
MIT Open Access Articles

Clio: Real-Time Task-Driven Open-Set 3D Scene Graphs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Maggio, Dominic, Chang, Yun, Hughes, Nathan, Trang, Matthew, Griffith, Dan et al.
2024. "Clio: Real-Time Task-Driven Open-Set 3D Scene Graphs." IEEE Robotics and Automation
Letters, 9 (10).

As Published: 10.1109/lra.2024.3451395

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: https://hdl.handle.net/1721.1/157072

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/157072
https://creativecommons.org/licenses/by-nc-sa/4.0/

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 1

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.
Please cite this paper as:

@ARTICLE{Maggio2024Clio,
title={Clio: Real-time Task-Driven Open-Set 3D Scene Graphs},
author={Maggio, Dominic and Chang, Yun and Hughes, Nathan and Trang, Matthew and
Griffith, Dan and Dougherty, Carlyn and Cristofalo, Eric and
Schmid, Lukas and Carlone, Luca},
journal={IEEE Robotics and Automation Letters},
year={2024},
volume={9},
number={10},
pages={8921-8928},
doi={10.1109/LRA.2024.3451395}

}

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Clio: Real-time Task-Driven Open-Set 3D Scene Graphs

Dominic Maggio⇤1, Yun Chang⇤1, Nathan Hughes⇤1, Matthew Trang2,
Dan Griffith2, Carlyn Dougherty2, Eric Cristofalo2, Lukas Schmid1, Luca Carlone1

Abstract—Modern tools for class-agnostic image segmentation

(e.g., SegmentAnything) and open-set semantic understanding

(e.g., CLIP) provide unprecedented opportunities for robot

perception and mapping. While traditional closed-set metric-

semantic maps were restricted to tens or hundreds of semantic

classes, we can now build maps with a plethora of objects and

countless semantic variations. This leaves us with a fundamental

question: what is the right granularity for the objects (and, more
generally, for the semantic concepts) the robot has to include in
its map representation? While related work implicitly chooses a

level of granularity by tuning thresholds for object detection, we

argue that such a choice is intrinsically task-dependent. The first

contribution of this paper is to propose a task-driven 3D scene
understanding problem, where the robot is given a list of tasks in

natural language, and has to select the granularity and the subset

of objects and scene structure to retain in its map that is sufficient

to complete the tasks. We show that this problem can be naturally

formulated using the Information Bottleneck (IB), an established

information-theoretic framework to discuss task-relevance. The

second contribution is an algorithm for task-driven 3D scene

understanding based on an Agglomerative IB approach, that

is able to cluster 3D primitives in the environment into task-

relevant objects and regions. The third contribution is to integrate

our task-driven clustering algorithm into a real-time pipeline,

named Clio, that constructs a hierarchical 3D scene graph of the

environment online and using only onboard compute. Our final

contribution is an extensive experimental campaign showing that

Clio not only allows real-time construction of compact open-set

3D scene graphs, but also improves the accuracy of task execution

by limiting the map to relevant semantic concepts.

Index Terms—Mapping, Deep Learning for Visual Perception,

Semantic Scene Understanding

I. INTRODUCTION

A
Fundamental problem in robotics is to create a useful
map representation of the scene observed by the robot,

where usefulness is measured by the ability of the robot to
use the map to complete tasks of interest [1, 2]. Recent works,
including [3–7], build metric-semantic 3D maps by detecting
objects and regions corresponding to a closed set of semantic

Manuscript received: April 24, 2024; Accepted August 10, 2024. This letter
was recommended for publication by Editor S. Behnke upon evaluation of the
Associate Editor and Reviewers’ comments. This work was supported in part
by the NSF Graduate Research Fellowship Program under Grant 2141064, the
Swiss National Science Foundation (SNSF) grant No. 214489, MIT Lincoln
Laboratory’s Autonomy al Fresco program, the ARL DCIST program, and the
ONR RAPID program.

1Laboratory for Information & Decision Systems, Massachusetts Institute
of Technology Cambridge, MA, USA. Email: {drmaggio, yunchang, na26933,
lschmid, lcarlone}@mit.edu.

2MIT Lincoln Laboratory, Lexington, MA, USA. Email: {matthew.trang,
dan.griffith, eric.cristofalo, carlyn.dougherty}@ll.mit.edu.

⇤equal contribution.
Digital Object Identifier (DOI): see top of this page.
DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon

work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-
D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2024 Massachusetts
Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013
or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S.
Government may violate any copyrights that exist in this work.

Fig. 1. We propose Clio, a novel approach for building task-driven 3D scene
graphs in real-time with embedded open-set semantics. We draw inspiration
from the classical Information Bottleneck principle to form task-relevant
clusters of object primitives given a set of natural language tasks —such
as ”Read brown textbook”— and by clustering the scene into task-relevant
semantic regions such as “Kitchenette” or “Workspace”.

labels. However, closed-set detection is inherently limited in
terms of the set of concepts that can be represented and does
not cope well with the intrinsic ambiguity and variability of
natural language. In order to overcome these limitations, a new
set of approaches [8, 9] has begun to leverage vision-language
foundation models for open-set semantic understanding. These
approaches use a class-agnostic segmentation network [10]
(SegmentAnything or SAM) to generate fine-grained segments
of the image and then apply a foundation model [11] to get an
embedding vector describing the open-set semantics of each
segment. Objects are then constructed by associating segments
whenever their embedding vectors are within a predefined
similarity threshold. These approaches, however, leave to the
user the difficult task of tuning suitable thresholds to control
the number of segments that are extracted from the scene as
well as the threshold used to decide whether two segments
have to be clustered together. More importantly, these methods
do not capture intuition that the choice of semantic concepts
in the map is not just driven by semantic similarity, but it is
intrinsically task-dependent.

For example, consider a robot tasked with moving a piano
across a room. The robot gains almost no value by distin-
guishing the location of all the keys and strings, but can instead
complete the task by considering the piano as one large object.
On the other hand, a robot tasked with playing the piano must
consider the piano as many objects (i.e., the keys). A robot
tasked with tuning the piano must view the piano as even
more objects — considering the strings, tuning pins, and so
forth. Likewise, questions such as if a pile of clothes should
be represented as a single pile or as individual clothes, or
if a forest should be represented as single area of landscape
or as branches, leaves, trunks, etc., remains ill-posed until
we specify the tasks that the representation has to support.

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 3

Fig. 2. Clio generates a 3D scene graph in real-time using a laptop carried
by Spot. We show that Spot is able to execute grasping commands, expressed
in natural language, using Clio’s task-driven 3D scene graph.

Humans not only take into account the task when (consciously
or unconsciously) deciding which objects to represent and
how, but are also able to consequently ignore parts of a scene
that are irrelevant to the task [12].

Contributions. Our first contribution (Section III) is to state
the task-driven 3D scene understanding problem, where the
robot is given a list of tasks, specified in natural language,
and is required to build a minimal map representation that
is sufficient to complete the given tasks. More specifically,
we assume the robot is capable of perceiving task-agnostic
primitives in the environment, in the form of a large set of
3D object segments and 3D obstacle-free places, and has to
cluster them into a task-relevant compressed representation
which only contains relevant objects and regions (e.g., rooms).
This problem can be naturally formulated using the classical
Information Bottleneck (IB) [13] theory, which also provides
algorithmic approaches for task-driven clustering.

Our second contribution (Section IV) is to apply the Ag-
glomerative IB algorithm from [14] to the problem of task-
driven 3D scene understanding. In particular, we show how
to obtain the probability densities required by the algorithm
in [14] using CLIP embeddings, and show that the resulting
algorithm can be executed incrementally as the robot explores
the environment, with a computational complexity that does
not increase with the environment size.

Our third contribution (Section V) is to include the pro-
posed task-driven clustering algorithm into a real-time system,
named Clio (Fig. 1). Clio takes a list of tasks specified in
natural language at the beginning of operation: for instance,
these can be the tasks the robot is envisioned to perform
during its lifetime or during its current deployment. Then, as
the robot operates, Clio creates a hierarchical map, namely a
3D scene graph, of the environment in real-time, where the
representation only retains task-relevant objects and regions.
Contrary to current approaches for open-set 3D scene graph
construction (e.g., [9]) which are restricted to off-line operation
when querying large vision-language models (VLMs) [15]
and Large Language Models (LLMs) such as [16], Clio
runs in real-time and onboard and only relies on lightweight
foundation models, such as CLIP [11].

We demonstrate Clio on the Replica dataset [17] and in four
real environments (Section VI) — an apartment, an office,
a cubicle, and a large-scale building scene. We also show
real-time onboard mapping with Clio on a Boston Dynamics
Spot quadruped with a robotic arm (Fig. 2). Clio not only
allows real-time open-set 3D scene graph construction, but
also improves the accuracy of task execution by limiting the
map to relevant objects and regions. We release Clio open-
source at https://github.com/MIT-SPARK/Clio along with our
custom datasets.

II. RELATED WORK

Foundation Models in Robotics and Vision. The recent
emergence of vision-language models [11, 15, 18] and large
language models [16] has led to numerous works exploring
their potential for 3D scene understanding [19, 20] and robot
planning [21–23]. Multiple works have surveyed the state of
the art in foundation models along with their limitations [24–
26]. Class-agnostic segmentation networks [10, 27] have been
coupled with foundation models to enable open-set image
segmentation [28–33]. Recent works have also explored direct
class-agnostic 3D segmentation [34]. Saliency detection has
been used to identify parts of an image that a human would
likely notice first [35]. Here, instead of visual saliency, we
desire to create task-driven maps of a scene.

Foundation Models for 3D Mapping. Recent work has
coupled foundation models with neural radiance fields [36]
and Gaussian Splatting [37]. Kerr et al. [38] propose LERF,
which constructs a radiance field that can render dense CLIP
vectors of the scene. LERF can be queried via text and
estimate which parts of the scene are most similar to the query
using an augmented cosine similarity score. Qin et al. [39]
develop LangSplat which builds upon LERF by using Gaus-
sian Splatting to create a 3D scene language map with a
substantial speedup. Blomqvist et al. [40] develop an approach
to incrementally construct a neural semantic map for SLAM.
Kim et al. [41] construct a hierarchical neural map that ren-
ders at different levels of granularity, clustering and dividing
objects into parts. Taioli et al. [42] use CLIP to construct an
implicit grid map that can be queried via text.

Several works incorporate open-set detection into 3D maps
of a scene [43–48]. Chang et al. [49] perform open-vocabulary
mapping combined with a graph neural network trained on
a closed set to map objects and their relationships. Tak-
maz et al. [50] develop a method for open-set instance
segmentation. Jatavallabhula et al. [8] generate a semantic 3D
point cloud where CLIP vectors are assigned to each point.
Most similar to ours is ConceptGraphs [9], which constructs
a 3D graph of objects with edges connecting objects via their
relationships as assigned with an LLM [16]. ConceptGraphs
uses CLIP and SAM to cluster a scene into objects defined
by their semantic and geometric similarity to each other.
Optionally, ConceptGraphs queries a large vision-language
model [15] using multiple views of each object to compute
a succinct description of the object. Objects can be then
queried either with cosine similarity via CLIP or with the
LLM. Concurrently, Werby et al. [51] demonstrate large-scale
open-set semantics using a hierarchical 3D scene graph, but
does not run in realtime.

Task-Driven Representations. The classical Information
Bottleneck [13] aims to compress a given signal while pre-
serving the mutual information between the compressed rep-
resentation and another signal of interest. The initial work [13]
has been extended into a bottom-up clustering method known
as the Agglomerative IB [14]. We build on IB theory with
the goal of compressing a scene representation into clusters
of relevant objects and regions for a given set of tasks.
Gordon et al. [52] extend the Information Bottleneck to
compress a set of individual images into clusters such that
each cluster preserves information about the context of the
images contained in the cluster. Wang et al. [53] use IB
for attribution between image and text inputs of VLMs with
experiments performed with CLIP. Larsson et al. [54, 55]

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

leverage the Agglomerative IB to obtain an optimal occupancy
map compression for agents with limited resources.

Soatto and Chiuso [1] derive expressions for minimally
sufficient scene representations that preserve relevant infor-
mation about some task of interest, and [56] develops theory
around constructing foundation models of physical scenes.
Eftekhar et al. [57] compress visual observations in a task-
relevant manner. Their work uses a learned codebook module
that takes in a current agent’s action along with the task and
sensor data, and outputs an action to step towards the goal for
navigation. Another line of work detects regions of interest
in images based on affordances [58] and creates 3D maps of
affordances of objects in a scene [59].

III. PROBLEM FORMULATION:
TASK-AWARE 3D SCENE UNDERSTANDING

While many researchers would agree that a map represen-
tation has to be task-dependent, to date there is no general
framework to establish what is the right granularity for the
semantic concepts included in the robots’ metric-semantic 3D
map. This gap has been partially motivated by the difficulty of
providing rich task descriptions, with the result that existing
task-driven representation frameworks in vision and robotics
are either too narrow or too computationally expensive [60].

In this paper, we leverage two key insights. First of all,
progress in vision-language models has brought together visual
information and text descriptions in a way that was not
possible before. This greatly simplifies the problem of task
description: we can just state the task as a list of language
instructions the robot is expected to execute during its lifetime
or during its current deployment (e.g., “wash the dishes”, “fold
the clothes”, “pick up toys and place them on the shelves”) and
use VLMs to relate these instructions to visual data. Below, we
denote the list of tasks with the symbol Y . Second, modern
foundation models for task-agnostic segmentation provide a
way to over-segment an image into a potentially large number
of segments, which we can reproject to 3D. Similarly, using
geometric segmentation techniques, we can easily segment
environments into a large number of obstacle-free places [6].
In the following, we refer to the task-agnostic 3D segments
and places as task-agnostic primitives and denote them with
X; intuitively, these provide a superset of the concepts we
want to retain in our map.

Using these insights we formulate task-aware 3D scene
understanding as the problem of compressing the task-agnostic
primitives X into a cluster of task-relevant concepts X̃ , which
are maximally informative about the tasks Y . This naturally
leads to the Information Bottleneck principle.

Task-Aware 3D Scene Understanding as an Information

Bottleneck. Similar to the setup of the well-known Informa-
tion Bottleneck (IB) [13], we have an original signal X (i.e.,
the set of task-agnostic primitives), which provides some infor-
mation about the signal Y (i.e., the list of tasks). Our goal is to
find a more compact signal X̃ —representing the task-relevant
concepts— that compresses X while retaining task-relevant
information. Mathematically, we are going to define the task-
relevant clusters X̃ using the probability distribution p(x̃|x),
which represents the probability that a task-agnostic primitive
in x belongs to cluster in x̃. IB formulates the computation of
the task-relevant clusters X̃ (or, equivalently, the probability
p(x̃|x)) as the solution of the following optimization:

minp(x̃|x) I(X; X̃)� �I(X̃;Y), (1)

where I(·; ·) denotes the mutual information between two
random variables. Intuitively, problem (1) compresses X by
minimizing the mutual information between the original sig-
nal X and compressed signal X̃ , while rewarding the task-
relevance of the compressed representation through the mutual
information between the compressed signal X̃ and the task Y .
The parameter � controls the desired balance between the two
terms (i.e., the amount of compression).

The result of (1) is a set of clusters: intuitively, these clusters
group 3D segments into objects and 3D places into regions
(e.g., rooms) at the right granularity, as required by the task.
Below, we discuss algorithms that can better take advantage of
the structure of our problem and shed light on how to compute
the distributions and mutual information terms arising in (1)
in practice.

IV. TASK-DRIVEN CLUSTERING

In our problem, the task-agnostic primitives have geometric
attributes, which provide a strong inductive bias for our clus-
tering (i.e., we might want to merge together nearby segments,
and avoid merging segments that are far away). To enforce
this inductive bias, we consider and extend the Agglomerative
IB approach of [14], which forms task-relevant clustering by
iteratively merging neighboring primitives. In this section, we
first provide relevant background on the Agglomerative IB,
then present an incremental version of the Agglomerative IB
algorithm to support real-time mapping, and lastly tailor the
IB formulation to the use of open-set vision-language features
for task-aware scene understanding.

Agglomerative Information Bottleneck. The Agglomera-
tive IB method is a bottom-up merging approach to solving
the IB problem [14]. The method initializes the task-relevant
clusters X̃ to the task-agnostic primitives X; then, at each
iteration, it merges adjacent clusters using a task-driven metric.
In particular, it computes a weight dij for each possible merge
between adjacent clusters x̃i and x̃j as:

dij = (p(x̃i) + p(x̃j)) ·DJS[p(y|x̃i), p(y|x̃j)], (2)

where DJS is the Jensen-Shannon divergence. Intuitively, the
weight dij is a measure of the dissimilarity of the probability
distributions of the two clusters. In particular, the algorithm
iteratively merges the clusters corresponding to the smallest
weight, thus solving IB in a greedy manner. The process can
be understood as iteratively merging nearby nodes in a graph,
where the graph edges represent allowable merges.

As suggested in [14], at each iteration k, we also compute

�(k) =
I(X̃k;Y)� I(X̃k�1;Y)

I(X;Y)
(3)

as a measure of the fractional loss of information corre-
sponding to a merge operation, and terminate the algorithm
when �(k) exceeds a threshold �̄. �̄ regulates the amount of
compression where a value of 0 returns the original set of
primitives and a value of 1 returns fully merged primitives,
playing a similar role as the parameter � in eq. (1). The
pseudocode of the algorithm in given in Appendix A.

Incremental Agglomerative IB. In our problem, we expect
the map to grow over time, hence it is paramount to bound
the computational complexity of the Agglomerative IB. To-
wards this goal, we propose an incremental version of the
algorithm that can be executed online as the robot explores

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 5

the environment. Our key observation is that if the graph of
primitives in input to the algorithm has multiple connected
components (e.g., 3D object segments in different rooms),
then the clustering can we performed independently on each
connected component (intuitively, there are no edges, hence no
potential merges, between different components). Moreover,
it is easy to show that the variable �(k) in (3) (used in
the stopping condition of the algorithm) can be computed
independently for each connected component, and does not
need to be recomputed for connected components that are
not affected by new measurements. This allows the robot to
cluster incrementally while supporting a real-time stream of
new primitives as it maps the environment. We report the
pseudocode of our incremental algorithm in Appendix B, while
next we discuss how to set the required distributions.

Task-Relevant Conditional Distributions. The Agglomer-
ative IB algorithm requires defining the conditional probability
p(y|x), which can be understood as the task-relevance of each
primitive. We use CLIP [11] to produce an embedding fxi

for each primitive xi 2 X and an embedding ftj for each
task tj 2 Y . For each primitive xi, we compute its cosine
similarity score �(fxi , ftj) to all task embeddings. We further
add a null task t0 and assign it a score ↵, which is chosen as a
lower-bound on the cosine similarity under which a primitive
is not relevant for any of the given tasks.

We perform a pre-pruning step on primitives that have the
highest similarity with the null task, for which we set p(y|xi)
to be a one-hot vector with a probability of 1 on the null task.
Furthermore, to emphasize the ranking of task similarities, we
set all task similarities that are not in the top k most similar
tasks to 0 and multiply the top l task by k � l+ 1. Formally,
given m tasks, we first define ✓(xi) 2 Rm+1:

✓(xi)j =

(
↵, if j = 0

�(fxi, ftj), if j = 1, . . . ,m
(4)

and then write p(y|x) in terms of ✓ as,

p(y|xi) =

(
[1 0 . . . 0]T, if maxtj �(fxi, ftj)<↵

⌘
Pk

l=1 �l(✓(xi)), otherwise
(5)

where ⌘ is a normalization constant and �l preserves only
the top l values while setting all others to 0. This choice
of p(y|x) effectively assigns large values in p(y|x) to the
k tasks that have the highest cosine similarity in terms of
CLIP embeddings, while also assigning irrelevant primitives
to the null task. Given this choice of conditional probability,
the Agglomerative IB computes the clusters X̃ .

V. CLIO: REAL-TIME TASK-DRIVEN
OPEN-SET 3D SCENE GRAPHS

This section describes Clio, our real-time system for task-
driven open-set 3D scene graph construction. A high-level
architecture is shown in Fig. 3. Clio consists of two main
components: the frontend, where the task-agnostic object and
place primitives are constructed, and the backend, where the
task-driven object and region clustering is performed.

A. Clio Frontend
3D Object Primitives. We follow the approach of

Khronos [61] for 3D mesh reconstruction and object primitive

BackendFrontend

Object Primitives
Reconstruction

Metric-Semantic
3D Mesh

Reconstruction

Places Sub-Graph
Construction

RGB-D
Images

SAM CLIP

Incremental AIB
Object Detection

Incremental AIB
Region Detection

3D Scene Graph
Frontend

3D Scene Graph
Backend

Tasks

Fig. 3. Clio’s frontend takes in RGB-D sensor data and constructs the graph
of object primitives, the graph of places, and the metric-semantic 3D mesh
of the background. Clio’s backend performs Incremental Agglomerative IB to
cluster objects and regions based on a user-specified list of tasks.

extraction. Given a live stream of RGB-D images and poses,
we run FastSAM [27] and CLIP to get semantic segments for
each image. We then temporally associate segments to existing
tracks within a temporal window ⌧ . To enforce consistency,
candidate tracks are required to have a cosine similarity
above a threshold ✓track

1 and minimum 3D IoU of � with
the segment. Each new segment is then greedily associated
to the candidate track with the highest IoU. If no association
is made, a new track is created. Finally, if a track has not been
associated for ⌧ seconds, it is terminated. Each track is then
reconstructed into a 3D object primitive based on all frames in
the track and a final CLIP feature is computed via averaging.
Simultaneously, a coarser reconstruction of the background is
performed for every incoming frame. This approach allows for
a dense 3D model to be incrementally constructed with limited
computation, while maintaining a high level of detail for the
object primitives.

3D Place Primitives. We follow the approach of Hydra [7]
to construct the places sub-graph. We incrementally compute
a Generalized Voronoi Diagram of the scene and sparsify it
into a graph of places. To obtain semantic features for the
places, we compute a CLIP embedding vector for each input
image provided to Clio. Each place node is then assigned a
feature that is the average of the input CLIP embeddings from
all input images that the node centroid is visible. We validate
these design choices in Section VI-C.

B. Clio Backend
Task-Driven Object Detection. Clio runs our Agglomer-

ative IB method on the over-segmented 3D object primitives
from the frontend. As input to IB, we construct a graph where
the nodes are the object primitives and add edges between
nodes if the corresponding primitives have 3D bounding boxes
with non-zero overlap. We compute p(y|x) as described in
eq. (5). In this case, the null task can be thought of as
background task-irrelevant objects. We set ↵ = 0.23. We
provide two versions of Clio. The first, Clio-batch assumes
all primitives for the entire scene have first been generated
and then clusters all objects segments using eq. (3). The
second, Clio-online takes in a real-time stream of images
and constructs a map using our incremental IB algorithm,
where clustering is only performed again for the connected
components affected by the most recent measurements.

Task-Driven Clustering of Places. Clio performs Ag-
glomerative IB at every backend update to cluster the places
primitives nodes into regions, where each edge in the place

1Note that this threshold is only used to re-identify and track segments over
time, while we use our task-driven clustering to group primitives.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

(a) Sample of four regions of the Cubicle dataset

(b) Clio clustering results shown for the following tasks: (1) get condiments
packets, (2) get textbooks, (3) get notebooks, (4) clean backpacks.

(c) Clio clustering results shown for the following tasks: (1a) get hot sauce
packets, (1b) get grey poupon packets, (2a) read Cracking the Coding
Interview book, (2b) read brown textbook, (3a) pack blue notebooks, (3b)
pack red notebook, (4a) get teal backpack, (4b) clean black backpack.

Fig. 4. Examples of portions of the Cubicle dataset that require a task to
provide rectification of how an object should be defined. The figure showcases
Clio’s clustering results for two sets of tasks, listed under (b) and (c); 14
additional tasks identical for both tests are included in the task list during
clustering but not shown for clarity.

graph is considered as a putative merge for clustering. We
compute p(y|x) between the tasks and place nodes in the same
manner as the objects.

VI. EXPERIMENTS

Our experiments show that Clio (i) constructs more parsi-
monious and useful map representations (Section VI-A), (ii)
performs on par with the state of the art in closed-set settings
where the task is implicitly specified by a closed dictionary
(Section VI-B), (iii) is able to cluster the environment into
meaningful semantic regions (Section VI-C), and (iv) can
support task execution on real robots (SectionVI-D).

A. Open-Set Object Clustering Evaluation
Experimental Setup. To test Clio in realistic and diverse

scenes, we collect four datasets, in an office, an apartment, a
cubicle, and a large-scale university building, which covers five
floors including a machine shop, classroom, lounge, meeting
rooms, cluttered workspaces, and an aircraft hangar. For the
Office, Apartment, and Cubicle datasets we manually annotate
ground truth 3D bounding boxes for objects associated to the
given set of tasks. For evaluation purposes, tasks are chosen
such that there is an unambiguous set of objects best suited for
the tasks, to reduce subjective reasoning over what constitutes
a ground truth set of objects. A complete list of tasks is
provided in Appendices D to G.

Metrics. Since traditional metrics like precision and recall
do not fully capture the performance of open-set object de-
tection, we introduce two new metrics: open-set Recall (osR)
and open-set Precision (osP). For osR we query the n best
objects for every task, where n is the number of ground truth
objects relevant for the task, and report the number of correct
detections divided by number of ground truth objects. We
define osP as the total number of correct detections divided by
the total number of detections that have at least 90% cosine
similarity score to a task as the most similar object. For both
metrics, we say a detection is strict if the bounding box of
an estimated object contains the centroid of the ground truth
bounding box, and the bounding box of the ground truth object
contains the centroid of the estimated bounding box. We say a
detection is relaxed if at least one of the two prior conditions
is met. Intuitively, in the worst case, a relaxed detection can
be met with an infinitely large estimated bounding box, and
a strict detection can discount an estimate with meaningful
overlap to ground truth. We thus report both criteria. We report
the F1 score as the harmonic mean of osR and osP and include
average IOU of the top n most relevant estimated objects, total
number of estimated objects (Objs), and average runtime per
processed frame (TPF).

Compared Techniques. As our queries do not include
negation or multi-step affordances, we run ConceptGraphs
with only CLIP in place of LLava+GPT, as CLIP was shown
to have similar performance for these types of queries in [9].
In addition to running ConceptGraphs and Clio, we also test:
Khronos, which performs clustering as described in [61] with
parameters ✓track = 0.7 and � = 0.4, and Clio-Prim which
only computes the set of input 3D object primitives to Clio
with parameters ✓track = 0.9 and � = 0.6; essentially, Clio-
Prim is the output of the Clio frontend, hence this comparison
allows assessing the effectiveness of the IB clustering in Clio.
To show the importance of being task-driven, we further
include task-aware versions of the baselines: Khronos-task
and ConceptGraphs-task that take the results of Khronos and
ConceptGraphs and remove mapped objects that do not have a
high enough (↵ = 0.23) cosine similarity to at least one task in
the provided task list. We include results for both Clio-batch,
which takes in all primitives of a scene and is executed only
once at the end of the mapping session, and Clio-online, which
incrementally receives primitives for real-time mapping. We
use CLIP model ViT-L/14 and generate results with an RTX
3090 GPU and Intel i9-12900K CPU. Results are shown in
Table I. Results for OpenCLIP model ViT-H-14 are included
in Appendix H.

Results. Firstly, we observe that task-informed approaches
(shaded blue rows in Table I) lead to improved open-set
precision and retain a much smaller amount of objects (“Objs”
column); motivating our claim that metric-semantic mapping
needs to be task-driven. In particular, in some cases Clio
retains an order of magnitude less objects compared to task-
agnostic baselines (cf. with the number of objects in Clio-
Prim, which is essentially Clio without the Information Bottle-
neck task-driven clustering). We observe task-aware baselines,
Khronos-task and ConceptGraphs-task, have strictly worse
open-set recall compared to their task-agnostic versions since
both use awareness of the tasks to filter out irrelevant objects
(improving open-set precision) but are unable to consider the
tasks when forming objects (for example determining if a
stack of notebooks is one object or multiple). This motivates

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 7

Strict Relaxed

Scene Method osR" osP" F1" osR" osP" F1" IOU" Objs# TPF [s]#

CG [9] 0.44 0.17 0.25 0.61 0.28 0.39 0.06 181 2.0
Khronos [61] 0.78 0.12 0.21 0.83 0.11 0.20 0.17 628 0.31
Clio-Prim 0.72 0.09 0.16 0.72 0.10 0.17 0.18 1070 0.28
CG-task 0.44 0.38 0.41 0.61 0.50 0.55 0.06 26 2.0
Khronos-task 0.78 0.14 0.24 0.83 0.14 0.24 0.17 133 0.31
Clio-batch 0.83 0.33 0.47 1.0 0.40 0.57 0.17 48 0.31⇤
Clio-online 0.89 0.48 0.62 0.89 0.48 0.63 0.22 92 0.30

C
ub

ic
le

CG [9] 0.24 0.09 0.13 0.52 0.16 0.25 0.07 751 8.1
Khronos [61] 0.67 0.24 0.35 0.67 0.25 0.36 0.15 1202 0.31
Clio-Prim 0.70 0.18 0.29 0.73 0.19 0.30 0.17 1883 0.27
CG-task 0.19 0.37 0.25 0.45 0.63 0.50 0.06 40 8.1
Khronos-task 0.55 0.28 0.37 0.55 0.30 0.38 0.12 163 0.31
Clio-batch 0.64 0.45 0.53 0.76 0.55 0.64 0.13 84 0.30⇤
Clio-online 0.55 0.65 0.60 0.61 0.69 0.65 0.12 49 0.29

O
ffi

ce

CG [9] 0.38 0.17 0.23 0.62 0.25 0.35 0.07 339 2.2
Khronos [61] 0.45 0.08 0.14 0.76 0.12 0.21 0.11 1093 0.26
Clio-Prim 0.35 0.07 0.12 0.59 0.09 0.16 0.12 1694 0.20
CG-task 0.21 0.30 0.25 0.35 0.45 0.39 0.03 21 2.2
Khronos-task 0.41 0.15 0.22 0.72 0.21 0.32 0.11 162 0.26
Clio-batch 0.52 0.34 0.41 0.72 0.45 0.55 0.11 90 0.23⇤
Clio-online 0.35 0.31 0.33 0.52 0.42 0.46 0.07 99 0.26

A
pa

rtm
en

t

TABLE I. Results of locating objects of interest via open-set task queries
for three datasets using CLIP ViT-L/14. The Office, Apartment, and Cubicle
datasets have 33, 28, and 18 objects of interest respectively. Shaded methods
are informed by the list of tasks. First and second-best results are bolded and
underlined, respectively. ⇤Total time for Clio-batch normalized by number of
images; clustering step for batch run once on entire graph takes approximately
30 seconds and thus not suitable for online use.

our task-aware clustering approach as we observe that Clio
generally outperforms baselines across datasets and all metrics,
with Clio-batch and Clio-online ranking first or second in
all but 2 cases, namely, the IOU and strict open-set recall
metric in the Office dataset. Many of the objects in the Office
dataset (e.g., staplers, bike helmet) are typically detected as
isolated primitives, hence we see that the knowledge of the
task has a lesser impact on this dataset, while still improving
performance across all other metrics. Third, we observe that
Clio is able to run in a fraction of a second and is around 6
times faster than ConceptGraphs; Khronos and Clio-Prim also
run in real-time, but have sub-par performance in terms of
other metrics. Finally, Clio-batch and Clio-online have similar
performance in most cases. Their performance difference is
due to the fact that Clio-online is executed in real-time and
might drop frames as required to keep up with the image
stream. This difference sometimes helps and sometimes hin-
ders the performance metrics.

As an example of Clio’s ability to use task information to
form adequate scene representations, Fig. 4 shows a subset of
the detected objects from Clio for two different tasks sets. For
a task involving getting all condiment packets, Clio represents
a group of different type condiment packets collectively as one
object, while for an alternative set of tasks requiring specific
types of condiments, Clio represents the pile as multiple
objects distinguished by sauce type, yielding a more flexible
and useful scene representation. Qualitative results for the
large-scale five-floor building dataset are included in the video
attachment.

B. Closed-Set Object Evaluation
While Clio is designed for open-set detection, we include

results on the closed-set Replica [17] dataset using the eval-
uation method performed by [8, 9] to show that our task-
aware mapping formulation does not degrade performance on
closed-set mapping tasks. Here, our list of tasks is the set of
object labels present in each Replica scene where each label

Method mAcc F-mIOU

MaskCLIP [32] 4.53 0.94
Mask2former [33] + Global CLIP feat 10.42 13.11
ConceptFusion [8] 24.16 31.31
ConceptFusion [8] + SAM 31.53 38.70
ConceptGraphs [9] 40.63 35.95
ConceptGraphs-Detector [9] 38.72 35.82
OpenMask3D [50] 39.54 49.26

Clio-batch 37.95 36.98

TABLE II. Closed-set semantic segmentation experiments on 8 scenes from
the Replica [17] dataset. Baseline results reported from [9].

is changed to be “an image of {class}” following [9]. For
both Clio and [9], after creating the scene graph, we assign
the label with the highest cosine similarity to each of the
detected objects. To improve the reliability of CLIP given the
low texture regions of the Replica dataset, we include global
context CLIP vectors by incorporating dense CLIP features
from [62] for Clio. We report accuracy as the class-mean recall
(mAcc) and the frequency-weighted mean intersection-over-
union (f-mIOU). Table II shows that Clio achieves comparable
performance to the leading methods on mAcc, indicating that
our task-aware clustering does not degrade performance on
closed-set tasks. OpenMask3D [50] utilizes a 3D segmentation
network which gives it superior performance in terms of f-
mIOU but requires access to a full 3D reconstruction of the
scene, limiting real-time application.

C. Open Vocabulary Places Clustering
As manually labeling open-set 3D regions is a highly

subjective task, we evaluate the performance of Clio’s regions
via a proxy closed-set task, where Clio is provided the set of
possible room labels for the scenes as tasks. We label rooms
in three datasets: Office, Apartment, and Building. We do not
analyze the Cubicle or Replica [17] as they only consists of a
single room. We set ↵ = 0 to disable assignment to the null
task as every place is relevant to at least one room label.

Dataset Method Precision" Recall" F1"

Apartment

Hydra 0.93 ± 0.01 0.87 ± 0.01 0.90 ± 0.00

Clio (closest) 0.87 ± 0.06 0.78 ± 0.02 0.82 ± 0.01
Clio (average) 0.98 ± 0.02 0.54 ± 0.00 0.69 ± 0.00

Office

Hydra 0.61 ± 0.03 0.84 ± 0.03 0.70 ± 0.01
Clio (closest) 0.67 ± 0.03 0.79 ± 0.01 0.72 ± 0.01
Clio (average) 0.73 ± 0.01 0.80 ± 0.00 0.76 ± 0.01

Building

Hydra 0.87 ± 0.01 0.71 ± 0.02 0.78 ± 0.01
Clio (closest) 0.72 ± 0.04 0.82 ± 0.01 0.77 ± 0.02
Clio (average) 0.79 ± 0.02 0.84 ± 0.01 0.81 ± 0.01

TABLE III. Comparison of geometric room segmentation accuracy.

We use the precision and recall metrics presented in [7]
to assess the geometric accuracy of the predicted rooms of
our proposed CLIP embedding vector association strategy,
Clio (average). We compare with an alternative strategy, Clio
(closest), which uses the embedding vector taken from the
closest image that the place node is visible from, and the
purely geometric room segmentation approach from Hydra [7].
Results from this comparison are presented in Table III, which
also includes the F1 score as a summary statistic. The results
in Table III are averaged over 5 trials, and standard deviation
of all metrics is reported. We note that our chosen association
strategy outperforms both the purely geometric approach of
Hydra [7] and the more naive Clio (closest) for the Office
and Building scene, but performs relatively poorly in terms

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

Fig. 5. Qualitative examples of places clustering. The first figure shows
regions that result from clustering by task prompts resembling room category
labels. The second figure shows regions that result from clustering by task
prompts that are a mix of potential rooms and objects.

of F1 score in the Apartment. This is due to the nature of
the scenes; the Office and the Building scene contain labeled
open floor-plan rooms that require semantic knowledge to be
detected (e.g., a kitchenette in the Office scene or stairwells
in the Building scene). The Apartment primarily contains
geometrically distinct rooms, which are straightforward to
segment with the geometric approach in [7], and are instead
over-segmented by Clio, as evident from the high precision
but low recall of our method. On the other hand, semantically
similar regions that are connected, as present in the Office, lead
to under-segmentation and lower recall compared to Hydra [7].

Fig. 5 qualitatively demonstrates Clio’s capability to pro-
duce task-relevant regions on the Office scene. We compare
two different granularities of tasks; the first is similar to the
provided room labels in the closed-set proxy evaluation while
the second is more granular and object-driven. The resulting
regions reflect this difference in granularity despite being
produced by Clio using the same set of parameters. More
visualizations supporting the meaningfulness of Clio’s region
clustering are provided in Appendix J.

D. Online Evaluation on Spot
To demonstrate the real-time use of Clio for robotics, we

conduct mobile manipulation experiments using a Boston
Dynamics Spot quadruped robot equipped with an arm and
gripper. During the experiments, the robot constructs a map
with Clio in real-time while exploring a scene, and then is
tasked to navigate to and pick up objects matching a provided
natural language prompt (e.g., Fig. 2). We then compute the
shortest path through the place nodes to the target object via
Dijkstra’s algorithm. After reaching the target object, we select
the pixel centroid from the current input semantic segments
with the highest cosine similarity to the prompt embedding as
input to the Spot API grasp command. We use the onboard
front-left and front-right RGB-D cameras and odometry from
Spot as inputs to Clio. We run Clio on a laptop capable of
being mounted on the robot that is equipped with an Intel i9-
13950HX CPU with 24 cores, 64GB of RAM, and an NVIDIA
GeForce RTX 4090 Laptop GPU.

We perform 7 trials of a mobile manipulation experiment. 2

Each trial consists of a mapping phase and a planning phase.

2We consider 7 different objects for grasping: a rope dog toy, a snorkel, a
stuffed animal, a backpack, a measuring tape, a water bottle, and two different
colored plastic cones. Trials are performed with the laptop off-board and
connected to Spot via WiFi due to logistical challenges (e.g., battery life)
inherent in repeated manipulation trials, while the video attachment shows an
uninterrupted experiment with onboard computation.

�� ")&���
����

�)���''���	���

�&$#����!��(������

�"�## #���'')���
����

��&(�"��)���''�������

�)""��)���''�����	�

��* ��($#��'')���	����

��(��($#��� ")&������

�%$(��� ")&���	����

�)���''��&�(&+���	����

Fig. 6. Breakdown of grasp results for the 21 object grasp attempts per-
formed by Spot. “Wrong object” refers to the wrong Clio object being
selected, “Detection failure” refers to the selected image coordinates for
grasping not corresponding to the target object, “Navigation issue” refers to
the trajectory resulting in a pose where the object was not visible, “Spot
Failure” refers to the Spot API failing to pick up a correctly identified grasp,
and “Success (retry)” refers to the Spot API grasp command failing to pick
up the object on the first attempt but succeeding after repeated attempts.

In the mapping phase we teleoperate Spot to observe all the
objects in the scene (consisting of two room-like areas joined
by a hallway). After the mapping phase, we move Spot to a
starting location for the planning phase where we command
grasps of 3 random target objects for a total of 21 unique
grasp attempts. Clio runs the entire time during each trial, and
no post-processing of the 3D scene graph is performed. We
present a breakdown of the 21 trials in Fig. 6. Overall, we
achieve a 57% success rate for the grasps and a 71% success
rate if we disregard the cases where Spot failed to actually
grasp a correctly identified object. Notably, Clio was only
unable to select the correct target object in the scene graph
once (i.e., the “Wrong Object” failure category). The video
attachment also demonstrates a pick-and-place experiment
with a sequence of 4 pick-and-place actions over a larger
area where Spot is operated with the laptop onboard. These
experiments together emphasize the suitability of Clio for use
on board real robotic platforms.

VII. LIMITATIONS

Despite the encouraging experimental results, our approach
has multiple limitations. First, while our method is zero-shot
and is not bound to any particular foundation model, it does
inherit some limitations from the foundation models used in
implementation such as strong vulnerability to prompt tuning.
For instance, in Appendix H, we discuss how performance
is affected by different CLIP models. Second, we currently
average CLIP vectors when merging two primitives, but it
would be interesting to consider more grounded ways to
combine semantic descriptions. Third, Clio can over-cluster if
two primitives individually have similar cosine similarity to the
same task but the task requires distinguishing them as separate
objects (e.g., we might want to distinguish a fork from a knife
when setting a table, even though they might have similar
relevance to the task). Finally, we currently consider relatively
simple, single-step tasks. However, it would be desirable to
extend the proposed framework to work with a set of high-
level, complex tasks, including tasks that require substantial
understanding of object parts.

VIII. CONCLUSION

We have presented a task-driven formulation for 3D metric-
semantic mapping, where a robot is provided with a list
of natural language tasks and has to create a map whose
granularity and structure is sufficient to support those tasks.
We have shown that this problem can be expressed in terms
of the classical Information Bottleneck and have developed
an incremental version of the Agglomerative Information
Bottleneck algorithm as a solution strategy. We have integrated

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 9

the resulting algorithm in a real-time system, Clio, that con-
structs a 3D scene graph —including task-relevant objects and
regions— as the robot explores the environment. We have also
demonstrated Clio’s relevance for robotics, by showing it can
be executed in real-time onboard a Spot robot and support
pick-and-place mobile manipulation tasks.

ACKNOWLEDGEMENT

We would like to acknowledge Bryan Zhao for the help
with prototyping a trajectory planner on 3D scene graphs.

REFERENCES
[1] S. Soatto and A. Chiuso, “Visual representations: Defining properties and deep

approximations,” in Intl. Conf. on Learning Representations, 2016.
[2] C. Cadena et al., “Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age,” IEEE Trans. Robotics, vol. 32, no. 6,
pp. 1309–1332, 2016, arxiv preprint: 1606.05830, (pdf).

[3] I. Armeni, Z. He, J. Gwak, A. Zamir, M. Fischer, J. Malik, and S. Savarese, “3D
scene graph: A structure for unified semantics, 3D space, and camera,” in Intl.
Conf. on Computer Vision, 2019, pp. 5664–5673.

[4] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3D dynamic scene
graphs: Actionable spatial perception with places, objects, and humans,” in
Robotics: Science and Systems (RSS), 2020, (pdf), (media), (video). [Online].
Available: http://news.mit.edu/2020/robots-spatial-perception-0715

[5] S. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “SceneGraphFusion:
Incremental 3D scene graph prediction from RGB-D sequences,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2021.

[6] N. Hughes, Y. Chang, and L. Carlone, “Hydra: a real-time spatial perception
engine for 3D scene graph construction and optimization,” in Robotics: Science
and Systems (RSS), 2022, (pdf).

[7] N. Hughes, Y. Chang, S. Hu, R. Talak, R. Abdulhai, J. Strader, and L. Carlone,
“Foundations of spatial perception for robotics: Hierarchical representations and
real-time systems,” Intl. J. of Robotics Research, 2024, arXiv preprint: 2305.07154,
(pdf),(video).

[8] K. Jatavallabhula et al., “Conceptfusion: Open-set multimodal 3d mapping,” in
Robotics: Science and Systems (RSS), 2023.

[9] Q. Gu et al., “Conceptgraphs: Open-vocabulary 3d scene graphs for perception and
planning,” in IEEE Intl. Conf. on Robotics and Automation, May 2024.

[10] A. Kirillov et al., “Segment anything,” in Intl. Conf. on Computer Vision, October
2023, pp. 4015–4026.

[11] A. Radford et al., “Learning transferable visual models from natural language
supervision,” in Intl. Conf. on Machine Learning (ICML), ser. Proceedings of
Machine Learning Research, M. Meila and T. Zhang, Eds., vol. 139. PMLR,
18–24 Jul 2021, pp. 8748–8763.

[12] A. M. Treisman and G. Gelade, “A feature-integration theory of attention,” in
Cognitive Psychology, vol. 12, 1980, pp. 97–136.

[13] N. Tishby, F. Pereira, and W. Bialek, “The information bottleneck method,” Proc.
of the Allerton Conference on Communication, Control and Computation, vol. 49,
07 2001.

[14] N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in Advances in
Neural Information Processing Systems (NIPS), ser. NIPS’99, 1999, pp. 617–623.

[15] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” in Advances in
Neural Information Processing Systems (NIPS), 2023.

[16] OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2303.08774

[17] J. Straub et al., “The Replica dataset: A digital replica of indoor spaces,” arXiv
preprint arXiv:1906.05797, 2019.

[18] M. Oquab et al., “Dinov2: Learning robust visual features without supervision,”
arXiv preprint arXiv:2304.07193, 2023.

[19] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z. Chen, and C. Gan, “3d-llm:
Injecting the 3d world into large language models,” Advances in Neural Information
Processing Systems (NIPS), 2023.

[20] C. Zhao, Y. Shen, Z. Chen, M. Ding, and C. Gan, “Textpsg: Panoptic scene graph
generation from textual descriptions,” in Intl. Conf. on Computer Vision, October
2023, pp. 2839–2850.

[21] M. Chang et al., “Goat: Go to any thing,” arXiv preprint arXiv:2311.06430, 2023.
[22] S. Garg, “Robohop: Segment-based topological map representation for open-world

visual navigation,” in 2nd Workshop on Language and Robot Learning: Language
as Grounding, 2023.

[23] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps for robot
navigation,” in IEEE Intl. Conf. on Robotics and Automation. IEEE, 2023, pp.
10 608–10 615.

[24] R. Firoozi et al., “Foundation models in robotics: Applications, challenges, and the
future,” 2023.

[25] P. Sharma et al., “A vision check-up for language models,” IEEE Conf. on Computer
Vision and Pattern Recognition, 2024.

[26] S. Tong, Z. Liu, Y. Zhai, Y. Ma, Y. LeCun, and S. Xie, “Eyes wide shut? exploring
the visual shortcomings of multimodal llms,” in IEEE Conf. on Computer Vision
and Pattern Recognition, 2024, pp. 9568–9578.

[27] X. Zhao et al., “Fast segment anything,” 2023.
[28] Z. Zhou, Y. Lei, B. Zhang, L. Liu, and Y. Liu, “Zegclip: Towards adapting clip for

zero-shot semantic segmentation,” in IEEE Conf. on Computer Vision and Pattern
Recognition, 2023, pp. 11 175–11 185.

[29] M. Minderer et al., “Simple open-vocabulary object detection,” in European Conf.
on Computer Vision (ECCV). Springer, 2022, pp. 728–755.

[30] S. Liu et al., “Grounding dino: Marrying dino with grounded pre-training for open-
set object detection,” arXiv preprint arXiv:2303.05499, 2023.

[31] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl, “Language-driven
semantic segmentation,” in Intl. Conf. on Learning Representations, 2022.

[32] Z. T. Zheng Ding, Jieke Wang, “Open-vocabulary universal image segmentation
with maskclip,” in Intl. Conf. on Machine Learning (ICML), 2023.

[33] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention
mask transformer for universal image segmentation,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2022.

[34] R. Huang et al., “Segment3d: Learning fine-grained class-agnostic 3d segmentation
without manual labels,” arXiv preprint arXiv:2312.17232, 2023.

[35] R. Roberts, D.-N. Ta, J. Straub, and F. Dellaert, “Saliency detection and model-
based tracking: a two part vision system for small robot navigation in forested
environment,” in Intl. Soc. Opt. Eng. (SPIE), 2012.

[36] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[37] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian splatting for
real-time radiance field rendering,” ACM Transactions on Graphics, vol. 42, no. 4,
July 2023.

[38] J. Kerr, C. Kim, K. Goldberg, A. Kanazawa, and M. Tancik, “LERF: Language
embedded radiance fields,” in iccv, 2023.

[39] M. Qin, W. Li, J. Zhou, H. Wang, and H. Pfister, “Langsplat: 3d language gaussian
splatting,” IEEE Conf. on Computer Vision and Pattern Recognition, 2023.

[40] K. Blomqvist, F. Milano, J. J. Chung, L. Ott, and R. Siegwart, “Neural implicit
vision-language feature fields,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 1313–1318.

[41] C. M. Kim, M. Wu, J. Kerr, K. Goldberg, M. Tancik, and A. Kanazawa, “Garfield:
Group anything with radiance fields,” in IEEE Conf. on Computer Vision and
Pattern Recognition, 2024, pp. 21 530–21 539.

[42] F. Taioli, F. Cunico, F. Girella, R. Bologna, A. Farinelli, and M. Cristani,
“Language-enhanced rnr-map: Querying renderable neural radiance field maps with
natural language,” in Intl. Conf. on Computer Vision, 2023, pp. 4669–4674.

[43] S. Peng, K. Genova, C. M. Jiang, A. Tagliasacchi, M. Pollefeys, and T. Funkhouser,
“Openscene: 3d scene understanding with open vocabularies,” in IEEE Conf. on
Computer Vision and Pattern Recognition, 2023.

[44] H. Ha and S. Song, “Semantic abstraction: Open-world 3d scene understanding
from 2d vision-language models,” in Conference on Robot Learning, 2022.

[45] J. Wang, J. J. Tarrio, L. de Agapito, P. F. Alcantarilla, and A. Vakhitov, “Semlaps:
Real-time semantic mapping with latent prior networks and quasi-planar segmen-
tation,” IEEE Robotics and Automation Letters, vol. 8, pp. 7954–7961, 2023.

[46] S. Koch, P. Hermosilla, N. Vaskevicius, M. Colosi, and T. Ropinski, “Lang3dsg:
Language-based contrastive pre-training for 3d scene graph prediction,” in Int. Conf.
3D Vision. IEEE, 2024, pp. 1037–1047.

[47] K. Yamazaki et al., “Open-fusion: Real-time open-vocabulary 3d mapping and
queryable scene representation,” IEEE Intl. Conf. on Robotics and Automation,
2024.

[48] C. Kassab, M. Mattamala, L. Zhang, and M. Fallon, “Language-extended indoor
slam (lexis): A versatile system for real-time visual scene understanding,” IEEE
Intl. Conf. on Robotics and Automation, 2024.

[49] H. Chang et al., “Context-aware entity grounding with open-vocabulary 3d scene
graphs,” in Conference on Robot Learning, 2023.

[50] A. Takmaz, E. Fedele, R. W. Sumner, M. Pollefeys, F. Tombari, and F. Engelmann,
“OpenMask3D: Open-Vocabulary 3D Instance Segmentation,” in Advances in
Neural Information Processing Systems (NeurIPS), 2023.

[51] A. Werby, C. Huang, M. Büchner, A. Valada, and W. Burgard, “Hierarchical open-
vocabulary 3d scene graphs for language-grounded robot navigation,” Robotics:
Science and Systems (RSS), 2024.

[52] S. Gordon, H. Greenspan, and J. Goldberger, “Applying the information bottleneck
principle to unsupervised clustering of discrete and continuous image representa-
tions,” in Intl. Conf. on Computer Vision, 2003.

[53] Y. Wang, T. G. Rudner, and A. G. Wilson, “Visual explanations of image-text
representations via multi-modal information bottleneck attribution,” Advances in
Neural Information Processing Systems (NIPS), vol. 36, pp. 16 009–16 027, 2023.

[54] D. T. Larsson, D. Maity, and P. Tsiotras, “Information-Theoretic Abstractions
for Planning in Agents With Computational Constraints,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 7651–7658, Oct. 2021.

[55] ——, “Q-Tree Search: An Information-Theoretic Approach Toward Hierarchical
Abstractions for Agents With Computational Limitations,” IEEE Trans. Robotics,
vol. 36, no. 6, pp. 1669–1685, Dec. 2020.

[56] C. Parameshwara et al., “Towards visual foundational models of physical scenes,”
2023.

[57] A. Eftekhar, K.-H. Zeng, J. Duan, A. Farhadi, A. Kembhavi, and R. Krishna, “Se-
lective visual representations improve convergence and generalization for embodied
AI,” in Intl. Conf. on Learning Representations, 2024.

[58] L. Mur-Labadia, R. Martinez-Cantin, and J. J. Guerrero, “Bayesian deep learning
for affordance segmentation in images,” IEEE Intl. Conf. on Robotics and Automa-
tion, 2023.

[59] L. Mur-Labadia, J. J. Guerrero, and R. Martinez-Cantin, “Multi-label affordance
mapping from egocentric vision,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2023, pp. 5238–5249.

[60] S. Soatto and A. Chiuso, “Visual scene representations: sufficiency, minimality,
invariance and deep approximation,” in ICLR Workshop, ArXiv version: 1411.7676,
San Diego, CA, 2014.

[61] L. Schmid, M. Abate, Y. Chang, and L. Carlone, “Khronos: A unified approach
for spatio-temporal metric-semantic slam in dynamic environments,” in Robotics:
Science and Systems (RSS), 2024, (pdf).

[62] W. Shen, G. Yang, A. Yu, J. Wong, L. P. Kaelbling, and P. Isola, “Distilled feature
fields enable few-shot language-guided manipulation,” in 7th Annual Conference
on Robot Learning, 2023.

[63] G. Ilharco et al., “Openclip,” Jul. 2021. [Online]. Available: https://doi.org/10.
5281/zenodo.5143773

10 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

APPENDIX

A. Agglomerative Information Bottleneck
Algorithm 1 provides the pseudocode for the Agglomerative

Information Bottleneck [14] discussed in Section IV. The
goal of Algorithm 1 is to find an optimal hard clustering
assignment p(x̃|x) that compresses an initial signal X into
a compressed signal X̃ while preserving relevant information
about a relevancy variable Y (which in our case is a set of
tasks). The algorithm runs until a set threshold �̄ is reached
which is used to regulate the amount of compression with
respect to preserving information about Y .

Algorithm 1 Agglomerative Information Bottleneck

Input: �̄, initial primitives {x1, . . . xN} = X , task-list Y
Output: p(x̃|x): hard assignment of primitives to clusters

% Initialization:
1: set p(y|x) using eq. (5)
2: x̃i = xi 8xi 2 X
3: p(x̃i) = p(xi) = 1/N % uniform distribution
4: p(y|x̃) = p(y|xi), 8y 2 Y
5: Compute dij using eq. (2) for all i = 1, . . . , |X| and j =

1, . . . , |Y |
% Main loop:

6: while � < �̄ do

7: dab = minij(dij)
8: p(x̃) = p(xa) + p(xb)
9: p(y|x̃) = p(xa,y)+p(xb,y)

p(x̃) 8y 2 Y
10: p(x̃|x) = 1 if x 2 x̃a [x̃b, 0 otherwise 8x 2 X
11: compute � from eq. (3) for batch or eq. (6) for online
12: end while

13: return p(x̃|x)

B. Incremental Agglomerative IB
As mentioned in Section IV, we form an incremental version

of the Agglomerative IB to run Clio online. For this, we run
Agglomerative IB on each individual connected component c
using a re-weighted definition of �(k). Assuming that p(x) is
a uniform distribution we can write the incremental equivalent
of �(k) as:

�c(k) =
|Xc|
|X|

I((X̃c)k;Y)� I((X̃c)k�1;Y)

I(X;Y)
(6)

where Xc are the primitives in component c. This gives the
exact same result as Agglomerative IB on the full graph
which lets us implement the stopping condition of Algorithm 1
across each connected component Therefore, we can solve
Agglomerative IB in an incremental manner by only perform-
ing Agglomerative IB on the subset of connected components
of the graph that are affected by new measurements using
Algorithm 2. Here, when Clio receives new primitives Xnew,
we add the primitives to their respective sub-graphs and for
each of the sub-graphs that received new primitives we run
Agglomerative IB until the stopping condition from eq. (6) is
met, repeating as new primitives are received.

Here we provide the proof to the expression in eq. (6). Given
a connected component c we want to cluster Xc, the primitives
within the component, into clusters X̃c independent of the rest
of the graph. Let us also define o for the primitives not in c

Algorithm 2 Incremental Agglomerative Information Bottle-
neck
Input: c 2 C {set of connected sub-graphs}

Xnew {newly received primitives}
Output: p(x̃|x): hard assignment of primitives to clusters

1: C Xnew {update corresponding sub-graphs with new
primitives}

2: for each c in C do

3: if c updated then

4: update p(x̃|x), x 2 Xc, x̃ 2 X̃c with Algorithm 1
using stop condition from eq. (6)

5: end if

6: end for

7: return p(x̃|x)

such that Xc [Xo = X and Xc \ Xo = ?. Since P (X) is
uniformly distributed,

I(Xc;Y) =
1

|Xc|
X

Xc

p(y|x) log(p(y|x)
p(y)

) (7)

Let us define � such that

� =
1

|X|
X

Xo

p(y|x) log(p(y|x)
p(y)

) (8)

this allows us to rewrite I(X;Y) as follows:

I(X;Y) =
1

|X|
X

Xc

p(y|x) log(p(y|x)
p(y)

) +�

=
|Xc|
|X| I(Xc;Y) +�

(9)

since we are only clustering in c,

I(X̃k;Y) =
|Xc|
|X| I((X̃c)k;Y) +� (10)

Substituting in for I(X̃k;Y) and I(X̃k�1;Y) in (3), we
obtain our re-weighted expression in (6).

C. Office, Apartment, and Cubicle Datasets
For each of the office, apartment, cubicle and building

datasets, we collect RGB-D images with an Intel RealSense
D455. A visualization of the scenes are shown in Fig. 7.

A visualization of the resulting scene graphs are also shown
in Fig. 8.

D. Office Scene Task List
Here we provide a list of tasks used during mapping and

querying of the office scene. The number of objects assigned
to each task is included in parentheses. There are 33 distinct
objects in total.

1) get a black Expo marker (2)
2) get a painting of a tractor (1)
3) move rack of magazines (1)
4) get my Signals and Systems textbook (1)
5) something to cut paper (3)
6) get black glasses (1)
7) get box of tissues (2)
8) get my gloves (1)
9) get orange knit hat to keep my head warm (1)

10) get rock with holes (1)

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 11

(a) Office Scene

(b) Apartment Scene

(c) Cubicle Scene

Fig. 7. Custom open-vocabulary 3D datasets of an office floor, apartment,
and cubicle.

11) something to put on a hot dog (1)
12) get can of tuna (1)
13) grab black backpack (1)
14) grab teal backpack (1)
15) move the bin of clothes (1)
16) move the printer (3)
17) organize the pile of red dishes and plates (1)
18) get stapler (2)
19) get a yellow rubber duck (1)
20) organize the pile of hardware tools (1)
21) count solid core wood doors (3)
22) polish metal lever handle and sideplate (3)

E. Apartment Scene Task List
Here we provide a list of tasks used during mapping and

querying of the apartment scene. The number of objects
assigned to each task is included in parentheses. There are
28 distinct objects in total.

1) get can of WD-40 (1)
2) clean toaster (1)
3) find deck of cards (1)
4) find pile of hats (1)
5) find spice bottles (1)
6) get a kitchen knife (3)
7) get pocket knife (1)

8) get bike helmet (1)
9) get bottle of tide (1)

10) get cast iron skillet (1)
11) get hair dryer (1)
12) get hairbrush (1)
13) get notebooks binders (1)
14) get pizza cutting wheel (1)
15) get soy sauce (1)
16) get toolbox (1)
17) get violin case (1)
18) move pile of clothes (1)
19) move rack of dishes (1)
20) bring me a pillow (2)
21) get alarm clock (1)
22) get all chocolate snacks (1)
23) get chapstick (1)
24) get first aid kit (1)
25) move popcorn bags (1)

F. Cubicle Scene Task List
Here we provide a list of tasks used during mapping

and querying of the cubicle scene. All tasks here have one
corresponding object. There are 18 objects in total.

1) get condiment packets
2) get drink cans
3) get eyeglasses
4) get glasses case
5) get grey jacket
6) get my silver water bottle
7) get notebooks
8) get mudstone rock
9) tool to cut paper

10) get sticky notes
11) get textbooks
12) get waste bins
13) move hats
14) clean backpacks
15) get red crockery
16) get hardware drill
17) get quartz rock
18) get tape measure

G. Building Scene Task List
Here we provide a list of tasks used during mapping and

querying of the building scene. Note that some tasks have
many occurrences of relevant items in the dataset.

1) get Lysol
2) get vacuum cleaner
3) get fire extinguisher
4) get yellow wet floor sign
5) get clamps
6) get epoxy and resin bottles
7) get roles of tape
8) locate screwdrivers
9) move jet engine

10) get earmuffs
11) move co2 tanks
12) check office printer
13) get books
14) get basketball

12 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2024

(a) Office Scene

(b) Apartment Scene (c) Cubicle Scene

Fig. 8. Example 3D scene graphs for the self-collected Office, Apartment and Cubicle datasets. Scene graphs layers are drawn in the following order: objects
(as cubes), places (as spheres) and regions (as cubes). The bounding box of each object is drawn below, and a footprint is drawn for each place primitive to
highlight the 2D positions of the nodes. Places and regions are colored by their closest task as shown in the legend below each figure.

15) refill dish soap bottles
16) get trashbins
17) move pink foam
18) stack blue foam
19) check microwave
20) clean sink
21) get bottles of cleaner
22) stuff with MIT on it
23) get tape measure
24) grab airplane wing
25) clean stairs

H. Open Vocabulary Tasks on OpenCLIP model
Here we repeat the experiments from Table I but this time

use a different CLIP model (ViT-H-14 from OpenCLIP [63]).
Due to the higher compute requirements for this model we
do not run Clio-online and instead only run Clio-batch. We
found that this model tends to produce higher cosine similarity
scores between image primitives and tasks for both relevant
and irrelevant pairings, and thus we increase the null task value
and cosine similarity threshold (↵) to 0.26 for Clio, Khronos-
task, and ConceptGraphs-task.

I. Closed-Set Places Clustering Task List
For the experiment shown in Table III, we report the

task prompts used for each scene. Note that we prefix each

MAGGIO et al.: CLIO: REAL-TIME TASK-DRIVEN OPEN-SET 3D SCENE GRAPHS 13

Strict Relaxed

Scene Method osR" osP" F1" osR" osP" F1" IOU" Objs# TPF [s]#

CG [9] 0.56 0.39 0.46 0.89 0.52 0.65 0.06 231 3.15
Khronos [61] 0.83 0.16 0.27 0.83 0.17 0.28 0.18 623 1.16
Clio-Prim 0.72 0.15 0.25 0.89 0.15 0.25 0.20 956 1.14
CG-task 0.56 0.43 0.49 0.89 0.57 0.70 0.06 49 3.15
Khronos-task 0.83 0.19 0.31 0.83 0.20 0.32 0.18 195 1.16
Clio-batch 0.78 0.28 0.41 0.94 0.31 0.47 0.17 96 1.16⇤

C
ub

ic
le

CG [9] 0.30 0.15 0.20 0.55 0.23 0.33 0.09 908 12.33
Khronos [61] 0.58 0.24 0.34 0.61 0.25 0.35 0.13 1203 1.15
Clio-Prim 0.61 0.21 0.31 0.61 0.22 0.32 0.16 1717 1.13
CG-task 0.27 0.19 0.22 0.55 0.29 0.38 0.08 247 12.33
Khronos-task 0.55 0.24 0.33 0.58 0.25 0.35 0.13 351 1.15
Clio-batch 0.58 0.35 0.44 0.76 0.46 0.57 0.12 224 1.15⇤

O
ffi

ce

CG [9] 0.30 0.13 0.18 0.52 0.20 0.29 0.08 908 3.54
Khronos [61] 0.35 0.11 0.17 0.59 0.16 0.25 0.09 1081 1.03
Clio-Prim 0.48 0.12 0.19 0.69 0.16 0.26 0.13 1482 0.99
CG-task 0.34 0.23 0.27 0.59 0.30 0.40 0.08 434 3.54
Khronos-task 0.35 0.11 0.17 0.59 0.17 0.26 0.09 363 1.03
Clio-batch 0.38 0.16 0.23 0.69 0.28 0.40 0.10 222 1.01⇤

A
pa

rtm
en

t

TABLE IV. Results of locating objects of interest via open-set task query
for three datasets. We include results for OpenCLIP ViT-H-14. The office,
apartment, and cubicle datasets have 33, 28, and 18 objects of interest
respectively. Results generated with 3090 GPU and Intel i9-12900K. Shaded
methods are informed by the list of tasks. First and second-best results are
bolded and underlined, respectively. ⇤Total time for Clio-batch normalized by
number of images; clustering step for batch run once on entire graph takes
approximately 30 seconds and thus not suitable for online use.

categorical prompt with “an image of . . . ” to mimic similiar
closed-set experiments (e.g., Replica).

For the Apartment scene, we used
1) an image of a kitchen
2) an image of a bedroom
3) an image of a doorway
For the Office scene, we used

1) an image of a computing workspace
2) an image of a hallway or corridor
3) an image of a kitchenette
4) an image of a conference room
For the Building scene, we used

1) an image of a student lounge
2) an image of a kitchnette or utility closet
3) an image of a classroom
4) an image of a conference room
5) an image of a stairway
6) an image of a workshop or machine shop
7) an image of an aircraft hangar of garage

J. Places Clustering Results Visualization
We include an additional visualization of clustering places

into relevant regions on the office dataset by showing example
figures of a subset of the regions in Fig. 9 to supporting the
meaningfulness of Clio’s region clustering.

Fig. 9. Visualization of region clustering results on office dataset with
example images from regions included for two different task lists.

