) (4.2-4)

where D is the Julian day (i.e. 1 &lt; D &lt; 365 or 3660).

The sun's declination varies throughout the year and from

year to year. Hence, declination values are usually pub-

lished in tabular form (List, 1963). However, an approxi-

mation formula that is sufficiently accurate for heat trans-

fer computations is available (TVA, 1972). Thus

S ~p
23.45 27
180 Cos Z65 (172-0) | (4.2-5)

\

The local hour angle, T, can be computed from

tT = ST + 12 - DTSL + ET

when the sun is east of the observer's meridian and from

 tT = ST - 12 - DTSL + ET

(4.2-6)

(4.2-7)

when the sun is west of the observer's meridian. The var-

iables in Equations 4.2-6 and 4.2-7 are defined as

ST = standard time in the time zone of the observer

in hours counted from midnight (e.g. 0:00&lt;ST&lt;

23:59).

JTSL = time difference between local and standard meri-

dian in hours

== (LSM-LIM)

where £ is -1 for WEST longitude, £&amp; is for +1 for
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EAST longitude, LSM is the longitude of the stan-

dard meridian and LLM is the longitude of the ob-

server's meridian.

ET = difference between true solar time and mean solar

time in hours. (Usually neglected for heat trans-

fer computations . ET = 0 here).

The total radiation for a given period, At = t, - t,;, can

be found by substituting Equation 4.2-3 into Equation 4.2-2

and integrating.

ne

| I dt =0

t,

t,
“W

Le (sindsin¢ + cosdScosé¢cost)dt (4.2-8)wie—

|
+

Woo | [*
rtlo = =z sindsinédt +

(L 2

cosdcosdcostdt l 1 / 9)

|

In the evaluation of the first integral on the right-hand

side of Equation 4.2-9, § and ¢ are considered constant over

the interval. Thus,

2

sindsineédt = sinésiné (t,-t4)

In the second integral on the right-hand side of Equation 4.2-9,

§ and ¢ are again held constant, but tT is a function of time, t.
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By introducing the change of variables

EO

2 » (4.2-11)

-ransform hours to radians, the second integral becomes

&lt;9

cosScosodcostdt = cos8cosd| cos | 241] a (4.2-12)

re

cosScos¢pcostdt = 12 cosdcos¢(sin(t,) - sin(t,)) (4.2-13)

fo
——

Now by substituting Equation 4.2-10 and Equation 4.2-13

into Equation 4.2-9, the total hourly isolation is computed

1S

Lo. Wo
At o -

L

(t,-t;)sindsind + Lcosscoss (sin(ry) -sin (ty) |

(4.2-14)

the hour angle tT should fall in the range 0&lt;t&lt;2m. However,

when t is near noon standard time, discrepancies may arise

due to the non-synchronization with true solar noon. Thus,

if T &lt; 0 as computed by Equation 4.2-11, just add 2m. Sim-

ilarly, if tv &gt; 2m from Equation 4.2-11, subtract 2m.

Sunrise and sunset are assumed to accur at a=Q. Ob-

structions near the horizon and refraction considerations are

ignored.
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4.3 Clear Sky Shortwave Radiation

Eagleson (1970) quotes the following equation for the

attenuation of the radiation spectrum under clear skies,

based on the monochromatic arguments of Beer's Law.

[

= exp (-na,m) (4 3-1)

where I. is clear sky radiation, aq is a molecular scattering

factor (ag = 0.128 - 0.054 log m), m is the relative thick-

ness of the air mass (m = coseca), and n is a turbidity

factor (2.0 for clear air, 5.0 for smoggy urban air).

TVA (1972) considers that attenuation relationships of

the form of Equation 4.3-1 to be valid only for monochromatic

radiation and can therefore be considered only as an approx-

imation when used to compute the attenuation of the total

spectral solar radiation flux. However, its simplicity 1s

attractive. For the current version of the CSCS model, Equa-

4.3-1 is used.

However, it is prudent at this point to present an al-

ternative to Equation 4.3-1 that should be considered in

future versions of the CSCS model. Atmospheric transmission

of the solar beam is a function of a number of variables

including dust, moisture, elevation, ground cover, solar
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altitude, etc. Referring to TVA (1972), a method used by

Klein (1948) incorporates these elements. For clear sky

solar radiation

Le } a' + 0.5(1-a'-d) - 0.5d

0.5R, 1-a +d.)

(0.465+0.134w) (0.129+0.171e 0-880Myyp
D

gq! A

".0.981+0.034 1
~\

-

Ww

N =m ((288 - 0.0065z)/288"

3 256

n "SS LA0 -+ J 1 3} Jy We
te 5)

1.253 -1
nr

Sy

d = d, + d,

(4 3 2)

(4.3-3)

(4.3-4)

(4.3-5)

(4.3-6)

(4.3-7)

where a' is the mean atmospheric transmission coefficient

for cloudless, dust-free, moist air after scattering only, Ww

is the mean monthly precipitable water content in cm, 94 is

the mean monthly surface dewpoint, in OF, measured at the

2m-level, m is the optical air mass,dimensionless,

m, is the elevation or pressure adjusted optical:ailr

mass, dimensionless, z is the elevation in meters,

a is the solar altitude in degrees, d is the total
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dust depletion, dg, is the depletion coefficient of the direct

solar beam by dust absorption, and R, is the total reflec-

tivity of the ground. Some of the coefficients that appear

in the preceding equations may vary with location and time

of year. TVA (1972) provides brief summaries of coeffi-

cients at different locations and refers to studies providing

more comprehensive lists (e.g. Kimball, 1927, 1928, 1929;

Fritz, 1949; Bolrenga, 1964; Reitan, 1960, etc.)

4.4 Cloudy Sky Shortwave Radiation

The presence of clouds will further reduce the amount

of shortwave radiation reaching the earth's surface. The

amount of additional attenuation depends not only on the

cloud cover but cloud type, thickness and elevation.

The U. S. Army Corps of Engineers (1956) gives the fol-

lowing relationship to estimate the impact of cloud cover.

I Y

= = 1 - (1-K)N

Cc

(4 4-1)

where I.’ is the total direct and diffuse shortwave radia-

tion, N is the fraction of sky obscurred by clouds, and K is

a coefficient to account for altitude considerations.

 = 0.18 + 0.0853(10)z

vhere z is the cloud base altitude in meters.
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Prior to Equation 4.4-1, all equations in Chapter 4

have been deterministic. With the introduction of N and K,

the stochastic element has now entered the solar radiation

generation process. Cloud cover, N, was discussed in Chap-

ter 3.

The stochastic generation of K is not particularly

easy. Any relationships that might logically be expected

to exist between K and N are difficult to identify, due to

the way data for z are reported. Cloud base altitude is

only reported when N &gt; 0.50. For N &lt; 0.50, z is reported as

"unlimited ceiling".

The scale on which z is reported also varies with al-

titude. For example, z may Be reported in 30 to 150m

(100-500 ft.) intervals when z is small and 1500-3000m

(5,000-10,000 ft.) intervals when z is large. To avoid the

problems with establishing K, an alternative attenuation

function is desired that is a function of N alone.

TVA (1972) reports that the relationship

[
2_ = 1.0 - 0.65N° (4.4-3)

provides reasonable results. Under certain kinds of cloud

cover, Equation 4.4-3 can give values for attenuation that

are too high. As N»1 for high thin cloudiness, more radiant
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energy passes through than Equation 4.4-3 would indicate.

To help alleviate this problem, total opaque cloud cover is

used instead of total cloud cover. Opaque cloud cover data

are also reported at first-order stations where total cloud

cover is recorded and it gives a more accurate indicator of

the current cloud deck's ability to attenuate solar energy.

4.5 Summary

A procedure for generating hourly values of shortwave

radiation has been developed that uses predominantly det-

erministic techniques to establish "potential radiation".

Stochasticity enters through the introduction of generated

cloud covers that were discussed in Chapter 3. Seasonal

and diurnal variations are handled through the equations

describing the earth's motions about the sun and its own

axis.

Perhaps one of the most important features presented

thus far is that the depressed values of solar input observed

on cloudy days are now accounted for. Since the cloud cover

model is "synchronized" with the precipitation model, the

shortwave generation model automatically follows in step.

Furthermore, an infinite variety of radiation inputs are pos

sible. even on a day with precipitation. For example, the
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precipitation may occur at night, clouds clear away, and

maximum solar input is observed for the day. Or cloudiness

and precipitation may last all day and a minimum solar input

is generated. Any combination in between 1s also possible.

This feature is one of the significant elements that 1s

missing from the models in the current literature.
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Chapter 5

LONGWAVE RADIATION MODEL

5.1 Introduction

Atmospheric constituents are heated by conduction,

convection and radiation. These elements in turn emit what

is known as atmospheric or longwave radiation. The incoming

longwave radiation is another significant element of the land

surface energy balance that must be simulated.

5.2 Longwave Radiation with Clear Skies

The temperature, density,and depth of atmospheric water

vapor, carbon dioxide, and ozone largely determine the amount

of longwave radiation at the land surface. The major source

of variability in the total atmospheric emittance 1s asso-

ciated with the emission of water vapor in the 8-14um spec-

tral window. (Idso, 1981)

Since atmospheric radiation is a function of the full

depth of the atmosphere, and since routine soundings of

atmospheric properties are not generally available, many

researchers have attempted to estimate longwave radiation

using parameters that can be measured at the land surface.

The two most commonly used parameters are the atmospheric
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vapor pressure and air temperature, both measured at the Zm-

level

The effective emittance of a cloudless atmosphere 1s

senerally expressed as

Ny

pn

~

a

74
a) 2-1)

where €, is the effective emittance, R, is the longwave

radiation of all wavelengths, o is the Stefan-Boltzman con-

stant (0.826(10 19cal cm Zmin 19%), and T is the 2m air

temperature in °x.

Brunt (1932) and Angstrom (1915, 1936) developed equa-

tions for estimating €, based on atmospheric vapor pressure

alone. Brunt's equation is of the form

and

Sp = a + b(e,’

Angstrom reported

 = gq - glO YE" (5.2-3)

where a, b, a, y, and RB are empirical constants.

Formulations that depend only on temperature include

those of Swinbank (1963) and Idso and Jackson (1969).

Swinbank developed

iT 15.2-4)
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and Idso and Jackson used

“a
1 ce

d(273-T)°
(5.2-5)

vhere §, c¢, and d are empirical constants.

[dso, in cooperation with several other researchers,

led a number of investigations into the nature of atmos-

pheric radiation through the 1970's. This work culminated

in a 1981 publication which presented a new equation for

full spectrum thermal radiation. The new equation takes

into account both atmospheric water vapor and temperature.

The new equation was developed to follow the body of evi-

dence that links longwave radiation to the binding energies

of certain hydrogen bonds. Idso's latest approach takes

the form (Idso, 1981)

5 (1500/T)
e, = 0.70 + 5.95(10 ee (5.2-6)

where ej is in mb and T is in °K. Idso developed the model

using data that ranged from 245°K to 325°K for T and from

amb to 28mb for e,-

To stochastically generate values representing longwave

radiation, models to generate temperature and vapor pressure

are required. The temperature generation scheme will be
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discussed in a later chapter. Vapor pressure will be com-

puted as a function of the 2m dewpoint and the 2m temper-

ature. Dewpoint will be a generated variable and will also

be covered in a later chapter.

5.3 Atmospheric Water Vapor Pressure

As mentioned earlier, dewpoint and temperature will be

used to compute vapor pressure as required by Equation 5.2-6.

The path from dewpoint to vapor pressure is not particularly

direct. Several steps are taken.

First, the saturation vapor pressure, €., is computed

ising an approximation formula found in Rasmussen (1979)

3} 2,0 03,0 mh mS
= C +CqT+C,T +CT7+C,T+C-

2 (5 .3-1)

where es is in mb and T is in Oc. The coefficients of

Equation 5.3-1 were given as

C, = 6.0689226

Cc, = 4.4358312(10° 1)

JJ 1.4590816(10%)

Cy = 2.7619554 (10°)

(5.3-2)

Z, * 2.9952590 (109)

Be ® 1.4398885(10 3

Equation 5.3-1 was indicated to be valid over the range

.50°C to +50°C.
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A more computationally efficient form of Equation 5.3-1

was actually used. Equation 5.3-1 can be rewritten as

e. = C, + T(Cy+T(Cy+T(C5+T(Cy+TCs)))) (5.3-3)

Equation 5.3-3 requires approximately half the effort to

evaluate than does Equation 5.3-1.

The second step is to evaluate the relative humidity.

Linsley, et.al. (1975) provide the following approximation

[112 - 0.1T - Ty

112 + 0.97
~

where f is the relative humidity, T is temperature in °c, and

Ty is the dewpoint temperature in °c. For the range of

-25°¢C to +45°C, Equation 5.3-4 approximates relative humidity

to within 0.6 percent.

Relative humidity can be

£f =

2

9
e

S

de -i1ned as

(§ .3-5)

Since f and eg in Equation 5.3-5 are known, the remaining step

is to solve Equation 5.3-5 for e, and compute the vapor

pressure needed by Equation 5.2-6.

5.4 Longwave Radiation with Cloudy Skies

The presence of clouds will increase longwave radiation

due to the energy emitted by water and ice particles at
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the base of the clouds. Cloud type, temperature, and extent

all have an impact on the total additional contribution.

One correction factor found by TVA (1972) to work reasonably

well for a variety of conditions is

K = (1+ 0.17N%) (5.4-1)

where N is cloud cover. Applying Equation 5.4-1 and Equa-

tion 5.2-6 to Equation 5.2-1 yields the final relationship

used to generate longwave radiation.

_c (1500/7) ? 4
70 + 5.95(10 “He _e )(1 + 0.17N7)oT

(5.4 -2)

5.5 Summary

A generating scheme for longwave radiation has been

developed using the latest results of Idso (1981) to deter-

mine the atmospheric emissivity. Stochastically generated

temperatures and dewpoints are used to ''drive'" the longwave

generator.
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Chapter 6

TEMPERATURE MODEL

6.1 Introduction

In recent years, several researchers have attempted to

generate temperatures stochastically. In some fashion, each

investigator had to deal with the diurnal and seasonal cycles

that appear in the data. These cycles account for much of the

variability in observed temperature.

Because the periodicities are so evident, Fourier or

harmonic techniques have often been used to generate temper-

atures. Kim (1976) and Song et.al. (1973) are two examples.

Kim used Fourier techniques to generate an independent trace

of daily temperatures for input to a snowmelt forecast model.

Song et.al. developed a model to generate daily air temper-

atures and water temperatures for streams in the Missouri

River Basin. Song et.al. proposed that air and water temper-

atures could be considered to contain a deterministic part and

a stochastic part.

AT. = AT. + AT!
7 i i

(6.1-1)

= WT '

WT. = WT. + WT.

where AT. and WT. are the respective average daily air temp-
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erature and the average daily water temperature on the ith

day; AT, and WT are the deterministic components; and AT!

and WT: are the stochastic components.

The deterministic components, AT; and WT., were taken to

have the general form

T. = A + Bsin 25% + Ccos

where the coefficients A, B,and

2mi

265

C

(6.1-3)

were derived throush

regression analysis.

The stochastic components, ATS and WT; are not purely

random. Serial and cross-correlations exist. Therefore, Song

et.al. proposed that the water temperature departures be

written as a function of the air temperature departures.

WT! = DAT. + 6.
1 1 1

(6.1-4)

where § is a random number with zero mean. Substituting Equa-

tion 6.1-4 into Equation 6.1-2 to get a temperature model

‘albeit for water instead of air) that enables the output to

be correlated with a second time series,

WNT. = a + bsin
271 +
eT CCoSs

2mi ' _

zr * dAT; + 8 (6.1-5)

The coefficients a, b, ¢ and d are evaluated through regression

analvsis.
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Other researchers have created temperature generation

models that essentially depend on techniques yielding weakly

stationary processes (e.g. Markov lag-1). Seasonal variation

is introduced by using different parameter sets for different

times of the year. (Jones et.al., 1972; Ahmed, 1974; Nicks,

1975; Richardson, 1979, 1981). With the exception of Ahmed's

model, all of these models generate daily temperatures (either

mean or max-min) that are conditioned on the occurrence of

wet or dry days. This approach attempts to account for the

fact that on wet days temperatures tend to be lower than on

dry days.

Nicks (1975), for example, generated daily maximum and

minimum temperatures using a Markov lag-1 process. Four dif-

ferent sets of parameters were developed depending upon the

current wet/dry sequence. Parameter sets were developed

for a wet day following a wet day, a wet day following a dry

day, a dry day following a wet day, and a dry day following

a dry day.

Richardson (1979, 1981) used a similar approach but also

considered "maximum temperature, minimum temperature, and

solar radiation to be a continuous multivariate stochastic

process". Richardson then used a multivariate generating
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approach (Yevjevich, 1972) that was conditioned by the current

day's wet or dry state.

Ahmed (1974) also conditioned temperature by the current

day's wet/dry state, but used a somewhat different approach.

Ahmed was studying water-use efficiency in crop production

systems and needed temperatures for time scales shorter than

one day. Instead of continuously generating temperatures

throughout the day, Ahmed simplified the problem by developing

a set of equations designed to yield air temperature at three

specific times each day.

At 8:00 a.m.:

At

T
™  _

12:00 noon:

r = T +

2 0 +

2.0 +

1 - 3P
 —

1.5P_

0.5h

0.5h

(6.1-6)

(6.1-7)
A

At 4:00 p.m.:

T=T+ 1.0 + 1.5P - 0.5h (6.1-8)

where T 1s the air temperature in °c, T is the average temp-

erature for the day in Sa P, 1s the precipitation probability,

and h is the amount of precipitation in cm. The + or - sign

depends on the clear or cloudy conditions of the sky (i.e. a

binary switch).
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All of the approaches seen thus far eliminate the problem

of diurnal variation by dealing with longer time scales or,

as in Ahmed's case, develop an empirical set of equations for

each time of interest. In effect, Ahmed's approach uses a

daily time scale as well, since each equation is based on

data from only one particular time of day. This is really no

different than a max-min approach.

The literature on stochastic generation of temperatures

at time scales of less than a day is quite limited. Perhaps

that in itself is a statement of the difficulty of the

problem. The literature certainly indicates that the need is

there (Jones et.al. 1972: Nicks, 1975; Ahmed, 1974; Mishoe,

1978; Jones and Smerage, 1978, Baker, 1981) but the solution

1s not.

Only one relevant paper was found that approaches the

problem of stochastic generation of temperatures at the hourly

level. Hansen and Driscoll (1977) developed a mathematical

model for the generation of hourly temperatures. They were

able to develop a model of the periodic course of mean hourly

temperatures using the first, 365th, 730th, and 1095th

harmonics which correspond to the annual, daily, 12 hour and

8 hour variations.
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r, = T + (A;sin((360/N)t) + Bycos ((360/N)t))

(Azgssin((360/N)365¢) + Bg5Cc0s ((360/N)365t))

Aszpsin((360/N)730t) + B--,c0s((360/N)730t)

41095sin((360/N)1095t) + B10g5sin((360/N)1095t))

(6.1-9)

where Ty is the temperature at hour t, T is the mean annual

hourly temperature, A; and B; are amplitude coefficients, and

N is the number of observations in the fundamental period.

To simulate the irregular -and aperiodic variations of

hourly temperatures, Hanson and Driscoll superimposed a

sequence of serially correlated standard normal deviates upon

+

the temperatures generated by Equation 6.1-9. A lag-1 Markov

process was used.

For some reason, however, Hanson and Driscoll chose not

to try to estimate what the variance of the superimposed set

of deviations ought to be. Rather, the sequence was assumed

to have a variance of one which caused, as the authors acknow-

ledged, the overall model variance to be lower than the observed.

Unfortunately, none of the models discussed so far have

both the refinement in the time scale and the necessary flexi-

bility to rationally include the effects of other variables

(e.g. cloud cover) on a continuous basis. A new approach

must be defined.
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6.2 Bryan's Temperature Forecast Model

[n 1967 Gerrity published a report describing a physical-

numerical model for the prediction of synoptic-scale low

cloudiness. The model was designed to permit the investi-

gation of the significance of certain boundary-layer processes

for the development of horizontally extensive areas of low

cloudiness. The model required temperature inputs at the

lower boundary, the 2-m level. Gerrity chose an empirical

method developed by Bryan (unpublished,1964) to estimate the

temporal variation of the air temperature attributed to the

divergence of radiative heat flux and the divergence of

addy heat flux. Bryan's method uses the equation

es = b_ - byT(t) + b,s(t) + bar(t) (6.2-1)

where T(t) is temperature, t is time in hours after local

midnight.

s(t) = sindsind - cosécos¢cosTs (R&lt;t&lt;§)

s(t) = 0 (otherwise)

ds (t .

r(t) = ds(t) = or cosdcososin hye (R&lt;t&lt;12) (6.2-3)

r(t) = 0 (otherwi se)

and § is the solar declination, ¢ is the local latitude, R is
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the local time of sunrise and S is the local time of sunset.

Equation 6.2-1 gives the temperature change as a function of

the current temperature and solar input as represented by the

two terms s(t) and r(t). The solar input is then represented

by the sine of the solar altitude. (This is especially

interesting, since the relationship for the sine of the solar

altitude also appears in the shortwave radiation model of

Chapter 4. The possibility thus presents itself for possible

linkage of the shortwave radiation model with a method for

computing temperatures.)

Equation 6.2-1 can be

bt
factor e . Thus

A yy sarating

b.t bt

Loe lre))=e!(db,+b,s(tt) + b.r(t)) (6.2 4)

The solution of Equation 6.2-1 is

-by(t-t") -byt
T(t) = T(t')e + e F(t,t'") (6.2-5)

t byt bt t byt
F(t.t') = b_| e “dt + e “s(t)dT + by | e “r(t)dr

b,

(6.2-6)

Equation 6.2-5 suggests that temperatures can be calcu-

lated for any time, t, if only the initial temperature is
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known (i.e. T(t')). Before Equation 6.2-5 can be evaluated,

however, the coefficients b, must be determined.

The standard method for determining the coefficients that

arise from the solution of a differential equation 1s to

apply known boundary or initial conditions and solve for the

respective values of the coefficients. Bryan, however, de-

veloped a procedure to derive the coefficients by fitting the

model to a set of observed data through regression.

The details of Bryan's method can be found in Appendix C.

For readability, only the essential elements are presented

here

Equation 6.2-5 can be rewritten in the following form

bq -b, (t-1-t"') -b,(t-1)
= e (T(t")e ° Lop F(t-1,t'))

i, TE(t.t-1)

(6.2-7)

The quantity inside the brackets is just T(t-1).

6.2-7 becomes

“by “bjt
T(t) = e T(t-1) + e F(t,t-1)

Thus Equation

(6.2-8)

Equation 6.2-8 gives the current temperature based on the

conditions an hour earlier at t-1. The hourly temperature

change, Y(t), is found by subtracting T(t-1) from both sides

of Equation 6.2-8.
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by -byt
Y(t) = -(1l-e )JT(t-1) + e F(t,t-1) (6.2-9)

Next, substitute the expression for F(t,t-1) into Equation

6.2-9.

-h t byt “by
= be | e dt - (l-e YT(t-1) + b,e

-b.t byt
e “s(t)dT

1

NLA
bot byt

e “r(t)dT (6.2-10)

t-1

+

Evaluation of the first integral (14 for convenience) on

right hand side of Equation 6.2-10 leads to

the

b -b.
, 0 i

i, = Tr (1 - &amp;

b,
(€ / 11)

The last two integrals, I, and I, on the right hand side are

complicated by the exponential term inside the integral.

Bryan (1964) indicated that it was sufficient to use the mean

value of 1" over the integration interval and bring it out-

side the integral. Thus

Y =

IlWG,

I, T -b b,t

Ly=L a-e 1,.1

b -b
_ by ] 1

I, = b, (1 e | s(t)dT

(6.2-12)

(6.2-13)

and

b -b
i, = = (1 - e | r(t)dT

r-

(6.2-14)



SO

Substituting the expressions for Ii) I, and I. back into

Equation 6.2-10 yields

b -b

((t)=£2(1L-e
1

n -b

2a 1
t

By by [F
s(t)dt + 5 (1 - e ) r(t)dT

1
]1

A

(6.2-15)

At this point, it may not be clear that Equation 6.2-15 is

of a form that can be utilized to estimate the coefficients

by regression. To establish this point, compare Equation 6.2-15

with the following term-by-term

FOT

Y(t) = a + a X(t) + a, X,(t) + a

the constants a;

0 -b

2 (1 - e 1
D4

a =
-(1 % J

5
w—

———

b 2 Tt

by (1 - ?

a = 3

3 b.

~ -b,.

(1 - e EN

-
Y _ (t) (6 .2-16)

(6.2-17)

(6.2-18)

(6.2-19)

(6.2-20)
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For the predictors, xX; (t)

X,(t) = T(t-1)

X, 1%) - | s(T)dr
/

 _ 1

(6.2-21)

(6.2-22)

 1

| r(t)dT
+-1

(6.2-23)

Once the a;'s have been determined by regression, the b.'s can

easily be found since the set of Equations 6.2-17 through

6.2-20 is a system of four equations in four unknowns. There-

fore, the b.'s are determined as

4 v ’i

hb - -In(a, + 1)

b | -

b
1 a. , i = 0,2,3

a4 1

(6 .2-24)

(6  / 25)

Now standard regression techniques can be used on the

observed data set of hourly temperature changes to establish

the b.'s. Once the b.'s are established, Equation 6.2-5

can be used to forecast temperature given only the initial

temperature T(t').

Since s(t) and r(t) operate only during certain portions

&gt;f the day, the equations for both Y(t) and T(t) will have
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different forms depending upon the time of day. These dif-

ferent forms and the details of their development appear in

Appendix C.

Bryan's temperature model presents some interesting

possibilities. First, as was noted earlier, a direct linkage

is evident between Bryan's temperature model and the shortwave

radiation model through the joint use of the expression for

the sine of the solar altitude. This allows the temperature

model to continuously respond to the temporal variation of

the solar signal. In addition, two other parameters in

Bryan's approach help account for seasonal variations (i.e.

declination,§) and geographical influences (i.e. latitude, d)

on the solar input.

Flexibility is another key element in Bryan's model.

Modifications could be made to the original Equation 6.2-1

to help account for the effects of cloud cover, longwave

radiation, wind speed, wind direction, ground temperature, etc.

If this could be done, then an expanded Bryan model could be

used to trace a "deterministic' component of temperature upon

which a random component could be superimposed as was done by

Hansen and Driscoll (1977). Then an hourly stochastic temp-

erature generator would exist that could be coordinated with
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other stochastic variables in a multivariate process.

5.3 Stochastic Temperature Generation

An expanded version of Equation 6.2-1 can be written

1 C

he n,
aTie) + b T(t) = by + bK(t)s(t) + bgK(t)T(t)

2 ~
yu Wt) + bT,(t) + beW, (t) + b,W,(t) (6.3-1)

where T(t) is the deterministic component; K(t) is the radia-

tion attenuation factor (K(t) = 1 - 0.65N%(t)); N(t) is the

cloud cover; q(t) is a longwave radiation estimate; T,(t)

is the ground temperature; w(t) is the wind speed; and Ws)

is the wind direction.

The longwave radiation estimate, q(t) is not the same

as the longwave radiation calculated by Equation 5.4-2.

Rather, the simpler Swinbank (1963) formulation was used with

a cloud cover correction factor (TVA, 1972).

q(t) = 0.937(10°2)(1 + 0.17N%())oT®(t) (6.3-2)

where ¢ is the Stefan-Boltzman constant, 0.82610 10) cal

em” 2min 1°" %. One of the main reasons for including the

term b,q(t) in Equation 6.3-1 was to insure that a term res-

ponding to the effects of cloud cover was present throughout
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the entire day. The other two terms that respond to cloud

cover are only present during certain portions of the day.

The term b,a(t) will be available all day and should be use-

ful in explaining some of the differences in cooling observed

on clear nights as opposed to cloudy nights.

Wind speed and wind direction were added as possible

indicators of an advected temperature component. Wind direc-

tion, in particular, might give an indication of the sign of

the advection (i.e. warming or cooling).

Wind direction is often reported in degrees azimuth

measured from the north (0°&lt;azimuth&lt;360°). Inclusion of wind

azimuth in Equation 6.3-1 can cause some inconsistencies in

parameter estimation. For example, an azimuth report of

360° or 10° physically indicate practically the same prop-

erty, a northerly flow. However, statistically the two

reports would indicate something quite different. The 10°

report would be a value that is considered well below the

mean value and the 360° report represents a value well above

the mean. This problem will most notably affect the serial

correlation estimates.

A transformed wind speed is used instead where

Ni (t) = azimuth (0°&lt; azimuth &lt;180°) (6
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and

W,(t) = |azimuth - 360°], (180&lt;azimuth&lt;360°) (6.3-4)

This approach unfortunately filters out east-west influences

but the relative impact of the north-south component remains.

To solve Equation 6.3-1, first note that q(t) is a non-

linear function of temperature. Since q(t) is really only

being used as in index, it is linearized using q(t-1) and

bringing it outside the integral. Now the solution to

Equation 6.3-1 becomes

3’ 0 -b, (t-t') byt
T(t) = T(t')e Le G(t,t')

whe: \
u

3(t,t 1 = b,

-t b.,T

e td + b,

-t b
11

e K(t)s(t)dr

/

Hy —

FC

bit
e K(t)r(t)dt + b, q(t-1)

rt
b.1

e 1 dt

|

-t

t

byt
2 T,(t)drt + be

byt
W.(t)dr

rt

byt
a W_(t)dr

(6.3-6)



86

Parameter estimation can now proceed as was demonstrated in

the previous section. The details appear in Appendix D.

The hourly temperature change can now be expressed as

-b,t i bit -b, ny
= b_e e dt - (1 - e )T(t-1)

1

&amp;

-

.

©

-F.t

!

byt
e K(t)s(t)dr

a

3

 F
had

|

rt

byt
e K(t)r(t)dr

r

|

-b;t
hb," qg(t-1)

(tpt
lo1dr
I

-

—

] -

ol

t rt byt

e T,(t)dt

 |

4 aVJ] oe

"br T)dTbt D1

t
 T

H
4

W,(t)dr (6.3-7)

b.T
The term e 1 that appears in the integrals containing s(t)
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and r(t) is treated by using the mean value argument shown

in the previous section (see Equation 6.2-12). The integra-

tion interval is short enough that the values K(t), Tg (1),

Ww. (Tt), and Wit) can be evaluated at time t and brought out-

side the respective integrals.

The regression formula for Y(t) is now

Y(t) = a + a; X(t) +

where the coefficients a.

d

b.-
(1 - e *

3.

a

=b. i=
1 1

are

0,2,3, nny

A a .X-(t) (6.3-8)

(6.3-9)

(6.3-10)

and the predictors X; (t) are

4

"

(t) = T(t-1) (6.3-11)

rl

X,.(t) = K(t) s(t)dT

Tr
~

1

t

X(t) = K(t) r(t)dr

(6.3-12)

(6.3-13)

J
a|

X,(t) = q(t-1)

X.{t) = T_(t)

(6.3-14)

(6.3-15)
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Xe (t) = We (t) (6.3-16)

(6.3-17)

Note that since the temperature at time t is the variable

being computed, T(t-1) is used in Equation 6.3-14.

Once the a;'s have been estimated, the b.'s are easily

“ou.ad

y

7).

—

fd

-1n (a,
1 1)

—= a. i=0,2,3,...,7
aq L

(6.3-18)

[6 J -19)

Now Equation 6.3-5 can be used to estimate the "deterministic"

component of hourly temperatures.

The b,'s are developed for each period of interest. In

the current application, observed hourly values of temperature

change, opaque cloud cover, wind speed, and wind direction for

a particular month were used to estimate the b,'s. Ground

temperature data were not available. Thus,b. was set to 0.0.

Equation 6.3-5 is applied each day to compute tempera-

tures at t = 0 (midnight), 1, 2,...,23. The initial temper-

ature, T(t"), for the period is the 11:00 p.m. (t=23) temp-

erature for the previous day
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The "deterministic' component is essentially the expec-

ted temperature given the set of predictor values. All of

the temperature variability is not explained by the model.

To represent the random element, a serially correlated set

of random variates will be added to the "deterministic"

trace. Thus, the hourly temperature, T(t),

av

T(t) = T(t) + T'(t)

nN

where T(t) is the "deterministic" element and T'(t) is the

random element.

The random element is defined as

I(t) = T(t) - T(t) (6.3-21)

where T,(t) is the observed deviation, T(t) is the observed
av]

temperature and T(t) is the deterministic component. The

jeviations are assumed to be approximated by a lag-1 Markov

DTOCESS

T'(t) = pp T' (t-1) + C Op 1-02, (6.3-22)

where Pr is the lag-1 serial correlation, Ce is the standard

normal deviate, and Ory is the standard deviation.

5.4 Summary

lhe stochastic temperature model generates hourly temper-
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atures as a function of the time of day, time of year,

latitude, longitude, cloud cover, wind speed, longwave

radiation, shortwave radiation, ground temperature, and wind

direction. Also, because the precipitation model in effect

ndrives" the cloud cover generation, the temperature output

is appropriately affected by the occurrence of precipitation.

These features make the proposed stochastic temperature

algorithm the keystone in the framework of the CSCS approach.
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Chapter 7

WIND MODEL

7.1 Introduction

The wind component of the CSCS model is composed of two

parts, wind speed and wind direction. Wind speeds are re-

quired as input to flux computations of the land-air inter-

face. Wind speeds may also quantify, somewhat, advection

processes for the temperature model. Wind direction is re-

quired as an advection indicator for the temperature model

as described in Chapter 6.

For the most part, the cross-correlation coefficients

between wind speed, wind direction,andtheother variables

in the CSCS model are relatively low, generally less than

0.35 (see Tables 7.1-7.4). Therefore, for this version of

the CSCS model, both wind speed and wind direction are treated

as independent lag-1 Markov processes

7.2 Wind Speed

The frequency distributions of wind speeds tend to be

positively skewed. A variety of probability distributions

with this property have been applied to wind speeds. Among

them are the Planck, Rayleigh, gamma and the Weibull.

(Hennessey, 1977; Justus et.al., 1977; Sherlock, 1951). The
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Weibull appears to be the most popular.

It is apparent then, that not only must the mean and

variance of the generated data be reproduced, but the gen-

erated data should be skewed as well. One often-used approach

in hydrology to generate skewed serially correlated data

is the Thomas-Fiering method (Haan, 1977).

The equation for a lag-1 Markov process can be written

 ow FI 2 }

w(t) = KB, + pg (W(t 1) wo) * eo, v1 Pg (7.2-1)

where W(t) is the hourly wind speed, Ww, is the mean hourly

wind speed, Pg is the lag-1 serial correlation coefficient,

and o_ is the wind speed standard deviation. The variable

2 is random and defined by Thomas and Fiering as

2 3

 oo Z( , Tel i 2
Vr Y. 6 36 Ys

(7 2-2)

where Y. is the skew coefficient of e and by is a standard

normal deviate. The skew coefficient of € in turn is defined

4. &gt; |

Ye

3
(1 - ps7 vg

(1 - 0 Hl

(7.2-3)

where Y. is the skew coefficient determined from the wind

speed data.
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In some applications, the mean and standard deviation

of hourly wind speed may not be independent of the time of

day. This can result when surface-generated instabilities

promote vertical exchanges. This allows greater momentum

transfer from faster moving air aloft and increases sur-

face winds. Since atmospheric stability follows a charac-

teristic diurnal curve, wind speeds may as well. (Oke, 1978).

To approximate this property, the mean and variance

in Equation 7.2-1 will be allowed to vary with time.

Since there is a relatively smooth transition of the observed

hourly means and standard deviations throughout the cycle,

the minimum and maximum parameter values are entered with

their respective times of occurrence. Parameter values for

each hour are then found by linear interpolation.

7.3 Wind Direction

As mentioned previously, wind direction is generated as

input to the temperature model as an indicator of advected

heating or cooling components. Advection is due to variations

in the spatial properties of the atmosphere. When dealing

only with point data, however, it is quite difficult to

identify the nature of advection, particularly for future

time steps. Wind direction appears to be about the only
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point variable that could indicate advection. This is

largely due to the fact that air masses coming to a loca-

tion from different directions may have characteristically

different properties. For instance, winds with a large

northerly component may, on the average, bring cooler

weather conditions than winds from the south.

LS

The transformed wind direction discussed in Chapter 6

generated by a lag-1 Markov process.

IN (1) = W, + pq(Wylt-1) - Wyo

» /1 - ¥ (7.3-1)

where Ww, (t) is the hourly transformed wind direction,

Wy is the mean hourly transformed wind direction, and

04 is the lag-1 serial correlation coefficient. The var-

iable ®, is a random input with zero mean and standard

deviation equal to 0g the standard deviation of the trans-

formed wind direction.

The distribution of transformed wind direction is, of

course, bounded on the left by 0° and on the right by 180°

To generate a random variate for Equation 7.3-1, an algorithm

was developed that will generate a random variate from an

arbitrary frequency histogram. (See Appendix Aj Curtis 1978;
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Abramowitz and Stegun, 1970). Utilizing the observed

frequency histogram of transformed wind direction, a random

value, 04&gt; representing wind direction (Wqs04) is selected.

Thus, o. can now be defined as

b, = 6, - W. {/ ot 2)

to complete the wind direction model.
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Table 7.1 Data Correlation Matrix for Dodge City, KS

July 1951 - 1957

TEN

y!

 -—
JEV

-0.22

1.00

CLOUD WIND WIND

COVER SPEED DIR.

-0.28

0.23

1.00

0.31 0.26

-0.10 -0.10

-0.08 -0.25

1.00 0.20

1.00

Table 7.2 Data Correlation Matrix for Dodge City. KS

January 1952 - 1958

ng 0

L rd.VT

 A————

] OC/

Et|

0 AcJ

1.00

CLOUD

COVER

-0.10

0.11

1.00

WIND WIND

SPEED DIR.

0.10 0.20

0.19

-0.03

0.08

0.12

1.00 -0.08

1.00
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Table 7.3 Data Correlation Matrix for Boston, MA

July 1951 - 1963

TEL?
i

1 uae

LYLa¥

0.76

1.00

CLOUD

COVER

-0.21

71)

oo  J

WIND WIND

SPEED DIR.

0.35 0.18

-0.12 0.28

-0.05 0.06

1.00 0.04

1.00

Table 7.4 Data Correlation Matrix for Boston, MA

January 1949 - 1962

TEMP

L hr)

re al

0.38

1.00

CLOUD

COVER

0.33

0.48.

1.00

WIND WIND

SPEED DIR.

-0.04

-0.07

0.36

0.28

-0.13 0.10

T.00 -0.08

1.00
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CHAPTER 8

DEWPOINT MODEL

8.1 Introduction

Some measure of atmospheric moisture is required to

establish a gradient for moisture transport processes at

the land surface. Specific humidity, vapor pressure, rela-

tive humidity and dewpoint temperature are all common

descriptors of atmospheric moisture content (Eagleson,

1970). Relative humidity and dewpoint data are more

generally available since they are measured at National

Neather Service first-order stations.

To simulate on an hourly basis, relative humidity

appears to be the more difficult due to the strong diur-

nal variations attributed to temperature (Oke, 1978).

Dewpoint, on the other hand, is much more stable during

the course of a day (Lorenz, 1978). Therefore, dewpoint

temperature is a more likely candidate for simulation.

Ahmed (1974), however, generated air humidity for his

nultivariate model in the following fashion

—] = H . H

9

where H_ is the air humidity (i.e. vapor density)

(8.1-1)

in
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g/m&gt;, Hg is the saturated air humidity (i.e. saturation

vapor density) in g/m&gt;, and H_ is the relative humidity.

Relative humidity for a particular time of day (8:00 AM,

12:00 Noon, 4:00 PM) was computed by linear interpola-

tion between weekly mean values of H. for the indicated

times. Ho is a function of temperature and was computed

using Murray's adaption of the Goff-Gratch equation (Van

Bavel, et.al., 1973). This approach is quite simplistic

since.any natural stochasticity is filtered out by the

use of weekly mean relative humidities. Also, humidities

are computed only at three specified times of the day.

Higher resolution is required in this study.

Gringorten (1966), in.a study simulating the fre-

quency and duration of weather events, suggested that

dewpoints could adequately be generated by a lag-1 Markov

process. This would be a reasonable approach if the mean

hourly dewpoints did not change materially during the

course of a day.

8.2 Dewpoint Generation

From the plots of observed hourly dewpoints in Fig-

ure 10.13 and Figure 10.15, it is clear that the mean diurnal
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variation of dewpoint is quite small. The difference

between the maximum and minimum hourly dewpoints in

Boston, MA was 1.1°C for January and July. For Dodge

City, KS, the difference was 2.4°C for January and 1.7°C

for July.

It is also apparent from Figure 10.13 and Figure 10.15

that the hourly variation in dewpoint is not random.

Rather, the hourly transitions are quite smooth. These

variations where they are noticeable, can generally be

explained by the short term dynamics at the land-air

interface. For example, the pronounced morning minimum in

the Dodge City data for January is likely due to the

removal of atmospheric moisture near the surface due to

frost formation. During the day, rising temperatures cause

the moisture to return to the lower atmosphere, elevating

the dewpoint again.

During July, the morning rise in dewpoint is probably

due to the addition of moisture from evaporating dew. The

subsequent dip in dewpoint temperatures in the afternoon

is likely the result of instability-generated mixing with

dryer air aloft. As the strength of the vertical instabil-

ity subsides in late afternoon, moisture builds up again
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in the lowest atmospheric layer and the dewpoints rise.

Tables 7.1 - 7.4 present the lag-0 cross-correlation

matrices for the observed data. The generally weak cross-

correlations exhibited by the July data indicate that

dewpoints could be generated independently.

Since the daily variation of July dewpoints for Boston

and Dodge City are small, and since the July dewpoints

are only weakly correlated with the other model variables,

July dewpoints could be generated independently by a first-

order Markov model as suggested by Gringorten (1966).

Therefore, the July dewpoints will be generated by

r
d t) = T, + pq (1) (Ty(t-1)-1

bog (1-05(1))7

’

-

(8.2-1)

where T4(t) is the hourly dewpoint in °c, Ty is the mean

hourly dewpoint in °c, pq(1) is the lag-1 serial correla-

tion coefficient, be is the standard normal deviate, and

Iq is the standard deviation of hourly dewpoint in °c.

To affirm the choiceofafirst order Markov process

to represent the July dewpoints, the observed serial corre-

lation functions for July hourly dewpoints are plotted in
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Figure 8.1 in comparison with the appropriate theor-

etical curve (i.e. p(T) = ot (1)). The theoretical curve

follows the Boston data very well. For the Dodge City

data, the theoretical curve follows the observed data

quite well only for the first six to eight hours. Beyond

that point the theoretical curve falls faster than the

observed. Overall, Equation 8.2-1 seems to be a reasonable

choice for July dewpoints.

Since the January dewpoints appear to have a stronger

cross-&lt;correlation structure with other CSCS model variables,

January dewpoints will be assumed to be composed of a

"deterministic component and a random component. This

approach follows that established for temperature genera-
av

tion in Chapter 6. The deterministic component, T4(t),

will be estimated by linear regression. Thus

v \

T(t) ® dg, + d,T4(t-1) + d,T(t) + d;N(t) + dw. (t)

a [oY 1 (t)

\

where T,(t-1) is the previous hourly "deterministic"

(8.2-2)

DOT-
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tion in °C, T(t) is the current temperature in °c,

N(t) is the cloud cover, W_ is the wind speed in ns 1,

and Wj is the wind direction in degrees (0°&lt;W, &lt;180°).

The d;'s are coefficients to be estimated by standard linear

regression techniques.

The random component will be treated as a lag-1

Markov process which represents a deviations process

defined by

AY)

Ty, (t) = Tyo (8) = T(t) (8.2-3)

where Tyo (t) is the observed dewpoint 1n °c, T(t) is the

dewpaint 1n °c generated by Equation 8.2-3 using observed

data as input, and Tho (BD is the observed dewpoint temper-

ature deviation in °C.

The dewpoint deviations are generated by

| | 2 4

T:(t) = omy (1)TH(t-1) + vv on, (Ll-pg7, (1)) (8.2-4)
d Tao d t Tao Tao

where Prt (1) is the observed lag-1 serial correlation co-
do

afficient of the deviations, b. is the standard normal de-

viate, and Opt is the standard deviation of the observed
do

deviations in ©C.
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The January dewpoint model can now be written as

3.3

ny,

T,(t) = Ty(t) + THD)

Skewed Data

(8.2-5)

The dewpoint data tend to be negatively skewed. For

example, the July data were found to have skew coefficients

of -0.55 and -0.67 for Boston and Dodge City respectively.

To be correct in modelling hourly dewpoints in July, the

random deviate be should be modified according to the

Thomas-Fiering approach described in Chapter 7 for wind

data. The transformed random variate, €, was defined pre-

viously as

N11 Te

e ,

f ~

. 2

Y_
LeetYe|2

6 36 Y_

(1 - 03(1))
———

(1-02) &gt; d

(7.2-2)

(7 . 2-3)

where Yg4 is the skew coefficient of the observed data.

This approach does not work well for dewpoint genera-

tion because the lag-1 serial correlation coefficients for
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dewpoints are very high. (0.96 for July in Boston and

0.95 for July in Dodge City). To see the problem more

clearly, let us look at the modifier of Ya in Equation

7.2-3 and call it F. Thus

 BE

3
(1 - p3(1))

(1 - p5(1)) 1°

(8.3-1)

Examination of Equation 8.3-1 shows that the denominator

decays to zero faster than the numerator as p, approaches

one. Therefore, as pq (1-1, F+x, The skew adjustment

factor, F, is plotted against lag-1 correlation on Figure

8.3. Generally, when lag-1 correlation is less than about

0.9, there is no problem. But for lag-1 correlation values

greater than 0.9, F gets very large. For example, for

o(l) = 0.95, F = 4.7.

To see the full impact of such an extreme adjustment

factor, we must examine the last term of Equation 8.2-1

using €4 from Equation 7.2-2 instead of the standard normal
1

deviate by On Figure 8.4 the value of e 04(1-05(1))7

is plotted against a wide range of values for J

During the course of generating a large number of

random standard normal deviates, Vy., a few values selected
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from the tails of the distribution are expected. If,

for instance, a large negative value for by is selected,

a very large value for the e041 - 02(1))* term results.

In this case, the last term of Equation 8.2-1 so dominates

the output that very large and sudden negative shifts of

dewpoint occur. From Figure 8.4, it is seen that nega-

tive shifts on the order of 100 to 14°C are possible. If

two or more large values of by happen to be generated

close in succession, totally unrealistic sequences can

be generated. Therefore, the Thomas-Fiering approach

was not used for dewpoints. Instead, the process was

approximated using normally distributed deviates. Be-

cause dewpoints are constrained by temperature, (i.e. T4

some of the skew is recovered. In future studies, other

&lt; T),

ways of preserving dewpoint skewness should be examined.
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CHAPTER 9

PARAMETER ESTIMATION

0.1 Introduction

In Chapter 2 through Chapter 8 the individual compon-

ents of the CSCS model were developed. However, the de-

tails of each required parameter estimation were not dis-

cussed. Rather, it seems more reasonable to treat the

parameter estimation issues in a separate comprehensive

chapter. Hopefully, future users of this report will find

it more convenient to refer to a single chapter on para-

meter estimation instead of searching all chapters to

seek the necessary information.

In the following sections, the procedures used to

identify the parameters used in each component are described.

A different set of parameters was derived for each month

studied (i.e. January and July).

Hourly observations of rainfall, total opaque cloud

cover, wind speed, wind direction, temperature, and dew-

point were obtained from the National Climate Center in

Ashville, North Carolina for Boston, MA, Dodge City, KS and

Phoenix, AZ. These locations were chosen to represent a

variety of climatic and geographic conditions. Unfortunately,
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the Phoenix records had too many missing observations and

the data set was not used in this study. However, adequate

records were obtained for January (1949-1962) and July

(1951-1963) at Boston and January (1952-1958) and July

(1951-1957) at Dodge City.

For each location, data for each January (or July)

were stripped from the master data file and combined to

create ''mew' time series containing only January (or July)

data. Parameters were then estimated from the January

(or July) time series for each location.

9.2 Precipitation

The required parameters for the precipitation compon-

ents include the mean time between storms, ty» in hours,

the mean storm duration, t., in hours, and the mean storm

depth, h, in mm. Calculation of the arithmetic mean values

is obviously straightforward. The difficulty here lies in

the assumptions used in developing the precipitation compon-

ent, namely that successive storms are treated as independent

avents and that the times between storms follow an expon-

ential distribution.

During times of precipitation activity, there may occur

periods of no recorded precipitation. This is not unusual

since a single synoptic scale disturbance can have multiple

mesoscale precipitation events imbedded within it. Since
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the periods of precipitation emanate from systems evolving

within a common parent some dependence is expected. As

the times between recorded precipitation increases, casual-

ity arguments suggest that this dependence decreases. The

key then is to establish some minimum time between recorded

precipitation that could be used to discriminate between

"independent" storm events.

Restrepo and Eagleson (1982) studied long-term hourly

precipitation records for six locations in the continental

United States and found minimum times between recorded

precipitation required for independence that ranged from 8

to 76 hours. In general, dry climates had high values for

this minimum separation interval while humid climates were

found to have lower values. Using a procedure outlined by

the authors, the minimum separation intervals for Boston,

MA and Dodge City, KS would be on the order of 13 hours and

47 hours respectively. Restrepo and Eagleson concede,

however, that for precipitation models like the one used

here, such a strict requirement on independence is opera-

tionally impractical and probably unnecessary.

If these long separation intervals were imposed, long

storm durations would result and the storms would contain

many periods without precipitation. This would produce
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unrealistically low average storm intensities. Restrepo

and Eagleson (1982) suggest that a shorter separation

criterion could be used operationally.

Grace and Eagleson (1967) found that a two hour separ-

ation interval was sufficient for identifying separate storms

in New England under a sharply limited definition of in-

dependence. Using the same criterion Sariahmed and Kisiel

(1968) found a three hour separation interval sufficient

for an analysis of convective storms in Arizona. For this

study, a two hour separation interval was used.

The parameter estimation procedure used in this study

defined a storm duration to include the hours with recorded

precipitation plus any non-precipitation separation intervals

of two hours or less. Once the storms were defined then the

appropriate mean storm durations, the mean times between

storms, and the mean storm depths were determined by the

usual techniques.

Cloud Cover

Cloud cover, as indicated in Chapter 3, is represented

by a modulated non-stationary stochastic process composed

of intra and inter-storm sequences. Parameter estimation

0.3

for cloud cover during intra-storm periods is trivial since

total cloud cover is assumed (i.e. N(t) = 1.0). For inter-
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storm periods several parameters must be identified.

In Chapter 3, the existance of a stationary inter-

storm "fairweather'" cloud cover process was assumed. It

was also assumed that the conditional mean and variance

of the cloud process follow a smooth transition from their

intra-storm values to their inter-storm '"fairweather"

values. Therefore, parameter estimation for the cloud cover

process must include the following: 1) the identification

of the appropriate fairweather sequences, 2) the estimation

of the mean, variance, lag-1 serial correlation coefficient,

and the frequency histogramofthefairweather cloud cover,

and, 3) the decay coefficient for the transition period.

For convenience, the cloud cover model is rewritten

here as

N(t) = Mj + (1+My) (1-P(t)) + m(t)P(t) (9 3-1)

where Mj is the fairweather mean cloud cover, P(t) is

the transition function, and m(t) is a stationary sequence

of serially correlated deviations. P(t) and m(t) are res-

pectively defined as

-y(t-t,) -y (tatty -t)
Pit) = (1 - e 0°y(1 -e OP 7%

nit) = po (1)m(t-1) + n(t) (1-0, 2(1))7 (9.3-3)
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where y is the transition decay coefficient in hr lt, ty

is the time of beginning of the inter-storm period in hr,

ty is the time between storms in hr, pq (1) is the lag-1

serial correlation coefficient of the fairweather cloud

cover, n(t) is a zero-mean random deviate with variance,

a , and 0 * is the variance of the fairweather cloud

cover.

The nature of the hypothesized transition of the

cloud cover mean and variance is shown in Figure 9.1. In

this example where ty = 100 hr, the function describing

the mean is U-shaped. The variance is represented by the

trace of + 1 standard deviation about the mean. The var-

iance narrows to zero at each end and attains its maximum

ralue in the middle as it follows the general curvature of

the mean.

The values for the mean and variance that we are look-

ing for are those that represent the stable or fairweather

central region during the time between storms. In other

words, we are interested in that region described by the

bottom of the U-shaped functions shown in Figure 9.1.

To explain the procedure used to identify the fair-

weather sequences, it is best to again refer to Figure 9.1.

Here we have an inter-storm period of 100 hours. If we cal-
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culate the mean cloud cover for the entire 100 hour period,

we would get a value say Nio0° Next, if we eliminate two

hours from each end of this 100 hour period and calculate

a new mean for the remaining 96 values, we would get Nog

where Ngg &lt; N{00 since some of the highest values of N

were eliminated. If we continue to eliminate values at

each end, the mean values will continue to decrease, al-

though at a slower rate. When the mean value has stabilized,

it is assumed that the fairweather sequence has been iden-

tified.

To handle the entire data set, the procedure is to

first compute the mean value of cloud cover for all inter-

storm periods. Then after successively eliminating values

from both ends of the available inter-storm periods, new

means are computed. Eventually after some T. hours have

been eliminated, the mean value stabilizes. The value T.

is the length of the transition period. Once T_ is es-

tablished, the fairweather sequences contained in inter-

storm periods of length greater than 2T are combined in

a new time series containing only fairweather values.

After the fairweather cloud cover time series has been

determined, Mj» 0 2, pp (1) and the frequency histogram

can be estimated by the traditional methods.
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In general, the frequency histograms of the fair-

weather cloud covers tend to be U-shaped with spikes at

zero and one. Part of the reason for this result is that

visual observations of both zero and one actually encompass

broader ranges of causative atmospheric conditions than

do the other observations (i.e. N(t) = 0.1, 0.2,...,

0.9, etc., see Chapter 3.6). This distortion causes peaks

at zero and one that can be two to four times greater than

the values obtained for the other levels of cloudiness. As

a result the random variate generating scheme described

in Appendix A becomes very inefficient.

In addition, the lag-1 Markov model (Equation 3.5-1)

used to generate the fairweather cloud cover sequence

preserves the first and second moments of the input distri-

bution but does not necessarily preserve the distribution

itself. For strongly peaked U-shaped input distributions,

the tendancy is to produce output distributions that are more

uniform (i.e. lower peaks and higher mid-ranges).

An example of a cloud cover histogram is presented in

Table 9.1. Except for zero and one, all elements represent

a cloud cover range of 0.10. Because cloud cover observations

are bounded by zero and one, histogram elements for zero and

one represent a range of only 0.05. To make the histogram

a probability mass function, the magnitudes of the histogram

slements for zero and one would have to be doubled to get
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the proper mass contribution for these elements. However,

this would compound the peakedness problem discussed earlier.

Another alternative would be to expand the range of the

representative histogram elements for zero and one. (Remem-

ber that the outcome of the cloud cover process is still

constrained to be between zero and one). If these two

ranges are expanded such that the resulting histogram ele-

ments take on values of the same order as the mid-range

values, three positive results occur. First, the data

generation efficiency roughly doubles. Second, the output

histogram is less distorted and third, the broader causative

atmospheric conditions are better represented. An example

of the adjusted input histogram is shown in Table 9.2.

The remaining parameter to be estimated for the cloud

~over model is the transition decay coefficient, vy. To

estimate yY we can use the value found for the length of

the transition period, T., during the identification of the

fairweather sequence.

The transition function P(t), as shown in Equation 9.3-2,

is a symmetric function. To examine the transition rate, we

need only to look at one side of the function since for

analysis purposes we can assume that ty is large enough to

~1iminate the influence of the second side of the function.
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Table 9.1 Observed Cloud Cover Histogram: July, Boston

AN i E

0.00 &lt; N &lt; 0.05

0.05 &lt; N&lt;0.15

0.15 &lt; N&lt;0.25

0.25 &lt; N &lt; 0.35

0.35 &lt; N&lt;0.45

0.45 &lt; N&lt;0.55

0.55 &lt; N&lt;0.65

0.65 &lt; N &lt; 0.75

0.75 &lt; N &lt; 0.85

0.85 &lt; N &lt; 0.95

0.95 &lt; N &lt; 1.00

FREQUENCY (3%)

3 2

11

12

LO

»

1

“
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Table 9.2 Adjusted Cloud Cover Histogram: July, Boston

RANGE

0.25 &lt; N &lt; -0.15

0.15 &lt; N&lt;-0.05

0.05 &lt; N&lt; 0.05

0.05 &lt; N&lt; 0.15

0.15 &lt; N&lt; 0.25

0.25 &lt; N&lt; 0.35

0.35 &lt; N&lt; 0.45

0.45 &lt; N&lt; 0.55

0.55 &lt; N &lt; 0.65

0.65 &lt; N&lt; 0.75

0.75 &lt; N&lt; 0.85

0.85 &lt; N&lt; 0.95

0.95 &lt; N&lt; 1.05

FREQUENCY

10

11

11

11

1 2

1 0

—

—

A

(%)

1.05 &lt; N &lt; 1.15

1.15 &lt; N &lt; 1.25
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Thus, for convenience, the right-hand side of P(t) is

ignored and Equation 9.3-2 can be rewritten (after setting

the arbitrary initial time t, to zero) as

-y*
P(t) = (1 - e (9.3-4)

According to the criterion established in Chapter 3,

P(t) = 1.0 within the fairweather regime. But according

to Equation 9.3-4 P(t) - 1.0 as t +» =». This requirement

is impractical operationally. However, this problem is

overcome by simply choosing a value of P(t) that is suf-

ficiently close to 1.0. Thus, for the present study, the

fairweather regime exists for P(t) &gt; 0.99. This definition

of the beginning of the fairweather regime (i.e. when P(t) =

0.99) also implies that the length of the transition period,

T_, 1s equal to the time it takes P(t) to go from 0.00 to

0.99. Using P(t) = 0.99 and t = T_, Equation 9.3-4 can be

written as

}).99 =
= (1 - cr

(9.3-5)

After rearranging and taking the natural logrithm of both

sides of Equation 9.3-5, and solving for vy gives

'  1n (0.01) (9.3-6)

~ =

Mf
4.61

T.
(9 7 7)
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Table 9.3 Mean Cloud Cover Transition

(hr)

)

9

3

(0

12

| 4

 1 6

1 8

0

‘2

CE

Dodge City
January July

0.367 0.333

0.306

0.282

0.265

0.250

0.242

0.354

0.344

0.340

0.333

0.327

0.326 0.234

0.229

0.225

0.225

0.221

0.219

0.320

0.317

3.317

0.315

0.314

0.314 0.213

Boston

January _ July

0.572

0.534

0.506

0.483

0.432

0.403

0.379

0.362

0.464

0.449

0.348

0.338

0.3320.439

0.432

0.429

0.327

0.325

0.425

0.424

0.425

0.326

0.328

0.328

0.430 0.324
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Thus, by knowing the length of the transition period, T.

that was used to identify the fairweather regime earlier,

the transition decay coefficient can be estimated easily.

Another interesting way to look at the transition 1s

worth noting. The transition can be observed by studying

the rate by which the mean cloud cover varies from its

value for all inter-storm periods to its fairweather values.

In normalized form, the "observed" transition can be

expressed by

N. - N

258) = =
N, - Mj

a as - 8)

where N, is the mean cloud cover for all inter-storm periods.

(This corresponds to Nio0 in the earlier example), M, is

the fairweather mean, Ny, is the mean cloud cover for an

intermediate region.

The value of Equation 9.3-8 is that we can now plot

sbserved data to see the smooth transition hypothesized in

Chapter 3. Figure 9.2 shows the observed values of Py(t)

for the four data sets used in this study. Based on the

observed values for N(t) shown in Table 9.3, 24 hours was

judged to be a reasonable value for the length of the transi-

tion, T.. This value was used in computing the P(t)'s
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shown in Figure 9.2 and in Equation 9.3-7 to determine Y

for the hypothesized transition function P(t) which is

also plotted in Figure 9.2. The transition function, P(t),

represents the overall shape of the observed transitions

quite well. However, the theoretical curve appears to fit

the Boston observations slightly better than for Dodge City.

The Dodge City transitions are slightly slower than Bos-

ton's.

0.4

puted

Shortwave and Longwave Radiation

As shown in Chapter 4, shortwave radiation 1s com-

hv

{  y 2XP{ -na.m)
rr

v J 4-1)

Ta

Co _ 4

I." = I_(1 - 0.65N) (9.4-2)

The variables in Equation 9.4-1 and 9.4-2 have been defined

earlier in Chapter 4. The only variable that must be sub-

jectively selected prior to simulation is the turbidity

factor, n, which was indicated to vary from about 2.0 for

clear air to about 5.0 for smoggy urban air. Because no

prior information was available to make anything more than

a subjective decision regarding the value of n, its value

was set to 2.0 for both Boston and Dodge City.
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For longwave radiation, we have

R
3

{0.70 +

c (1500/T) SE
5.95(10 “)e_e (1 + 0.17N°)oT

(9.4-3)

where the principal variables, eyo T, and N are generated

by the CSCS model. No other parameters are required by

the longwave component.

3.5 Temperature

The temperature model requires the estimation of sev-

eral regression coefficients, b., for the "deterministic"

portion along with the variance and the lag-1 serial correla-

tion coefficient of a superimposed deviations process. Since

the methods used to estimate the parameters of the temperature

model were an integral part of the model development detailed

in Chapter6andAppendicesCandD, they need not be dis-

cussed again here.

9.6 Wind Speed and Wind Direction

Wind speed and wind direction are both generated inde-

pendently by lag-1 Markov models. The wind speed model re-

quires as input the mean, the variance, the lag-1 serial corre-

lation coefficient and the skew coefficient of the observed

wind speeds. The wind direction model requires the mean, the

variance, the lag-1 serial correlation coefficient, and the
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frequency histogram of the observed wind directions. All

parameters are estimated by the traditional methods.

9.7 Dewpoint

Two methods have been employed to generate dewpoints

depending upon the circumstances. The first method gener-

ates dewpoints independently using a lag-1 Markov model

and requires the mean, the variance, and the serial correla-

tion coefficient of the observed dewpoints. These parameters

are estimated by the usual techniques.

The second option available to generate dewpoints uses

a linear regression model with a superimposed deviations

process. The coefficients of the regression model are esti

mated by standard regression methods. The deviations pro-

cess is again modelled by a lag-1 Markov approach which

requires the variance and the lag-1 serial correlation of

the observed deviations. The regression model and the method

used to determine the observed deviations are discussed in

detail in Chapter 8.

9.8 Summary

The parameters required by the CSCS model that are

estimated from the observed data are summarized as follows:
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Precipitation

mean time between storms

mean storm duration

mean storm depth

Cloud Cover

fairweather mean

fairweather variance

fairweather lag-1 serial correlation

fairweather frequency histogram

transition decay coefficient

Temperature

regression coefficients

deviations variance

deviations lag-1 serial correlation

Nind Speed

mean

variance

lao-1 serial correlation

skew

Nind Direction

Y mean

variance

lag-1 serial correlation

frequency histogram
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Dewpoint

mean

variance

lac-1 serial correlation

JL

regression coefficients

deviations variance

jeviations lag-1 serial correlation
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CHAPTER 10

"SCS RESULTS

10.1 Introduction

After estimating the parameters as described in Chap-

ter 9, January and July data sets were generated by the

CSCS model for both Dodge City, KS and Boston, MA. Three

different aspects of the output will be reviewed. First,

plots of the hourly data values generated by the model

will be examined to see at least qualitatively that the

various output elements are coordinated. Second, model

output statistics will be presented to determine how well

the observed statistics are reproduced. Third, the mean

diurnal curves of generated temperatures and dewpoints will

be compared to their observed counterparts.

10.2 Generated Data Plots

Figures 10.1-10.11 each represent three-day segments

of the generated data sets. Presentation of hourly plots

for the entire simulation period is obviously impractical

due to space limitations. The selected three-day segments

will be sufficient for demonstration purposes.
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Looking first at Figures 10.1-10.2 for January in

Dodge City, KS, we have plots of hourly temperature in °c,

hourly dewpoint in °c, hourly shortwave radiation 1n

langleys (ly), hourly longwave radiation in langleys, hourly

cloud cover in tenths, and hourly precipitation in mm.

Perhaps the most dominant features of these plots are the

obvious diurnal structures of shortwave radiation and

temperature.

Beginning with shortwave radiation, the generated

hourly values are zero through the night as they should be.

At sunrise, solar radiation starts its steady increase to

its peak around noon. After the peak at solar noon, short-

wave radiation decreases to zero again at sunset.

Shortwave radiation is dramatically affected by the

presence of cloud cover. This is seen clearly by comparing

the shortwave radiation curves for the two cloudy days

(1/19, 1/20) and the mostly sunny day (1/21) in Figure 10.1.

The peak solar radiation value on 1/21 was approximately

38 1y when cloud cover was 0.1. This compares to a peak

of approximately 14 1ly on 1/19 when cloud cover was 1.0.

This also represents the 65% reduction of shortwave radia-

tion due to total cloud cover that is dictated by Equation

A A
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The trace of hourly temperature also shows a strong

diurnal signature. In general, minimum temperatures

occurred in the early morning hours near sunrise and maximum

temperatures occurred in mid to late afternoon. However,

just as an observed temperature trace can deviate signi-

ficantly from its characteristic diurnal curve, the CSCS

model is capable of generating temperature traces for

particular days that lack the characteristic diurnal

signature. Witness day 1/20 in Figure 10.1. For the

first 16 to 18 hours of this stormy day, the temperature

curve stayed relatively flat. This is especially interesting

when compared to the temperature curve of day 1/19 which

was also stormy. In both cases the radiation inputs were

at minimum values yet the temperatures of day 1/19 are

substantially higher than on 1/20 and follow a more charac-

teristic curve. This behavior of the CSCS model is

explained by the stochastic component in the temperature

scheme. On day 1/20, the stochastic components were appar-

ently negative which served to counter the positive influ-

ence of the radiation input and to stabilize the temperature.

The CSCS model has the capacity to generate a wide range of

daily temperature patterns, making for a more natural appear-

ing long-term trace of generated temperatures.
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Figures 10.3-10.5 show segments of the generated data

for July at Dodge City. Immediately, the increase in

generated shortwave radiation over that of January is

apparent, not only in magnitude, but in hours of sunshine

as well. Peak shortwave radiation values at Dodge City

increased from approximately 40 ly hr 1 in January to

about 86 ly hr t in July. In addition, the number of hours

of significant shortwave radiation (i.e. I ' &gt; 1.0 ly hr

increased from about 9 hours in January to about 14 hours

in July.

The cloud cover transitions into and out of storm

periods can be seen in Figures 10.3 to 10.5. In Figure 10.3,

cloud cover increases steadily in anticipation of the first

storm on day 7/4. After the first storm, the cloud cover

remains high due to the close proximity of a second storm.

Jnce the second storm passes, the cloud deck breaks up and

clears for day 7/5 before building again for the approaching

storm on day 7/6.

In Figure 10.5, we see a short intense storm preceded

by and followed by periods with little cloudiness. It is

significant to note here that although a storm occurred on

day 7/8 (Figure 10.5), the total shortwave radiation was

only slightly reduced. The storm occurred before sunrise
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and the cloud deck decayed quickly to minimize the impact

on shortwave radiation. Contrast this result to that of

day 7/4 when the storms occurred during the day and to that

of day 7/6 when the storm occurred before sunrise but the

cloudiness remained through the day. This behavior of the

CSCS model is a significant improvement over previous

models that implied specific reductions of shortwave

radiation for stormy days regardless of when the precipi-

tation occurred.

Figures 10.6 - 10.8 show segments of data generated

for January in Boston, MA. As expected, low values for

shortwave radiation are generated. Although the number of

hours with significant shortwave radiation is the same as

for January in Dodge City, KS, the peak values are slightly

lower. Shortwave radiation peaks of about 40 ly hr L

were generated for Dodge City but 36 ly hr! was the

maximum value generated for Boston in January. The reduction

is explained by the difference in the latitudes of the two

sites since the same atmospheric attenuation parameters were

used in both cases. Boston is located at 42°22" N while

Dodge City is located at 37946" N.
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The characteristic diurnal temperature curve is not

as strong for January in Boston as it is for the other

examples. Looking ahead to Figure 10.12 shows that the

difference between the average minimum and maximum hourly

temperatures is only about 59°C for Boston, compared to

about 10°C for Dodge City (Figure 10.14).

The temperatures generated by the CSCS model for

January in Boston appropriately do not exhibit a strong

diurnal signature. This is especially true for days

1/26 - 1/29 in Figures 10.7 and 10.8.

It is also interesting to note the general downward

trend from a maximum of +5°C on day 1/22 (Figure 10.6)

to temperatures in the -6° to -3°C range on day 1/24.

This is consistent with the movement of large synoptic-

scale weather systems through the region.

Longwave radiation also shows a general downward

trend during the period 1/22 - 1/24. This is the result

that should be expected with a general drop in atmospheric

temperature and dewpoint.

Figures 10.9 - 10.11 show the segments of data for

July in Boston, MA. Again, the notable increases in short-

wave radiation and temperature over January levels are

evident. Although the diurnal signature of the July temp-
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Figure 10.11 CSCS Output: July, Boston
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eratures is strong, cloudiness coupled with a negative

stochastic element can flatten the temperature curve for

short periods of time (see day 7/6, Figure 10.9 and day

7/13, Figure 10.11). Expected downward trends in temper-

ature are also occasionally countered by a positive stochas-

tic component as evidenced by the temperature pattern

during the evening hours of day 7/14 (see Figure 10.11).

Although visual examination of various segments of

CSCS model output does not constitute a rigorous verifi-

cation, it does provide a framework for a qualitative inter-

pretation of model component coordination. In this res-

pect, the CSCS model seems to be working properly. That

is, cloud cover impacts shortwave radiation, shortwave

radiation affects temperature, cloud cover is total during

storms, etc. These effects might not be apparent from an

analysis of model output statistics alone. The next step

is, however, to verify that the model is working well

statistically.

10.3 CSCS Model Output Statistics

Tables 10.1 - 10.4 contain the statistics of the model

output and the statistics of the observed data for compari-

son. The generated data sets used in the statistical analy-

sis are each 20 months in length. (i.e. 20 July's, 20 Jan-
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uary's, etc.) Thus, 620 days or 14,880 hours of data

were generated and analyzed for each experiment.

For temperature dewpoint, cloud cover, wind speed, and

wind direction, the means, standard deviations, and lag-1

serial correlation coefficients were computed. Since the

observed skew coefficients were used in the wind speed

component, the skew coefficients of the generated wind

speeds were also computed. For the precipitation analysis,

the mean times between storms, the mean storm durations,

and the mean storm depths were computed. Observations of

hourly shortwave and longwave radiation were not available

for the periods of record used in this study. However,

Jetz and Nicholas (1979) provide estimates of mean daily

shortwave radiation by climatic week based on data for

the period 1952-1975. The estimated mean daily shortwave

radiation was found from Getz and Nicholas by averaging

the radiation values for the climatic weeks that span

January and July.

Examination of Tables 10.1 - 10.4 shows that the

statistics of the CSCS output compare favorably with the

observed statistics in each case. The means and standard

deviations of the respective generated temperatures and
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Table 10.1 Output Statistics: January, Dodge City, KS

oPi : DEW “LD

*)
&amp; oA 0.3°C

(0.0)*
-%.5°C

(-6.8)

0.41

(0.38)

STANDARD 7.3°C 5.4°C 0.35
DEVIATION (7.4) (5.7) (0.41)

LAG-1 0.98 0.97 0.87

0.98) (0.98) (0.91)

Sr?

~- “WW
a

me aRIE

iP WDR

5.5 m/s 90.5°

(5.5) (86.3)

2.3 m/s 43.9°

(2.4) (59.2)

0.87

(0.86)

0.89

(0.92)

0.55

(0.54)

PRECIPITATION

MEAN

EVN

i

y

207.7 hr 4.9 hr 2.2 mm

184.8) (4.8) (2.3)

RADIATION

SWR LWR

190 1y/d 507 1ly/d
(228) -

) denotes observed value
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Table 10.2 Output Statistics: July, Dodge City, KS

 MV FP
-~

FW “1 1, WQP WD1

SEI
1 4A 26.3°C 15.5°C 0.33

(26.8)% (15.4) (0.34)

5.3 m/s 112.0°

(5.6) (129.5)

STANDARD 5.5°C 3.59C 0.32
DEVIATION (5.5) (3.5) (0.36)

2.1 m/s 41.9°

(2.3) (50.3)

LAG-1 0.96 0.94 0.90 0.77

(0.96) (0.95) (0.89) (0.78)

0.81

(0.84)

3 WwW 0.54

(0.51)

PRECIPITATION

VIEAN 53.4 hr 2.5 hr 6.0 mm

(66.9) (2.5) (6.1)

he

1 h

RADIATION

\
Mos

wy5

34 2 [WR

598 1ly/d 826
(626) —_— ty/d

) denotes observed value.
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Table 10.3 Output Statistics: January, Boston, MA

“A roa

MEAN 1.29
(-0.9)%

-7.4°¢C
(-7.4)

STANDARD 6.7°C 7.7°C

DEVIATION (5.9) (8.2)

LAG-1 0.99 0.99

(0.99) 0.99)

Se WN=

CLD

0.58

(0.61)

0.36

(0.44)

0.88

(0.89)

AQT WDR

5.5 m/s

(5.7)

82.8°. 8

(74.4)

2.6 m/s 40.3°

(2.7) (49.0)

0.88

(0.88)

0.85

(0.87)

0.68

(0.61)

PRECIPITATION

AEAL]

0
Kc r

51.1 hr 7.2 hr 7.0 mm

(55.3) (8.8) (9.0)

RADIATION

vii.; AN

* y. T )
4 [LWR

126 1y/d 497 1ly/d

(131)

) denotes observed value.
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Table 10.4 Output Statistics: July, Boston, MA

“MD YEW 1]

MF. 1A 22.9°C 15.3°¢C
(22.8)% (15.5)

0.42

(0.45)

STANDARD 4.5°C 3.5
DEVIATION (4.3) (3.8)

0.35

(0.40)

LAG-1 0.97 0.96 0.89

(0.97) (0.97) (0.88)

-~ -
~ iWre

WSF WHT

4.4 m/s 101.6°

(4.4) (102.4)

1.8

(1.8)

39.8

(46.1)

0.82

(0.81)

0.77

(0.78)

0.43

(0.45)

PRECIPITATION

i op MN

L r

66.1 hr 4.1 hr 7.9 mm

64.5) (3.9) (7.2)

RADIATION

4

fe

LAN

SWR LWR

551 1ly/d 797 1ly/d

(479)

) denotes observed value.
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dewpoints are almost always within 0.5°C of the observed

values. These results are particularly satisfying, since

the temperature component is by far the most complex part

of the CSCS model. In essence, the temperature component

is the keystone of the CSCS approach since almost all of the

other elements in the model influence or interact with the

temperature generation algorithm. For the CSCS model to

work as a whole, it is most important that the temperature

component performs properly.

Statistically, the cloud cover model worked well too.

The means of the generated cloud covers were quite close to

the observed values. Remember that the final generated

cloud covers are a combination of the generated fairweather

sequences, the transition periods, and the storm periods.

The input parameters for cloud cover generation were the

fairweather statistics and the transition decay coefficients.

To obtain the proper output statistics, the CSCS model

relies on the transition functions into and out of storm

periods that were described in Chapter 3 to create the pro-

per evolution of the entire cloud cover process.

To see how well the generated cloud cover mean values

svolved from the fairweather mean values, refer to Table 10.5
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where the mean observed fairweather cloud cover, the mean

observed cloud cover for the entire record, and the mean

generated cloud cover are presented. It is apparent that

the CSCS is capable of producing an evolutionary cloud

cover process whose statistics are quite close to the

observed values.

Reviewing the statistics for wind speed in Tables

10.1 - 10.4 shows that the reproduction of the observed

statistics by the CSCS model is excellent. However, repro-

duction of the wind direction statistics is only fair.

This is not really unexpected, given the procedure used

to represent wind direction in this study (see Chapter 7).

To be more correct, wind direction should, at the very

least, not be treated independently. However, for the

jata sets used in this study, wind direction did not appear

to be a particularly strong predictor. Therefore, more

sophisticated wind direction generation algorithms were

not investigated.

The precipitation statistics were also adequately re-

produced. The only significant departure was for the mean

time between storms for January at Dodge City. However,

January in Dodge City is quite dry. Only about 70-75 storms
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Table 10.5 Evolution of Mean Cloud Cover

MEAN VALUES

Fairweather

Observed

Total

Observed

Total

Generated

Boston, MA

January

Jul

Dodge City, KA

January

T3 _\

0.43

0.32

0.31

0.21

0.61

0.45

0.38

0.34

0.58

0.42

0.41

0.33
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were generated for the 20 month simulation period for

January in Dodge City, compared to about 250 storms for

the other data sets. With fewer storms to analyze,

higher variability in the statistics 1s expected.

It is difficult to draw many conclusions regarding

the shortwave output since the records used by Getz and

Nicholas (1979) to obtain the mean daily shortwave radia-

tion cover a much longer period than the data sets used in

this study. It is unclear whether any differences noted

between observed and generated values could be attributed

to modelling deficiencies or to natural statistical varia-

tion. Nevertheless, the generated values are near the

observed values and the model is making the correct sea-

sonal adjustments.

Observed data were not available for longwave radia-

tion. However, to the extent that the Idso (1981) expres-

sion for atmospheric emissivity (see Chapter 5) represents

the conditions at Boston, MA and Dodge City, KS, the gen-

arated longwave radiation values should be reasonable.

10.4 Diurnal Curves for Temperature and Dewpoint

[n the previous section, statistical evidence was pre-
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sented to suggest that the temperature and dewpoint com-

ponents of the CSCS model performed well. It is also

important that the two temperature components produce

the proper diurnal variations. Figures 10.12 - 10.15

show the observed and generated diurnal curves of temper-

ature and dewpoint (i.e. mean hourly values) for January

and July at Boston and Dodge City.

Overall, the generated temperature curves compare

quite well with the observed values. The generated min-

imum and maximum temperatures are all within 1°C of

the observed values and their timing is about right. The

only timing discrepancy occurs for the maximum January

temperatures at both Boston and Dodge City. The generated

mean maximum temperature occurs around 4:00 PM in January.

The observed maximums occur near 5:00 PM at Boston and near

3:00 PM at Dodge City. The variation of the two observed

January maximums is probably due to the difference between

the coastal climate of Boston and the continental climate

of Dodge City. Since the timing of all the minimums and

the July maximums is quite good, the exact reason for the

generated maximums to be an hour off in January is not

readily apparent.
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In Boston, the model in its present form does not

appear to be accounting for all of the modifying influences

of the nearby ocean in the late afternoon. The observed

temperatures remain elevated slightly longer in the after-

noon before starting the downward trend to the morning

minimum. This results in a six-hour period during the

evening hours where the model slightly underestimated the

temperatures.

Given that the diurnal curve of temperature for Janu-

ary in Boston is so flat (v5°C variation), it 1s a pleasant

surprise that the CSCS model performed as well as it did.

Of the four data sets, the January - Boston experiment

probably offered the most severe test of the CSCS model's

ability to adapt to a variety of climate conditions.

As for the January - Dodge City experiment (Figure

10.14), the observed temperatures in this continental cli-

mate drop more sharply in the late afternoon than during the

evening and early morning hours. During this period, the

temperature model gave a steadier transition for the down-

ward 1imb of the temperature curve. The exponentially-

dominated functions used in the temperature algorithms are

not quite able to express the sharp drop observed near

sunset in the January - Dodge City experiment.
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The CSCS model reproduced the observed diurnal

temperature curve for the July experiments quite well.

The maximum departure of the generated curve was about 1°¢

for Boston and 1.5°C for Dodge City.

Dewpoint temperatures are shown in Figures 10.13

and 10.15. The reader is reminded that an independent

stochastic process was used to generate dewpoint tempera:

tures for July and that a regression model was used for

January dewpoints.

For July at Boston, (Figure 10.13) the resultant mean

generated curve is essentially "flat" as expected and

represents the observed dewpoints well. For July at

Dodge City, the mean generated curve is again "flat" as

expected. However, in the Dodge City observed data there

is a subtle wave that is not represented by the stationary

lag-1 Markov process. During the forenoon, temperatures

rise causing dew to evaporate. This increases the moisture

content of the lower atmosphere and elevates the dewpoint

temperature. As temperatures continue to rise, more evapor-

ation occurs but by late morning increased instabilities

cause mixing with drier air aloft, causing dewpoints to fall.
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By early evening, instability decreases again and continued

evaporation causes the dewpoints to rise again. To capture

this feature, alternative dewpoint generation techniques

will have to be explored.

For January, the regression model output represented

the observed data well, especially in capturing the morning

"dip" in the dewpoint curve. The observed ''dip'" coincides

with the morning temperature minimum. The depressed

dewpoints at this time are likely due to moisture driven

from the lower atmosphere by frost formation.

Another interesting diurnal curve to review is for the

lewpoint depression, defined as the difference between the

temperatures and dewpoints. Figures 10.16 and 10.17

present the observed and generated dewpoint depression

curves for Boston and Dodge City respectively.

Dewpoint depression is interesting because it 1s

sometimes used as an indicator of the atmosphere's ability

to take up moisture. High dewpoint depression values indi-

cate a high capacity to take up moisture. For low dewpoint

depression values, the opposite is true. Under the right

circumstances then (e.g. with sufficient moisture at the

surface), dewpoint depression could also be interpreted as
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an indicator of surface moisture flux.

Dewpoint depression is not explicitly generated by

the CSCS model. It is derived from the output from the

temperature and dewpoint components. For the observed and

derived dewpoints to compare favorably, the temperature

and dewpoint. components must be synchronized correctly.

In addition, deviations between observed and generated

dewpoint depressions can appear more glaring than with

either temperature or dewpoint. For example, if a generated

temperature and a generated dewpoint differ from their

observed values by 1°C, the difference might not be con-

sidered significant. However, if the 19°C differences are

opposite in sign, the error in dewpoint depression would

he 2°C

Thus far we have seen that the CSCS model satisfac-

torily reproduces the desired characteristics of the

meteorological data sets. The next step is to examine the

target land surface processes that the CSCS output data

are designed to force. An application of the CSCS output

to a detailed model of the land surface is presented 1n

Chapter 12.
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Before we get to the detailed analysis in Chapter 12,

it is instructive to make a quick examination of one par-

ticular land surface process to see that it is correctly

forced by the CSCS model output. Evaporation is perhaps

the most important process at the land-atmosphere inter-

face, being the basic mechanism for the restoration of

both atmospheric moisture and energy. Solar radiation,

temperature, dewpoint, and wind speed all contribute to

evaporation. If an estimate of evaporation could be made

using these meteorological data, the result would, in essence,

be an integration of the joint interactions of the input

variables. It is of particular interest to make a compar-

ison of the evaporation estimates computed using the ob-

served meteorological inputs with the estimates computed

using the generated CSCS data. In this fashion, we can

see to what degree any errors in the CSCS output have an

effect on the results of the target process.

Linsley et.al. (1975) present a nomogram solution for

the estimation of shallow-lake evaporation as a function

of solar radiation, air temperature, dewpoint, and wind

movement. Using the mean values of the observed and gen-

erated (CSCS) data for July at Boston, MA and Dodge City, KS,

evaporation estimates were made with the nomogram of Lins-

ley et.al. The results appear in Table 10.6.
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For the Dodge City experiment, the observed and gen-

erated evaporation estimates agreed to within 3%. For

the Boston experiment, the observed and generated estimates

varied by about 9%. The principal source of error in the

Boston evaporation estimate stems from the roughly 15%

over-estimation of the shortwave radiation input. The

shortwave radiation error is likely due to error in the

atmosphere attenuation function that was discussed earlier.

10.5 Summary

The results of CSCS model experiments for January and

July at Boston, Massachusetts and Dodge City, Kansas have

been presented. Hourly data plots, model output statistics,

and selected mean diurnal curves were reviewed.

Overall the CSCS model performed well. The results indi-

cate that the CSCS model is capable of generating well coor-

dinated sets of meteorological data with high time resolution

(i.e. hourly values). This represents a significant improve-

ment over existing techniques in both the number of variables

senerated and in the time resolution of the generated data.

Two individual components, cloud cover and temperature,

vere especially critical to the successful completion of the

CSCS model. The modulated non-stationary stochastic process
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Table 10.6 Comparison of Shallow Lake Evaporation
Estimates for July

Dodge City

0BS CSCS

26.8 26.3

Boston

Data Units

°c)

°c)

OBS

22.8
Temperature

Dewpoint 15.4 15.5 15.5

Nind (m/s)

Shortwave (1y/d)

Evaporation (mm/d)

5.6 5.3 4.4

626. 598. 479.

8.1 7.0 5.3

CSCS

22.9

15.3

4.4

551.

5.8
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derived to represent cloud cover enabled the linking of

the precipitation, the shortwave radiation, the longwave

radiation, the temperature, and the dewpoint regression

components with the cloud cover component on an hourly

pasis. The temperature model enabled the generation of

hourly temperatures that were linked to other meteorological

variables and that reflected seasonal and geographical

changes.
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CHAPTER 11

ATMOSPHERIC BOUNDARY LAYER

11.1 Introduction

Vertical transfer of momentum, heat, and moisture

between the earth and the free atmosphere occurs through

the atmospheric boundary layer. Continuous small scale

turbulent fluxes in the boundary layer appear to be the

basic mechanism of the exchanges between the atmosphere

and the earth. (Bhumralkar, 1979)

Although relatively thin, 10 to 50m (Anderson, 1976),

the boundary layer can account for significant atmospher-

ic effects. For example, the boundary layer contains only

about 2% of the total atmospheric kinetic energy on an

annual basis, yet it contributes up to 25% of the total

generation and more than 35% of the total dissipation of

atmospheric kinetic energy. (Kung, 1963)

Attempts to quantify earth-atmosphere exchanges have

led to a relatively large body of boundary layer literature

General descriptions of turbulent processes of the lower

atmosphere can be found in a number of books (e.g., Oke,

1978: Rose. 1966: Priestly, 1959; Sutton, 1953, 1954;
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Lumley and Panofsky, 1969).

Two basic approaches to flux estimation commonly

appear in the literature. The eddy fluctuation method

seeks to describe the instantaneous properties of eddies

as they pass a specified level in the boundary layer.

Profile or flux-gradient methods infer the flux based on

average atmospheric profiles and on the degree of atmos-

pheric stability.

The eddy fluctuation method describes flux using the

observation that atmospheric entities exhibit short-term

fluctuations about their longer term means. Since the

properties contained by an eddy are its density (Pe)

its vertical velocity (w,), and the concentration of the

atmospheric entity (s), the mean vertical flux density

of the entity (S) can .be written as (Oke, 1978)

S El, + pl), + w)(E + 51) (11.1-1)

where the overbars indicate the mean values and the primes

indicate the short-term fluctuations about the means. Ex-

pansion of Equation (11.1-1) followed by a term by term

evaluation leads to
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S = E(ow's"') (11.1-2)

For the vertical transfer of momentum, sensible heat, and

latent heat, Equation 11.1-2 is used to give

- t

E (p Wow)

qd = E(p cw, T")

Qp = E(p Lywiap)

(11.1-3)

(11.1-4)

(11 .1-5)

where © is the shear stress in Pa, Pe is the eddy den-

sity in kgm &gt;, Wl! is the horizontal wind speed fluctuation

in ms 1, cy is the specific heat of air in eg °K T!

is the temperature fluctuation in °K, L, is the latent

heat of vaporization in sxe, and qf is the specific hun-

idity fluctuation in kgkg 1.

The fluctuation terms represent changes in the at-

mospheric properties over periods on the order of seconds.

Data collection for time intervals this short is not

routine. In addition, the basic time unit of the CSCS model

is one hour. Therefore, eddy fluctuation methods were

not used in this study.

In the profile or flux-gradient approach, the flux 1s
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generally described by (Oke, 1978)

"Flux of

lan entity;

(Ability of the medium

to transport the entity

‘Gradient of

a relevant

‘property

Through the turbulent surface layer, momentum transfer

can be described by

OW,
0,Ky 3 (11.1-6)

where oq is the atmospheric density in kgm &gt;, Ky is

the eddy transfer coefficient for momentum in més 1, and

z is elevation in m.

For sensible heat flux

_ x oT
H = “Pah Fz

(11.1-7)

where H is in Wm 2, K, is the eddy transfer coefficient

for heat in ms”1, and T is the air temperature in °K. Nor-

mally, potential temperature is used in Equation 11.1-7.

However, in this study, only temperature differences over

the lowest 2 meters are of interest. Over this range,

potential temperatures and air temperatures are essentially

the same. Finally, for water vapor, the turbulent flux

transfer can be described by
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Iq

E= -0,X¢ 57 (11.1-8)

where E is the water vapor flux in kgem 4s 71, Ky is the

eddy transfer coefficient for water vapor in més1, and

q, is the specific humidity in kgkg 1. Equations 11.1-6

to 11.1-8 show that the desired fluxes can be ‘estimated if

the appropriate gradient and the associated transfer coef-

ficient are known.

The lower atmosphere is a very active zone with var-

lations in heating and cooling resulting from instantaneous

variations of fluxes with height. Over longer periods,

such as a half-hour or more, flux variations with height

are very small (Oke, 1978). Therefore, the surface layer

is often called the layer of constant flux. Practically,

this means that estimates of flux at any point in the low-

est 50m over a suitable site are assumed equal to their

surface values. Atmospheric variables generated for the

two meter level by the CSCS model can then be used to help

estimate transfers across the land-atmosphere interface.

11.2 Profile Method for Flux Estimation

In a neutrally stable atmosphere, (i.e., one with an
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adiabatic lapse rate), under fully turbulent conditions,

the wind profile is logarithmic and expressed bv

s = 1 in z-do |
Wg k Zo |

(11.2-1)

where dg is the zero displacement plane in meters, zg is

the roughness length in meters, k is the von Karman con-

stant (0.40), and W_ is the friction velocity defined by

N.. = (t,/0,
F1 2-2)

where Ts is the shear stress at the surface in Pa.

The vertical profile of the horizontal wind speed is

Found by differentiating Equation 11.2-1 and rearranging

to give

3
Wooo Wy
az kz

Remembering that the boundary layer is also assumed

11.2-3)

to be

a layer of constant flux, we can write

To = constant (11.2-4)

Using Equations 11.1-6, 11.2-2, 11.2-3, and 11.2-4, an

sxpression for the eddy transfer coefficient for momentum
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can be written as

oW
,  _ 1.2.2 Ss
 yp = k7z27 —7 (11.2-5)

Equation 11.2-5 shows that the transfer coefficient for

momentum is also a function of the vertical gradient of

the horizontal wind.

The problem of establishing the transfer coefficients

Ky and Ky can be simplified by invoking the ''principle

of similarity". (Oke, 1978). Under this assumption, an

atmospheric eddy can transport any conservative entity

with equal facility. Therefore,

Ky = Kg = Ky (11.2-6)

Using Equations 11.2-5 and 11.2-6, a new expression for

sensible heat flux can be written as

u| of 22? Ms ol
qr 93Z 92

(11.2-7)

Likewise, an expression for water vapor flux can be written

1

E= ~9 x22? Ms 1
a 37 32

(11.2-8)

Equation 11.2-8 can also be written in terms of vapor
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pressure by using an approximation for specific humidity

1 ).6022e, 11 Z -9)
~

where e, is the vapor pressure in mb, Py is the atmospheric

pressure in mb, and the constant, 0.622, is the molecular

weight ratio of water vapor to dry air. Substitution of

Equation 11.2-9 into Equation 11.2-8 gives

E
0.6220, 2.2 oW de

Pp 0z 02Z
(11.2-10)

The equations for Tt, H, and E presented so far, are

strictly valid for neutral stability only. For stable

and unstable conditions, the wind profile is not generally

logarithmic. Stable conditions dampen free convection

and, using the logarithmic wind profile, cause the fluxes

to be overestimated. The opposite is true for unstable

conditions.

Monin and Obukhov (1954) have generalized the loga-

~ithmic wind profile for all conditions, giving

SW Ww,
_S BR e— o

07 kz M
(11.2-11)

where JY is an empirically determined adjustment factor

that is related to atmospheric stability. Obviously, for
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neutral conditions, Pu is unity.

Similar functions can be defined for the sensible

heat and water vapor profiles, giving

31
.Zz

= Hs

PapKy H
(11.2-12)

and

Up _ __E__
0Z P, Ky W

(11.2-13)

where oy and 9, are the stability related profile adjust-

ment functions. According to Monin and Obukhov (1954),the

functions VE 415 and du should be functions of a dimen-

sionless height ratio z/L. L is constant with height in

the boundary layer and is presented by Anderson (1976)

y ~~

[=

35

WiC pT
koH

(11.2-14)

where g is the acceleration of gravity in ms” %. The

ratio z/L is positive for stable atmospheric conditions,

zero for neutral, and negative for an unstable atmosphere.

Several studies,conducted under the assumption that the

transport mechanisms of conservative entities are similar,

and therefore, that their profiles are similar, have resulted



183

in empirical relationships for 3 (1) (Dyer, 1967;

Dyer and Hicks, 1970; Dyer and Grant, 1978; Businger et.

al. 1971; McVehil, 1964; Oke, 1970; Yamamoto and Shim-

anuki, 1966) Not all researchers agree on the form of the

o-functions, but the so-called Businger-Dyer formulae

are frequently used. For stable conditions, these give

by = Oy = yp = 1 +5
ed

(11.2-15)

which implies that Ky = Ky = Ky + For stable conditions,

the equalities of the eddy transfer coefficients and the

b- functions are supported by the studies of Saugier and

Ripley (1978) and Monji and Businger (1972). For unstable

conditions

ZZ = = - &amp;

by = Oy = Oy = (1-16 (11.2-16)

The studies of Saugier and Ripley (1978) and Monji and

Businger (1972) also provide observational support for

Equation 11.2-16.

Since the information required to evaluate L in Equa-

tion 11.2-14 is not generally available, some other stabil-

ity-related procedure to compute z/L from routinely

measured data is needed. Richardson (1920) developed a

criterion that "reflects the ratio of the consumption of
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energy by'buoyancy forces to the rate of its production

by wind shear." (Anderson, 1976)

Anderson gives the gradient form of the

number as

Ri g(3T/3z)

T(3W_/32)°

Richardson

I 1 2-17)

Thus, the Richardson number can be computed from observa-

tions of wind speed and temperature. Anderson (1976)

also shows that the ¢-functions can be written in terms of

the Richardson number. For stable conditions

and

 Rh a = = - Ri

Oy Ou (1-5R1)
1

for unstable conditions

Al = oy = Su = (1-16R1}

-l

(11.2-18)

(11.2-19)

Comparison of Equation 11.2-19 with Equation 11.2-16 shows

that, in the Businger-Dyer formula for unstable conditions,

the height ratio, z/L, is equal to the Richardson number, Ri.

11.3 Computation of Turbulent Transfer Using Measurements

at One Level

The CSCS model cenerates representative data at the
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2-meter level only. Therefore, it is not possible to

evaluate the various gradients described in the previous

section. Similarly, observations of wind, temperature,

and humidity are made at one level for most data collection

sites. To overcome this problem, the flux equations must

be used in their integrated form. If these equations are

integrated between Zs and Zs (assuming We = 0, T = Ty

and e = SR at the bottom of the boundary layer), the flux

equations become

v.1

E =

H

2
D CW

4

- 04,05" (T -Ty)

0.6220,
—_ Cys (eg = ©:

w——

(11.3-1)

(11.3-2)

x I 3-3)

where W, is the 2-meter wind speed in ms1,T is the 2-

meter temperature in °k, and e, is the 2-meter vapor

pressure in mb. Cy Cy» and Cw are the dimensionless

transfer coefficients for the integrated flux equations and

are called the "bulk" transfer coefficients. Under neutral

conditions. and using the similarity assumption, we have
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Cyn = (Cyly = (Cyly =
r

K

2d, 2
IR,

(11.3-4)

where the subscript N denotes neutral conditions.

Deardorff (1968) developed ratios of the bulk trans-

Fer coefficients for the general case to their neutral

values. For stable conditions where it is assumed du = oy

Ours the ratios can be written as

C C C
W =_H_ = _M = - 1 2

Con Cy Ty &gt;)

where (Ri) gp is the bulk Richardson number given by

(1976) as

(Ri) =
282 (T-Ty)
 2

(T+T, IW,

(11.3-5)

Anderson

(11 . 3-6)

For unstable conditions, Deardorff (1968) gives

a
(Cy)ny

r 1

(Cyn 1+x” ‘14x
1.0 - x (1n HH + 21n 7

1

T

 tan T(x) + &gt;

n

(11.3-7)

and
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Cy Cy Cy | 2,0 yo lexBC egimmiigins re 1.0 - =(C ) 1n(=—)(Cy (Cyn | (Cyn) k*"M’/N 2

(11.3-8)

wl. Ce’

- _ Zy”

= (1 - 16 7) (11.3-9)

If Equations 11.3-1 and 11.3-2 are substituted into

Equation 11.2-14, the Monin-Obukhov length can be written

J

:

3/2 2

Cum TW,
Cyke (T-Ty)

[ Lt1.5-10)

Dividing the numerator and denominator by (Cdn and

using Equation 11.3-6 gives the relationship between the

height ratio z/L and the bulk Richardson number.

kC,;/ (Cy)
Z _ H M/N .

LC ~ LT Cy 577 (Rip

(Cy) ng

(11.3-11)

By knowing the wind speed, temperature, and vapor pressure

at the two meter level and the temperature at the bottom
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of the boundary layer (i.e., at the land surface), the

fluxes can be estimated. The wind speed, temperature, and

vapor pressure at the two meter level are generated by

the CSCS model. If the temperature, Ty» is available from

a model of the land surface, the fluxes across the earth-

atmosphere interface can be generated.

11.4 Solution Procedure

For neutral and stable conditions, the bulk transfer

coefficients are easily computed. Finding the coefficients

for unstable conditions is not quite as straightforward.

The coefficients depend on the ratio z/L. But from Equa-

tion 11.3-11, 1it is seen that the coefficients are needed

to determine z/L in the first place.

The problem of calculating the transfer coefficients

is solved in two phases. First, a table is constructed

that relates the ratio z/L to the bulk Richardson number

given values for z, zg and dg. Second, during program

execution, (Ri)g is computed from Equation 11.3-6 and z/L

is found directly from the table. Once z/L is known, the

coefficients are easily found
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CHAPTER 12

LAND SURFACE APPLICATION

12.1 Introduction

To demonstrate the utility of the CSCS model, gen-

erated data were used as input to a detailed model of the

land surface. The resulting fluxes are plotted here to note

any trends that occurred due to different meteorological

forcings given identical initial conditions. Also, the

nean daily fluxes are presented to show how the partition-

ing of energy in the surface heat balance changed for each

experiment.

12.2 CSCS Generated Data Sets

Three different generated data sets were used. First,

the observed statistical parameters found for July in

Boston, MA were used to generate a '"normal' meteorological

data set. The output from the land surface model that

results from the "normal" forcing serves as a baseline for

comparison with the results from the other experiments.

A second data set was generated that represents a

weather scenario which is much wetter than normal. This

was accomplished by changing only the input parameters, ty»

t_, and h for the precipitation component. The precipitation
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statistics were estimated from the July 1959 data for Bos-

ton, the wettest month in the record.

Finally, a third data set was generated using the

observed statistical parameters but adding a constant

2.2°¢C (4°F) bias to the temperature component. The bias

was introduced by adding a constant to the stochastic

term in the temperature component represented by Equation

6.3-22.

Due to the rather large computational requirements

of the land surface model, the length of simulation was

limited to one month for each data set. Table 12.1 pre-

sents the statistics obtained from the three CSCS data

sets compared to the observed values for the period of

record.

Selecting the '"mormal" data set presented some diffi-

culty. Since the CSCS output is stochastic and since one

month is too short a period for statistics to stabilize,

it is essentially impossible to generate one month of data

with all statistics identical to the historical values.

Therefore, several monthly runs were made and the monthly

data set whose statistics were judged to most closely repre-

sent the historical values was selected as the 'mormal™

data set.



Table 12.1 Data Set Statistics For the Land Surface Application:

July, Boston, MA

SF
=

Y

[EM DFW
CLD WSP WSR  SWR LWR bp t.

m/s deg ly/d ly/d hr hr

OBS 22.8 15.5

NORM 22.7 14.4 0.46

WET 24.4 15.4 0.50

BIAS 25.5 17.7 0.45

0.45 4.4 102.4 479 64.5 3.9

99.2 522 784 57.3 5.1

106.7 534 808 44.4 5.6

101.5 §523 842

4.6

4.3

4.4

0

nm

7.2

6.0

18.6

9.0

.

EY

jd
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For the '"wet'" data set, the input precipitation para-

meters were changed from the observed values presented in

Table 12.1 to ty = 52.3 hr, t. = 5.3 hr, and h = 17.2 mm.

Decreasing the time between storms and increasing the storm

duration caused the mean cloud cover to increase. In

fact, the observed mean cloud cover in July 1959 in Bos-

ton was 0.51. This compares with a generated value of

0.50 (see Table 12.1).

It is interesting to note that in spite of the increased

mean cloudiness for the "wet" data set, the mean daily

shortwave radiation was actually higher than for the

"normal" data set. This can occur when, over short periods

of time such as one month, the higher levels of cloudiness

happened to occur during the night or during times when

shortwave radiation is low (e.g. early morning or late after-

noon). Existing meteorological data generation algorithms

are unable to capture the stochastic feature.

The temperature-biased data set has a mean temperature

that is 2.8°C higher than the mean temperature of the

"normal" data set. The only other model output variable

that is directly influenced by the temperature bias is the

longwave radiation. Table 12.1 shows that the longwave radia-
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tion is significantly higher for the "biased" data set

than for the "normal" data set. The independently generated

dewpoints happened to be high for the "biased" data set

and also served to drive up the longwave radiation.

12.3 Land Surface Model

The computer model of the land surface used in this

study numerically simulates moisture and heat transport in

a hysteretic, inhomogeneous porous media (Milly, 1982).

In particular, the model is used to represent a vertical

column of soil that begins at the land surface and extends

downward to a depth of 500 cm.

The atmospheric forcings represented by the CSCS data

sets (translated from the 2Z-meter level to the surface

by the boundary layer component described in Chapter 11)

define the surface boundary conditions. At the lower boundary,

no diffusion of soil moisture or heat is assumed and water

leaves the soil column only by gravity drainage, advecting

sensible heat with it. Only vertical variations of heat

and moisture are considered.

The soil parameters are based on hypothetical silt

loam soil. A summary of the soil parameters appears in

Table 12.2.
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The initial conditions were the same for each exper-

iment. Initially, temperature, matric potential, and

volumetric liquid water content were assumed uniformly

distributed over the entire soil column. The starting

values for these parameters were chosen based upon the mean

temperature and mean precipitation for July in Boston as

well as upon the properties of the silt loam soil (Milly,

1982). The initial conditions chosen for the current

study are:

1.

2.

3.

temperature,
T = 22.7°C

matric potential, ¥ = -1000 cm

volumetric liquid

water content, 8 = 0.233 cm /cn?

The output from the land surface model includes plots

of the time history of the components of the surface heat

balance:

2 - G =H+LE (12.3-1)

where Ry is the net all-wave radiation, G is the heat flux

into the ground, H is the turbulent sensible heat diffusion

into the atmosphere minus the sensible heat carried into

the soil by water that infiltrates during precipitation, and

LE is the turbulent latent heat diffusion into the atmos-



195

phere. All values in Equation 12.3-1 are expressed in

langleys/day (ly/day). In addition to the time histories

of the surface energy balance components, their average

daily values are also available for comparison.

The surface moisture balance equation is written as

1/0 = -P + E
+

dh
d

dt + R. (12 .3-2)

where dp is the upward mass flux of water in gem” 2a!

P is the precipitation rate in cm/d, E is the evaporation

rate in cm/d, hy is depression storage depth in cm, Rg is

the surface runoff in cm/d, and 0 is the liquid mass den-

sity 1n g/cm’. The surface heat balance and the surface

moisture balance equations are linked by the evaporation

terms, LE and E. Thus, the latent energy term represents

an energy form of the evaporation rate which adds another

interpretive element to the plots of LE

12.4 Results

Figures 12.1-12.6 present the 31 day plots of the indi -

vidual terms in the surface heat balance equation that

result from the land surface simulations using the different

meteorological data sets (i.e. ''mormal", "wet", and ''biased").

Obviously, some of the fine details in the plots were

sacrificed in order to plot all the data. However, the sig-
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Table 12.2 Summary of Soil Parameters (ref. Milly, 1982)

Parameter Value Parameter Value

0.160.46

3

a
0.414

10 %em/s

) 4 0.33

7
f

ct
~

D
5

0.05

3 0.210 0.11

10%cm 13 -495,
~

~

0.147 A 0.20

0.100.0 A

-0.0489 Br ne 0.5cnm

Soil Constituent Cs
1

A.
1 £5

Liquid water 1.0  1.37(10°°)

i 1 3010”H os

Quartz 0.46 2.1(10°%) 0.125

Other minerals 0 16 7(10°%) 0.125

Organic matter J.6 6(10°H 0.5

ke
variable - see Milly (1982), Chapter ?
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Table 12.2 (continued)

Parameter Definition

soil porosity

)
a

K.
~

-—

]

a

3 4

Db)

J 4

Je

34,

S "

Ad

\w

Nm

Cs

A

£3

r

")

proportion of medium occupied by water upon rewetting
to zero matric potential

hydraulic conductivity at saturation and temperature

To
fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

fitted coefficient for wetting function

volumetric soil fraction of quartz

volumetric soil fraction of '"other' minerals

volumetric soil function of organic matter

moisture content at which liquid flow becomes negligible

specific surface

albedo of soil when dry

albedo of soil when wet

maximum depression storage

volumetric heat capacity of the i-th constituent

thermal conductivity of the i-th constituent

shape factor of the i-th constituent

initial temperature of arbitrary reference temperature
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nificant trends can still be examined. All of the data

are plotted in units of 1y/d. Periods of precipitation are

indicated by the 'tic'" marks just above the time line. The

tic marks do not indicate intensity, just the occurrence

of precipitation.

The most significant feature of all the plots is the

strong diurnal signature. This is obviously due to the

radiation input which is dominated by the shortwave compon-

ent. Figure 12.1 presents the plot of net radiation for the

“‘normal'" run. The peak net radiation values represent a

positive contribution to the surface heat balance of on the

order of 1000 1ly/d. At night there is a slight radiational

loss as expected. Cloud cover significantly affects net

radiation. This is especially clear during the relatively

stormy period from day 9 to day 15. The increased cloudi-

ness during the period cut the peak radiational input nearly

in half.

Overall the ground flux (Figure 12.1) is the smallest

contributor to the heat balance. Although quite variable,

the flux away from the surface during the day is very nearly

balanced by flux toward the surface at night. During the

summer months, such as July, there is a slight positive

net ground flux.
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The latent heat flux for the '"mormal' experiment 1s

shown in Figure 12.2. A diurnal signature is present in

the latent heat flux plot, however, its magnitude depends

heavily on the availability of liquid water to evaporate.

During the two dry periods (days 1-8 and days 20-28), the

latent heat flux steadily decreases as the supply of avail-

able liquid water is exhausted. As soon as the available

water supply is replenished, the latent heat flux increases

sharply again.

The sensible heat flux (Figure 12.2) runs essentially

counter to the latent heat flux. As the latent heat flux

decreases, the excess heat is transferred to the atmos-

phere as sensible heat. Once the water is available again

to evaporate, the sensible heat flux decreases in response

to the increased latent heat flux (see days 9-15 and

days 29-31).

Figures 12.3-12.4 present the results of the experi-

ment using the "wet" data set. In this data set, the input

short and longwave radiation were higher (as discussed

earlier) which is reflected in the net radiation plot.

The biggest change between the results of the experi-

ment using the "normal" data and the experiment using the

‘wet! data set is evident in Figure 12.4. A much higher
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amount of water was available for evaporation. Thus, high

rates of evaporation were sustained throughout the month

and sensible heat flux remained at fairly low levels.

Figures 12.5-12.6 present the results from the experi
-

ment using the temperature-biased input data. Net radia-

tion levels were even higher for this experiment due to

the significant increase in longwave radiation input.

This leads to very high peak fluxes of latent heat (Fig-

ure 12.6) but the water supply was not able to sustain those

rates for very long. Accordingly, the sensible heat fluxes

(Figure 12.6) were higher than for the "wet" case (Figure

12.4).

Table 12.3 summarizes the average values for all four

terms 1n the surface heat balance. For the experiment

using the 'mormal" input data, the sensible and latent heat

fluxes were portioned almost equally. However in the "wet"

experiment, sufficient liquid water was available to allow

the latent flux to dominate. In the '"bias' experiment,

increased radiant energy coupled with a higher than ''nor-

mal' supply of available water allowed the latent flux to

dominate the convective transport but not to the extent of

the "wet'' case.
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Table 12.3 Average Heat Flux For the Land Surface Simulations
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12.5 Summary

Three different data sets generated by the CSCS model

were used as input to a detailed model of the land surface.

In each case, the initial soil column conditions were iden-

tical. Thus the differences noted in the resulting surface

fluxes were caused by the variations in the input data sets.

The variations in the input data set were in turn

caused by varying the input parameters of the CSCS model.

This demonstrated the use of the CSCS model to study the

response of a land surface to a particular change in a

climate or weather scenario. The stochastically generated

data set resulting from such experiments will include many

of the "ripple" effects that might evolve in a naturally

occurring scenario due to the physical coupling of the

atmospheric processes
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CHAPTER 13

SUMMARY, RECOMMENDATIONS, AND CONCLUSIONS

13.1 Summary

A computer model representing a new methodology

called Constrained Stochastic Climate Simulation has been

presented. The CSCS model jointly generates ten meteor-

ological variables with hourly resolution.

Two significant problems were overcome during the

development of the CSCS model. As a result, new procedures

for the generation of cloud cover and temperature were

proposed. These procedures account for the severe non-

stationarities in the cloud cover and temperature data

and allow the necessary linkages to other CSCS model com-

ponents.

The CSCS model was tested on four data sets (January

and July for Boston, MA and January and July for Dodge City,

KS). In each case, hourly output data plots, model out-

put statistics, and mean diurnal curves were examined. The

CSCS generated data were shown to represent the historical

data well. In addition, estimates of shallow-lake evapor-

ation were made using observed and generated data statis-

tics for July at Boston and Dodge .City. This tested the

joint use of several CSCS output variables. Again, the
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results using the CSCS data were satisfactory.

To demonstrate the utility of the CSCS model, three

different data sets were generated to use as input to a

detailed model of the land surface. Simple changes to the

input parameters of the CSCS model were all that were

required to create new data sets needed to study how the

land surface system responded to different forcings.

13.2 Recommendations

Several recommendations for future work have been dis-

cussed in previous chapters. These and several additional

recommendations are summarized here.

The precipitation regimes of certain climates exhibit

significant diurnal variations. Warm humid climates dom-

inated by late afternoon rain showers illustrate this point.

Vays of incorporating this feature into the CSCS need to be

explored.

Since the precipitation model '"drives'" the cloud cover

model in the CSCS, diurnal variations in cloud cover due

to the precipitation regime will also be accounted for. This

"ripple" effect will continue through the CSCS model to

the other components linked by cloud cover. (i.e. shortwave

radiation, longwave radiation, temperature and dewpoint).
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The methodology used to determine an appropriate input

probability mass function for the fairweather cloud cover

generation algorithm needs to be reviewed. The difficulties

in regenerating as well as interpreting the observed fre-

quency histogram were discussed in Chapter 9. Either a

more effective way of preserving the strongly U-shaped

distribution or a way to quantitatively express the unobser-

vable physical processes needs to be developed.

An alternative shortwave radiation attenuation algorithm

was presented in Chapter 4. This method should be imple-

mented in the CSCS model and the results compared with those

of the current technique. Both methods need to be compared

with more detailed shortwave radiation data than were

available for this study. This would help determine whether

the use of the more complex alternative is warranted.

The longwave radiation model uses the latest results

of Idso (1981). However, his model apparently has been

tested at only one site (Phoenix, AZ). Idso's results are

promising, but the generality of his model is still open

to question. More testing of Idso's approach is needed.

The temperature model has been shown to perform well

for two different months, January and July. Although these

months represent two climate extremes, the other months
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should also be tested, particularly the more volatile

transition months during Spring and Fall.

In this study, temperature model parameters were

estimated for each month. Since the temperature model

includes terms that reflect the day of the year, experi-

ments are needed to determine if parameters should be

estimated monthly or if parameters could be used that repre

sent longer periods such as a season. If parameters could

be developed seasonally, the total parameter estimation

chore would be significantly reduced.

Wind speed and wind direction were generated indepen-

dently in this study. For some locations, the assumption

of independence would not be valid. It may be more appro-

priate to condition wind speeds on wind direction.

In future versions of the CSCS model, wind direction

should be generated from its vector component form instead

of its azimuth form. By using the x-y components of the

wind vector, a continuous bivariate probability distribu-

tion function such as the bivariate normal distribution

might be used. This should produce a more realistic wind

direction specification than currently possible.

July dewpoints were generated independently. This

 -—

assumption was reasonable for Boston but in Dodge City,
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stability-related effects in the diurnal dewpoint curve

were not reproduced. If it is important to capture this

feature, other generation techniques such as the regression

model used for January dewpoints should be explored.

In addition to the recommendations relating to the

individual components, there is a broader concept that

should provide an interesting topic for future research.

It relates to the purely stochastic portions of the CSCS

model components.

One common way of handling non-stationarities in

data that are to be represented by a stochastic generation

procedure is to remove the non-stationarities from the

data analytically and to treat residuals as a stationary

stochastic process. This is essentially the procedure

used in the CSCS approach, particularly in regard to cloud

cover, temperature, and dewpoint. In the CSCS model these

residuals were assumed to be independent. This assumption

should be explored more carefully. If significant correla-

tions exist between the residuals, standard multivariate

techniques might be used to jointly generate the residuals

and thus further improve the coordinated output of the CSCS

model.
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13.3 Conclusions

The CSCS model is a flexible and efficient tool that

can provide high resolution meteorological data to be used

in a variety of applications including land surface flux

studies, plant disease propogation modelling, insect

infestation modelling, irrigation management, and crop

forecasting. A variety of possible input weather or climate

scenarios could be applied to a system simulation and the

outputs could be used to develop probability statements

about future events. Various management decisions could

be made accordingly.

The flexibility that is inherent in the CSCS model was

achieved without great computational cost. This is very

desireable since the CSCS model will generally be a tool

of the study, not the primary system of interest.

Even for very long simulation periods (e.g. 100 months),

the CPU times required on a DEC-10 computer are on the order

of minutes. Contrast this to the execution times of the

land surface model by Milly (1982) and the model of sur-

face hydroclimatology by Sellers and Lockwood (1981) which

are on the order of hours (or days). Thus, the use of the

CSCS model in these cases would add an insignificant com-

putational burden to the simulation studies.
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APPENDIX A

RANDOM NUMBER GENERATION

A.1l Introduction

Random numbers drawn from a variety of different dis-

tributions are required in the CSCS model. Fortunately,

the stochastic behavior of the CSCS components can be

generated by transformations of independent random numbers

that are uniformly distributed over (0,1) (Fishman, 1973).

This is important, since most computer systems have an

algorithm for generating random numbers from U(0,1)

resident in the system library. By using transformations of

U(0,1) to yield random numbers from uniform (U(a,b)), normal,

exponential, and gamma distributions, as well as any ar-

bitrary distribution, the generality of the CSCS model is

increased. The following sections outline the techniques

used to generate the required random numbers for the CSCS

model.

A.2 Uniform Distribution, (a &lt; x &lt; b)

The uniform probability distribution of variable, X, is

defined bv

£) =

so
h-a

 MN

a
”

~ A
7

~

—~———

elsewhere

{A-1)
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The cumulative distribution, Fy(x), is defined as

oy

X)
du _ x-a

b-a b-a
p27)| -

Fy (x) can have any value between zero and one. Therefore,

when Fy (x) is represented by a random variate U from u(o,1),

Equation A-2 becomes

 gg =
X-a

H-a

Solving for x gives

x = a + (b-a)U (A-4)

[ }

where x is a uniformly distributed number from U(a,b).

‘Fishman, 1973).

The generation procedure is to simply select U from

U(0,1) and use Equation A-4 to generate x from U(a,b).

A 3 Exponential Distribution

The exponential probability distribution function can

He written as

-x/8

c xX)
t..

2

0

J  xX

rr
(A-5)

A

The cumulative probability distribution, Fy (x), is

1 2

ro X)
a

dag = 1
7

2

 -—

Eo 9)
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If Fy (x) is represented by a random number, U, from

U(0,1), Equation A-6 can be written as

gs=1 - e X/8 “A
 a

Solving for x gives

x = -81In(1-U) (A-8)

7)

Since U is a uniform variate, it's easy to see that (1-U)

is also uniform. Therefore, Equation A-8 can be written

x &lt;

X = -R1nU0) (A-9)

The generation procedure is to select U from U(0,1)

and use Equation A-9 to obtain the exponentially distributed

variate x. (Fishman, 1973).

Normal Distribution

In the previous sections, the generating technique

relied on the invertability of the appropriate cumulative

probability distribution. Unfortunately, the cumulative

distribution function of the normal is not analytically

invertable.

The generating algorithm for normally distributed var-

iates in the CSCS model is based on the direct transformation

of uniform variates. (Fishman, 1973). Let Ug and U, be

independent variates from U(0,1). Then the variates
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2%

X{ = (-21nUq) cos (2mU,)

1
_ _ 2 ad

(A-10)

(A-11)

are independent and each is from a normal distribution with

zero mean and unit variance. To demonstrate this, Fish-

man (1973) indicates that the joint probability distribu-

tion function of X4 and X, is

wi ~~
Lwv

f « x (x 12X32) = Jiy (,U, Uq,Us
o

 Vv 2y/2
he

JTr
o

X

x

x 2
; + x,°)/2

]
2

2 2

2m (x, +X, )

 2 2
vx, )/2

_1
2 2

2m (xy +X, )

CA 12)

(A-13)

(A-14)

The joint distribution in Equation A-13 is that of two

independent normal deviates, each with zero mean and unit

variance.

The generating procedure is to select Uy and u, from

J(0,1) and use either of Equations A-10 and A-11 to yield a
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normally distributed variate X with zero mean and unit

variance. Note that in previous sections, one uniformly

distributed variate was selected for each generated random

number. Now, two uniformly distributed variates are re-

quired for each normally distributed variate. Therefore,

an efficiency rating can be defined as the number of 'target’

variates generated divided by the number of uniformly

distributed variates required. Since two uniformly dis-

tributed variates are required for each standard normal

deviate desired, the generating Equations A-10 and A-11 have

an efficiency rating of 50%.

A.5 Gamma Distribution

Consider the variate, X, to be gamma distributed with

shape parameter, a, and scale parameter, B. (denoted as

Ga(a,B)). The probability distribution function of the

gamma variate, X, 1s

£ x)

- —e

[ (a) 2®

X/B a-1

) xX &lt;&lt; o0 (A-15)

Like the cumulative distribution function (cdf) of the nor-

mal distribution, the gamma cdf cannot be analytically
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inverted. Therefore, transformation of uniformly dis-

tributed variates will be used to generate gamma distributed

random numbers.

Fishman (1973) outlines a technique to generate gamma

variates that is valid for both integral and non-integral

shape factors. According to Fishman, if X is from Ga(a,B),

then X can be considered "to be the sum of k + 1 independent

gamma variates, all with scale parameter 8, but the first

k of which have unit shape parameter and the k+1lst has shape

parameter vy = o - (a)." (Note that k = (a) where "( )"

denotes ''the largest integer in'').

The first k independent gamma variates are from Ga(l,B).

Nith unit shape parameter, the gamma distribution reduces

to the exponential distribution. Thus, the sum of k in-

dependent gamma variates from Ga(l,8) can be expressed as

the sum of k independent exponentially distributed variates.

Using Equation A-9,

X =z (-
I 81nU;)

(A-16)

which can also be written as

k

-81n In U.

j=1 J
(A-17)

where U. is the jth variate selected from U(0,1)
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The k + 1st variate is distributed according to

Ga(y,B). To obtain the k + 1st variate, let Y and Z be

independent variates from a beta distribution, Be(y,1l-v),

and a gamma distribution, Ga(l,1), respectively. Then, as

Fishman (1973) shows, the variate W = BYZ is distributed

according to Ga(y,R). Thus, the gamma variate, X, from

Ga(a,B) is found by

X = -Rf1n : U

je |
+  YY 7 (A-18)

Since Z is exponential with a unit parameter,

and

Z = InUy 4

Equation A-18 becomes

X -B1n

K

I U.

31
Y81n (Up,1)

(A-19)

"A-20)

The remaining task is to select Y from Be(y,1l-v).

The probability distribution function for a beta dis-

tributed variate with shape and scale parameters a and b res-

pectively 1s

- J) =

7

(a+b) a-1 D
Farry (Ay)

- 4

0&lt;x&lt;1
(A-21)

elsewhere
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In general, the parameters a and b will be nonintegral in the

CSCS model, therefore, an acceptance-rejection technique

for generating Y from Be(a,b) will be used, (Fishman, 1973).

Consider the transformations

/ 3
(A 22)

and

_ qq L/t

Y, =U, A-23)

where Uy and U, are independent uniformly distributed

variates from U(0,1). If Y, + Y, &lt;1, then Fishman shows

that the variate

’

7’ ‘1
( A. 23)

is distributed according to Be(a,b).

To find the beta variate required by Equation A-20.

first find the transformed variates

[ =

{ /~

0, = uy, (=v)

(A-23)

(A-24)

Next, determine if Y, + Y, &lt; 1. If vy, +Y, &lt;1, then

"accept' the variates Y. and Y, and compute the beta variate,



2385

Y, using Equation A-23.

If Yq + Y, &gt; 1, reject the variates Yq and Y,. Select

new variates, Ug and U,, and repeat the process until a

(Y{,Y5) pair are accepted to compute Y. Once a valid beta

variate, Y, has been identified, Equation A-20 1s eXxe-

cuted to give the required gamma variate X from Ga(a,B).

If Ng is the number of uniformly distributed variates

required to generate one beta variate, the total number,

1. of uniformly distributed variates required to generate

gamma variate from Ga(a,B) 1s

1m = Mg + Kk +

"

F ) 5)

The expected value of n. is then

+ k) + 1E(n.) = E(ng) + E(K) (A-26)

one

Since the number of trials for success in the beta

generation procedure follows the geometric distribution,

the expected number of uniformly distributed variates re-

quired to generate a Be(a,b) variate 1is

“ _ 2(a+b)I'(a+b)

Ng) = 3pT(a)T (Db)

Substitution of a = v and

(A-27)

b = 1-v into Equation A-27 leads

“0
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Z

E(ng) = STITT) (A-28)

From Hildebrand (1976), the following identity can be used

to further simplify Equation A-28

TJUS

“(y)T(1-v) = STRETT

2sin (my)
E(ng) = nly

AX 2)

| +50)

Equation A-30 has a maximum when y = 0.50. Therefore, the

maximum expected value of Ng is approximately 2.5.

Comparison of Equations A-15 and 2.2-3 gives

o = ot (A-31)

Since k = (a), then

k = (8t.) (A-32)

Taking expected values of both sides of Equation A-32 gives

E(k) = (SE(t.)) “A 33)

However, since t. is exponential

and

E(t) = §

Equation A-33 becomes

E(k) = 1

(A-34)

(A-35)
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Now using the Equations A-30 and A-35, Equation A-26

becomes

2sin(my)

B(n,)=22200). (A-36)

Jnc

B{0 Yuny = 4.5 (A-37)

A.6 Arbitrary Distribution

Occasionally, it becomes necessary to generate a

random variable from a distribution for which there is no

conveniently available mathematical formula. To generate

2» random variate over a finite domain (a,b), the following

steps are used. (Abramowitz and Stegun; 1970).

Let f be the maximum of f(y), the probability distri-

bution function of the variate y. Generate a pair of

uniform deviates, Uy and U, from U(0,1). Compute a point

y = a+(b-a)U, in (a,b). If u, &lt; f(y)/f, accept y as the

random deviate, otherwise reject the pair (U;,0,) and start

again. The expected number of uniformly distributed var-

iates, n,, required to generate the appropriate random

deviate 1s

EB ( N L)=2(b-a)t (A-38)
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In the CSCS model where this approach was used,

f(y) was approximated by a histogram.
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APPENDIX B

STATISTICAL PROPERTIES OF N(t)

B.1 Introduction

The cloud model developed in Chapter 3 was required to

have certain statistical properties. These properties

were discussed in Chapter 3, but their development is

presented here. The cloud cover model has the form

N(t) = MJ + (1-M,) (1-P(t)) + m(t)P(t) (B-1)

where M, is the '"fairweather'" mean value of N(t), P(t)

is the storm transition function, m(t) is a serially

correlated random sequence with the following characteristics

E(m(t)) = 0

VAR(m(t))=0

The sequence, m(t), also has a serial correlation function

o (1) where 1 is the lag.

B.2 Expected Value of N(t)

The first required property of N(t) 1s its expected

value. More specifically, the expected value of N(t)

given the time between storms, t,, is required. The condi-

tional expected value of N(t) is found by
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E(N(t) [ty) = EQ+(1-M) (1-B(t))

+ m(t)P(t)) (B-4)

Since M, is a constant and P(t) is a deterministic func-

tion of time, Equation B-4 becomes

TN(E) ty) = M, + (1-M_) (1-P(t))

+ P(t)E(m(t)) (B-5)

Substitution of Equation B-2 into Equation B-5 results in

the expression for the time varying conditional expected

value of cloud cover shown earlier as Equation 3.4-5

B.3

E(N(t)|t,) = My + (1-M))(1-P(t))

Variance of N(t)

The conditional variance of N(t) is defined as

(R-9)

VAR(N() tp) = BCON(E) [t,-BON(E) [£00 7) (B-7)

which can also be written as

VAR(N() [t) = ECON(E) |) 8) - EZ (N(E) ty)

sirst find (N(t)|t,)*.

(B 3)

N(t)|)2=(M+ (1-M) (1-P(t))

L mn! P(t)2 3-9)
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2

NCE) eg) = MT + aM (1M)(1-P(2)

2m(t)P(EM + (1-M) 2 (1-P(t))°

4 am (£)P(€) (1-M_) (1-P(t)) (B-10)

mn? (£)P2 (1)

Taking expected values of both sides of Equation B-10

gives

3 ((N 2y =(N(E) £02) = M2 + 2M (1-M) (1-P(¢))

1M )2(1-P(1))*? + 0 Zn? re)
m

(B-11)

Since

E(2m(t)P(t)M,) = 2P(t)M E(m(t)) = 0

E(2m(t)P(t) (1-M_) (1-P(t)))

CA1

JP  £) (1-M_) (1-P(t))E(m(t)) = 0

em? (0)P2(t)) = PE()EMmP(t)) = PA(t)o

Sor EZ (N(t) t, ), Equation B-6 is used to give
b

 2 (NCE) [t,) = (1, + (1-MJ) (1-P(£)))7 (B-12)

cxpansion of Equation B-12 and substitution into Equation

B-8 along with Equation B-11 gives
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VAR(N(£) [t,) = M_% + 2M_(1-M_(1-P(t))

5 2p(t)-Mo 2M (1-M)) (1-P(t))

(1M) 2 (1-P(1))° (B-13)

Equation B-13 reduces to the expression for the time vary-

ing conditional variance of N(t)

VAR(N(t) |t) = o 2P%(t) (B-14)

Serial Correlation Function

The serial correlation function of a time series is

found by normalizing the covariance function of the time

series. The covariance is defined as

COV(N(t),N(t+T1)) .

E((N(t)-uy(t)) (N(t+1) ~up(t+T)))

(B-15)

As in previous sections, the process is conditioned by ty

For ease in writing, the designator "lt," has been dropped.

Also, for convenience

)| ty,(N(t)= E) =tyg ( E 17)

Expansion of Equation B-16 leads to

COV(N(t),N(t+1t)) = E(N(t)N(t+1))

 E(N(t)uy (t+1)) - E(uy(tIN(t+1))

FE (yy (£) Hyg (£47) (B-18)
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Since Hy (1) and Hy (E+T) are deterministic functions of

time, the third and fourth terms on the right-hand side

of Equation B-18 become respectively

E(uy (BEIN(t+T)) = ny(t)uy(t+T) (B-19)

(tC

E (uy (£) Hy (£+1)) = uy (Eup (t+)

Substitution of Equations B-19 and

gives

COV(N(t),N(t+1)) = E(N(t)N(t+T))

py (E+T)E(N(t))

(B -20)

B-20 into Equation B-18

(T 21)

The next step is to substitute Equation B-1 evaluated at

times t and t+t into Equation B-21. This leads to

COV(N(t+t)) = P(t)P(t+T)E(m(t)m(t+1)) (B-22)

The serial correlation function of N(t) is defined as

_ COV(N(t),N(t+T1))

on (T) = Gy (£) Oy (E+T)
(B-23)

where ay (t) is the standard deviation of the process at

time t. The standard deviations are defined as

Y t) = /WAR(N(t) [ty) = P(t) J
m

(B-24)
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and

oy (E47) = VARIN (t+1) Tt) = P(t+T)o_ (B-25)

Substitution of Eaguations B-22, B-24, and R 25 into Equation

B-23 yields

0) -) = P(t)P(t+T)EM(t)m(t+1))

P(t)P(t+1)o_°
 L 26)

Nith the definition

E(m(t)m(t+t)) = COV(m(t)m(t+1)) (B-27)

Equation B-26 can be written as

2D (ft) = COV(m(t)m(t+T)) (B-28)

Y

The right-hand side of Equation B-28 is just the defin-

ition of the serial correlation function, p(T) of the

random process m(t). Therefore, Equation B-28 reduces to

oy(t) = p(T) (B-29)

Equation B-29 states that the process N(t), whose mean and

variance are modulated in a controlled fashion by P(t),

will have a serial correlation function identical to the

process m(t).
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APPENDIX C

BRYAN'S TEMPERATURE FORECAST MODEL

C.1 Introduction

Since Bryan's 1964 report was unpublished and since

the writer knows of no formal presentation of the details

of Bryan's technique in the literature, a detailed mathe-

matical description of the approach will be included here.

3rvan's approach is representedbythefollowing

adudLinons

Tr T(t) + byT(t) = by + bys(t) + byr(t) (C-1)

Cc SIN 3sing - cosécos¢cosyt) ,

(R&lt;t&lt;S) (C-2)

s(t) = 0 otherwise (C-3)

r(t) = Tzcosécos¢sin (75t)

r(t) = 0 , otherwise

where T(t) is the temperature at time t, § is the solar

declination, ¢ is the local latitude, R is the local time

(R&lt;t&lt;12) (C-4)

of sunrise (note the difference between local time and

standard time), and S is the local time of sunset.

Equation C-1 can be solved by using the integrating
b,t

factor e 1 Thus
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b,t bt

4 . 1 ro) =e! , + bys (t) + br (te) (C-6)

and

whero

for the interval (t',t)

“by (t-t')
Tift) = T(t')e

“ht
+ e F(t,t')

FE.t)=b,
b,T

e dt + b,
b,T

e ls (t)dr

21T
e "r(t)drt

(C 7)

(. 8)

Equations C-7 and C-8 represent the solution to Equation

C-1. Once the coefficients, b., are known, a temperature

forecast can be made given only the initial temperature

T(t").

C.2 Parameter Estimation

Bryan manipulated Equations C-7 and C-8 into a form

that leads to a linear regression formula used to estimate

the
1

b. S.

First, note the following identities

“by -by(E-1)~
—

‘t-t'") -b, (t-1-t'")

(C-3)

(C-10)
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F(t,t') = F(t-1,t') + F(t,t-1) (C-11)

Jsing these identities, Equation C-8 can be rewritten as

-b, (t-1-t") -b, (t-1)
T(t')e eC F(t-1,t'")

-

)

J

= e
1

 fr in3
byt

F(t,t-1) (C-12)

The quantity inside the brackets is just T(t-1).

by “byt
T(t) = e T(t-1) + e F(t,t-1)

Therefore,

(C-13)

The hourly temperature change, Y(t), is found by sub-

tracting T(t-1) from both sides of Equation C-13.

“by “bt
tt) = -(1-e )T(t-1) + e F(t,t-1) (C-14)

Substitution for F(t.t-1) leads to

“bt * b.t by
{(t) = b_e e * dt - (1-e )T(t-1)

=

ot bit
e “s(t)drt

1

~  aD
5

 LH t
or

b,T

a Yr(1)dr (C-15)

1

Evaluation of the first integral (I, for convenience) on
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the right-hand side of Equation C-15 leads to

9) -b0 1,

— (1-e (C-16)

The last two integrals, I, and I, on the right-hand side

of Equation C-15 are complicated by the exponential term

inside the integral. Bryan indicated that it was sufficient

to use the mean value of D1 and bring it outside the

integral. Thus,

of 17) = Lae het

Thus, I, and I; respectively, become
" 1

b -b

oo (1-e 1 soya
1

(C-18)

and

Ml.

b -b ‘

Seda | s(r)ar
/

t~ 1

(C-19)

Substitution of the expressions for Is I,, and IL, back

into Equation C-15 yields
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1)t-Pp(1-ebp, ]
(1-e

| -eY(t) ;

ch

b -b

(le

Lb 1

| r(t)drt (C-20)

LL

Equation C-20 is now in the required regression form

from which the b.'s can be estimated. To see this more

clearly, compare Equation C-20 term by term with the fol-

lowing

The

7(t) = a, + aX, (t) + a,X,(t) + a X(t)

comparison gives for the coefficients

D -b
_ © _ 1

a =. by (1 ec

-b

a. = -(1-e 1,

b -b
 P20 TP

a, - b. (1 ce )

b -b

a. = 0 (1-e 1,
1

-p

(C-21)

(C-22)

(C-23)

(C-24)

(C-25)

For the predictors
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Xq(t) = T(t-1)

*s(t)drTX(t) =

(C-26)

(C-27)

1

1

X )
be

LL | r(t)dr (C 28)

Once the a;'s have been determined by regression, the

b,'s can easily be found, since the set of Equations C-22

through C-25 is a set of four equations in four unknowns.

Therefore, the b.'s can be found from

bh. = -in(a +1)

D
nam.

——

b

a, , 1 =

7

0.2.3

(C-29)

(C-30)

Now that the b,'s are established, Equation C-7 can

be used to forecast temperatures, given only the initial

temperature, T(t').

C.3 Evaluation of Predictors

From the definitions of s(t) and r(t), it 1s seen

that Equation C-20 and, ultimately Equation C-7, will have

different forms, depending upon the time of day. The

ranges over which each form will be valid are delimited by
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several "critical" times. These times must be identified

in order to coordinate the data observation times which occur

at regular intervals according to standard time, and the

occurrence of events in the local solar day (e.g. sunrise,

sunset, etc.) which vary in time throughout the year. Five

critical times are identified: 1) t, is the value of t in

local time corresponding to midnight in standard time, 2)

rg is the value of t which corresponds to the earliest

standard hour that does not precede local sunrise, R (r &gt;R),

3) ti, is the value of t at the earliest standard hour that

does not precede local noon (ty,212), 4) Sg is the value of

t at the earliest standard hour that does not precede

local sunset, S (s;&gt;S), and, 5) ty is the value of t cor-

responding to 11:00 p.m. local standard time.

For all times, t, predictor Xq(t) will equal T(t-1).

But the forms of X, (t) and Xz (t) will change with t. The

individual forms of X,(t) and X(t) for each range follow.

Range 1 tp 227, -

{
Y

LT) = s(t)dr

rr

0

X
— t) = 0

1 for X, (t)

(C-31)
7
Le
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Range 2 t = To (first observation hour after sunrise)

For X,(t)
rca

=) s(t)dr

o£
i

s(t)dr

e

Lit) = (r.-R)sindsin¢ -

s(t)dT

(C-32)

12 ; mr TR

—=cosdcos¢ (sing=— - 13)

(C-33)

Range 3 7r_+1 &lt; t &lt; sg-1 (daylight hours) for X, (t)

/
= s(t)dT

4
3

Li

‘t) = sindsin¢ -

12 . Tt i

~£cosécos¢ (singz - singz(t-1))

(C-34)

Range 4 t = s_ for X, (t) (near sunset) for X, (t)

s(t)dT

 1

s(t)dt +

&lt;
-

s(t)dT

~
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X,(t) = (S-s *1)sindésing

L2 i i

— cosdcos¢(cos 17° - cosy&gt;(s -1)) (C-35)

Range 5 s +1 &lt; t &lt; t,; (after sunset) for X, (t)

r

( |

\

)

1)

L

0

s(t)drT

5

(C-36)

Similar ranges exist for Xz (t).

Range 1 t_  &lt;t &lt; r.-1 (before sunrise) for X(t)

cL

{ »

Y
t) - r(t)dr

/ A

-

Range 2

L(t) = 0

t = r. (near sunrise) for X(t)

g

L) —— r(t)drt

(C-37)

1

r
ro S

r(t)dt + r(t)dT
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mR LE

Xz (t) = cosdcos¢ (cos 157 - COS 15 ) (C-38)

Range 3, Tr. + 14
oo”

. &lt; £12 - 1 (before noon) for Xz (t)

X 3 r(t)d~

{
3

t) = cosscosd (cosz(t-1) - cost) (C-39)

Range 4, t = t,, (near noon) for Xz (t)

a

4 El C) | r
I

1 T)dT

Lio

a / 2

r(t)dt + r(t)drT

By
2-1

1

{ .(t) = cos8cos¢(cosTz(ty,1)+1)

Range 5, t,,+1 &lt; t &lt; trz for Xz (t)

A uy r+) r{t)drt

L
-»

1

Kz (t) = 0

(C-40)

(C-41)

For each hour of the day, the hourly temperature change,

Y(t), is computed from the observed data and the
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predictors X. (t) are evaluated. Standard linear regres-

sion techniques can be used to estimate the coefficients a;

which in turn are used to finally yield the b.'s.

Evaluation of F(t,t')

As with the predictors X;(t), the function F(t,t')

will have different forms, depending on the time of day.

The general solution for F(t,t') will be shown first. Then

the individual forms applicable in each range will be

developed.

consider again Equation C-8,

—

—t
i:

. i } D
0

b 1

e 1 dt + b,

bit
e r(t)dr}  py

where

 =n
—

LT
* s(t)dT

(L-8)

For convenience, let

ow —BE4 a

of

~~

med

“ rt tt") = 1.

t

I b_

=

b,T
J AE

I,
* 1 (C-42)

(C-43)
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tr

byt
e s(T)dT (C-44)

=
LS

he

iw = bs e

b,t
1 r(T)dT (C-45)

i

~

Evaluation of I is straightforward and can be written

directly as

i) 1° ] J
b,

(C-46)

For I,, begin by substituting the full expression for s(t)

inside the integral. Thus,

byt i
e (sindsind - cosdcos¢cos (77) ) drLs Bb

/

(C-47)

The declination &amp; is actually a function of time and, in a

strict sense, ought to be evaluated in the integral.

However, the interval (t,t') is sufficiently short so that

the variation in 6 is ignored. Equation C-47 can now be

rewritten as

sindsind

L

bq
&gt; dt - b,cosdcoso

b,T TT

. 1 cos (7) dt

[

(C- 43)
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Completion of the integration finally yields

iL
.
4

2
5 sindsind (e

1

no.§
ea

1 4

¥

b,t
1 Tt

3 b,b,cosécos¢cos (77)
 2 2
AH (3)

"1% (7 coss in (33)
&gt; 217 cos¢sin(ys

 T 2
+ (3%)

~

~

bh h,cosScospcos (3 )

_Iy2

(35)

b,t! i t!

&gt; i b, (75) cosécos¢sin (37)
Lm 2
 or (33)

(C-49)

Similarly, for I, substitute the full expression for

(t) into the integral.

Fo»
Ai

e (= cosdcos¢sint -

mT

75) dt (C-50)

Again, the short term variation in § is ignored. Thus
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_ i

I; = b (17) cosécose

t

( byt TT

e sin(yz)dr (C-51)

1nd

|

- b,bscosdcos¢ byt Cot
— = © sin(77)

bs + (15) 1
1 “12

mT {2

b; (77) cosdcosd Dit It
2 2 2

b, “+ (33) !

mT

75 bybgcosdcosd byt’ ore
— 72 _ w.2 © sin (yz)

0"+(55)

m 2 1

b; (35) cos8coso bt Tt!
=m cosy

bh “+ (37)
(C-52)

To simplify the writing of Equations C-49 and C-52Z, the

following definitions are used

2

K. =
1

K,

17

CD

i
b-

b,sinésin¢
1

(C-53)

(C-54)

(C-55)
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 = b,b,cosdcos¢

3 bh. 2 + p?

&lt;a
pb,cosdécos¢

bh 2 + p*

”

\

Z

p b;cosdcos¢
2 2

by,” +p

pb.b,cosdcosd
_ 173

Ke = —=2 7
b,” +p

(C-56)

(C-57)

(C-58)

(C-59)

Using the definitions in Equations C-46, C-49, and

C-52, the general form of F(t,t') can be written as

b,t b,t' b,t b,t*

t,t') = Ky (e 1® e 1 ) + K, (e ls e 1 )

byt byt
(K.+Kc)e cos(pt) + (Kg-Kyde sin(pt)

bt! byt
-~Ke)e cos(pt') + (K,-Kg)e sin(pt"')

(C-60)

Note that t' = t, - 1.

For the range t  &lt; t &lt;R

byt
g dt + b,F(t..t') = b

byt
e s(t)dr
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t byt
e r(t)dT3

3

In this range s(t) and r(t) are both zero. Thus,

b.t
e © dt"y = Db

0

(C-61)

J

b,t  b,t!
Fle, t') = Ki (e © -e lt )

For the range R &lt;t &lt; 12

’ t fe

F(t.t ) b,,
b,T

e 1 dt + b,
bt

e s(t)drt

3 b-.
a
—

b.t

1 r(t)drt

Equation C-63 can also be written as
F

b.t

2 IL ] b. b,

b.T
2 1 s(t)dr

[=

|

bit
e s(t)dt + b

R
,

byt
e r(t)dr

}

(C-62)

(C-63)
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dz

b.,T

| e 1 r(t)dr

Remembering that prior to sunrise, s(t) and r(t) are zero,

carrying out the integration leads to

~~

-

b,t
LL 1
[t 4 = 17 == K, (e no

h +

1) + K,(1-e
2, (t-R)

K.+K)cos (pt) + (Kg-Ky)sin(pt)

For the

r

-by (t-R)
K.)e cos (pR)1

) e

.(t-R)
sin (pR)

range 12 &lt; t &lt;
Qc
—-~

1,

 J) =Db
0

Ty oq
e t dt + b,

{
b,t

e 1 s(t)dT

1

R

byt
e s(t)drT

(C-64)

’

Ep
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tT by —

R
| byt

e r(t)dTt + b,

rt
bt

e r(t)dr

12
b,T

&gt; 1 r(t)dr

(C-65)

Evaluation of Equation C-65 gives

b,t b,t' b,t b,R
£1) = Ky(e L -e b ) + Ki(e lt -2 1)

byt
* cos(pt) + K,e sin(pt)

L b,R
cos(pR) + K,e sin (pR)

~ sin(pR) + K.e

AE.= 7

&amp;
]

For the range S &lt; t &lt; thz

*

id

{© L } = bg

b,T
e 1 dr +

b.R

* cos (pR)

R

byt
e s(t)drt~~

/

(C-66)
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7,

S

( byt
e s(t)dt + b,

3 byt
e s(t)dT

J

oy

Jz

R
r

i

1 byt
e r(t)dtr + bo

| byt
e r(t)dT

-

A. 2

b.t
a 1 r(t)dT

(C-67)

During the evaluation of the integrals in Equation C-67,

the following identities prove useful

The

S 24 -R

sin(2m-pR) = -sin(pR)

cos (2m-pR) = cos (pR)

final form for F(t,t') is now written as

b,t b,t' b,S b,R

(t,t!)=Ki(eL-eb)+K,(ebce1)

byS b;S
= cos (pR) + Kye sin(pR) + Kee

b,R biR
= cos (pR) + K,e sin (pR)

. R b,R

{.= 1 sin(pR) + Ke 1 cos (pR)

12by

/

In

(C-68)

(C-69)

(C-70)

(C-71)
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The forecast temperatures are now found by substi-

tuting the appropriate form of F(t,t') into Equation C-7

and solving for T(t), t, &lt; t &lt; ths. Note that declination,

§, was assumed constant over the interval (tysty3)- Thus,

variations within a day are ignored. Variations in § for

longer periods cannot be ignored. Therefore, the declin-

ation is recomputed for each day in which temperature fore-

casts are made (see Equation 4.2-5). This accounts for

longer term variations in solar input.
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APPENDIX D

DETERMINISTIC TEMPERATURE COMPONENT

D.1 Introduction

The deterministic component of the temperature model

is represented by

T(t) + by T(t) = by + byK(t)s(t) + b-K(t)r(t)

+

1

hat) + beT (t) + bW.(t)

b,Wy(t)
(D- 1)

where T(t) is the deterministic component, K(t) is the solar

radiation attenuation factor (K(t) = 1 - 0.65N% (1),

N(t) is the cloud cover, q(t) is a longwave radiation esti-

mate (see Equation 6.3-2), T4(t) is the ground temperature,

Ww. (t) is the wind speed, and W,(t) is the wind direction.

As indicated in Chapter 6, the general solution to

Equation D-1 can be written as

. -” by (t-t') “byt
T(t) = T(t")e + eo G(t,t"')

where

G(t,t') = b_

b,T

e 1dr +b,

Hoe

,

byt
e K(t)s(t)drt
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”

»

byt
e K(t)r(t)dTr + bya(t-1)

Pe

b,T
e 1 dr

+

D.2

byt
e T,(t)dr + b.

r

byt
e W,(t)dr“ -

by
e Wi(t)dr (5 3)

Parameter Estimation

The procedure for estimating the coefficients b.

through a regression involving hourly temperature changes,

Y(t), has been described in Appendix C. The resulting

coefficients a; are

b

2. = -(1-e 1y

(D-4)

a.
41
bP s 1 = 0,2,3500447

lhe predictors X(t) are

X(t) = T(t-1)

| = K(t)

X,0t) s(t)dT

(D-5)

(D-6)

J

E-1

£7 (t) = K(t) | r(t)dr

o 1

5-7)



267

X,(t) = q(t-1)

X -

5
(t) = T_(t)

, + = (

£108) W_(t)

Kot) = W
J {

re
-

(D-8)

(D-9)

(D-10)

-

!
 J 11)

The one hour integration interval was considered short

enough to allow the variables K(t), q(t-1), To (1), w(t),

and Walt) to be brought outside their respective integrals.

Predictors X, (t) and Xz (t) are used only during se-

lected parts of the day. These times have been defined in

Appendix C and will not be discussed again here. The

indicated integrations in Equations D-6 and D-7 have also

been discussed in Appendix C. The only difference in the

final forms of X,(t) and X-(t) for the present case is

the multiplier K(t). The remaining predictors are used

throughout the night and day.

D.3 Evaluation of G(t,t')

For convenience. let the seven integrals of Equation
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D-3 be written as

b.,

[, = b,

|
] b,

[ -
= bg

 lh

r
b.,T

e 1 dt

byt
e K(t)s(t)dT

byt
e K(t)r(t)dr

t

( bt
e q(t)dr

byt
2 T,(t)dt

(D-12)

(D-13)

(D-14)

(D-15)

(D-16)

-

L ~~
 PF

= b.
=

i;

bit
e W.(t)dr (D-17)

S

ro = b,

,

byt
e W,(t)dti (D-18)
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The integration indicated for I, is straightforward

and results in

b,t b.t'

SE

The remaining integrals contain terms such as K(t1),

q(t), Tg (1), W(t), and Wet). Except for reasonably short

intervals, treating these terms as constants is not sensi-

ble. To deal with integration intervals that are large

enough for these variables to vary significantly, the

following approach is taken.

Consider I,, where

i b,

=

e
1

K(t)s(t)dr

[, can also be written in an equivalent form as

ba | b.te 1 X(1)s(t)dr

-  |

t

(

+
J

NN

b.T
Lg (t)s(t)dr

)
2

(D-13)

(D-20)
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In the first integral on the right-hand side of Equation

D-14, the integration interval is short enough such that

K(t) can be brought outside the integral. Thus

)

£) |e
 HN

s(t)dn

J

t 1

b,T
i K(t)s(t)droD (D-21)

Now the first integral in Equation D-22 is in the same

form as the integrals evaluated in Appendix C (see Equa-

tion C-47).

The same argument can be used to successively evaluate

the second integral of Equation D-21. Following the pro-

cedure hour by hour back to t', a series of the following

form results.

X(t)

,

Re

byt
e s(t)drT

i

{
a

.  K(n)
n=1

$1 +0

Tr

7

+ -t

byt
e s(t)dt (D-22)
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Since the series of integrals defined in the second term

on the right-hand side of Equation D-22 is just the value

of I, at t-1, the following computational form is used

) b-K(t) | ns4e

¥

s(t)dt + 7 1) L 23)

-

Concluding the integration of Equation D-23 yields

1,(t) = K(t)

(b b,t b,(t-1)

2sinssing (e 1m. |
1

‘ t

hb gostensions53)
Zz TS 2

b, * (55)

=
—

byt

b,t

&gt; by(g)cosscosisin(ry)
7 T 2

Hoo + (17)

b,(t-1) -

1 b.b,cosscosocos (art)
2 T &lt;2

by + (17)

b, (t-1) _

. b, (I) cosscosssin (LEH

se (1°

t-1) (D-24)
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Using the definitions for K, &gt; ISTE «tn Ke defined in

Appendix C, Equation D-24 can be written as

bt Py (E-1),- e[,7t) = K(t) (K,(e

) b,t ”

1 1 iilco cos (1%) - Kye sin(33)

b, EH os (TEL,

SEE ley, I,(t-1) (D-25)

Similarly, the remaining integrals, I., can be obtained.

bt bt

5) = K(t) (Kee © sin(FH) - Kee © cos(T3)

b. (t-1) ]

Ce 1 sin (HEL),

WET elem) I(t-1) $&lt;

by, “by bjt
[,(t) = = a(t-1)(l-e Je = + T,(t-1)

1

b -b b.t

= p&gt; T(t) (1-e Le 17 4 1o(t-1){
y

t)

L « T)
O¢ -b.
— W_(t)(1l-e Ne I. t-1)

(D-26)

(D-27)

(D-28)

(D-29)
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b, -b; byt
[,(t) = 5, Wy(t)(1-e Te + I,(t-1)

(D-20)

The specific form of G(t,t') still depends on the time

of day for which the integrals are evaluated. (Note that

t' = t, -1).

For Range 1, t_ &lt;t
~

3

b,1
t') = K, (e 1

b t- b b b,t

i ) + = q(t-1)(1-e Lye 1

be -b. byt
1) + 2 T(t) (1-e Ne

1
A

b= 7 (t-1)

b -b, b,t

5 We (8) (1-e Lye 1m. ig v~1)

b, b.,t

Tow) (1-e De T+ T,(t-1) (D-31)

Actually, the terms on the right-hand side of Equation

D-31 retain the same form throughout the day. For conven-

ijence then, the terms on the right-hand side of Equation

D-31 will be collectively referred to as H(t,t').

For Range 2, R &lt; t &lt; R+1l

bit byR
G(t,t') = H(t,t') + K(t) |X, (e -e )
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b.t b.t
1 t 1 - t

Kze = cos(T3) - Kee = sin(3)

b.R )
TR 1 2 mR.

cos (35) + Kye sin(17)

b,t b,t
1° _._7t 1 Tt

t) |Kge sin(37) - Kee cos (13)1 x

K b.R mR
ay e 1 cos (77)i” sin(q3 + Ke |

For Range 3, R+1 &lt; t &lt; 12

(D-22)

| Ff - bt by (t-1)
5{t.t') = H(t,t') + Ke) |K, Ce a 1

I b,t
1 t 1°.

‘a cos (3) - K,e sin (3)

A. (t-1) i b,(t-1)
COS (2lt-1), + K,e 1 sin (TUL),a

 Ppt bt

[,(t-1) + K(t) Ke 1 sin (35) - Ke 1 cos (15)
{

K , CoPE ne,

ET les, + I.(t-1) (D-33)
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For Range 4, 12 &lt; t &lt; 12 + 1

bt b, (t-1)
ce 1m ed )5 ( t t') = H(t.,t') + K(t)

9 1 b,t
L Tt 1 - mt

cos (77) - K,e sin (3%)oy

)
by (t-1 ] by(t-1) | ciqy.]

. 1 ( ) cos (21), + Ke 1 sin (17)J

12b b,(t-1) _

,(t-1) + K(t) |xge 1 K.e 1 sin (TEL)

COT

-1 _

&gt;. (t ) cos (LLY, ~~

Range 5, 12 + 1 &lt; t =&lt;
y

-

+ I,(t+1) D 34)

( bit by (t-1)
Sre.t') = H(t.t') + K(t)|K,(e©- e

b,t b,t
 a | Ty _ 17 _._,1mt

lo cos (13) Kpe sin(y3)

h. (t-1 by (t-1) ; |

- ) cos (71121, + Kee sing)

c-1) + I.(12) (D-35)
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For Range 6, S &lt; t &lt; S + I

 -~
J

f b,S by (t-1)
ct) = H(t,t') + Kt) Keb - oe )

[

{ .

b,S b.S
1 S 1° .

cos (33) - Kye sin (53)

bh. (t-1) } b, (t-1)
cos (ied), + Ke 1 sin (TEL)-

,(t-1) + 1,012) (D- 36)

Finally, for Range 7, S + 1 &lt; 4- ? J

G(t.t') = H(t, t') + I,(S) + I.(12) (D-37)

Now with: the appropriate form of G(t,t'), Equation

D-2 can be used to find the deterministic component, T(t),

at any time of day
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APPENDIX E

CSCS PROGRAM LISTING
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CARD INPUT SUMMARY FOR THE CSCS MODEL

.

y

 Ly

-

CARD COLUMN FORMAT

1-80

aly 1-80 131258

=
x 1-18

11-20

16X

A110

21-30 A110

31-40 £10

1-10

11-12

14-15

17-20

22-23

25-26

28~3}

33-35

37-58

40-41

43-45

47-48

50-51

53=(2

10X

12

[2

[4

i2

 2

14

F3ed

£260

F2e0

F3e0

F2el

F2e0

A100

1-20

J 1-10 10X

11-20 F10.0

21-30 F100

21-40 F10e0

41-50

51 =60

F10.0

F105

1-10

11-12

10X

i2

31 =X {) F10.0

DESCRIPTION

USER INFORMATION CARD USED ONLY TO SEPARATE

CARD GROUPS IN THE DECK (OR FILE)

THREE TITLE CARDS. THE TEXT ON THESE CARDS

WILL BE PRINTED OUT AT THE SEGINNING OF

THE INPUT DATA SUMMARY.

SPACE FOR CARD LABEL. KOT READ RY C5CSe.

QUTPUT FILE NAME FOR INPUT DATA SUMMARY AND

JUTPUT DATA ANALYSIS. FILE NAME HAS THE

FORM XXXXXXeYYY

QUTPUT FILE NAME FOR GENERATED DEWPOINT

DEPRESSTIONe XXXXXXaYYY

OUTPUT FILE NAME FOR DEBUG INFORMATION

AXAXXXeYYY

CARD LABEL

INITIAL MONTH = MM

INITIAL DAY - DD

INITIAL YEAR = YYYY

ENDING MONTH Mt

ENDING DAY 38

ENDING YEAR YYvyy

LATITUDE DEGREES
LATITUDE MINUTES

LATITUDE SECONDS

LONGITUDE - DEGREES

LONGITUDE - MINUTES

LONGITUDE - SCCONDS

TIME ZONE (UeSe *EASTERN®s *CEMNTRAL',

"MOUNTAINYy OR YPACIFIC®) LEFT JUSTIFY.

JSFR INFORMATION CARD

CARD LABEL

MEAN FAIRWEATHER CLOUD COVER

STe DEV. OF FAIRWEATHER CLOUD COVER

LAG-1 CORRELATION COEF. OF FAIRWEATHER

CLOUD COVER.

CLOUD COVER TRANSITION DECAY COEFFICIENT

ATMOSPHERIC TURBIDITY FACTOR

CARD LABEL

NUMBER OF FAIRWEATHER CLOGUD COVER HISTOGRAM

ELEMENTS

LOWER BOUND OF FAIRWEATHER CLOUD COVER
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-

C
-

I ar

-

«

¢

A

[

t

C

a

le

Ls

31-40 F10.0

10 1-10 10X

11-70 EF10e0

11 1-10 10X

11-70 £F10.0

12 1-80

13 1-10 10X

11-20 F10.0

21-30 F10.0

21-40 Fl10.0

14 1-80

15 1-10

11-58

10X

45125

16 1-10 10X

11-20 F10.8

21-30 F100

Z1 aif) F10.0

17 1-80

18 1-10

11-20

21-30

31-40

41-50

10X

F100

F100

F100

F100

19 1-10 10X

11-20 F100

21-30 F100

31-40

41-50

£1040
F10.0

20 1~11 10X

11-20 F100

21-30 F10e0

HISTOGRAM

UPPER BOUND OF FAIRWEATHER CLOUD COVER

HISTOGRAM

CARD LABEL

HISTOGRAM ELEMENTS. USE AS MANY CARDS AS

NEEDED. REMEMBER THAT THE FIRST 10 SPACES

ON EACH CARD ARE RESERVED FOR THE CARD LABEL

CARD LABEL

RIGHT HAND COORDINATE OF EACH HISTOGRAM

ELEMENT FROM LOWEST TC HIGHEST.

USER INFORMATION CARD

CARD LABEL

MEAN TIME BETWEEN STORMS

MEAN STORM DURATION

MEAN STORM DEPTH

USER INFORMATION CARD

CARD LABEL

REGRESSION COEFFICIENTS FOR THE DETEXR-

4INISTIC COMPONENT OF THE TEMPERATURE

MODEL (B0=-B7)e USE T«0 CARDS.

CARD LABEL

TEMPERATURE BIAS FOR THE STOCHASTIC

COMPONENT OF TEWMPERATURL

STe DEVIATION FOR THE STOCHASTIC CO“PONENT

OF TEMPERATURE

LAG-1 SERIAL CORRELATION COEFFICIENT FOR

THE STOCHASTIC COMPONENT OF TEMPERATURE

USER INFORMATION CARD

CARD LABEL

MINIMUM HOURLY WIND SPEED

TIME OF MINIMUM HOURLY «IND SFEED

MAXIMUM HOURLY WIND SPEED

TIME OF MAXIMUM HOURLY WIND SPEED

CARD LABEL

MINIMUM HOURLY ST. DEVIATION OF WIND SPEED

TIME OF MINIMUM HOURLY ST. DEVIATION OF

WIND SPEED

4AX IMUM HOURLY ST. DEVIATION OF WIND SPELD

TIME OF MAXIMUM HOURLY STe DEVIATION OF

4 IND SPEED

CARD LABEL

WIND SPEED SKEW COEFFICIENT

LAG-1 SERIAL CORRELATION COEFFICIENT OF

JIND SPEED
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21 1-80

22 1-10

11-20

21-30

31-40

10X

F100

F100

F100

23 1-10 F100

11-12 12

21-30 F100

21-40 F100

24 1-10 10X

11-70 6F10.0

25 1-18 10X

11-70 5F10.0

26 1-80

&gt;7 1-5 AS

USER INFORMATION

CARD LABEL
MEAN TRANSFORMED WIND DIRECTION

STe DEVIATION OF TRANSFORMED WIND DIRECTION

LAG-1 SERIAL CORRELATION COEFFICIENT OF

TRANSFORMED WIND DIRECTION

CARD LABEL

NUMBER OF ELEMENTS IN TRANSFORMED WIND

DIRECTION HISTOGRAM

LOWER BOUND OF HISTOGRAM (USUALLY 0.380)

UPPER BOUND OF HISTOGRAM (USUALLY 180.)

CARD LABEL

HISTOGRAM ELEMENTS. USE AS MANY

NEEDED

CARD LABEL

RIGHT HAND COQROINATE OF EACH HISTOGRAM

CLEMENTe LOWEST TO HIGHEST

USER INFORMATION CARD

DEWPOINT MODEL TYPE

TREGRSY = REGRESSION MODEL

rINDEP? = INDEPENDENT MODEL

«xk FOR INDEPENDENT DEWPOINT GENERATION ONLY *x4

28 1-10 10X

11-20 F10e0

21-30 F10.0

31-40 F100

CARD LABEL

MEAN DEWPOINT TEMPERATURE

STe DEVIATION OF DEWPOINT TEMPERATURE

LAG-1 SERIAL CORRELATION COEFFICIENT OF

DEWPOINT TEMPERATURE

«+x FOR REGRESSION DEWPOINT GENERATION ONLY  *¥2

1-10 10X CARD LABEL

11-58 4E1245 REGRESSION COEFFICIENTS FOR THE DETER-

MINISTIC COMPONENT OF DEWPOIMTS (DO=DF)

50 1-10 10X

11-20 F100

21-30 F10el

CARD LABEL

BIAS OF STOCHASTIC COMPONENT OF DEWPOINTS

STe DEVIATION OF STOCHASTIC COMPONENT OF

JEWPOINTS

_AG=-1 SERTAL CORRELATION COEFFICIENT oF

STOCHASTIC COMPONENT OF BRE«PCINTS

31-40 F10.0

. » oe ’

. me.emWAMw he er WA aS we A BAR =o — ve we ww tee . Cs ame we Cw am

&amp; - -—  — - =

a Al LL »

- —- ow ee
. enmamlmeeweww

- wr - am wm ewe eR em ame Wm
Ge GM ah mem ema Amn an J———

&gt;
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PROGRAM (CSC

CONSTRAINED STOCHASTIC CLIMATE SIMULATION

DAVID Ce. CURTIS

NORTHEAST RIVER FORECAST CENTER

705 BLOOMFIELD AVENUE

SLOOMFIELDs CT 06002-2478

TELEPHONE: (2083) 244-2520

THE CSCS MODEL GENERATES HOURLY VALUES OF PRECIPITATIONs CLOUD

COVERy SHORTWAVE RADIATIONs LONGWAVE RADIATIGNs TLMPERATURLS

DEWPOINTe WIND SPEED AND KIND DIRECTIONe. THE PROGRAM CCDE IS

FORTRAN AND HAS BEEN DEVELOPED ON A DEC-1C TIME-3HARE COMPUTER

SYSTEMe STANDARD FORTRAN CODE WAS USED AS MUCH AS POSSIbLE TQ

AVOID TOO MANY PROBLEMS WHEN TRANSFERRING THIS CCDE TO OTHER

MACHINES. HOWEVER SOME MACHINE DEPENDENT CODE IS INEVITABLE

SUCH AS:

-=— ®OPEN® STATEMENTS FOR DATA FILE ACCESS

-— 5 CHARACTER WORDS FOR ALPHANUMERIC DATA MANIFULATION

-= INPUT/OQUTPUT UNIT NUMBERS

-— RANDOM NUMBER GENERATION (SEE SUBRQUTINE RANDY)

DATA INPUT AND INTERNAL COMPUTATIONS HAVE BEEN CARRIER CUT IW

ENGLISH UNITSe DATA QUTPUT CAN BE IN ENGLISH OR METRIC UNITS. (SEE

THE METRIC CONVERSION SECTION IN THE MAIN PROGRAM) THE PLOT SUB-

RGUTINE IS SCALED FOR METRIC JUTPUT.

3

.
1

THE PROGRAM IS CURRENTLY SET UP FOR GENERATING ANY NUMBER OF SETS

OF DATA FOR A PARTICULAR MONTHe. IN OTHER WORDSe 20 JULYSe 30 APRILS

15 JANUARYS ETCe CAN BE GENERATED IF THE INPUT PARAMETERS

REPRESENT OTHER PERIODS SUCH AS BIMONTHLYe SEASONALLY ETCee THE

DATE COUNTERS MUST BE ADJUSTED ACCORDINGLY (SEE SUBROUTINE DATEL)

JULIAN DATES ARE USED INTERNALLYe THE PROGRAM HAS BEEN FULLY

TESTED FOR JANUARY AnD JULY ONLY.

TO ALL USERS: GOOD LUCK!!!

DIMENSION

DIMENSION

JIMENSION

DIMENSION

QIMENSION

SIMENSION

DIMENSION

DIMENSION

OIMENSION

JIMENSION

JIMENSION

TITLE(1693)e BCOEF(8)s ACOEF(3)

CCPDF(30)e CCORDC20)s TTPDF(Z0)s TTORDC3SO)

DRPDF(302¢0ORORD(C30)

DWPDOF(30)e DWORDC(CZID)

ZERQ(10)y SPB(24)45PS5DC24)

RAWSUM(S)e XXT(Se5)e MEIANC(D)

COVMAT(S+5)e CORMAT(SeD)

TCOATAC24) «DWDATAC(24)¢ CLDATA(24) «WSDATA(24)WDDATAC(ZS)

TCTITLC(S) «DWTITL(S) CLTITL(D) +WSTITL(S) $WOTITL(D)

TCRHO(24) ¢DPRHO(24) ¢CLRHO(Z24) +w3SRHO(24) WORHG(24)

TCHIST(S50) ¢DPHIST(S0)¢ CLHIST(11) ¢ WSHIST(40) oWDHIST(T)
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DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

JIMENSION

DIMENSION

ASWRS(24)9ACLOS(24) ALWRS(24)¢ATHPS(24)+ADEWS(24)
AWSPS(24)9AWDRS(24)9ASUWRB(24)4ACLDB(24)¢ALWRE(24)
ATMPB (24) sADEWB(24) 4 AWSPB (24) ¢ AWOREB( 24)

ASWRSQ(24)¢ACLDSQ(24)«ALWRSQA(24)yATHPSI(24)ADEWSH(24)
ASWRSD (24) ¢ACLDSD (24) yALWRSD(24)4ATHPSD(24)9ADERSD(24)

AWSPSQ(24)yyAWDRSA(24)
AWSPSD(24)+AWDRSD(24)
DEP(24)e PTEXT(16]}

DOUBLE PRECISION WRITEFy BUGOFFs QUTPUTe TZONEs TZ2(4)s DEBUG(T)

DOUBLE PRECISION DAFILEs RADTYPs PNFILE

or

m

La

REAL KBARe LiWe MEAN

REAL IOe Ile I2¢ 139 l4e ISe 164

REAL LAT(3)s LONG(3)

I7

-

~
s

ap

INTEGER TCHISTe DPHISTs CLHISTe WSHISTe #DHIST

INTEGER TCHDIMe DPHDIM, CLHDIMe WSHDIMs WOHDIM
~

ed

-

La

EQUIVALENCE (ZEROC1)eI0)eC2ERD(2)I+1134(ZERDC3IIeI2)6(ZERDCG)413)
(ZERO(S5) e184) (ZERD(H6I IS) 9 (ZERT(TI ¢I6) 4 (ZERD(B) IT)

/JTITLESY/Z TITLE

/JFILES/ WRITEFe QUTPUTs BUGOFF

/OATES/ IYReIMOGIDAYs LYRSLMOSLDAY

/JLOCATE/ LATe LONGe TZONE

/pBUG/ \RUG«DEBUG

/CLOUDSY CCBAR$CCSDeCCRHOSBETASGAN

JATMOS/ EN

/POFCLD/ NUMCC+CCPDF+«CCORDeCCALCCSE

/RAINS/ TBBARe TRBARe DBAR

/JTEMPAR/ TDBIASe TDSDEVe TODRHOe RCOEFe TEMBAR

/PDFTEM/ NUMTTey TTFPDFse TTORDe TTAe TTB

JWINDSPZ SPBAR1+SPBARZ¢SPET14SPET24SPSDV1eSPSDVEs

SPSDT1eSPSDT2¢SPSKEWeSPRHO
ORBAR¢ORDEV«DRRHO
NUMDR ¢ DRPDOF «ORORD #DRA 4DRB

TYPEs ACQEF

DWRAR¢DWSDEVeDWSKEW¢DUWRHO
DWBIASe DWDEVe DWDRHO

PHI gTHETASeTHETALEP9ETow
DELTA DTSLe SKeSS

JULDATy JULRELs JBEGINy JULENDe JRANGEs NXLPYR

yJSTARTe JSTOPe JRENDs JYEAR

7107 INsISeIB

/RAINI/ [TR$ITE

/SEED/ ISEED

/CLDCOV/ CCLAGL

/SEAS/ NSEAS

/JRTIYPE/ RADTYP

JISTORMSY/ STORM

t

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON

COMMON
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COMMON /ZINTEG/ I0eIleI2¢I3414sI5+16417

COMMON /LINES/ NLINES

COMMON /VAPORP/ VP

COMMON /PUNCHD/ PTEXTePNFILE«IPUNCH

DATA TZ/SHEASTERN «8HCENTRAL

JATA TCTITL /3HHOURLe SHY TEM.

DATA DWTITL /S5HHOURLe SHY DEW

DATA CLTITL /SHHOURLe SHY CLO

DATA WSTITL /5HHOURLe SHY WIN

DATA WDTITL /SHHOURLe SHY WIN

DATA ON /2HON/es OFF /3HOFF /

s SHMOUNTAIN «8HPACIFIC

SHPERATe SHURE o OH

SHPOINTs SH y 5H

SHUD COs S5HVER 4 OH

S5HD SPEse SHED sy SH

5HD DIRe SHECTIOe BHN

~

x

a

hor

~

-

a
:

\

i,

OUTPUT VARIABLE DEFINITION

VARIABLE DIMENSION

SWR LY/HR

LW LYZ/HR

WDIR DEGREES

CLD -———

DESCRIPTION

SHORTWAVE RADIATION

LONGWAVE RADIATION

WIND DIRECTION

CLOUD COVER

«xxx d*x ENGLISH UNITS  rr" °C x

RAIN

WSP

TEMP

DEY

IN/HR

MI/HR

DEG F

NEG F

PRECIPITAION

WIND SPEED

TEMPERATURE

DEWPOINT

*ole kkk KX METRIC UNITS FithXR

RAINM

WSPM

TEMPM

DERM

MM/HR

M/S

DEG C

DEG C

PRECIPITAION

WIND SPEED

TEMPERATURE

NEWPOINT

CALL INTERACTIVE INPUT SUBROUTINE TO GET UNIT NUMBER AND

DATA FILE INFORMATION NFEDED TO BEGIN OPERATION

CALL INTER (DAFILE«IS+DPLGTSIPL)

CALL START (ISEED)
»

al

w

ESTABLISH THE INPUT DATE FILE UNIT NUMBER AND OPEN FILE FOR RE

—— — q——a
em —— —— ——

NE mee em aw am comdik YO CD

AD

~

L.

IN = 21

OPEN (UNIT=INeDEVICE=9DSK®«ACCESS=*SEQIN*«FILE=DAFILE)
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IF (IPUNCH &lt;LEe 0) GO TO 100

OPEN (UNIT=IPUNCHeDEVICE=*DSK®ACCESS="SEGOUT*»FILE=PNFILE)}

WRITE (IPUNCH#50) PTEXT

FORMAT (16A5)

100 CONTINUE

IU = 26
-

»

»

&gt;

OPEN (UNIT=IUsDEVICE="DSKY*9ACCESS=*SEGQOUT*FILE=QUTPUT]

wn

-—.-—

READ INPUT DATA FILE

SETA a. o-oo
poe A me Cm

NE a oa

- GE san ems wm

CALL READF (INeISeIB)

-

Ru

sm mL w=

-———

a -

¥

CONVERT LATITUDE AND LONGITUDE DEGREESIMINUTESISECONDS

THEIR DECIMAL EQUIVALENTS.

PHI = DHS(LAT)

THETAL = DMS(LONG)

— wr am wm ew ewe wn ame on a
I I ed

 oewaee—car—
 aw a— way—

16

CHECK IF VALID TIME ZONE HAS BEEN REGUESTED
-

-

IF (TZONENETZ2(1)) GO TO 200

THETAS = 7540*2.0%3,14159/360.0

50 TO 300

Aa

n

r~

hiss

200 IF (TZONENE.TZ2(2)}) GO TO 210

THETAS = 90e0%2e0%3414159/360

0 TO 300

210 IF (TZONESNE.TZ(3)) GO TO 220

THETAS = 10540%2e0%3414159/36040

530 TO 300

220 IF (TZONENESTZ(4)) GO TO 2380

THETAS = 120.0#%2.0%3.14159/360.0

36 TO 300

230 WRITE (ISe240)

240 FORMAT (1H1*TIME ZONE REQUESTED IS HOT VALIO®///)

WRITE (IS9250) TZO0NE(TZ¢1)eI=1e4)

250° FORMAT (1HOeT10s*REGUESTED TIME ZONE ®eTI56 eDH® kk *
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IAS ¢SHE**x*%/T109YAVAILABLETIMEZONESYeTI36sSHr*kkk,
PAB eH 2x2 x / T36¢ HN kx tx g AB og SHE kaa * /T36¢SHA AAR xo

ZA895HA aka x /TI369SHAx kx kx gABgSHA Nk xx +)
~

-,

+

’

= —

© ——

-

-

 EE ama ems Gon A = Wa
 EeEe

oT er ee we ae ow
= ——

—

300 CONTINUE
Be
tr

.

x

INITIALIZE DATE COUNTERS

CALL DATE1

INITIALIZE RAINFALL MODEL PARAMETERS

CALL RAINST (TBe¢TReDeJSINCE+sSTORM4JHREOS¢JHNEXT)
-

-

»

a

a

-

r~

Kp:

" [I

- —

VARIABLE INITIALIZATION SECTION

STATISTICAL VARIABLES

 we EP wes GAR men ame TW
Lem mm omg ww. am om 0

br a us eam ame en a—
 a Ade ew ee

vO C = 0

NDATA = 1D

NRDATA = 0

TCSUM = 0.0

DWSUM = (0e0

CLSUM = 0.0

dSSUM = (0.0

dDSUM = (0.0

TRSUM = 0.0

TBSUM = 060

DHSUM = 0.0

DRY = 0.0

STORMS = (0.0

FCSMSA = Ja0

DWSMSG = 0.0

CLSMSG = (0.0

4SSMSu = Je0

ADSMSQ = 0.0

TTSUM3 = 0.0

DWSUM3 = (0

CLSUM3 = 0.0

SPSUM3 = (0.0

GOSUME = (0

D3 375 IA = 1+24

TCRHOCIA) = (0.60
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DPRHOCIA) = 0.0

CLRHOC(CIA) = 0.0

WSRHO(IA)Y = 0.0

WDRHOC(IA) = 0.0

ASWRS(IA)Y = 0.0

ASWRSQ(IA) = GeO

ACLDS(IA) = 0.0

ACLDSQ(IA)Y = CeO

ALWRSCIA) = 0.0

ALWRSGC(IA) = 0.0

ATMPS(IA)Y = 0.0

ATMPSQ(IA) = 0.0

ADEWS(TIA)Y = 0.0

ADEWSQ(IA) = 0.0

AWSPS(IA) = 0.0

AWSPSG(TIA)Y = 0.0

AWORS(IAY = 0.0

AWORSG(IA) = 00

7S CONTINUE

Ir
we

~
~

~

“~

Cc
-

HISTOGRAM VARIABLES

TCHDIM = 50

OPHDIM = 50

CLHDIM = 11

4SHDIM = 480

~DHDIM = 9

TCOT = 240

JPDT = 240

cLDT = 0.10

4SDT = 1.0

“ODT = 2060

TCBASE = =30e0

JPBASE = -30.0

CLBASE = =-.05

¥SBASE = 00.0

SUMSW = 00.0

SUMLW = 00.0

«DBASE = 00.0

D0 270 I = 1¢TCHDIM

TCHIST(IY = 0

JO 271 I = 1+CPHDIM

IPHIST(IY = €

JO 272 I = 14CLHDIM

CLHIST(I)Y = 0

00 273 I = 1¢WSHDIM

WSHIST(I) = 0

D0 274 I = 1¢WDHDIM

SOHIST(I) = ©

&gt;TO

271

272

&gt; 72

574

MISCELLANEGUS VARIABLES

TRACE = OFF

NLINES = 0

IY = 1
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MLAG = 24

JHOUR = 0

NSEAS = 1

NMAX = 4

RADTYP = *CLOUDYSKY?*

FP = =1.00

BETA = GAM

ET = 0.00

W = 200
.

-

IF (TRACE &lt;EQe ON) WRITE (ISs3000)

3000 FORMAT (* M1%)

acawwm,w—
-——ampswmenww

n

—r

-

5

SET UP VARIABLE MEAN AND STAMDARD DEVIATION ARRAYS

WIND SPEED

ST = 0.0
-:

FOR

-

 en —
— cam on ww

Cam Ue el ee sme mm om ar om
sew mh fe ee ee aan

DO 330 IV = 1424

CALL VARYX (SPBAR1+¢SPBARZ2¢SPBT1eSPBT2¢STeSPBCIVII

CALL VARYX (SPSDV14SPSDV2eSPSDT1e3PSDT2+ST4SPFID(IVY)

ST = ST + 1.0
~

ry

330 CONTINUE

-
Noma am woe mS. Wes won sues even
aanSwnwaaoncm

 ee wm ame ewe mw a ve wen
 vs ome amp EN wn ams San wmv ame

BEGIN CYCLES FOR DATA GENERATION

~

Cap

THE %400¢ LOOP REPRESENTS THE DAY CYCLE

400 CONTINUE

UPDATE ORRIT PARAMETERS
a

CALL DECL (JULRELyDELTAsSRSS)
i

DTISL = FPx2(THETAS~-THETAL)Y=*x3.81972
re

a

- a - -—-mm

rr etwher

- ew mo—

—n -— a mm eee me wn ew an ew we

- - - - — re wm a
3 . -— eo omym—

STARTING VALUE SELECTION

~

FOR THE FIRST TIME PERIOD OF EACH MONTHa
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C GET INITIAL VALUE FOR THE VARIOUS NOISE TERMS BY SELECTING A

C RANDOM VARIATE FROM THE APPROPRIATE PDF.

r

IF (IDAY oGTe 1) GO TO 310

IF (JHOQUR.GTe 0) GO TO 310

c GET CLOUD COVER STARTING VALUE

’ CCLAG1 = ARVA (CCPDFoNUMCCeCCA+CCBeCCORDeNSEAS)

CALL NORMAL (VN)

TTLAG1 = TODSOEV=xVN

GET WIND SPEED STARTING VALUE

rs

C

C

~

CALL MARGAM (NUMTToTTPDFeTTORD «TTA TTBeSPBAR«SPSDEVsOeloe

SPSKEWds0e0eSPLAGL«WNOISE)

tt

C GET WIND DIRECTION STARTING VALUE

DRLAG1 = ARVA (DRPDF+NUMDRsDRA4DRB.DROR

GET DEWPOINT STARTING VALUE

~

L..

3 2 A Sd

C

IF (TYPE +EGe *REGRS®) GO TO 350

CALL MARGAM (NUMTToTTPOFeTTORD«TTATTBeOWSARSDOWSOEVelealn
DWSKEWs0aDeDWLAG14ON0ISE)

GO TO 355

CONTINUE

=
\

»

x50

CALL NORMAL (DWX)

DWLAG]1 = 0«85*DWBAR + DWX*DWSOEV

re

-~

a

CALL NORMAL (DWX)
DWDLAG = DWBIAS + DUX#*DWDEV

355 CONTINUE

COMPUTE INITIAL TEMPERATURE AND CONSTRAIN DEWPOINT IF NECESSARY

TPR = TEMBAR + TTLAGL

IF (DWLAG1l oGEe TPR) DWLAGL = (0e499*TPR

~

IF (TRACE oEQe ON) WRITE (IS,2001)

9601 FORMAT (* M2Y)

310 CONTINUE
ox

w

.

Cd

-

i

ESTABLISH THE LAG-1 TEMPERATURES FOR THE TEMPERATURE AND LONG

SAVE RADIATION MODELS.

— en a ew wn a wn =
— mn — ame a

—-
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~~
:
a

TEMP1 = TPR

TMPLAG = TPR

C COMPUTE TODAY®*S COEFFICIENTS FOR THE TEMPERATURE MODEL.

CALL TEMPK (DELTAes PHIe¢ BCOEFs TPR

{ CO0e¢ Cle C29 C39 Cae CSe Co)

C INITIALIZE THE INTEGRATION VARIABLES FOR THE TEMPERATURE MODELS.

c (SEE THE EQUIVALENCE STATEMENT AT THE BEGINNING OF THE PROGRAM)

DO 320 K = 1410

ZERO(K)Y = 0.00

5320 CONTINUE

~

-

yt -
“&gt;

~

THE *500¢ LOOP REPRESENTS THE HOUR BY HOUR DATA GENERATICN

-— me ar ee wn aa ou
hm ee em am— wo om

———— ——— —

"aenwwa

ST1 = 0.0

~
"a

i

r~

Bh

DO S00 I = 022

IF (TRACE o.EQe ON) WRITE (IS,3002)

9002 FORMAT (* M3%)

JP = 1 + 1

ST2 = FLOATC(I)
~~

-

man wa

 mn ean mwa waewm

- a ae —

- i.a

~

-

LY

~

RAINFALL SECTION

CALL PCPN (TBeTReDeSTORMeJHOUR¢JHREOSyJHNEXTsJSINCEsRATIN)

TSINCE = FLOATC(JSINCE)

IF (TRACE oEQe ON} WRITE (ISs30303)

3003 FORMAT (¥ Mgr)

- Fr =

oo  — — -

VN swoon mma -— - a w= em wm
pT ma ae mwew “a

Tn con SE am wm ww —— a m—
J

a” SHORTWAVE RADIATION SECTION

— wm me wee
Ne rms com vem wen a ame

oa em a aa

LeEe ee UES wm au WE an

 er ——— om
J

IY

CALL SOLRAD (JULREL¢ST1eST2¢TSINCEeTBeHNMAXeCCA4CCB4CCFDF¢NUMCC

CCORDySWReCLDBETAGAM«CCBARSCCSDCCRHOSEASON)
i

IF (TRACE oFEQe ON) WRITE ¢(ISe«3C0a
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3004 FORMAT (* MS")

anaweWewwwa-—
J TT]

— aa—-— pr——

LY WIND SPEED SECTION

 -—
a

— Tw wr

-—-
Tearww am om a—

Wn en un a vn We SL Co wie mm om 2 ow &gt;

mm er TT me es me wm er wer
ee .

 an ome aon wan a
Seae mn aunaD ante m— a -

Te. om

We me EA ew ame wn ows CL

SPBAR = SPB(JFP)

SPSDEV = SPSD((JP)

CALL MARGAM (NUMTTeTTPOFeTTORD«TTAsTTBsSPEAR«SPSDEVeSFRHO

SPSKEWeSPLAGleWSPeWNOISE)

IF (WSP oLTe 00) WSP = 00

SPLAG1 = WSP
~

ig

IF (TRACE +EQe ON) WRITE (IS+9035)

300% FORMAT (* MeV)
»

Vpww
, V-——

 aw
frmil =

- wn dem ww ame we
 we on wm

ST TE ae em an we ow aw me
 rw — — — —

-

od

~

 3

WIND DIRECTION SECTION

CALL MARKOV (NUMDRoDRPDFsDRORD ¢DRA9DRB«DREARSDRDEV4LRRHD

&amp; DRLAG1e1eWDIR)

505 CONTINUE

510 IF (WDIR .GTe 180.0) WDIR = 360.0 = WDIA

IF (WDIR «GTe 18060) GO TC 5160

IF (4DIR eLTe 0.0) WDIR = ABSCWDIR)

IF (WDIR oLTe 0.0) GO TO 5290

JRLAG1L = WDIR

a

IF (TRACE oEQe ON) WRITE (ISe90086)

3006 FORMAT (* M7°*)

- or om
—

—
PTE NR wm ae us Ee ea aa ewer vm
 A Am de. PA we du WE su wma

EERE

TE WED OP Sm ew. ANE w—.

TEMPERATURE SECTICHN

or
COMPUTE THE SHORTWAVE RADIATION ATTENUATION DUE TC CLOUD COVER

KBAR = 100 = 0465*CLD*CLD

&gt;
-

~ COMPUTE HOURLY TEMPERATURES

CALL TEMPSHM (ST2¢DTSLeSReSSeBCOEF

CO9CleC24C3¢C49CH5eCEsCLDIKEARGTO
JSP e WD IR «THMPLAG«THT«T)

~ NOTE THAT TEMP1 AND TMPLAG ARE DIFFERENT VARAIBLESH!! THPLAG
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c

C

C

DOES NOT HAVE THE DEVIATIONS TERM ADDED IN AND IS USED ONLY

IN THE *REGRESSION® PORTION OF THE TEMPERATURE GENERATION

COMPONENT. TEMP1 IS USED WHEN THE ACTUAL LAG-1 TEMPERATURE

IS REGUIREDc

TMPLAG = THT

TPR = THMPLAG

c

C ADD THE RANDOM COMPONENT TO THE TEMPERATURE JUST COMPUTED.

CALL NORMAL (ARV)

r

TDEV = TDBIAS + TDRHO*(TTLAGl1 - TDBIAS) +

E ARV*TDSODEV*SQRT(1.00 - TDRHO*TDRHO)

~

[93

”~

[9%

TTLAGY = TOEV

TEMP = THT + TDEYV

r~
he

~

ke

~

vw @

IF (TRACE oEQe ON) WRITE (ISe2007)

3007 FORMAT (* M8")

--

- en maecw —
-——

DEWPOINT TEMPERATURE SECTION

——a—o—
Le on om wo

a —— —— —

- A

[F (TYPE .EQe *REGRS®*) GO TO 560

IF (TYPE .£Ge *INDEPY¥) GO TO S70

20

RITE (ISe80) TYPE

FORMAT (//1Xe *INVALID DEWPOINT MODEL TYPE eeee®sAD)

CTP
~

-

Fhk KAKA RARRAARKRAKRAKNXKk&gt;hhhkAk
xxx RFGRFESSTION DEWPOINTS xxx

Ahh kkk ok kt ov » wk dw hwR

~

oo

S60 CONTINUE

*

w-

-

-

-

CALL DEWSIM (ACOEF 4DWLAGL TEMP +CLD 9 WDIR UEP 9DEWR)

ADD DEVIATIONS TO GENERATED DEw POINTS

CALL NORMAL (ARV)
DEWDEV = DWBIAS + DWORHO*(DWOLAG = DWDIAS) +

ARVADWDEVASGRT(1e00 = DWwDRHO*DWIIRHO)
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DWDL = DWDLAG

DWDLAG = DEWDEV

DEW = DEWR + DEWDEYV

IF (DEW oGEe TEMP) DEW = 099*xTEMP

DWL = DWLAG1l + DWOL

DWLAG1L = DEWUWR

GC TO 580
 ~~
LE

570 CONTINUE
os

Kh kA AkA Ahhh AA hr AAT kA AN kA KN *

«++ INDEPENDENT DEWPOINTS =xx*

ANA rhb AAA AF FARA RA RRA AAA K&amp;R

CALL NORMAL (DWX)

DWL = DWLAGI

DEW = DWBAR + DWRHO*(DWLAGL1~OWBAR) + DWX*DWSDEV*SGRT(1le—=DUWRHO*%2)

DWLAGY1 = DEW

~

|9

IF (DEW «GEe TEMP)

580 CONTINUE

DE = 0 ==FMF

IF (TRACE +EQe ON) WRITE (IS+900%)

3009 FORMAT (* M3)

~

_n

Ly

LONGWAVE RADIATION SECTION

-  me mma mE aw Wn —
—— a. — av————

 Ee em o—
-—— GS \NAE- WANS MENS VA

CALL LONGWV (TEMP1lyTEMP+DEWsDWL9CCLAGLIsCLD LW)

TEMP1 = TEMP

r

IF (TRACE .EQe ON) WRITE (IS+9008)

NNR FORMAT (¢ M10%)

~

-

 om —

——— ve amp
»

” —

"

- we

:

i

METRIC CONVERSION SECTION

TEMPM = (TEMP = 32.00)}*(5.00/53.00)

DEWM = (DEW = 32.003*(5.00/9.00)

{SPM = WSP*0.4470

RAINM = RAIN%25.4

LE

tyw—.—vevo

Se ew ro
-— ay

STORE DATA IN THE HOURLY ARRAYS FOR AUTOCORRELATION ANALYSIS
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CLDATA(UP) = CLD

WSOATACJP) = WSPHM

JODATACJUP) = WDIR

JUDATA (UP) = DEUM

TCDATA(JP) = TEMPM
~.

ho

 ad
. ———=

 ow wR

COMPUTE DEWPOINT DEPRESSION AND OUTPUT FOR LATER ANALYSISLd

Ca ow

Tow mmr ee we wn ome ww
- ow — — —

DEP(JP) = (TEMPM - DEWMI*WSPM

~

ci

IF ( JP «EGe 24 ) WRITE (1Us582) DEP

582 FORMAT (15F5e1/8F5e1)

w 4 dl

 ii ou —
- oe em ave SE wei dm ct a

a we en omy
 ame owecu cane wa

QUTPUT DATA FOR LAND SURFACE MODEL
.

wh

IF(IPUNCHeGT&amp;0)CALL PUNCH (IPUNCHe RAINMeVPe WSPMe SWRe Lis TEMPH)
.

ike

- a  ow ee wnoa
[pp

- em —— oo

Ce me La ee me ew em ca vm weep wm

« w—an — — w

a - W -

GO TQ 506
-
 os
~

-

~

DEBUG STATEMENT

WRITE (ISe600)JHOURGUHNEXT oI oRAINMGCLD 9 SWReWSPMeWOIRSTEMPM LW, DEW

600 FORMAT (1H 01594 Xel6e¢3Xel2e3X9eF5el93XeFGe292XeF%els2XeF4ale

$ 2X eFS e0e2XsF5e042XeF5e192XeF440)

506 CONTINUE

IH = 1
-»
]
-

v

[os

-

ow

DATA PLOT SECTION

IF (DPLOT .NEe tY®*) GO TO

 i AL -

|07

 -—— me

x lies

 OW ee wa iw see mee
—— ae eewm an he mt me em a an

 = wow wo —- me mm ww We wn
. -— oa em wm whe ae wee ae

PLOTL = =-20.

IF (IMOeGEe4 «ANDe IMOeLE.10) PLOTL = Ce

PLOTU = PLOTL + 40a

CALL PLOT (IMO9IDYeIHeBOsTEMPH4DEWMaSWRaLW CLD sRAINMeWSPMeWUIRY

STORMGIPL«PLOTLPLOTU)
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[IF (TRACE .EQe ON) WRITE (IS+50103)

9010 FORMAT (% M11°%)

=

SE===ss

- a em we ome a
Lmow ewe wer ewe wes

 mE EE a MEE ND GS WE eG WW
- ep Ga ov —

aiheemr ae wm enw etm we we
fms Ce Em Ee ——

507 CONTINUE
~~

he

IF(I .EQe 23) IDY = 1IDY

IF (IDY «GTe31) IDY = 1
-~

a

bw

~
ta

~

on

JHOUR = JHOUR + 1

ST1 = ST2

NDATA = NDATA + 1

UPDATE THE STATISTICAL ANALYSIS

CALL MSTAT (1oTEMPHMeDEWMeCLD9WSPMaWDIRSRAWSUMXXT)

~

IF (TRACE &lt;EQe ON) WRITE (ISsS5020)

2020 FORMAT (* 11At)

r o—--

— - =

We a ww emsa dm wm WW
EE ee em ww we fw a

- Tr mane ew.

— ems GE WE am

UPDATE AUTOCORRELATION ANALYSIS

THE FIRST 24 HOURS OF THE MONTH ARE NEEDED TQ FILL UP THE

ARRAYS TO BEGIN THE AUTOCORRELATION ANALYSIS.

IF (JHOUR oLEe 24) GO TO 550

NRDATA = NROATA + 1

CALL RAWLAG (MLAG JP os TCOATASTCSUMe TCSMSAeTCSUMBeTCBsTCVaTCKeNRDATA

TCRHOG)

CALL RAWLAG(MLAG ¢JPoDWDATA ¢DWSUM DU SMSQeDWSUMI«DPBsDPVeDPX oNRDATAS

DPRHO)

CALL RAWLAG(MLAGeUPeCLDATASCLSUMsCLSMSGsCLSUNISCLBWCLV4CLKANRDATAS
5 CLRHO)

CALL RAWLAG (MLAG+JP oa WSDATAWSSUMs WSSMSAsWSSUMI e+ WSBsWSVeWSKeNROATAS
5 JSRHO)

CALL RAYLAG(MLAG s JP yWDDATA yHOSUMsWDSMSA4WNSUMI UDR WDVeWDKeNRGATA

4 DRHO)

IF (TRACE &lt;EGe ON) WRITE (ISe3021)

gg21 FORMAT (* 118°*)

550 CONTINUE

-

-

a

-—o— —-
 a — Cue Em

-——

Pp i __ = ——— — — LR

Wr AN ee ew ew ap he GO mE aah a
fm ae mm me ame wa a a eR me SW Gees ES

- — = = ~ wt em

ar - -—

DIURNAL CURVE SECTION
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C COMPUTE MEAN AND STANDARD DEVIATIONS FOR EACH HOUR OF THE DAY.

C SKEWS ARE NOT COMPUTED.

c

IF ( 1 «EQe 0 ) NDC = NDC + }

CALL STAT (SWReASWRS(JPI9ASURSGIUP) ¢ZZZsASHRE CUP) 9ASWRSD(JPI
5 -9399.0¢ NDC)
CALL STAT (CLDgACLDS(JUP)eACLDSG(UP) ¢Z2Z+ACLDB(JP)Y»ACLDSD(JP)

b =959.04NDC)

CALL STAT (WSPMeAWSPS(JUP) 9AWSPSA(UPISZZZ+AWSPB(JPISAWSPSD(JP)
B -399.,04NDC)

CALL STAT(WDIRsAWDRS(JP)9AWDRSG(UP)222Z+ANDRB(JP)sAWDRSD(JPYo»
5 -9939,0¢ NDC)
CALL STATCTEMPM¢ATMPS(JP)sATMPSG(JUP)¢ZZZ4ATMPE(JP)¢ATHPSD(JP)

b =999,0eNDC)

CALL STAT (DEWMeADEWS(JP)IsADEWNSQ(UP) ¢2ZZ+ADEWB(JIP) +ADEWSD (UP)

5 -399,04NDC)

CALL STAT ( LWsALWRS(JPIgALWRSG(UP)9Z2Z+sALWRB(JP)sALWRED(JP)
t -9G99,0e4 NDC)

IF (TRACE «EQe ON) WRITE (ISe3022)

3022 FORMAT (* 11C*)

-

a

ww ——

- a aa wn-—

 iT Ee ee a a oo —
noe en oe —

UPDATE RAINFALL STATISTICS

CALL RSTAT (TRSUMyTBSUMsDHSUMeTRSBARGTESBAReDHBARGRAINM STORMS,

DRYe STORM)

IF (TRACE «EGe ON) WRITE (IS+30323)

3323 FORMAT (* 11D")

~

ip

r

[a
hn =

a om
a—

- ee em sr wa—
- Cn ml om we ew amr aus ame ww om

— ew me we mn —-
—a—

UPDATE THE HISTOGRAMS

CALL HGRAM

CALL HGRAM

CALL HGRAM

CALL HGRAM

CALL HGRAM

(TCHIST«TCHDIMeTEMPMTCDToTCHBASE)
(DPHISTDOPHDIMeDEWMeDPDT«DPBASE)
(CLHISTsCLHDIMSCLD oCLDT4CLBASED

[WSHIST ¢WSHDIMeWSPYWSDOTWSBASE)
(WDHIST ¢ WDHD IMeWD IRs WDD Te WDBASE])

IF (TRACE .EQe ON) WRITE (IS45011)

9011 FORMAT (v M124)

bi

500 CONTINUE
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:
-

Vmane aapw—=——
&gt; mn mu AD ww A ww ww S|

uow—ow——ar - -——  wm eS ee a SS WS GER mA mA WR WS
 we wa oe aig am am wen GS w=

—— a —— — a —

 -— ona

v

.

a

ed

~

IF (JULREL oLTe JREND) GO TO

RESET MONTHLY COUNTERS

z :30

JHOUR = 0

~
-

r~
 wr

C
r~
wr

~

tr

&gt;

~

Lor

~~
A,

RESTART STORM SEQUENCE

CALL RAINST (TBeTReDeJSINCE«STORMyJHREOQS JHNEXT)

390 CONTINUE

UPDATE THE DAY COUNTERS

CALL DATEW™
~
er

~

—

~
oy

CHECK FOR END OF RUN

IF (TRACE &lt;EQe ON) WRITE (ISe9012)

9012 FORMAT (* M13%)

1F CJULDAT &lt;LEe JULEND) GO TO 400
~

— cw
"

Sh ee ems wm cme een me w—-
rm oe wy Ee vee ween ae . —

mr a ——— — mas win
A GEE 4 eR TEN SNM EY me GME Abe GT. a GS

CALL THE FINAL STATISTICAL ANALYSIS SUBROUTINE
a

CALL FSTAT (54RAWSUMeXXTeMEANSCOVMAT «CORMATSNTATA)

CALL THE AUTOCORRELATION SUBROUTINE
a

a

CALL AUTOCO

CALL AUTOCO

CALL AUTOCO

CALL AUTOCO

CALL AUTOQOCO

(MLAGe TCRHOyTCBe TCVsNRDATALTCTITL)
(MLAGyDPRHO «DPB oDPVeNRDATASDWTITL)

(MLAGeCLRHOCLB+CLVeNRDATALCLTITL)
(MLAGsWSRHOsWSBeWSVeNRDATAWSTITL)
(MLAGeWDRHO¢WDB os WDVeNROATASWOTITL)

:

IF (TRACE +EQe ON) WRITE (ISsS013)

9013 FORMAT (* Mla)
5

hE
L -—

»
J a

- wm &amp; aa

—

Coe wes Me amp see am ee wm
J oa mm Gare — a= a

TT mm ew er we a—— - a EE A

QBUTPUT RESULTS
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WRITECISe715) (MEANCI)+I=1+3)
715 FORMAT (1H1////7T28s *MEAN VALUES®*/T9,*TCBAR?® vT7214*DUBARY,

$ T33¢"CLBAR®sT45¢ WSBAR?yTST79*WOBARY/1Xe5F12.27)
~~

a

~~.

Bd

-

WRITE(ISe720) C((COVMAT(IeJd)eJ=1935)91=145]}
720 FORMAT(1XeT244 COVARIANCE MATRIX"9/(5(1Xs5F122/)))

WRITECISe740) ((CORMAT(IeJ)sd=195)91=145)
740 FORMAT(1XeT24¢ CORRELATION MATRIX®e/(5(1Xe5F12e2/)))

WRITE (ISs765) TCKeDPKeCLKeWSKeWDK

745 FORMAT (/T2S5e%SKEW COEFFICIENTS /T8 st TCSKEWT«T204*DUSKEWT4T32,4

$ *CLSKEW®?9T44¢WSSKEWT4T5569*WOSKEWY/1X95F122)

WRITE (ISe747) TBSBARe TRSBARs DHBAR

747 FORMAT (///T20+*RAINFALL OUTPUT STATISTICS®*//

t T24ge 9 TBYoT3 et TRY T4040? //T229F6e24T314F5.24T374FS02///)
o

-

wr um
[a

 wa ams ——
on a ———

——

 we wma

PRINT HISTOGRAMS OF THE GENERATED DATA

CALL PRINTH

CALL PRINTH

CALL PRINTH

CALL PRINTH

CALL PRINTH

(TCHISTSTCHDIMsTCDToTCBASESTCTITL 4sNDATA)

(DPHISTeDPHDIMeOPDToOPBASESDUTITL«NDATAY
(CLHISTeCLHDIMoCLDTeCLBASESCLTITL#NDATA)
(WSHISTeWSHDIMeWSDTeWSBASE«wSTITLNDATA)
(WDHISTeuWDHDIMeWDUOTeWD3ASE«WDTITLSNDATA)

~

~

 a ee a. a—
—— a am — —

CONVERT VARIANCES TO STANDARD DEVIATIONS.

DO 800 IG = 1e¢24

ASWRSD(IG) =

ACLDSD (IG) =

AWSPSD(IG) =

AWDRSD (IG) =

ATMPSD(IG) =

ADEWSD(IG)

ALWRSDI(IG)

SOQRTC(ASHRSD(IGY)

SGRTC(ACLDSD(IG))

SGRT(AWSPSO(IG))

SGRT(AWDRSD(IG))

SGRTC(ATMPSD(IG))

SGRTC(ADEWSD(IG))

SAGRTCALWRSD(IG))

800 CONTINUE

-

 na a mm wwWe a am ee ew eam EC Ge mG EE i
a a EE a Ea am. — —-— a —— = Ww w— ma —— a GR AS Sm Nn GS STM Gm oe So

 ar mM er WR ee me bh Wms wim TC ams wm weer ME Wr SC Wm ew a a wn 4 ww ew em om aw
- oe a [ea Tri Ce ae ams Ww wm a ww an we wee aes =
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C

C COMPUTE TOTAL DAILY SHORT AND LONGWAVE RADIATION

c

DO 810 IG = 1424

x

r~
bo

SUMSW = SUMSW + ASWRB(IG)

SUMLW = SUMLMW + ALWRB(IG)

810 CONTINUE

-

Lo

row

~

PRINT HOURLY MEANS AND STANDARD DEVIATIONS.

CALL HOUR (ASWRBeASWRSD+?SWR?®)

WRITE (ISe811) SUMSW

FORMAT (T2999 *TOTAL="¢T37eF7+2)
CALL HOUR (ALWRB4ALWRSDe?LUWR®)

WRITE (ISe811) SUMLW

CALL HOUR (ACLDB4ACLDSD.*CLD")

CALL HOUR (AWSPBeAWSPSDetWSPY)

CALL HOUR (AWDRB4AWDRSDes*WDR®)

CALL HOUR (ATMPB+ATMPSD.*TMP?)

CALL HOUR (ADEWB4ADEWSODe*DEWT)

211

3014

IF (TRACE &lt;EGe ON) WRITE (IS+93014)

FORMAT (* M15')

WRITE (ISe760)

FORMAT (1H1415(15(5H
STOP :

END

740 2 7)

- - oo — =

 a aawna
 ae ee en sm wna ap own

- - Se — —— a———aw
4] i —

~~

SUBROUTINE VARYX (X1eX2eT19eT29STeX)
&gt;

Ags

5

 ]

~

ka

ROUTINE TO LINEARLY INTERPOLATE A VALUE OF

RANGE1 = T2 - T1

RANGE2 = 24.0 = RANGE1

%

IF (ST «GTe T1) GO TO 100

X = X2 = (X2 = X1)3*x((24.0

RETURN

T2 SGE2)+ STI/RANG

re

100 IF (ST «GTe T2) GO TO 200

X = X1 + (X2 = X1)*((ST -

RETURN

T1)Y/R2ARGE1)

ko

200 CONTINUE
XN = X2 = (X2 = X1)Yx€(ST = TZ2)Y/RANGEZ2)
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RFETHRN
~

~

&gt;

wv

- PO®v

Fa Bb!

 |

SUBROUTINE HOUR ¢ BARs DEVe TITLE J

iy aM  3 OE

ry

»

Co.

~

La

~~

a

PRINT HOURLY MEANS AND STANDARD DEVIATIONS.

DIMENSION BAR(1)e DEVIL)

COMMON /10/ INsIS.IB

C

C

WRITE (IS.100)

100 FORMAT (1H1+15(5H Y/1H ¢15(5H i)

Cc

WRITE (ISe200) TITLE

200 FORMAT (////T41eA3//T30eHOUR®eT40e"MEAN®9T499?STeDEVL®/)

D0 300 I = 1.26

hig

al

IT = 1 ~-1

WRITE (ISs250) IIe BAR(I)e DEV(I)

250 FORMAT (T314129T38eF6e29T473F6e2)

300 CONTINUE

WRITE (IS4400)

400 FORMAT 2777)

-

RETURN

END
~~

TSGGtN
nl LL

»

SUBROUTINE RSTAT (TRSUMeTBSUMeDHSUMeTReTBeDHeRAINSETORMS4OR

NRY«STFLAG)
~
-

.

COMPUTE STATISTICS FOR RAINFALL MODEL

TReeesseMEANSTORMDURATION
TBoeseeeMEAN TIME BETWEEN STORMS

THe ooeoooeEANSTCRMDEPTH

L

COMMON /SFLAG/ RSTORM

DATA ON/Z*GN®/e QFF/COFF/

-

IF (STFLAG .FEGa ON) GO TO 350
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2 STORM FLAG IS OFF. THEREFORE WE ARE BETWEEN STORMS.

IF (RSTORM +EQe OFF) GO TO 310

°C FIRST HOUR OF INTERSTORM PERIOD.

"

RSTORM = OFF

ORY = DRY + 1.0

C

310 CONTINUE
~

TBSUM = TBSUM

50 TO 300

1 al}

350 CONTINUE

Cs

er

~

i

re

he?

B

-

r~

ta

5d
-

~

—-

~

.

~
1

re

he

STORM FLAG IS ON. THEREFOREe WE ARE IN A STORM.

IF (RSTORM o.EQe ON) GO TO 360

FIRST HOUR OF NEW STORM.

RSTCR™M = ON

PUT STATEMENTS HERE IF THERE IS SOME MINIMUM TIME BETWEEN STORMS

CRITERION THAT MUST BE CHECKED.

STORMS = STORMS + 1.0

360 CONTINUE
-~:

TRSUM = TRSUM + 1.0

DHSUM = DHSUM + RAIN

300 CONTINUE

 .

lp

Fr

ur

~~

-

ww

ad

od

IF (STORMS &lt;LTe 0.01) GO TO 400

TR = TRSUM/STORMS

DH = ODHSUM/STORMS

IF (DRY eLTe 0401) GC TO 5C0

IT8 = TBSUM/DRY

400

S500 CONTINUE

RETURN

END

SUBROUTINE NORMAL (X)

GENERATE A NORMALLY DISTRIBUTED RANDOM DEVIATE FROM N(Oslle

REFERENCES: FISHMANGGEORGE Se3CONCEPTS AND METHODS IN DISCRETE EVENT

DIGITAL SIMULATIONe WILEY AND SONSe 19736 PP 211.
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10 Ul = RANDCD)

IF (Ul «LTe 0.00001) GO TO 10

y2 = RANDC(O)

X = SGRT (=2.0*ALOG(U1))I*COS(6.,28313+*U2)

RETURN

END
~

-l

-

- x

SUBROUTINE VAPOR (TeTDeESES)
~
i,

r~ ROUTINE TO COMPUTE ATMOSPHERIC VAPOR PRESSURE GIVEN

TWO METER TEMPERATURE AND DEWPOINT.

i eoee

TD see

r see

tS ese

CO0=C5e we
R eo es

TEMPERATURE - DEG C

DEWPOINT TEMPERATURE = DEG C

VAPOR PRESSURE - MILLIBAR

SATURATED VAPOR PRESSURE = MILLIHAR

COEFFICIENTS IN SAT. VAPOR PRESS. APPROX.

RELATIVE HUMIDITY

DOUBLE PRECISION CO0sC1leC22C29CHeCS

DATA CO0/6.0689226 /

DATA C1/4.4358312e~-01/

DATA C2/1.4590816t-02/

DATA C3/72.7619554£~-04/

DATA C4/2.9952530E-06/

DATA C5/1.4398885£-08/
.

.

3

_,

-

-

-

LL

COMPUTE RELATIVE HUMIDITY

 BR (112d = 041%T7T +» TDI/(112e + 069% T))%xxR40
~

wr

~

a.

ur COMPUTE SATURATION VAPOR PRESSURE
~

X = C4 + T=»CS5

X = C3 + T=*X

X = C2 + T*»X

X = C1 + T=xX

FS= C0 + T»¥X
~

COMPUTE ATMOSPHERIC VAPOR PRESSURE

F = R=®=F&lt;
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~

i

-
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-

SUBROUTINE INTER (DAFILE«ISeDPLOTSIPL)
~~

I

a

[154

r~
[wr3

ROUTINE TO READ THE NECCESSARY RUNTIME INFORMATION FROM THE

CONSOLE.

DIMENSION PTEXT(16)

COMMON /SEED/ ISEED

COMMON /PUNCHD/ PTEXTs PNFILEs IPUNCH

DOUBLE PRECISION OAFILEs PNFILE

-

gl

~

—-

ng

-
~

hs

© SET THE CONSOLE UNIT NUMBER FOR THIS MACHINE.
-

pi

1 = 5

“

-

~~

Fa

DAFILE = °*DCCMODSDAT?

WRITE (ICeS90) DAFILE

FORMAT (//1Xs*THE CURRENT DATA FILE IS ‘*+A10/

t 1Xes'0D0 YOU WISH TO READ A DIFFERENT OME? (Y/N)®)

READ (ICe110) ANS

IF (ANS «NEe *Y') GO TO 115

gf

WRITE (ICe100)
100 FORMAT (//1Xe®sHAT DATA FILE CONTAINS THE INPUT DATA?2Y/

$ 1Xe? ENTER FILE NAME IN THE FORM XXXXXXeYYY *)
~

~~

ko

~

L

READ (ICe110) DAFILE

113 FORMAT A)

115 CONTINUE

WRITE (IC+120)
120 FORMAT (/1X¢®0D0 YOU WANT TO PRINT THE INPUT SUMMARY TC THE

$ *CONSOLE? (Y/N)*%)

READ (IC+130)ANS

FORMAT (A)

P

IF (ANS eERe®Y®) IS = IC

-

Edo

43

1S0

WRITE (ICs140)

FORMAT (/1Xe®INPUT SEED FOR THE RANDOM NUMBER GENERATOR")

READ (ICe150) ISELD

FORMAT (I)



303

WRITE (ICe160)

160 FORMAT ¢/1Xe°*DO YOU WANT A PLOT? (Y/N)')

READ (ICe130) DPLOT

IF (DPLOT «NEe *Y®*) GO TO 1€5

r~

a

re.

w

-

wk

r~

WRITE (ICe170)

170 FORMAT (/1Xe®*WHICH PLOT? 1 FOR 6-VARIABLE®/

IXe? 2 FOR 4-VARIABLE®*/)

READ (ICe180) IPL

180 FORMAT (I?

185 CONTINUE

[PUNCH = O

WRITE (IC»190)
FORMAT (/1Xs*CREATE LAND SURFACE MODEL DATA FILE? (Y/N)*)190

READ (IC#130) ANS

IF (ANS oeNEe *Y?) GO TO 230

 ”~

[PUNCH = 27

WRITE (IC4200) |

FORMAT (/1XeYENTER DATA FILE NAME eee XXXXXXeYYY?®)

READ (ICe110) PNFILE

WRITE (ICs210)

FORMAT (/1Xe *ENTER COMMENTS TO IDENTIFY OUTPUT DATA

(80 CHAR. MAX)?®)

READ (ICe220) (PTEXT(I)eI=1e16)

590 FORMAT (15A5)

200

WRITE (ICe240) IPUNCHePNFILES(PTEXT(I)eI=1lels)

240 FORMAT (1X9I5/1X9eA10/1Xs16A3)

230 CONTINUE

RETURN

END
a

a  rr -

SUBROUTINE START (ISEED)
2

a

~ ACTIVATE RAND ISEED TIMES TQ PROVIDE A DIFFERENT

STARTING POINT IN THE GENERATION OF RANDOM NUMBERS

41TH EACH INPUT OF ISEED

 at

O00 100 I = 1+ISEED

XX = RAMOIO)



204 pt

100 CONTINUE

~

RET! PcE A

ad
bop

SUBROUTINE READF (IN«IS»1?.

a

” THIS SUBPROGRAM READS THE INPUT DATA FOR THE STOCHASTIC

HYDROMETEOROLOGICAL MODEL.

™

da

DIMENSION TITLE(16+3)e BCOEF(8)y ACOEF(8)

DIMENSION CCPDF(30)s CCCROC30)

DIMENSION DRPDF(303)e DRORO(C3I0?

-~

»

DOUBLE PRECISION WRITEFe BUGOFF

DOUBLE PRECISION OUTPUT

TZONEe T7(4)e DEBUGCT)

.

+

«©

a

REAL LAT(3)e LONG(3)
~~

he

COMMON /TITLES/ TITLE

COMMON /FILES/ WRITEFe OUTPUTs BUGOFF

COMMON /DATES/ [YReIMO«IDAYe LYRWLMOSLDAY

COMMON /LOCATE/ LATe LONGe TZONE

COMMON /DBUG/ NBUG+DEBUG
COMMON /CLOUDS/ CCBARCCSD¢CCRHOBETASGAM

COMMON /ZATMOS/ IN

COMMON /PDFCLD/ NUMCCoCCPDF+CCORDsCCASCCB

COMMON /RAINS/ TIBBARs TRBARs DBAR

COMMON /TEMPAR/ TDBIASe TDSDEVs TORHOs BCOEFe TEMBAR

COMMON /WINDSP/ SPBAR14SPBAR2,SPBT1¢SPBT2+3PSDV1eSPELVL,

SPSDT1+SPSDT24+SPSKEWSPRHO

COMMON /WINDIR/ DRBAR¢DRDEVeDRRHO

COMMON /PDFOIR/ NUMDReDRPOF¢+DRORDsDRAORS
COMMON /DEWONE/ TYPEs ACOEF

COMMON /DEWTHO/ DYBARGDWSDEV.DWSKEWsDWRHO

COMMON /DEWDVS/ DWBIASe DWDEVe DWDRHO

READ THE GENERAL DATA SECTION

 Cc
~

Le

~

}

NOTE: *DUMMY®* READS ARE INSERTED TO READ THE *CARDS® THAT SEPERATE

THE MAJOR SECTIONS OF THE INPUT DATA. IT IS DESIGNED TO

MAKE HANDLING THE DATA DECK EASIER AND AS A MEANS TO MAKE

EXAMINATION OF THE DATA DECK EASTER.

he

READ (INe«10) DUMMY

10 FORMAT (CA)



a 05

=

C READ THE TITLE CARDS (3)

C

DO 15 I = 143

READ C(INe20) (TITLECJeI)sdJ=1419)

20 FORMAT (15A3)

15 CONTINUE
.

”~

La

re

Ah

[3

 )

y

READ THE DATA FILE NAMES FOR THE GENERAL OUTPUT AND DEBUG INFO

READ (INe30) WRITEFs OUTPUTs BUGOFF

30 FORMAT (10Xe3A10)

-

ar —

OPEN FILES FOR OUTPUT

IB = 22

OPEN (UNIT=IBsDEVICE=*DSK*4ACCESS="SEGQOUTYFILE=BUGOFF)
IF (IS «Ede 5) GO TO 35

IS = 235

JPEN (UNIT=ISe+DEVICE=*DSK®*¢ACCESS="SEQCUT*sFILE=WRITEF?
CONTINUE25

-

—

—

—

READ DATES. LATITUDE. LONGITUDE, AND TIME ZONE

READ (INea0) IMOIDAYSIYRLMOoLDAYeLYRY

$ (LAT(I)eI=1¢3)eC(LONG(I)eI=1e¢3)eTZONKE

40 FORMAT (10XeI291XeI2¢1XaIttelXeI2s1XeI2s1XsT4x1Xs

2(F3e091XsF2e0¢iXsF2e031X)eAl0)

READ DEBUG INFO

DEBUG INFORMATION CAN BE OUTPUT FROM SEVERAL SUBROUTINES BY SIMPLY

READING IN THE APPROPRIATE SUBROUTINE NAME. THESE SUBROUTINLS

INCLUDE: TAUs DECLs SOLRADy CLRSKYs COVERs ARVA AMD TEMPSN.

NAMES ARE LEFT JUSTIFIED.

THIS FEATURE IS CURRENTLY DISABLED.

\-

~~

“a

_

NBUG = O

GO Ta 51

READ (INeS0) NBUGs(DEBUG(I)eI=1eNBUG)

50 FORMAT (10XeI2e6A10)

51 CONTINYUE

READ CLOUD AND RADIATION DATA

r

READ (INe10) DUMMY

READ PARAMETER CAKD
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~

READ (INe60) CCBARy CCSDy CCRHOs GAMs EN

60 FORMAT (10X96F10.0)

READ C(INe62) NUMCCe CCAsy CCH

62 FORMAT (10Xel2+8X%X92F100)

READ (INe64) (CCPDF(I)eI=1sNUMCC)

READ (INe64) (CCORDCI)oI=14NUMCC)

64 FORMAT (10XeHF10e0)

~ READ RAIN MODEL PARAMETERS

READ (INe10) DUMMY

READ (INe50) TBBARs TRBARes OBAR

ad

 bh

r
Aer

~

-

re

r
AL

READ TEMPERATURE DATA

READ (INg10) DUMMY

READ CINe70) (BCOEF(I)sI=1+8)

FORMAT C(10X ¢4E12e5)
READ (INe60) TDBIASe TDSDEVe TDRHO

70

&gt;

. READ WIND SPEED PARAMETER DATA

READ (INel1l0) DUMMY .

READ (INe650) SPBAR1s SPBAR2e SPBT1ls SPBTZ

READ (INe60) SPSDV1e SPSDV2,s SPSDT1le 3PS3DTE

READ (INe+60) SPSKEWe SPRHO

~~

-

~

.

her

~

--

-~

a

READ WIND DIRECTION DATA

READ (INe10)

READ (INes60)

READ (INe62)

READ (INeb64)

READ (INeb54)

DUMMY

ORBARe DRDEVe OREHO

NUMDR «DRA 2DRB
(CRPDF(I)yI=1+NUMOR)

C(ORORDCI)oeI=1e¢ NUMER)

READ DEWPOINT MODEL PARAMETERS

READ (INe10) DUMMY

READ (INe10O) TYPE

=

—

-

 oy

IF (TYPELEQG*REGRS®Y +O0Re TYPELEQ.*INDEP*) 60 TO 100

WRITE (ISe¢95) TYPE

35 FORMAT (///¢TSexx2xDEWPOINTMODELTYPE==%9ASe'-- IC INVALIDS®/
Tile $ONLY t*INDEP®® OF ®YREGRS®*® ARE ACCEPTABLE)

STOP

100 IF ¢ TYPE oEQe *INDEP® ) READ (IN+60) DWBARs DWSDEVe DWRHO

IF ( TYPE oEQe °REGRS® ) READ (INe70) (ACOEZF(I)eI=1le6)

IF ( TYPE oFQe $REGRSY J READ (INe¢60) DWBIASe DWDEVe DWORHD
~



ag: 347

~

~~

=~: INPUT DATA SUMMARY °°

‘ur PRINT GENERAL DATA

—-—

™

WRITE (1IS+450)

430 FORMAT (1H143¢15(5H

WRITE (ISe491)

491 FORMAT (1Xe79(1H=*)/)

WRITE (ISe492)

FORMAT (1XeT20¢*CONSTRAINED STOCHASTIC CLIMATE SIMULATION®/

T3346 2INPUT SUMMARY ®/)

vv/))

WRITE (ISe491)
-

-

re

’

+

DO 510 J = 13

SRITE (ISe500) (TITLE(Ied)eI=1e15)

FORMAT (1H «15A5)

CONTINUE

WRITE (IS+491)

500

=10

[F (IS.EQeS5S) WRITEF = *CONSOLEL?®

ARITE (ISe515) WRITEFe OUTPUTs BUGOFF

SQRMAT (//1XeT314*0UTPUT FILE NAMES®//T31+*%RITEFI "¢A10/

T31,¥CUTPUT: v4A10/

T31« *BUGOFF: Y4A10/)

215

9

WRITE (ISe491)

WRITE (ISe520) IMO+IDAYsIYRSLMGsLDAYSLYR

5200 FORMAT (//T12¢*BEGINNING DATE *92Xel20%/%¢124%/%el4e5Xy

$ CENDING DATE %42XeI2¢%/tel2e%/%14)

WRITE (IS9530) (LATCIDoI=1e3)e(LONG(I}al=1e3)«TZONFE

530 FORMAT(//1Xe LATITUDE = *e2XeF4e09F3el0eF3e0e5Xs

$ YLONGITUDE = "e2X9F8e0sF3e0aF3e045X9TIMEZONE=*4A10/)

WRITE (1S¢491)

[F (NBUG.EReO) GO TO 545

WRITE (ISeS54C)CDEBUGCI)¢I=14NEUG)

FORMAT (//1Xs*DEBUG SUBROUTINES = "+7A10)

ARITE (IS+491)

54% CONTINUE

~

‘iy PRINT CLOUD AND SKY PARAMETERS
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WRITE (ISe550)

550 FORMAT (1XeT289°CLOUD AND SKY PARAMETERS®/)

pr

551

552

WRITE (IS+551) CCBAR+CCSDsCCRHO

FORMAT (1XeT284*FAIRWEATHER CLOUD COVER®/

T31s "MEANT T42eF6e2/
T31e?STe DEVe?sT424F6e2/

T31¢*LAG=1 COEFe "9T424F6e2//)

WRITE (ISe552)

FORMAT (1XeT239*FAIRWEATHER CLOUD COVER HISTQGRAM®/)

CALL PRDIST ( CCPDFe CCORDe NUMCC
~

tn

~~

Le

[a

~y

”

Pe
%

~
7

id
bo

E62

WRITE (ISe562) CCA+CCB

FORMAT (//TSe®LEFT BOUND OF HISTe = ®eF1l0e4+5Xs

*RIGHT BOUND OF HISTe = *¢F1le4)

WRITE (IS+553) GAMe EN

FORMAT (//71XeT234?CLOUD COVER DECAY COEFFICENT = *eFSol/

T234*ATMOSPHERIC TURBIDITY FACTOR = “*eF4.1/)

557

WRITE

WRITE

“RITE

WRITE

“RITE

(ISe491)

(IS+490)

(1S+491)

(ISe492)

(ISe431)

PRINT PRECIPITATION MODEL PARAMETERS

WRITE (IS+565) TRBARSTRBARGDBAR

£65 FORMAT (/1X»T25¢*FRECIPITATION MODEL PARANETEIRSY//

‘ T234YMEAN TIME BETWEEN STORMS? TS0eF7.2/

T23¢¢MEAN STORM OURATIONT®sTS50¢F7.2/

T2349 MEAN STORY DEPTH®eTS50eF7.2/)

WRITE (ISea3’ ¥

PRINT TEMPERATURE MODEL PARAMETERS

WRITE (ISe5T70)(BCOEF(I)eI=1+8)

570 FORMAT (//71XeT26«* TEMPERATURE MODEL PARAMETERS®//
T22¢ B09 42XeE12e594Xe?"81%42X9E1265/

T224%B29% 4 2X eF12.564Xs?B3%e2X9E12e5/

T2229 YR4P 92 XeE12e504Xs?B35%42XsE1265/
122 BE ¥e2XsE12eSe4Xs®BT%42XsE12e57//1)

WRITE (IS+580) TDBIASe TOSDEVse TDRHO

580 FORMAT (1Xe T3Ce*STOCHASTIC COMPONENTY//
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b

b

T

T28 9 * TEMPERATURE BIAS*42XeF6e2/

T28¢*STe DEVIATION *¢2XeFbe2/

T28 ¢*LAG=1 CORa COEF." s2X9F6e2/)

ed

-

Sp

WRITE

WRITE

WRITE

“RITE

«RITE

(IS+491)

(1S+430)

(ISe¢491)

(ISe432)

(ISe+491)
~
hw

C

c PRINT WIND SPEED MODEL PARAMETERS

WRITE (ISs600) SPBAR194SPBT19SPBARZ.SPBT2s
’ SPSDV1¢SPSDT14SPSOV2+3PS0DT2

500 FORMAT (/T29¢*WIND SPEED PARAMETERS*//

" T214*MIN HOURLY MEAN = ®'9F4ele* AT

T21¢*MAX HOURLY MEAN = ®eF4els® AT

T2194 MIN HOURLY ST DEV= *eF4ele® AT

T21e*MAX HOURLY ST DEV= "eF4ele* AT

PeF Sele?

PyF Sel!

*eFDele?

YoF Sel et

HOURS*/

HOQURSY//

HOURS®/

HAOURS*//)

WRITE (ISe601) SPSKEWs SPRHO

601 FORMAT (//T294'SKEW COEFFICIENT *sFSe2/

T294*LAG~1 COEFFICIENT®eFSe2/)}
I=
t..

HrWRITE (ISe491
re
i

ie

r™

“

~

. PRINT WIND DIRECTION MOOUEL PARAMETERS
-

WRITE (ISe620) DRBARSDRDEVeDRRHO

£20 FORMAT (//T27e%WIND DIRECTION PARAMETERS®//

T3199" MEANT 9T424F6e2/
T319*STe DEVe®sT424F6e2/

T314*LAG=1 COEF %¢T42¢F5e2/7/)

oo

~

i.

-

WRITE (IS+630)

FORMAT (/T289*WIND DIRECTION HISTOGRAMY/)

CALL PRDIST ( DRPDFy DRORDe NUMDR

WRITE (ISe632) DRALDRB

£32 FORMAT (//TSe*LEFT BOUND OF HISTe = *9F10.445Xs

3 RIGHT BOUND OF HISTae = *¢F10e4/)

£30

WRITE (ISe481)

IF (TYPE EQe« ®REGRS?Y) GO TO 665
-

PRINT DEWPOINT MODEL PARAMETERS eee INDEPENDENT GENERATIONS

WRITE (IS+640) DWBARe DWSDEVe DWRHD
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640 FORMAT (//T27+*CEWPOINT MODEL PARAMETERS®//

T3194" MEAN? 9T429F6e2/
T319°*ST DEV? sT424F6e2/

T31¢*LAG=1 COEF *9eT424Fbe2//)
a

WRITE (ISe491)
r~
a

GO TO 700
~~

het

665 CONTINUE

ot

1

—

“

re

~~

PRINT DEW POINT MODEL PARAMETERS eee *REGRESSION TYPE

WRITE (ISe670)YCACOEF(I)eI=196)
570 FORMAT (/T214*DEWPOINT MODEL REGRESSION COEFFICIENTS

: T2244 YA0® 2X eE12e594Xe?Al%42XeE12e5/

To29PA2%42X9E12e5¢4XeA3%42X0E1265/
T22¢ AG? e2XeF126594Xs'AD®42XsE12e57//)

WRITE (ISe680) DWBIASe DWDEVe DWDRHO

680 FORMAT (//T244 STOCHASTIC COMPONENT PARAMETERS ¢/

T28+*DEWPOINT BIAS *e2XeFEe2/

T28¢*ST DEVIATION Yy2XeFGe2/

T289*LAG=1 COR COEF 'e2XeFne2//)

¢ / /

“RITE €1S4491)
~

a

700 CONTINUE

"~

&gt;

RET" IN

FND
—~

At

SUBROUTINE PRDIST ( He ORDe NMAX)

PRINT OUT THE INPUT PROBABILITY MASS FUNCTION

~

COMMON JIQ/ [4 - LL Ig

~

DIMENSION

DIMENSION

DIMENSION

ORD (NMAX)
H(NMAX)

FMT(S)YeFXUT1(10}

DATA FMT /2(T8 o%9%¢%"* 102g? (TH==t gt mmm gt) ) t/

DATA FMT1 /° 1%, 2% * Ste 4¢y0 5%

° E0e® Tee Gee? GE, 10¢/

.DO 100 J = 1«MNMAXe1l0
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IMAX = 10

IF( J¥10 «GTe NMAX ) IMAX = NMAX = J

-

—

200

WRITE (ISe200)(H(I+J=1)eI=1+I8AX)

FORMAT (1H o91Xe®HIST *410(1XsF5e2))

FMT(3) = FMT1(IMAX)
Ty

ot

~

WRITE (ISeFMT)

~
-

am.

pose

rr

~

]

WRITE (ISe400) (ORDCI+J=12eI=1,IMAX)

400 FORMAT(LH #1Xe®ORD *¢10C(1XeF6e237//)

100 CONTINUE
-

ol

~

a

RET'ITN

ENG

5

~

wt

-

» »

SUBROUTINE DATEL

DATE1 INITIALIZES THE DATE COUNTERS.

JULIAN DATES ARE USED.

qv

{YR coe

ino cece

{DAY eee

LMQ cee

LDAY cos

INITIAL YEAR

INITIAL MONTH

INITIAL DAY

LAST YEAR

LAST MONTH

LAST DAY

JULDAT eee CURRENT JULIAN DATE

JBEGINsee JULIAN DATE AT BEGINNING OF RUN

JULEND eee JULIAN DATE AT END OF RUN

JRANGE ses LENGTH OF RUN

JULREFeee JAN 1 OF INITIAL YEAR

JULREL eee JULIAN DATE RELATIVE TO JAN 1 OF CURRENT YEAR

JSTART eee RELATIVE JULIAN DATE TO BEGIN MONTHLY PARAMETER

ESTIMATION RANGE

RELATIVE JULIAN DATE TO END MONTHLY PARAMETER

ESTIMATION RANGE

YEAR CQUNTER

UX!L PYRaoe JULIAN DATE CF DEC 51 OF NEXT LFAR {EAE

-

iF

~

COMMON /DATES/ IYRe IMOs IDAYe LYRe LMOe LODAY
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COMMON /JDATES/ JULDATe JULRELs JBEGINs JULENDs JRANGE, NXLPYR

5 sJSTARTe JSTOPs JRENDs JYEAR

COMMON /10/ IREADy IWRITEe IWBUG

INTEGER 1IDBUGs CAL(12)
~-

DATA CAL /319289¢31¢430931¢30931431930431930431/

&gt;

SET DEBUG FLAG

I0BUG = 0
"~

~

-

-

~~

DETERMINE INITIAL JULIAN DATES

CALL JULIAN (IMOsIDAYsIYRSJBEGIN)

CALL JULIAN (LMOJLDAYSLYRsJULEND)

CALL JULIAN ( 1 14 1YRyJULREF)
m

Cr

-

~
or

~

&gt;

EL
Cad

oo
-

~

a

re

~~

.

—

~

-

~

5
-

~

Rw

JULREL = JBEGIN = JULRELF

JRANGE = JULEND =- JBEGIN + 1

JULDAT = JBEGIN - 1

DETERMINE THE NEXT OCCURANCE OF 12/31/(LEAP YEAR)

(IF. THE 366TH DAY NF THE YEAR)

LASTLP = IYR = MOUD(IYRs4)

CALL JULIAN (12¢431+LASTLPoNXLPYR)

IF (JULDAT «GEs NXLPYR) NXLPYR = NXLPYR + 1461

NOTE eee 1461 = 365 + 365 + ZS 4 Ty

THIS SECTION DEFINES VARIABLES NEEDED FOR *ONTHLY

PARAMETER ESTIMATION

JYEAR = IYR

JSTART = JULREL + 1

LD = CALCLMO)

CALL JULIAN C LMOe LDDs IYRe JDATE F

JSTOP = JDATE - JULREF +

JREND = JSToP

l

IF (JYEAR = MOD(JYEARse4)) 6547065

70 IF (IMOeEGe2 oANDe IDAYLE@Ge28) JREND = JSTOP ~

£5 CONTINUE

i
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i

ar

ENTRY DATE
~

3

ve

~

-

~

-

re

«

THE NEXT SECTION IS USED EACH DAY TO UPDATE

THE JULIAN DATE COUNTERS IF ANNUAL PARAMETERS ARE USED.

JULREL = JULREL +

JULDAT = JULDAT + 1

 -~
he

~

-

~

et

~

~

.

r
~~

i:

CHECK FOR END OF YEAR

IF (JULREL LE. 365) GO TO 100

IF (JULREL «GTe 366) GO TO 200

CHECK FOR LEAP YEAR

IF (JULDAT.NESNXLPYR)Y 60 TO 200
~~

YESe THERE ARE 366 DAYS THIS YEAR.

UPDATE NXLPYR TO NEXT LEAP YEAR.

NXLPYR = NXLPYR + 1461

-

-

La

IF( IDRUG «NEe 0 ) GO TO gg0

~

.

~

Eo

30 CONTINUE

ho.

~

a

RE TJRN
~~

or RESET RELATIVE JULIAN DATE
.

L

200 JULREL =

-

a

100 CONTINUE

IF( IDBUG «NEe 0 ) GO TO 9300

112 QFETURNM

ENTRY DATEM
~

”

my

&gt;

r~

THIS SECTION 1S USED EACH DAY TO UPDATE THE JULIAN DATE COUNTERS

IF MONTHLY PARAMETER ESTIMATION IS USED.

JULREL = JULREL + 1

JULDAT = JULDAT + 1

IF (JULREL &lt;LEe JREND) ©O TO 4080
&gt;

.
rian

UPDATE THF JULIAN COUNTERS
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JYEAR = JYEAR + 1

a

CALL JULIAN (IMOs01+JYEARSJBEGIN)

CALL JULIAN (01+40192JYEAReJULREF)
n

JULREL = JBEGIN = JULREF +

JSTART = JULREL
v

all:

-

Fr]

~

rr

&gt;

410

400

CALL JULIAN (IMOs014JYEARSJULDAT)

LD = CAL(LMQO)

CALL JULIAN ¢ LMOs LDe JYEARe JDATE )

JSTOP = JDATE - JULREF + 1

JREND = JSTGP

[F(UJYEAR = MODCJYEAR¢4)) 40044104400

CONTINUE

i

IF ( IDBUG «NEe 0 } GO 0 300

wh:

—»~

-

RETU IN
~

ad:

300 CONTINUE

z DEBUG INFORMATION FOR JULIAN DATE CALCULATIONS

WRITE (IWRITELS20) JULDAT ¢ JULREL ¢JBEGINeJULEND «JRANGE 9 NXLFPYR

5 eJSTARTosJSTOP+JREND¢JYEZAR
920 FORMAT (1H oY JULDAT="4I10¢3Xe *JULREL="9110e3Xs*JBEGIN="9I1043X&gt;»

/2X oP JULEND=Y 9 I11093Xe YURANGE="9T10s3Xe*NXLPYR="9I10¢

[2X eg *USTART=*9110¢43Xe*JSTOP =e, T10¢3Xe®JREND =¢®¢Il10y

IXe*JYEAR=Z'4110)

FA

RETURN

~

|
+

wl

"

-

v

- 8- * » “&gt; 8 FPS »  5» 0 &amp; -~ Bn TP = &amp; = g

a

SUBROUTINE DATTC(IDATE «IMO IDAYSIYR)
Fv
p

CONVERT JULIAN DATE TO CALENDER DATE

INTEGER CAL (1242)
DATA CAL/0931959+903120+151+181921292439273930G44334

I 0e3136095191219152¢182921392449274¢305+335 /

I1=C(IDATE=-1)/1461

ol

RS

ho
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[2=IDATE=-(I1*1661)

_

ft

~

| §

20

20

40

00

200

1&lt;=12&lt;=1461

[F(I2.LE«365) GO TO 10

[F(I2«.LE«730) GO TO 20

[F(I2.LE.1095) GO TO 30

[3=3

[4=12-1095

20 TO 40

I3=0

I4=12

[4=12-365

50 TO 40

[3=1

50 TO 40

[3=2

[4=12~-730

[YR=1900+1I3+(4*11)

INDX=1

[FCI3.EQe3)INDX=2

D0 100 I=2.12

[F(I4eLE«CALCI«INDX)) G0 TO 200

CONTINUE

IMO0=12

IDAY=14=-CAL (12+INDX)
RETURN

IMo=i-1

[DAY=TI4-CAL(I-1+INDX)
RETURN

END
~

‘-

SUBROUTINE JULIAN(MO+DAsYRsANS)

INTEGER ANSeCAL(12)9DAeYR

DATA CAL /31928¢31930931930931931e20931930431/
~

a

~

&gt;}

-

10

&gt;

COMPUTE JULIAN DATE FROM JANe le

ANS=0

[=YR=-1900

ANS=ANS+365*1

CAL(2)=28

IFCMOD(YRe4)eEQe0d CALC2)=2C

J=M0-1

IF(JeEQe0) GO TO 20

DO 10 I=1led

ANS=ANS+CALC(C])

CONTINUE

CONTINUE

ANS=ANS+DA

RETURN

eat)

1973
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~

uh

~

-® 06 » %,

© a ae og ow

FUNCTION DMS(A)

™
~

ake

”

-~

a

FUNCTION DMS CONVERTS ANGLES EXPRESSED IN

YEGREESs MINUTES AND SECONDS TO RADIANS

DIMENSION A(3)

REAL MINUTE
~

\

~~

DEGREE = A(1l)

MINUTE = A(2)

SECOND = A(3)

DMS = DEGREE#3.14159/180. + MINUTE*#3414159/1804/606

l + SECOND*3.14159/180e/760e/5800

RETURN

END
~~

ea

-

FUNCTION TAU(CST)
 “~

COMMON /ORBIT/ PHI ¢THETASoTHETAL +EPETeU

"OMMON /10/ IREADs IWRITEs IWBUG

COMMON /DBUG/ NBUG.DEBUG

DOUBLE PRECISION ITAULDEBUG(1)

DATA ITAU /°*TAUY/

oe

-

a

’

~

THETAS = LONGITUDE OF STANDARD MERIDIAN (RADIANS)

75TH MERIDIAN FOR EASTERN STANDARD TIME

30TH MERIDIAN FOR CENTRAL STANDARD TIME

LO0STH MERIDIAN FOR MOUNTAIN STANDARD TIME

120TH MERIDIAN FOR PACIFIC STANDARD TIME

 ONGITUDE OF OBSERVERS MERIDIAN (RADIANS)

LOCAL HOUR ANGLE

STANDARD TIME IN THE TIME ZONE OF THE

3BSERVER IN HOURS COUNTED FROM

MIDNIGHT (EGe 000 TD 24.00)

+1 FOR EAST LONGITUDEe =1 FOR WEST LONGITUDE

DIFFERENCE BETWEEN TRUE SOLAR TIME

AND MEAN SOLAR TIME (USUALLY NEGLECTED

FOR HEAT TRANSFER COMPUTATIONS)

THETAL =

TAU =

ST

ep &gt;

ET =

FUNCTION SUBROUTINE TAU CONVERTS THE OBSERVERS

STANDARD TIME TO LOCAL HOUR ANGLE IN RADIANS

OBTAIN TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND

OBSERVERS MERIDIAN (HQURS)
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-

~

»

~

Le

~

EY

DTSL = EP«(THETAS = THETAL)* 120/3.14157

COMPUTE OBSERVERS HOUR ANGLE (RADIANS). E = +1 FOR

MORNING AND E = =1 FOR AFTERNOON (Ie.Ee SOLARNOON)

IF (STeGTel2e + DTSL =ET) E = =-1.0000

IF (STeLEel2. + DOTSL =-ET) E = +1.0000

TAU = (ST + E*12e = DTSL + ET) * 3.14159/12.0

-

wd

-

htt

-

[

oo

ad

IF CTAUeGTe60283185) TAU = TAU = 6.283185

IF (TAUeLTe0e0) TAU = TAU + 64283185

DEBUG OPTION

IF (NBUGeEQ«O0} GO TO 100

00 200 I = 14NBUG

[F (DEBUG(I)NE-.ITAU) G0 TO 200

RITE (IWBUG.250) STePHI«THETASeTHETAL«FPoEToWeDTSLTAU
FORMAT (//7//71H + *FUNCTION TAU®s 2X

1] PST =¥9F6e392Xe¥PHI ='gF6e3¢2Xs YTHETAS =*3F65e3¢2Xs*THETAL =f

? FEe392XeEPZVeF6a392Xe?ET ='9F6e392Xe?d =PeFbHe302Xe

3 ODTSL =®¢F6e392X9*TAU =%9F Hed)

200 CONTINUE

100 CONTINUE
™

RETURN
END

~

~

PGT

SUBROUTINE DECL -(RJUDsDELTA¢SRSS)
INTEGER RJD

COMMON /ORBIT/ PHI STHETAS«THETALsEPeETew
COMMON /10/ IREADs IWRITEs IWBUG

COMMON /DBUG/ NBUG+DEBUG

DOUBLE PRECISION I0CCL+DEBUG(L)

DATA IQECLZ/Z*DECLYY

w

&amp; DELTA = DECLINATION OF THE SUN (RADIANS)

PHI = OBSERVERS LATITUDE (RADIANS)

THETAS = LONGITUDE OF STANDARD MERIDIAN (RADIANS)

75TH MERIDIAN FOR EASTERN STANDARD TIME

J0TH MERIDIAN FOR CENTRAL STANDARD TIME

105TH MERIDIAN FOR MOUNTAIN STANDARD TIME

120TH MERIDIAN FOR PACIFIC STANDARD TIME

LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)

RELATIVE JULIAN DATE (l.Ee WITH RESPECT TC JAN 1)

STANDARD TIME IN THE TIME ZONE OF THE OBSERVER

IN HOURS COUNTED FROM MIDNIGHT (CeGela00 TG 24.00)

+1 FOR EAST LONGITUDEs =-1 FOR WEST LONGITUDE

DIFFERENCE BETWEEN TRUE SOLAR TIL AND

#

.

ee

~

L

EP =

FT =
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hp

3
 le

9

¥

oN
Ae

C

~

r~

sp

-

-~

oy

MEAN SOLAR TIME (USUALLY NEGLECTED FOR

HEAT TRANSFER COMPUTATIONS)

COMPUTE TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND

OBSERVERS MERIDIAN (HOURS)

DTSL = EP*(THETAS - THETAL)* 3.81372

COMPUTE DECLINATION OF THE SUN (RADIANS)

DELTA = 0.4093*C0S(0e0172%(172e = FLOAT(RJDI}

COMPUTE HOUR ANGLE AT SUNSET (RADIANS)

TSS = ACOS(=-TANC(DELTAY*TAN(PHI))

COMPUTE STANDARD TIME OF SUNST (HOURS)

SS = TSS*3.81972 + 12. +#DTSL =~-ET

COMPUTE HOUR ANGLE OF SUNRISE (RADIANS)

TSR = £283185 =~ TSS

COMPUTE STANDARD TIME OF SUNRISE (HQUR)

SR = TSR*3,81972 ~12« + DTSL =F

»

a

As

~

&gt;

CONVERT SUNRISE IN STANDARD TIME

SR = SR = DTSL

CONVERT SUNSET IN STANDARD TIME TO LOCAL

TO LOCAL IME

i IME

8S = SS = DTSL

.

 a

-

 4

~

}.a

DEBUG OPTION

IF (NBUGe.EGeO) GO TO 300

00 100 I = 1eMNBUG

IF (DEBUG(I)NESIDECL) GO TO 140

WRITE (IWBUG22G0) RJUDsDTSLeDELTA$TSSeSSeTSRSER
FORMAT (////7¢1H ¢*SUBROUTINE DECL Te®ax2%4% RUD =t,

1 I5e® DTSL =%4F6e3s? DELTA =%eFbe3e" TSS =%eFGeS

2 ¢ SS = ®gFBe3¢2Xe?TSR =04F5e302Xe?*SR = *4F Hal)

100 CONTINUE

2090

200 CONTINUL

T,,

 en +

ax

Xi

RN
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SUBROUTINE RAINST (TBeTReDeJSINCE «STORM JHREOS¢JHNEXT)

C

1

w

C
r~

X

r~
[d

r~
kn

ROUTINE TO INITIALIZE THE RAINFALL MODEL. THIS ROUTINE INSURES

THAT THE BEGINNING OF THE MONTH OCCURS RANDOMLY DURING EITHER

AN INTRA=- OR AN INTER-STORM PERIOD ACCORDING TO THE APPROPRIATE

PROBABILITY DISTRIBUTION.

COMMON /RAINS/ TOBMEANes TRMEANs DMEAN

COMMON /RAINI/ ITR.ITB

DATA ON/%ON®/e OFF/*0OFF*/

~

-

TSUM = 0.0

DEBUG = OFF

c

GENERATE THE TIME SINCE THE LAST STORM.

CALL EXPO (TBMEANSTSINCE)}

NOW BEGIN TO GENERATE A SEQUENCE OF STORMS THAT «ILL BRING US UP

TG THE BEGINNING OF THE MONTH.

~

L.

~

-r

w

~

-

100 CALL EXPO (TBMEANsTS)

TSUM = TSUM + TB

C ARE WE UP TO THE STARTING POINT YET?

IF (TSUM oGEe TSIWKCE) GO TO 2C0

C IF NOTe GENERATE A STORM DURATION.

CALL EXPO (TRMEAN«TR)

TSUM = TSUM + TR

a

-

~~

L

~~

|=

r

ARE WE UP TO THE STARTING POINT YET?

GENERATE THE NEXT INTERSTORM PERIOD.

IF NiNOT» GO BACK ANC

r

IF (TSUM LT. TSINCE) GO TO 100

-

”~

} IN THIS CASE. THE MONTH BEGINS DURING A STORM. DETERMINE TIME

TILL END OF STORM (TTEOS) AND TURN STORM FLAG ON.

is

TTECS = TSuUM = TSINCE

STORM = ON

JSINCE = 0

T8 = 0.0

COMPUTE THE STORM DEPTH GIVEN STORM DURATION.

ALPHA = TR/TRMEAN

BETA = DMEAN

CALL GAMMAD (ALPHA SBETAL0)
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~ ADJUST STORM DEPTH TO REFLECT ONLY THE PORTION DURING THE

C CURRENT MONTH.

 Cc

D = D*(TTEOS/TR}

TR = TTEOS

&gt;

C CONVERT TR TQ NEAREST INTEGER VALUE

CALL ROUND (TReITR)

IF (ITR «E@e 0) ITR = 1

JHREDOS = ITR
«

-

RE f  ofr x PA

r.

aa

r
A

™

200 CONTINUE

IN THIS CASEs THE MONTH BEGINS DURING AN INTER-STORM PERICGD

DETERMINE TIME TILL NEXT STORM. TURN STORM FLAG OFF.
”

TTNEXT = TSUM - TSINCE

STORM = OFF

TR = 0.0

1} = 00

a

-—

.

w

-«

A

-

\

CLOUD COVER MODEL WILL ALSO NEED THE TIME SINCE THE LATEST STORM

ENDEDeo

TSINCE = TB = TTMNEXT

CONVERT TTNEXT TO NEAREST INTEGER

CALL ROUND (TTNEXT&lt;ITB)

IF (ITB + EQe 0) ITB = 1

JHNEXT = ITB

CALL ROUNDCTSINCE+JSINCE)

&gt;
-

3
&gt;

r

RE+1

}

‘IN

SUBROUTINE ROUND (XeIX)
“~

—~

.

L

ROUND IS A ROUTINE THAT CONVERTS A REAL VALUE «Xs TG THE MEAREST

INTEGER VALUE. IN OTHER WORDSe IX IS ROUNDED LP WHEN NECESSARY.

[IX = INT(X)

RX = AINT(X)
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C

£ CHECK IF X IS NEGATIVE OR POSITIVE.

C

IF (X) 1004200,300

100 IF (ABS(X=RX) «GTe 0.50) IX = IX -

200 RETURN

300 IF (ABS(X=RX) «GTe 0350) IX = IX +

¥

-

-

RET" 2M
ENT,

14

~

o&gt;

.

9 “= - - a —-_ » 01  1a 9

SUBROUTINE PCPN (TBeTReDeSTORMeJHOUR es JHREOSe JHNEXTeJSINCE RAIN)
fe
nL

&lt;

r

c

=
r

k

SCPN CHECKS TO SEE IF WE ARE CURRENTLY IN A STORM OR BETWEEN

STORMS AND COMPUTES THE HOURLY RAINFALL TOTAL ACCORDINGLY.

JHEN NECESSARYs PCPN SELECTS NEW TIMES BETWEEN STORMSe STORM

JURATIONSe AND STORM DEPTHS. THE HOURLY COUNTERS ARE ALSO

UPDATED FOR TIME TILL NEXT STORM AND TIME TILL END OF CURRENT

STORM.

COMMON /RAINI/ ITReITB

COMMON /RAINS/ TBMEANeTRMEANsOMEAN

DATA ON/*ON®/s OFF/OFF*/

Sor

~
:

Eo

~
_—

&gt;

 or
r™~

i

-~

CHECK IF STORM FLAG IS ON OR OFFe IF

STORM SECTION.

STOR® FLAG IS ONe GO TO THE

IF ( STORM + EGe ON ) GO TOG 200

STORM FLAG IS OFFe NOW CHECK IF WE HAVE ENDED THE LATEST INTER-

STORM PERIOD.

IF ( JHOUR oGTe JHNEXT )Y GO TC 100

~

© STILL IN BETWEEN STORMS. THEREFORE SET RAIN = 0.0 AND RETURN.

rf ALSO INCREMENT THE COUNTER FOR TIME SINCE LAST STORM.

JSINCE = JSINCE + 1

re

 -—

D = 0.0

RAIN = 0.0

RETURN
o

~

&lt;,

100 CONTINUE

GENERATE A NEW STORMe FIRSTe TURN STORM FLAG ONe SECOND» SELECT A

STCRM DURATION. THEN SELZCT A STORM DEPTH
.

goo

STORY = on



TaD

CALL EXPO (TRMEANsTR)

ALPHA = TR/TRMEAN

BETA = DMEAN

CALL GAMMAD (ALPHA BETALD)
r-
(0

~

(94

~

CONVERT STORM DURATION TO THE NEAREST INTZGER VALUE.

CALL ROUND (TReITR)

C
.

Aor

Lg

MINIMUM STORM DURATION IS ONE HOUR

IF (ITR oEGQe 0) ITR = 1

jo

L

C UPDATE THE TIME TILL END OF STORM.

©

JHREOS = JHQOUR + ITR ~-

JSINCE = 0

C COMPUTE THE HOURLY RAINFALL DEPTH

-

&gt;

RAIN = D/FLOAT(ITR)
’-

RETURN
gm

x
A

-

200 CONTINUE

i
-

r~

Hoi

J

Sa

~

i.

-

No

STORM FLAG IS ONe NOW CHECK TO SEZ IF THE STORM LNDED.

IF (JHOUR «GT. JHREOS) GO TO 300

THE STORM IS STILL GOING ONe THEREFOREs COMPUTE RAIN AND RETURN.

RAIN = D/FLOAT(ITR)

JSINCE = 0
~

 &amp;

RETURN
-

nll

100 CONTINUE

STORM = QFF

™~

~

~

”

-

Ro.

Ge

STORM ENDEDe SELECT THE NEXT TIME BETWEEN STORMS.

CALL EXPO (TBMEAN.TB)

CONVERT TIME BETWEEN STORMS TO NEARZST INTEGER? VALUE.

CALL ROUND (TGeITR)
*

-

~~.

MINIMUM TIME BETWEEN STORMS IS ONE HOURo
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-

IF (ITR + EGe 0) ITB = 1

C UPDATE THE TIME TILL NEXT STORM.

JHNEXT = JHOUR + ITB ~-

JSINCE = 1

RAIN = 0.0

RETURN

END
»

-,

~

i, DONS YX

.

SUBROUTINE EXPO (EMeT)

COMMON /SEED/ ISEED

SUBROUTINE TO GENERATE EXPONENTIALLY DISTRIBUTED RANDOWM NUMBERS

EM = MEAN OF THE DISTRIBUTION

T = RANDOM VARIABLE
-

~

L

ad

r~

~

a

GENERATE U(Qe1)

IX = ISEED

CXXXXXCALL RANDU (IXSsISEEDSR)

CALL RAND1 (IXeISEEDeR)
~~

] -

» TAKE THE INVERSE OF THE EXPONENTIAL POF
~

L.

T = -EM*xALOG(R)

RETURN

END
-

y

oP

SUBROUTINE GAMMAD (ALPHAWBETA+X)

COMMON /WARN/ IWARN

COMMON /SEED/ ISEED

COMMON /1C/ INgISHIE

U = 1.0

X = 060

K = IFIXCALPHA)

GAM = ALPHA = FLOAT(K)

aad

be
~

Ao WRITE (594900) UsXsKesGANeALPHAWBETA

300 FORMAT (1HO«'US®9E12e542Xy "X=%9E12.592Xy ¥K=P4I1542Xy

YGAMNSY4E12e5¢2Xy YALPHA=?4E12.542Xe TEETA=YS

F125)
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IF (KeEGe 0) GO TO 100

DO 50 I = 1K

[IX = ISEED

CALL RANDU (IXeISEEDSeR)

CALL RAND (IXeISEEDsR)

J = R=U

CXXXX

C WRITE (54920) Is Re U

320 FORMAT (1HOe TRACE 1 ®s*

1 tii *4FE125)
~

—

50 CONTINUE

I= ¢ psI5¢2Xs PR= %4E12e5e2eDel2Xe

X = =-ALOG(U)

IF (GAMJGEe. 0.000001 3) GO TO 100

X = BETA=xX

Lc

C WRITE (54930) X

330 FORMAT (1HO*TRACE 2 IXo tX= ®t ,F1245)
al

2

RETURN
~

La

100 CONTINUE

IX = ISEED

CALL RANDU (IX¢ISEEDeR)

CALL RAND1 (IXeISEEDeR)

2 = =ALOG (R)

CAXAX

C

C WRITE (59340) ReZ

34 0 FORMAT (1HO«* TRACE 3 «a® Ro ¥ aE 124De¢ l= ¥Y4£8 125}

ey

CXXXX

“XXXYXY

DO 200 J =

IX = ISEED

CALL RANDU

CALL RAND1

IX = ISEED

CALL RANDU

CALL RAND1

19100

(IXeISEEDSUL)

[IXeISEEDSUL)

{IX+ISEEDsU2}

({IXeISTEDSU2)
r~

 a

»

COMPUTE THE VALUES OF EM AND EN

IF EM AND EN ARE COMPUTED DIRECTLY AS:

EM = Ulx*(1.0/GAM)

FN = U2%%(1e0/¢1e0~GAM})

~

 0

a

.

A MACHINE UNDERFLOW OR OVERFLOY CAN EASILY OCCUR. THEGE

CONDITIONS CAN BE ANTICIPATED BY FIRST CALCULATING THE

LOG (BASE 10) OF EM AND EN. THE VALID RANGE OF LOGCEM)
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C

r

C

c

a 225

AND LOGC(EN) IS MACHINE DEPENDENT BUT HAS NEVERTHELESS

BEEN SET TO BETWEEN =37.0 AND +37.0 IN THIS PROGRAM.

IF A VALUE OF HAS BEEN FOUND BELOW THIS RANGEs A DEFAULT

OF LOG(EM OR EN) = =-37.0 IS USED. IF A VALUE OHAS BEEN

FOUND ABOVE THIS RANGEs THEN LOG (EM OR EN) = +37.0e

EM AND EN ARE THEN FOUND BY TAKING THE APPROPRIATE ANTILOGS.

EML1I0O = (1.0/GAM)*ALOGLO(UL)
”~

|

1F ( EML1O «GE -Z7e0 es ANDe

EML10 oLEe +370 ) Go TO 11¢0

[WARN = IWARN + 1

[F ( EML10 «GTe +3740 ) EML10 = +37.0

IF ( EML10 «LTe =37.0 ) EML10 = =37.0

110 EM = 100x+EML1O

ENL1IO = (1.0/(1.0 = GAM))I*ALOG10(U2)

~~

-

IF ( ENL1O «GEa -37e0 e AND o

ENL10 olLEe +3740 G0 TO 12¢C

[ARN = IWARN + 1

IF ( ENL10 oGTe +3740 ) ENL1O = 437.0

[F ¢ ENL1O oLTe =37.0 ) ENL1O = =37.C
a

&gt;

120 EN = 10s0x~xENL1T

—

~

w

p-

Ar WRITE (5950) JeUlsU29EMeENSEMLIOSENLLO

a0 FORMAT (1HUe'TRACE 4 %o® J= "9154" Ul= "eE1Ce5y

v U2= 94,E12459 * EM= *9E1245¢ ENT "4012650

CMLIO=Y4E12.5¢ ENL1O=*4L12a%)

IF (EM +EN oLEe 1.0) GO TO 300

200 CONTINUE

i

»

WRITE (IS«500)

500 FORMAT(?® END OF DO LOOP IN BETA SUBSECTION OF GAMMAD *)

STOP

vy

300 Y = EM/(EH® + EN)

X = BETA*(X + Yx?2)

RETURN

END
~

-

rn

Loy
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~

Ls

&amp;
-

~

10

20

wr

SUBROUTINE RANDU (IXeIYeYFL)

GENERATES A UNIFORM DISTRIBUTION

[Y = IX*65539

IF CIY) 10420420

IY = 1Y + 2147483647 + 1

YFL = IY

YFL = YFL*e4656613E-9

RETURN
r~

od

re

La

ENTRY RAND1 (IXeIYsYFL)

YFL = RANDC(O)
~~

dF

~

al

REYUIN

END
~

—

.

iP

SUBROUTINE STAT(XeSUMySUMSGeSUM3¢XBARSXVAR$XSKEWeN)
re~

hw

~~

tw

~
hes

~

=

I
La

~~
k
ho

ROUTINE TO COMPUTE THE FIRST THREE MOMENTS

——= MEAN === VARIANCE =--- SKEW COEFFICIENT

XBAR XVAR XSKEYW

TRACE = “OFF?

IF (TRACE &lt;EGe 'ON') WRITE

FORMAT (* STAT1®*)101

(5S + 301)

SUM = X + SUM

SUMSG = X*X + SUMSQ

SUM3 = X*x3.0 + SUM3

nF INTEREST

IF (TRACE oEGe *ON®) WRITE (54902)

902 FORMAT (* STATZ2")

x

be

o
To

UPDATE THE MEAN AND VARIANCE COMPUTATION

XBAR = SUM/ N

XVAR = SUMSG/N - XBAR=*XBAR

IF (XSKEW oLTe =-990.0) RETURN

X43 = SUM3/N = 3.0*xXBAR*SUMSG/N + 2.0#XBARA*3.0

303

IF (TRACE +EGe ON') WRITE (54303)

FORMAT (vv STAT3Y)

IF (NN oLEe 2) RETURN:

~

COMPUTE SKEW COEFFICIENT
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-

’r

IF (XVAR «GTe 000001) GO TO 100

XSKEW = 0.0

GO To 999

CONTINUE100

FACTOR = FLOAT(N*N)/FLOAT((N=1)*(N=2))

XSKEW = FACTOR*XM3/(XVAR*SQRT(XVAR))

IF (TRACE «EQe *ONT') WRITE (54904)

FORMAT (* STAT4?®)

IF (TRACE &lt;EGe *ON*) WRITE (54905) Ns XSKEWs FACTORY XVAR

305 FORMAT (I10e3(E12592X))

9599 RETURN

END
~

Pd

~~

 a BT7

-

SUBROUTINE HGRAM (HeIAgXsDT+BASE)

~ SUBROUTINE TO UPDATE THE FREQUENCY HISTOGRAMS

COMMON 7107  INeISsIB

INTEGER H

DIMENSION H(IA)

BO 100 I = 1oIA

IF(X.GT-BASE+I+DT) G0 TO 100

HCI) = HCI) + 1

RE TURN

~ONTINUE

an

HCI) = H(I) + 1

AMAX = BASE + IA»DT

WRITE (IS+300)AMAXeX
900 FORMAT (1H o®A VALUE

1 E1Z2.5)

GREATER THAN *4FE12+5«* WAS FOUNDe X =

RETURN

END
.

.

~

“PL0

SUBROUTINE PRINTH (HeNMAX¢DTeBASETITLE«NDATAY

PRINT OUT NORMALIZED HISTOGRAMS OF GENERATED DATA

-

COMMON /Z10C/ Ine 3

INTEGER H

DIMENSION HC(NHMAX)
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DIMENSION TITLE(L)

DIMENSION TA(10)

C

C NORMALIZE THE HISTOGRAM ELEMENTS

Cc

_

her

~

GO TO 60

DO 50 I = 1e¢NMAX

N= HOI)

X = 100.0+(FLCAT(N)/FLOAT(NDATA))

CALL ROUND (XeIH)

[IF(NMAXeEQellIWRITE(SeS01)TeNMAXeNeXeIR
FORMAT (IS e1XeIS5¢1XeI15¢1X9sE12e521Xs1I15)

4¢(I) = IH

CONTINUE

CONTINUE

501

50

60

a1gd

dRITE (IS»910)

“ORMAT (1H141S5(3H Y/1H+¢15(5H

RITE (ISe900) (TITLE(I)eI=1+5)
FORMAT (1H 914Xe*HISTOGRAM OF *95A54* (PERCENT)'/)

DO 100 J = 1eNMAXs10

IMAX = 10

IFC J+10 «GTe NMAX ) IMAX =

ang

1945

G0 TO 199

00 198 II=1.1MAX

12 = 11 «+ J - 1

WRITE (5¢197)1ZeITaJeIMAXSNMAXSH(IZ)

FORMAT(S51IS5+120)

CONTINUE

CONTINUE

WRITE (ISe200)(H(I+J=1)elI=1+IMAX]

200 FORMAT (1H ¢10(2Xe15))

’

WRITE (IS+300)

300 FORMAT (1H ¢10(7H==~==-- }

DO 350 K = 1410

350 TACK) = (K=1+J)*DT + BASE

-

WRITE (ISe400)(TA(K)aK=1+10)

400 FORMAT(1H ¢10(1XeFGe2)/7)

100 CONTINUE

Pr

~

ia:

RETURN

FND
-

a

ug -

(=)
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SUBROUTINE SOLRAD (RUDeST14ST2sTsTBsNMAX9CCASCCBoPDF «NeCOORDY

SWReCLDeBETA4GAMeCCBARS$CCSDeRHO «SEASON!

SUBROUTINE SOLRAD COMPUTES INCIDENT SOLAR

RADIATION ON THE GROUND GR ON THE TOP OF A

VEGETAL CANOPY DURING A SPECIFIED INTERVAL OF TIME

ST1 = BEGINNING OF INTERVAL - STANDARD TIME

ST2 = END OF INTERVAL - STANDARD TIME

CSKY = CLEAR SKY RADIATION = LANGLY

CLD = CLOUD COVER (0.0 = CLD = 1.0)

SWR = TOTAL INCIDENT SOLAR RADIATION = LANGLY

SR SUNRISE

3S = SUNSET

rl = BEGINNING OF INTERVAL OF INTEGRATION - LOCAL HOUR ANGLE

r2 = END OF INTERVAL OF INTEGRATION =- LOCAL HOUR ANGLE

RJD = RELATIVE JULIAN DATE

SIALPH = SINCALPHA)

POF = OROBABILITY DENSITY FUNCTION (DISCRETE)

“OR NOISE TERM IN CLOUD COVER MODEL

RADTYP = INDICATES IF USER WANTS CLRSKY CALCULATIONS ONLY

COORD = COORDINATES OF THE INTERVALS OF POF

DOUBLE PRECISION CLEAR¢RADTYP

DOUBLE PRECISION ISOLRD«DEBUG(L)

DIMENSION PDF(1)e COORD(1)

DIMENSION RHOC1)¢CCBAR(CL)Y9CCSDC(1)4BETACL)«GAM(L)

INTEGER SEASON(1)

INTEGER RJD

COMMON /ORBIT/ PHISTHETASeTHETALSEPsc
COMMON /RTYPE/ RAUTYP

COMMON /SEED/ ISEED

COMMON /DBUG/ NBUGSDEBUG

COMMON /I0/ INe ISIS

DATA ISOLRD /*SOLRADY/

DATA CLEAR /C*CLEARSKY®Y/

COMPUTE DECLINATIONe SUNRISE AND SUNSET

CALL OFECL (RJUDJDELTA«SReSS)
”.

.

r

ye

\

—

 ™

SCREENING TO DETERMINE THE PROPER INTERVAL OF INTEGRATION

IF (ST2«LE«ST1) GO TO 100

[F (STl1elLEeSReANDaST24LE«SR) 60 TO 120

[F (STleLEeSReANDeST2.GE«SS) GO TO 140

I= (ST1eGEeSReANDeST2«.LE«SS) GO TO 150

IF (STlelLEeSSeANDeST2eGE«SS) 60 TO 160

IF (ST1eGE eSSeANDeST2.GEe«SS) GO TO 126
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: ST2 IS IN THE AM WHILE ST1 IS STILL IN PM

100 CONTINUE

IF (ST2.GTeSR) GO TO 130

fr

re NO SHORTWAVE RADIATION IN THIS INTERVAL

Loe

120 CSKY = 0.0

Tl1 = TAU(STL)

T2 = TAU(ST2)

SIALPH = 999.

50 TO 8048

130 T1 = TAU(SR)

T2 = TAU(CST2)

GO TO S00

PART OF INTERVAL COMES AFTER SUNRISE. SET SEGINNING

OF INTERVAL EQUAL TO THE LOCAL HOUR ANGLE OF SUNRISE.

THEN CONVERT ENDING TIME TO LOCAL HOUR ANGLE.

C

C INTEGRATION INTERVAL INCLUDES ENTIRE INTERVAL FROM SUNRISE

C TO SUNSET

C

140 T1 = TAU(SR)

T2 = TAU(SS)

69 TO S040

C

C INTEGRATION INTERVAL IS ENTIRELY WITHIN SUNSHINE PERICD

Cc

150 T1 = TAU(ST1)

TZ = TAUCST2)

GO TO 500

-

C ENDING TIME OCCURS AFTER SUNSET

160 T1 = TAU(ST1)

T2 = TAU(CSS)

COMPUTE CLEAR SKY SOLAR RADIATION FOR THE

INTERVAL T1 TO T2

CONTINUE

CALL CLRSKY (RJDeT19T2«NMAXaCSKY¢SIALPHZDELTA)

C

C DETERMINE CLOUD COVER

C

800 CONTINUE

[F (RADTYPSEQ.CLEAR)Y G3 TC S00

GO TO 801

CALL COVER (RJUD¢CCA4CCBsPDFeNoCOORDSEASON+TRBeTsBETASGAMCCRBAR,
i CCSDeRHOSCLD)

301 CONTINUE

COMPUTE CLOUDY SKY SOLAR

"
|&gt;

L
”~

or

~

i



—

cC

2900 SWR = CSKY

950 CONTINUE

: DEBUG OPTION

SWR = CSKY*(1e0 =~ 065*CLD*CLD)

60 TO S50

331

IF (NBUGeEQe0) GO TO 1100

DO 1000 I = 1.NBUG

IF (DEBUG(I).NE.ISOLRD)Y GO TO 1000

RITE (IBe1050)RUD9ST1eST2¢SReSSeT1eT29CSKYeSIALPHWCLD
FORMAT (///¢1H ¢*SUBROUTINE SOLRAD®¢2Xe*RJL =¢

I1492Xe?ST1 =*4F7e392X9?¥ST2 =tsFT7e342Xs*SR =*

F7e302Xe¥5S =%gFTel3e2Xe?T1l =P4FT7e302Xe?TE =%e

F7e3/T20¢CSKY =%9gF12e242Xs?*SIALPH =%¢F8a3y

4 2Xe*CLD =%9F743)

1000 CONTINUE

1100 CONTINUE

RETURN

END
~

a

SUBROUTINE CLRSKY (RUDeT19T2eNMAX9CSKYsSIALPHLOELTA)

on

-

o~

iw

t

“
y

Lo

C

oo

”

-a

be

r
A.

1

-

SUBROUTINE TO NUMERICALLY INTEGRATE THE

FGUATION FOR CLEAR SKY RADIATION. SIMPSONS

RULE 1S USED

DELTA =

PHI =

EN =

DECLINATION OF THE SUN (RADIANS)

OBSERVERS LATITUDE (RADIANS)

TURBIDITY FACTOR

20 FOR CLEAR MOUNTAIN AIR

4-5 FOR SMOGGY URBAN AREAS

SOLAR CONSTANT = 120. LANGLY/HR

4 IS READ IN AS A VARIABLE TO ALLNW THE USER TO CHOOSE

HICH VALUE OF W IS APPROPRIATE.

RELATIVE JULIAN DATE

HOUR ANGLE AT BEGIMNING OF INTERVAL

HOUR ANGLE AT END OF INTERVAL

NUMBER OF SUBINTERVALS = 2¢4s6ees

FINAL VALUE OF F IS CLEAR SKY RADIATION

SIN C(ALPHA)s WHERE ALPHA IS THE ANGLE

OF RADIATION WITH THE HORIZONTAL (RADIANS)

ANGLE OF RADIATION (RADIANS)

REFERENCE FOR SIMPSONS RULE

TI PROGRAMMABLE 58/59 MASTER LIBRARY

TEXAS INSTRUMENTS INCORPORATED. 1977 P29=31
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COMMON /DBUG/ NBUG4DEBUG

COMMON /ORBIT/ PHI oTHETASeTHETALEP$ETek
COMMON /ATMOS/ EN

COMMON /ZI0/ INoISeIB

INTEGER RJD

DOUBLE PRECISION ICSKYDEBUG(1)

DATA ICSKY /°*CLRSKY?*/

~

te

[9

~

w

Ie
a

IS DEBUG REQUESTED FOR SUBRJUTINE

IBUG = ©

IF (NBUG.EQRe0) GO TO 914

DO 200 I = 1¢NBUG

CLRSKY?

IF (DEBUG(I)NE-ICSKY) GO TO 9CO

IBUG = 1

G0 TO 210

CONTINUE

C

300

910 CONTINUE

IF (IBUGeEGeO) GO TO 160

WRITE (IBe930) RJUDeT1leT2eNMAX

FORMAT (///7/¢1HO9"SUBROUTINECLRSKY®e2Xe?*34D=%s

 I15¢2X e®T1l =F 6e34?T2 =%eF6a322XsNMAX =?4,1I5)

10 CONTINUE

930

 RL

ki

 ~

i

-

il
DO LOOP PERFORMS INTEGRATION BY SIMPSON®S RULE

~

X = 00

F=06000

IMAX = NMAX + |

rr

749

D = (T2 = T1)/NMAX

IF (DeGEeOs0) GO TO 70

D = ¢ 628318 = T1 + T2 )/NHAX

CONTINUE

9

kL

DO 100 NN = leInxaX
-~

. ,

N=NN-1

]

- COMPUTE CURRENT HOUR ANGLE

T = T1 + N20)

COMPUTE SINMNCALPHA)

 Cc

SIALPH = SIN(DELTAI*SINCPHI) + COS(DELTAI*COS(PHII*CCS(T)
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c

c

GC

C

CHECK TO PREVENT DIVISION BY ZERO OR USING ZERO

AS THE ARGUMENT OF A LOG FUNCTION

pb
A

y

ro CONSIDER THE TERM

9
-

w

 _"

 $2
.

hr

re
3,

Y = ( 0el128 = 04054*AL0G10(1e/SIALPH]))

JHEN ALPHA APPROACHES ZEROes THE DECAY FUNCTION STARTS TO GROW

THIS OCCURS DUE TO POLES THAT EXIST AT THE ENDS OF THE INTERVAL

OF INTEGRATION. AN APPROXIMATION TO THE DECAY FUNCTION 4AS

MADE THAT CONSISTED OF A STRAIGHT LINE EXTRAPOLATION OF THE

DECAY FUNCTION FROM ALPHA = 0.016 TO ZERO. |

nd

~

ALPHA = ASIN(SIALPH)

IF CALPHA «GTe 0e016) GO TO 40

IF ( STALPH oLTe 00 ) SIALPH = 0.0

X = 3 "33454 ALPHA*STALPH
~

Xb

GO TO 45
r=

Aa

40 CONTINUE
~

X=(EXP(=-EN*(0.128 = 04054*AL0G10(1e/STALPH)}I/STALPH)I*STALPH

45 CONTINUE

IF (MOD(Ne2)eNELO) GO TO

M=2

[F (NeEGeO) M=1

[F (NeEQeNMAX) M=1

F=F + M*xX

G0 TO S50

200

'
k.

200 F=F + 4*X

DEBUG OPTION
.
ia

~

.

50 IF (IBUGeEGe0) 60 TO 100

ARITE (IB¢920) oNeTeSIALPHeXeF

320 FORMAT (1H ¢T25¢*N =0eI442Xe*T Zt eF5e39e2 Xe *STALPH =%y FSele

1 2Xe®X =%9F12e3¢2Xe®F =%¢£1243)

100 CONTINUE

F = F2a0/23.0

~~.

uv

x

COMPUTE CORRECTION FACTOR FOR CLULIPTICAL aOHBIT

o
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R = 14000 + 06017%C0S(62832*FLOAT(186 = RJDI/365.)

CSKY = (124026040/361416)*F*u/(R*R)

C
~

Nor

.

-

940

DEBUG CPTION

IF (IBUGeEGeD) GO TO 300

RITE (IBeS40) FeReWeCSKY

FORMAT (1H ¢T25¢%F =94F12e302XeR=?eF5el

YW =P F8e392Xe?CSKY =%9E1243)
rr
a

300 CONTINUE

RETURN

END
r~

[

\

nn

SUBROUTINE COVER (RUDeAgBePDF gNs COORD sSEASCNs TEs THEETASGAMSCCBARS

1CCSDeRHO CLD)

INTEGER RJDSSEASON(1)

DIMENSION PDF(1)4CO0ORD(1)

JIMENSION RHOC1)9eCCBAR(1)¢CCSD(1)¢BETA(L)su5A2(1)

COMMON /CLDCOV/ C1

COMMON /LEAP/ LCHECK

COMMON /SEAS/ NSEAS

COMMON /DBUG/ NBUG DEBUG

COMMON /I0/ INsISeIB

COMMON /STORMS/ STORM

J0UBLE PRECISION ICOVERDEBUG(1)

DATA ICOVER /*COVER®*/

DATA ON/Z*ON®/e OFF/Y0FF*/

&gt;

~

-

~

-

p

«

:

&gt;

Lo

SEASON =

PDF =

COORD =

A =

[SEAS =

rg =

T &amp;

CCBAR =

CCSD =

RHO =

BETA =

GAM =

NSEAS =

ARV -

Cl 2

C2 =

BD -

ARRAY CONTAINING RELATIVE JULIAN DATES QF THE FIRST DAY

OF EACH SEASON

JISCRETE PROBABILITY DENSITY FUNCTION OF CLOUD COVER

COORDINATES OF PDF (Ie.Ee INTERVALS)

NUMBER OF INTERVALS IN POF. DIMENSION OF POF

AND COORD IS N* (NUMBER OF SEASONS OF CLOUD

COVER PARAMETERS)

CURRENT SEASCN

TIME BETWEEN STORMS (HOURS)

TIME SINCE LAST STORM (HOURS)

MEAN CLOUD COVER

STANDARD DEVIATION OF CLOUD COVER

LAG=-1 AUTOCORRELATION COEFFICIENT

TRANSITION DECAY PARAMETER

TRANSITION DECAY PARAMETER

NUMBER OF SEASONS PER YEAR

RANDOM VARIATE FOR THE NOISE TERM IN THE CLCUD COVER

MODEL

PREVIOUS VALUE OF THE AR(1) PROCESS

CURRENT VALUE OF THE AR(1) PROCESS

VALUE OF THE MODULATION FUNCTION
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C

C

C

Cc

CLD = CLOUD COVER

DETERMINE THE CURRENT SEASON

IF (NSEAS.GTel) GO TO 50

ISEAS = 1

GO TO 150

50 CONTINUE

IF (RJD «LTe SEASON(NSEAS+LCHECK=*NSEAS)) GO TO 80

ISEAS = NSEAS

GO TO 150

60 CONTINUE

[

DO 100 I=1eNSEAS

[F (RJDeGESSEASON(I + LCHECK*NSEAS)) GO TO 100

ISEAS = I-1

30 TO 150

CONTINUE

WRITE (IS+160)

FORMAT (1H14///4*SEASON SELECTION FAILED IN SUBROUTINE COVERT)

STOP

CONTINUE

100

160

150
re

bo

pt

~

c
oe

~
la

COMPUTE STOCHASTIC COMPONENT

ARV = ARVA(PDFsNeAsBoeCOORDeISEAS)

C
r
[4

r~

~

i
\.

=

k,

~

x

3

a

"~

4

C2 = RHOCISEAS)*C1l + SGRT(1.-RHO(ISEAS)*RHC(ISELAS))*

1 ¢ARV = CCBAR(ISEAS))

2 + CCBAR(ISEAS)*(le - RHOCISEAS))

CHECK TO SEE IF A STORM IS GOING ONe IF NO STORMe COMPUTE THE

MODULATION FUNCTION. IF STORM IS ONe SET CLD = 1.0 AND BY-PASS

THE MODULATION FUNCTION.

IF (STORM .EQe OFF) GC TO

CLD = 1.0

GO TO 300

CONTINUE

260

200

COMPUTE MODULATION FUNCTION

BEXP = BETACISEAS)*T

GEXP = GAM(CISEAS)Y*x(TB~-T)

CHECK TO SEE IF BEXP OR GEXP WILL CAUSE A MACHINE

UMDERFLOW WHEN USED AS THE ARGUMENT IN THE EXP FUNCTICN.

IF (BEXP oGTe 37«0*xAL0G(10e3) BEXP =270%xAL0OG(1C0)

IF (GEXP oGTe 37e0%xALOG(104)) GEXP =37.0#AL0GG(10.0)
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P = (le0 =~EXP(-BEXP))*(le0 -EXP(=GEXP))

c

C

Cc

COMPUTE AVERAGE CLOUD COVER FOR INTERVAL

~

x

~.

ht

~

bp

~

-~

~

Co

CLD = CCBAR(ISEAS) + (1.0 - CCBARCISEAS))*(1l.0 =P) «+ (C2#*P

IF (CLDeG6Tele0) CLD = 1.00

[F (CLDeLTe0e3) CLD = 0.00

CONTINUE

DEBUG OPTION

IF (NBUG.EQe0) GO TO 910

00 900 I = 1+NBUG

IF (DEBUG(I)«NE-ICOVER) GO TO 900

WRITE (IB9920) RJUDSISEASsC1eC2sARV oPsCLD

FORMAT (///1H ¢ "SUBROUTINE COVER®e2Xe RJD =TeI592Xa

1 YISEAS =%el442Xe%Cl =%9F7e392Xs%C2 =%gF Talo
5 CARVA =*eFGe3e2Xe®P =F Ge3e2Xe CLD =%9F3.3)

920

WRITE (IB¢930) BETACISEAS) ¢GAM(ISEAS) 4 TBeT

330 FORMAT (1H ¢®BETAS ®4E12.592Xs'GAM= %4E12.5+2Xs

$ *TB= *901245e2Xe*T= *eE1245)

00 CONTINUE

910 CONTINUE

ri

~
bor

-
|
on

SAVE CURRENT VALUE OF THE STOCHASTIC COMPOMENT FOR

USE IN THE NEXT TIME PERICOD

C1 = C2

a

RETURN

FND

FUNCTION ARVA (PDFoNsAsBeCOORDSISEAS)

FUNCTION ARVA SELECTS A RANDOM VARIABLE FROM AN

ARBITRARY DISCRETE PROBABILITY MASS FUNCTION

DISCRETE PROBABILITY DENSITY FUNCTION

NUMBER OF INTERVALS

LOWER LIMIT OF U(A+B)

UPPER LIMIT OF U(AeB)

SEED FOR RANDU

CONTAINS COORDINATES CF THE INTERVALS

REAL PDF(1)s PEAKs COORDC(1)

COMMON /SEED/ ISEED

COMMON /DBUG/ NBUGDEBUG
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COMMON /I0/ INeISe1B

DOUBLE PRECISION TARVASDEBUG(1)

DATA IARVA /*ARVAt*/

p

¥

100

FIND THE PEAK OF THE DISTRIBUTION

PEAK = 0.0

DO 100 I = 1leN

IF (PDFC(CISEAS=1)%*N +I)«GT+PEAK) PEAK = POF((ISEAS=1)*N +I)

CONTINUE
~

ks

Cc

SELECT THE FIRST RANDOM NUMBER FROM U(A

150 IX = ISEED

CALL RAND1 (IXeISEEDsR)

CALL RANDU (IXeISEEDeR)

Jl = A + (B=-A) *~ R

-

eB

iy

wr FIND WHICH INTERVAL Ul BELONGS TO

ii

~
fr

~
i,

hy

~

~

Aik.

~

.

30 200 I = 1leN

IF (Ul «GTe COORD((CISEAS-1)=N + 1

J= (ISEAS-1)=*N +I

G0 TO 300

CONTINUE

JRITE (IS,250)
CORMAT (1Hle * SUBROUTINE ARYA =-- Ul IS GRTATER %.

"THAN THE MAXIMUM INTERVAL FOR THE DISCRETE POF*)

STOP

CONTINUE

200

2598

|

Ina

CALCULATE THE SELECTION CRITE~ION

F= PDF (J) /PEAK
IX = ISEED

CALL RAND1 (IXeISEED.UZ2)

CALL RANDU (IXeISEED,U2)

DEBUG OPTION

IF (NBUGeEQeO) GO TO 600

DC S5€0 I = 1leNBUG

[F (DEBUG(I).NE&lt;IARVA) G60 TO 500

WRITE (IB¢550) PEAKeULleU2eF

550 FORMAT (///1H «FUNCTION ARVA*42Xo*PEAK =*sF5e30

1 PUL =%¢F6e302X0%U2 =%4FH6e392Xs"'F =%9sF6e3)

500 CONTINUE

600 CONTINUE

ACCEPT OR REJECT U1

[F (U2.GT«F) GO TO 150

ARVA=U1

RETURN
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END
~

.»
_ POS

SUBROUTINE MARKOV (NePDF COORD +A ¢BsXBAR«XDEVsXRHO9XLAGIsKX)
 ”~
1

~

ha

~~

or

~~
t
he

MARKOV IS A GENERAL ROUTINE TO COMPUTE A STOCHASTIC VARIATE

GENERATED BY A FIRST ORDER MARKOV PROCESS.

DIMENSION PDF (1) ¢COORD(1)eXBAR(1) «XIEV(1)2XRHO(1)

a

h

~

CC,

ro

jr

-

-

NSEAS — 1

GO TO (2004300) K

200 CONTINUE

SECTION 1 -- USE THIS SECTION WHEN ARV IS SELECTED FROM

AN ARBITRARY PDF WITH MEAN = XBAR AND

STANDARD DEVIATION = XDEV

DETERMINE THE RANDOM VARIATE

ARV = ARVA (POF eNsAeBeCOORDSNSEAS)

X= XBAR(NSEAS) + XRHO(NSEAS)IA(XLAG1l = XBAR(MSLAS)) +

1 SART(1e0=-XRHO(NSEASY*XRHO(NSEAS)I*(ARV=-XBAR(NSEAS))
¥

a

“

-~

W
~

boa

GO TO 800
300 CONTINUE

SECTION 2 =-=- USE THIS SECTION WHEN ARV IS FRAM A

STANDARDIZED NORMAL DISTRIBUTION ( N(Os1) )

ARV = ARVA (PDF eN9AsBsCOORDSNSEAS)

CALL NORMAL (ARV)

X= XBAR(CNSEAS) + XRHOCNSEAS)*(XLAG1 = XBARCNSEAS)) +

SART(1.0-XRHO(NSEAS)*XRHOCNSEAS)I*#(ARV*XDEV(NSEAS))
Lo

\

Lan

nog CONTINJE

v

o

.

-

a

-

hy

100

XLAG1 COULD BE SET EQUAL TO X AT THIS POINT OR CHECKED FO=

NEGATIVE NUMBERS. HOWEVER THE NATURE OF THESE CHECKS DEPENDS

ON THE VARIATE BEING GENERATED. THEREFORE. THESE CHECKS ARE

MADE IN THE CALLING ROUTINE WHERE THE IDENTITY OF THE VARIATE

1S KNOWN ALONG WITH THE PECULIARITIES ASSOCIATED WITH IT.

IDEBUG = 0

[F (IDEBUG «EQe0) RETURN

WRITE (54100) XBAR(NSEAS) ¢+XDEV(NSEAS) ¢XRHO(NSEAS)»ARVeXLAGLeX
FORMAT (/1Xe6(El1llebdelX))
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R t Use

D

Cag

~

SUBROUTINE LIMITS (DTSLsRsSeTOsRHO9T124SIGHA4T23)
~

he

r~ FIND LIMITS FOR TEMPERATURE INTEGRATION
~
9

 ~~

Tro = = DTSL

T23 = 2300 = DTSL

IF (DTSLeLTe00) GO TO 50
3

FIND LIMITS OF INTEGRATION WHEN OBSERVER IS

WEST OF THE STANDARD MERIDIAN
r~

~~

 -~

~

~

ka

’

~

-

R

FOR SUNRISE

RHO = AINT(R+1.,0) - DTSL

IF (RHO oLTe R) RH3 = RHO + |

FOR SUNSET

SIGMA = AINT(S+1) - DTSL

IF (SIGMA &lt;LTe S) SIGMA = SIGHA + 1

FOR LOCAL NOON

T12 = 13.0 = DTSL

~

 gy

GO TO 75
~

 al

S00 CONTINUE
em

a

5

r~

wy

wr

FIND LIMITS OF INTEGRATION WHEN OBSERVER

IS EAST OF THE STANDARD MERIDIAN

RHO = AINT(R) =~ DTSL

IF (RHO oLTe R) RHO = RHO + 1

SIGMA = AINT(S) = DTSL

IF (SIGMA «LT. S) SIGMA = SIGMA

_

T12 = 120 - DTSL

~

Caco.

75 CONTINUE

RETURN

END
~~

-

A aa a 0 6 va 4  3 o &amp;m= - Ss 4 » bh 8 + Aa 68 6 6 &amp; &amp;8 80 Ff 00 8 Oe

SUBROUTINE TEMPK (DELTA sPHI«B TPRIMEy KOs Klg K2¢ K39 Kée KS5e Ke}



C

C

240 ~

SUBROUTINE TEMPK COMPUTES THE COEFFICIENTS

FOR THE TEMPERATURE EQUATION

rc

i.

Cc

5

C

I

C

C

DELTA =

PHI 2

B =

TPRIME =

K0=-K6 =

Bo0=-B6 =

BD —~

gape . =

DECLINATION OF SUN IN RADIANS

LATITUDE IN RADIANS

VECTOR OF REGRESSION COEFFICIENTS

YESTERDAY®*S TEMPERATURE AT 11 PH

COEFFICIENTS IN TEMPERATURE EGUATION

EQUIVALENCED VARIABLES WITH B VECTOR

CONSTANT = 2*PI/24

INTERMEDIATE VARIABLE USED FREQUENTLY

ELEMENTS

»

C
~

REAL KOgK1aK2eK3sK3eKDeKE

DIMENSION B(1l?

BO = B(1)

B1 = B(2)

B2 = B(3)

BY = B(4)

P = 31415971260

32P2 = B1#B1 + DPaP

X0

&lt;1

K 2

K3

K 4

KS

{6

= TPRIML

vr

— Bg/B1

B2+«SIN(DELTA)*SIN(PHII/B1

= B1*B2+COSC(DELTA)*COS(PHI}/32P2

= PxB2*COS(DELTAY*COS(PHI)Y/B2P2

PxP*B3xCOS(DELTA)Y*COS(PHI)/B2P2

- PxR1*B3*COS(DELTA)*COS(PHII/B2PZ

RETURN

END

a”

4

SUBROUTINE TEMPSN ( STe DTSLe ReSeBoe KOeKlaK29K3eK4eKSsKbEs

CLDe KBARs GTOs WSPe WDRse THPLAGe THAT T )

INTEGER I0OBUG

DOUBLE PRECISION DEBUG(1l)e DTEMPS

REAL KOgK1eK2eK39K49KDeKSE
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REAL I0¢llel2¢I34149I5+I69179 KBAR

DIMENSION B(1)
-

COMMON /INTEG/ IO0sI1eI29I3eT49I5e16917

COMMON /10/ IREADs IWRITE, IWBUG

COMMON /DBUG/ NBUGs DEBUG

COMMON /SWITCH/ SWICH1lse SWICHZ

DATA DTEMPS / *TEMPSH 9

r~

\

-

=

C
r~

be

ro
&gt;

STATEMENT FUNCTIONS FOR INTEGRALS I2 AND I3

FUNC1(A4B) = K2*(EXP(B1#*A) = EXP(B1%B))

FUNC2(A) = EXP(B1*A)*(K3*COS(PxA) + K4xSIN(P=*A))

FUNC3(B) = EXP(B1*B)*(K&amp;6*SIN(P*B) = KS*COS(P%B))

Cc

Cc

.

C

SET DEBUG FLAG
~.

Yu

[DBUG = 1

~

'v

~~

ir

CL

=: SET SWITCHES THAT DETERMINE WHICH PREDICTOXES ARE USED

SWICHYL = 1

SWICH2 = 0

-

.

oy

Bl = B(2)

34 = B(3)

835 = B(8&amp;)

B6 = BCT)

BT = B(8)

C

c

£8000 WRITE (559000) (B(J)ad=148)

“5000 FORMAT (1HOy®TEMPS B VECTOR®s5Xe 4(E12.545X)/T2004(E124505X))

IF ¢ SWICH1 EGe 0 KRAR = 1 ot} 30300

“or

i

[ad

”

to

\

Do a . } »159/712.000060

CONVERT STANDARD TIME TO LOCAL TIME

TAUCSTI* 120/3614159 - 12.0T  -—
-—
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5

IF ( ST oLTe 025 «ANDe T oLTe 00 } GO TO 5

[F € ST e0Te22e5 oANDe T oGTe 24e ) GO TO 5

[F ( T eLTe 00 » T = T + 24.00

IF ( TeGToe 24.00 YT = T = 2400

CONTINUE
»

&amp;

~

98

~

[®3

r~

I

~~

IN ADDITION TO SUNRISE AND SUNSET DETERMINE THE LIMITS

OF THE RANGES OF THE TEMPERATURE EQUATIONS

TO = -DTSL

T12 = 12.0 = ODTSL

123 = 23.0 = DTSL

TP = T0 = 1.0

~~

IF(IDRUG.EQe0) WRITE (IWRITE910) TOeReT12¢34T234TP

10 FORMAT (1H oT4046(2XeE10e3)/)
re

[

w

-

Ar

=

THE FORM OF INTEGRALS Ils I4e IS5s I6s AND 17 ARE THE SAME

FOR ALL TIMES OF THE DAY. I2 AND I3 WILL VARY IN

FORM DEPENDING ON THE TIME OF DAY.
L

ht

hd

we

~

er

At

-

Lr

~OMPUTE Ile 14s IS5e 16s 17

11 = K1I*(EXP(B1*T) = EXP(B1*TP))

-

-~

cp

IF ( SWICH1 eFGe OJ 3¥ GO TO 40

LY

~

PY

~
a

PP = (1.0=FEXP(=81))*EXP(B1=+T)/Bl1

AB = 1e579E~8+(1e0040e17*CLD*%2, YA (THMPLAG+4E0e)x*bo0

14 = B4»QB*PP + 14

40 CONTINUE

IF ( SUICHZ EC 9 3 G0 0 50

15 = B5xGT0*PP + [5

~

-

Ek.

0 CONTINUE

16 = B6+*WSP*PP + 16

[7 = 33T7*WDR*PP + 17
~~

ho

~

CALCULATE SUBTOTAL
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SUBTOT = 11 + I4 + 15 + Is + 17

¢

Cc

IF ( T «6GTe R } GO TO 180

I~
le

++ RANGE 1 =-- AFTER MIDNIGHT AND BEFORE SUNRISE

~

——

GTT = SUBTOT

G0 TO 900
~

Se

r~

lg

100 IF ¢ T «GTe R + 1.00 )» GO TO 200

&gt;

* RANGE 2
-—

IRST HOUR OR FRACTION AFTER SUNRISE

~

I2 = FUNC1(TeR) = FUNC2(T) + FUNCZ2(R)

[2 = I2+*KBAR

I3 = FUNC3(T) - FUNC3(R)

I3 = KBAR=*I3

GTT = I2 + 13 + SUBTOT

~

a:

GO TO S40
~

;

ww

+

Xr

200 IFC T «GTe T12 J) GO TO 250

axxxrixx RANGE 3 =-- AFTER SUNRISE AND BEFORE NOON

211 = FUNC1(TaT=10)

32 = FUNC2(T)

33 = FUNC2(T-1.0)

TI2 = FUNC1(TeT=1.0) = FUNC2(T) + FUNC2(T-1.0)

12 = TI2*KBAR + 12

“+

 Eb ,

IFC(IDBUG.EQeO)WRITE(IWBUGS321)KBAR12
"31 FORMAT (2Xe *KBAR ve 2(E124543X))

FI3 = FUNC3(T) = FUNC3(T=-1e0)

IZ = TI3* KBAR + 1I3
=

wr
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-—

GTT = 12 + I3 + SUBTOT

v1

Go TO 900

c

r

250 IF (7 «eGTe T12 + 1.0 ) GO TO 300

~

+* RANGE 4 =-- FIRST HOUR AFTER LOCAL NOON

TI2 = FUNC1(TeT-1e0) = FUNC2(T) + FUNC2(T-1.0)

[2 = TI2*KBAR + 12

TI3 = FUNC3(1240) = FUNC3(T-1.0)

I3 = TI3*KBAR + 13

GTT = I2 + 13 + SUBTOT

GO TO 900

200 IF ( T -GTe S J) GO TO 40

»

+% ~»* RANGE 5 =- AFTER LOCAL NOON BUT BEFORE SUNSET

-

TI2 = FUNC1(TeT=1.0?

I2 = TI2*KBAR + 172

- FUNC 7 F
3 Ty + FUNC2C(C1 Y = 3)

r~

A”

.

GTT = 12 = Y «¢ + Cl) O11
~

a

GO TO 900
-

-

fo

400 IF (T GT S+1.0 J) GO TO 50¢C

r4% RANGE 6 == FIRST HQUR AFTER SUNSET

TI2 = FUNC1(SeT-1.0}

[2 = TI2»KBAR + 12

FUNC? SY + FUNC2(T=-1.0)

w’

Dg

GTYT = 12 + , 4 i SUS TOT

Gg TO Sgn

5300 CONTINUE
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r~

wr

x#% RANGE 7 =-- AFTER SUNSET

NOTE: I2 DOES NOT CHANGE WHEN T «GTe S

I3 DOES NOT CHANGE WHEN T «GT. 12.0

THUS USE THE PREVIOUSLY COMPUTED VALUES FOR I2 AND 13

THAT HAVE BEEN STORED IN THE COMMON /INTEG/
&gt;

”

.

Li

GTY = [2 + 13 3 Sh; Te K
2 5

-.

-r

-

nn.

Cr

300 CONTINUE

=

cw

Id

~

fea

 ~~

ay

99

NOW THAT THE FUNCTION GTT HAS BEEN EVALUATED,

COMPUTE THE TEMPERATURE AT TIME Te

IF(IDBUGeEReO)IWRITE(54990) GTTallel2eI&gt;

FORMAT ( 2Xe YGTT "48(E12e5¢3X))

1  bh Se [6017

 L

~

-

THAT = KO*EXP(=B1*(T=-TP)}) + GTT*EXP{(=8B1~()

C8010 WRITE (549010) THATeKO0eBleTeTP+GTT

~g3010 FORMAT (1HOe ®*TEMPSN®e 6(E12e5¢5X))

-

Th kk NRXELE .

RETURN

5550 CONTINUE
-~ oh fC -

 Ahk AKAhAkhRh

DERUG INFORMATION FOR TFMPSN

A

~

WRITE (546000)

6000 FORMAT (1H1/2(1H+9100(1H }/)s1H*e250aH*%%})

YRITE (546005)
6005 FORMAT (1H +10(4H#*%%xx)4T444*DEBUG TEMPSN®« A110 (4&amp;H%xx24)//)

WRITE (546010) Te TPs Re S

6010 FORMAT (1H +*TIME PARAMETERS ty 7TXe1HT312Xs2HTP+13Xe1HR

13Xe1HS/15Xe4(3X9F1llab})

JR TE (S020)



ALE

6020 FORMAT (//1H o7Xs%KO0%el2Xe%K1®s12Xe?K2%s12Xs'K3%912Xs

x 'KG%e12XeKT*312Xe®KE")

WRITE (S¢e6030)K0eK1eK2eK39K4eKI9KE

6030 FORMAT (1H #8(3XeE1l1.4))

WRITE (546040)

5040 FORMAT (//s1H 97Xe2HBO#12Xs2HB19e12Xe2HB2912Xs2HB3912Xe2HB4,

12X92HB5912X92HB6912X42HBT)

WRITE (546030) (B(M)eM=1+8)

WRITE (546035)

FORMAT (//1H 96Xe3HCLD910X96HTHMPLAG«IXe3HWSP912X¢3HWDR)
RITE (546030) CLDe TMPLAGe WSPe WDR

-

hot

~

hoa

63950

WRITE (546050)

FORMAT (//71H ¢6Xe3HGTTel12Xe2HI1912X92HI2912Xe2HIZg12Xe2HI4,
12Xe2HIS¢12Xe2HIGe12X2HIT)

-~

mm

WRITE (545030) GTTeI1912¢13¢914+9I5¢16417

WRITE (S¢6060)

FORMAT (//1H ¢SXe4HTIMES11Xs4HTENP)6060

Cc

WRITE (546030) TeTHAT

WRITE (546070)

6070 FORMAT (//71H ¢25(4H2%x%*x))

~

-

Coa

fF rk ¥ k*% 5 ~ =a vA . ; NEES EEEEREEE EEEEEE.

cE AR Ak EET RD Cor kkk kh 1 * kk tkk*rt HR to = * kd kk d tok kkk kkgq

-

~

ka

RE«
FND

"URN. +

-

fh

SUBROUTINE LONGWY (TF1eTF2eTDF1eTDF2¢CLD1+CLO2eLY)

COMPUTE LONGWAVE RADIATION
rt
r

T

 5.
‘

,

[Ceeoee TEMPERATURE IN DEGREES CELSIUS

CLDeeee CLOUD COVER (8&lt;= CLD &gt;=1)

Ldeoeee COMPUTED LONGWAVE RADIATION

TDCeeee DEWPOINT TEMPERATURE IN DEG

VPeeeoee VAPOR PRESSURE IN MILLIBARS
SVP eee «SATURATED VAPOR PRESSURE IN MILLIBARS

SEAL LW

COMMON /ZVAPORP/ yp



LT

»

wall

re
__

C CONVERT DEG F TO DEG C

TDAVE = (TDF1+TDF2}/2.0

TAVE = (TF1+TF23/2.0
-

TC = (TAVE = 3240}*(50/9.0)

TOC = (TDAVE = 32.0)*(5.0/9.0)

~
Eo

i.

-

J.

- CONVERT CELSIUS TO KELVIN

TK = TC + 273.16

~

 8

™
he

-.

i

r~

as

 Ss =

DEFINE THE VALUE OF THE STEPHEN-BOLTZ®AN CONSTANT

CCAL/Z/(CM**2 » MIN * K*x*4]})

0e826E-10

oy

a

Ly

r~

wr

 ”~
I.

DEFINE THE VALUE OF ATMOSPHERIC EMISSIVITY

CALL VAPOR (TCeTDCeVPeSVP)

 =~

E = 070 + S5.95E=05*VP*EXP(1500e/TK)
Re

as

~
a

Cc
~

L,

COMPUTE LONGWAVE RADIATION

Lid = E&gt;»SaTK*x4,0

C.
~

fr

re

or

~

yo

rr -

ACCOUNT FOR CLOUDINESS

( 1.0 + 0J17*CLD2x*x2,0 2

~

LW. = CL
~

L

~-

-

—
COMPUTE TOTAL LONGWAVE FOR ONE HOUR (IEe 60 MINUTES)

~
Loy

Ld = LWwxE60.0

,.

a

a

ik

RETURN

END
~

ul

SURROUTINE DEWSIM (ACOEFeDEWLAGy TEMP CLO ¢WDIR «WSF DEW)
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C

c

C

DEWSIM USES THE FOLLOWING MODEL TO GENERATE DEWPOINTS

TDCT)Y = AD + A1*TD(T=1) + A2+THMP + A3+CLD + A4»kDIR + AS*uSP

C
.

"I

DIMENSION ACOEF (1)
C

r
Ed

~~

on

GENERATE TODAY®*S DEWPOINTS

~

Ly

La

DEW = ACOEF (1) #+ACOEF(2)*DEWLAG +ACOEF(3)+TEMP

ACOEF(4)*CLD + ACOEF(S5)*WDIR +ACOEF(c}*uWSP
-

Sx

~

RE" 7

END

_}

rn
”

. ~

~

-

SUBROUTINE MSTAT (NeAe¢BeCoeDeEsRAUSUMSY
"

ACCUMULATE RAW SUMS AND RAW SUMS OF SGUARES AND CRCSS PRODUCTS

.

-

~
ta

DIMENSION ACN) 9BIN) «CUNY «UN « EAN) oRAWSUM(S)axXI(
=
rs eS 1X5)

.

Fe

_

~

"

DO 100 I = 1isN

LOAD DATA INTO WORK ARRAY
~

oN

X(1) = ACI}

X¢2) = B(I)

X¢(3) = C(I)

X€(4) = DCI)

(9) = ECCI)

it

=

.

COMPUTE RAW SUMS

DO 200 J = 1le5

RAWSUM(J)Y = RAWSUM({J) + X(J)

DO 200 K = 15

~

bo

~

bo

XXTEKod) = XXTiXed) +

200 CONTINUE

100 COMTINUE

XK{KY2Y(J)

~

R

RETURN
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END
re

ry

.

a

"

SUBROUTINE FSTAT (IDIMsRAWSUMeXXTeMEANSCOVH¥AT+CORMATONDATA)
r~
[o

~

~

w

COMPUTE THE MEAN VECTORe THE COVARIANCE MATRIXe AND

CORRELATION MATRIX

DIMENSION RAWSUMCIDIM)e XXT(IDIMWIDIM)s MEANCIDIM)

DIMENSION COVMAT(IDIMeIDIM)e CORMAT(IDIMeIDIM)

DIMENSION MMT(5+5)

REAL MEANSMMT

TYE

 -~
Ar

~

.

~

 -—

~
al

COMPUTE MEANS AND AVERAGE CROSS PRODUCTS

DO 100 I = 10IDIM

MEAN(I) = RAWSUM(I)/NDATA

30 100 J = 1.IDIM

XXTCJeI) = XXT(JsI)}/NDATA

100 CONTINUE

»

‘or

.

$k

-

~

hes

-

~
rt

A

i,

MULTIPLY THE MEAN VECTOR BY ITS TRAMSPOSE

DO 200 I = 1+I0IM

DO 200 J = 1eIDIM

MMT (Jel) = MEANCJI*MEANCI)

200 CONTINUE

COMPUTE COVARIANCE MATRIX

DO 300 I = 14IDIM

DO 300 J = 14IDIM

COVMAT (Jel) = XXTCJeI) = MMT(JeI)

300 CONTINUE

COMPUTE THE CORRELATION MATRIX

DC 400 I = 16IDIM

J0 400 J = 14I01IM

CORMAT(JeI) = COVMAT(JaL)/SGRT(COVMAT(J9JI*COVMAT(II)?

430 CONTINUE

o~y

RETURN

FND
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SUBROUTINE RAWLAG (IDIMeUJPeDATAeSUMeSUMSQeSUMI«XBARSXVAReXSKENWS

NR oR)
»

t

ad

L

C

 nN

gl

&lt;

.

a

UPDATE ARRAY FOR AUTOCORRELATION ANALYSIS

IDIMeooeoeDIMINSION OF DATA ARRAY AND MAX LAG

JPeoeoesees POINTER FOR CURRENT OR LATEST DATUH

DATAeeese DATA ARRAY ( A *CIRCULAR® DATA ARRAY )

2

he

~

Ing

DIMENSION DATAC(IDIM)e R(CIDIM)

COMMON /I0/ IN+ISHIB
-

:

IK=

BUG = ®QFF

J

C

C

C REFERENCE FOR THE EQUATIONS TO COMPUTE AUTOCORRELATION:Z

HAANe CHARLES Te3sSTATISTICAL METHODS IN HYDROLOGY,

IOWA STATE UNIVERSITY PRESSe1977e PAGE 228s EQ (11.13)

we

IF (BUG +EQe YONY) WRITE

910 FORMAT (* RAWLAG1*"}

(Se 1)

X = DATAUGJP)

CALL STAT (XeSUMeSUMSQeSUMIsXBAReXVAR¢XSKERIRR]

DO 100 K = 14IDIM

IF (BUG oEGe 'ON®) WRITE (53520)

920 FORMAT (* RAUWLAGZ2*?}

I (BUG EQ T*ONT* ) dRITE (IBeg 300) KedPelK
Fr

-

BEY = BRIX) + DATAC(JPI»DATA(IX)
a

re

_t

IK = IK = 1

[IF ¢CIK &lt;LEFe 0) IK = IK

100 CONTINUE

wd IDIM

‘a

~

be

300 FORMAT (1Xe®K= ql 042Xe¢ UP =P eI242Xe*?IK='412)

ETHRA

MNT



i511

»

9

~

v3 y +»
- ye rN +1

SUBROUTINE AUTOCO (MLAGe RHOs XBARs XVARs NNe TITLE)

Cc

S DETERMINE THE AURTOCORRELATION FUNCTION. THE MAXIMUM LAG IS MLAG«

L

»
~

REFERENCE FOR THE EQUATIONS TO COMPUTE AUTOCORRELATION =

HAANs CHARLES Te3STATISTICAL METHODS IN HYDROLOGY.

IOWA STATE UNIVERSITY PRESSs1977s PAGE 228s EQ (11613)

“

L
a YL AGeeseoeMAXIMUMLAG

RHOeeeoaeeRAWDATAIN =-- AUTOCORRELATION OUT

XBAReeoee MEAN OF CURRENT DATA TYPE

XVAReseee VARIANCE OF CURRENT DATA TYPE

NNeeooeosss NUMBER OF DATA POINTS IN MONTH

1

i
-

~

Som

“

~

DIMENSION RHO(MLAG)

DIMENSION TITLE(1)

COMMON /I0/ INe ISe IB

BUG = COFF*

IF (BUG EQ. *ONT®) HRITE

IF (BUG EGe 'ON') WRITE

(IB+9500) (TITLE(HM) ¢M=145)
(IB+9910) (RHOCK) oK=14MLAG) oNNgXBAR

YVAR
3

"

DO 100 K = 1leMLAG

RHO(K) = (RHO(K) ~- NA+ XBAR*XBARY/ZC((NN=-1)*XVAR)

{

100 CONTINUE

IF (BUG ofQe *ONT) WRIIE tIB+8910} (RHO(KyeK=1+MLAG)

ho

WRITE (IS«900)

900 FORMAT (1H1e15(5H })
~

L,

WRITE (ISs910) (TITLE(M)eM=1935)

310 FORMAT (1H +15Xs YAUTOCORRELATION FUNCTION FOR 'eBAG/)

WRITE (IS9920) (KyK=0s11)s(RHO(K) sK=1+12)
FORMAT (TX e'LAG %91215/6X913(5H=====)/TXs*RHO *912F5e2/)

JRITE (IS9920) (KeK=12423)¢(RHO(K)IeK=13924)

3300 FORMAT (1Xe16A5)
3910 FORMAT (1Xe4(6F1042/)/1Xe?NN= *9I0eSXe*XBAAT ®4F10e2y

tXVATS ®4F10e2//)

% TTR

rr

i

3
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~

Cor
» &amp;

LL omeaeeeewee

aed

SUBROUTINE MARGAM(NePDFeCOORDA+BsXBAReXDEVeXRHOesSKEWXLAGL«Xs ARV)

W
r~
att

GENERATE THE NEXT DATUM OF A FIRST ORDER MARKOV PROCESS WHOSE

VARIATES ARE GAMMA DISTRIBUTED.

Neeeoosesoes NUMBER OF ORDINATES IN POF
PDFeeeeees ARRAY CONTAINING ELEMENTS OF PROBABILITY DISTRIBUTION

FUNCTION (HISTOGRAM FORM) WHICH IS N(Oeslle

COORDeees«s COORDINATES OF PDF
Aseseseee LEFT BOUND OF POF

3eeseeeees RIGHT BOUND OF PDF

{BAReeeaees PROCESS MEAN
ADEVeoeee PROCESS STANDARD DEVIATION

XRHOeeeees PROCESS LAG-1 AUTOCORRELATION COEEFICIENT

{LAGleese PREVIOUS VALUE OF PROCESS

IKEWeosooo GAMMA DISTRIBUTION SKEW COEFFICIENT
(eeemseees CURRENT VALUE OF THE PROCESS

C

L

o

'

al

~~

-

L.

a

L

.
oo

L
he

REFERENCE:
HAANs CHARLES Te3STATISTICAL METHODS IN HYDROLCGY.

IOWA STATE UNIVERSITY PRESSe 1977

L

¥
ir

~

a.

~

DIMENSION PDF(1)4COCRD(1)¢XRBRAR{1)+xDEVL]

SET NUMBER OF SEASONS TO ONE

9  VRHO(1)Y «SKEW CL)

NSEAS = 1

pr.

r~

m

“—

rv

x,

~

»

"

 ”~

EVALUATE RANDOM COMPONENT DISTRIBUTED ACCORDING TO POF

10 ARV = ARVA (PDF oNsAeBeCOORDSNSEAS)

10 CALL NORMAL (ARV)

TO CONTERACT THE PROBLEM OF SUDDEN SHIFTS IN A GENERATED TIME SERIES

WHOSE VARIATE IS SKEWED AND HAS A HIGH (EG. GREATER THAN &lt;8) LAG-1

AUTOCORRELATION COEFFICIENTe RESTRICT THE USAGE OF THE TAIL UF THE

N(Oel) THAT CAUSES THE PROBLEM.

BY RESTRICTING EXCURSIONS INTO THE OFFENDING TAIL TO ABSOLUTE VALUES

BELOW 2489 ONLY 0.26 PERCENT OF THE DISTRIBUTION IS RESTRICTED.

1. IF THE SKEW 1S NEGATIVEs RESTRICT THE NEGATIVE TAIL OF N(Os1)

5. IF THE SKEW 1S POSITIVEs RESTRICT THE POSITIVE TAIL OF N(Os1)

a

IF (ABSCARV) .LEe 2.8) GO TO 435

IF CARV) 20s 40e¢ 30

20 IF (SKEW(NSEAS)) 10e 40s 40

30 IF (SKEW(NSEAS)) 403¢ 40s 10

a0 CONTINUE



1K3

Ba

a

p~

by

L

i

o EVALUATE RANDOM COMPONENT

CSE = (1e0 =XRHO(NSEAS)#*%x3.0)*SKEW(NSEAS)}/

Tr (1e0 = XRHO(NSEAS)I*x2,0)x*1.5

E = (2e0/CSE)*(1.0+CSE*ARV/6e0 = CSE*CSE/36e)**x3.0

- 20/CSE

C

~ GENERATE THE NEXT VALUE OF THE PROCESS

C

X = XBAR(NSEAS) + XRHO(NSEASI*(XLAGLl - XBAR(NSEAS)) +

E*XDEVC(NSEAS)*SQRT(1.0=-XRHO(NSEAS)*XRHO(NSEAS))

[a

oy

=

-

n

"

py

:
\

XLAG1 COULD BE SET EQUAL TO X AT THIS POINT OR CHECKED FOR

NEGATIVE NUMBERS. HOWEVER THE NATURE CF THESE CHECKS DEPENES

ON THE VARIATE BEING GENERATED. THEREFCREs THESE CHECKS ARE

MADE IN THE CALLING ROUTINE WHERE THE IDENTITY OF THE VARIATE

IS KNOWN ALONG WITH THE PECULIARITIES ASSGCIATED WITH IT.

IDEBUG = ©

IF (IDEBUG EQe0) RETURN

WRITE (59100) XBAR(NSEAS) 9 XDEV(NSEAS) ¢XRHO(NSEAS)sARVeXLAGT¢X

$ sSKEWe CSE LE

100 FORMAT (/1Xe6(ElledelX))

RETURN

END
p~

SUBROUTINE PUNCH (IPUNCHs RAINMs VPs WSPMe SWRs Luis TEMPH)
rv

tea

~ CONVERT THE DATA GENERATED BY THE CSCS MODEL TO DATA WITH UNITS

COMPATABLE WITH MILLY*S LAND SURFACE MODEL.

Crxkh an. hk ER rr AREA AA RARE er kr A Ah A kk hh kb kkk kha k+ 4"! + kk hkh kh

Thkkhkhkhk INPUT VARIABLES ARRAN AAA REA AR ER AREA r hers chk rdR RAAF EAA A ALIX

hehhNh rh rr kh Ahhh) EEA Ek] Xr A pbb ght Coat rR NP RA AIA ERA RANA

x

IPUNCH see

RAINM eae

VP coe

“SPM soe

SWR coe

LW see

TEMPM eee

UNIT NUMBER FOR OUTPUT DATA FILE

PRECIPITATION IN MM/HR

VAPOR PRESSURE IN MILLIBARS

“IND SPEED IN M/SEC

SOLAR RADIATION IN LANGLEYS/HR

LONGWAVE RADIATION IN LANGLEYS/HR

TEFMPERATURE IN DEG C

kkk hdr th hhh hk hhh hk hk kkk hh hk kh hhh hh Yt hhhkhkh rr, deh hkhkmhkhkhk kkk hkkA AAA RAAF AAA rr hk

Chk kk kk QUTPUT VARIABLES Akh hk AX NRA NEARER RAKRA KAR ANA FARA ATR AAR Ahk kkk kkk d

"hkAkAhrrrkkhkhkhvhk A AAR AR AA kh kh hhh kh Arh rhb hhh bk hhh bhkr rr bbb bt dhhdhdhd

r PRECIP eee PRECIPITATION IN CM/SEC



Ting

-~

hie

-~

-

~

 a

RHOVA ese

UA con

RADS cee

RABLD eee

TEMPM cee

WATER VAPOR DENSITY IN GRAMS/CH#**3

WIND SPEED IN CM/SEC

SHORTWAVE RADIATION IN LANGLEY/SEC

LONGWAVE RADIATION IN LANGLEY/SEC

TEMPERATURE IN DEG C

REAL L~
~
.

~

—

TekKk PRECIPITATION CONVERSION

CM/SEC = (MM/HR)*(CM/10MM)I*(HR/36005EC)

TR

PRECIP = RAINM/36000.00
re

)

-~x%x VAPOR DENSITY CONVERSION

RHOVA = (0e622/2.876E+06) * VP / (273.16 + TEMPM)

~

—

.

hs

.

et

«

hy

YhkWn WIND SPEED CONVERSION

CM/SEC = (M/SEC)*(100CM/M)

UA = HWSPM+100.00

Trxxxx RADIATION CONVERSION

: LANGLEY/SEC = (LANGLEY/HR)*(HR/3600.)
“ %

att

RADS = SWR/3600e.

RADLD = LW/3600.
~

Ww

~

w

_exxxx DATA QUTPUT SECTION

:

© WRITE (IPUNCH+900 ) PRECIPs RHOVAes UAy RADSe RADLDs TEMPH

WRITE (IPUNCH990G) RAINMs VPs WSPMs SWRe Lids TEMPM

300 FORMAT (6E10e3)

-

rk &amp;

L

RE + URN

END

=

~

 XN *“ WN

 ry

SUBROUTINE PLOT (IMeIDsIHeNMAXSTEMP+sDEWeSHReWRLeCLDaRATIN

WSPsWDIR¢STORMsIPLaTRTE)
re

a

~

P DATA PLOTTING SUBROUTINC

IMs -20eeCURRENT MONTH



2/5

~
te

~

ur

~

he

 Cc

-*

Le

~~
|
-

~

A

3

i.

bs

hr

\

-.

3g

C
”

er

IDeesoees CURRENT DAY

[Heeoooees CURRENT HOUR
NMAXeoooe MAXIMUM NUMBER OF LINES BEFORE NEW TITLE AND HEADING

TEMPeooee TEMPERATURE
JEWeeeosee DEWPOINT TEMPERATURE
SWReseeeee SHORT WAVE RADIATION
JRLeeeeee LONG WAVE RADIATION

CLDeecesee CLOUD COVER
RAINeeees RAINFALL

iSPecoeess WIND SPEED
WDIReeseoeWIND DIRECTION

[PlLeesesesFLAG FOR WHICH COMBINATION OF DATA IS PLOTTED

IPL = 1 TEMPe DEWy SWRe WRLs CLDe AND RAIN PLOTTED

IPL = 2 SWRe WRLy CLDe RAIN PLOTTED

IPL = 3 WSPy WDIR PLOTTED

STORMeoeoos ON/OFF FLAG TO DETERMINE IF IT IS RAINING

TBeesooss BEGINNING OF TEMPERATURE RANGE FOR ORDINATE SCALE

TE eeoeweeNDOF TEMPERATURE RAND FOR ORDINATE SCALE
™
er

Y

ial

DIMENSION SYMBOL(135)

INTEGER CAL(12)

INTEGER PPTEMPe PPDEWs PPOFFe PPSWRs PPLWRS

COMMON /LINES/ NLINES

COMMON /10/ INgISeIB

SATA CAL /31¢28¢31930e31930+31¢31930+31430

PPCLD

«e317

"~

2d

r~

ad

1C = 5
~~

.

hy

-

oe

r~

[9

SET UP PAGE HEADINGS

IF (NLINES «GTe 0) GG TO 20C

WRITE (IC.870)

870 FORMAT(1H14110C1H )/1H+ +110C1H J)

C

fal
Eig

GO TO (100+1204140) IPL

CONTINUE

CALL ROUND (TESITE)

CALL ROUND (TBes1TB)

~

 nN

1090

4

HEADINGS FOR PLOTTING &amp; DATA POINTS

WRITE (IC.880)

FORMAT (1H ¢112C¢1HZI))I

“RITE (IC4881)
881 FORMAT (1H +35Xe® CONSTRAINED STOCHASTIC CLIMATE SIMULATION®.

(CSCS) *a8X)

{R80
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cra

"~

wd

~

-

882

WRITE (IC+882})

FORMAT (1H ¢112C1HZ)/)

RITE (ICsS01)
301 FORMAT (1H oT15¢*HOURLY TEMPERATURES (DEG C)*y TT71le RADIATION *«

t *(LANGLY/HOUR)*y T105¢*CLOUD (*)*)

WRITE (ICe902)
302 FORMAT (1H ¢T18¢%(T = TEMPs D = DEW PT) 'eT568¢%(S = SHORT WAVE «

o®L = LONG WAVE) eT104e**+*RAINXx#x"}

INCR = 10

WRITE (ICe303) (I¢I=ITByITESINCR)e (I+1=20480420)

FORMAT (1H ¢T645110¢T60e41104T1035e°%0 «5 1°)

JRITE (IC+904)

FORMAT (1H o"MM/DD:HRe?9F(SH====%)"

fHomw=geg2(GH====4+})

NLINES = NLINES + fa

GO TO 2080

~
ho:

120 CONTINUE

- WRITE HEADINGS FOR 4 VARIABLE

WRITE (IC+890)

290 FORMAT (1H ¢63(1H2))

900 FORMAT (1H ¢8Xe* CONCEPTUAL STOCHASTIC CLIMATE SIMULATION?

t eo? (CSCS) *48X)

JRITE (ICeS00)

JRITE (ICy891)

FORMAT (1H ¢63(1H:)/)

ARITE (IC4910)

FORMAT (1H oT18¢*RADIATION (LANGLY/HOURY®s TSS.*CLOUD (x) *)

ARITE (ICe911)

FORMAT(1H ¢T15¢%(S = SHORTWAVEs L = LONGWAVE)*«T54,

*xikx RAIN *=xt¢)

WRITE (ICe912) (I141=10470+20)

TORMAT (1H oT694I109T549°%0 oS

WRITE (ICs213)

FORMAT (1H 9"MM/DDtHR,¥*+8(5H===213

NLINES = NLINES + 8

.

~

-

w

'

GO TO 200

=

140 CONTINUE

RESERVED FOR HEADINGS FOR WIND AND WIND DIRECTION
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C

200 CONTINUE

C

C

Cc

DETERMINE PLOTTING POSITIONS

INITIALIZE THE PLOTTING POINT OFFSET”

le

 ”~
Ng

PPOFF = 1

IRMIN = 1

r~

GO TO €(210:"20¢230) IPL

Cc

C

C DETERMINE PLOTTING POSITIONS

210 TT = TEMP

CALL ROUND (TT+IT)

DD = DEW

CALL ROUND (DDLIDW)

Cc

C ADD PLOTTING POSITION OFFSET

c

Cc FIRSTe CONVERT TB TO UNITS OF

TB1 = TB

CALL ROUND (TB14ITB1)

ie DEGREES

Cc ACCOUNT FOR THE OFFSET FROM THE LEFT SIDE OF THC GRAPH TO TB.

~

ITB = 1ITB1 - 5

.

wy

a

ADD PLOTTING POSITION OFFSET

PPTEMP = IT = ITBO

PPDEW = IDW =- ITBO

PPOFF = 49 + PPOFF

IRMIN = PPOFF
~~

t

-.

IF (PPTEMP oGTe« PPOFF) PPTEMP = PPOFF

IF (PPDEW oGTe PPOFF) PPOEW = PPOFF

220 CONTINUE

SW = SWR/Ze0

CALL ROUND (SWelISW)

dl = WRL/2.0

CALL ROUND (die IWL)

PPSYR = ISW + PPOFF

PPLWR = IWL + PPOFF

PPAFF = 464 + PPOFF

[F (PPSWR «GTe PPOFF) PPSWR = PPOFF

[F (PPLWR GTe PPOFF) PPLWR = PPOFF



158

CLDY = CLD*10.

CALL ROUND (CLDYSICLD)

IF (ICLD oLTe 0) ICLD = 0

[F CICLD «GTe 10) ICLD = 10

PPCLD = ICLD + PPOFF

OPOFF = PPOFF + 10

IF (PPCLD «GTe PPOFF) PPCLD = PPOFF

\PMAX = PPOFF

GO TO 250

C

a

-

[=

7
3

 dt
~

Re

230 CONTINUE

RESERVED FOR SETTING PLOTTING POSITIONS FOR WIND AND WIND DIRECTION

250 CONTIMUE

[Y

SET UP SYMBOL ARRAY

a

DO 300 I = 10135

SyMBoL(iy = + ¢

IF (IH oNEe 23)

[F (NLINES «GEe

SYMBOL(I) = *_°

CONTINUE

GO TO 300

NMAX=-1) GO TO 30¢C

200

GO TO (30543204600) IPL

305 CONTINUE

50 TO 315

[F (IDW «LTe 10) GO TO 315

DO 310 I = 10sIDWs10

SYMBOL(I) = *!¢

CONTINUE

CONTINUE

510

215

DO 330 I = PPDEWPPTEMP

SYMBOL (I) = *-¢

CONTINUETTNn

SYMBOL(PPDEW) = O°

SYMBOL(PPTEMP)= T°

20 CONTINUE
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260

DO 360 I = IRMINGPPSHR

SYMsoL (I) = *7°

CONTINUE

SYMBOL (PPSWR) = *S¢

SYMBOL (PPLWR) = *L*

SYMBOL (NPMAX) = *I°?

SYMBOL (NPHMAX=10) = *I?

SYMBOL (PPCLD) = ®=x°¢

SYMBOL (1) = *I¢

SYMBOL (NPMAX=-54) = *I°*
Jo
rt

Tad or

r

"

~

IF (STORM &lt;EGe °*OFF®*) GO TO

NPMAX = NPMAX = 10

£70

c

C PLOT DATA IF STORM IS °*ON®

C

G0 TO (4004410) IPL

~

400 WRITE (IC9950) IMeIDeIHe(SYMBOL(I)eI=14NPMAX)4RAIN
350 FORMAT (1H 9I129%/%eI29%:%4T2904A1e %*%x¥gFb4elelXe?xxt)

GC TO 500
~

510 WRITE (IC+960) IMe IDs IHe (SYMBOL( I) I=1«NPMAX) «RAIN

9¢0 FORMAT (1H 12/0129 02%3I2945A1e *xa x? gFdalelXe? xx?)

G0 TO 500
~
-

370 CONTINUE
.

La

WRITE (ICe970) IMs IDs THe (SYMBOL(I)eI=1eNPMAX)

370 FORMAT (1H ¢I2e%/%eI2e%:%e129120A1)

R00 CONTINUE

NLINES = NLINES + 1 |

IF (IDeEQeCAL(IM) oANDe IHeEQe23) NLINES =

[F (NLINES oGEe NMAX) NLINES = 0

0

[IF (NLINES GTe 0) GO TO £00

50 TD (560570) IPL

WRITE (IC+S04)

JRITE €ICs203) (I4I=ITBeITESINCR)s (I9I=20«80+20)

30 TO 6CO

ARITE (IC4913)

sRITE (I1Ce¢912) (I141=10+470420)

CONTINUE

RETURN

S60

5760

500



APPENDIX F

TEMPERATURE MODEL PARAMETER ESTIMATION PROGRAM LISTING
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C

Cr a dy BR RC
3

om

PROGRAM TEMPER

r

hor

C
,

-

C

C

r

r~

a

rE

-

‘

~~

PROGRAM TEMPER IS USED TO ESTIMATE THE REGRESSION COEFFICIENTS FOR

THE DETERMINISTIC COMPONENT OF THE TEMPERATURE MODEL. THE PROGRAM

IS CURRENTLY SET UP FOR MONTHLY PARAMETER ESTIMATION. IF ANY OTHER

PERIODS ARE TO BE USEDs SUBROUTINE DATE1l WILL HAVE TO BE APMOODIFIED

IN ORDER THAT THE DATE COUNTERS ARE UPDATED PROPERLY.

PROGRAMMERS

DAVID Ce CURTIS

NORTHEAST RIVER

705 BLOOMFIELD

BLOOMFIELDs CT

FORECAST CENTEF

AVE

06002

PY

C (203%) 244-2520

 ~~
hoa

INTEGER RANGE

INTEGER SEASON(12)

REAL*8 DEBUG(20)

REAL*8 TZONESTZ(4)

REAL KBAROR

JIMENSICN

DIMENSION

JIMENSION

DIMENSION

DIMENSION

DIMENSION

XY(8)eXXT(8e8)

A(3)eB(3)

TPRIME(25)s THAT(25)

KBAROB(25)s GRTEMP(25), CLOUD(CZ3)

WSPEED(25)s WDIR(25)

ACOEF(R)e RCOEF (8)

COMMON 7710/7 IREADSIWRITE+IWBUGsIPARMs IBCQE

COMMON /DBUG/ NBUGe DEBUG

COMMON /SEAS/ NSEAS

COMMON /ORBIT/ PHIGTHETASeTHETALEPETeM
COMMON /SUN/ DELTAe DTSLe SRsSS

COMMON /JDATES/ JULDATs JULRELe JSEGINe JULENDs JRANGEe NXLPYR

¢sJSTART, JSTOP, JREND « JYEAR

COMMON /DATES/ I1YRs IMOe IDAYs LYRe LMOs LDAY

COMMON /ZYSTAT/ YSUMe YSUMSQe YMEANe RSGUAR

ho

DATA TZ/8HEASTERN ¢8HCENTRAL ¢8HMOUNTAIN +8HPACIFIC /

C

C SET INPUT/OUTPUT UNIT NUMBERS

[READ = 21

[JdRITE= 5

[IWBUG = 23

[PARM = 24

IBCOE = 25%



TE2

rd
~

Ei CALL TRANSLATOR PROGRAM FOR INTERACTIVE INPUT
I

 lr

CALL TRTEMP (IREAD)
od

"000000000000000000000eeesseeOPEN-

DATA FILE DEFINITIONS

T  +0000000000000000C00CO

DCCTMP«DAT

DCCTMP. OUT

DCCTMP.BUG

DCCTMP«PRM
DCBCOF «DAT

oe

LNJ

roe

 *o "5 e

 oo ®&amp; 0

INPUT DATA FILE

OUTPUT DATA FILE

DEBUG DATA FILE

OBSERVED DATA FILE

REGRESSION COEFFICIENT OUTPUT FILE

cil

.

”

~

»

OPEN (UNIT=IREADSDEVICE="DSK® gACCESS="SEQGIN +FILE="DCCTMP DAT")
IF (IWRITE oEGe 5) GO TO 85

OPEN (UNIT=IWRITESDEVICE=YDSK®YyACCESS='SEGOUT¢4FILE="DCCTMP OUT?)
CONTINUE

JPEN (UNIT=IWBUGsDEVICE=*DSK®*3ACCESS=*SEQOUT*«FILE=*0CCTMP BUG")

JPEN C(UNMIT=IPARMeDEVICE='DSK®yACCESS=YSEQIN®¢FILE="DCCTMPPRM¥)
OPEN C(UNIT=IBCOE+DEVICE=YDSKY¢ACCESS=*SEQCUT*«FILE=YOCECOF«DAT*)

35

L

~300000000000000000000 ae =F
p-
% [NC . « 00GC0O30000G0000GG0CA

INPUT DATA SECTION
.

CXXXXXREAD (IREAD+160) IREADs IXRITEs I1WBUG

CX100 FORMAT (315)

READ C(IREADs110) NBUGe (DEBUG(I)s I=1XNBUG)

110 FORMAT (ISeS5XeT7(A892X3/C10Xe7(A892X)))

8000 WRITE (IWRITE.S000) NBUG

3000 FORMAT (1HO9®NEBUG=42X.110)

~

we

~~

 _—

120

READ C(IREAD9120) IDAYIMOeIYRSLDAYSLMOSLYR

FORMAT (2(3Xel12¢3Xs12e1Xel4))

WRITE (IWRITEe120)IDAYsIMOeIYRILDAYsLMOSLYK
~

i.

-

~

READ (IREAD9140) (ACINsI=1s3)4(BCI)eI=103)sTZONE
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140 FORMAT (2(3F5.0¢5X)sT514A8)

-r

.

-

 ”~
or

r~

a

CONVERT DEGREES TO RADIANS

PHI = DMS(A)

THETAL = DMS(B)

c

Cc

ec

C

CHECK THE TIME ZONE TO GET THE PROPER STANDARD MERIDIAN OF THE

NBSERVER LOCATION
r
ih

[F (TZONESNESTZ2(1)) GO TO 200

50 TO 300
-

200 IF (TZONENESTZ(2)) GO TO 210

THETAS = 9040*2.0+%3.14159/360.

Go TQ 300
~

ras:

210 IF (TZONE.NE.TZ(3)) GO TO 220

THETAS = 105e0*240%3414155/360.0

G0 TO 300
~

hw

~

yo

2248

239

2640

250

IF (TZONE.NESTZ(4)) GO TO 230

THETAS = 120.0%2,0%3.14159/360.0

50 TO 300

WRITE (IWRITE«L240)
FORMAT (1H1e*TIME ZONE REGUESTED IS NOT VaLIO®///)

RITE (IWRITE«250) TZONE(TZ(I)eI=14s4)

FORMAT (1HO¢T104 REQUESTED TIME ZONE®eTI6eTHAxx,

LAB e¢SH**#*xx/T10¢ AVAILABLE TIME ZONES? eT36eSH*x%x4x,
IAB eg SH 22% 2 / TIC oe SHA Xxx x gAB gSHA x hd x / TIE 9 HAN Rx Xo

ZAB eH xk kn /T365¢OH xxx kg AB ¢ SHA X Ak *)

300 CONTINUE

READ C(IREAD9260) EPEToW

260 FORMAT (16FSe0/9FSe0)

»

READ DATA BOUND VALUES

TLBeee TEMPERATURE LOWER BOUND

TUBeee TEMPERATURE UPPER BOUND

JUR Cee WIND SPEED UPPER BOUND
-

 Et

READ C(IREADs260) TLBs TUBe WUB
-

-

ww

INITIALIZE THE ARRAYS USED IN THE REGRESSIGH ALGORITHM

NO 100 I = 18



264

XY(I) = 0.0

100 J =1.8

XXTCJel) = QC

100 CONTINUE

YSUM = 00

YSUMSA = (0.0

YME AN = 0.0
-

A”

»

 3

-

r~

IRANK = 7

.
wr

~

&gt;

v

e

INITIALIZE THE DATE VARIABLES

CALL DATEL

LiLby
- ® =

 Fr ® 8 9 ¢ 6 8&amp;5 oo &amp; Fr
. 8 © ® &amp; &amp; 5 &amp; &amp; vO PD

CY.

~ ® 6 ~ &amp; &amp; &amp; &amp; ¢ &amp; @

» " ® * w # &amp; &amp; ¢ &amp; &amp;

Ff 4% 6 ®« ® &amp; ww ® &amp; 6 6 &amp; &amp; 8 OS «esd
® ® 6 &amp; &amp; &amp; 8 FF &amp; &amp; 0 6 0 0

a ~~ 8 &amp; ® 8 &amp; &amp; » ¢ 048

-&amp; S +» oF W &amp; @ &amp; ode Foam nN s 52 &amp;=
L

-=m »

ar

ny:

EVALUATE OBSERVED DATA TC DEVELOP COEFFICIENTS FOR

TEMPERATURE MODEL.

325 CONTINUE

THE

\ -

cw"

L.

C FOR EACH DAYs 25 OBSERVATIONS OF EACH DATA TYPE ARE USED IN THE

SARAMETER ESTIMATION. THE DATA TIME SEQUENCE IS:

11P Ms MIDNIGHT 1AM ces 9 11AM. HOON e 1PM coe 9 11P NM.

IN THIS FORMATs THE 11PM OBSERVATION APPEARS TWICEe IN THE 25TH

LOCATION FOR DAY N AND IN THE 1ST LOCATION FOF DAY N + le.

a

~
2:

by

READ (IPARMe2609END=345) TPRIME

READ (IPARMs2604END=345) CLOUD

READ (IPARM+2604END=345) WSPEED

READ (IPARM.2604END=345) WDIR

A

CHECK INPUT DATA TO MAKE SURE DATA ARE WITHIN

REASONABLE BOUNDS
ve

h

DO 326 LL = 1¢25

b = LL

[F (TPRIME(L) «GEeTLB «ANDe TPRIME(L)&lt;LE.TUB)IGD TO 327

CALL DCHECK ( JULRELs 1s TPRIMEs L

{CLOUD(L) «GE o0e00sANDoCLOUD(L)eLE1eC0)GOTO328

“ALL DCHECK ( JULRELs 2s CLOUD s L

(WSPEED(L) «GF e0e00eANDeWSPEED(L)eLE«WUB) GO TO 329

CALL DCHECK ( JULRELs 3s WSPEEDe L

527 IF

L228 . IF
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329 IF (WDIR(L)eGE«DeO00ANDeWDIR(L)«LES360.00) GO TC 326

CALL DCHECK ( JULRELs 49 WDIRy L
~

fr

326 CONTIN E
~

i

re
Ld

r
mm

“STIMATE RADIATION ATTENUATION DUE TO CLOUD COVER

uth

~~

a

zn

DO 330 I = 1425

KBAROB(I) = le = 0&amp;5*CLOUD(I)*22,

IFC(WDIR(I) o¢GTe 1804) WDIR(CII=ABS(WOIR(CIDI=360.)

CONTINUE

 4

1

+

Lg

~~

»

~

—

~

PN
-

CALL DATA ANALYSIS ROUTINES

CALL PRMEST (TPRIME+KBAROB9CLOUDSGRTEMP¢WSPEEDSWDIRIRANK
XXTeXY)

UPDATE THE DATE COUNTERS

ENTRY DATE eee FOR YEARLY PARAMETER ESTIMATION

ENTRY DATEMeeoe FOR MONTHLY PARAMETER ESTIMATION

CALL DATE

CALL DATEM
.

CHECK TO SEE IF END OF TEST PERIOD HAS BEEN REACHED

~
-r

Le)

ht

~

ro

IF ¢ JULDAT oLEe JULEND ) GO TO

3145 CONTINUE

DETERMINE THE *A* COEFFICIENTS

TG

CALL COEF ( IRANKe XXTe XYe ACOEF)

~

-

™

DETERMINE THE *8* CQEFFICIENTS

CALL ATOB (ACOEF «BCOEF)

\ gy

- ag

-

- ¥ TT hes9Oe®&amp;
c® OS 8 5» 3" "00oe0

LEE AX -~ = = = - -

-

ii

“a.

» &amp; &amp;

- -

Shes

“ ® * #* x » 4 @ ® ~~ + a gp ~ @® 4 ¥ O° SS ete

4 2 ® ® PB EES BPE HS EPO ETE SHE ES TEES Eee

» © 2 6 €« 6 % 8 5 6 &amp; OO PS GEE ES SOE SS SESS ES Se

© 6 5 8 C8 ® © 0 0 8 OE SO 6 FE EG EE SO ESO ESSE ees ee0

“ =~ “ae ® B22 FT Bem" 4 Ea Ms TSC ame eae eae Leese
- - - = mB &amp; ® &amp; ® 5 @ a &amp; § &amp; = &amp; °

.

§

WRITE (IWRITES600)

£00 FORMAT (1H1/e2¢1H+e100(1H )/)s1H *TEMPERATURE MODEL PARAMETER



366

~

a

 Tr *£STIMATION PROGRAM OQUTPUT®///)

WRITE (IWRITES610) (ACOEF(I)eI=148)

£10 FORMAT (1H ¢T24e *A COEFFICIENTS®//

IH $12Xe2HAC912X92HAL912Xe2HA2912Xe2HAZ/
1H 94Xe8(2XeE1245)//

1H ¢12Xe2HAG912X92HAS¢12Xe2HAG912Xe2HAT/

1H o4Xe8(2XeE12a5)/7/7)
~

nt

Pe

WRITE (IWRITEs620) (BCOEF(I)eI=1e8)

620 FORMAT (1H oT24s °*B COEFFICIENTS*//

1H ¢12X92HBO912Xe2HE1412Xe2HB2912Xe2HB3/

LH »4Xe4(2XeE12e5)//

LH »12X92HB4912Xe2HBS912X92HB6912Xs2HEBT/

LH 24Xe8(2XeE1245)/7/)
I'S

525

WRITE (IBCOEs625) (BCOEF(I)sI=148)

FORMAT (*BCOEF 0-3 %44E12.5/°*BCOEF G=T7 ® 44 al

! 5)

re

-

ot

-

,

WRITE (IWRITES.630) YMEANs RSJUAR

630 FORMAT (1H o4XeTHYMEAN = ¢2XeFSe2e 10Xe

10HRSQUARED = +¢2X¢F52)

ad

 -

—

gS
END

“uF

Le

SUBROUTINE TRTEMP (IREAD)

INTEGER Al1(6)

REAL*8 FILE

REAL*8 DEBUG(20)eTZONEs TZ(4)

DIMENSION A(3)3B(3)4¢8BC(T)

DIMENSION TPRIME(25)
I

w

-

IC = 5

L

-

re

30%

WRITE (IC+905)

FORMAT (1HO3eT10e *IF AN INPUT DATA FILE EXISTSe YOU CAN DO THE"

i * FOLLCWINGIY/

2 T15e YACTION®9T30¢YRESPONSE®/T150%6c eevee’ sT30s%cceccnes®/
3 T10e %1le TYPE ®SQLDFILE®**3TS0¢ EXISTING INFUT FILE IS USEDY/

4 T10e 92¢ TYPE SONEWFILE®Y®,T30e *INPUT NEW DATA AS REGUESTED®*//)
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READ (ICe906) FILE

906 FORMAT (2A)

a

LY

rr

-

307

2

IF ¢ FILE «EQe *OLDFILE® ) RETURN

IF ( FILE +EQe *NEWFILE® J) GO TO 14

WRITE (ICeS07) FILE

FORMAT (1HO9®INVALID INPUT FILE DESIGNATIONY ¢T3De"*++2x?4A8,

taxknx?[CXog*VALIDDESIGNATIONSARE«TV.

T35¢txaxwkQLOFILExxwx®/
T3S5e Yan nkx NERF ILE*»2x2?//)

STOP
-~

al

1%

~

a

14 CONTINUE
 -~

ov

SET UP OUTPUT FILE TO RECIEVE TRAMSLATED INPUT CATA

~000000000000000000000ceccceselPENccceeeee3000003000000000000600

OPEN (UNIT=IREADsDEVICE='DSK® 4ACCESS=¢SEGOUT*»FILE=*DCCTMP.DATY)
&gt;

~30000000000000G0000C00 ee teeedPENe»r20e+eL00000C00000000COCGU

wt

”~

WRITE (IC«920)

920 FORMAT (1HOe*INPUT DEBUG INFO = NBUGe (DEBUGCI)«I=1¢NEUGI®)

ar

READ (ICe20) NBUGe

20 FORMAT ( Ie T7A/(TA))

DEBUG(I)e I = 1aN |] vy {a

mm

WRITE ¢ IREADs25 ) NBUGe ( DEBUG(I)sI=1+NEUG)

25 FORMAT ( ISe SXe T(A8¢2X)/C10X o7(ABs2X2))

~

-

RITE (ICe230) | | |

330 FORMAT (1HO.*INPUT BEGINNING DAYs MONTHe YEAR (4 DIGITS IN

5 *YEAR AND ENDING DAYy MONTH YEAR®)
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READ (ICe30) IDAY4IMOIYEARLDAY+LMOSLYEAR

30 FORMAT (61)

~

"

WRITE (IREADe«35) IDAYse IMOe IYEARe LDAYe LMOe LYEAR

35 FORMAT (2(3Xe12e2XeI2e1Xe14))

2

Ed

-

n

hl

250

WRITE (IC+950)

FORMAT (1HOs*INPUT STATION LAT-LONG IN DMS AND TIME ZONE OF

¢*STATIONY®)

“

.

~

READ (ICeS50) (A(I)eI=1e3)s

50 FORMAT ( &amp;6Fe¢ A)

{R{,) wsA .

E- INE

~

-_

5/5

WRITE (IREAD9S5S5) (ACI) eI=193)y (B(I)sI=1e32s TZONE

FORMAT (2(3F5.2¢5X)eT51+A8)

»

940

WRITE (IC+960)
FORMAT (1HOe* INPUT EPs ET td ¥r

-

~

-

5&amp;0

READ (ICe60) EPs ETe

FORMAT (3F)

iad

~-

.

.

WRITE (IREAD#65) EPs ETe W

6S FORMAT ( 3F5.2)

a

WRITE (ICs70)

70 FORMAT (1HOs* INPUT DATA CHECK VALUES®/

t * TEMP LOWER BOUNDe TEMP UPPER B0UNDs WIND SPEED UPPER BOUND®)

READ (ICe6a0) TLBe TUB. WUB

WRITE C(IREADsS70) TLBs TUBe WUB

970 FORMAT (3F5.0)

C

CCceeeeceeeececeececceceeccee”

ce

eee CCCCLCCCCCLCCCLCLCCCCCCC

CLOSE (UNIT=IREADyDEVICE=®DSK*«ACCESS=SEQOUT*«FILE="OCCTMPDAT")
z

Zg€ccccceeceeccecececececcCla- on

rR.
- YRS

-

CLOSE. -~eeeellCCCCCCLCCCCCCCCLCCCCCCL
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“ND
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ar

~

or

SUBROUTINE DATEL
-~

Sp

r~

he

.
a

™
Rey,

DATE1l INITIALIZES THE DATE COUNTERS.

JULIAN DATES ARE USED.

(&gt;

_

a

A

«

oy

»

[MO coe

[DAY eee

LL YR see

tL DAY see

INITIAL YEAR

INITIAL MONTH

INITIAL DAY

LAST YEAR

LAST MONTH

LAST CAY
A

rt
Ne

a

E

re
wr

~

ow

5

n

JULDAT coe

JBEGINeoe

JULEND eee

JRANGE eee

JULREF aoe

JULREL eee

JSTART eee

CURRENT JULIAN DATE

JULIAN DATE AT BEGINNING GF RUN

JULIAN DATE AT END OF RUN

LENGTH OF RUN

JAN 1 OF INITIAL YEAR

JULIAN DATE RELATIVE TO JAN 1 OF CURRENT YEAR

RELATIVE JULIAN DATE TO BEGIN MONTHLY PARAMETER

ESTIMATION RANGE

RELATIVE JULIAN DATE TO END MONTHLY PARAMETER

ESTIMATION RANGE

YEAR COUNTER

JSTOP «ee

JYEAR eee

NXLPYReee JULIAN DATE OF DEC 31 OF NEXT LEAP TEAR

2

1 3
COMMON /DATES/ IYRe IMOs IDAYs LYRe LMOs LDAY

COMMON /JDATES/ JULDATe JULRELe JUBEGINs JULENDe JRANGEs NXLPYP

b oJSTARTs JSTOPs JRENDs JYEAR ,

COMMON /1I0/ IREADs IWRITEs IWBUGe IPARMs IBCOE

INTEGER 1DBUG

SET DERUG FLAG

IDBUG = 0

~

DETERMINE INITIAL JULIAN DATES
.

ia

CALL JULIAN (IMO«IDAYelYRSJBEGIN)

CALL JULIAN (LMOLDAYsLYR+JULEHND)

CALL JULIAN ( 1. 1¢IYR$JULREF)

pr

n

JULRFL = JBREGIN == JULK...
™r
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JRANGE = JULEND = JBEGIN + 1

JULDAT = JBEGIN - 1

r~

r~
ter

~~

—

DETERMINE THE NEXT OCCURANCE OF 12/31/ (LEAP YEAR)

(IE. THE 366TH DAY OF THE YEAR)
-

o

r~
-

~~

™

a

~~
LY

~

—

~~

Tr

LASTLP = IYR - MODCIYRe4)

CALL JULIAN (12¢31¢LASTLP +NXLPYR)

IF (JULDAT oGFEe NXLPYR) NXLPYR = NXLPYR + 1461

NOTEeee 1461 = 365 + 365 + 365 +
2
aad

hb

~
Ne

-

or

THIS SECTION DEFINES VARIABLES NEEDED FOR MONTHLY

PARAMETER ESTIMATION

JYEAR = TIYR

JSTART = JULREL + 1

CALL JULIAN ( LMOs LDAYs IYRe JDATE

JSTOP = JDATE - JULREF + 1

JREND = JSTOQP

IF (JYEAR = MOD(JYEAR94)) 65470065

70 IF (IMO0eEGRe2 &lt;ANDe IDAY.E@e28) JREND = JSTCOP +

65 CONTINUE

3

CFNTRY DATE
~

t.

~
-

;

THE NEXT SECTION IS USED EACH DAY TO UPDATE

THE JULIAN DATE COUNTERS.

JULREL = JULREL + 1

JULDAT = JULDAT + 1

ke CHECK FOR END OF YEAR

IF (JULREL oLEe 363) GO TO 100

IF (JULREL «GTe 386) 60 TO 200

CHECK FOR LEAP YEAR
~

IF (JULDATMNESNXLPYR) GO TO 200

YESe THERE ARE 366 DAYS THIS YEAR.

UPDATE NXLPYR TO NEXT LEAP YEAR.
-

NXLPYR = MXLPYR + 1461

[F( IDBUG JME 0 ) GO IC 00
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~

a

Tar

50 CONTINUE

.

=

RET IP Aw

.

L

L

ot

[J

fo

C

 a

~

 a

“

RESET RELATIVE JULIAN DATE

200 JULREL = «

100 CONTINUE

IF( IDBUG oNEe 0 ) GO TO 900

110 RETURN

C

c

C

ENTRY DATEM

THIS SECTION IS USED EACH DAY TO UPDATE THE JULIAN DATE COUNTERS

IF MONTHLY PARAMETER ESTIMATION IS USED

JULREL = JULREL + 1

JULDAT = JULDAT + 1

IF (JULREL LE. JREND) GO TO 4CO
~

wr

~

ws

-

UPDATE THE JULIAN COUNTERS

JULREL = JSTART

JYEAR = JYEAR + 1

CALL JULIAN (IMOSIDAYSJYEARSJULDAT)

JREND = JSTOP

[FCUYEAR = MODCJYEAR94)) 400441045400

IF (LMOeEGe2 oANDe LDAYeEQRe28) JREND

CONTINUE

410

400

IF ¢ IDBUG eNEe 0 I G60 TO 130

= JREND + 1

.

ta

r~

RE THLIRA
~

C
 -

i

900 CONTINUE
ho

be

~

hor

.

DEBUG INFORMATION FOR JULIAN CATE CALCULATIONS

WRITE (IWBUGe920) JULDATGJULRELGJBEGINsJULEND ¢JRANGE#SNXLPYR

oJSTART¢JSTOP«JRENDeJYEAK
3170 FORMAT (1H oYJULDAT="eIl0¢3Xe JULREL="9I10e3Xs*JUBEGIN="911C0s3Xe

JON e "JULEND="9I10e3Xs*JRANGE="¢I1043XetANXLPYR="4I13¢
/2X oP USTART=%9I1093Xe?USTOP =t9110¢3Xe*JREND =%911Cs

IXe*JYEAR=*4110)
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RETURN
r~

—

r~
hy

—

»

— nD

r

SUBROUTINE DATTCIDATESIMOsIDAYSsIYR)
~

wr
~

oo’

~

|

CONVERT JULIAN DATE TO CALENDER DATE

INTEGER CAL(12+2)

DATA CALZ70¢3195999091209151¢18192129243e2730304¢336¢

{| 0031960991121 ¢152¢1829213424492749305¢335 /

I1=(IDATE=-1)/1461

12=IDATE=-(I1&gt;14€1)
r~

.

x

&gt;

re

!
i 3

D0}

20

3 0

100

200

1&lt;=12&lt;=1461

IF(I2.LE« 365) GO TO 10

IF(I2.LEe730) GO TGC 20

[F(I2.LEe«1095) GO TO 30

[3=3

[4=12-1095

50 TO 40

13=0

[4=12

[4=]12~-365

50 TO 460

[3=1

350 TO 40

[3=2

[4=12=-730

{YR=1900+13+(4%x11)

INDX=1

DO 100 I=2+12

[FCI4«LE«CALC(I4INDX)) GG TO 200

CONTINUE

IM0=12

[DAY=I14=-CAL{12INDX)

RETURN

iMo=I-1

IDAY=14-CAL(I=-141INDX)

RETURN

END

WN

SUBROUTINE JULIAN(MOsUAeYR9ANS)

INTEGER ANSeCALC(12)4BAYR

DATA CAL /31¢28¢31¢30931930931931¢303130431/
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COMPUTE JULIAN DATE FROM JANe 1s 1973

I
lr

.

LO

280

 a» 3

ANS=0

[I=YR=-1900

ANS=ANS+365%x1

CAL(2)=28

IF(MOD(YRe4)eEQel) CAL(2)=29

J=MQO-1

IF(JesEQeO0) GO TO 20

DO 10 I=1leJ

ANS=ANS+CAL(I)

CONTINUE

CONTINUE

ANS=ANS+DA

RETURN

END

FUNCTION DMS(A)
re

[.

~

-

~

-

FUNCTION DMS CONVERTS ANGLES EXPRESSED IN

NEGREESs MINUTES AND SECONDS TO RADIANS
r~

3

DIMENSION A(Z)

REAL MINUTE

~

DEGREE = A(1)

MINUTE = A(2)

SECOND = A(3)

DMS = ODEGREE#3414159/180e + MINUTE#3.14159/18C0./60.

+ SECOND%*3414159/180e/60e/60a

RETURN

END
~

vs

~

» 5 i

FUNCTION TAU(CST)

COMMON /ORBIT/ PHISTHETASeTHETALEPSETeM
COMMON /10/ IREADs IWRITEs IWBUGs IPARMs IBCOE

COMMON /DBUG/ NBUG+DEBUG

REAL =*8 ITAULDEBUG(20)
DATA ITAU /Z°*TAU*/

-~

‘i

THETAS =

THETAL =

LONGITUDE OF STANDARD MERIDIAN (RADIANS)

75TH MERIDIAN FOR EASTERN STANDARD TI™ME

30TH MERIDIAN FOR CENTRAL STANDARD TIME

105TH MERIDIAN FOR MOUNTAIN STANDARD TIME

120TH MERIDIAN FOR PACIFIC STANDARD TIHE

LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)



RT4

c

.

Cc
h

.

~

al

Yi

TAU =

IT =

EP

=T

LOCAL HOUR ANGLE

STANDARD TIME IN THE TIME ZONE OF THE

OBSERVER IN HOURS COUNTED FROM

MIDNIGHT (EGe 000 TO 24400)

+1 FOR EAST LONGITUDEs -1 FOR WEST LONGITUDE

DIFFERENCE BETWEEN TRUE SOLAR TIME

AND MEAN SOLAR TIME (USUALLY NEGLECTED

FOR HEAT TRANSFER COMPUTATIONS)
x

wid:

2

a

»

=

3

{

¥

§

 rg

e®
I

fa

:

 Cc
C

r

FUNCTION SUBROUTINE TAU CONVERTS THE OBSERVERS

STANDARD TIME TO LOCAL HOUR ANGLE IN RADIANS

OBTAIN TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND

OBSERVERS MERIDIAN (HGCURS)

DTSL = EP*(THETAS = THETAL)* 12.0/3.14159

COMPUTE OBSERVERS HOUR ANGLE (RADIANS). E = +1 FOF

MORNING AND E = -1 FOR AFTERNOON (T.E. SOLARNOON)

IF (STeGTel2e + DTSL -ET) E = =-1.30000

IF (STelLEel2e + DTSL =ET) E = +1.00080

TAU = (ST + E#12. = OTSL + ET) * 3.14159/1Z2.C

IF (TAUGTe6283185) TAU = TAU = 6.283185

IF (TAUSLTe0e0) TAU = TAU + 6.283185

r+

 rs

ko

~

w

ro

~

ow

DERUG OPTION

IF (NBUG.EQeO) GO TO 100

DO 200 I = 1e+NBUG

IF (DEBUG(I)NELITAU)Y GO TO 200

WRITE (I1WBUG,250) STePHI ¢ THETASe THETAL «EP 9ETeweDTELTAY

FORMAT (//7/7/71H $ FUNCTION TAU®e 2X

 IL "ST =%4F6e392XePHI=V4F6e392Xe*THETAS='4FEe3e2Xe*THETAL =?

2 FEe342X9EP=FAe392XsET=VeF6e392XKe?W=VsF6e392X
3 *DTSL =9¢F6e392Xe?TAU =%4F6e3)

200 CONTINUE

100 CONTINUE

280

re
hm

RETURN

END
-

&gt; -

SUBROUTINE PRMEST ( TPRIMES

UNIR

 “a 0 - - a ® &amp; 5 4

KBAROBs CLOUDe GRTEMPe« WSPEED

TRAMNK XXTe XY)

dm

PRMEST IS THE CONTROLLING SUBROUTINE FOR THE PARAMETER ESTIMATI
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vu

FOR THE TEMPERATURE PROJECTION ROUTINE

BASED ON TODAY®*S OBSERVED TEMPS.s CLD COVERs ETCe PRMEST

DETERMINES THE PARAMETERS MECESSARY TO PROJECT

TEMPERATURES FOR TOMORROW.
‘ub:

suk

DIMENSION TPRIME(1)s XXT(848)s XY(B)

DIMENSION KBAROB(1)e CLOUD(1l)s GRTEMP(1)

DIMENSION WSPEED(1)s WODIRC(1)

REAL KBARes KBAROB

INTEGER RANGEs IDBUG

COMMON /SUN/ DELTAs DTSLe SRe SS

COMMON /0ORBIT/ PHIe THETASe THETALe EPs ETek

COMMON /JDATES/ JULDATe JULRELs JBEGINe JULENDs JRANGEs NXLPYR

b sJSTARTe JSTCPe JRENDs JYEAKR

COMMON /DATES/ IYRe IMOs IDAYs LYRs L4Os LDAY

COMMON /I0/ IREADe IWRITEe IJEUGe IPARMe ITCOE

-

x

- SET DEBUG FLAG

IDBUG = 0
-

.

-

COMPUTE THE ANGLE ADJUSTMENT BETWEEN THE

STANDARD MERIDIAN OF THE OBSERVERYS TIME

OBSERVER'S LOCAL MERIDIAN.

OTSL = EP+(THETAS-THETAL)*x3.81972

ZONE AND THE

-

a

-

 a

 gp

go

COMPUTE THE DECLINATION OF THE SUN

CALL DECL (JULRELsDELTAe SReSS}
»

boa

-

Ww,

~

350

B=
J £

DETERMINE THE LIMITS OF INTEGRATION FOR THF TEMPERATURE

GENERATION ALGORITHM

CALL LIMITS (DTSLy SReSSeTO«RHOeT12¢SIGMALT23)

IF ( IDBUG .EGe0 )» GO TO 951

WRITE(IWBUGs950)DELTASDTSL9TOeRHOSSRsT12¢3ICMA$SSeT25ePHI
FORMAT (T2¢°SUBROUTINE PRMESTY/T2+*DELTA=%e1XeF1lUektn

T204"DTSL =%91XeF10e49T404¢T8 =e 1XeFl0ebo

TED e*RHO =%¢1XeF10e44T80sSH “tel XeF10ae4/

T2 ¢%T12 =%¢1XeF10etoT204tSIGMATs1XeF10abe

T40¢*SS =%e1XyF1l0e4eTE0e%"T23 =%¢1XeFl0ely

T80e*PHI =v¢1XeFl0e4)

CONTINUE
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 ay

v

c

Lc
”~

kL.

INITIALIZE THE STANDARD TIME COUNTER.

ST = 00

%
Ra

E,

 a.

r

BEGIN LOOP TO ANALYZE TODAY®S TEMPERATURES. COMPUTE

THE SET OF COEFFICIENTS FOR THE TEMPERATURE PROJECTIONS.

00 200 1 = 2425

TMPLAG = TPRIME(I-1)

KBAR = KBAROB(I)

TGD = GRTEMP(I)

TLD = CLOUD(I)

WSP = WSPEEDCI)

NDR = WDIR(I)

COMPUTE THE PREDICTORS Xle X24 X3s X4e X5s X69 X7

CALL X1X2X3 (STeTMPLAGyPHI DELTA TO«SRaT124SSeT234RHO

SIGMAs CLDe KBARs TGDe WSPe WDRe X1eX2eX3eX4eXSeXbaX Te

RANGES T)

»

-

760

2

3:1

IF ( IDBUG EQ 0 J) GO TO 951

WRITECIWNBUGsS60)STaTMPLAGePHI sX1aX2eX3eX49XSaX69XTeRANGEL
FORMAT (T249ST=%9F 5.0% THPLAG="9FSela? PHIZ'sF10ebe

© % X=%4T7(1XeF1l0e5)e® RANGE=*«I12}

CONTINUE

DETERMINE THE HOURLY TEMPERATURE CHANGE

Y TPRIMF(I) - TPRIMEC(CI-1)

»

he

"

oo.

UPDATE REGRESSION MATRIX AND VECTOR

CALL REGRES (YoX1eX2eX39X8eX5eX6aXTeXYeIRANKIXXT)

G23 TO 830

IF(STelLTe2245) GO TO 830

WRITE(5¢850) JULDAT 9 CA(XXT(IZoIY)sIY=1oIRANK)«IZ=1oIRANK)

850 FORMAT (1XeTHJULDAT=91X+I7/7C(1XeT(E11e4)/))

849 CONTINUE

R30 CONTINUE

IF ( IDBUG EQ. 0 ) GO TO 962

ARITE (IWBUG+965) STeToYeTPRIMECI) ¢ TPRIME(I=1) 9a X1eX29X3S

sX4GeXDeXEXT
FORMAT(®ST=?sF4e092X a? T=%9FTe302Xe'Y=teF Tels" TPI=®yFT7e392Xs

CTPI1= sF Te502 Xe? X1=?9F7e392Xe?X2=?3E124532Xs*X3="4E12e5

2X e?PX4=¥eETea2e2Xe "XS 9ETe292X 0 X69 ETe292Xs?XT=%4F 702)

CONTINUE

LB

1

ao
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IF ( IDBUG .EQe 0 J) GO TO 916

 -—
i

 sr
-

_

h}

&gt;

w
[

DEBUG STATEMENTSeeeeCHECK MATRIX OPERATION RESULTS

DO 910 II = 1.IRANK

910 WRITE (IWBUGeS00) (XXTC(IIeJ)eJ=14IRANK)

300 FORMAT (1X/* XXT="e1Xe6(F12593X))

WRITE (IWBUGe T0683) (XY (J)eJ=1eIRANK]
FORMAT (1X/® XY=%41Xe6(F1l2e593X))503

916 CONTINUE

UPDATE THE STANDARD TIME COUNTER

5T = ST+i ol

~
be

~

—t

e

200 CONTINUE

RETURN

CAND
~

SUBROUTINE COEF (IRANKs XXTe XYs ACO:zr

h SUBROUTINE COEF DETERMINES THE REGRESSIGN COEFFICIENTS

REQUIRED FOR THE TEMPERATURE MODEL.

DIMENSION LWORK(8)}s MWORK(8)s A(E4)

DIMENSION XXT(848)s XY(8)e ACOEF (8)

INTEGER RANGE. IDBUG

e XXTINV(EB«8)

COMMON /10/ IREADe IWRITEs 1WBUGe IPARM, IBCOE

COMMON /JDATES/ JULDATs JULRELs JBEGINS JULENDs JRANGESs NXLPFYR

L «JSTARTe JSTOPe JRENDe JYEAR

COMMON ZYSTAT/ YSUMe YSUMSQe YMEANS RSGQUAR
~~

Lo

-

po

-

LL SET DEBUG FLAG
Fe
Roi

[DBUG 1

&gt;

r

~~
-

JHEN IRANK IS LESS THAN THE PROGRAM DIMENSIONS

FOR XXTe PROBLEMS WILL OCCUR WHEN XXT IS INVERTED.

THESE PROBLEMS ARISE DUE TO THE WAY DATA IS STORED
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IN MATRIX FORMe THE SOLUTION IS TO CONVERT XXT(JeI)

TO VECTOR FORMe ACL).

ko

DO 205 I = 1¢IRANK

30 20% J = leIRANK

204

205

JJ = (I=-1)*&gt;IRANK +

ACJJ) = XXT(Jel)

ad

IF(IDBUGeEQel) WRITE (IWBUG204) JeIsdJeACJdIeXXT(Jel)

FORMAT (1HO0 +3159 2(2XsE1245))

CONTINUE

INVERT THE REGRESSION MATRIXe XXTe

CALL MINV (Ae¢IRANK DXXTeLWORKse MWIRK]
~

»

-

-

rab

—~

(a

D0 305 I = 1eIRANK

DO 305 J = 1+IRANK

XXTINV(JdeI) = AC(I-1)*IRANK + J)“13

IF ( IDBUG «EGe 0 ) GO TO 9&lt;£1

DO 920 I = 1leIRANK

9520 WRITE (IWBUGe904) (XXTINV(IweJ)sJ=1eIRANK)

504 FORMAT (1X/? XXTINV=*42Xe6(F12.5+3X))

921 CONTINUF

 3

~~

wr

DETERMINE THE REGRESSION COEFFICIENTS

CALL MATMLT (XY eXXTINVeACOEF¢IRANK)
~

SINCE PREDICTER X5 IS NOT BEING USEDs THE ELEMENTS OF ACOEF

HAVE BEEN REARRANGED SLIGHTLY (SEE SUBROUTINE X1X2X3).

NOW REORDER ACOEF.

ACOEF(8) = ACOEF(T7)

ACOEF (7) = ACCEF (6)

ACOEF(8) = 0.0
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AXY = @
-

br

~

hr

~~

bor

-

~

—

COMPUTE MULTIPLE COEFFICIENT OF DETERMINATION

DO 400 I = 1.8

400 AXY = ACOEF(I)*XY(I) + AXY

XXTYY = XXT(lel)*YMEAN*YMEAN

RSGUAR = C(AXY=XXTYY)/(YSUMSG=XXTYY)

&gt;

et

IF ( IDBUG .EfRe 1 ) GO TC S19

WRITE (IWBUGs918) JULRELs DXXTs (ACOEFCIJ)»TJ=1+IRANK)

FORMAT (1H ¢*JULREL="915¢5Xe*DETe OF XXT=?4E12.5/

t 9 ACOEF=%*48(2XeElla4))

318

3T0

WRITE (IWBUGe930) AXYeXXTYYeXXT(1lel)eYSUMSH

FORMAT (1H o3HAXY 91XeE12e595XeSHXXTYY 91X9E12e595X

5 BHXXT (lel) 91XeE12e5¢5Xe6HYSUMSTe1XeE125)

319 CONTINUE

RETURN

cND

SUBROUTINE DECL (RJDsCELTAeSR#SS)

INTEGER RJD

COMMON /ORBIT/ PHISTHETASeTHETALEP¢ETe
COMMON /10/ IREADe IWRITEs IWBUGe IPARMs

COMMON /DBUG/ NBUGDEBUG

REAL=8 IDECLsDEBUG(20)

DATA IDECL/*DECLY/

DELTA = DECLINATION OF THE SUN (RADIANS)

PHI = OBSERVERS LATITUDE (RADIANS)

THETAS = LONGITUDE OF STANDARD MERIDIAN (RADIANS)

75TH MERIDIAN FOR EASTERN STANDARD TIME

30TH MERIDIAN FOR CENTRAL STANDARD TIME

105TH MERIDIAN FOR MOUNTAIN STANDARD TIME

120TH MERIDIAN FOR PACIFIC STANDARD TIME

LONGITUDE OF OBSERVERS MERIDIAN (RADIANS)

RELATIVE JULIAN DATE (I.Ee WITH RESPECT TO JAN 1)

STANDARD TIME IN THE TIME ZONE OF THE OBSERVER

{N HOURS COUNTED FROM MIDNIGHT (E«Ge0e00 TO 24e00C)

+1 FOR EAST LONGITUDE, =1 FOR WEST LONGITUDE

DIFFERENCE BETWEEN TRUE SOLAR TIME AND

MEAN SOLAR TIME (USUALLY NEGLECTED FOR

HEAT TRANSFER COMPUTATIONS)

.

;

r COMPUTE TIME DIFFERENCE BETWEEN STANDARD MERIDIAN AND
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C OBSERVERS MERIDIAN (HOURS)

L

DTSL = FP*x(THETAS = THETAL)* 3.81972

~

~ COMPUTE DECLINATION OF THE SUN (RADIANS)

DELTA = 0.4093%xC0S(0.0172%(172. =~ FLOAT(RJD)) )

 -~
-r

COMPUTE HOUR ANGLE AT SUNSET (RADIANS)

TSS = ACOS(=TAN(DELTA)*TANCPHI))

COMPUTE STANDARD TIME OF SUNST (HOURS)~~
-

~

|

SS = TSS*3.81972 + 12. +#DTSL =-ET
~

 a.

“=
COMPUTE HOUR ANGLE OF SUNRISE (RADIANS)

TSR = 6283185 ~ TSS

COMPUTE STANDARD TIME OF SUNRISE (HOUR)

SR = TSR*3.81972 =-12. + DTSL =ET

\

~

i

.

CONVERT SUNRISE IN STANDARD TIME

SR = SR = DTSL

CONVERT SUNSET IN STANDARD T1Mc io

SS = SS - DTSL

DEBUG OPTION

TO LOCAL TIME

LOCAL ¢ 1 ME

IF (NBUGe.EG.O0) GO TO 300

DO 100 I = 1+NBUG
v

+

it:

a

a

[F (DEBUG(I)eNE.IDECL) GO TO 100

WRITE (IWBUGe200) RUDsDTSLeDELTA#TSSeSSeTSReSR
FORMAT (///7¢1H $¥SUBROUTINE DECL Ts®*x*%«® RJD =%,

1 ISe® DTSL =%4F6e3¢* DELTA =%4F6e39® T55 =? 4F6ede

2% SS Z%4F5e392X9TSR=?9F5e342XeSR=*eFbel)

100 CONTINUE

200

300 CONTINUE

RETURN

END
.

2 I  “» &amp;

SUBROUTINE LIMITS (DTSLeRsSeTO9RHGeT12¢S1G%AST23)

FIND LIMITS FOR TEMPERATURE INTEGRATION



zT31

a

—r

»

TQ = - DTSL

T23 = 23.00 = DTSL

la)

IF (DTSLeLTe0.0) GO TO 50
re

ee

-~

wb.

r

c

C

-

3

Kr

FIND LIMITS OF INTEGRATION WHEN OBSERVER IS

WEST OF THE STANDARD MERIDIAN

FOR SUNRISE

RHO = AINT(R+1.0) =- DTSL

IF (RHO «LTe R) RHO = RHO + 1

FOR SUNSET

hi

~~

Ed

-

-

r~

Le

SIGMA = AINT(S+1) - DTSL

IF (SIGMA .LTe. S) SIGMA = SIGMA + 1

FOR LOCAL NOON

Ti2 = 13.0 = DTSL

r~

i

Go TO 75

o

50 CONTINUE

=

~

}is

FIND LIMITS OF INTEGRATION WHEN OBSERVER

IS EAST OF THE STANDARD MERIDIAN

RHO = AINT(R) = DTSL

IF (RHO «LTe R) RHO = RHO + 1

SIGMA = AINT(S) = DTSL

IF (SIGMA «LTe S) SIGMA = SIGMA i

re

T12 = 120 = DTSL

75 CONTINUE
~

ay

RETURN

FND
-

&gt;

-
-»  r'

SUBROUTINE X1X2X3 ( STs TMPLAGs PHIs DELTAe TOs Re T12e Se T2234

RHOs SIGMAe CLDe KBARs TGDe WSPys WORe X1leX2eX3eXbaXB5eXEaXTs

 QLANGF «TT
i

-

COMPUTE THE PREDICTERS Xlseoeeosh/e

&gt;Y LOCAL STANDARD TIME



TR

"

we

~

a

&gt;

»

-

»

-_

-

-

Cc

' ees LOCAL TIME

TMPLAG eee TEMPERATURE AT PREVIOUS TIME PERIOD

PHI ees STATION LATITUDE (RADIANS)

DELTA eee DECLINATION (RADIANS)

' eee LOCAL SUNRISE

; eee LOCAL SUNSET

TO eee VALUE OF T AT LOCAL STANDARD MIONIGHT

RHO = eee FIRST OBSERVATION HOUR AFTER SUNRISE

T12 eee FIRST OBSERVATION HOUR AFTER LOCAL NOON

SIGMA eee FIRST OBSERVATION HOUR AFTER SUNSET

T23 eee VALUE OF T AT LOCAL STANDARD 2300 HR (IE 11 PM)

INTEGER RANGEe IDBUG

INTEGER SWICH1ls SWICH2

REAL KBAR

COMMON /SWITCH/ SWICH1le SWICHZ2

COMMON /I0/ IREADe IWRITEs IWBUGe IPARMse IRCOL

‘wd

-

ir

SWICH1 = 1

SWICHZ2 = 0

~
-

[&gt;
or

~~

A = 0.0005

PI = 3.14159

IDBUG = 0

a)

far

~

-

rn

wr

~~

CONVERT STANDARD TIME TO LOCAL TImt

Tr = TAUCST)Y*(12.0/PI) - 12.0

IF ( T «GTe 240 T = T = 24.0

IF ¢( T «LTe Jel YT = T + 2443

|.

:

3

rs
 et X1 IS JUST THE LAG-1 TEMPERATURE
rv

di

X1 = TMPLAG

fg
:

o

~

Lr

DETERMINE THE APPROPRIATE RANGE FOR X2 AND X3

cee BEFORE SUNRISL »WB

~

A,

IF ¢ TO ALE ~ CANN. TT Te RY 60 TO 109

vee SUNRISE  be A

[F ( RHO=- A olE eo T
RHO+ A «eGEe T

e AND

y G8 Tag 280



— xa3

r~

 tr

-

Cc

Cc

eee MORNING HOURS

IF ( RHO+A oJLEe T

 “a BB

«ANDe T oLEe 12 ) GO TO 300

(*
-~

ko

~

 eC
~

Tat

»

hs

NOCH

IF ( T12- A eLEe T

1 T12+ A «GEe T

eee AFTERNOON HOURS

 ec AND«

Y GO TO 400

MN

IF ¢ T12+ A eLEe T «ANDe T LTe S ) GO TO 500

ees SUNSET
-

»

-

IF{ SIGMA~- A oLEe T

SIGMA+ A oGFEe T

e ANDa

) GO TO 600

~

-

 -

Ed

-

him

see EVENING HOURS

IF ( SIGMA+A oLE. T «AND. T eLEe T23 &gt;» &amp;0 TO 700
-

-

130 X2 = 0.0

X3 = 0.0

RANGE = 1

GO TO $00
~

-

wa

200 A = PI*R/12.0

B = PI*RH(O/12.0
-

Ra,

X2 = (RHO=-R)I*SIN(PHI}*SIN(DELTA)

X2 =X2 = (12.0/PI)}*COS(DELTA)*COS(PHII*(SIN(E) = SINICA) ]

X3 = COS(DELTA)*COS(PHI)*(COS(A)Y=CJS(B))

RANGE = 2

GO TO 300

[rmsoe oe om

oa

300 A = PI+T/12.0

B = PI*(T~=1.0)/12.0

X2 = SIN(DELTA)*SINCPHI)

XD = X2 = (12«0/PI)*COS(DELTA)*COS(PHII*(SINCA)I=SIN(E})
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X3 = COSC(DELTA)Y*COS(PHI)I*(COS(B)=-CO0S(A))

RANGE = 3

GO To S00

C

[ee

400A = PI*T/12.0

B = PI*x(T-1.0)/12.0

C = P1*(T12-1.0)/12.0

X2 = SIN(DELTA)X*SIN(PHI)

X2 = X2 = (120/PI)Y*COS(DELTAI*COS(PHII*(SINCAY=SIN(B))

X3 = COS(DELTA)Y*COS(PHI)*(CO0S(C)+1.0)

RANGE = 4

Go TQ 900
 .
oy

s

a

-eamy Ee WE

500 A = PI#T/12.0

B = PI*(T-1e0)/1240

X2 = SIN(DELTA)I*SIN(PHI)

X2 = X2 = (12e0/PID*COSKDELTA)*COS(PHII*(SIN(AI=SIN(E)})

X3 = 0.0

RANGE = 5

GO TO S00
~

dl

-

Cam *
-

-

&gt;

500 A = PIxS/12.0

RB = PI«(SIGMA-10)/1240

X2 = (S=SIGMA+1.0)*SIN(DELTAI*SIN(PHI)

XO = X2 + (12e0/PI)*COSC(DELTA)*COS(PHII«(SIN(BI=-SINCA))

X3 = 0.0

RANGE = 6

GO TO S00
-

ar

»

 eywn a» a
»

~

bial

700 X2 = 0.0

X3 = 0.0

RANGE = 7
-

S500 CONTINUF

iF 4 SWICH1 «EQe 0 ) GO TO 3505
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X2 = KBAR=*X2

X3 = KBAR*X3
r.

il:

305 X&amp; = 1e5T7OE=8*(1e00+40e17*CLD**2e)*(TMPLAG+4604)%*6,

X5 = TGD*SWICH2

X6 = WSP

X7 = WOR

i

-

i

IF ( IDBUG.EGR0) RETURN

WRITE (IWBUGe909) CLDe KBARse TGD

FORMAT (1HOy *CLD=%4E12.5¢2Xe *KBARZ®*4E12.5¢2Xs *TGh=1*,

£125)

WRITECIWBUGe910)STeXleX2s X39 X4s XIWBUGe RANGEe Te As B

910 FORMAT (1XoFS5e0e1Xs5(E12e591X)sI5¢4F10e542(1X9E1262))

RETURN

END
"~

[-.

ag,

~

be

he

-

SUBROUTINE REGRES ( Ys Xla X29 X3e Xby XSe X66 XT7s XYo Ne XXT 3

SET UP THE VECTOR XY AND THE MATRIX XXT THAT ARE

MECESSARY TC ESTIMATE THE REQUIRED TEMPFRATURE EGUATION

~OEFFICIENTSe. THIS SUBROUTINE IS CALLED ONCE EACH

TIME PERIODe (IeEe EVERY TIME THE TEMPERATURE CHANGEs Yo

IS COMPUTED)

{eeoeee TEMPERATURE CHANGE IN LAST TIME PERIOD

(leeee«PREDICTORx1INTHETEMPERATUREMODEL

(2eeeses PREDICTOR X2 IN THE TEMPERATURE “ODEL

(3eeeeePREDICTOR XZ IN THE TEMPERATURE ™ODEL

 4eeeee PREDICTOR X4 IN THE TEMPERATURE ™ODEL

KSesweee PREDICTOR X5 IN THE TEMPERATURE “OCEL

(5eeeees PREDICTOR X6 IN THE TEMPERATURE *CDEL

(7eeeees PREDICTOR X7 IN THE TEMPERATURE *OCEL
XYeooee VECTOR OBTAINED BY MULTIPLYING THE PREDICTOR VALUES

BY THE OBSERVED TEMPERATURE CHANGES. ( THE

CLEMENTS OF XY ARF SUMMATIONSY

Neeoeoee DIMENSION OF XY
XXTeeee MATRIX OBTAINED BY POSTMULTIPLYING THE VECTCE

X BY ITS TRANSPOSE. (THE ELEMENTS OF XXT ARE

SUMMATIONS)

DIMENSION XY(8)e XXT(8s8)s X(8)
~

Lo

COMMON ZYSTAT/ YSUMe YSUMSQRe YMEANS RSGUAR

[&gt;

~

PUT PREDICTOR VALUES In PREDICTOR VECTOR
~

_

(1) = 1.0



wil 386

X(2) = X1

X€3) = X2

X(4) = X3

X(5) = X4

X(6) = X6

XCTYy = X7

X(8) = XS

GC

C8000 WRITE (549000) (X(J)eJ=148)

“5000 FORMAT (1HO¢*REGRES X VECTORTe5X94(E12595X)1/T2244(E12525X))

r
he

“s

“i

*

-

~~

a

UPDATE THE XY VECTOR

DO 100 I = 1eN

XYCTI) = X(I)*Y + XY(I)

100 CONTINUE

 Cc
re
hoy

~~

—

~~

ar

-

200

UPDATE THE XXT MATRIX

DO 200 I = 1leN

D0 200 J = leN

XXTCIeI) = XCJIAX(I) + XXT{Jel)

CONTINUE

UPDATE Y STATISTICS
a
“a

Y SUM = Y + YSUM

YSUMSQ = Y=*Y + YSUMSQ

YMEAN = YSUM/XXT(1lel)
-

.

ee

 Cc

RETURN

END
mn
hy

 ~- &amp;4d fe

SUBROUTINE MINV

*,

“ PURPOSE

[INVERT A MATRIX
“

SAGE

CALL MINV(AeNoeDslLaeM}

DESCRIPTION OF PARAMETERS

A = INPUT MATRIXy DESTROYED IN COMPUTATION AND REPLACED BY

RESULTANT INVERSE.



a7

~~

Al

.»

C

C

Cc

CS
.

al

~
2

'"

\

¥
“gl

a
Bo

‘

v

L
bh  »P ® |

N = ORDER OF MATRIX A

D - RESULTANT DETERMINANT

L = WORK VECTOR OF LENGTH N

M - WORK VECTOR OF LENGTH N

REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REGUIRED

NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT

IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT

THE MATRIX IS SINGULAR.

~~

hl

SUBROUTINE MINV(AgNeDeLoM)

DIMENSION A(1)sL(1)eM(1)
-

]
il:

[ad

w»

(

nL)

EE

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIREDe THE

C IN COLUMN 1 SHOULD BE REMOVED FRO#M THE DOUBLE PRECISION

STATEMENT WHICH FOLLOWS.

SOUBLE PRECISION AeDeBIGALHOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE FRECISION STATEMENTS

APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS

ROUTINE¢

[HE OOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO

~ONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT

10 MUST BE CHANGED TO DABS.
»

a

»

SEARCH FOR LARGEST ELEMENT

N=1.0

NK==N

C0 80 K=1eN

NK=NK+N

LEK)Y=K

M(K)=K

KKz=NK+K

3IGA=A (KK)
DO 20 J=KeN

IZ=N*(J=-1)

DO 20 I=KeN

IJd=12+1

10 IFC ABS(BIGA)= ABS(A(IJ))} 15420420

15 BIGA=A(IJ)



aq

-

nar

~~

Ral

20

29

x0

L(K)=I

M(K)=J

CONTINUE

INTERCHANGE ROWS

J=L (K)

IFCJ=K) 35¢35+25

KI=K=N

D0 30 I=1eN

KI=KI+N

HOLD==A(KI)

JI=KI=-K+d

ACKIY=ACJI)

ACJl) =HOLD
~

Ed

Ld
%.a

~

INTERCHANGE COLUMNS

I=M(K)

IF(I=-K) 454454938

JP=N*(I-1)

DO 40 J=leN

JK=NK+J

JI=JP+d

HOLD==-A(JK)

ACJKYI=A(JI)

an ACJI)Y =HOLD

25

aga

DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS

CONTAINED IN BIGA)

45 JF(BIGA) 48+46+48

46 D=0.0

RETURN

DO 55 I=1¢HN

[FCI=-K) 50455950

IK=NK+1

ACIK)I=AC(IK)Y/(-BIGA?

CONTINUE

REDUCE MATRIX

,

DO 65 I=1eN

[K=NK+1

HOLD=A(CIK)

IJd=I-=N

DO 65 J=1eN

Id=1IJ+N

[FCI-K) 6&amp;£C¢65460

IF(J=K) 62¢65¢62

(Jd=Id=-1+K

ACTIJI=HOLD*A(KJI+A(TIJ)
[FCABS(ACIU))eGTeleE 37e0ReABSCA(CTIUY)«LTaleE=Z7YIJRITE(EL2362ACTY)

136 FORMAT(IXeYA(IJ)='elXebE1lZ2e%)

45 CONTINUE



129

re

-

Te

’”

-

-.

»

’

“

‘s:

DIVIDE ROW BY PIVOT

KJ=K=~N

J0 75 J=1sN

KJ=KJ+N

IFC(J=K) T0e75+70

ACKJ)=A(KJ)/BIGA

CONTINUE

PRODUCT OF PIVOTS

IFCCALOG10(D)Y+ALOG10(BIGAY)eLTe370) GO TO 77

IF (IFLAG.GT&lt;0) GO TO 76

IFLAG=1

WRITE(S.800)
300 FORMAT(//7/91Xs "SUBROUTINE MINV: DETERMINANT SIZE EXCEEDS *e/ 1X

% eMACHINE CAPACITY. CALCULATION IS GREATER THAN 1leE+37. *e/1X

$ *PROCESSING CONTINUES®*///)

GO TO 76

CONTINUE

D=D+*BIGA

IF (DeGTeleE 30IWRITE(S4935)D

935 FORMAT (1Xe®0=%91XeE1245)
76 CONTINUE

REPLACE PIVCT BY RZ

A(KK)=1.0/BIGA

80 CONTINUE

2

FINAL ROW AND COLUMN INTERCHANGE

&gt;

100

18S

108

110

120

125

1360

K=N

K=(K=-1)

[F(K) 1504150105

[=L(K)

[F(I-K) 12001204108

JA=N*(K=1)

JR=N#*#(1I-1)

DO 110 J=1leN

JK=Jdard

HOLD=A (JK)
JI=JR+d

AC(JKI==AC(JI)

A(JI) =HOLD

J=M(K)

IF(J=K) 1004100125

KI=K=}N

DO 130 I=1eN

KI=KI+N

HOLD=A(KI)

JI=ZKI=-K+J

A(KI)==AC(JI)

A(CJTI) =HOLD



za

150

G0 TO0 100

RETURN

END
~

Ay

 ny *

SUBROUTINE MATMLT (Ae Be CC &amp; do

»

r
-

J.
a

.
A

Cc MATMLT POST MULTIPLIES AN N X N MATRIX BY A

VECTORe As OF LENGTH Ne THE RESULT IS A VECTOR. Co

OF LENGTH Ne

Ld

-~

hl

DIMENSION A(8)e B(8.8) [
ToT

ie &amp; 2 ]

’

~~

Pry

”

Loy

50

DO 50 1 = lab

C(I) = 00

ay

J
ul

DO 100 J = 1leN

DO 100 I = lei
re

CCI) = BCIgdd*A(J) + C(I)

lh

100 CONTINUE

ro

RETURN

FMD
Pe

+B

SUBROUTINE ATOB (Ae

-

JERIVE THE TEMPERATURE MCDEL COEFICIENTS (Tek.

“LEMENTS OF VECTOR B) FROM THE REGRESSION VECTOR A
»

fReesee REGRESSION COEFFICIENT VECTOR
3eeeee VECTOR OF TEMPERATURE MOOEL COEFFICIENTS

~~

ACl1) = AQ

AC2) = Al

AC3) = AZ

AC4) = AJ

ACS) = A4

ACB) = AS

ACT7) = A6

ACB) = A7

2¢(1) = BO

B(2) = Bl

3¢(3) = B2

3¢4) = B3

RB(5) = E4

3¢{6) = BS

B(7) = Bs

8¢8)Y = B7



AG

~

a

DIMENSION A(1)+B(1)
re
[

C

C

YETERMINE 81

a

B(2) = =ALOG(1.0+AC2)})
r~

ka

 Nu

ht

~

BA = B(2)Y/¢(=-A(2})

~~
po

A

.

Le

~
IN

DETERMINE BI®*S

DO 100 I = 1le8
-

IF ¢ I EQ &gt; y 60 TO 100

BCI) = ACI)*BA
v

100 CONTINUE

©8000 WRITE (54900) (B(J)ed=1.81

~ 900 FORMAT (1HOs °*B VECTOR®e S5Xe4(E12e¢5¢45X)/T1594¢E12e595X))

”

pp

Rt

EL3

Spd AN

re
:

-

.

»- I - -

SUBROUTINE DCHECK (JULRELs IDs OATAs L

DIMENSION DATA(CL)s TYPE(4)e FMT(15)

DATA FMT /9(1H 2BHJUULREL =¢1XeI3e *¥XXXX DATA OUT CF EQUNDS*?

52X oF 12e5e3Xe?=v?42Xal2)%/

C

c

100

$

»

DATA TYPECL)/*TEMPY/s TYPE(2)/°CLOD*/y TYPE(3)/*usSP/

TYPEC4)/*WDIRY/

WRITE (54100) FMT

FORMAT (1H ¢10(1XsA5)/)

FMT(6) = TYPECID)

ARITE (S¢FMT) JULRELs DATA(L)e vo
»

-

-



—-— 3199

RETURN

=ND
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