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Abstract

Over the past two decades, superconducting qubits have emerged as a leading plat-
form for gate-based quantum computation. Despite tremendous technological ad-
vancements, errors accumulating during gate operations are still a major bottleneck
toward building a robust quantum computer. In general, these errors may be reduced
by both increasing qubit coherences and improving gate design.

In this thesis, we develop the fluxonium qubit for superconducting quantum com-
puting, a relatively newer qubit with advantages in qubit coherence. We first out-
line the design and simulation of these and other qubits, including a procedure to
minimize flux noise in flux-tunable qubits. We then introduce a new fluxonium ar-
chitecture containing fluxonium qubits coupled via a transmon coupler (FTF for
fluxonium-transmon-fluxonium) and demonstrate high-fidelity novel gates, achieving
up to 99.99% fidelity single-qubit gates and 99.9% two-qubit gates on the same device.
We show that this coupling scheme has advantages for scalability, 𝑍𝑍 reduction, and
performance. These results mark a technological milestone for fluxonium qubits and
contribute to the ultimate goal of error-corrected universal quantum computing with
superconducting qubits.

Thesis Supervisor: William D. Oliver
Title: Professor of Electrical Engineering and Computer Science
Professor of Physics
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4-9 Illustrative diagrams for randomized benchmarking (a) Block
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ment of the couplings 𝐽𝑖𝑗 shows energy shifts in FTF to be dominated

by virtual transitions (dashed arrows) of second (dark purple), third

(light purple), and fourth (pink) order between the fluxonium qubits

(maroon circles) and the coupler (blue circle). (b) Numerical simu-
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5-9 CZ Gate calibration procedure. (a-c) Pulse sequences for (d-f)
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Chapter 1

Introduction

With the rapidly growing prevalence of quantum computing and outburst of quan-

tum funding programs, the first question one asks is why quantum computing is so

important in the first place. Simply put, nature solves some complex problems more

efficiently than a modern computer, which performs various tasks by shuttling elec-

trons back and forth across billions of transistors. An ocean wave knows how it will

ripple, a tree knows how it will grow, and a snowflake knows how it will crystallize

faster and more accurately than our laptops can predict. In this regard, quantum

computing is not so dissimilar to controlling and observing other complex natural

processes.

Unfortunately, the above examples lack a more practical benefit that would com-

pel them to be developed into a mature technology. A more concrete and controllable

natural phenomenon is the behavior of light as it passes through a lens. The light at

the back focal plane of a lens is directly related to the light at the front focal plane

by the Fourier transform [11]. The Fourier transform happens to be one of the most

important algorithms in all of computing, and shining light through a lens provides

a way to compute the Fourier transform at literally the speed of light. Despite the

practical benefits and obvious computational advantage, Fourier transforms are still

typically calculated on everyday computers, rather than lenses. In large part, this is

because the Fourier transform has a polynomial time complexity (the total computa-

tion time scales as a polynomial function of the size of the input) and therefore, any

29



alternative mode of its computation offers only a polynomial time speedup. The price

to pay for reinventing precise computations on a different platform is typically not

worth the benefit of a slightly improved computational complexity. It is for this reason

that quantum computing is fundamentally different and so sought after. By taking

advantage of the properties of quantum mechanical two-level systems (quantum bits,

known as qubits), quantum computing offers an exponential speedup over the best

known classical algorithms for certain classes of problems. Most famously, Shor’s

algorithm [90] provides a polynomial time algorithm to factor an integer into a prod-

uct of primes using a theoretically functional quantum computer. Implementation of

such an algorithm would have immediate and drastic implications for cryptography

and security. Quantum computing can also be used to simulate and study the exact

physics of molecules — typically a prohibitively hard task which would aid in drug

discovery and medicine.

In this Chapter, we introduce the theoretical foundation of quantum mechanics

and how it applies to quantum information science — the study of the properties

and consequences of quantum computing assuming perfectly functional qubits. We

then pay tribute to the field of atomic physics and use its machinery to understand

how these qubits are controlled, creating quantum gates. In this thesis work, we

develop the relatively less established fluxonium superconducting qubit [56] for use in

quantum computation and demonstrate world-class qubit and gate performance at a

two qubit scale.

1.1 Quantum Information Science

The theoretical study of quantum computing, known as quantum information science,

involves representing a qubit, or a equivalently a two-level system, as a column

vector

|𝜓⟩ = 𝑐0 |0⟩+ 𝑐1 |1⟩ ≡

⎡⎣𝑐0
𝑐1

⎤⎦ , (1.1)
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where |𝑐0|2 + |𝑐1|2 = 1 is the normalization condition, with 𝑐0, 𝑐1 ∈ C. Likewise, the

representation of two qubits is the matrix tensor product of the individual column

vectors

|𝜓1⟩ ⊗ |𝜓0⟩ = (𝑎0 |0⟩+ 𝑎1 |1⟩)⊗ (𝑏0 |0⟩+ 𝑏1 |1⟩) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐00

𝑐01

𝑐10

𝑐11

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.2)

Classically, each “bit” can only take on a value of 0 or 1, but a qubit can take on

any normalized complex linear combination of 0 and 1. This continuum of possible

states if often represented on a Bloch sphere [Fig. 1-1], where |0⟩ is located on

top, |1⟩ at the bottom, and all other points on the surface of the sphere represent

coherent combinations, known as superpositions, of these two states. For example,

the intersection of the Bloch sphere with the +𝑥̂ axis represents the 1√
2
(|0⟩+|1⟩) state,

and the intersection of the Bloch sphere with the +𝑦 axis represents the 1√
2
(|0⟩+𝑖 |1⟩)

state. This property of superposition is a primary reason why computing with qubits

allows for an exponential speedup over classical binary bits. For a more thorough

introduction to qubits and specific algorithms that offer a quantum speedup, I point

the interested reader to the bible of quantum information by Nielsen and Chuang

[69].

1.1.1 Single-Qubit Gates

We can also consider operations on qubits using this same Bloch sphere picture. By

rotating an initial state by some angle along some axis through the origin, we arrive at

another state on the Bloch sphere. In fact, there exists a one-to-one mapping between

all unitary qubit operations and Bloch sphere rotations about an axis through the

origin. Explicitly, a rotation about axis 𝑟 ∈ R3 of angle 𝜃 is given by the unitary

𝑅𝑟(𝜃) = 𝑒−𝑖(𝜃/2)𝜎𝑟 = cos(𝜃/2)𝐼 − 𝑖 sin(𝜃/2)𝜎𝑟 (1.3)
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Figure 1-1: Illustration of the Bloch sphere. The surface of the Bloch sphere
represents all possible superpositions of |0⟩ and |1⟩.

where 𝜎𝑟 ≡ 𝑟 · (𝜎𝑥, 𝜎𝑦, 𝜎𝑥). These 𝜎 matrices are known as the Pauli matrices,

defined as

𝜎𝑥 =

⎡⎣0 1

1 0

⎤⎦ , 𝜎𝑦 =

⎡⎣0 −𝑖

𝑖 0

⎤⎦ , 𝜎𝑧 =

⎡⎣1 0

0 −1

⎤⎦ . (1.4)

Some examples of common single-qubit gates are the 𝑋𝜋 gate (rotation about the

+𝑥̂-axis by 𝜋 radians), 𝑌𝜋 gate (rotation about +𝑦 by 𝜋 radians), 𝑍𝜃 gate (rotation

about +𝑧 by 𝜃 radians), and the Hadamard (H ) gate (rotation about 1√
2
(𝑥̂+ 𝑧) by

𝜋 radians):

𝑋𝜋 =

⎡⎣ 0 −𝑖

−𝑖 0

⎤⎦ (1.5)

𝑌𝜋 =

⎡⎣0 −1

1 0

⎤⎦ (1.6)

𝑍𝜃 =

⎡⎣𝑒−𝑖𝜃/2 0

0 𝑒𝑖𝜃/2

⎤⎦ (1.7)

𝐻 =
1√
2

⎡⎣1 1

1 −1

⎤⎦ . (1.8)
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Colloquially, rotations about the +𝑥̂-axis or +𝑦-axis by 𝜋 radians are known as pi-

pulses, and rotations by 𝜋/2 radians are likewise known as pi-half pulses.

1.1.2 Two-Qubit Gates

When moving beyond a single-qubit, the Bloch sphere representation can no longer

be so conveniently used, and one must rely more heavily on mathematical formalisms

or other intuition. Two-qubit gates are loosely defined as a reversible gate operation

(matrix multiplication) on two-qubits which cannot be factored into a tensor product

of single-qubit gates on each respective qubit. These gates are said to be entangling,

as the effect of the gate on one qubit will depend on the state of the other qubit. The

resultant two-qubit state will therefore be an entangled state, in which the measured

state of each qubit influences the state of the other. For superconducting qubits, three

of the most most commonly implemented two-qubit gates are the CNOT, iSWAP, and

CZ gates:

CNOT =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , iSWAP =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 0 𝑖 0

0 𝑖 0 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , CZ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.9)

where the matrix indices represent, in order, the basis states {|00⟩ , |01⟩ , |10⟩ , |11⟩}.

The CNOT gate inverts the population of the second qubit depending on the state of

the first qubit and is natively implemented using the cross-resonance gate scheme [81].

The iSWAP gate swaps the populations between the two qubits and introduces an

additional 𝑖 phase between the swapped states and can be implemented by either tun-

ing two qubits onto resonance for a period of time [54] or by parametrically driving at

the frequency difference between the two qubits [78]. Finally, the CZ gate introduces

a selective phase shift on the |11⟩ state of the system, traditionally implemented by

tuning the |11⟩ state into a non-computational state of the system [8], or by driving

it to a non-computational state of the system [18]; in each case, a single-period popu-
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lation oscillation is used. Conveniently, any two-qubit gate can be converted into any

other two-qubit gate by application of arbitrary single-qubit gates [69]. For example,

the CZ gate can be converted into the CNOT gate by applying Hadamard gates on

the second qubit, before and after the CZ gate. It additionally follows that arbitrary

unitary operations in a multi-qubit Hilbert space can be performed by composing any

one type of two-qubit gate with arbitrary single-qubit rotations [69]. This then out-

lines the goal of quantum control very clearly: the need for high-fidelity single-qubits

gates and any one high-fidelity two-qubit gate.

1.2 Quantum Mechanics

Quantum mechanics is the study of nature at the scale of atoms or subatomic particles.

It is at this small scale that the traditional laws of classical mechanics break down

and no longer apply. The physical realization of our qubits and its properties will be

rooted in the foundations of quantum mechanics and thus an understanding of it is

essential in working with qubits of any kind. In this Section, we give a brief overview

of quantum mechanics, going over the important postulates of quantum mechanics

and their consequences. For a more in-depth study of quantum mechanics, I point to

a few of my favorite introductory textbooks [87, 33].

1.2.1 State vectors

The state of a system can be described by a wavefunction |𝜓⟩ living in some Hilbert

space.

In quantum mechanics, we can describe our system using the basis of energy eigen-

states, with integer labels corresponding to a monotonically increasing ordering of

eigenvalues

|𝜓⟩ = 𝑐0 |0⟩+ 𝑐1 |1⟩+ 𝑐2 |2⟩+ · · · (1.10)

These states |𝜓⟩ are represented as kets |𝜓⟩, which each come with a corresponding
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adjoint represented as a bra ⟨𝜓|, and is mathematically computed as the complex

conjugate of |𝜓⟩

⟨𝜓| = 𝑐*0 ⟨0|+ 𝑐*1 ⟨1|+ 𝑐*2 ⟨2|+ · · · (1.11)

These basis states, by definition, are also orthonormal, meaning that they satisfy

the condition

⟨𝑖| 𝑗⟩ = 𝛿𝑖𝑗. (1.12)

Inherent in this postulate of quantum mechanics is that (properly normalized) linear

combinations of two states

𝛼 |𝜓1⟩+ 𝛽 |𝜓1⟩ (1.13)

are guaranteed to yield another state which lives in the same Hilbert space. This linear

combination represents a superposition of states, one of the standout features of

quantum mechanics.

1.2.2 Observables as Operators

Every observable of a state |𝜓⟩ is described by an operator which acts on it.

This statement provides the link between the mathematical formalism of quantum

mechanics and physical properties that are observed or measured in the real world.

An operator 𝑂̂ maps one state |𝜓⟩ onto another state |𝜓′⟩ within the Hilbert space,

and its action on the state is represented by left multiplication

𝑂̂ |𝜓⟩ = |𝜓′⟩ . (1.14)

The most common type of operator we will encounter in quantum mechanics is a

linear operator, which for two states |𝜓1⟩ and |𝜓2⟩ satisfies the condition:

𝑂̂(𝑎1 |𝜓1⟩+ 𝑎2 |𝜓2⟩) = 𝑎1(𝑂̂ |𝜓1⟩) + 𝑎2(𝑂̂ |𝜓2⟩). (1.15)

Associated with each operator is a set of eigenstates {|𝑂𝑘⟩}, which are unchanged
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up to a multiplicative factor after being acted on by the operator

𝑂̂ |𝑂𝑘⟩ = 𝑂𝑘 |𝑂𝑘⟩ . (1.16)

This prefactor is known as the eigenvalue corresponding to the eigenstate |𝑂𝑘⟩ for

operator 𝑂̂.

1.2.3 Quantum Measurement

A measurement in state |𝜓⟩ of an observable 𝑂̂ with eigenvalues {𝑂𝑘} and eigenstates

{|𝑂𝑘⟩} results in 𝑂𝑘 with probability | ⟨𝑂𝑘|𝜓⟩ |2. Afterward |𝜓⟩, is changed into |𝑂𝑘⟩.

The measurement of a quantum state is perhaps the most mysterious property of

quantum mechanics. Contrary to classical physics, the measurement of a quantum

state yields only discrete possibilities, governed by the eigenvalues of the operator

𝑂̂. While a classical voltage can read any value between 0V and 1V, a qubit |𝜓⟩ =

𝑐0 |0⟩ + 𝑐1 |1⟩ can only be measured be in state |0⟩ or |1⟩. Furthermore, a quantum

measurement changes the state of the system upon measurement. The state is said to

be projected onto the measured state, and further measurements of the same operator

will deterministically yield the same value over and over, despite this value initially

being stochastically determined.

1.2.4 Time Evolution

The time evolution of a state |𝜓(𝑡)⟩ obeys the Schrödinger equation

𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻̂ |𝜓(𝑡)⟩ , (1.17)

where 𝐻̂ is the Hamiltonian of the system.

In a closed quantum system, this equation successfully predicts the time evolution of

|𝜓(𝑡)⟩, for all time. If |𝜓(0)⟩ and 𝐻̂ are known, then all quantities of interest can be
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predicted by solving integrating the Schrödinger equation and even controlled by al-

tering 𝐻̂. Unfortunately, it is never the case that |𝜓(0)⟩ and 𝐻̂ are known to arbitrary

precision, and numerical simulation of the time evolution of larger systems becomes

intractable on classical computers. Nevertheless, any simplifications to the Hamil-

tonian, or truncations to approximately isolated smaller systems provides immense

value to the engineer or physicist in predicting dynamics and building intuition. After

all, the entirety of quantum computation relies on controlling the time evolution of

states via the Schrödinger equation precisely and to our desire.

An extremely useful simplification can be made when 𝐻̂ is time independent. In

that case, the time evolution of the state simply involves application of a unitary

operator 𝑈̂(𝑡)

|𝜓(𝑡)⟩ = 𝑈̂(𝑡) |𝜓(0)⟩ , (1.18)

where 𝑈̂ is given by an exponentiation of the Hamiltonian

𝑈̂(𝑡) = 𝑒−𝑖𝐻̂𝑡/ℏ. (1.19)

One can verify by substitution that this |𝜓(𝑡)⟩ satisfies the time-dependent Schrödinger

equation. If one can diagonalize the Hamiltonian by finding all its eigenvectors

{|𝐸𝑘⟩} and corresponding eigenvalues {𝐸𝑘} (alternatively termed eigenenergies for

the operator 𝐻̂), the computation of this matrix exponentiation may be simplified to

𝑈̂(𝑡) =
∑︁
𝑘

|𝐸𝑘⟩ ⟨𝐸𝑘| 𝑒−𝑖𝐸𝑘𝑡/ℏ. (1.20)

This equation yields a very intuitive interpretation of the time dynamics of a closed

quantum system: with the state decomposed into eigenvectors of the Hamiltonian,

each eigenvector undergoes a phase accrual according to its eigenenergy

|𝐸𝑘⟩ → 𝑒−𝑖𝐸𝑘𝑡/ℏ |𝐸𝑘⟩ . (1.21)
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1.2.5 Non-Unitary Dynamics

We conclude this Section with two examples of non-unitary time evolution applied to

a qubit wavefunction |𝜓⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩. This state vector will preferentially decay

into its minimum energy eigenstate (more generally to its thermal equilibrium state,

which we approximate to be |0⟩ in the limit of no thermal energy excitations) with

an exponential time decay constant called T1. This process is termed relaxation.

For this qubit system, the |1⟩ state decays as

|1⟩ → 𝑒−𝑡/𝑇1 |1⟩ , (1.22)

with the missing population returning to the ground state |0⟩. Since all states |𝜓⟩

decay into |0⟩ after a sufficiently long time, this process is necessarily non-unitary

(cannot be reversed). In realistic quantum systems, the 𝑇1 of a state places a time

limit for which useful operations or unitary evolution must be done.

Our second example of non-unitary time evolution is dephasing. As mentioned

previously, the phase of the |1⟩ state evolves as

|1⟩ → 𝑒−𝑖𝐸1𝑡/ℏ |1⟩ , (1.23)

where this phase is referenced relative to the phase of the |0⟩ state. If the energy of

this eigenstate 𝐸1 fluctuates unpredictably in time, then the phase of |1⟩ relative to

|0⟩ gradually becomes lost in time to these fluctuations. If one imagines a statistical

ensemble of these states under this energy fluctuation ∆𝐸1, then the time evolution

of the |1⟩ state can be averaged over all ensembles. Assuming a zero-mean Markovian

noise processes, the time-integral of this phase factor results in an exponentially

decaying phase coherence between |0⟩ and |1⟩ with the time constant defined as T2∫︁
𝑒−𝑖Δ𝐸1𝑡/ℏ 𝑑𝑡→ 𝑒−𝑡/𝑇2 . (1.24)
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1.3 The Rabi Oscillation

With a physical understanding of the qubit through quantum mechanics, what re-

mains is to understand how to implement gates with these qubits in order to im-

plement gate-based quantum computation. Generally, gates are realized by altering

the Hamiltonian of a system in a precise manner and for a precise amount of time

such that the total unitary operation becomes our desired gate. Controlling two-level

systems in this way was originally studied in the field of atomic physics [31, 19], the

study of how atoms behave when interacting with light or other atoms. While there

are many ways to engineer the Hamiltonian to perform gates, I choose here to derive

the Rabi oscillation, the simplest and most widespread method to arbitrarily con-

trol the state of a qubit. In this derivation, we will use the shared language of atomic

physics and introduce many other indispensable concepts, such as the rotating frame

transformation, the rotating wave approximation, and the generalized Rabi frequency.

Consider a semi-classical treatment in which the lowest two levels on an atom (the

ground state |0⟩ being the zero energy reference)

𝐻̂0 = ℏ𝜔 |1⟩ ⟨1| (1.25)

are driven by a classical oscillating electric field

𝐸(𝑡) = ℰ𝑒−𝑖𝜔𝑑𝑡 + ℰ*𝑒𝑖𝜔𝑑𝑡. (1.26)

This electric field interacts with the atomic dipole of the two-level system,

𝑑 = |1⟩ ⟨0|𝜇+ |0⟩ ⟨1|𝜇*, (1.27)

where 𝜇 is the dipole matrix element ⟨1| 𝑑 |0⟩. The full classically driven Hamiltonian

is then

𝐻̂ = ℏ𝜔 |1⟩ ⟨1| − (|1⟩ ⟨0|𝜇+ |0⟩ ⟨1|𝜇*)(ℰ𝑒−𝑖𝜔𝑑𝑡 + ℰ*𝑒𝑖𝜔𝑑𝑡). (1.28)

To more easily understand the dynamics of the system, it is customary perform
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a rotating frame transformation to move into a frame where the Hamiltonian

becomes time independent. Mathematically, this involves applying the transformation

𝐻̃ = 𝑈̂𝐻̂𝑈̂−1 − 𝑖ℏ𝑈̂
𝜕𝑈̂−1

𝜕𝑡
(1.29)

where in this specific case, we choose

𝑈̂ = 𝑒𝑖𝜔𝑑𝑡|1⟩⟨1|. (1.30)

The excited state is transformed into a frame rotating at the same frequency as the

drive, so that the drive is largely time independent.

𝐻̃ = ℏ(𝜔− 𝜔𝑑) |1⟩ ⟨1| − (ℰ𝜇 |1⟩ ⟨0|+ ℰ*𝜇𝑒2𝑖𝜔𝑑𝑡 |1⟩ ⟨0|+ ℰ𝜇*𝑒−2𝑖𝜔𝑑𝑡 |0⟩ ⟨1|+ ℰ*𝜇* |0⟩ ⟨1|)

(1.31)

After applying this transformation, we drop terms with factors 𝑒±2𝑖𝜔𝑑𝑡 according to

the rotating wave approximation, provided these oscillations are “fast” relative

to the driven dynamics of the system. When this condition is satisfied, one can

replace the 𝑒±2𝑖𝜔𝑑𝑡 terms with their time average, which is conveniently zero. This

approximation allows a final simplification of the Hamiltonian

𝐻̃ = ℏ𝛿 |1⟩ ⟨1| − ℏ
(︂
Ω

2
|1⟩ ⟨0|+ Ω*

2
|0⟩ ⟨1|

)︂
(1.32)

where 𝛿 ≡ 𝜔 − 𝜔𝑑 is the detuning between the drive frequency and the qubit fre-

quency, and we’ve introduced the very important quantity

Ω =
2ℰ𝜇
ℏ

(1.33)

called the Rabi frequency. The condition for the rotation wave approximation can

now be stated 𝜔𝑞 ≫ Ω in the most common case where the drive is resonant with

the qubit (𝛿 = 0). To understand the physical interpretation of Ω, we solve the time

dependent Schrödinger equation with the Hamiltonian Eq. (1.31) for resonant driving
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(𝛿 = 0) and Ω > 0 (for simplicity). By inserting the ansatz

|𝜓⟩ = 𝑐0(𝑡) |0⟩+ 𝑐1(𝑡) |1⟩ , (1.34)

and assuming the initial conditions 𝑐0(0) = 1 and 𝑐1(0) = 0, these amplitude coeffi-

cients can be solved to obtain

𝑐0(𝑡) = cos

(︂
Ω

2
𝑡

)︂
(1.35)

𝑐1(𝑡) = 𝑖 sin

(︂
Ω

2
𝑡

)︂
. (1.36)

The populations themselves, 𝑝𝑖(𝑡) = |𝑐𝑖(𝑡)|2, are

𝑝0(𝑡) =
1

2
+

1

2
cos(Ω𝑡) (1.37)

𝑝1(𝑡) =
1

2
− 1

2
cos(Ω𝑡). (1.38)

As a result of this resonant drive, the population oscillates back and forth between

the ground and excited states with frequency Ω. These dynamics can be visualized

on the Bloch sphere as the state (initially |0⟩) precessing about an axis pointing from

the center of the sphere to a point on the equator. This axis is conventionally then

defined as the +𝑥̂ axis; an alternative way of thinking about this is that this first

transformation sets the phase reference for all other drives, and corresponds the 𝑥̂-

axis with a relative phase of 0. The Hamiltonian Eq. (1.31) can also be solved in the

case 𝛿 ̸= 0, though we omit the derivation from this thesis and state the result for

the population of the excited state

𝑝1(𝑡) =
Ω2

Ω̃2

(︂
1

2
− 1

2
cos(Ω̃𝑡)

)︂
. (1.39)

The new quantity introduced here is the generalized Rabi frequency

Ω̃ =
√
Ω2 + 𝛿2. (1.40)
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When a two-level system is driven off-resonantly, the new rotation axis becomes the

unit vector (again, defining the drive as along the 𝑥̂-axis without loss of generality)

𝛿𝑧 + Ω𝑥̂√
𝛿2 + Ω2

. (1.41)

As a result, the amplitude of the population oscillations decreases, but frequency of

oscillations increases. This apparent increase in frequency comes about from the fact

that the total traversal distance on the Bloch sphere is less when traversing a smaller

circle. See Fig. 1-2 for a Bloch sphere illustration of the state trajectory with varying

amounts of drive detuning.

With this, we conclude the our brief derivation of the Rabi oscillation in the

traditional language of atomic physics. When we turn to superconducting qubits,

the two-level system will then be the lowest two energy states of a superconducting

circuit, and the driving electric field will be either a charge or flux fluctuation.

(a) (b)

Figure 1-2: Off-resonant Rabi oscillations. (a) Bloch sphere trajectories for three
different detunings (different shades of blue, dashed lines) and an initial state of |0⟩.
Solid blue arrows show the rotation axis. (b) Population as a function of time for
the three trajectories shown in (a).

42



1.4 Thesis Outline

We begin the journey into the field of superconducting quantum computing in Chap-

ter 2 by introducing the basic building blocks of circuit quantum electrodynamics.

Starting from the 𝐿𝐶 oscillator, the Josephson junction is introduced to provide the

critical non-linearity to convert a harmonic oscillator into a qubit. From there, gen-

eral circuit quantization tools are introduced to construct the Hamiltonians of nearly

arbitrary circuits, with numerical techniques to compute their eigenvalues and eigen-

vectors. Using these techniques, the properties of a variety of qubits are derived, in

preparation for their use in later Chapters. Moving beyond a single qubit, we give

a circuit QED treatment of how to model qubits coupled to other circuit elements.

Together, Chapter 2 and Appendix A provide all the necessary information for simu-

lating and designing multi-qubit circuits and serves as the theoretical foundation for

much of the thesis. Chapter 2 concludes with a discussion of why qubits are not per-

fect in practice, with an overview of common relaxation and dephasing mechanisms

ailing superconducting qubits.

In Chapter 3, we undertake a deep dive into one particular mechanism for dephas-

ing in superconducting qubits — 1/𝑓 flux noise. Magnetic two-level system defects

residing in the physical materials forming the circuits are observed to fluctuate and

cause flux noise dephasing in any flux-tunable qubit. Despite the widespread nature of

this problem, the microscopic mechanism of this 1/𝑓 flux noise has proven difficult to

pinpoint, and treatments to completely remedy superconducting qubits of this noise

source are lacking. We show that the geometric construction of the superconducting

qubit loops impacts the magnitude of the flux noise, in agreement with a microscopic

model of 1/𝑓 flux noise. Furthermore, we provide guidelines for superconducting

qubit design to minimize the total amount of flux noise.

Chapter 4 begins to introduce the heart of this dissertation, by outlining basic

measurements techniques for fluxonium qubits, which were all newly developed as

part of this work. Section 4.1 is devoted to the readout and initialization of fluxo-

nium qubits, made difficult by the low qubit frequency, which results in significant
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population in the excited state in thermal equilibrium with even the coldest stages

of our experimental setup. Without strategies to initialize the qubit in the ground

or excited state, this thermal population can obstruct any and all measurements of

the qubit. We then follow up with basic coherence characterization measurements of

the fluxonium qubit and outline a calibration procedure for high-fidelity single-qubit

gates.

The first experiment requiring these new fluxonium qubits was the FTF two-qubit

gate work [24] detailed in Chapter 5. Two fluxonium qubits are coupled together via

a large capacitive coupling to a tunable transmon coupler. This strong coupling and

combination of qubits brings about a rich system with interesting and counterintu-

itive behavior. Section 5.1 introduces the theory of the FTF architecture and explores

some interesting facets of the system. For example, the transmon provides a means

to cancel out the static controlled-phase entangling rate (𝑍𝑍) even in the limit where

the transmon-fluxonium detuning approaches infinity. Chapter 5.3 contains the re-

sults for high-fidelity single- and two-qubit fluxonium gates using the FTF system.

As of the writing of this thesis, both the two-qubit fluxonium gate and the simulta-

neous single-qubit gates demonstrated have the highest published fidelities out of any

superconducting qubit demonstration. Furthermore, we demonstrate the robustness

of this gate by performing the gate across a 2GHz range of drive frequencies and

across multiple devices.

Finally, we summarize the main results of this thesis work and discuss the future

prospects of the fluxonium qubit for superconducting quantum computing.
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Chapter 2

Circuit QED: Building Towards a

Quantum Processor

This Chapter reviews the basic elements comprising most superconducting circuits:

the capacitor, the inductor, and the Josephson junction. From these, we will introduce

the circuit quantum electrodynamics (circuit QED) framework to model collections

of these elements as qubits (Section 2.1), and numerically obtain their eigenenergies

and eigenstates (Section 2.2). Section 2.3 will derive from scratch all qubits that

will be used in this thesis (the transmon, the c-shunt flux qubit, and the fluxonium)

and investigate notable features of each. These qubits can then be integrated with

other circuits forming resonators, control lines, and other qubits in order to build

up complex quantum processors (Section 2.4). We conclude with Section 2.5, where

we begin to move away from our models of idealized qubits and discuss common

mechanisms that limit qubit coherence. As the details in this chapter serve as the

foundation for designing and understanding any experiment, we aim to derive circuit

properties as fundamentally and as exhaustively as possible.

2.1 The Circuit QED Hamiltonian

In this Section, we first introduce the tools of circuit quantization to derive the quan-

tum harmonic oscillator from the classical 𝐿𝐶-oscillator. From there, the Josephson
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junction is introduced as the non-linear element needed to create superconducting

qubits, which by itself forms the Cooper-pair-box circuit [10, 64]. We wrap up this

Section by outlining procedures to write down more generic circuit Hamiltonians

without needing to rely on any intuition or hindsight.

2.1.1 Classical to Quantum LC Oscillator

The starting point of our exploration are the classical quantities describing the energy

stored in the capacitor and the inductor. Familiar to students taking their first E&M

class, the energy stored in a capacitor is 1
2
𝐶𝑉 2 (𝐶 is the capacitance and 𝑉 is the

voltage across the capacitor), and the energy stored in an inductor is 1
2
𝐿𝐼2, which

we will conveniently re-write as 1
2
Φ2/𝐿 using the classical definition of inductance,

𝐿 = Φ/𝐼 (𝐿 is the inductance, 𝐼 is the current through the inductor, and Φ is the

magnetic flux produced by the current). By ascribing capacitive energy as kinetic

energy and inductive energy as potential energy (a widespread convention that we

will adopt throughout), we can then define the circuit Lagrangian,

ℒ ≡ 𝑇 − 𝑉. (2.1)

The simplest circuit with any resonant features is the 𝐿𝐶 oscillator, a capacitor

and inductor in parallel. The Lagrangian for this circuit is

ℒ =
1

2
𝐶𝑉 2 − 1

2

Φ2

𝐿
(2.2)

which we write down by using the previously defined energies. Using Φ as our gen-

eralized position coordinate, we rewrite the Lagrangian in terms of it and its time

derivative as

ℒ(Φ, Φ̇) = 1

2
𝐶Φ̇2 − 1

2𝐿
Φ2, (2.3)

where we’ve used Faraday’s Law to relate the voltage to the time derivative of the

flux. From the Lagrangian, the corresponding canonical momentum to Φ is defined
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as
𝜕ℒ
𝜕Φ̇

= 𝐶Φ̇ ≡ 𝑞. (2.4)

Conveniently, this quantity physically represents the charge stored in the capacitor.

We emphasize that it is the quantity 𝜕ℒ/𝜕Φ̇ which defines conjugate momentum,

and not the charge itself. By performing a Legendre transformation, we arrive at the

classical circuit Hamiltonian and express it in terms of the generalized position and

momentum variables

𝐻 ≡ Φ̇𝑞 − ℒ (2.5)

=
1

2
𝐶Φ̇2 +

1

2
𝐿Φ2 (2.6)

=
1

2

𝑞2

𝐶
+

1

2

Φ2

𝐿
(2.7)

At this point, we are ready to promote our classical Hamiltonian into a quantum

one. This works as follows: we promote the Hamiltonian, charge coordinate, and

flux coordinate into operators 𝐻 → 𝐻̂, 𝑞 → 𝑞, Φ → Φ̂, then establish a commutation

relation between 𝑞 and Φ̂. Following [25], the quantum commutation relation between

two operators 𝐴, 𝐵̂ is related to the classical Poisson bracket

[𝐴, 𝐵̂] ≡ 𝑖ℏ{𝐴,𝐵}. (2.8)

Using the fact that the classical Poisson bracket between two canonically conjugate

variables is invariant under canonical transformations and is equal to 1, we obtain

our commutation relation

[Φ̂, 𝑞] = Φ̂𝑞 − 𝑞Φ̂ = 𝑖ℏ. (2.9)

From this point forward, the standard procedure to analytically diagonalize the

quantum harmonic oscillator is to introduce two new operators, 𝑎̂ and 𝑎̂†, defined as
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(a) (b)

Figure 2-1: LC oscillator. (a) Circuit representation of a 𝐿𝐶 oscillator. (b) Plot
of parabolic potential energy of an 𝐿𝐶 oscillator along with associated energy levels.

linear combinations of the original operators

𝑞 = −𝑖
√︂

ℏ
2𝑍0

(𝑎− 𝑎†) (2.10)

Φ̂ =

√︂
ℏ𝑍0

2
(𝑎+ 𝑎†), (2.11)

where 𝑍0 =
√︀
𝐿/𝐶 is the characteristic impedance of the circuit. Substitution into

the original Hamiltonian conveniently results in

𝐻̂ = ℏ𝜔0

(︂
𝑎†𝑎+

1

2

)︂
, (2.12)

where 𝜔0 = 1/
√
𝐿𝐶 represents the resonant frequency of the system. Some algebraic

manipulations with the commutation relation reveal that eigenstates of 𝐻̂, denoted

|𝑁⟩, must obey the relations 𝑎̂ |𝑁⟩ =
√
𝑁 |𝑁 − 1⟩, 𝑎̂† |𝑁⟩ =

√
𝑁 + 1 |𝑁 + 1⟩, and

𝑎̂†𝑎̂ |𝑁⟩ = 𝑁 |𝑁⟩, for 𝑁 ∈ Z≥0. These eigenstates are typically referred to as Fock

states (or simply harmonic oscillator states), with the eigenenergy of |𝑁⟩ being 𝐸𝑁 =

ℏ𝜔0(𝑛+
1
2
). The quantum harmonic oscillator is one of few systems in which techniques

exist to analytically determine the eigenenergies and eigenstates. Typically, we will

not be so lucky, and will have to resort to other methods.

The most notable feature of the harmonic oscillator is that the energy difference
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between adjacent eigenstates (𝐸𝑛 − 𝐸𝑛−1) is equal to ℏ𝜔0 for all 𝑛. Exciting one

transition in this system excites all transitions, which makes it unfeasible to define

a qubit subspace in which population will remain. If the goal in forming a qubit is

to procure true two-level system, the quantum harmonic oscillator is in fact the least

suitable quantum system that exists. We must look elsewhere for superconducting

qubits.

2.1.2 Forming a Qubit with the Josephson Junction

The circuit element which enables the construction of most superconducting qubits is

the Josephson junction, which consists of two superconductors separated by a thin

insulating material [Fig. 2-2(a)]. We will show that the energy stored in the Josephson

junction behaves as that of a nonlinear inductor, breaking the harmonic nature of

the previous LC oscillators. The first of two fundamental equations surrounding

Josephson junctions is the current-phase relation, which gives the current due to

Cooper-pairs tunneling across the insulating barrier

𝐼 = 𝐼𝑐 sin(𝜑(𝑡)). (2.13)

The critical current of the junction is denoted by 𝐼𝑐 and 𝜑(𝑡) is the superconducting

phase difference across the insulation region. The second relation is the voltage-phase

relation, which gives the voltage across the insulator as a function of the same phase

difference

𝑉 =
ℏ
2𝑒

𝑑𝜑

𝑑𝑡
. (2.14)

By comparing these equations to the voltage-current relationship for a classical in-

ductor, 𝑉 = 𝐿𝑑𝐼
𝑑𝑡

, we can attribute an effective inductance to the Josephson junction

𝐿eff =
Φ0

2𝜋𝐼𝑐 cos(𝜑)
, (2.15)

rewriting some constants to instead use the superconducting magnetic flux quan-

tum, Φ0 = ℎ/2𝑒. Due to the presence of the cos(𝜑) term in this expression, the
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Figure 2-2: Diagram of a Josephson junction. (a) Illustration of Josephson
junction. (b) Circuit diagram representation of a Josephson junction.

Josephson junction does not behave as a typical linear inductor. The energy stored

in this non-linear inductor can be obtained by performing a time-integral of the volt-

age times the current

𝑈(𝑡) =

∫︁ 𝑡

−∞
𝑉 (𝑡′)𝐼(𝑡′) 𝑑𝑡′ = 𝐸𝐽(1− cos(𝜑(𝑡)) = −𝐸𝐽 cos(𝜑) + const., (2.16)

where we’ve introduced the Josephson energy 𝐸𝐽 ≡ 𝐼𝑐Φ0/2𝜋. Written as a cir-

cuit element, the Josephson junction is represented with an “X”. A box is typically

included around the “X” to represent a junction in parallel with the intrinsic junction

capacitance, which is formed by the two superconducting leads across the insulator

[Fig. 2-2(b)].

By replacing the inductor in the 𝐿𝐶 oscillator with this Josephson junction, we

form the Cooper-pair box Hamiltonian [64]

𝐻̂ =
2𝑒2

𝐶
𝑛̂2 − 𝐸𝐽 cos(𝜑). (2.17)

In writing this Hamiltonian, we’ve introduced the charge operator

𝑛̂ =
𝑞

2𝑒
, (2.18)

and promoted the superconducting phase difference across the Josephson junction

into the phase operator, which relates to the flux operator as

𝜑 = 2𝜋
Φ̂

Φ0

. (2.19)
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This new pair of operators can be viewed as a dimensionless rescaling of the old

operators, but for the Cooper-pair box, 𝑛̂ physically represents the number of Cooper

pairs that have tunneled across the junction and 𝜑 represents phase difference of the

superconducting condensate across the junction. We now further define the charging

energy, which equals the energy of a single-electron charge stored in a capacitance

𝐶,

𝐸𝐶 ≡ 𝑒2

2𝐶
. (2.20)

Finally, after accounting for a continuous charge offset 𝑛𝑔 = 𝑉𝑔𝐶𝑔 induced by an

external gate voltage 𝑉𝑔 coupled with a capacitance 𝐶𝑔, the Hamiltonian as it typically

appears in literature is

𝐻̂ = 4𝐸𝐶(𝑛̂− 𝑛𝑔)
2 − 𝐸𝐽 cos(𝜑). (2.21)

A convenient way to illustrate how this Hamiltonian is different from that of the

harmonic oscillator is to perform a Taylor expansion of the classical potential energy

(Josephson junction term)

𝑉 (𝜑) = −𝐸𝐽 cos(𝜑) ≈ 𝐸𝐽

(︂
1

2
𝜑2 − 1

24
𝜑4

)︂
+ const. (2.22)

This expression takes the form of the quadratic potential associated with a linear

inductance but with a quartic correction. As we will learn to compute precisely in

the following Sections, this additional curvature breaks the equal spacing of the energy

levels, allowing one to define a functional qubit using the lowest two energy levels of

the system.

2.1.3 More General Circuit Quantization

Up until now, we’ve only explained how to write down Hamiltonians for circuits con-

taining only two connected circuit elements. The goal for the remainder of this Section

is to detail the construction of the circuit Hamiltonian for an arbitrary combination

of inductors, capacitors, and Josephson junctions. We define a node of the circuit
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(a) (b)

Figure 2-3: Cooper Pair Box. (a) Circuit representation of Cooper Pair Box, with
a Josephson junction and capacitor in parallel. (b) Illustration of the cosine potential
energy, leading to unevenly spaced energy levels.

as any continuous piece of metal, unseparated by junctions or capacitors. Typically

the ground metal is discounted from being classified as a nontrivial node, as we treat

it as the zero-voltage reference. We once again use Φ as our generalized position

coordinate, but now formally define it as the time integral of the voltage at the node

(referenced to ground).

Φ(𝑡) =

∫︁ 𝑡

−∞
𝑉 (𝑡′)𝑑𝑡′ (2.23)

The expressions for the kinetic and potential energy of the circuit can generally be

expressed in matrix notation as

𝑇 =
1

2
˙⃗
Φ𝑇C

˙⃗
Φ (2.24)

𝑉 =
1

2
Φ⃗𝑇LinvΦ⃗ + 𝑉JJ, (2.25)

where Φ⃗ is a vector of fluxes defined such that Φ𝑖 is the flux at node 𝑖, C is the circuit

capacitance matrix, Linv is another circuit matrix with units of inverse inductance,

and 𝑉JJ is the sum of all potential energies from Josephson junctions. For each

junction between node 𝑖 and 𝑗 (this can include the ground), its potential energy is

−𝐸𝐽𝑖𝑗 cos(𝜑𝑖 − 𝜑𝑗), where 𝜑𝑖 = 2𝜋Φ𝑖/Φ0 is the phase at each node, and the ground

phase is 0.
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Figure 2-4: Generic superconducting circuit composed of capacitors, induc-
tors, and Josephson junctions.

Following the previously outlined procedure, the circuit Lagrangian is

ℒ =
1

2
˙⃗
Φ𝑇C

˙⃗
Φ− 1

2
Φ⃗𝑇LinvΦ⃗− 𝑉JJ, (2.26)

with the vector of conjugate momenta defined as

𝜕ℒ

𝜕
˙⃗
Φ

= C
˙⃗
Φ ≡ 𝑞⃗, (2.27)

resulting in the Hamiltonian

𝐻̂ =
˙⃗
Φ · 𝑞⃗ − ℒ (2.28)

=
1

2
ˆ⃗𝑞𝑇C−1 ˆ⃗𝑞 +

1

2
ˆ⃗
Φ𝑇Linv

ˆ⃗
Φ + 𝑉JJ(

ˆ⃗
Φ) (2.29)

= 2𝑒2 ˆ⃗𝑛𝑇C−1 ˆ⃗𝑛+
1

2

(︂
Φ0

2𝜋

)︂2
ˆ⃗
𝜑𝑇Linv

ˆ⃗
𝜑+ 𝑉JJ(

ˆ⃗
𝜑). (2.30)

For full clarity we show two equivalent Hamiltonians (Eq. (2.29), Eq. (2.33)) expressed

using different pairs of conjugate variables

[Φ̂𝑗, 𝑞𝑘] = 𝑖ℏ𝛿𝑗𝑘 (2.31)

[𝜑𝑗, 𝑛̂𝑘] = 𝑖𝛿𝑗𝑘. (2.32)

As a final modification, each node is susceptible to a continuous charge offset 𝑛𝑔
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Node 1 Node 2

Figure 2-5: Circuit schematic of a tunable transmon capacitively coupled to
a resonator to illustrate general circuit QED techniques.

as described previously, and for each closed loop (junctions and inductors form closed

loops, capacitors break loops), we must account for the possibility of an external flux

being threaded through that loop. While the proper treatment is a complex problem

for fast changing fluxes [15, 108], for quasi-static flux changes (flux does not change

fast enough to cause qubit transitions), one simply needs to modify any of the phase

terms in each closed loop with an external phase, which is related to the external flux

by 𝜑ext = 2𝜋Φext/Φ0. In full generality, the circuit Hamiltonian with any assortment

of capacitors, inductors, and Josephson junctions is now

𝐻̂ = 2𝑒2(ˆ⃗𝑛− 𝑛⃗𝑔)
𝑇C−1(ˆ⃗𝑛− 𝑛⃗𝑔) +

1

2

(︂
Φ0

2𝜋

)︂2

(
ˆ⃗
𝜑− 𝜑⃗ext)

𝑇Linv(
ˆ⃗
𝜑− 𝜑⃗ext) + 𝑉JJ(

ˆ⃗
𝜑− 𝜑⃗ext).

(2.33)

As we will see in future Sections, charge is extremely damaging to qubit coherence.

Most qubits are therefore designed to be insensitive to charge offsets.

The biggest question remaining before we can construct a circuit Hamiltonian in

practice is how to determine the capacitance and inductance matrices C and Linv. In

this thesis, we will motivate an approach based on Kirchoff’s laws, but point out that

the theory of circuit quantization is much deeper for the interested reader [22, 98].

Using the circuit in Fig. 2-5 as an example, we illustrate a procedure for obtaining

the circuit Hamiltonian as follows

1. Identify the nontrivial nodes of the circuit. Here there is node 1 and node
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2.

2. Draw arrows to form a directed spanning tree across the nodes such

that all nodes are connected to ground through only one path (blue).

GND → 1, and GND → 2.

3. Draw remaining arrows in either direction to complete arrows be-

tween each node (gray). 1 → 2.

4. Apply Kirchhoff’s current law at each node, expressing the equations

in terms of Φ𝑖. We will assign a “+” sign to currents going into a node and a

“-” sign to currents going out of a node.

𝐶shΦ̈1 − 𝐶𝑔(Φ̈2 − Φ̈1) + 𝐼𝑐1 sin

(︂
2𝜋

Φ1

Φ0

)︂
+ 𝐼𝑐2 sin

(︂
2𝜋

Φ1

Φ0

)︂
= 0 (2.34)

𝐶𝑟Φ̈2 + 𝐶𝑔(Φ̈2 − Φ̈1) +
Φ2

𝐿
= 0 (2.35)

5. Invert the above equations using the Euler-Lagrange equations to

obtain the Lagrangian
𝜕ℒ
𝜕Φ𝑖

=
𝑑

𝑑𝑡

𝜕ℒ
𝜕Φ̇𝑖

. (2.36)

In practice, this can be done either by guessing and checking or assuming a

form of the Lagrangian ℒ = 𝑓1(Φ1,Φ2)+𝑓2(Φ̇1, Φ̇2), substituting into the Euler-

Lagrange equations, equating to corresponding terms in the current law equa-

tions, and integrating to find a ℒ which satisfies all equations. In either case,

the below Lagrangian can easily be verified, and we convert it into a matrix
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expression in Eq. (2.38).

ℒ =
1

2
𝐶shΦ̇

2
1 +

1

2
𝐶𝑟Φ̇

2
2 +

1

2
𝐶𝑔(Φ̇1 − Φ̇2)

2⏟  ⏞  
𝑇

−
(︂
Φ2

2

2𝐿
− 𝐸𝐽1 cos

(︂
2𝜋

Φ1

Φ0

)︂
− 𝐸𝐽2 cos

(︂
2𝜋

Φ1

Φ0

)︂)︂
⏟  ⏞  

𝑉

(2.37)

ℒ =
1

2
˙⃗
Φ𝑇

⎛⎝𝐶sh + 𝐶𝑔 −𝐶𝑔

−𝐶𝑔 𝐶𝑟 + 𝐶𝑔

⎞⎠ ˙⃗
Φ− 1

2
Φ⃗𝑇

⎛⎝0 0

0 1
𝐿

⎞⎠ Φ⃗

+ 𝐸𝐽1 cos

(︂
2𝜋

Φ1

Φ0

)︂
+ 𝐸𝐽2 cos

(︂
2𝜋

Φ1

Φ0

)︂
(2.38)

6. The quantities C, Linv and 𝑉JJ can now be easily identified and we

can write down the Hamiltonian

𝐻̂ = 2𝑒2 ˆ⃗𝑛𝑇C−1 ˆ⃗𝑛+
Φ2

0

8𝜋2

ˆ⃗
𝜑𝑇Linv

ˆ⃗
𝜑+ 𝐸𝐽1 cos(𝜑1) + 𝐸𝐽2 cos(𝜑1) (2.39)

= 2𝑒2 ˆ⃗𝑛𝑇C−1 ˆ⃗𝑛+
1

2
𝐸𝐿𝜑

2
2 + 𝐸𝐽1 cos(𝜑1) + 𝐸𝐽2 cos(𝜑1), (2.40)

(2.41)

where we’ve introduced 𝐸𝐿, the inductive energy defined as

𝐸𝐿 ≡
(︂
Φ0

2𝜋

)︂2
1

𝐿
. (2.42)

With the capacitance and inductance matrices sorted out, we complete the Hamilto-

nian by adding in continuous charge and flux offsets. In this case, there is only one

closed loop, and we choose to add the external flux to the junction

𝐻̂ = 2𝑒2(ˆ⃗𝑛− 𝑛⃗𝑔)
𝑇C−1(ˆ⃗𝑛− 𝑛⃗𝑔) +

1

2
𝐸𝐿𝜑

2
2 + 𝐸𝐽1 cos(𝜑1) + 𝐸𝐽2 cos(𝜑1 − 𝜑ext) (2.43)

.

Thankfully, the above procedure was only presented for pedagogy and is not nec-

essary to obtain the circuit Lagrangian (or Hamiltonian). By considering how each
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Variable Formula Variable Formula

𝑞 −𝑖
√︁

ℏ
2𝑍0

(𝑎− 𝑎†) Φ̂
√︁

ℏ𝑍0

2
(𝑎+ 𝑎†)

𝑛̂ − 𝑖√
2

(︁
𝐸𝐿

8𝐸𝐶

)︁1/4
(𝑎− 𝑎†) 𝜑 1√

2

(︁
8𝐸𝐶

𝐸𝐿

)︁1/4
(𝑎+ 𝑎†)

𝑍0

√︀
𝐿/𝐶 𝜔0 1/

√
𝐿𝐶

𝑛̂ 𝑞/2𝑒 𝜑 2𝜋Φ̂/Φ0

[Φ̂𝑗, 𝑞𝑘] 𝑖ℏ𝛿𝑗𝑘 [𝜑𝑗, 𝑛̂𝑘] 𝑖𝛿𝑗𝑘
𝐸𝐶 𝑒2/2𝐶 𝐸𝐽 𝐼𝑐Φ0/2𝜋
𝐸𝐿 (Φ0/2𝜋)

2/𝐿 𝛼 (𝐸2 − 𝐸1)− (𝐸1 − 𝐸0)

𝐻 2𝑒2 ˆ⃗𝑛C−1 ˆ⃗𝑛+
Φ2

0

8𝜋2

ˆ⃗
𝜑𝑇Linv

ˆ⃗
𝜑+ 𝑉𝐽𝐽(

ˆ⃗
𝜑)

Table 2.1: Table of formulas used in this section.

capacitor (or inductor) between two nodes would contribute to this matrix through

Kirchhoff’s laws and the Euler Lagrange equations, the following observation can be

made:

Each diagonal element C𝑖𝑖 is equal to the sum of all capacitances connected to node

𝑖 and each off-diagonal element C𝑖𝑗 is equal to the negative of the direct capacitance

between node 𝑖 and node 𝑗. Analogously, Each diagonal element Linv,𝑖𝑖 is equal to∑︀
𝐿′ 1/𝐿′ where the sum is taken over each inductor connected to node 𝑖, and each

off-diagonal element Linv,𝑖𝑗 is equal to -1 times the reciprocal of the direct inductance

between node 𝑖 and node 𝑗.

2.2 Numerical Diagonalization: From Pen and Pa-

per to Code

As warned previously, there is no hope for us to analytically solve the Hamiltonian

Eq. (2.33) for arbitrary circuits. In this Section, we develop tools to numerical di-

agonalize these Hamiltonians to obtain their eigenenergies and eigenvalues. The first

step in numerical diagonalization is choosing a basis for which all others states will be

expressed with. In order to make a good choice of basis, we borrow from the concept

of a “good quantum number”. If the eigenstates of a qubit can be expressed com-
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pactly using a given basis set, then it is a desirable basis. On the other hand, if the

eigenstates are very delocalized or converge slowly (or even not at all) with increasing

basis size, then it is a bad basis. This is especially important as the techniques in this

Section are inherently discretized, and the true infinite number of the basis states are

only well approximated by a finite set of states if one makes a good choice of basis.

Three common choices of bases that will be covered in this Section are the charge

basis, phase basis, and Fock basis. In general, different Hamiltonians will be more

efficiently diagonalized using different bases, and it is up to the engineer to develop

the intuition and expertise to choose the most efficient basis. For all of these potential

bases, the goal will be to express both 𝑛̂ and 𝜑 in terms of basis vectors.

2.2.1 Charge Basis

Assuming a quantization of charge, the charge basis consists of the set of states

which are the eigenstates of the charge operator 𝑛̂ with integer eigenvalue. The

phase operator, related to the charge basis through the Fourier transform, will be the

trickier operator to represent. Due to the dual nature of this operator, it will be most

convenient to obtain expressions for cos(𝑘𝜑), 𝑘 ∈ Z, and express any other functions

of 𝜑 through a Fourier cosine series. We can formally define the phase basis through

the discrete Fourier transform

|𝜑⟩ =
∞∑︁

𝑛=−∞

𝑒𝑖𝑛𝜑 |𝑛⟩ (2.44)

and additionally introduce the operator

𝑒𝑖𝜑 ≡ 1

2𝜋

∫︁ 2𝜋

0

𝑒𝑖𝜑 |𝜑⟩ ⟨𝜑| 𝑑𝜑. (2.45)
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Using the above the equations, we can undertake some algebraic manipulations to

obtain an expression for cos(𝑘𝜑).

cos(𝑘𝜑) =
1

2

(︁
𝑒𝑖𝑘𝜑 + 𝑒−𝑖𝑘𝜑

)︁
(2.46)

=
1

4𝜋

∫︁ 2𝜋

0

(︀
𝑒𝑖𝑘𝜑 + 𝑒−𝑖𝑘𝜑

)︀
|𝜑⟩ ⟨𝜑| 𝑑𝜑 (2.47)

=
1

4𝜋

∫︁ 2𝜋

0

∑︁
𝑛,𝑚

(︀
𝑒𝑖𝑘𝜑 + 𝑒−𝑖𝑘𝜑

)︀
𝑒𝑖𝑛𝜑𝑒−𝑖𝑚𝜑 |𝑛⟩ ⟨𝑚| 𝑑𝜑 (2.48)

=
1

4𝜋

∫︁ 2𝜋

0

∑︁
𝑛,𝑚

(︀
𝑒𝑖(𝑘+𝑛−𝑚)𝜑 + 𝑒𝑖(−𝑘+𝑛−𝑚)

)︀
|𝑛⟩ ⟨𝑚| 𝑑𝜑 (2.49)

=
1

2

∑︁
𝑛

|𝑛⟩ ⟨𝑛+ 𝑘|+ |𝑛⟩ ⟨𝑛− 𝑘| (2.50)

=
1

2

∑︁
𝑛

|𝑛⟩ ⟨𝑛+ 𝑘|+ |𝑛+ 𝑘⟩ ⟨𝑛| (2.51)

Similar derivations show that the phase difference between two nodes is

cos(𝜑1 − 𝜑2) =
1

2

(︁
𝑒𝑖𝜑1𝑒−𝑖𝜑2 + 𝑒−𝑖𝜑1𝑒𝑖𝜑2

)︁
(2.52)

=
1

2

(︃[︃∑︁
𝑛

|𝑛⟩ ⟨𝑛+ 1|

]︃
1

⊗

[︃∑︁
𝑛

|𝑛+ 1⟩ ⟨𝑛|

]︃
2

)︃
(2.53)

+
1

2

(︃[︃∑︁
𝑛

|𝑛+ 1⟩ ⟨𝑛|

]︃
1

⊗

[︃∑︁
𝑛

|𝑛⟩ ⟨𝑛+ 1|

]︃
2

)︃
, (2.54)

and the phase difference between a node and an external flux (represented as a phase)

is

cos(𝜑− 𝜑ext) =
1

2

(︁
𝑒−𝑖𝜑ext𝑒𝑖𝜑 + 𝑒𝑖𝜑ext𝑒−𝑖𝜑

)︁
(2.55)

=
1

2

(︃∑︁
𝑛

𝑒−𝑖𝜑ext |𝑛⟩ ⟨𝑛+ 1|+ 𝑒𝑖𝜑ext |𝑛+ 1⟩ ⟨𝑛|

)︃
. (2.56)

While theoretically all summations in the above formulas are infinite, we must choose

a truncated Hilbert space size of 2𝑛max + 1 in practice. The optimal value of 𝑛max

needs to be determined through trial and error, by considering the trade-off between

accuracy and convergence speed. Explicitly, charge states would be represented by
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arrays such as

|𝑛 = −1⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

1

0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|𝑛 = 0⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|𝑛 = 1⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

0

1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.57)

and the important operators 𝑛̂ and cos(𝜑) are represented as the following matrices

𝑛̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
−𝑛max

−𝑛max + 1
. . .

𝑛max

⎞⎟⎟⎟⎟⎟⎟⎠ cos(𝜑) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

1
. . .

. . . 1

1

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.58)

These equations should cover all common Hamiltonians that may arise in circuit QED

and allow for numerical diagonalization by expressing operators as matrices and states

as vectors using the charge eigenstates as the basis.

2.2.2 Phase Basis

In the phase basis, basis states are now eigenstates of the phase operator 𝜑 |𝜑⟩ = 𝜑 |𝜑⟩,

and the charge operator is expressed using its definition as a phase derivative

𝑛̂ ≡ −𝑖 𝑑
𝑑𝜑
. (2.59)

Similar to before, we choose a minimum and maximum phase 𝜑max in addition to a

step size ∆ to numerically represent our phase states. The phasis basis states are
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analogously written in array as

|𝜑 = −∆⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

1

0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|𝜑 = 0⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

1

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
|𝜑 = ∆⟩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

0

1
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.60)

This basis then allows us to numerically represent the derivative operator as a sym-

metric derivative, with subscripts indexing the phase states

𝑛̂ = −𝑖
∑︁
𝑖

|𝜑⟩𝑖+1 − |𝜑⟩𝑖−1

2∆
⟨𝜑|𝑖 . (2.61)

One word of caution is that many Hamiltonians contain just an 𝑛̂2 term, and in those

cases it’s correct to use the following for 𝑛̂2, as opposed to the square of the 𝑛̂ matrix.

𝑛̂2 = −
∑︁
𝑖

|𝜑⟩𝑖+1 − 2 |𝜑⟩𝑖 + |𝜑⟩𝑖−1

∆2
⟨𝜑|𝑖 (2.62)

This avoids numerical artifacts related to the discretization of the basis states

If we remember that Φ was the canonical position and 𝑞 was the canonical mo-

mentum, then expressing eigenstates in the phase basis is analogous to solving for

position state wavefunctions 𝜓(𝑥) in introductory quantum classes. Likewise, the

previous diagonalization techniques in the charge basis were analogous to solving for

wavefunctions in momentum space. This analogy is reinforced by Eq. (2.59), which

exactly resembles the equation for the momentum operator (up to an ℏ factor) in

terms of the position.
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2.2.3 Fock Basis

The final basis we will consider is spanned by the Fock states, eigenstates of the

harmonic oscillator Hamiltonian. While neither the charge nor the phase operator is

diagonal in this basis, it is a well motivated choice of basis for systems that closely

resemble harmonic oscillators. In this basis, the charge and phase operators are

expressed in terms of the familiar creation and annihilation operators

𝑛̂ = − 𝑖√
2

(︂
𝐸𝐿

8𝐸𝐶

)︂1/4

(𝑎− 𝑎†) (2.63)

𝜑 =
1√
2

(︂
8𝐸𝐶

𝐸𝐿

)︂1/4

(𝑎+ 𝑎†). (2.64)

These equations can be derived from the previous relations [Eq. (2.10) and Eq. (2.11)]

by making the usual substitutions 𝐸𝐿 = (Φ0/2𝜋)
2/𝐿 and 𝐸𝐶 = 𝑒2/2𝐶. In circuits

without a pure inductance, the 𝐸𝐿 can often be substituted by the Josephson energy

𝐸𝐽 by grouping the quadratic term from the cosine expansion with the kinetic energy.

Represented in matrix form, these creation and annihilation operators are

𝑎† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1

√
2

. . .
√
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
1

√
2

. . .
√
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.65)

2.3 Quantization of Different Qubits

With the ability to write down any circuit Hamiltonian and compute its eigenenergies

and eigenstates, we return back to superconducting qubits, ready to investigate their

properties. This Section is also a good opportunity for those needing practice with

circuit QED to use the tools from previous two Sections of this Chapter and follow

along by reproducing all Hamiltonians and energy spectra.
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2.3.1 Cooper Pair Box

When last examined, the Cooper pair box Hamiltonian [Eq. (2.21)] was claimed to

yield uneven energy levels due to the cosine potential energy differing from a parabolic

potential energy. This unevenness in the first three energy levels is precisely defined

as the anharmonicity of the qubit

ℏ𝛼 ≡ (𝐸2 − 𝐸1)− (𝐸1 − 𝐸0), (2.66)

which we can now calculate explicitly by diagonalizing Eq. (2.21) using the charge

basis [see Fig. 2-6]. In addition to uneven energy levels, we can also explicitly see

the dependence of the qubit energies as a function of the offset charge 𝑛𝑔. Due to

the capricious nature of the offset charge, this was ultimately seen as an unaccept-

able feature of the qubit, as charge fluctuations are both uncontrollable and cause

considerable qubit dephasing. Although flux noise factors in identically, individual

charge defects can cause jumps on the order of 𝑒, whereas individual magnetic defects

typically change the flux by much less than Φ0. This qubit can be conceptualized

as a superconducting island storing a number of cooper pairs. The quantum state is

then impacted by cooper pairs tunneling across the junction to change the number on

the island as well as by any other charge noise coupled in from the environment. We

can increase the ease in which cooper pairs tunnel across the junction by increasing

𝐸𝐽/𝐸𝐶 , so that in the eigenstates of the qubit, charge is continually tunneling across

the junction. Naturally, this reduces the sensitivity to offset charge; however, increas-

ing 𝐸𝐽/𝐸𝐶 infinitely causes the potential energy to once again become parabolic. This

increase in 𝐸𝐽/𝐸𝐶 means an increase in current flowing through the junction, which

when large enough causes the junction to behave as a linear inductor. Fortunately the

regime of 𝐸𝐽/𝐸𝐶 ≈ 50 exists to sufficiently suppress charge sensitivity while retaining

a sufficiently anharmonic energy spectrum.
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Figure 2-6: Energy spectra of the Cooper Pair Box vs. offset charge. As
the ratio 𝐸𝐽/𝐸𝐶 is increased, charge dispersion exponentially decreases. The regime
𝐸𝐽/𝐸𝐶 ≈ 50 defines the typical transmon qubit regime.

2.3.2 Transmon

The reduction in dephasing and insensitivity to offset charge proved to be such impact-

ful changes that the original Cooper Pair Box in the regime 𝐸𝐽/𝐸𝐶 ≫ 1 (and practi-

cally speaking, > 50) was termed a new qubit called the transmon [44] (although its

circuit is identical to the Cooper Pair Box circuit). To this day, the transmon remains

the de facto qubit, favored for its simplicity of circuit design, intuitive understanding

as a perturbation on a harmonic oscillator, and impressive performance [4, 1].
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Duffing Oscillator

The resemblance of the transmon to the harmonic oscillator enables a useful ap-

proximation by expanding the cosine potential and then inserting the Fock basis

representation of the charge and phase operators [Eq. (2.63) and Eq. (2.64)]. Since

𝐸𝐽/𝐸𝐶 ≫ 1, higher order terms of the cosine expansion fall off rapidly and the trans-

mon can be approximately described as a harmonic oscillator with a quartic correction

term to its potential energy

𝐻̂ = 4𝐸𝐶 𝑛̂
2 − 𝐸𝐽

(︂
1− 1

2
𝜑2 +

1

24
𝜑4

)︂
(2.67)

=
√︀

8𝐸𝐽𝐸𝐶

(︂
𝑎†𝑎+

1

2

)︂
− 𝐸𝐽 − 𝐸𝐶

12

(︀
𝑎† + 𝑎

)︀4 (2.68)

=
(︁√︀

8𝐸𝐽𝐸𝐶 − 𝐸𝐶

)︁
𝑎†𝑎− 𝐸𝐶

2
𝑎†𝑎†𝑎𝑎+ const. (2.69)

= ℏ𝜔𝑎†𝑎+ ℏ
𝛼

2
𝑎†𝑎†𝑎𝑎+ const. (2.70)

This final equation gives precisely the mathematical form of an anharmonic oscillator

with qubit frequency 𝜔 and anharmonicity 𝛼, allowing for a simplistic modeling of the

qubit. Typical values of the qubit frequency are 3 ∼ 6GHz with an anharmonicity of

−200 ∼ −300MHz.

Tunable Transmon

Transmons designed in this way have a fixed frequency depending on their 𝐸𝐶 and

𝐸𝐽 and cannot be changed after device fabrication. By increasing the complexity of

the transmon circuit by one additional junction, we can form a tunable transmon; the

effective critical current (or Josephson energy) can be tuned by adjusting the external

flux through the closed loop [see Fig. 2-7]

𝐻̂ = 4𝐸𝐶 𝑛̂
2 − 𝐸𝐽1 cos(𝜑)− 𝐸𝐽2 cos(𝜑− 𝜑ext). (2.71)

The straightforward approach is to numerical diagonalize the above Hamiltonian

using the charge basis, but one can alternatively perform some trigonometric ma-
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(a) (b)

Figure 2-7: Asymmetric tunable-transmon. (a) Circuit diagram of a tunable-
transmon. (b) Energy spectrum of Transmon with parameters 𝐸𝐶/ℎ = 0.2GHz,
𝐸𝐽1/ℎ = 13GHz, and 𝐸𝐽2/ℎ = 5GHz.

nipulations to convert this Hamiltonian back into a single cosine potential with a

flux dependent Josephson energy [44]. This results in the same Hamliltonian as the

fixed-frequency transmon with the substitution

𝐸𝐽 → 𝐸𝐽Σ cos

(︂
𝜋Φ

Φ0

)︂√︃
1 + 𝑑2 tan2

(︂
𝜋Φ

Φ0

)︂
, (2.72)

where 𝐸𝐽Σ ≡ 𝐸𝐽1+𝐸𝐽2 is the summed Josephson energy and 𝑑 ≡ (𝐸𝐽2−𝐸𝐽1)/(𝐸𝐽1+

𝐸𝐽2) is the junction asymmetry parameter. This new value of 𝐸𝐽 has a minimum

value of |𝐸𝐽1 −𝐸𝐽2| and a maximum value of 𝐸𝐽1 +𝐸𝐽2, supporting the notion that

the second junction can be tuned to constructively or destructively interfere with the

first. Not only does this tunability help guard against fabrication variations, but it

also enables new methods of qubit control [17, 94].

2.3.3 C-Shunt Flux-Qubit

The C-shunt flux qubit [105] has in series a large shunt capacitance, a small Joseph-

son junction, and two large Josephson junctions all in parallel. This has historically

developed from the original persistent-current flux qubit [60, 71] by adding an addi-

tional capacitive shunt in order to improve its reproducibility. The Hamiltonian of
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the qubit is

𝐻̂ = 2𝑒2 ˆ⃗𝑛C−1 ˆ⃗𝑛− 𝛼𝐸𝐽 cos(𝜑2 − 𝜑ext)− 𝐸𝐽 cos(𝜑1)− 𝐸𝐽 cos(𝜑2 − 𝜑1), (2.73)

with capacitance matrix

C =

⎛⎝2𝐶 −𝐶

−𝐶 𝛼𝐶 + 𝐶 + 𝐶sh

⎞⎠ . (2.74)

Each circuit variable is defined according to the circuit diagram in Fig. 2-8(a). As our

first two-node circuit, numerical diagonalization will take noticeably longer due to the

exponentially increasing size of the Hilbert space with number of nodes. Nevertheless,

sticking to the charge basis diagonalization allows us to uncover the following energy

spectra plotted in Fig. 2-8(b).

(a) (b)

Figure 2-8: Capacitively-shunted flux qubit (a) Circuit diagram of a C-shunt
flux qubit. (b) Energy spectrum of qubit with parameters 𝐶sh = 51 fF, 𝐶 = 5 fF,
𝐸𝐽/ℎ = 84.2GHz, 𝛼 = 0.43.

The small junction is often called the “black-sheep” junction or the “alpha” junction

and is shunted by two larger junctions which primarily act as an inductance. It is

called this because its Josephson energy is 𝛼𝐸𝐽 , where 𝐸𝐽 is the Josephson energy of

one of the large junctions. Like the transmon, this qubit at its sweet spot (𝜑ext = 𝜋)

behaves as an anharmonic oscillator, with a similar frequency but with a positive
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(and typically larger) anharmonicity. This qubit was primarily used in this thesis

work for its sensitivity to flux noise away from the sweet spot in order to characterize

and minimize flux noise in superconducting qubits [see Chapter 3].

2.3.4 Fluxonium

The fluxonium qubit is the primary qubit of interest in this thesis work. In compar-

ison to the flux qubit, the fluxonium has an increased inductive shunt which reduces

the qubit sensitivity to flux noise. Moreover, the number of junctions in the shunt

is increased to reach the linear regime of the junction array. This qubit has quickly

gained traction in recent years, owing to its much larger anharmonicity and longer

coherence times than transmon qubits [56, 29, 67], and is thus a promising candidate

for gate-based quantum information processing [66]. In contrast with the transmon,

fluxonium transition frequencies are typically less than 1GHz at the half-flux sweet

spot with coherence times upwards of 1ms and anharmonicities of several GHz. These

two characteristics bring fluxonium extremely close to the ideal long-lived, two-level

system model of a qubit. The qubit circuit consists of a capacitor, a Josephson junc-

tion, and a series of larger junctions, all in parallel. The first priority is to simplify the

circuit from an 𝑁 node circuit (where 𝑁 is the number of junctions) into a single-node

circuit. Only then will it be feasible to numerically diagonalize the qubit Hamiltonian.

We first consider the kinetic energy (capacitive energies) of the circuit drawn in

Fig. 2-9

𝑇 =
𝐶ar

2
Φ̇2

1 +
𝐶ar

2
(Φ̇2 − Φ̇1)

2 + · · ·+ 𝐶ar

2
(Φ̇𝑁 − Φ̇𝑁−1)

2 +
𝐶sh + 𝐶small

2
Φ̇2

𝑁 . (2.75)

In the limit of a large number of junctions, we can assume the phase drop across

successive junctions in the array is the same and equal to 1/𝑁 of the total phase drop

Φ𝑖 − Φ𝑖−1 = Φ1 = Φ𝑁/𝑁. (2.76)

68



1

Figure 2-9: Circuit representation of a fluxonium qubit using a Josephson
junction array.

The kinetic energy is thereby simplified as

𝑇 =
𝐶ar/𝑁 + 𝐶sh + 𝐶small

2
Φ̇2

𝑁 (2.77)

The potential energy can be simplified using the same phase drop assumption and

Taylor expanding the large junction cosine potentials (expansion is more accurate for

larger 𝑁)

𝑉 = −𝐸𝐽,ar cos(𝜑1)− · · · − 𝐸𝐽,ar cos(𝜑𝑁 − 𝜑𝑁−1)− 𝐸𝐽 cos(𝜑𝑁 − 𝜑ext) (2.78)

= −𝑁𝐸𝐽,ar cos

(︂
𝜑𝑁

𝑁

)︂
− 𝐸𝐽 cos(𝜑𝑁 − 𝜑ext) (2.79)

≈ −𝑁𝐸𝐽,ar

(︂
1− 𝜑2

𝑁

2𝑁2

)︂
− 𝐸𝐽 cos(𝜑𝑁 − 𝜑ext) (2.80)

=
1

2

𝐸𝐽,ar

𝑁
𝜑2
𝑁 − 𝐸𝐽 cos(𝜑𝑁 − 𝜑ext) + const. (2.81)

This simplification reveals that a large array of junctions behaves identically to a

classical inductance. The reason junctions are favored over simply using a long stretch

of wire is the superior areal compactness which junctions produce inductance. This is

owed to the fact that the inductance from junctions comes from the kinetic inductance
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of the superconducting condensate, rather than a geometric inductance. Alternatively,

other high-kinetic-inductance materials may be used to form the inductance in place

of a junction chain, but those works fall out of the scope of this thesis [35, 38, 43].

With expressions for the kinetic and potential energies that fluxonium Hamiltonian

can be written as

𝐻̂ = 4𝐸𝐶 𝑛̂
2 +

1

2
𝐸𝐿𝜑

2 − 𝐸𝐽 cos(𝜑− 𝜑ext), (2.82)

where we’ve introduced 𝐸𝐶 = 𝑒2/[2(𝐶ar/𝑁+𝐶sh+𝐶small)], 𝐸𝐿 = 𝐸𝐽,ar/𝑁 , and 𝜑 = 𝜑𝑛.

We re-emphasize here that the quantization techniques in this Chapter assume quasi-

static flux offsets. For the fluxonium Hamiltonian specifically, any component of the

external flux that is not quasi-static must go inside the inductance term [15, 108]. Due

to the presence of the non-periodic 𝜑2 term, the charge basis is an undesired choice

to numerically diagonalize this Hamiltonian. Instead, a typical fluxonium is most

conveniently diagonalized in the Fock or phase basis. An example energy spectrum

and wavefunctions are plotted in Fig. 2-10.

In analogy to varying 𝐸𝐽/𝐸𝐶 in the Cooper pair box, one can increase 𝐸𝐶 (or de-

crease 𝐸𝐿) relative to the other parameters to create “light” fluxonium, characterized

by the qubit modes being delocalized across many of the cosine potential wells [see

Figs. 2-11(a-b)], and one can decrease 𝐸𝐶 (or increase 𝐸𝐿) relative to other parameters

to create a “heavy” fluxonium, characterized by qubit modes being heavily localized

inside the cosine wells [see Figs. 2-11(c-d)]. As the fluxonium becomes heavier, the

Fock basis is found to converge more and more slowly. When the qubit wavefunctions

becomes sufficiently localized, they begin to have a definitive value of phase, resulting

in the phase basis becoming the more efficient basis to express the Hamiltonian.
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(a) (b)

(c) (d)

Figure 2-10: Fluxonium qubit. (a) Circuit diagram of fluxonium. (b) Energy
spectrum of a fluxonium with parameters 𝐸𝐶/ℎ = 1.3GHz, 𝐸𝐿/ℎ = 1GHz, 𝐸𝐽/ℎ =
5.7GHz. (c) Phase-space wavefunctions of the fluxonium at 0 flux, showing the first
four energy states of the qubit. (d) Wavefunctions of the fluxonium at a half-flux
quantum.
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(a) (b)

(c) (d)

Figure 2-11: Light and heavy variants of fluxonium. (a) Energy spectrum
of a light fluxonium, with parameters 𝐸𝐶/ℎ = 7.07GHz, 𝐸𝐿/ℎ = 66.5MHz,
𝐸𝐽/ℎ = 4.7GHz [58]. (b) Wavefunctions of the corresponding light fluxonium.
(c) Energy spectrum of a heavy fluxonium, with parameters 𝐸𝐶/ℎ = 0.479GHz,
𝐸𝐿/ℎ = 0.132MHz, 𝐸𝐽/ℎ = 3.395GHz [109]. (d) Wavefunctions of the correspond-
ing heavy fluxonium.
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Selection Rules

At at external flux of Φext = 0 or Φext = 0.5Φ0, the fluxonium qubit has a sym-

metric potential energy (𝑉 (Φ) = 𝑉 (−Φ)), meaning eigenstates of our Hamiltonian

can be chosen to have definite parity; these properties are shared with the harmonic

oscillator eigenstates. When viewed in the Fock basis, eigenstates then only have fi-

nite amplitude in odd-numbered photon states (odd parity) or even-numbered photon

states (even parity). Under the dipole approximation, all single-photon operations

involve either 𝑎̂ or 𝑎̂† acting on the initial state. Therefore, a single photon can only

transition odd-parity states into even-parity states and vice-versa. Transitions such

as |0⟩ ↔ |2⟩ are thereby parity forbidden. However, unlike the harmonic oscillator,

single-photon transitions need not only change the fluxonium excitation number by

one, and transitions such as |0⟩ ↔ |3⟩ and |1⟩ ↔ |4⟩ are allowed.

2.3.5 Grounded vs. Differential Qubits

Previously, we quantized our circuits assuming they were grounded at one end. What

if instead no nodes were directly connected to ground? These qubits are termed float-

ing or differential [see Fig. 2-12]. While conceptually it may be clear that a differ-

ential qubit should not behave wildly differently, an obstacle arises when performing

the circuit quantization: there is now an additional node, leaving no possibility that

the Hamiltonian can be exactly equal to its grounded variant.

To recover the original qubit mode, we must perform of change of variables into

the sum and difference variables of the two nodes. Taking the cue from the potential

energy only depending on the difference between the two nodes, we make our qubit

mode the difference mode and the summed mode becomes a free kinetic mode which

can be discarded freely.

˜⃗
Φ = MΦ⃗ (2.83)⎛⎝Φ̃1

Φ̃2

⎞⎠ =

⎛⎝1 1

1 −1

⎞⎠⎛⎝Φ1

Φ2

⎞⎠ =

⎛⎝Φ1 + Φ2

Φ1 − Φ2

⎞⎠ (2.84)
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(a) (b)

Figure 2-12: Differential variant of a qubit. (a) Circuit diagram of a differential
fluxonium qubit. (b) Image of a differential fluxonium qubit in a .gds file.

It is important to make this variable substitution in the Lagrangian, before computing

the Hamiltonian. After doing so, we arrive at a Hamiltonian with the exact same form

with the original capacitance matrix C replaced with the new transformed matrix

C̃ = (M𝑇 )−1CM−1 (2.85)

In general, all variable transformations performing this sum and difference mode

transformation can be written as a symmetric matrix, so a further simplification can

be made in those cases by equating 𝑀𝑇 = 𝑀 . After the variable transformation,

the qubit mode is well described by only the difference mode (Φ̃2 in the example),

and terms involving the summed mode (Φ̃1 in the example) can be safely discarded.

This procedure can be extended to larger systems with both differential and grounded

qubits, and in these systems, the sum and difference transformation is only applied

to the differential qubit nodes; M will be the identity when indexed across all other

nodes. Examples of this transformation are shown in Section A.2 for a circuit with

two differential fluxonium qubits and a grounded transmon.
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2.4 Building upon a Qubit

The next step in understanding the physics of a superconducting quantum processor is

to learn how additional circuit components interface with the qubits and how different

qubits couple together. These additional coupled components give us the tools to

readout the state of a qubit, to control qubits, and to perform gates in multi-qubit

systems.

2.4.1 Qubit - Resonator Coupling

Superconducting resonators are typically long meandering stretches of a coplanar

waveguide terminated at each end by either a short or an open. The most common

use of resonators is to off-resonantly couple to the qubit, so that it’s transmission

or reflection properties are altered depending on the qubit state. By coupling our

external control signals to the readout resonator instead of the qubit directly, we

provide an additional layer of protection for the qubit against the outside world and

improve qubit coherence.

To illustrate the circuit QED techniques with a specific example, we will consider

a single-node qubit with capacitance 𝐶1 capacitively coupled (𝐶𝑔) to a resonator with

capacitance 𝐶𝑟 [see Fig. 2-13]. The Hamiltonian can be written in the form Eq. (2.33)

with

C =

⎛⎝𝐶1 + 𝐶𝑔 −𝐶𝑔

−𝐶𝑔 𝐶𝑟 + 𝐶𝑔

⎞⎠ (2.86)

One can expand the kinetic portion of the Hamiltonian (𝑇 = 2𝑒2 ˆ⃗𝑛𝑇C−1 ˆ⃗𝑛) to find

that the term coupling the qubit and the resonator is

𝐻̂coupling = 4𝑒2C−1[0, 1]𝑛̂1𝑛̂𝑟 (2.87)

= 4𝑒2
𝐶𝑔

𝐶1𝐶𝑔 + 𝐶1𝐶𝑟 + 𝐶𝑔𝐶𝑟

𝑛̂1𝑛̂𝑟 (2.88)

This by itself is completely sufficient to model the interaction between the qubit and

the resonator, but this coupling term is typically re-expressed using a variable 𝑔 which
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(b)
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Figure 2-13: Qubit coupled to resonator (a) Circuit diagram of a generic single-
node qubit capacitively coupled to a readout resonator. (b) Image of a qubit ca-
patively coupled to a quarter-wavelength resonator, which is in turn coupled to a
transmission line.

is unfortunately defined differently across the fluxonium community and transmon

community [44, 47, 56].

Fluxonium - Resonator Coupling

For fluxonium qubits, the coupling 𝑔 is typically defined as

𝐻̂coupling = −𝑖ℏ𝑔𝑛̂1(𝑎̂𝑟 − 𝑎̂†𝑟), (2.89)

where the resonator charge operator has been written out explicitly with its matrix

elements absorbed into 𝑔. The coupling strength 𝑔 notably does not include the qubit

matrix elements, so that the coupling defined in this way is independent of the qubit

and completely determined by the capacitance network and resonator. By equating

76



this with Eq. (2.88), we find

ℏ𝑔 = 𝑒
√
2ℏ
(︂
𝐶𝑟

𝐿𝑟

)︂1/4
𝐶𝑔

𝐶1𝐶𝑔 + 𝐶1𝐶𝑟 + 𝐶𝑔𝐶𝑟

(2.90)

This can be re-expressed in terms of the impedance of the resonator, 𝑍0 =
𝜋
4

√︁
𝐿
𝐶

for

a 𝜆/4-resonator, which is usually designed to be 50Ω

ℏ𝑔 = 𝑒

√︂
𝜋ℏ
2𝑍0

𝐶𝑔

𝐶1𝐶𝑔 + 𝐶1𝐶𝑟 + 𝐶𝑔𝐶𝑟

. (2.91)

Transmon - Resonator Coupling

For transmon qubits, the coupling 𝑔 is often defined through the following coupling

Hamiltonian

𝐻̂coupling = −ℏ𝑔(𝑎1 − 𝑎†1)(𝑎𝑟 − 𝑎†𝑟). (2.92)

Instead of being motivated as an intrinsic geometric quantity of the circuit, this 𝑔

describes the size of the avoided level crossing (2𝑔) between the resonator and the

qubit when they are on resonance. By equating this with Eq. (2.88),

𝑔 =
1

2

√︀
𝜔1𝐶1

√︀
𝜔𝑟𝐶𝑟

𝐶𝑔

𝐶1𝐶𝑔 + 𝐶1𝐶𝑟 + 𝐶𝑔𝐶𝑟

. (2.93)

To create even more confusion with different conventions, we point out that this 𝑔 is

often expressed in the form

ℏ𝑔 = 2𝛽𝑉rms ⟨1| 𝑛̂1 |0⟩ (2.94)

where 𝑉rms is the root mean square voltage of the resonator 𝑉rms =
√︀
ℏ𝜔𝑟/2𝐶𝑟 and 𝛽

is defined as the ratio between the gate capacitance and the total qubit capacitance

𝛽 = 𝐶𝑔/(𝐶𝑔 +𝐶1). To obtain this formula from the more generic equation Eq. (2.93),

one needs to make the approximation 𝐶𝑟 ≫ 𝐶1, 𝐶𝑔
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Dispersive Shift

In order to readout the qubit state, the resonators are dispersively coupled to the

qubit – the coupling strength between the relevant qubit transition and the resonator

is much smaller than their detuning. This is typically stated as |𝑔/∆| ≪ 1 using the

transmon-resonator definition of 𝑔 for states |0⟩ and |1⟩ of the qubit, but should be

revised to be |𝑔 ⟨𝑖| 𝑛̂ |𝑗⟩ /∆| ≪ 1 for the transition |𝑖⟩ ↔ |𝑗⟩ of a general qubit to be

dispersively coupled to the resonator, where ∆ is the detuning between that transi-

tion and the resonator frequency and 𝑔 is the geometric coupling strength excluding

matrix elements. It is in this dispersive limit in which a mostly longitudinal coupling

exists between the dressed qubit states and the resonator, allowing for a quantum

nondemolition (QND) readout. Otherwise, the readout of the resonator can cause

state transitions in the qubit, resulting in a non-QND readout.

In this section we will derive the frequency shift of the resonator 𝜒𝑗 depending on

the qubit being in |𝑗⟩ using second-order perturbation theory. Taking the fluxonium

convention of 𝑔, we can write the complete coupled Hamiltonian as

𝐻 = ℏ
∑︁
𝑗

𝜔𝑗 |𝑗⟩ ⟨𝑗|+ ℏ𝜔𝑟𝑎
†𝑎− 𝑖ℏ𝑔𝑛̂(𝑎− 𝑎†). (2.95)

Assuming a dispersive coupling, the frequency shift of some state |𝑗,𝑁⟩ (representing

the |𝑗⟩ excitation of the qubit and 𝑁th excitation of the resonator) up to second-order

perturbation theory is

∆𝜔𝑗,𝑁 =
∑︁

(𝑘,𝑀 )̸=(𝑗,𝑁)

| ⟨𝑘,𝑁 | 𝑔𝑛̂(𝑎− 𝑎†) |𝑗,𝑁⟩ |2

𝜔𝑗,𝑁 − 𝜔𝑘,𝑀

(2.96)

=
∑︁
𝑘 ̸=𝑗

| ⟨𝑘,𝑁 + 1| 𝑔𝑛̂(𝑎− 𝑎†) |𝑗,𝑁⟩ |2

𝜔𝑗,𝑁 − 𝜔𝑘,𝑁+1

+
| ⟨𝑘,𝑁 − 1| 𝑔𝑛̂(𝑎− 𝑎†) |𝑗,𝑁⟩ |2

𝜔𝑗,𝑁 − 𝜔𝑘,𝑁−1

(2.97)

= 𝑔2
∑︁
𝑘 ̸=𝑗

2𝜔𝑗,𝑘𝑁 + (𝜔𝑗,𝑘 + 𝜔𝑟)

𝜔2
𝑗,𝑘 − 𝜔2

𝑟

| ⟨𝑘| 𝑛̂ |𝑗⟩ |2 (2.98)

= 𝑔2
∑︁
𝑘 ̸=𝑗

2𝜔𝑗,𝑘𝑁

𝜔2
𝑗,𝑘 − 𝜔2

𝑟

| ⟨𝑘| 𝑛̂ |𝑗⟩ |2 + 𝑔2
∑︁
𝑘 ̸=𝑗

1

𝜔𝑗,𝑘 − 𝜔𝑟

| ⟨𝑘| 𝑛̂ |𝑗⟩ |2 (2.99)
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where the summation is taken over all states excluding the initial state |𝑗,𝑁⟩.

The first term in Eq. (2.99), proportional to 𝑁 , is termed the dispersive shift

and causes a change in the resonator frequency dependent on the qubit state (and

vice-versa).

𝜒𝑗 ≡ 𝑔2
∑︁
𝑘 ̸=𝑗

2𝜔𝑗,𝑘

𝜔2
𝑗,𝑘 − 𝜔2

𝑟

| ⟨𝑘| 𝑛̂ |𝑗⟩ |2 (2.100)

A common re-writing of this formula involves converting the charge matrix elements

into phase matrix elements. This can be done using the facts 1) [𝜑, 𝑛̂] = 𝑖 and 2) 𝜑

commutes with the entirity of 𝐻̂ except for the 4𝐸𝐶 𝑛̂
2 term

⟨𝑗| [𝜑, 𝐻̂] |𝑘⟩ = (𝜔𝑘 − 𝜔𝑗) ⟨𝑗|𝜑 |𝑘⟩ (fact 1) (2.101)

⟨𝑗| [𝜑, 𝐻̂] |𝑘⟩ = 4𝐸𝐶 ⟨𝑗| [𝜑, 𝑛̂2] |𝑘⟩ (fact 2) (2.102)

= 8𝑖𝐸𝑐 ⟨𝑗| 𝑛̂ |𝑘⟩ (2.103)

=⇒ ⟨𝑗| 𝑛̂ |𝑘⟩ = 𝜔𝑘𝑗

8𝑖𝐸𝐶

⟨𝑗|𝜑 |𝑘⟩ (2.104)

The second term in Eq. (2.99) represents a global change in the energy of all

resonator states, dependent on the qubit state. Energy changes of this nature are

known as Lamb shifts. These types of energy changes cannot be directly measured

in spectroscopy without uncoupling the qubit from the resonator. Most pertinently,

we would like the resonator to have a different frequency depending on whether the

qubit is in the ground or excited state. We will use this to define 𝜒, the dispersive

shift

2𝜒 ≡ (𝜔1,𝑁+1 − 𝜔1,𝑁)− (𝜔0,𝑁+1,−𝜔0,𝑁) (2.105)

For the fluxonium qubit, due to the absence of nearest-neighbor selection rules (a sin-

gle photon can change the qubit state by more than one excitation), an unwieldy sum

must be kept in the final expression, as several different transitions may impact the

dispersive shift, and these transitions will depend on the exact fluxonium parameters

as well. In the regime of fluxonium used in this thesis work, the |0⟩ ↔ |3⟩ transition

was typically closest to the resonator and caused the largest level repulsion.
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For transmon qubits, the presence of nearest-neighbor selection rules allows for

great simplification for 𝜒. In keeping with typical transmon conventions, we omit the

qubit charge matrix element from the 𝜒 expression and assume it is accounted for

within 𝑔

2𝜒transmon =
2𝑔2

∆
− 2𝑔2

∆+ 𝛼
(2.106)

=
2𝑔2𝛼

∆(∆ + 𝛼)
(2.107)

Where ∆ = (𝜔1 − 𝜔0) − 𝜔𝑟 is the detuning and 𝛼 = (𝜔1 − 𝜔0) − (𝜔2 − 𝜔1) is the

anharmonicity of the transmon.

2.4.2 Qubit - Qubit Coupling

We perform a near identical circuit analysis for two single-node qubits capacitively

coupled via capacitance 𝐶𝑐 [Fig. 2-14] to find a coupling Hamiltonian described by

the capacitance matrix

(a)

(b)
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Figure 2-14: Two capacitively coupled qubits. (a) Circuit diagram of two capac-
itively coupled arbitrary single-node qubits. (b) Image of a two capacitively coupled
qubits, each in turn capacitively coupled to a resonator.
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C =

⎛⎝𝐶1 + 𝐶𝑐 −𝐶𝑐

−𝐶𝑐 𝐶2 + 𝐶𝑐

⎞⎠ (2.108)

While there is once again a question of conventions, we choose all qubit-qubit coupling

strengths 𝐽 to be defined as the coefficient of the charge operators in the coupling

Hamiltonian

𝐻̂qubit-qubit/ℏ = 𝐽𝑛̂1𝑛̂2. (2.109)

Equating this with the kinetic energy of the circuit, we find

ℏ𝐽 = 4𝑒2C−1[0, 1] (2.110)

= 4𝑒2
𝐶𝑐

𝐶1𝐶𝑐 + 𝐶2𝐶𝑐 + 𝐶1𝐶2

. (2.111)

Once again, this quantity depends only on the capacitance network of the circuit, and

not on the qubit states themselves.

2.4.3 Qubit - Charge Line

In order to charge drive our qubits, we capacitively couple sections of coplanar waveg-

uides with an open terminal to our qubits [Fig. 2-15(a)]. These lines are then con-

(a) (b)

Ju
nc

tio
ns

Ju
nc

tio
ns

Figure 2-15: Charge and flux lines. (a) Circuit diagram of a charge line capaci-
tively coupled to a qubit. (b) Circuit diagram of a flux line inductively coupled to a
qubit.

nected through wirebonds to coaxial cables extending from the device up to room

temperature. An RF voltage bias applied at the top of the fridge then propagates
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downward to interact with the qubit. We model these lines carrying classical voltage

by adding a term
1

2
(Φ̇𝑗 − 𝑉𝑖)

2𝐶xy,𝑖𝑗, (2.112)

where 𝑉𝑖 is a classical voltage capacitively coupled via capacitance 𝐶xy,𝑖𝑗 to circuit

node 𝑗. The resulting Lagrangian (omitting the potential energy component and

including only the kinetic portion for brevity of equations) is then

ℒ =
1

2
˙⃗
Φ𝑇C

˙⃗
Φ +

1

2

∑︁
𝑖𝑗

(Φ̇𝑗 − 𝑉𝑖)
2𝐶xy,𝑖𝑗 + · · · (2.113)

=
1

2
˙⃗
Φ𝑇C

˙⃗
Φ +

1

2
(
˙⃗
Φ𝑇Nxy

˙⃗
Φ− 2𝑉⃗ 𝑇Cxy

˙⃗
Φ + 𝑉⃗ 𝑇Mxy𝑉⃗ ) + · · · (2.114)

=
1

2
˙⃗
Φ𝑇C

˙⃗
Φ +

1

2
˙⃗
Φ𝑇Nxy

˙⃗
Φ− 𝑉⃗ 𝑇Cxy

˙⃗
Φ + const. + · · · (2.115)

(2.116)

Where 𝑉⃗ is an 𝑚 × 1 vector of classical voltages, Φ⃗ is the 𝑛 × 1 vector of node flux

variables, Cxy is an 𝑚×𝑛 matrix encapsulating the capacitive coupling of each voltage

source to each node, Nxy is an 𝑛× 𝑛 diagonal matrix constructed from the summed

rows of Cxy (Nxy,𝑗𝑗 =
∑︀

𝑖 Cxy,𝑖𝑗), and Mxy is an 𝑚×𝑚 diagonal matrix constructed

from the summed columns of Cxy (Mxy,𝑖𝑖 =
∑︀

𝑗 Cxy,𝑖𝑗).

Proceeding with the normal Legendre transformation,

𝑞⃗ ≡ 𝜕ℒ

𝜕
˙⃗
Φ

= (C+Nxy)
˙⃗
Φ−C𝑇

xy𝑉⃗ (2.117)

˙⃗
Φ = (C+Nxy)

−1(𝑞⃗ +C𝑇
xy𝑉⃗ ) (2.118)

we see that we now have a shifted charge coordinate, corresponding to the additional

charge induced by the external voltage and the added node capacitances. After

performing the transformation into the Hamiltonian and adding back in the junction

potential energy terms, we arrive at the following Hamiltonian

𝐻 =
1

2
𝑞⃗𝑇 (C+Nxy)

−1𝑞⃗ + 𝑉⃗ 𝑇CxyC
−1𝑞⃗ +

1

2
Φ⃗𝑇𝐿invΦ⃗ + 𝑉JJ(Φ⃗). (2.119)
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Qualitatively the additional classical voltage sources produce two effects. The first

smaller effect is add on to the capacitances of all the nodes. The second more signifi-

cant effect is to introduce a classical linear driving term onto the system, proportional

to the applied voltage 𝑉⃗ 𝑇CxyC
−1𝑞⃗. This linear drive is an essential feature, complet-

ing the analogy of voltage driven superconducting qubits with linearly driven two-level

systems.

2.4.4 Qubit - Flux Line

The final component introduced in this Section will be the flux line, which is made of

a ground-terminated section of coplanar waveguide [Fig. 2-15(b)]. Instead of a voltage

antinode at the end of the line, there is a current antinode, which may induce currents

in closed loops of the circuit. Multiple flux lines allow us to accurately adjust the ex-

ternal flux of different qubits simultaneously (after any crosstalk is compensated for).

The induced flux Φext into the qubit loop is characterized by the mutual inductance

Φext =𝑀𝐼, (2.120)

where 𝐼 is the current propagating down the flux line.

2.5 A Time Limit for Qubits

While the entirety of this Chapter has been devoted to understanding the Hamilto-

nian of different circuits and thus their unitary time evolution, various external loss

channels limit the time for which useful computations can be performed. In this

brief introduction, only a few of the most limiting loss mechanisms will be discussed,

with more comprehensive treatments can be found in Nguyen et al. [67] and Koch et

al. [44].

Most qubits’ lifetimes are limited by electric field coupling to defects residing on

the surfaces of the materials which form the physical qubit; this is known as dielectric

loss [67]. Throughout the history of superconducting qubit design, much effort has
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been made in reducing the amount of defects which reside in regions of high electric

field density. Modeling the loss of the qubit energy into this continuum of defects via

Fermi’s golden rule, the decay rate of a qubit at frequency 𝜔01 is given by

Γ01(𝜔01) =
1

ℏ2
| ⟨0| 2𝑒𝑛̂ |1⟩ |2𝑆diel(𝜔01) (2.121)

with spectral density

𝑆diel(𝜔01) =
ℏ

𝐶𝑄diel(𝜔01)

(︂
1 + coth

ℏ𝜔
2𝑘𝐵𝑇

)︂
. (2.122)

Here, 𝐶 is the effective qubit capacitance, given by 𝐸𝐶 = 𝑒2/2𝐶, and 𝑄diel is a

frequency-dependent quality factor associated with the capacitance. This quality

factor may also be expressed as a loss tangent via tan 𝛿−1 ≡ 𝑄diel.

A more controllable source of qubit decay is the Purcell effect. Intuitively, it can

be thought that the qubit inherits part of the resonator coupling to the environment,

resulting in an increased decay rate of the qubit. In the dispersive (qubit-resonator

coupling strength less than the qubit-resonator detuning, 𝑔 < ∆) strong (coupling

strength larger than the resonator linewidth, 𝑔 > 𝜅) coupling regime, this contribution

is

Γpurcell = 𝜅
𝑔2

∆2
. (2.123)

The quantity 𝑔 in the above expression is defined to include the matrix element for

the qubit transition. This naturally imposes a trade-off between fast measurement

and qubit lifetimes. A higher 𝜅 gives fast measurement, but increased Purcell decay.

A Purcell filter gives a way to introduce a frequency dependent 𝜅 by coupling two

resonators in series, so that it is higher at the resonator frequency, and lower at the

qubit frequency [84].

Coupling between the qubit and the resonator can additionally result in pure

dephasing. Due to the dispersive coupling between the qubit and resonator, the

qubit frequency also in turn depends on the state of the resonator. This is immaterial

during readout, as readout projects the qubit state anyways, but any fluctuations in
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the resonator state before the readout contributes to unwanted qubit dephasing. This

dephasing source is termed photon shot noise, with resonator state fluctuations

determined by residual photons from previous pulses or the thermal distribution of

photons in the resonator at some effective resonator temperature 𝑇 , typically around

55mK in the setups at EQuS [104]

𝑛th(𝜔) =
1

exp(ℏ𝜔/𝑘𝐵𝑇 )− 1
. (2.124)

In the limit of small 𝑛th(𝜔), the dephasing contribution due to shot noise is

ΓSN
𝜑 =

4𝜒2
01𝜅

𝜅2 + 4𝜒2
01

𝑛th(𝜔), (2.125)

where 𝜒01 is defined as half the resonator shift between the qubit being in the |0⟩ and

|1⟩ state (2𝜒01 ≡ 𝜒1 − 𝜒0) [34].

A more direct source of dephasing is flux noise in flux-tunable qubits. Since the

qubit frequency depends on the external flux, any noise in flux directly translates

into noise in the qubit frequency. Flux noise can either arise from noise in the control

electronics or from magnetic defects located on the surfaces of the device. With

proper line filtering and grounding, the dominant contribution to flux noise will come

from material defects, which will be the primary subject of the next chapter.
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Chapter 3

Minimizing Flux Noise in Tunable

Qubits

Many promising superconducting qubit architectures rely on frequency-tunable qubits,

where the qubit frequency can be varied by an applied magnetic flux. Away from first-

order insensitive points, so called “sweet spots," the dominant source of dephasing in

these qubits [7, 4] is low-frequency flux noise with a power spectral density (PSD) that

is inversely proportional to frequency [72]. Such 1/𝑓 noise is ubiquitous in condensed

matter systems [28] and was observed in the context of Josephson devices more than

three decades ago [45]. This 1/𝑓 noise in superconducting quantum interference de-

vices (SQUIDs) has been shown to cause qubit dephasing [107, 42, 46, 9, 36, 105, 16]

as well as qubit relaxation [105, 77]. It was proposed that 1/𝑓 flux noise in qubits

comprising SQUIDs originates from magnetic two-level system defects residing in the

oxide layers in proximity to the SQUID loops [46]. The model assumes a temperature-

activated flipping of independent electronic spins that are randomly oriented and have

a random energy distribution [28], leading to a 1/𝑓 noise PSD. Oxygen adsorbates

were determined to be candidate sources for such spin defects by density functional

theory calculations [99] and x-ray spectroscopy [48].

An analytic approximation of this particular microscopic model has been derived

by Bialczak et al. [9], yielding an expression for the noise PSD 𝑆(𝜔) ∝ 𝑅/𝑊 , where

𝑅 is the radius of the SQUID loop and 𝑊 is the width of the superconducting wire
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forming the loop. Indications of such scaling with wire width have been reported [49],

but experiments with superconducting phase qubits could not quantitatively confirm

the noise amplitudes predicted by the microscopic model, mostly due to uncertainties

in the surface spin density. Furthermore, the formation of spin clusters was proposed

in order to reconcile the observed noise levels with the model [83, 3]. The origin and

microscopic nature of 1/𝑓 noise in SQUIDs has remained an unsolved question.

In this Chapter, we study 1/𝑓 flux noise in more than 50 capacitively shunted flux

qubits [105] with systematically varied parameters of their qubit loop geometry. Our

data show quantitative agreement with the proposed microscopic model of indepen-

dent magnetic defects that reside at the metal-surface and metal-substrate interfaces.

In particular, we demonstrate that the extracted flux noise amplitudes follow the

expected trends over a large range of loop parameters and for a noise bandwidth

relevant to contemporary quantum circuits. We further validate this agreement by

introducing a numerical extension to the model, overcoming the limited applicability

and accuracy of the analytic approximation [9] for realistic circuit geometries.

3.1 Flux Noise Model

For our flux-noise model, we assume non-interacting magnetic two-level system (TLS)

defects distributed uniformly across the interfaces surrounding the junction loop. We

model these TLS’s as spins with magnetic moment 𝑚⃗, each coupled to the junction

loop through a flux-mediated mutual inductance [46, 9]. If a current 𝐼QB in the

junction loop would cause a magnetic field 𝐵⃗ at the location of the TLS, then the

magnetic flux induced in the junction loop by this TLS can be derived as

ΦTLS = 𝐵⃗ · 𝐴⃗TLS (3.1)

ΦTLS =
𝐵⃗ · 𝑚⃗
𝐼TLS

(3.2)

ΦTLS𝐼TLS = 𝐵⃗ · 𝑚⃗ = ΦQB𝐼QB (3.3)

Φ𝑄𝐵 =
𝐵⃗ · 𝑚⃗
𝐼QB

. (3.4)
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We compute the average variance of the flux induced by a single TLS by performing

a spherical integral assuming a uniformly random distribution of TLS orientations (let

𝜃 be the angle between 𝐵⃗ and 𝑚⃗)

Φ2
single =

⟨(︃
𝐵⃗ · 𝑚⃗
𝐼QB

)︃2⟩
angles

(3.5)

=
𝐵𝑚

𝐼QB

∫︀ 𝜋

0
cos2 𝜃 sin 𝜃𝑑𝜃∫︀ 𝜋

0
sin 𝜃𝑑𝜃

(3.6)

=
1

3

(︂
𝐵𝑚

𝐼QB

)︂2

. (3.7)

From here, we can calculate the total flux variance by integrating over the entire

areal surface of the junction loop

⟨Φ2⟩ = 1

3
𝜎𝑚2

∫︁ (︂
𝐵

𝐼QB

)︂2

𝑑𝐴 (3.8)

where 𝜎 is the areal density of defects.

The geometries for a toroidal loop and a circular junction loop with rectangular

cross-section have been treated by Ref. [9]. For the geometry in our experiment – a

rectangular loop with rectangular cross-section – we find

⟨Φ2⟩ = 1

3
𝑚2𝜎𝑃

∫︁ (︂
𝐵(𝑥)

𝐼QB

)︂2

𝑑𝑥, (3.9)

where 𝑃 = 2𝑋+2𝑌 +4𝑊 is the perimeter of the loop with𝑋, 𝑌 , and𝑊 (width) being

the loop dimensions as shown in Fig. 3-1. In this calculation, we only integrate over

the top surface of the metal-air interface. The remaining integral, parameterized by

𝑥, is taken over the lengths of the considered interfaces perpendicular to the extension

of the loop arms (across the width of the arms).

3.1.1 Analytic Approximation

The analytic approximation of the model only considers the top surface of the junction

loop as a host for magnetic defects, assuming an effectively two-dimensional film with
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Figure 3-1: 3D illustration of the Josephson junction loop of a C-shunt flux
qubit.

𝑊 ≫ 𝑏. In the integrals involved in this calculation, 𝑥 = 0 is treated as the center

of the loop wire and 𝑥 = ±𝑊/2 corresponds to its two edges. Assuming that the

superconducting current flows only at the loop surface, the magnetic field at the

surface is given by 𝐵(𝑥) = 𝜇0𝐾(𝑥)/2 where 𝐾(𝑥) is the surface current density (this

can be derived in a textbook use case of Ampere’s law). We use a surface current

density proportional to 1/
√︀

1− (2𝑥/𝑊 )2 [80] away from the edges, joined by an

exponential near the edges at 𝑥 = ±(𝑊/2 − 𝜆2/2𝑏), where 𝜆 is the superconducting

penetration depth of aluminum. Enforcing that the current density has continuous

slope, we obtain the following function for the current density along the width of the

loop

𝐾(𝑥̄) =

⎧⎪⎨⎪⎩
𝐾0

1√
1−(2𝑥̄)2

|𝑥̄| ≤ (1− 𝜖)/2

𝐾0

√︀
𝑒
2𝜖 exp

[︀(︀
|𝑥̄| − 1

2

)︀
/𝜖
]︀

(1− 𝜖)/2 < |𝑥̄| ≤ 1/2

(3.10)

where 𝑥̄ ≡ 𝑥/𝑊 and 𝜖 ≡ 𝜆2/𝑏𝑊 . Since 𝜖≪ 1, we keep only leading order terms in 𝜖.

Evaluating Eq. (3.9) with this particular 𝐵(𝑥) and using the definition 𝐼 =
∫︀
𝐾(𝑥) 𝑑𝑥,

we obtain

⟨Φ2⟩ = 1

3
𝜎𝑚2𝑃

(︁𝜇0

2

)︁2 ∫︀ 𝑥𝐾(𝑥)2 𝑑𝑥

(
∫︀
𝑥𝐾(𝑥) 𝑑𝑥)2

(3.11)

=
𝜇2
0

3𝜋
𝑚2𝜎

𝑃

𝑊

(︂
ln(2𝑏𝑊/𝜆2)

2𝜋
+
𝑒− 1

2𝜋

)︂
. (3.12)
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Figure 3-2: Schematic drawing of a section of the junction loop in our ex-
periment. Current is flowing along the 𝑧-direction and we plot the numerically
simulated current distribution 𝐽𝑧/𝐼0 at its cross-section, normalized to a reference
current 𝐼0. Simulation parameters are a standard design with wire width 𝑊 = 1 µm
and film thickness 𝑏 = 190 nm. In order to compute the magnetic field on the surface
of the strip (blue) that enters in the flux noise model Eq. (3.9), we use Biot-Savart’s
law.

The important trends are that the flux variance, and therefore the flux noise power,

increases linearly with the average perimeter 𝑃 of the loop and decreases roughly

inversely with its width 𝑊 .

3.1.2 Numerical computation of the current distribution in a

superconducting strip of finite thickness

We numerically compute the current distribution in a superconducting strip following

the approach presented in Weeks et al. [101] and its extension by Sheen et al. [88].

It is based on the two-fluid model of superconductivity [96], where a complex con-

ductivity accounts for both the resistive loss channel at non-zero frequencies (real

part) as well as the kinetic energy of the supercurrent (imaginary part). The normal

current is described by Ohm’s law while the kinetic contribution is added through

London’s equation. The superconducting penetration depth 𝜆 enters via the complex

conductivity.

We apply this method to calculate the current distribution in a single supercon-

ducting strip that is extended in the 𝑧-direction and discretized into an appropriate
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number of parallel patches in the 𝑥𝑦 plane [see Fig. 3-2]. We extract the current

distribution from the transmission line equation

𝐼(𝜔) ∝ −𝑖𝜔Y𝑉⃗ , (3.13)

where all voltages are set to an identical value (unity). The admittance matrix Y

is comprised of a resistive part and an inductive part, which in turn depend on the

complex conductivity and partial inductances that reflect the model geometry [101].

By dividing the currents 𝐼 penetrating each patch by their cross-sectional area, we

readily find the volume current density 𝐽(𝑥, 𝑦) in the 𝑥𝑦-plane.

Subsequently, we find the magnetic field 𝐵⃗(𝑥) on the surface of the strip (blue re-

gion in Fig. 3-2) with Biot-Savart’s formula by integrating the current density 𝐽(𝑥, 𝑦)

over the volume of the junction loop,

𝐵⃗(𝑟⃗) =
𝜇0

4𝜋

∫︁∫︁∫︁
𝑉

𝐽(𝑥, 𝑦)𝑧 × 𝑟⃗ ′

|𝑟⃗ ′|3
𝑑𝑉, (3.14)

where 𝑧 denotes the unit vector along 𝑧 and 𝑟⃗ ′ is the vector from any point in the

integration volume to the point where the field is being computed. The norm of this

magnetic field, which is mainly directed along 𝑥 except for some contribution along 𝑦

close to the edges, enters our flux noise model Eq. (3.9), where it is integrated again

along the 𝑥-dimension. The integrations are numerically approximated by Riemann

sums. We chose different numerical discretizations in the successive integrations along

𝑥 in order to exclude a systematic error and verified our numerical procedure by

observing its convergence.

In Fig. 3-3, we show the results of the numerical simulations for different thickness

regimes of the superconducting film forming the loop. For each thickness 𝑏, we plot

the numerically obtained factor
∫︀
𝐵2(𝑥)/𝐼2 𝑑𝑥, a measure for the normalized mag-

netic field variance, versus the inverse wire width 1/𝑊 . We show simulation results

accounting for defect spins located only in the top surface of the loop (purple), and we

also plot the numerical results taking into account all relevant interfaces (red), which

are the top and bottom surfaces of the loop arms, their side faces, and the silicon-
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Figure 3-3: Numerical simulation results for various film thicknesses b. We
plot the numerical value 𝜇−2

0

∫︀
𝐵2(𝑥)/𝐼2 𝑑𝑥 which enters the model for magnetic flux

noise in Eq. (3.9), replacing the analytic approximation. The purple lines and circles
show the results for only considering the top surface of the loop and the red lines with
triangles show the result for both the top surface and the side faces summed. The
analytic approximation is given as a black line. (a) Results for a very thin aluminum
thickness 𝑏 = 20 nm, where the numerical simulation agrees with the analytic formula
for 𝑊 ≫ 𝑏, 𝜆. (b) Results for the thickness 𝑏 = 190 nm as used in our experiment.
(c) The analytic expression breaks down entirely for a thick film with 𝑏 = 800 nm,
while the numerical result indicates a reduced noise sensitivity as compared to smaller
wire thicknesses.
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vacuum interfaces in the vicinity of the loop assuming an equal spin density across

interfaces. The numerical simulation of the top surface can be directly compared to

the analytic approximation, which we’ve computed previously to be

∫︁
𝐵2(𝑥)/𝐼2 𝑑𝑥 =

𝜇2
0

𝜋𝑊

(︂
ln(2𝑏𝑊/𝜆2)

2𝜋
+
𝑒− 1

2𝜋

)︂
. (3.15)

We first verify our numerical approach by comparing simulation results for a thin

strip with 𝑏 = 20 nm to the result obtained with the approximate formula [see Fig. 3-

3(a)]. For large wire widths 𝑊 ≫ 𝑏, 𝜆 in particular, the approximation of the analytic

formula is valid and it matches the numerical result for considering defect spins only

in the top surface. For thin films, the numerical result recovers the expected linear

dependence of
∫︀
𝐵2(𝑥)/𝐼2 𝑑𝑥 on 1/𝑊 to first order. Small deviations for smaller

𝑊 reveal the limitation of the approximate formula [80]. For the film thickness

𝑏 = 190 nm used in our experiment [see Fig. 3-3(b)], the numerical result and the

analytic approximation diverge even for large 𝑊 since the condition 𝑏 ∼ 𝜆 is violated.

For an even larger thickness of 𝑏 = 800 nm, the analytic approximation breaks down

completely [see Fig. 3-3(c)]. Remarkably, we find that increasing the film thickness

𝑏 reduces the noise amplitude considerably, an effect analogous to the reduction in

noise with increasing wire width 𝑊 . We want to point out that the contribution from

the side faces of the junction loop vanishes in the limit of 𝑏→ 0 [see Fig. 3-3(a)].

3.2 Experimental Setup

Our experiment incorporates results from six different samples each comprising ten

uncoupled, capacitively-shunted flux qubits [106] [see Fig. 3-4]. Qubit control and

dispersive state readout are performed through individual capacitively coupled 𝜆/4

waveguide resonators, which are in turn inductively coupled to a common 50Ω trans-

mission line. The samples are cooled down to approximately 10mK in a Leiden

dilution refrigerator. Microwave transmission through the transmission line is used

to projectively measure the qubit state with a heterodyne detection scheme at room
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temperature.

The samples are fabricated on a silicon substrate by dry etching an MBE grown,

250 nm thick aluminum film in an optical lithography process and then diced in 5×

5mm2 chips. The junction loops, colored in red in Fig. 3-4(c), are fabricated with an

electron beam lithography process and a double angle shadow evaporation technique

[27] to form the Josephson junctions. Across the entire area of the junction loops,

we evaporate 40 nm and 150 nm thick aluminum films, separated by an oxide layer

created with a controlled in-situ oxidation. In addition to the desired Josephson

junctions, this step also creates a large parasitic oxide layer between the aluminum

films, which has been shown to host electric dipole two-level system defects that lead

to qubit relaxation [50].

The Hamiltonian parameters of each flux qubit are nominally identical, with a

shunt capacitance of 56 fF, a Josephson energy of the large junctions of 𝐸𝐽/ℎ =

36GHz, a capacitance across each large junction of 5 fF, and a large to small junction

area ratio of 0.42. We observed a mean qubit frequency of 4.6GHz and anharmonicity

of 480MHz at the half-flux sweet spot. These parameters are meant to match qubit

A in Yan et. al. [106]. Across all flux qubits, we only vary the geometric parameters

of their junction loops as illustrated in Fig. 3-4(d). While the thickness 𝑏 = 190 nm of

the bilayer aluminum film is fixed, the side lengths, 𝑋, and 𝑌 , referenced to the inner

circumference, and the wire width 𝑊 are varied. Every sample varies either the inner

loop perimeter 2𝑋 + 2𝑌 , the aspect ratio 𝑋/𝑌 , or the width 𝑊 . In order to reduce

systematic errors, each qubit variant is represented twice within a chip, resulting in

five distinct loop geometries per chip. The ranges of the parameter variations are

centered around state-of-the-art values used in high-coherence c-shunt flux qubits,

𝑋 = 9 µm, 𝑌 = 8 µm, and 𝑊 = 1 µm [106]. Figure 3-4(e) shows the effective circuit

schematic for the one qubit-resonator pair coupled to the common transmission line,

and a global coil located in the package lid is used to tune the flux threading the

junction loops.
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Figure 3-4: Noise spectroscopy device. (a) Each chip holds ten uncoupled capac-
itively shunted flux qubits with individual readout resonators, featuring five different
junction loop geometries at a two-fold redundancy. (b) Optical micrograph of one of
the qubits and part of its readout resonator. The capacitive shunt is colored in blue.
(c) Electron microscope image of a fabricated C-shunt junction loop. (d) Schematic
representation of the loop parameters varied across different designs. The loop di-
mensions 𝑋, 𝑌 are measured along the inner edge of the SQUID, 𝑊 is the width of
the superconducting leads, and 𝑏 is the film thickness. (e) Effective schematic for one
qubit-resonator pair coupled to the common transmission line (TL).

3.3 Experimental Protocol

We perform noise spectroscopy for every qubit using a sequence of measurements first

demonstrated in [107]. We first extract the qubit spectrum around the sweet spot,

Φext = Φ0/2 [see Fig. 3-5(a)]. Subsequently, we perform a spin-echo experiment, where

a 𝜋-pulse in the middle of a Ramsey sequence inverts the sign of the phase accrual rate,

mitigating quasi-static or low-frequency noise. As shown in Fig. 3-5(b), we observe

an exponential decay function at the sweet spot, where decoherence is relaxation

limited. Further away from the sweet spot, the decay function is predominantly

Gaussian, indicative of pure dephasing due to 1/𝑓 noise [55, 107]. The Gaussian pure

dephasing rate takes the form

ΓE
𝜑 =

√︀
𝐴Φ ln 2 |𝜕𝜔/𝜕Φ| (3.16)

for the echo experiment, assuming Gaussian statistics of the qubit phase accumula-

tion [55, 14] and a noise PSD 𝑆Φ(𝜔) = 𝐴Φ/|𝜔| with noise amplitude
√
𝐴Φ. To find
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the exponential decay rate Γexp and Gaussian dephasing rate ΓE
𝜑 , we perform a fit to

the decay function

𝑝(𝑡) ∝ exp[−Γexp𝑡− (ΓE
𝜑𝑡)

2] (3.17)

[107] for each flux bias point. For the individual fits, Γexp is kept a free parameter with

an initial guess of (2𝑇1)−1, as extracted in a preceding relaxation measurement. In

order to numerically extract the slope of the spectrum, we fit the hyperbola ℏ𝜔(Φ) =√︀
∆2 + 𝜖(Φ)2 to the data in Fig. 3-5(a), which is a good approximation over the

measured range close to the sweet spot [105].

Figure 3-5(c) shows the pure dephasing rate ΓE
𝜑 as a function of the slope of the

spectrum for one of the measured qubits. We perform two separate linear fits (for

positive and negative slope) and extract the noise amplitude
√
𝐴Φ and its uncertainty

from an error-weighted average. Since pure dephasing in the Gaussian approximation

vanishes at the sweet spot, we enforce an intercept with the origin. About 20% of

the qubits show a bending of data points to a finite (positive) dephasing rate near

the sweet spot. We attribute these deviations to other higher-frequency dephasing

processes, which do not significantly compromise the extracted noise amplitudes. The

validity Eq. (3.16) is limited to a noise PSD 𝑆(𝜔) ∝ 𝜔−𝛼 with 𝛼 = 1. While 1/𝑓

noise has been observed with a scaling where 𝛼 ≤ 1 [16, 40, 28, 72], this assumption is

compatible with previous experiments extrapolated to ∼ 10mK [3] and is supported

by the Gaussian decay function we observe in our experiment.
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Figure 3-5: Experimental technique used for noise spectroscopy. (a) Qubit
spectrum around its flux sweet spot at Φ = Φ0/2. A hyperbolic fit enables us to
numerically extract the slope (2𝜋)−1𝜕𝜔/𝜕Φ of the spectrum. (b) Spin echo dephasing
traces at three illustrative locations of the spectrum (indicated by the arrows). (c) By
plotting the extracted pure dephasing rates ΓE

𝜑 as a function of the spectrum slope,
we can extract the 1/𝑓 flux noise amplitude

√
𝐴Φ from a linear fit.
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3.4 Geometric Trends

Figure 3-6 shows the measured flux noise amplitudes
√
𝐴Φ as a function of the loop

geometry. We categorize the design variations into two groups. Qubits in the first

group have loops with a constant wire width 𝑊 = 1 µm but varying perimeters

21 µm ≤ 𝑃 ≤ 101 µm [see Fig. 3-6(a)]. We define the perimeter 𝑃 = 2𝑋 + 2𝑌 + 4𝑊 ,

measured along the center-line of the wire. The second group of measured qubits

have loops with a fixed inner perimeter 2𝑋 + 2𝑌 = 34 µm and varying wire width

0.4 µm ≤ 𝑊 ≤ 5 µm [see Fig. 3-6(b)]. These sub-categories can be understood as

line-cuts in the two dimensional parameter space
√︀
𝐴Φ(𝑃,𝑊 ), given in Fig. 3-7(a).

Measured data show an approximately linear dependence of the noise power 𝐴Φ on

perimeter 𝑃 [see Fig. 3-6(a)] and on the inverse wire width 𝑊 [see Fig. 3-6(b)]. By

investigating loops of varying aspect ratio 𝑋/𝑌 , we are able to confirm the linear

scaling of 𝐴Φ with loop perimeter rather than its area.

Finally, we compare our experimental data with the previously derived model of

1/𝑓 flux noise arising from magnetic defects on the loop interfaces, reproduced here

for convenience.

⟨Φ2⟩ = 𝜇2
0

3𝜋
𝑚2𝜎

𝑃

𝑊

(︂
ln(2𝑏𝑊/𝜆2)

2𝜋
+
𝑒− 1

2𝜋

)︂
, (3.18)

The scaling of flux noise with loop perimeter 𝑃 can be intuitively understood, since the

total number of magnetic defects increases proportionally. The inverse scaling with

wire width 𝑊 is less intuitive, given the increased number of participating defects for

wider wires. It can be motivated by the following picture: for a constant persistent

current in the loop, the magnetic field is diluted across more defect spins residing

in the interfaces when increasing the wire width. Since the defects are uncorrelated,

their contribution to the total flux noise partially cancels, resulting in an effective

decrease of the total flux noise. Independent of the geometry, a uniform current

density across the width of the loop arms minimizes the flux noise amplitude. The

current distribution across the width of the junction loop only enters the flux noise
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Figure 3-6: 1D plots of flux noise against perimeter and width. Flux noise
amplitudes

√
𝐴Φ as a function of SQUID geometry parameters for (a) constant wire

width 𝑊 and (b) constant inner perimeter 2𝑋 + 2𝑌 . Each line corresponds to an
independent fit in this two-dimensional parameter space to the analytic approximation
(black) and numeric variations (purple and red) of the model (see inset).

amplitude through the factor ∫︀
𝐾(𝑥)2 𝑑𝑥(︀∫︀
𝐾(𝑥) 𝑑𝑥

)︀2 . (3.19)

Minimizing this expression yields that a uniform current distribution 𝐾(𝑥) = const.

minimizes flux noise. This provides an explanation for the previous observation that

the presence of a superconducting ground plane reduces flux noise [49, 97].

In order to connect the noise amplitude
√
𝐴Φ extracted from measured data with

the above model, we use

⟨Φ2⟩ =
∫︁ ∞

−∞
𝑆Φ(𝜔)𝑔E(𝜔) 𝑑𝜔 = 2𝐴Φ ln 2 (3.20)
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To account only for frequencies our echo experiment is sensitive to, the integration is

weighted by its filter function [40, 72, 55, 14]

𝑔E =

(︂
sin2(𝜔𝑡/4)

𝜔𝑡/4

)︂2

. (3.21)

Both black lines in Fig. 3-6 belong to the same two-dimensional fit to the analytic

approximation Eq. (3.12) using only a single fit parameter 𝑚2𝜎. Rather than relying

on a defect density reported in previous calculations or experiments, we are therefore

able to extract its value from our experimental data. Assuming a penetration depth

of 𝜆 = 40 nm [74] and that the magnetic moment corresponds to a Bohr magneton,

𝑚 = 𝜇B, we recover a surface spin density 𝜎 = 1.2× 1017m−2, a factor of four off the

previously predicted [46] and observed [83] value of 5 × 1017m−2. With an effective

spin magnetic moment of 1.8𝜇B, as suggested for defects formed by oxygen adsorbates

on the SQUID surface [99], we extract 𝜎 = 3.7× 1016m−2.

Due to an offset between the bottom and top metallizations in the shadow evap-

oration process, the width along the vertical arms of the junction loop is increased.

This effect is most pronounced in qubits with small aspect ratios (𝑋 ≪ 𝑌 ) and thin

wires. In order to account for this changing width in the junction loops loops, we

plot an average width ⟨𝑊 ⟩ in Fig. 3-6 and Fig. 3-7.

The analytic approximation of the model Eq. (3.12) is only valid in the regime

where 𝑏 ∼ 𝜆 and 𝑊 ≫ 𝜆, but in our experiment, 𝑏/𝜆 ≈ 5. We attribute the

deviations of data points in Fig. 3-6(b) from the linear scaling for thin wires (largest

1/⟨𝑊 ⟩) to a partial breakdown of this analytic model. We thus use the numerical

model developed in Section 3.1.2 to extend the original analytic model to treat more

realistic loop geometries. With the magnetic field numerically computed with Biot-

Savart’s formula, the total flux noise as computed from the numeric model is found

by replacing the integral in Eq. (3.9) with a numeric integration.

Fits to the model with our numerical extension are shown by the purple and

red lines in Fig. 3-6. We find quantitative agreement with experimental data, in-

cluding loops with small wire widths, where the numeric model is consistent with
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deviations from the linear behavior as observed in experiment. For direct compar-

ison with the analytic approximation, we show the numerical model only including

the aluminum-vacuum surface on top of the loop (red). We validate our theoretical

model by observing good agreement with the analytic approximation for a small film

thickness 𝑏 ∼ 𝜆 and we confirm that the analytic approximation is inaccurate for

our film thickness of 𝑏 = 190 nm and breaks down completely for even higher film

thicknesses. Based on our numerical results, we find that increasing the film thickness

𝑏 decreases the flux noise amplitude, which is analogous to the effect we observe for

increasing the wire width 𝑊 .

In addition, we perform a fit to the numeric model including defect spins residing

in all relevant interfaces comprising the junction loop, see regions colored in red in

the inset schematic in Fig. 3-6(b), i.e., the top and side aluminum-vacuum interfaces,

the bottom silicon-aluminum interface, and the silicon-vacuum interfaces beside the

loop arms, where the magnetic field decays with a power law. Assuming 𝑚 = 𝜇B,

we obtain 𝜎 = 2.6× 1017m−2 when considering only the top surface of the loop and

𝜎 = 6.7× 1016m−2 when including all relevant interfaces with equal defect densities.

We performed an alternative fit to measured data assuming different defect densities

for the aluminum-vacuum, silicon-vacuum, and silicon-aluminum interfaces based on

their extracted loss tangents [102], yielding a defect density in the aluminum-vacuum

interface of 1× 1017m−2.

The two-dimensional fit to our numerical model including all relevant interfaces is

depicted in Fig. 3-7(a), with measured data points shown in Fig. 3-7(b) and relative

deviations from the model color-coded. While we measure time-averaged 𝑇1 times in

our qubits between 5 µs and 65 µs, with most data points around 20 µs, the extracted

values of the noise amplitudes
√
𝐴Φ are in excellent agreement across all measured

samples, demonstrating the robustness of our analysis. Dephasing times 𝑇2 are limited

by 2𝑇1 at the sweet spot and are reduced to ∼ 1 µs for the largest frequency detuning

from the sweet spot, while 𝑇1 times are not limited by flux noise in these samples.

Based on the spin echo filter function, our experiment is sensitive to noise frequencies

in the range of 10 kHz to 1MHz. The flux bias line used in our experiment is low-pass
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Figure 3-7: 2D plots of flux noise against perimeter and width. (a)
√
𝐴Φ

as a function of the effective width ⟨𝑊 ⟩ and perimeter 𝑃 based on a fit to the nu-
meric model taking into account all relevant interfaces (red lines in Fig. 3-6). (b)
Data points show experimentally investigated parameter combinations with relative
deviations from the same numerical model color-coded.

filtered with a second-order 𝑅𝐶-filter located at the 3K stage of the cryostat. In the

frequency range relevant to our experiment, we estimate the added flux noise by our

setup to be at least two orders of magnitude lower than measured flux noise values,

and therefore negligible. Additionally, flux noise that is caused by fluctuations in

the bias voltage scales the noise amplitude as
√
𝐴Φ ∝

√︀
⟨Φ2⟩ ∝ 𝐵 · 𝑋 · 𝑌 ∝ 𝑃 2,

where 𝐵 is the induced magnetic field in the junction loop. Since this is a different

scaling than experimentally observed, we conclude that noise from the current source

is insignificant for our experiment.

The noise amplitudes extracted in our experiment are similar to previous observa-

tions in phase qubits and flux qubits sensitive to noise frequencies below 1Hz [9, 49].

Since our experiment combines the results of a large number of junction loops loops

with geometry parameters distributed in a two-dimensional parameter space, the

product of interface defect density and their coupling strength is a single fit param-

eter in our analysis. The quantitative agreement we observe between experimental

data and the microscopic model therefore does not rely on a literature value for the

defect density, but rather we are able to extract it from our data set. Given the good
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agreement with the recently reported value [83], our experiment provides additional

evidence for its accuracy.

Finally, we measure flux noise amplitudes of nine identical qubits with geometry

parameters in the optimal limit according to our previous findings. The qubits have

small loop perimeters 𝑃 = 32 µm and increased wire widths 𝑊 = 2 µm. These

parameters ensure that the three Josephson junctions can be integrated into the

junction loop without compromising the fabrication quality, although even smaller

𝑃/𝑊 may be feasible. For the optimized samples, we find consistently low noise

amplitudes with a mean of 1.64µΦ0 and a standard deviation of 0.11µΦ0. This verifies

the model over a large parameter range and confirms that significant improvements

in flux noise levels can be achieved by optimizing the loop geometry. A summary of

the data underlying the results in this section is provided in Table 3.1.

The results of this experiment are not limited to the specific variant of flux qubit

used, but are general to any qubit used in the framework of superconducting cir-

cuits with a closed loop. We substantiate this by measurements of 1/𝑓 flux noise

in capacitively-shunted flux qubits where the capacitor is formed by a single floating

pad that couples to ground, similar to the “Xmon” layout [7] (see Table 3.2). Both

qubit architectures yield consistent flux noise amplitudes for identical junction loop

geometries.
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Table 3.1: Complete dataset for all qubits measured in this experiment.
For each qubit, we list the junction loop geometry parameters 𝑋, 𝑌 , and 𝑊 , the
qubit transition frequency 𝜔/2𝜋 at the optimal bias point, the average relaxation
time 𝑇1 in the measured region of the spectrum, and the extracted noise amplitudes√
𝐴Φ left and right of the optimal bias point. Missing values are due to a faulty qubit,

electric two-level system modes cutting through the qubit spectrum, or have not been
measured.

Sample Qubit # 𝑋 (µm) 𝑌 (µm) 𝑊 (µm) 𝜔/2𝜋 (GHz) 𝑇1 (µs)
√
𝐴Φ (µΦ0) (left)

√
𝐴Φ (µΦ0) (right)

Varied Width 1 9.16 8 2 5.03 9 2.16 2.17
2 9.16 8 0.5 4.29 26 2.78 2.78
3 9.16 8 5 5.04 22 1.58 1.59
4 9.16 8 0.4 4.08 38 2.81 2.87
5 9.16 8 1 4.8 15 2.44 2.48
6 9.16 8 5 5.61 16 - 1.66
7 9.16 8 2 5.03 14 - 2.12
8 9.16 8 1 4.62 8 2.58 2.54
9 9.16 8 0.5 4.37 23 - 2.74
10 9.16 8 0.4 - - - -

Varied Area 1 12.95 11.31 1 4.73 7 3.08 3.07
2 6.48 5.66 1 4.85 9 2.63 2.62
3 25.91 22.63 1 4.61 13 3.65 3.83
4 4.58 4 1 4.79 10 1.97 2.01
5 9.16 8 1 4.66 13 2.67 2.69
6 25.91 22.63 1 5.02 10 3.86 3.88
7 12.95 11.31 1 4.38 17 2.75 2.77
8 9.16 8 1 4.95 14 2.66 2.64
9 6.48 5.66 1 4.51 16 2.29 2.28
10 4.58 4 1 4.76 12 2.09 2.08

Varied Aspect Ratio 1 24.21 3.03 1 4.56 18 3.00 3.02
2 8.56 8.56 1 4.23 15 - 2.30
3 34.24 2.14 1 4.72 11 3.24 3.24
4 4.28 17.12 1 4.32 17 2.29 2.26
5 17.12 4.28 1 4.26 14 2.61 2.60
6 34.24 2.14 1 4.57 15 3.57 3.60
7 24.21 3.03 1 4.48 16 2.88 2.88
8 17.12 4.28 1 4.57 16 2.64 2.73
9 8.56 8.56 1 4.10 16 2.29 2.31
10 4.28 17.12 1 4.07 17 2.41 2.39

Varied 𝑌 1 18.32 45.25 1 - - - -
2 18.32 8 1 4.61 17 2.55 2.56
3 18.32 90.51 1 4.55 9 4.62 4.57
4 18.32 5.66 1 4.64 16 2.89 2.82
5 18.32 32 1 4.77 13 3.54 3.65
6 18.32 90.51 1 4.66 8 5.19 5.18
7 18.32 45.25 1 4.43 10 4.26 4.29
8 18.32 32 1 4.21 16 3.82 3.79
9 18.32 8 1 4.63 15 2.90 2.94
10 18.32 5.66 1 4.57 16 3.00 3.01

Identical 1 6.41 5.6 2 5.15 17 1.46 1.45
2 6.41 5.6 2 5.07 17 1.55 1.50
3 6.41 5.6 2 4.92 17 1.67 1.63
4 6.41 5.6 2 4.57 18 1.69 1.70
5 6.41 5.6 2 4.80 17 1.49 1.54
6 6.41 5.6 2 3.00 45 1.93 1.83
7 6.41 5.6 2 4.83 18 1.79 1.79
8 6.41 5.6 2 4.84 15 1.69 1.70
9 6.41 5.6 2 4.92 14 1.72 1.74
10 6.41 5.6 2 4.87 17 1.71 1.68
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Table 3.2: Measured data of six qubits on one sample with either a floating
or grounded shunt capacitor. All other parameters were otherwise kept identical.
The data show no trend in the noise amplitudes extracted for the different layouts,
indicating that the noise amplitude values are not dependent on qubit architecture
but only on the junction loop geometry. For each measured qubit, we list the loop ge-
ometry parameters 𝑋, 𝑌 , and 𝑊 , the qubit transition frequency 𝜔/2𝜋 at the optimal
bias point, the average relaxation time 𝑇1 in the measured region of the spectrum,
and the extracted noise amplitudes

√
𝐴Φ left and right of the optimal bias point.

Missing values have not been measured.
sample 𝑋 (µm) 𝑌 (µm) 𝑊 (µm) 𝜔/2𝜋 (GHz) 𝑇1 (µs)

√
𝐴Φ (µΦ0) (left)

√
𝐴Φ (µΦ0) (right) capacitor shape

Varied Pads 9.16 8 1 4.62 15 2.31 - floating
9.16 8 1 4.54 12 2.39 - floating
9.16 8 1 5.16 5 2.07 - floating
9.16 8 1 4.04 17 - 2.18 grounded
9.16 8 1 4.67 14 2.31 2.33 grounded
9.16 8 1 4.45 17 2.25 2.31 grounded

3.5 Discussion

We have experimentally demonstrated an approximately linear dependence of the flux

noise power on junction loop perimeter and inverse wire width. We observed quan-

titative agreement of our data with an extension of a previously proposed model for

magnetic defects residing in material interfaces. This extension is based on simulating

the current distribution in the junction loops, resolving the limited applicability and

accuracy of the analytic approximation considered previously. This is an important

contribution towards solving the long-standing puzzle surrounding the origin of 1/𝑓

flux noise in conductors. The obtained results are expected to be universal for any

superconducting circuit with a closed flux-biased loop. The observations – namely

that wide wires, small perimeter loops, and large thickness films are favorable to

suppress flux noise – can therefore serve as a guide to reduce the noise susceptibil-

ity of superconducting circuits. In the context of quantum information, this has a

direct relevance for improving operational fidelities in both gate-model and quantum

annealing approaches to quantum computing.
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Chapter 4

Getting Started with Fluxonium

Starting from this Chapter, I shift focus toward my favorite superconducting qubit,

the fluxonium. This qubit has largely defined my PhD in the EQuS group, and being

able to experience all the new physics and additional challenges associated with an

unfamiliar qubit has been a great blessing. This Chapter is organized in the order

one would go about performing actual experiments, starting with the readout and

initialization of fluxonium in Section 4.1, time-domain measurements for calibrating

gates and characterizing qubits in Section 4.2, and finally the calibration and bench-

marking of high-fidelity single-qubit fluxonium gates in Section 4.3. The information

in this Chapter is meant to be generally applicable to any fluxonium experiment and

will hopefully be of use to younger graduate students or those beginning their own

experiments with fluxonium.

4.1 Readout and Initialization

4.1.1 Dispersive Readout

A prerequisite for any experiment using fluxonium qubits is to perform qubit state

readout, without which one is not able to measure anything about the qubit. To

briefly recap the discussion in Section 2.4.1, we define the fluxonium-resonator Hamil-
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tonian to be

𝐻̂ = 4𝐸𝐶 𝑛̂
2 +

1

2
𝐸𝐿𝜑

2 − 𝐸𝐽 cos(𝜑− 𝜑ext) + ℏ𝜔𝑎̂†𝑎̂− 𝑖ℏ𝑔𝑛̂(𝑎̂− 𝑎̂†) (4.1)

= 𝐻̂fluxonium + 𝐻̂resonator − 𝑖ℏ𝑔𝑛̂(𝑎̂− 𝑎̂†). (4.2)

For standard qubit designs, we assume the dispersive coupling regime between the

qubit and the resonator. That is, the coupling strength should be small compared to

the detuning. Since many transitions contribute to the dispersive shift for fluxonium

𝜒𝑗 ≡ 𝑔2
∑︁
𝑘 ̸=𝑗

2𝜔𝑗,𝑘

𝜔2
𝑗,𝑘 − 𝜔2

𝑟

| ⟨𝑘| 𝑛̂ |𝑗⟩ |2 (4.3)

(reproduced from Section 2.4.1, plotted and measured in Fig. 4-1), this condition must

hold for all of these transitions. For distinguishing qubit states |𝑎⟩ and |𝑏⟩ (typically

|0⟩ and |1⟩), the formal condition for the dispersive coupling regime is⃒⃒⃒⃒
𝑔 ⟨𝑗| 𝑛̂ |𝑘⟩
𝜔𝑗𝑘 − 𝜔𝑟

⃒⃒⃒⃒
≪ 1 (4.4)

for all states 𝑘 ̸= 𝑗 and for both 𝑗 = 𝑎 and 𝑗 = 𝑏. Here 𝜔𝑗𝑘 is the transition frequency

between states |𝑗⟩ and |𝑘⟩ of the fluxonium, and 𝜔𝑟 is the transition frequency of the

resonator. For the regime of fluxonium qubits used in this thesis, the dispersive shift

can be accurately calculated considering only the transitions |0⟩ ↔ |3⟩, |1⟩ ↔ |2⟩,

and |1⟩ ↔ |4⟩ at Φext = 0.5Φ0. While the dispersive regime is not necessary to

achieve a resonator frequency that is dependent on the qubit state (and vice versa),

it is necessary for a QND measurement; if the dispersive condition is violated, driving

resonator transitions will induce qubit transitions in addition to just measuring its

state.

In order to reliably distinguish the resonator between its different state dependent

frequencies, this frequency difference must be large enough compared to the linewidth

of the resonator (see Fig. 4-2). The regime 2𝜒01 ≡ 𝜒1−𝜒0 ≫ 𝜅 is traditionally known

as the strong coupling regime; however, a ratio of 𝜒01/𝜅 = 0.5 can be shown to
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Figure 4-1: Resonator shift from a fluxonium. (a) Simulation of the resonator
frequency with the fluxonium in |0⟩ (blue) and |1⟩ (gray). (b) Experimental spec-
troscopy of the resonator capacitively coupled to a fluxonium. Colors indicate the
magnitude of transmission through the resonator.

be optimal for the readout signal-to-noise ratio [21].

By probing the measurement signal at the readout frequency, we obtain a signal

that is now dependent on the qubit state. For example, by probing the resonator

frequency corresponding to the qubit being in |0⟩, we obtain a baseline signal level,

and another (hopefully different) signal level when the qubit is in |1⟩. To obtain

the spectrum of the qubit, one then scans the frequency of qubit excitation pulse

which is played right before the readout pulse. This technique is known as two-tone

spectroscopy, and an illustration of it as a function of the qubit external flux is

shown in Fig. 4-3.

4.1.2 Measurements at Low Qubit Frequency

At low qubit frequencies relative to the fridge temperature (ℏ𝜔 ≪ 𝑘𝐵𝑇 ), the thermal

excitation of the qubit presents an additional challenge for two-tone spectroscopy. If

there is an equal distribution of ground and excited state population at the start of

the excitation pulse, population will swap symmetrically between |0⟩ and |1⟩, leaving

the total population in |0⟩ and |1⟩ unchanged. Assuming a Boltzmann distribution

of populations in a two-level system, a qubit with frequency 𝜔 will have a thermal
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(a) (b)

Figure 4-2: Resonator shift dependent on qubit state. (a) Illustration of the
magnitude response of a resonator dependent on the qubit state. (b) Illustration of
the phase response of a resonator dependent on the qubit state. We note that these
illustrations are specific to a hanging resonator geometry.

excited state population of

𝑝1 =
𝑒−ℏ𝜔/𝑘𝐵𝑇

1 + 𝑒−ℏ𝜔/𝑘𝐵𝑇
. (4.5)

For reference, a 200MHz qubit with an effective qubit temperature of 𝑇 = 30mK

has a thermal excited state population of 42%. If the qubit spectroscopy tone is long

enough so that it completely mixes the qubit, the total signal will be proportional to

8% of the maximum possible signal. The same procedure without having an thermal

excitation would result in 50% of the maximum possible signal. Making the standard

assumption that noise decreases with the square root of the number of averages,

having an equivalent signal-to-noise ratio with the 200MHz qubit would require 40×

more averages, a prohibitively large factor. In order to productively measure low

frequency qubits, a state initialization protocol must be employed.

4.1.3 Readout Heralding

In our standard readout pulse sequence [Fig. 4-4(a)], the qubit and readout pulses

are repeated according to a periodic trigger, with a fixed wait time 𝜏1 between the

start of the trigger and the start of the readout pulses. The trigger period and 𝜏1
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Figure 4-3: Two-tone spectroscopy of a fluxonium qubit. (a) Two-tone spec-
troscopy of fluxonium qubit as a function of the external flux. (b) Same data
with fits overlaid. Qubit has extracted Hamiltonian parameters 𝐸𝐶 = 1.51GHz,
𝐸𝐿 = 1.05GHz, 𝐸𝐽 = 6.09GHz. Legend indicates transitions between the corre-
spond qubit states. The notation “/2” indicates a two-photon transition, and the
text “res” indicates that a photon is additionally added to the resonator.
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are chosen such the qubit sufficiently decays to its thermal equilibrium state between

measurements.

To initialize our fluxonium qubits in either |0⟩ or |1⟩, we rely on a mostly QND

single-shot readout. Then, we post-select the data for any choice of initial state: {|0⟩ , |1⟩}

in order to herald that state [41]. In our simplest form of post-selection [Fig. 4-4(b)],

the qubit pulses and readout are played back-to-back with only a short buffer time 𝜏2

to allow for photons to depopulate the readout resonator prior to the qubit pulses —

ideally 𝜏2 is much longer than the resonator decay time and much shorter than the

qubit decay time. It is important that this buffer time 𝜏2 is kept constant so that the

initialization fidelity is constant throughout an experiment. Each readout serves a

dual purpose of measuring the qubit state for the previous pulse sequence as well as

projecting the state onto |0⟩ or |1⟩ for the next pulse sequence. Then, to post-select

the data assuming an initial state of |0⟩ (|1⟩), one only accepts the measurements

results when the previous readout result was |0⟩ (|1⟩).

We show a basic illustration of this technique in Fig. 4-5. Qubit state measure-

ments were repeated with a 3 µs readout time and 2 µs wait time. The histogram of

digitized single-shot measurements is shown in Fig. 4-5(a), with the first 2000 readout

iterations plotted in Fig. 4-5(b) as a time series. Since the 𝑇1 of the qubit is long

compared to the duration of each iteration, a strong correlation exists between the

result of one readout and the result of the next readout.

Despite losing a fraction of our data (1/2number of qubits) due to this post-selection

process, we gain an enormous speedup by not having to wait for the qubits to decay

between measurements. In order for population to decay 99% (a typical value of a

good readout fidelity) of the way back to thermal equilibrium, one must in general

wait a time of 5𝑇1. Assuming a 𝑇1 of 1ms (not atypical for fluxonium qubits measured

in this thesis), this would amount to a 5ms repetition rate between measurements. In

contrast, many measurements such as spectroscopy, Rabi, and Ramsey, only last on

order of 1-10 µs. For small numbers of qubits, this heralding process even has some

advantages over active reset (applying a pi-pulse after the readout only if the mea-

sured state is |1⟩). Since the readout discrimination is in general much less sensitive
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Figure 4-4: Pulse diagram for different readout configurations. (a) Standard
measurement and readout sequence. Pulses are played on a repeated trigger so that
the time between the trigger’s start and the readout’s start is kept constant. (b)
Single-readout post-selection sequence, also known as heralding. Each readout pulse
simultaneously sets the initial state for the subsequent qubit pulses and records the
measurement outcome of the previous qubit pulses. To herald the fluxonium ground
(excited) state |0⟩ (|1⟩), we only accept measurement results for which the previous
readout result was |0⟩ (|1⟩). (c) Two-pulse post-selection (heralding) technique. The
first readout is used to initialize the qubit state, and the second is used to measure
the result of the qubit pulses. This extra readout pulse allows for an additional buffer
time 𝜏3 without impacting the fidelity of the state preparation.
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Figure 4-5: Repeated single-shot readouts at the fluxonium sweet spot. (a)
Histogram of 30,000 digitized single-shot readouts. (b) Time series of the in-phase
component (I), showing the first 2,000 single-shot readouts. The plot resembles a
telegraph signal associated with the qubit switching states.

than a pi-pulse calibration, heralding is much more robust when relying on the same

calibration over long periods of time or the same calibration over a small range of

external fluxes. Several types of experiments in-fact do not require discarding any

data, provided the dynamics of the system when starting in |0⟩ mirror the dynam-

ics of the system when starting in |1⟩. For example, traces for measurements such

as Rabi, Ramsey, and Echo are ideally symmetric about the population = 0.5 line.

Put in another way, the relative (to the initial state) state population fully describes

the decay rate and oscillation frequency of these measurements. If assuming |0⟩ as

the desired initial state, for all measurements starting in |1⟩, the final measurement

outcome can be flipped (1 − result) and then averaged into the rest of the data. It

is without a doubt, however, that as the number of qubits increases, active reset

is more advantageous than post-selection and is further required for quantum error

correction.
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Issues with Higher-Level State Discrimination

In principle, the above method of heralding works when driving to higher states of the

fluxonium, but in practice we could not distinguish the |1⟩ and |2⟩ (and likely higher)

states in single-shot. To work around this issue, we use a separate two-pulse heralding

technique [Fig. 4-4(c)]. The first readout initializes the qubit in either |0⟩ or |1⟩, and

the second readout records the result of the measurement. We use the same buffer time

𝜏2 to avoid measurement-induced dephasing of our qubit, and introduce an additional

wait time 𝜏3 ∼ 50 µs to let any population in the higher states of the fluxonium to

fall down to the computational states. Many of our measurements specifically involve

driving from |1⟩ to |2⟩, and in these cases we can greatly enhance the readout contrast

between these two states by performing a 𝜋-pulse on the fluxonium prior to the second

readout. Any population measured in |0⟩ is assumed to be |1⟩ and any population

measured in |1⟩ is assumed to be |2⟩. To accurately separate out populations in all

three states (|0⟩, |1⟩, |2⟩), we perform two-separate measurements; one with the extra

𝜋-pulse and one without.

On a more experimental note, it is essential to make sure that the phase of the

readout demodulation is fixed relative to the phase of the readout pulses. If the

readout phase is instead fixed relative to the start of the pulse sequence, then a

variable length of the qubit pulses will cause a variable phase offset in the demodulated

data and the “I-Q blobs” will be observed to rotate according to this phase offset.

4.1.4 Microwave Cooling

A separate initialization protocol developed in this thesis work follows the all-microwave

reset protocol initially performed by Magnard et al. in a transmon architecture [53].

The basis for this protocol is to drive all excited fluxonium population into the read-

out resonator, which then decays on the timescale of the resonator linewidth 𝜅. More

precisely, we simultaneously drive the |1⟩qb |0⟩res ↔ |2⟩qb |0⟩res transition and the

|2⟩qb |0⟩res ↔ |0⟩qb |1⟩res by applying a drive to the qubit [see Fig. 4-6(a)]. This pro-

cess transfers any population in either the fluxonium |1⟩ or |2⟩ state into the excited
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Figure 4-6: Microwave Cooling. (a) Level diagram of the microwave cooling pro-
tocol. Two simultaneous drives transfer population from the qubit |1⟩ and |2⟩ states
into |0⟩ by using the resonator decay. (b) Experimental scan of each of the two
drives frequencies. The diagonally sloped resonance corresponds to the two-photon
transition |1⟩qb |0⟩res → |0⟩qb |1⟩res, and the horizontal resonance corresponds to the
one-photon transition |1⟩qb |0⟩res ↔ |2⟩qb |0⟩res. Red correlates with larger population
in the qubit ground state after application of the microwave drives.

state of the resonator, which then decays into the ground state of the system. Nor-

mally, a charge drive on the |2⟩qb |0⟩res ↔ |0⟩qb |1⟩res transition would have zero matrix

element, however it is only through the slight hybridization of the |2⟩qb |0⟩res state

with the |1⟩qb |1⟩res that this transition is drivable. Nevertheless, the relative ampli-

tude for this drive naturally needs to be much larger than that of Drive 1. To calibrate

this cooling procedure, the frequencies of both drives are swept as in Fig. 4-6(b). The

horizontal resonance corresponds to the |1⟩qb |0⟩res ↔ |2⟩qb |0⟩res resonance and the

diagonal resonance corresponds to the two-photon transition where both frequencies

sum to the frequency difference between |1⟩qb |0⟩res and |0⟩qb |1⟩res. By driving near

the intersection of these two features for a duration corresponding to several multiples

of 1/𝜅, we are able to transfer population to the ground state as illustrated in the

single-shots in Fig. 4-7(a-b).
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Figure 4-7: Fluxonium single-shot readout histograms with and without
microwave cooling. (a) Single-shots without microwave cooling. There is a large
distribution of both |0⟩ and |1⟩ states due to the thermal population. (b) Single-shots
with microwave cooling prior to each readout, which transfers population into ground
state.

4.1.5 Overview of Initialization Options

In addition to the initialization protocols demonstrated in this work, there is active-

reset which relies on FPGA logic [32], several other microwave-based techniques which

all relying on shoveling population into a resonator that then rapidly decays [109, 26,

6], and a technique relying on pure fast-flux control, in which the qubit frequency is

tuned to several GHz in order the thermalize, before being brought back to the “sweet

spot” [61]. The requirement to perform one of these (oftentimes complicated) reset

protocols in order to work with such a low frequency qubit is often brought up as

a reason for which low frequency qubits are more difficult or even more problematic

than higher frequency qubits. While this may be a overhead cost in setting up initial

measurements, this does not hold true in a future quantum processor. In order for

any quantum computer to work (even those using other qubit platforms), quantum

error-correction will be a necessary requirement, which itself requires fast-feedback to

perform different qubit controls dependent on the results of readout measurements.

In the long term, the ability to perform single-shot readout and some reset protocol
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will be a requirement for all qubits. Due to not requiring any additional resources

beyond single-shot readout and being both effective and efficient, we readout using

post-selection for all further fluxonium experiments in this thesis.

4.2 Time-domain Measurements

In this Section, we briefly review the most common time-domain measurements

performed on superconducting qubits, emphasizing any differences with fluxonium

qubits. These measurements are generally useful for qubit calibration and character-

ization, with a more thorough overview available in Refs [47, 68, 16].

4.2.1 Rabi

We perform single-qubit rotations by resonantly driving with a microwave signal sent

down either a charge line or a flux line coupled to the qubit. A drive with the

functional form 𝐴(𝑡) results in an effective Hamiltonian drive term ∝ 𝐴(𝑡)𝑛̂ for the

charge drive and ∝ 𝐴(𝑡)𝜑 for the flux drive [15]. We observe that driving the qubit

through the readout resonator as is commonly done for higher-frequency qubits results

in excess resonator photons, which dephase the qubit. If Ω is the Rabi frequency and 𝛿

is the detuning between the drive frequency and the qubit frequency, the population in

the excited state should follow Eq. (1.39). We show the experimental pulse sequence

and fitted data in Fig. 4-8(a) for the case with 𝛿 = 0.

4.2.2 Lifetime 𝑇1

In general, the 𝑇1 describes the decay time constant for the population to return back

to thermal equilibrium from any initial state.

𝑝𝑒(𝑡) =
(︀
𝑝𝑒(0)− 𝑝th

𝑒

)︀
𝑒−𝑡/𝑇1 + 𝑝th

𝑒 (4.6)

𝑝𝑔(𝑡) =
(︀
𝑝𝑔(0)− 𝑝th

𝑔

)︀
𝑒−𝑡/𝑇1 + 𝑝th

𝑔 (4.7)
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Figure 4-8: Illustration of time-domain measurements. Prior to each pulse se-
quence, the qubit is initialized in |0⟩. (a) Rabi oscillations measured as a function
of amplitude. Alternatively, these oscillations can be measured as a function of pulse
duration. (b) 𝑇1 measurement by initializing the state into |1⟩ with a pi-pulse. Since
low-frequency fluxonium qubits have considerable thermal population, a 𝑇1 measure-
ment can also be performed without a pi-pulse. In that case, there will be a decay
from |0⟩ to the thermal equilibrium state. (c) Ramsey oscillations as a function of
time to measure 𝑇𝑅

2 . (d) Spin-echo decay measured as a function of time.

For high-frequency qubits with low thermal population, this rule becomes synonymous

with 𝑇1 being the decay time constant from |1⟩ to |0⟩, which is likely more familiar.

For those types of qubits, a microwave pulse is also necessary in order to measure 𝑇1,
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to pi-pulse the qubit state from |0⟩ to |1⟩ at the start of the measurements. With

the heralding technique applied to fluxonium qubits, the qubit state can be prepared

in either |0⟩ or |1⟩ without the need of a microwave pulse, and 𝑇1 can be fit from a

decay to the equilibrium mixed state in either case. This can be a useful technique

to perform initial characterizations of a fluxonium qubit before the qubit frequency

is known and without the need of a pi-pulse.

4.2.3 Ramsey

The Ramsey technique involves performing two pi-half pulses with a wait time 𝑡

between them, then readout out right after. The Ramsey experiment serves two

useful functions: the first is to characterize the decoherence time of the system (𝑇2),

and the second is as a precise measure of the qubit frequency. Assuming the same

detuning 𝛿 between the drive frequency and the qubit frequency and a completely

Markovian dephasing process (with time constant 𝑇𝜑), the excited state population

as a function of time is

𝑝𝑒(𝑡) = 𝑒−𝑡/𝑇2 cos(𝛿𝑡) (4.8)

where
1

𝑇2
=

1

2𝑇1
+

1

𝑇𝜑
. (4.9)

By monitoring the time dependence of the fitted value of 𝛿 via repeated Ramsey

measurements, one can extract the associated noise power spectral density of the

qubit’s frequency to measure the frequency stability of the qubit.

4.2.4 Spin-Echo

An alternative technique for measuring the 𝑇2 time of a qubit is the spin-echo pulse se-

quence. This involves performing the same two pi-half pulses as in a Ramsey sequence,

except a pi-pulse is inserted halfway in between the pi-half pulses (with wait time 𝑡/2

between the pi-pulse and each pi-half pulse). This additional pi-pulse serves to mit-

igate the effects of lower frequency (compared to 1/𝑡) noise in the qubit frequency
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relative to the Ramsey experiment. Assuming a model of Markovian dephasing and

1/𝑓 flux noise, the decay function is partially exponential and partially Gaussian

𝑝𝑒(𝑡) = 𝑒−𝑡/𝑇exp𝑒−(𝑡/𝑇𝜑)
2

. (4.10)

Both the relative time constants between the exponential and Gaussian component

as well as the the difference between Ramsey and spin-echo decay times gives useful

information on the amount of colored noise vs. white noise. Additionally, comparing

the 𝑇2 times obtained via these techniques with 2𝑇1 gives a measure of the amount

of pure dephasing present in the system.

4.3 Single-Qubit Gate Calibration

In this section, we describe the Clifford randomized benchmarking techniques used to

characterize our gates and analyze how different calibration errors translate into gate

errors. This is useful to provide bounds on how accurate calibrations need to be, so

as not to waste unnecessary measurement time. Finally, we detail our entire protocol

for single-qubit gate calibration.

4.3.1 Single-Qubit Clifford Benchmarking

Clifford Randomized Benchmarking is a commonly used technique to benchmark

the fidelity of gates [8]. For single-qubit gates, we decompose each element of the

single-qubit Clifford group (𝐶1) into a convenient physical gate set. Following the

decomposition done by Barends et al. and Sung et al, each element of 𝐶1 is decom-

posed into the microwave gate set {𝐼,±𝑋/2,±𝑌/2,±𝑋,±𝑌 }, resulting in an average

of 1.875 physical gates per Clifford [8, 94]. For our decompositions, we choose to

make each gate the same physical length for benchmarking convenience: an 𝐼 gate

will physically idle for the specified gate duration, and pi-half pulses are created by

halving the amplitude of the corresponding pi-pulse as opposed to being a separate

calibrated pulse with roughly half the duration.
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The following procedure is used to perform the benchmarking sequence:

1. Create a sequence of 𝑚 random Clifford gates

2. Choose the 𝑚+ 1th Clifford such that it inverts the product of the previous 𝑚

3. Measure the survival rate after this full sequence (if initially in |0⟩, measure

𝑝|0⟩).

4. Repeat the above steps varying 𝑚

5. Repeat the above steps varying the random number seed (we typically use 20

random seeds)

6. Fit the survival probability to the function

𝐹 (𝑚) = 𝐴0𝑝
𝑚 +𝐵0 (4.11)

In this formula, 𝐴0 and 𝐵0 are meant to encapsulate all the SPAM errors of the

system. The average error per Clifford is given by 𝑟𝐶1 = (1− 𝑝)(1− 1/𝑑) where 𝑑 is

the dimension of the Hilbert space, 𝑑 = 2𝑛 (𝑛 is the number of qubits). Using our

previously noted gate decomposition, we calculate our average single-qubit gate error

as

𝑟1𝑄𝐵 = 𝑟𝐶1/1.875. (4.12)

Clifford Interleaved Randomized Benchmarking

While the above procedure gives us the average gate fidelity assuming some Clifford

decomposition, it notably does not allow us to benchmark the fidelity of a single par-

ticular gate of interest. For this task, it is customary to employ Clifford interleaved

randomized benchmarking. For this procedure, we do two separate randomized

benchmarking experiments. The first is just standard randomized benchmarking,

exactly the same as above, and for the second experiment we make the slight modi-

fication that in between each Clifford gate in the standard RB sequence, we insert a
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gate 𝐺 that we wish to benchmark [8, 51]. If 𝑝ref is the fitted value of 𝑝 for the stan-

dard RB experiment, and 𝑝int is the fitted 𝑝 value for the interleaved RB experiment,

then the error per gate 𝐺 is extracted as

𝑟𝐺 = (1− 1/𝑑)(1− 𝑝int/𝑝ref). (4.13)

If 𝜎 denotes the one standard deviation uncertainty assuming gaussian error statistics,

(a) (b)

Gate Inverse
Clifford

Random
Clifford

Random
Clifford Gate ...Inverse

Clifford
Random
Clifford

Random
Clifford

...

Standard
Randomized Benchmarking

Interleaved
Randomized Benchmarking

Figure 4-9: Illustrative diagrams for randomized benchmarking (a) Block
diagram for standard randomized benchmarking. (b) Block diagram for interleaved
randomized benchmarking, with the interleaved gate denoted ’Gate’.

then the uncertainty for the error per Clifford and the error per gate 𝐺 are obtained

via standard uncertainty propagation

𝜎𝑟𝐶1
=

(︂
1− 1

𝑑

)︂
𝜎𝑝ref (4.14)

𝜎𝑟𝐺 =

(︂
1− 1

𝑑

)︂ √︁𝑝2ref𝜎
2
𝑝int

+ 𝑝2int𝜎
2
𝑝ref

𝑝2ref
(4.15)

4.3.2 Calibration Algorithm

Due to the sufficiently large charge matrix elements of our fluxonium qubits, we

perform all single-qubit gates using standard Rabi oscillations with a charge drive

line. The pulses shaped by a pure cosine envelope with no flat top. We specifically

calibrate the 𝑋𝜋 pulse, and derive other pulses from it. 𝑌 pulses are created by

adjusting the phase of the 𝑋 pulses, pulses differing from 𝜋 rotation are derived by

linearly scaling the pulse amplitude, and 𝑍 gates are implemented through virtual-Z

gates. While we could perform a more careful calibration by individually calibrating

123



all other gates in our microwave gate set for the RB decomposition , we find our single-

qubit gates derived from this process more than sufficient to achieve state-of-the-art

fidelities.

We detail the entire calibration sequence for an 𝑋𝜋 gate in Fig. 4-10, with a

flowchart illustrated provided in Fig. 4-10(m). Following an initial rough calibration of

the qubit readout, sweet-spot voltage, frequency, and pi-pulse amplitude, the following

procedure can be used to more precisely calibrate the qubit.

1. Precise sweet-spot calibration [Fig. 4-10(a, d)]. With fixed drive frequency

(slightly negatively detuned from the qubit frequency) and fixed drive ampli-

tude, Ramsey oscillations are obtained as a function of flux around the sweet

spot. The oscillation frequencies are fit to a parabola, and the center of the

parabola fit is used as the bias voltage corresponding to Φext = 0.5Φ0, termed

the “sweet spot”.

2. Single-shot readout calibration [Fig. 4-10(b, e)]. Although optimizing the

readout does not impact the gate fidelity, we re-measure the locations of the

single-shot blobs corresponding to |0⟩ and |1⟩ here to correct for flux-related

changes in the readout signal.

3. Precise qubit frequency calibration [Fig. 4-10(c, f)]. To accurately obtain

the qubit frequency, we perform qubit spectroscopy with a low enough power

such that little power broadening is observed. This typically gives kHz-level

precision, a sufficient starting point for DRAG. It is more common to extract

the qubit frequency via Ramsey, but low power spectroscopy was found to be

faster and more robust in our implementation. Furthermore, neither method

correctly accounts for AC-stark shifts, meaning spending extra time for higher

precision is not productive at this step.

4. Derivative Removal by Adiabatic Gate (DRAG) calibration [Fig. 4-

10(g-h, j-k)]. The DRAG procedure seeks to reduce leakage and AC-stark shifts

by modifying the original pulse by applying a compensation pulse in the out-

of-phase quadrature proportional equal to the derivative of the original pulse
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Figure 4-10: Single-qubit 𝑋𝜋 calibration procedure. (a-c, g-i) Measurement
pulse sequences for panels (d-f, j-l) respectively. (d) Ramsey vs. bias voltage mea-
surement in order to precisely determine the voltage corresponding to Φext = 0.5Φ0

(termed the “sweet spot”). (e) Calibrating the readout I and Q coordinates for the
fluxonium |0⟩ and |1⟩ states. (f) Low-power spectroscopy of the qubit to precisely
determine the qubit frequency. (j) DRAG calibration of the qubit. We play a varying
even number of 𝑋𝜋 pulses with alternating amplitude while also varying the DRAG
scaling. (k) A more precise DRAG calibration. (l) A pulse train consisting of an
odd number of 𝑋𝜋 pulses to precisely calibrate the amplitude of the pulse. (m) Cali-
bration flowchart for single-qubit gates. Panels are shown for all calibrations starting
from the precise sweet spot calibration.
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multiplied by a to-be-calibrated DRAG parameter [62]. While scanning the

DRAG parameter, we perform a train of 𝜋-pulses with alternating positive and

negative amplitudes. This train of alternating pulses will result in the identity

for perfectly calibrated pulses, but amplify the rotation error of off-resonant

drives. The DRAG parameter which minimizes the observed oscillation between

the |0⟩ and |1⟩ state is chosen. This measurement may be repeated with a

larger number of pulses to increase the resolution of the DRAG parameter.

Contrary to other fluxonium experiments [6, 93], we find DRAG calibration

necessary to avoid coherent additional errors. We measure the optimal DRAG

parameter to vary depending on the room temperature filtering scheme and not

with the anharmonicity of the qubit, which leads us to suspect the calibration

is correcting for small distortions in the drive line [37].

5. Precise drive amplitude calibration [Fig. 4-10(i, l)]. To improve the preci-

sion of a single Rabi oscillation, we utilize a pulse train with an odd number of

pulses while varying the pulse amplitude. This serves to multiply the oscillation

frequency by the number of pulses used, allowing for increased precision on the

calibrated 𝜋-pulse amplitude.

4.3.3 Error Analysis

In this subsection we build up an analytic error model to estimate the impact of

various types of coherent and incoherent errors on gate fidelities. We model our gates

as completely positive trace-preserving (in some subspace) map 𝒢 acting on an input

state 𝜌. The Kraus representation theorem then allows us to express all such processes

as

𝒢(𝜌) =
∑︁
𝑘

𝐺𝑘𝜌𝐺
†
𝑘 (4.16)

for some set of Kraus operators 𝐺𝑘 obeying the normalization condition

∑︁
𝑘

𝐺†
𝑘𝐺𝑘 = 𝐼. (4.17)
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The average state fidelity of such a process 𝒢 is then given by

𝐹 =
1

𝑛(𝑛+ 1)

[︃
Tr

(︃∑︁
𝑘

𝑀 †
𝑘𝑀𝑘

)︃
+
∑︁
𝑘

|Tr(𝑀𝑘)|2
]︃
. (4.18)

where 𝑀𝑘 = 𝑃𝑈 †
0𝐺𝑘𝑃 and 𝑛 is the dimension of the computational subspace [73]. In

this expression, 𝑃 is the projection operator onto the computational subspace, and 𝑈0

is the ideal unitary operation of the process. For the special case that 𝒢 is a unitary

map, there is only one Kraus operator, which is the unitary matrix 𝑈 describing 𝒢.

In this case, Eq. (4.18) simplifies to

𝐹 =
1

𝑛(𝑛+ 1)

[︀
Tr(𝑀𝑀 †) + |Tr(𝑀)|2

]︀
, (4.19)

where 𝑀 = 𝑈 †
0𝑈 . In what follows, we model various processes to obtain the error

that they contribute to gate fidelities.

𝑇1 Decay

For a qubit with lifetime 𝑇1, we traditionally think of the relaxation of the qubit to

be modeled as so on a density matrix

𝒢(𝜌) =

⎛⎝𝜌00 + 𝜌11(1− 𝑒−𝑡/𝑇1) 𝜌01𝑒
−𝑡/2𝑇1

𝜌10𝑒
−𝑡/2𝑇1 𝜌11𝑒

−𝑡/𝑇1

⎞⎠ , (4.20)

where 𝜌𝑖𝑗 is the density matrix element at 𝑡 = 0. With some trial and error, one can

identify the Kraus operators as

𝐺0 =

⎛⎝1 0

0 𝑒−𝑡/2𝑇1

⎞⎠ , 𝐺1 =

⎛⎝0
√
1− 𝑒−𝑡/𝑇1

0 0

⎞⎠ . (4.21)

Note that these indeed satisfy the normalization condition
∑︀

𝑘𝐺
†
𝑘𝐺𝑘 = 𝐼. There are

two different interpretations of this set of Kraus operators. 1) In computing 𝐺0𝜌𝐺
†
0,

it is evident that 𝐺0 is responsible for the decay of the excited state and the resultant
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dephasing due to this decay. Similarly, one can see that 𝐺1 is responsible for bring-

ing population back into the ground state. 2) In a Monte-Carlo formalism of qubit

decay, 𝐺0 corresponds to the normalized no-jump state evolution under an effective

unitary, and 𝐺1 corresponds to the jump evolution. Regardless of interpretation, the

important point is that these two operators give the process 𝒢(𝜌) written above, and

plugging these into Eq. (4.18) (with 𝑈0 = 𝐼) results in

𝐹 =
1

6

(︀
3 + 𝑒−𝑡/𝑇1 + 2𝑒−𝑡/2𝑇1

)︀
. (4.22)

Assuming a small time 𝑡𝑔 relative to 𝑇1, we can Taylor expand this to recover the

more familiar formula

𝐹 = 1− 1

3

𝑡𝑔
𝑇1
. (4.23)

While we calculated this as the fidelity of the identity operation on a single qubit with

some duration 𝑡𝑔, it also serves as the coherence limited fidelity of single-qubit gates

in general. This can be reasoned by noting that any non-identity single-qubit gate

can be mapped onto some unitary transformation of the operators 𝐺𝑘, and equation

Eq. (4.18) is invariant under unitary transformation of the Kraus operators. We

should sure hope so given that the Kraus operators are only unique up to a unitary

transformation in the first place.

Pure Dephasing

For a pure memoryless dephasing process with time constant 𝑇𝜑, the associated Kraus

operators are

𝐺0 =

⎛⎝𝑒−𝑡/2𝑇𝜑 0

0 𝑒−𝑡/2𝑇𝜑

⎞⎠ , 𝐺1 =

⎛⎝√
1− 𝑒−𝑡/𝑇𝜑 0

0 0

⎞⎠ , 𝐺2 =

⎛⎝0 0

0
√
1− 𝑒−𝑡/𝑇𝜑

⎞⎠
(4.24)

Once again, I unfortunately do not offer the insight on how to generate Kraus opera-

tors for arbitrary quantum processes, but the validity of the Kraus operators presented
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can be verified by computing

∑︁
𝑘

𝐺†
𝑘𝜌𝐺𝑘 =

⎛⎝ 𝜌00 𝑒−𝑡/𝑇𝜑𝜌01

𝑒−𝑡/𝑇𝜑𝜌10 𝜌11

⎞⎠ , (4.25)

which shows that the this process places an exponential decay on the off-diagonal

elements of the single-qubit density matrix, exactly what we assume decoherence is.

Using Eq. (4.18), we can see that the fidelity of this dephasing process has the same

expression as the fidelity of a 𝑇1 channel

𝐹 = 1− 1

3

𝑡𝑔
𝑇𝜑
. (4.26)

Rabi Calibration Error

We assume a purely coherent error arising from an over- or under-rotation of a Rabi

oscillation when calibrating for a pi-pulse. In this case, the ideal unitary corresponding

to a pi-pulse 𝑈0 and the unitary modeling the Rabi oscillation at time 𝑡 with Rabi

frequency Ω is

𝑈0 =

⎛⎝0 𝑖

𝑖 0

⎞⎠ , 𝑈 =

⎛⎝ cos(Ω𝑡/2) 𝑖 sin(Ω𝑡/2)

𝑖 sin(Ω𝑡/2) cos(Ω𝑡/2)

⎞⎠ . (4.27)

Insertion into Eq. (4.19) results in a fidelity of

𝐹 =
1

6
(2 + 4 sin2(Ω𝑡/2)) ≈ 1− 1

6
𝜃err, (4.28)

where 𝜃err = Ω𝑡− 𝜋 is the rotation error for the pi-pulse. In our typical calibrations,

the pi-pulse is calibrated using an approximately 1V output on the AWGs. The

rotation angle error can then be converted into a voltage error 𝑉err

𝐹 = 1− 1

6
(𝜋𝑉err)

2. (4.29)
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For a fidelity of 𝐹 = 99.999%, we can tolerate a voltage error of 𝑉err = 2.5mV, which

is well within the specs of typical hardware noise.

Drive Frequency Error

In addition to the drive amplitude, the drive frequency is the other control knob

governing the pi-pulse calibration. The full unitary corresponding to off-resonant

Rabi oscillations is

𝑈(𝑡) = 𝑒𝑖𝛿𝑡/2

⎛⎝cos(Ω̃𝑡/2)− 𝑖 𝛿
Ω̃
sin(Ω̃𝑡/2) 𝑖Ω

Ω̃
sin(Ω̃𝑡/2)

𝑖Ω
Ω̃
sin(Ω̃𝑡/2) cos(Ω̃𝑡/2) + 𝑖 𝛿

Ω̃
sin(Ω̃𝑡/2)

⎞⎠ , (4.30)

where 𝛿 is the drive detuning (𝛿 = 𝜔drive − 𝜔qubit), Ω is the Rabi frequency, and

Ω̃ =
√
Ω2 + 𝛿2 is the generalized Rabi frequency. Assuming that the pi-pulses are

correctly calibrated for a full rotation (Ω̃ = 𝜋), the ideal and experimental unitaries

become

𝑈0 =

⎛⎝0 𝑖

𝑖 0

⎞⎠ , 𝑈 = 𝑒𝑖𝛿𝑡/2
𝑖

Ω̃

⎛⎝−𝛿 Ω

Ω 𝛿

⎞⎠ , (4.31)

with the fidelity calculated using Eq. (4.19) to be

𝐹 =
1

6

(︂
2 + 4

Ω2

Ω2 + 𝛿2

)︂
≈ 1− 2

3

𝛿2

Ω2
. (4.32)

In order to realize a 99.999% fidelity gate, we require 𝛿/Ω ≤ 0.0039, which will

typically necessitate DRAG calibration or some other pulse correction techniques to

compensate for AC-stark shifts.
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Chapter 5

FTF Architecture for Quantum

Computing

The fluxonium qubit [56, 29, 67] is a promising alternative to the transmon for gate-

based quantum information processing [66], offering increased lifetimes [92] and larger

anharmonicities. Namely, energy relaxation times exceeding 1ms [75, 93] have been

observed, alongside anharmonicities of several GHz when operated at an external bias

of a half-flux quantum, termed the “sweet spot”.

With these advantages, fluxonium qubits have already achieved single-qubit gate

fidelities above 99.99% [93]. Two-qubit gates relying on capacitive coupling [6, 26,

61, 30, 103], however, are more challenging because the same small transition matrix

elements which improve 𝑇1 concomitantly reduce the interaction strength between

qubits. Moreover, direct capacitive coupling results in an undesired, always-on en-

tangling rate (𝑍𝑍). In previous works, a variety of strategies were employed to

reduce the 𝑍𝑍, such as keeping coupling strengths small or using AC-Stark drives, all

of which have their own individual drawbacks. Finally, two-qubit gates must also re-

liably contend with frequency collisions with spectator qubits if they are to be scaled

to larger arrays of qubits without sacrificing fidelity.

In this Chapter, we introduce the fluxonium-transmon-fluxonium circuit (FTF)

as a novel architecture for coupling fluxonium qubits via a transmon coupler. FTF

suppresses the static 𝑍𝑍 rate down to kHz levels in a manner nearly insensitive to
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design parameter variations while simultaneously providing strong couplings for two-

qubit gates via non-computational states. Using FTF, we propose and demonstrate a

microwave-activated CZ gate between two fluxonium qubits in a 2D-planar geometry.

This gate takes advantage of strong capacitive couplings which create a manifold

of highly hybridized states that mix the first higher transition (|1⟩ ↔ |2⟩) of both

fluxonium qubits with the transmon’s lowest transition (|0⟩ ↔ |1⟩). Despite these

strong couplings, the computational states remain relatively unhybridized due to the

large qubit-coupler detuning, allowing for high-quality single-qubit gates in addition

to the two-qubit gate. We applied microwave pulses to drive a full oscillation to

and from this manifold contingent on both fluxonium qubits starting in their excited

states and benchmarked CZ gate fidelities of up to 99.992 ± 0.009 % in 50 ns via

Clifford-interleaved randomized benchmarking.

The flux tunability of the transmon coupler also allows for the operation of the

CZ gate at a wide range of microwave drive frequencies, providing a convenient way

to avoid frequency collisions in situ in larger-scale devices. Such in situ tunability

is critical for microwave-activated gates, as dependence on a particular frequency

layout places an exponentially difficult demand on fabrication precision [89, 39] as the

number of qubits increases. Our devices also exhibit up to millisecond 𝑇1 in a multi-

qubit planar geometry, placing them among the highest coherence superconducting

qubits to date and priming them for use in larger systems.

5.1 The FTF Architecture

Our device configuration consists of two differential fluxonium qubits capacitively

coupled to a grounded transmon coupler (see [Fig. 5-1(a)] for a simplified circuit

schematic), with a much weaker direct capacitive coupling between the two fluxo-

nium qubits [Fig. 5-1(b)]. The two lowest-lying states of each fluxonium form the

computational basis (|00⟩ , |01⟩ , |10⟩ , |11⟩), and the first excited state of the cou-

pler, in addition to the second excited states of the fluxonium qubits, serve as useful

non-computational states. Modeling only the qubits and their pairwise capacitive
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couplings, our system Hamiltonian is

𝐻̂/ℎ =
∑︁
𝑖=1,2

4𝐸𝐶,𝑖𝑛̂
2
𝑖 +

1

2
𝐸𝐿,𝑖𝜑

2
𝑖 − 𝐸𝐽,𝑖 cos(𝜑𝑖 − 𝜑ext,𝑖)

+ 4𝐸𝐶,𝑐𝑛̂
2
𝑐 − 𝐸𝐽1,𝑐 cos(𝜑𝑐)− 𝐸𝐽2,𝑐 cos(𝜑𝑐 − 𝜑ext,𝑐)

+ 𝐽1𝑐𝑛̂1𝑛̂𝑐 + 𝐽2𝑐𝑛̂2𝑛̂𝑐 + 𝐽12𝑛̂1𝑛̂2, (5.1)

where 𝐸𝐶 , 𝐸𝐽 , and 𝐸𝐿 represent the charging, Josephson, and inductive energies,

respectively. Subscripts 𝑖 = 1, 2 index the two fluxonium nodes, and subscript 𝑐 la-

bels the coupler node. Here we also introduced the external phase 𝜑ext, which is

related to the external flux Φext through the expression Φext/Φ0 = 𝜑ext/2𝜋 for each

qubit. For both our main device (Device A) and a secondary device (Device B),

the experimentally obtained Hamiltonian parameters are listed in Table 5.1, along

with the measured coherence times. All fluxonium resonators had approximately

𝜒01 = 0.3MHz and 𝜅 = 1.5MHz.

Table 5.1: Characterization of FTF devices. Hamiltonian parameters for both
Device A and Device B were obtained by fitting two-tone spectroscopy data and the
static 𝑍𝑍 rate vs. coupler flux. Coherence times were measured by biasing each
fluxonium at Φext = 0.5Φ0 using only the global flux bias. Unless otherwise stated,
all data corresponds to Device A.

𝐸𝐶 (GHz) 𝐸𝐿 (GHz) 𝐸𝐽 (GHz) 𝑁𝐽𝐽 𝜔01/2𝜋 (GHz) 𝜔𝑟/2𝜋 (GHz) 𝑇1 (µs) 𝑇𝑅
2 (µs) 𝑇𝐸

2 (µs)
A Fluxonium 1 1.41 0.80 6.27 102 0.333 7.19 560 160 200
A Fluxonium 2 1.30 0.59 5.71 102 0.242 7.08 1090 70 190
A Transmon c 0.32 3.4, 13 – – 7.30 – – –
B Fluxonium 1 1.41 0.88 5.7 102 0.426 7.20 450 230 240
B Fluxonium 2 1.33 0.60 5.4 102 0.281 7.09 1200 135 310
B Transmon c 0.30 3.0, 13 – – 7.31 – – –

𝐽1𝑐 (MHz) 𝐽2𝑐 (MHz) 𝐽12 (MHz)
A Coupling Strengths 570 560 125
B Coupling Strengths 550 550 120

5.1.1 Gate Operation

The operating principles of FTF are fundamentally different than those of all-transmon

circuits [106]. Due to its relatively high frequency, the coupler interacts negligibly
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Figure 5-1: Device overview and gate principle. (a) Simplified circuit schematic
of two fluxonium qubits (red) capacitively coupled to a tunable-transmon coupler
(blue). (b) False-colored optical micrograph of the two fluxonium qubits and the
transmon along with their readout resonators, charge lines, and local flux lines. Arrays
of 102 Josephson junctions in series form the fluxonium inductances. (c) Energy
level diagram illustrating the principle of the CZ gate. In practice, levels |201⟩, |102⟩,
and |111⟩ are highly hybridized, and selectively driving any of these transitions results
in a CZ gate.

with the computational states of the qubits. Instead, the coupler predominantly in-

teracts with the higher levels of the qubits, acting as a resource for two-qubit gates

without adversely affecting single-qubit gates.

We describe the quantum state of the system using the notation |𝑗𝑘𝑙⟩, where 𝑗,

𝑘, and 𝑙 denote the energy eigenstates in the uncoupled basis of fluxonium 1, the

coupler, and fluxonium 2, respectively. While coupler-based gates are often activated

by baseband flux pulses, here we generate the required entangling interaction via a

microwave pulse from |101⟩ to a non-computational state of the joint system. As

illustrated in Fig. 5-1(c), a single-period Rabi oscillation from |101⟩ to either |201⟩,
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|111⟩, or |102⟩ gives the 180∘ conditional phase shift necessary for a CZ gate, provided

no other transitions are being driven. We note that, throughout this Chapter, we label

the eigenstates according to their maximum overlap with the uncoupled qubit/coupler

states at Φext,c = 0 (equivalently Φext,c = 1Φ0). We perform this labeling at Φext,c = 0

because tuning the coupler flux results in avoided crossings among the higher levels

of the system.

In general, stronger coupling strengths result in larger detunings from parasitic

transitions in two-qubit gate schemes, yet doing so often results in unintended conse-

quences. Two common drawbacks of larger coupling strengths are remedied using the

FTF architecture: (1) crosstalk due to non-nearest-neighbor couplings, and (2) un-

wanted static 𝑍𝑍 interactions. In all transmon-based architectures, the same level

repulsion that enables the two-qubit gate also creates level repulsions within the

computational subspace. This is because all transition frequencies and charge matrix

elements of adjacent levels in a transmon have similar values. As this hybridization

among the computational states increases, charge drives will produce non-local mi-

crowave crosstalk to unwanted qubit transitions. In FTF, the large ratio of transition

matrix elements | ⟨2| 𝑛̂ |1⟩ |/| ⟨1| 𝑛̂ |0⟩ | for fluxonium qubits, the large fluxonium an-

harmonicity, and the large detunings between the transmon and each fluxonium all

serve to mitigate these negative side-effects.

5.1.2 ZZ Reduction

Formally, the 𝑍𝑍 interaction rate is defined as

𝜁 = (𝐸11 − 𝐸10 − 𝐸01 + 𝐸00)/ℎ (5.2)

(for two qubits) or

𝜁 = (𝐸101 − 𝐸100 − 𝐸001 + 𝐸000)/ℎ (5.3)

(for two qubits and a coupler). It describes an unwanted, constant, controlled-phase-

type entangling rate caused by the collective level repulsions from the many non-
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computational states of superconducting qubits acting on the computational states,

which must be minimized.

A key feature of the FTF architecture is its ability to suppress 𝜁, despite the strong

coupling strengths that would typically amplify it. This low 𝜁 can be understood by

considering the couplings 𝐽𝑖𝑗 perturbatively up to fourth order. At each order 𝑚, the

perturbative correction can be considered an 𝑚th-order virtual transition between the

states of the uncoupled qubits; the strength of a particular transition is proportional

to the product of the corresponding couplings 𝐽𝑖𝑗. In Fig. 5-2(a), we illustrate the

dominant virtual transitions up to fourth order: the first-order correction is zero; at

second order, only direct transitions between the two fluxonium qubits contribute

to 𝜁; at third order, the only allowed transitions form three-cycles between the three

qubits; and at fourth order, we find that transmon-mediated transitions between the

two fluxonium qubits dominantly contribute to 𝜁 (further details can be found in the

appendix of Ref. [24]). As such, we can write 𝜁 to fourth order as

𝜁 ≈ 𝐽2
12𝜁

(2) + 𝐽12𝐽
2
𝑐 𝜁

(3) + 𝐽4
𝑐 𝜁

(4), (5.4)

where 𝜁(𝑖) depend only on the uncoupled states, and we assume 𝐽1𝑐 = 𝐽2𝑐 = 𝐽𝑐.

Specifically, we find our device to be well-described by 𝜁(2) = −2.1 × 10−3GHz−1,

𝜁(3) = 1.4× 10−3GHz−2, and 𝜁(4) = −2.6× 10−4GHz−3 at Φext,c = 0.5Φ0, obtaining

by a numerical computation of the perturbation theory. Critically, both the second-

and fourth-order terms are negative, while the third-order term is positive. This is a

direct consequence of the perturbation theory: for virtual transitions to excited states

above the computational subspace, even-order terms describe level repulsions, while

odd-order terms describe level attractions. The relatively low 𝑍𝑍 in the FTF system

stems from this cancellation between even and odd terms.

To understand this quantitatively, we numerically calculate 𝜁 by diagonalizing

Eq. (5.1) as a function of 𝐽𝑐 and 𝐽12 [Fig. 5-2(b)]. We find that 𝜁 can be almost

perfectly canceled by appropriate choices of the couplings, as traced by the darker
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(a)

(b) (c)

F T F

Figure 5-2: ZZ -reduction in the FTF architecture. (a) A perturbative treat-
ment of the couplings 𝐽𝑖𝑗 shows energy shifts in FTF to be dominated by virtual
transitions (dashed arrows) of second (dark purple), third (light purple), and fourth
(pink) order between the fluxonium qubits (maroon circles) and the coupler (blue
circle). (b) Numerical simulation of 𝜁 as a function of 𝐽𝑐 = 𝐽1𝑐 = 𝐽2𝑐 and 𝐽12 with
the experimentally extracted qubit parameters. With the coupler, a ratio of coupling
strengths always exists that minimizes 𝜁 (dark gray). (c) Plot of 𝜁 along the “Mini-
mum 𝑍𝑍” parabola in (a), as a function of 𝐽12. The black curve shows a numerical
diagonalization of the Hamiltonian, which is accurately described by 4th order pertur-
bation theory (red). Without the coupler (gray), |𝜁| is roughly an order of magnitude
larger for this range of coupling strengths.

dashed line. Within perturbation theory, this curve of minimum 𝜁 is a parabola:

𝑑𝜁/𝑑𝐽12 = 0 (5.5)

=⇒ 𝐽12 = −𝐽2
𝑐 𝜁

(3)/2𝜁(2). (5.6)

By inserting this expression into Eq. (5.4), we obtain the dependence of 𝜁 along the
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parabola

𝜁min = 𝐽4
𝑐 (−𝜁(3)𝜁(3)/4𝜁(2) + 𝜁(4)). (5.7)

For our device parameters, the two terms in parentheses almost cancel, summing

to −2× 10−6 GHz−3.

Importantly, |𝜁| remains below 10 kHz for 𝐽𝑐 values of up to 1GHz, while main-

taining the optimal coupling ratio. To take full advantage of this phenomenon, we

designed the coupling strengths to be as large as reasonable for our geometry. Despite

the large coupling strengths, 𝜁 is only weakly dependent on 𝐽𝑐, and 𝐽12: independent

errors in 𝐽𝑐 and 𝐽12 by up to 20% would increase 𝜁 in our device by a maximum of

11 kHz (modeling the worst case scenario in which 𝐽12 increases and 𝐽𝑐 decreases).

Such robustness will be critical in larger-scale devices, as capacitive coupling strengths

cannot be changed after device fabrication and are subject to fabrication variations.

In Fig. 5-2(c), we compute 𝜁 as a function of 𝐽12 (assuming the optimal corresponding

value of 𝐽𝑐) with an exact numerical diagonalization (black) and perturbation theory

(red), illustrating that perturbation theory up to 4th order is a sufficient description

of the total 𝑍𝑍 rate in the FTF system.

The value of 𝜁 is also insensitive to the coupler frequency, allowing us to safely

bias the system at any Φext,c. This is unsurprising, as the coupler energy levels are far

from any resonances with the computational states. In other words, any change in

the coupler frequency must compete with the large detuning between the coupler and

fluxonium |0⟩ ↔ |1⟩ transitions. To validate our models, we experimentally deter-

mined 𝜁 by measuring the frequency of fluxonium 1 using a Ramsey experiment while

preparing fluxonium 2 in the ground or excited state. Taking the difference in fitted

frequencies associated with the two initial state preparations yields the experimental

value of 𝜁, which we find to closely follow our numerical simulations as a function

of the coupler flux [see Fig. 5-3(a)]. An alternative approach to 𝑍𝑍 reduction with

fluxonium qubits is to apply always-on AC-Stark drives [103, 26]. While this is an

effective means to reduce 𝑍𝑍 in few-qubit devices, the requirement of an additional

calibrated drive per qubit becomes increasingly prohibitive as system sizes grow.
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(a) (b)

Figure 5-3: Numerical simulations of 𝜁 in the FTF system. (a) Measured and
simulated 𝜁 as a function of the coupler flux for the experimental device parameters.
The 𝑍𝑍 rate remains nearly constant between −1.5 and −2.7 kHz. (b) Numerical
simulation of 𝜁 as a function of the coupler frequency. The Device A parameters from
Table 5.1 are used, except the effective transmon 𝐸𝐽 is changed to vary the transmon
frequency. As this frequency increases, |𝜁| decreases asymptotically to below 10Hz
for this set of device parameters.

Another interesting feature of FTF is that if the transmon frequency is tuned

toward infinity, 𝜁 does not return to its value with only the two fluxonium qubits

and can in fact decrease even further. In Fig. 5-3(b), we numerically simulate 𝜁 as

a function of the coupler frequency using the Device A parameters and find that 𝜁

asymptotes to less than 10Hz as the transmon frequency increases. When the trans-

mon frequency is tuned, not only do the energy level detunings increase, but the

charge matrix element also increases through the effective 𝐸𝐽 . This increase in the

charge matrix elements prevents the level repulsions involving the coupler from van-

ishing even when the coupler frequency becomes infinitely large. This feature makes

FTF useful even in fluxonium gate schemes that do not involve the non-computational

states. By coupling a fixed frequency transmon (or resonator) with a high frequency

(arising from a high 𝐸𝐽) to each fluxonium with the appropriate coupling strengths,

𝜁 can be reduced to near 0 in a robust manner without needing any measurement or

calibration of the extra transmon element.
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5.1.3 Grounded vs. Differential Qubits

In this section, we elucidate our conscious decision to use a grounded transmon with

differential fluxonium qubits. While identical qubits can be designed with both dif-

ferential and grounded designs, this choice can still have important consequences in

multi-qubit circuits. By using a differential fluxonium, we reduce the amount of capac-

itance that coupling appendages contribute to the total effective qubit capacitance. A

differential qubit also allows for a larger total area of capacitor pads for the same qubit

charging energy 𝐸𝐶 . This is important to allow for enough physical room to couple

other circuit elements such as resonators, charge lines, flux lines, and other qubits to

each fluxonium. We will now show that the choice of a grounded transmon has the

critical feature of maintaining a near-optimal ratio of 𝐽2
𝑐 /𝐽12 while freely varying the

fluxonium-transmon coupling capacitance, allowing for leading-order insensitivity to

common parameter variations.

Grounded Transmon

To minimize the 𝑍𝑍 interaction 𝜁, we need 𝐽2
𝑐 /𝐽12 = −2𝜁(2)/𝜁(3) ≈ 2.97GHz using the

parameters for Device A. We claim that by using a grounded transmon, we can target

this value of 𝐽𝑐/𝐽12 with first-order insensitivity to the coupling capacitance (between

the transmon and the adjacent fluxonium pad) 𝐶𝑐. Consequently, 𝐶𝑐 becomes a free

parameter in the device design, and uncertainty in its value will, to first order, have

no effect on 𝜁. To understand this theoretically, we assume the simplified circuit

schematic represented in Fig. 5-4(a). All capacitances not explicitly labeled are small

and qualitatively unimportant in this analysis.

We can write down the capacitance matrix of this circuit as

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝐹 −𝐶𝑓2 0 0 0

−𝐶𝑓2 𝐶𝐹 + 𝐶𝑐 −𝐶𝑐 0 0

0 −𝐶𝑐 𝐶𝑡 + 2𝐶𝑐 0 −𝐶𝑐

0 0 0 𝐶𝐹 −𝐶𝑓2

0 0 −𝐶𝑐 −𝐶𝑓2 𝐶𝐹 + 𝐶𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.8)
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(a)

(b)

1 2 340

1 450 2 3

Grounded Transmon

Floating Transmon

Figure 5-4: Simplified circuit model of FTF circuits. (a) FTF circuit with a
grounded transmon. The capacitance network is simplified for the purpose of a the-
oretical analysis, with no direct fluxonium-fluxonium capacitance. (b) Same circuit
except with a differential transmon coupler.

where we defined 𝐶𝐹 = 𝐶𝑓1+𝐶𝑓2 for convenience. In order to isolate the relevant mode

of each differential qubit, we perform a standard variable transformation into sum and

difference coordinates which modifies the capacitance matrix as C̃ = (M𝑇 )−1CM−1

with

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0

1 −1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.9)
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The qubit modes for each differential qubit are then solely determined by the dif-

ference coordinates, with the resultant three-qubit nodes on indices 1, 2, and 4. We

can straightforwardly discard the modes corresponding to summed coordinates in the

Hamiltonian and compute coupling strengths between nodes as 𝐽𝑖𝑗 = 4𝑒2C̃−1[𝑖, 𝑗].

Thus,

𝐽2
𝑐 /𝐽12 = 4𝑒2

C̃−1[1, 2]2

C̃−1[1, 4]
(5.10)

≈ 4𝑒2
1

𝐶𝑡

+𝒪(𝐶−2
𝑡 ), (5.11)

where we performed a Taylor expansion assuming 𝐶𝑐, 𝐶𝑓1, and 𝐶𝑓2 are small compared

to 𝐶𝑡 in the final step. We see that to leading order, the value of 𝐽2
𝑐 /𝐽12 is solely

determined by 𝐶−1
𝑡 , with any dependence on 𝐶𝑐 scaling with 𝒪(𝐶−2

𝑡 ). By inserting the

designed values of 𝐶𝑡 = 45 fF 𝐶𝑓1 = 11 fF, and 𝐶𝑓2 = 2.8 fF, Eq. (5.10) gives 2.8GHz

and Eq. (5.11) gives 3.4GHz. We emphasize that Eq. (5.11) illustrates a concept

in our architecture and that exact design simulations of our coupling strengths were

performed with full 5×5 capacitance matrices with no mathematical approximations.

Differential Transmon

To investigate how these relationships would compare when substituting for a differ-

ential transmon, we model the hypothetical circuit with the capacitance network in

Fig. 5-4(b). The capacitance matrix, in this case, is

C =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝐹 −𝐶𝑓2 0 0 0 0

−𝐶𝑓2 𝐶𝐹 + 𝐶𝑐 −𝐶𝑐 0 0 0

0 −𝐶𝑐 𝐶𝑇 + 𝐶𝑐 −𝐶𝑡2 0 0

0 0 −𝐶𝑡2 𝐶𝑇 + 𝐶𝑐 0 −𝐶𝑐

0 0 0 0 𝐶𝐹 −𝐶𝑓2

0 0 0 −𝐶𝑐 −𝐶𝑓2 𝐶𝐹 + 𝐶𝑐

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.12)
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where we have likewise defined 𝐶𝑇 = 𝐶𝑡1 + 𝐶𝑡2. The transformation matrix in this

case is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 1 1 0 0

0 0 1 −1 0 0

0 0 0 0 1 1

0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.13)

and our coupling ratio is

𝐽2
𝑐 /𝐽12 = 4𝑒2

C̃−1[1, 3]2

C̃−1[1, 5]
(5.14)

≈ 4𝑒2
1

𝐶𝑡2

+𝒪(𝐶−1
𝑡1 ). (5.15)

While still independent of 𝐶𝑐 to leading order, the value of 4𝑒2/𝐶𝑡2 is far too large

compared to the optimal value of −2𝜁(2)/𝜁(3) ≈ 2.97GHz. Furthermore, FTF benefits

from as high of coupling strengths as possible, and a differential transmon reduces

the values of 𝐽𝑐 and 𝐽12 for a fixed value of 𝐶𝑐.

5.2 Experimental Setup

In this Section we describe the experimental setup including the wiring, readout, and

flux biasing used in the subsequent calibrations.

5.2.1 Wiring

This experiment was conducted in a Bluefors XLD600 dilution refrigerator operated

at around 20mK, with the full wiring setup shown in Fig. 5-5. At the mixing chamber

(MXC), the device was magnetically shielded with a superconducting can, surrounded

by a Cryoperm-10 can. To reduce thermal noise from higher temperature stages, we

typically used in total 23 dB attenuation for the coupler flux lines, 30 dB attenua-

tion for the fluxonium flux lines, 50 dB total attenuation on charge lines, and 70 dB
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Figure 5-5: A detailed wiring schematic of the experimental setup.
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total attenuation on the readout input – the exact value of the attenuation at Still

varied between 3 dB and 10 dB across the flux lines of both devices, though this dif-

ference was not critical for any experiment. The readout output was first amplified

by a Josephson traveling-wave parametric amplified (JTWPA), pumped by a Holz-

worth RF synthesizer, then amplified further with a high-electron-mobility transistor

(HEMT) amplifier at the 4K stage, another HEMT at room temperature, and a final

Stanford Research SR445A amplifier, before being digitized by a Keysight M3102A

digitizer.

All AC signals – readout, single- and two-qubit gate pulses – were generated by

single sideband mixing of Keysight M3202A 1GSa/s arbitrary waveform generators

with Rohde and Schwarz SGS100A SGMA RF sources. For each qubit, the single-

and two-qubit gate pulses were combined at room temperature via a diplexer from

Marki Microwave (DPXN-2 for Qubit 1 and DPXN-0R5 for Qubit 2). For these

diplexers, the single-qubit gate frequencies occur at low enough frequencies to fall in

the pass band of the DC port. All these control electronics were synchronized through

a common SRS 10MHz rubidium clock.

The DC voltage bias for each qubit flux line as well as the global bobbin was

supplied by a QDevil QDAC. The flux lines by design support RF flux, but in this

experiment were filtered by 80MHz and 1.9MHz low-pass filters at the MXC. The

current for the global coil was carried through a twisted pair, with a homemade 16 kHz

cutoff RC filter at the 4K stage.

Table 5.2: Summary of control equipment. The manufacturers and model
numbers of the control equipment used for this experiment.

Component Manufacturer Model
Dilution Fridge Bluefors XLD600

RF Source Rohde and Schwarz SGS100A
DC Source QDevil QDAC I

Control Chassis Keysight M9019A
AWG Keysight M3202A
ADC Keysight M3102A
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5.2.2 Readout and Initialization

In thermal equilibrium, our fluxonium qubits have nearly equal populations in the

ground and excited states (𝑘B𝑇 > ℏ𝜔01). To address this, we initialized each qubit

in either the ground or excited state at the beginning of each experiment using the

one-pulse and two-pulse post-selection techniques detailed in Section 4.1.3. To realize

independent qubit initialization in our system, each qubit was capacitively coupled to

a separate readout resonator, allowing us to perform high-fidelity, single-shot readout

within the full computational basis. We note that all three resonators were further

coupled to a common Purcell filter [84].

5.2.3 DC Biasing

We used a global biasing coil to tune the flux across the entire device and addi-

tional local flux lines biased through coaxial cables for independent control of each

qubit. This allowed us to freely change the coupler flux while holding each fluxonium

at Φext = 0.5Φ0. Although only DC flux was required in our experiment, our device

is fully compatible with fast-flux pulses. As such, FTF presents an opportunity to

investigate iSWAP, Landau-Zener, or other flux-modulated gates in a system with

low static 𝑍𝑍 rates [6, 17, 109, 86, 85, 63].

Unfortunately, we found that our qubit coherence times were sensitive to bias-

induced heating from the coaxial flux lines. We have found that both qubit 𝑇1

and 𝑇2 (both Ramsey and spin-echo) drop with increasing current. To minimize

this effect when performing two-qubit experiments, the global coil was used to si-

multaneously bias the two fluxonium qubits as close as possible to their operation

points Φext,1 = Φext,2 = 0.5Φ0. The local flux lines were then used to more precisely

tune Φext,1 and Φext,2 and bias the coupler flux. Curiously, no bias-induced heating

was observed from the global coil, which was biased using twisted pairs, as opposed

to coaxial cables. When DC biasing the local flux lines with twisted pairs though, we

observe a sharp drop in 𝑇2 times. We emphasize that this nonideality is not funda-

mental nor unique to the FTF architecture and can be improved in future experiments
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by optimized construction and filtering of our flux-bias lines.

5.3 Gates

5.3.1 Single-Qubit Gates

To deconvolve the aforementioned heating effects from the measurement results, we

biased the qubits solely with the global coil when characterizing individual qubit

coherences (see Table 5.1). Notably, fluxonium 2 in our device achieves a lifetime of

over a millisecond, with similar performance reproduced in Device B (see Section 5.5).

In accordance with the higher qubit frequency, fluxonium 1 has a shorter lifetime, and

the 𝑇𝐸
2 of all characterized qubits peaks between 200-300µs, likely limited by photon-

shot noise from occupation of the resonator or filtering of the flux lines.

We realized single-qubit gates by calibrating Rabi oscillations generated by a res-

onant charge drive using a cosine pulse envelope. To quantify the fidelities of these

gates, we performed individual as well as simultaneous Clifford randomized bench-

marking (RB) using a microwave-only gate set, {𝐼, ±𝑋, ±𝑌, ±𝑋𝜋/2, ±𝑌𝜋/2}, to gen-

erate the Clifford group, resulting in an average of 1.875 gates per Clifford [51, 8]. In

our decomposition, all gates had an equal time duration and were derived from a single

calibrated𝑋𝜋 pulse by halving the amplitude and/or shifting its phase (see Section 4.3

for the full calibration sequence). Here, both qubits were biased at Φext = 0.5Φ0 with

minimal current through the coupler flux line.

In Fig. 5-6(a), we varied the pulse width from 10 ns to 42 ns and found average

single-qubit gate fidelities consistently near or above 99.99% and show the explicit

randomized benchmarking traces in Figs. 5-6(b-c) for a gate duration of 18 ns. In

this range, the incoherent error begins to trade off with the coherent error (from

violating the rotating wave approximation), with qubit 1 able to tolerate a shorter

gate time than qubit 2 due to its higher frequency. This coherent error is manifest in

the randomized benchmarking traces as an increase in the standard deviation of the

data across different randomization seeds. We note gates were additionally calibrated
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at 6 ns with significantly lower fidelities on both qubits due to large coherent errors.

Overall, our fidelities from simultaneously applied gates are <5×10−5 lower than the

individually applied ones, a testament to the low 𝑍𝑍 rate measured in our system.

We suspect the small difference in fidelity is caused by microwave crosstalk between

charge lines and qubits.

(a)

(b) (c)

Figure 5-6: Single-qubit benchmarking on our multi-qubit device. (a) Av-
erage single-qubit gate fidelities obtained by individual and simultaneous Clifford
randomized benchmarking as a function of pulse width. (b-c) Individual (I) and
simultaneous (S) RB traces of a 18 ns gate (purple box in (a)) for qubit 1 and qubit
2, respectively. Individual and simultaneous average gate fidelities have a standard
error of about 3× 10−6 for qubit 1 and 4× 10−6 for qubit 2. The larger error bars in
the qubit 2 data arise from coherent errors, which begin to overtake the incoherent
errors for gates shorter than 18 ns (red points in (a)).

In the gates presented in this section, only the 𝑋𝜋 gate was calibrated and all

other gates were derived from it by scaling the pulse amplitude or adjusting the pulse

phase. It is likely slightly better gates could be achieved by individually calibrating

each gate, especially in the regime of significant coherent error, or by numerically
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optimizing over the pulse envelope.

5.3.2 Two-Qubit Gate Calibration

We began our investigation of the two-qubit CZ gate by performing spectroscopy of

the relevant non-computational state transitions. With the system post-selected for

all computational states |000⟩, |100⟩, |001⟩, and |101⟩, we swept the coupler flux Φext,c

to map out the transition frequencies to all relevant non-computational states [see

Fig. 5-7]. Most importantly, this includes the transition frequency from |101⟩ to the

three dressed states |201⟩, |111⟩, and |102⟩ [see Fig. 5-7(c)]. We found that |111⟩

crosses both |201⟩ and |102⟩ (at Φext,c ≈ 0.65Φ0), with an avoided crossing strength

of nearly 1GHz. With such strong hybridization, a high-performance gate could be

realized by driving any of the three energy levels over a wide coupler flux range. Nev-

ertheless, the transitions yielded varying performance depending on their coherence

times and the proximity of undesired transitions.

We activated the gate interaction associated with each transition by simultane-

ously applying a phase-locked charge drive to each fluxonium near the transition

frequency [Fig. 5-8(a)]. These drives were chosen to have equal amplitude, with a

relative phase between them to maximize constructive interference at the intended

transition. We found that using two constructive drives was a convenient method

for reducing the total applied power for a given Rabi rate, resulting in a reduced

AC-Stark shift from off-resonant transitions. In severe cases, a large AC-Stark shift

could prevent the realization of a 180∘ conditional phase and increase leakage into

non-computational states. While theoretically we expect the relative phase and am-

plitude to be important for reducing leakage, we found that as long as a 180∘ condi-

tional phase was attainable, the CZ gate fidelity was relatively insensitive to these two

parameters. Figure 5-7(b) shows the familiar Rabi chevrons when the transition is

driven as a function of frequency; in experimental practice, our two-qubit gate is quite

similar to driving single-qubit Rabi oscillations. The faint chevron near 4.52GHz is

the result of the oscillation from the |001⟩ state, which was visible due to imperfect

state initialization.

149



Figure 5-7: Two-tone spectroscopy of the higher energy levels of the FTF
system. Panels (a-d) consist of the same spectroscopy run post-selecting for |000⟩,
|100⟩, |001⟩, or |101⟩ respectively. (d) Shows the relevant transitions for driving the
CZ gate in our experiment.

When performing a fine calibration of our CZ gate, we increased the pulse width of

the single-qubit gates to 50 ns, trading off single-qubit gate fidelities so that coherent

errors would not skew our tomography pulses. We also increased the idle padding

between pulses from 4 ns to 10 ns because computational state lifetimes have only a

secondary effect on our CZ gate fidelities. For a given transition and pulse duration,

there were four critical parameters associated with the CZ gate to calibrate:

1. Overall drive amplitude Fig. 5-9(a, d). The overall drive amplitude of the

two drives is calibrated to minimize the leakage into the driven state. This is

done on the basis of a single Rabi oscillation with variable drive amplitude.

2. Drive frequency Fig. 5-9(b, e). The drive frequency was calibrated by per-
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Figure 5-8: Driven dynamics of CZ gate (a) Illustration of how gates were
driven in this experiment. Simultaneous frequency-locked pulses were applied to the
charge lines of each fluxonium. (b) Time-domain Rabi oscillations of the |101⟩ ↔
|102⟩ transition as a function of the drive frequency. The faint chevron pattern at
4.52GHz arises from the |001⟩ ↔ |002⟩ transition and is visible due to imperfect state
initialization.

forming a Ramsey-like measurement on qubit 1 to measure its phase accrual

after a pulse-train of CZ gates, depending on whether or not qubit 2 started in

|0⟩ or |1⟩. We choose the drive frequency which results in the closest intersec-

tion of the three resultant lines, which should in principle tune the conditional

phase to 180∘, though we note that controlled-phase gates of variable angles

could also be achieved. In the absence of AC-stark shifts and to a first-order

approximation, the drive frequency should be exactly resonant with the driven

transition to obtain 180∘.

3. Single-qubit phases Fig. 5-9(c, f). Once the CZ interaction was properly

tuned, we measured the single-qubit phase accumulation (𝑍 rotation) during

the CZ interaction using the same Ramsey like measurement. These 𝑍-rotations

were corrected for in software through virtual-𝑍 gates [57].

Since adjusting the drive frequency slightly changes the amplitude corresponding to

a single period and vice-versa, we alternately performed these two calibrations three

times in total. In practice, this iterative process was sufficiently accurate and much
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faster than performing a two-dimensional calibration for both parameters simultane-

ously. We illustrate the complete flowchart of this calibration in Fig. 5-9(g)

Figure 5-9: CZ Gate calibration procedure. (a-c) Pulse sequences for (d-
f) respectively. The double arrow in (c) indicates that the same pulse sequence was
performed twice, with qubits 1 and 2 exchanged. (d) Calibrating the global amplitude
of the CZ drive by minimizing the leakage. (e) Calibrating the frequency of the CZ
drive by measuring a conditional phase accumulation via Ramsey-like measurements.
Each gate should contribute a 180∘ conditional phase shift. (f) Measuring the single-
qubit phase accumulations per CZ gate using the same Ramsey-like measurements.
(g) Graphical illustration of the full two-qubit calibration routine. When recalibrating
the system for small flux drifts or periodic check-ins, we found it unnecessary to
recalibrate the relative drive amplitude or phase.

After calibration, we extract the gate fidelity by performing Clifford interleaved

randomized benchmarking, averaging over 20 different random seeds [20, 52, 8]. Sim-

ilar to our single-qubit Clifford decomposition, we generated the two-qubit Clifford

group with the gate set {𝐼, ±𝑋, ±𝑌, ±𝑋𝜋/2, ±𝑌𝜋/2, CZ}, yielding an average of 8.25

single-qubit gates and 1.5 CZ gates per Clifford.
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5.3.3 CZ Gate vs. Flux

The FTF approach offers a potential solution to frequency-crowding by allowing for an

adjustable gate operation frequency. To demonstrate this frequency-flexibility in our

device, we linearly sampled the coupler flux Φext,c at 21 values between 0.5Φ0 and 1Φ0

and calibrated a CZ gate across all three transitions in Fig. 5-7(d) while maintaining a

constant 100 ns pulse length [Fig. 5-10]. Each data point in Fig. 5-10 represents a fully

automated re-calibration of all single- and two-qubit gate parameters without manual

fine-tuning. We further emphasize this robustness by including fidelities from Device

B, a second fully characterized device with similar performance. While designed to be

nominally identical, the non-computational states in Device B differ by up to 300MHz

from Device A with no significant detriment to the gate fidelities (see Section 5.5 for

additional characterization of Device B). While these fidelities remain unoptimized

over the pulse width, they indicate the ease and robustness of the tuneup, as well as

the accessibility of state-of-the-art gate fidelities at a variety of drive frequencies.
D
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Figure 5-10: CZ gate fidelities versus operation frequency. All gate fidelities
were obtained from interleaved randomized benchmarking, averaging over 20 random
seeds. CZ gates used a fixed 100 ns cosine pulse envelope, driving each transition
in Fig. 5-7(d) across the entire 0.5− 1Φ0 range, linearly sampled over 21 points. A
secondary device (Device B) with slightly different Hamiltonian parameters shows
the reliability of our architecture. Points with fidelity below 98.9% correspond to
failures in the automated calibration and are therefore excluded from the plot. All
gate fidelities were obtained from interleaved randomized benchmarking averaged over
different 20 randomizations, with error bars corresponding to the standard error.
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Figure 5-11 shows an alternate plotting of the data in Fig. 5-10, illustrating more

explicitly what frequencies each calibrated gate corresponds to. Each subplot features

the fidelity of the CZ gate as a function of the coupler flux, with the spectrum of the

associated transition in gray in the background. While many calibrated points have

low fidelity, the most important aspect of this architecture is that there exist multiple

transitions for which high fidelity is achievable, allowing flexibility in the operation

frequency. Nevertheless, we discuss the most common failure mechanisms and reasons

for low fidelity to shed additional insights on the limits of our automated calibration

versus the inherent limit of the transition being driven.

(a) (b)

Figure 5-11: Alternate plotting of RB vs. Flux data. Gate fidelities with
a fixed 100 ns pulse width as a function of the coupler flux for Device A (a) and
(b). The drive frequency is plotted in gray, represented on the right axis. All points
missing from the full set of 21 correspond to more severe calibration failures.

The most common reason for low-performance operation points was nearby un-
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wanted transitions, leading to a high amount of leakage. This is most evident in Device

A, in which the |101⟩ ↔ |111⟩ transition at Φext,c = 1.0Φ0, and the |101⟩ ↔ |102⟩

transition at Φext,c = 0.5Φ0 are furthest detuned from their nearest unwanted transi-

tion, resulting in higher fidelities in these regions. Where these unwanted transitions

have a much smaller detuning, we expect to obtain higher fidelities by increasing the

drive pulse beyond 100 ns.

A second common mechanism for failed calibration was the inability to find a drive

frequency corresponding to a 180∘ conditional phase shift. Due to the large hybridiza-

tion, we occasionally measured AC-Stark shifts large enough to counter-balance the

natural change in the conditional-phase angle as a function of drive detuning. The

calibration could be recovered by either using a slower gate or by adjusting the relative

drive amplitudes to tweak the total AC-stark shift. Other less common mechanisms

for a failed calibration include TLSs or accidental resonances with undesired transi-

tions, including higher-photon transitions.

Figure 5-12 shows the individual qubit coherence times as a function of the local

coupler flux. Each coherence time was simultaneously measured on each qubit, with

both qubits precisely re-tuned to Φext = 0.5Φ0 for each value of the coupler flux.

Notably, these coherence times are slightly shorter than those listed in Table 5.1 due

to bias-induced heating of the local flux lines. However, these coherence times are a

more accurate representation of the quality of the qubits when performing two-qubit

gates and simultaneous single-qubit gates. When performing simultaneous single-

qubit gates, we biased the coupler at roughly Φext,c = 0.77Φ0, corresponding to no

current being sent through the coupler flux line. We suspect the low Ramsey time of

qubit 2 to be caused by Aharonov-Casher dephasing from coherent quantum phase

slips [23, 59], based on its Hamiltonian parameters.

To investigate the trade-off between coherent and incoherent error, we character-

ized the gate fidelity as a function of the pulse width. In general, all fidelities in

Fig. 5-10 may be improved by optimizing over this pulse width, with our highest

fidelity gates using the |101⟩ ↔ |102⟩ transition at Φext,c = 0.575Φ0 [Fig. 5-13(a)].

At the observed optimal gate time of 85 ns for this transition, we benchmarked a
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Figure 5-12: Qubit coherences in Device A with both qubits biased at half-
flux-quantum. Panels (a), (b), (c) show the 𝑇1, Ramsey, and echo decay times
respectively as a function of the coupler flux. All decays were fit to an exponential
and measurements were performed over a 12 hour period.

CZ fidelity of 99.89%± 0.02% [Fig. 5-13(a)]. For longer gate durations, the gate

error is dominated by the lifetime of the driven non-computational state, measured

to be around 10 µs at this transition and, in general, varied from 5 − 20 µs across

all transitions in Fig. 5-7(d). The coherence times of the computational states also

reduce the fidelity, but for our devices this error is negligible compared to the 𝑇1

of the non-computational state. At shorter gate lengths, coherent leakage into non-
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computational levels dominates the error, but due to the extreme degree of hybridiza-

tion of the non-computational states and their subpar readout, we were not able to

experimentally measure the location of the leaked population. Furthermore, the ap-

plication of established pulse shaping techniques [62] did not improve the fidelity.

Master equation simulations of the Hamiltonian [Eq. (5.1)] under the CZ drive using

the experimentally extracted parameters suggest gates down to 30 ns could be real-

ized with less than 10−4 coherent error, suggesting that further improvements may

be possible with our current devices.

(a) (b)
Width

Figure 5-13: CZ gate optimization. (a) Gate fidelities as a function of the width
of the cosine pulse envelope. The |101⟩ ↔ |102⟩ transition was used at Φext,c =
0.575Φ0. Benchmarking traces are averaged over 20 randomizations. (b) Standard
and interleaved randomized benchmarking trace corresponding to the 85 ns data point.

5.3.4 Reinforcement Learning for CZ Gates

To further improve the gate fidelity, we deployed a model-free reinforcement learning

agent [82, 2, 70, 100, 79], closely following the protocol described by Sivak et al. [91].

While reinforcement learning could not mitigate the incoherent errors dominating the

gate at longer pulse widths, at shorter gate times (<70 ns) we found that it did offer

an improvement via fine adjustments of the pulse parameters. To train the agent,

we first seeded it with a physics-based pulse calibration with a pulse width of 60 ns;

our physics-based calibration failed at gate times less than this. Then, with a fixed

CZ pulse width of 50 ns, the agent was trained to maximize the sequence fidelity of
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interleaved randomized benchmarking at 28 Cliffords with a fixed random seed by

optimizing the pulse shape and virtual-Z gates [Fig. 5-14].

F T F

Trial
pulses

Msmt.
outcomes

Width

Reinforcement
learning agent

(a)

Figure 5-14: Reinforcement learning process. Fidelity of an interleaved random-
ized benchmarking sequence with 28 Cliffords using trial CZ gates sampled from the
policy of a model-free reinforcement learning agent. After each epoch, the measure-
ment results were used to update the agent’s policy according to the PPO algorithm.

After each round of training, the optimized pulse was repeatedly evaluated by per-

forming interleaved randomized benchmarking over 70 total Clifford sequences [Fig. 5-

15]. Training was then repeated using the optimized pulse shape from the previous

training round as the seed for the next. For the training run shown in Fig. 5-15, the fi-

delity peaked after the second round of training (orange points), with a time-averaged

value of 99.922±0.009%. A Wilcoxon signed-rank test gives 97% confidence that this

mean is above 99.90%. As the run progressed, the average fidelity was observed to

degrade. We hypothesize that this was due to system drifts beyond what the agent

was able to mitigate.

In the data shown in Fig. 5-15, the agent was given full control of the 𝐼 and

𝑄 quadratures of the pulse envelope as well as the single-qubit virtual-Z rotation

angles. 𝐼(𝑡) and 𝑄(𝑡) were discretized into six points equally spaced in time [Fig. 5-

16(a)] with a cubic interpolation determining the remaining points. Perhaps the

most distinctive feature of the learned pulse is the shape of 𝑄(𝑡): while the agent was

seeded with 𝑄(𝑡) = 0, the learned pulse shape displays a distinct oscillation in 𝑄(𝑡).

Although we do not fully understand the origin of this oscillation, some intuition may
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Figure 5-15: Reinforcement training and testing run. In a full training run,
the agent was first seeded with a 50 ns cosine pulse, with an amplitude determined by
a physics-calibrated 60 ns gate (black diamond) but scaled by 60/50. Then, the agent
was trained to optimize the sequence fidelity of the 50 ns pulse. The learned gate was
then repeatedly evaluated using interleaved randomized benchmarking averaged over
10 randomizations. The next round of training was seeded with the optimized pulse
from the previous round. Horizontal bars indicate the averaged fidelity after each
round of training. All uncertainties correspond to the standard error of the mean.

be gained by examining the Fourier transform of the pulse shape [Fig. 5-16(a) inset].

In the frequency domain, the oscillation in 𝑄(𝑡) results in a distinct asymmetry of the

pulse shape: at positive detunings from the carrier frequency, the spectral weight is

suppressed, and vice versa for negative detunings. We hypothesize that this learned

pulse asymmetry mitigates the effects of the nearest undesired transition, which is

detuned by ∼+65MHz at this bias point. However, we also note that attempts to

mitigate the effects of this undesired transition using more established pulse shaping

techniques did not improve the gate fidelity [62].
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(a) (b)

Figure 5-16: Optimized gate results. (a) Optimized pulse shape as learned
by the agent. The agent was given control over six evenly-spaced 𝐼(𝑡) and 𝑄(𝑡)
voltage points (colored circles), with the pulse in between points determined by a
cubic interpolation. Inset shows the Fourier transform of 𝐼(𝑡) + 𝑖𝑄(𝑡). (b) Reference
and interleaved randomized benchmarking curves averaged over all 70 randomizations
after the second round of training (orange points in Fig. 5-15).

5.3.5 Relative Drive Amplitude and Phase Calibration

In this Section, we describe a leakage cancellation protocol utilizing destructive inter-

ference of the two drives; however, we note that a difference in gate fidelity could not

be observed using this method. As a result, for the data in Fig. 5-10, a simpler pro-

cedure was implemented to save calibration time: the relative drive phase was tuned

to constructively interfere at the desired transition, and the relative amplitudes were

kept equal. Despite this fact, we include the information here for transparency on

what was attempted to improve gate fidelities.

In driving our desired transition, off-resonant parasitic transitions always con-

tribute to leakage. With two separate charge drive lines in our device, we can tune

each drive line’s relative phase and amplitudes for complete destructive interference

on a parasitic transition of our choosing while retaining a nonzero drive on our gate

transition. Without loss of generality, we take |101⟩ ↔ |111⟩ to be our CZ gate

transition and |100⟩ ↔ |200⟩ to be the closest parasitic transition that we’d like to

eliminate. We model the pulse seen by the qubits 𝑖 ∈ {1, 2} as
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Pulse𝑖(𝑡) = 𝐴𝑖 cos(𝜔𝑡+ 𝑘𝑥𝑖 + 𝜑𝑖), (5.16)

where 𝐴𝑖 > 0 is the pulse amplitude, 𝜔 is the angular frequency, 𝑘 is the wavenumber

of the pulse, 𝑥𝑖 is the effective distance from each pulse’s origin to its destination,

and 𝜑𝑖 is an additional constant phase offset of each pulse, specified in software.

The Rabi frequency of the undesired transition can then be written as

⟨200| 𝐻̂ |100⟩ ∝
∑︁
𝑖

𝐴𝑖 cos(𝜔𝑡+ 𝑘𝑥𝑖 + 𝜑𝑖) ⟨200| 𝑛̂𝑖 |100⟩ (5.17)

For this matrix element to be zero for all times, we require the two pulses to be 180∘

out of phase with each other with equal effective amplitudes. Mathematically, these

two conditions are satisfied by specifying the relative phase and amplitude of the two

drives:

𝜑2 − 𝜑1 = 𝜋 − 𝑘(𝑥2 − 𝑥1) (5.18)

𝐴2

𝐴1

=
⟨200| 𝑛̂1 |100⟩
⟨200| 𝑛̂2 |100⟩

, (5.19)

We note that since

⟨200| 𝑁̂1 |100⟩ / ⟨200| 𝑁̂2 |100⟩ ≠ ⟨111| 𝑁̂1 |101⟩ / ⟨111| 𝑁̂2 |101⟩

generally, these conditions are not expected to provide complete destructive interfer-

ence on our main transition of interest.

Experimentally, our procedures for calibrating 𝐴2/𝐴1 and 𝜑2 − 𝜑1 are illustrated

in Fig. 5-17. In all measurements for this calibration, we 𝜋-pulsed both fluxonium

qubits before readout as discussed in Section 4.1.3 to increase signal contrast. We

initially started with two arbitrarily amplitudes 𝐴1, 𝐴2, and then scanned the phase

difference 𝜑2 − 𝜑1 (varying 𝜑2 with 𝜑1 fixed) while measuring the |100⟩ ↔ |200⟩ Rabi

oscillation (on resonance) [Figs. 5-17(a, c)]. With the value of 𝜑2−𝜑1 set to minimize

the oscillation rate (dashed line), 𝐴2/𝐴1 was scanned (varying 𝐴2 with 𝐴1 fixed) while
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measuring the same Rabi oscillation [Figs. 5-17(b, d)]. The slowest Rabi oscillation

(dashed line) was then used to choose the optimal value of 𝐴2/𝐴1. Furthermore,

as motivated by Eq. (5.19), this ratio would be independent of frequency and thus

didn’t require further calibration. On the other hand, we were interested in the phase

which caused destructive interference when driving at our two-qubit gate frequency,

not at the |100⟩ ↔ |200⟩ resonance. This required calibrating for the phase dispersion

caused by cable length differences. By repeating the relative phase calibration in a

frequency bandwidth in which the |100⟩ ↔ |200⟩ Rabi oscillation was still visible, we

uncovered the expected linear dispersion [Fig. 5-17(e)], which we extrapolated as a

function of drive frequency.
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Figure 5-17: Relative drive amplitude and phase calibration. (a, b) Pulse
sequences for (d-f) respectively. 𝜋-pulses before measurement are purely for increasing
signal contrast. (c) Rabi oscillation of the unwanted transition with a frequency-
locked drive on each charge line. The phase difference was scanned to show destructive
(white dashed line) and constructive interference. (d) With 𝜑2 − 𝜑1 specified to give
destructive interference, the relative amplitudes of the two drives were scanned for
complete destructive interference (white dashed line). (e) The value of 𝜑2 − 𝜑1 that
gave destructive interference was extracted as a function of drive frequency. The
linear fit is motivated by a cable length difference. (f) Calibration flowchart for the
illustrated procedure.

5.4 Error Analysis

In this section, we build up an analytic error budget to estimate the impact of various

types of coherent and incoherent errors on gate fidelities. We model our gates as a
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completely positive trace-preserving (in some subspace) map 𝒢 acting on an input

state 𝜌. The Kraus representation theorem then allows us to express all such processes

as

𝒢(𝜌) =
∑︁
𝑘

𝐺𝑘𝜌𝐺
†
𝑘 (5.20)

for some set of Kraus operators 𝐺𝑘 obeying the normalization condition

∑︁
𝑘

𝐺†
𝑘𝐺𝑘 = 𝐼. (5.21)

The average state fidelity of such a process 𝒢 is then given by

𝐹 =
1

𝑛(𝑛+ 1)

[︃
Tr

(︃∑︁
𝑘

𝑀 †
𝑘𝑀𝑘

)︃
+
∑︁
𝑘

|Tr(𝑀𝑘)|2
]︃
, (5.22)

where 𝑀𝑘 = 𝑃𝑈 †
0𝐺𝑘𝑃 , and 𝑛 is the dimension of the computational subspace [73].

Correspondingly, 𝑃 is the projection operator onto the computational subspace,

and 𝑈0 is the ideal unitary operation of the process. We reproduce here the error

corresponding to relaxation (𝑇1) and pure (Markovian) dephasing (𝑇𝜑) corresponding

to a gate of length 𝑡𝑔.

𝐹1 qubit = 1− 𝑡𝑔
3

(︂
1

𝑇1
+

1

𝑇𝜑

)︂
(5.23)

𝐹2 qubits = 1− 4𝑡𝑔
5

(︂
1

𝑇1
+

1

𝑇𝜑

)︂
(5.24)

One critical assumption in these well-known formulas is that the gate operation stays

within the computational subspace, an invalid assumption for our two-qubit gate.

5.4.1 Relaxation of Higher Energy Levels

In our two-qubit gate, there are five relevant states: the computational states |00⟩,

|01⟩, |10⟩, |11⟩ and the non-computational state we drive to |𝛼⟩. For mathematical

simplicity, we imagine modeling an identity gate composed of two CZ gates. The error

per unit time will not change, and this allows us to use 𝑈0 = 𝐼 as well as simplifies
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phases in our Kraus operators. We model the incoherent decay under driven evolution

as if |11⟩ and |𝛼⟩ decay into each other at equivalent rates (a valid assumption when

the gate time 𝑡𝑔 is small compared to the relaxation rate 𝑇1,𝛼). Assuming no other

decay channels, the full set of Kraus operators for this process is

𝐺0 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 𝑒−𝑡/2𝑇1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.25)

𝐺1 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
√
1− 𝑒−𝑡/𝑇1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.26)

𝐺2 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 𝑒−𝑡/2𝑇1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.27)

𝐺3 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0
√
1− 𝑒−𝑡/𝑇1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.28)

One can verify the behavior of these operators by computing that

⟨11| 𝒢(𝜌) |11⟩ = 𝜌11 + 𝜌𝛼
2

+
𝜌11 − 𝜌𝛼

2
𝑒−𝑡/𝑇1,𝛼 . (5.29)
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Finally, we take the projection operator to be

𝑃 = |00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10|+ |11⟩ ⟨11| . (5.30)

Inserting these operators into Eq. (5.22) and Taylor expanding in 𝑡𝑔/𝑇1,𝛼 < 1, we

obtain

𝐹 ≈ 1− 1

8

𝑡𝑔
𝑇1,𝛼

. (5.31)

5.4.2 CZ Phase Error

We consider an error in phase calibration, in which we successfully return all popu-

lation back to the computational subspace, but with a |11⟩ state phase of 𝜋 + 𝑑𝜑. In

the unitary special case of Eq. (5.22) (𝒢(𝜌) = 𝑈𝜌𝑈 †), we need only compute

𝑀 = 𝑈 †
0𝑈 (5.32)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒−𝑖𝜋−𝑖𝑑𝜑

⎤⎥⎥⎥⎥⎥⎥⎦ (5.33)

=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 𝑒−𝑖𝑑𝜑

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.34)

Inserting this into Eq. (5.22), we obtain

𝐹 =
7 + 3 cos(𝑑𝜑)

10
≈ 1− 3

20
𝑑𝜑2. (5.35)

Values of note, are that for a fidelity of 99.9%, we can tolerate a phase error of 4.7∘ and

for a fidelity of 99.99%, we can tolerate a phase error of 1.5∘. We can similarly convert

this into an error on drive frequency, assuming the drive frequency is the sole degree
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of freedom in tuning the aforementioned phase. The geometric phase accumulation

associated with some frequency change 𝛿 of a full-period driven oscillation is 𝛿𝑡𝑔/2.

The angle errors above then translate into 0.5MHz error for 99.9% fidelity and 160 kHz

for 99.99% fidelity.

5.4.3 Amplitude Error

In calibrating the Rabi oscillation corresponding to our CZ gate, chose a fixed gate

time and calibrated the amplitude of the pulse to obtain a single-period oscilla-

tion. The unitary corresponding to this Rabi rotation in our five-state Hilbert

space {|00⟩ , |01⟩ , |10⟩ , |11⟩ |𝛼⟩} is

𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos(Ω𝑡/2) −𝑖 sin(Ω𝑡/2)

0 0 0 −𝑖 sin(Ω𝑡/2) cos(Ω𝑡/2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.36)

where Ω is the Rabi oscillation of the CZ pulse. Projecting onto the computational

subspace (𝑃 ) and assuming an ideal CZ unitary

𝑈0 = |00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10| − |11⟩ ⟨11| , (5.37)

we insert 𝑀 = 𝑃𝑈 †
0𝑈𝑃 into Eq. (5.22) to obtain

𝐹 =
1

10
(6− 3 cos(Ω𝑡/2) + cos2(Ω𝑡/2)) ≈ 1− 1

16
𝑑𝜃2. (5.38)

Converting this amplitude error into a phase error 𝑑𝜃 = Ω𝑡− 2𝜋, 99.9% fidelity corre-

sponds to a 7.25∘ error and 99.99% fidelity corresponds to a 2.29∘ error. To relate this

more directly to our experimental apparatus, assuming that the pulse is calibrated

to a roughly 1V amplitude, these phases correspond to voltage errors of 20mV and

6.4mV respectively.
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We conclude this section by emphasizing that at the error levels discussed, cali-

bration precision is quite lenient and that errors will be dominated by decoherence

and other unmodeled behavior such as leakage through neighboring transitions. Fur-

thermore, all calculations performed are meant to model the fidelity of a single-qubit,

which may not necessarily be equal to the fidelity extracted from interleaved random-

ized benchmarking due to the nature of coherent errors.

5.5 Secondary Device

In this section, we show data corresponding to Device B, a secondary device. Device

B is an identically designed device, with extracted Hamiltonian parameters varying by

up to 10% as compared to Device A, typical of fabrication variations and differences in

device aging. The coherence times and single-qubit gate fidelities remain consistently

high across both devices, and in particular, fluxonium 2 on Device B exhibited a

median 𝑇1 of 1.26ms averaged over 8 hours [see Fig. 5-18(a)]. This, along with the

measured lifetimes of fluxonium 2 on Device A, indicates a reliable process and design

for achieving high lifetime qubits in a planar geometry. Curiously, the single-qubit

gate fidelities in Fig. 5-18(b) were found to be optimized near a pulse width of 50 ns,

a significant difference between the optimal pulse width of 18 ns for Device A. We

currently do not have an explanation for this discrepancy.

We measured a nearly identical value (within 1 kHz) of the 𝑍𝑍 interaction rate in

this device [Fig. 5-18(c)], supporting our claim that the 𝑍𝑍 reduction does not rely on

any precise parameter matching and is a reliable method to achieve (absolute) values

below 10 kHz. Most importantly, despite changes of up to 300MHz in the |1⟩ ↔ |2⟩

transition frequencies of the fluxonium qubits, we could still demonstrate high-fidelity

CZ gates across a large frequency range [Fig. 5-10] with peak fidelities above 99.8%

[see Figs. 5-18(d-f)].
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Figure 5-18: Selected data from Device B. (a) Repeated 𝑇1 measurements of
fluxonium 2 over a roughly nine-hour time span. The dashed blue line indicates the
median 𝑇1 of 1.26ms, and the blue shaded region encompasses ±1 standard devia-
tions. (b) Individual (I) and simultaneous (S) randomized benchmarking for both
qubits, varying the width of a cosine pulse envelope. (c) Measured 𝑍𝑍-interaction
strength as a function of the coupler flux. (d) Spectroscopy of the non-computational
states which activate the two-qubit gate. (e) CZ fidelities with varying pulse width,
driving the |101⟩ ↔ |111⟩ transition at Φext,c = 0.063. (f) Reference and interleaved
randomized benchmarking trace averaged over 20 random seeds for a pulse width of
60 ns.

5.6 Discussion

Our work demonstrates an architecture in which high-fidelity, robustness against pa-

rameter variations, and extensibility are simultaneously realized. We observed mil-

lisecond fluxonium lifetimes despite couplings to neighboring qubits, resonators, flux

lines, and charge lines, all within a 2D-planar architecture. Both the single- and

two-qubit gates performed here are also simple – operating on the basis of a Rabi

oscillation. The relative simplicity of this two-qubit gate was afforded by the FTF

Hamiltonian and yielded a high fidelity operation across a large frequency-tunable
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range, reproduced across multiple devices.

One of the most notable features of the FTF scheme is the capacity for large

coupling strengths while simultaneously reducing the 𝑍𝑍 interaction strength to kHz

levels. This is all done without strict parameter matching or additional drives. In fact,

even computational state gates such as iSWAP or cross-resonance can benefit from

FTF by utilizing this 𝑍𝑍 reduction without worrying about additional complications

for single- and two-qubit gates. A fixed-frequency transmon (or simply a resonator)

would suffice for this use case.

Despite already high gate fidelities, many avenues exist for improvement. First

and foremost, the device heating when DC biasing qubits to their simultaneous sweet

spot and tuning the coupler flux reduces the coherence times of our qubits. By

optimizing the mutual inductance between the flux lines and the qubits and improving

the thermalization and filtering of the flux lines, we anticipate improvements in future

experiments. Even in the absence of local heating, we estimate a photon-shot-noise

limit of 𝑇2 ∼ 400 µs assuming an effective resonator temperature of 𝑇eff = 55mK [104].

Simply decreasing 𝜒 and 𝜅 should increase this 𝑇2 limit at the expense of readout

speed, which could be a worthwhile exchange in the high 𝑇1, low 𝑇2 limit.

As is typical of fluxonium gates involving the non-computational states, the largest

contribution to gate infidelity is the coherence of the |201⟩, |111⟩, |102⟩ manifold;

however, the lifetimes of these states are much lower than expected given coherence

times measured on transmons with similar frequencies. By optimizing regions of high

electric field density that exist in our current design (notably the small fluxonium-

transmon capacitor gap), we expect to improve these coherence times as well.

While fluxonium has long exhibited impressive individual qubit performance, our

work demonstrates a viable path forward for fluxonium-based large-scale processors

capable of pushing the boundaries of noisy intermediate-scale quantum computing.
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Chapter 6

Conclusions

The results of the work presented in this thesis constitute the latest technological

advancement in the development of fluxonium qubits for quantum computing. Over

the course of my PhD, I’ve had the privilege to see the fluxonium qubit go the distance

from an academically niche qubit to a serious contender for the best superconducting

qubit to build a quantum computer with. In the first year of my graduate career,

the fluxonium qubit had just demonstrated competitive coherence times [67], and

the first theoretical proposal for a fluxonium two-qubit gate was put forth [65]. In

the following two years, these would eventually lead to record-breaking single-qubit

gate fidelities [93] and a very respectable first demonstration of a fluxonium two-

qubit gate [30]. In the fourth year of my PhD, a flurry of additional two-qubit

gates [6, 26, 61] by different groups around the world would be demonstrated, marking

an era of quantum computing with fluxonium qubits. Finally, the main work of

this thesis demonstrates the highest published two-qubit gate fidelities out of all

superconducting qubits as well as the highest simultaneous single-qubit gate fidelities

of all superconducting qubits.

Additionally, the FTF scheme introduced has potential application to any flux-

onium two-qubit gate, not just the specific one demonstrated here. Any fluxonium

two-qubit gate that uses the higher-levels can take advantage of the level repulsions

supplied by the transmon, and any two-qubit gate that only uses the fluxonium com-

putational states can utilize the transmon as a passive element which suppresses the
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static 𝑍𝑍 rate. The FTF scheme also requires only capacitive couplings in a 2D pla-

nar geometry, the same circuit layout architecture currently used to build quantum

processors with over 100 coupled transmons [5, 1]. Furthermore, the experimental

device used had local charge lines, flux lines, and readout for each qubit, while still

retaining up to 1ms qubit lifetimes, priming the FTF architecture for use in coupled

fluxonium qubit lattices.

A demonstration of high-fidelity fluxonium single- and two-qubit gates in a lattice

of qubits is undoubtedly the next big step forward for FTF and the fluxonium qubit

as a whole. Although a variety of two-qubit gates exist for one to pick from in an

attempt to scale up, many additional challenges exist that remain unaddressed. The

first obstacle is that most current two-qubit gate works do not address the impact of

spectator qubits in a multi-qubit circuit. For example, the iSWAP gate [6] cannot be

performed in a grid of qubits without frequency collisions, the CR gate [26] relies on

a precise frequency layout of all qubits and must contend with microwave crosstalk

between single- and two-qubit gates, and microwave-activated CZ gates [30] (including

this work) must come up with strategies to perform isolated two-qubit gates when

more than two qubits are coupled.

A second challenge is to retain high coherences in circuits comprising a lattice

of fluxoniums. The ⟨0| 𝑛̂ |1⟩ matrix element is often increased along with the qubit

frequency in order for fast gates to be performed [61, 6, 26], resulting in a sacrifice in

𝑇1. The smaller inherent qubit capacitance also poses challenges for creating grids of

capacitively coupled qubits. Whereas in transmon architectures, the summed coupling

capacitance is only a fraction of the total qubit capacitance, it can easily account for

a large fraction of the total qubit capacitance in fluxonium architectures. This can

result in conflicting requirements for the qubit capacitance, coupling strengths, and

the physical area required to couple several other qubits and control lines.

Despite the obstacles presented, active research is being conducted to find so-

lutions, with the work presented in this thesis a major stepping-stone toward a

fluxonium-based quantum processor.
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Appendix A

Designing the FTF Device

This Chapter details the calculations and design considerations made in designing the

FTF circuit. This primarily includes the general design of fluxonium and transmon

qubits and the coupling between qubits to various other circuit elements in a planar

geometry.

A.1 Junction Parameters

This Section contains information for calculating 𝐸𝐽 , 𝐸𝐿, and the contribution to

various circuit capacitances from the Josephson junctions.

A.1.1 Josephson Energy

The Josephson energy of a Josephson junction is directly defined through the critical

current 𝐼𝑐 of the junction. This critical current can in turn be defined as a product

of the critical current areal density 𝑗𝑐 (a fabrication constant) and the cross-sectional

area of the junction 𝐴J (a geometrical design parameter).

𝐸𝐽 (SI) =
𝐼𝑐Φ0

2𝜋
=
𝐴JJ𝑗𝑐Φ0

2𝜋
(A.1)

𝐸𝐽 (GHz) =
𝐼𝑐Φ0

2𝜋
=

𝐴JJ𝑗𝑐
4𝜋𝑒× 109

(A.2)
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Optimizing 𝑗𝑐

For a given value of 𝐸𝐽 , the junction area 𝐴JJ can be freely traded off with 𝑗𝑐, while

retaining a fixed value. The qubit 𝑇1 is observed to degrade due to electric-field

coupling to two-level system defects which reside in the small junction. It is thus

favorable to minimize 𝐴JJ by compensating with 𝑗𝑐.

A.1.2 Inductive Energy

The inductive energy of the Josephson junction array can be calculated by dividing the

Josephson energy of one junction by the total number of junctions 𝑁JJ. This can be

understood as the inductance of each junction adding in series, with 𝐸𝐿 proportional

to the inverse inductance.

𝐸𝐿 =
1

𝑁JJ
𝐸𝐽,large junction (A.3)

Optimizing 𝑁JJ

For a given value of 𝐸𝐿, the number of array junctions𝑁JJ can be freely traded off with

the area of each array junction while retaining a fixed value. The charge dispersion

arising from Aharonov-Casher dephasing, however, is not invariant to this trade-off,

with a smaller dephasing rate corresponding to larger values of𝑁JJ and 𝐴JJ (with fixed

𝐸𝐿) [23]. Since an arbitrarily large 𝑁JJ can introduce additional problems such as

increased flux noise or lower frequency chain modes, I recommended to only increase

𝑁JJ large enough so that 𝑇2 times are not limited by Aharonov-Casher dephasing.

A.1.3 Capacitance Across Junction

The two separate conductors surrounding the insulating barrier of the Josephson

junction also forms a capacitance. With an empirically determined capacitance per

unit area 𝑐J, this junction capacitance is computed as

𝐶J = 𝑐J𝐴JJ (A.4)

174



A.1.4 Junction Chain Capacitance

The capacitance to ground of a single junction 𝐶g may be estimated by direct elec-

tromagnetic simulations; however, of particular interest for fluxonium qubits is the

effective capacitance to ground of a series array of junctions. Mathematically, this

involves resolving the capacitance network of a near infinite chain of islands with a

capacitance between each island and a capacitance between each island and ground.

The full circuit schematic of this simplified array model of the junction chain is shown

in Fig. A-1(a).

(a)

(b)

. . .

. . .

Delta-Star Transformation
∆

Figure A-1: Capacitance network model of a junction array. (a) Model of a
junction array with capacitance 𝐶J between junctions and 𝐶g between each junction to
ground (b) Capacitance network after application of the delta-star transformation to
the circuit subsections circled in red. The new capacitance network has the exact same
form except with different capacitance values 𝐶 ′

J, 𝐶 ′
g and an accumulating capacitance

to ground at the end nodes of the junction chain.

After simplifying the circuit between the two end nodes (blue nodes), the total

capacitance to ground can then be read off from the capacitance to ground of the

end nodes (red capacitances in Fig. A-1(b)). The simplification starts by performing

a delta-star transformation [95] (specifically, going from a ‘star’ circuit to a ‘delta’
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circuit) on every ‘star’ circuit in the capacitance network (red circles in A-1(a)),

then simplifying any parallel summed capacitances. Done in this way, the resultant

circuit after this first round of transformations has the exact same structure as the

original circuit but with different capacitance values 𝐶J → 𝐶 ′
J, 𝐶g → 𝐶 ′

g and a direct

capacitance to ground from the two end nodes. This transformation can be repeatedly

applied with the following recurrence relations governing all capacitances

𝐶J,𝑛+1 =
𝐶2

J,𝑛

𝐶g,𝑛 + 2𝐶J,𝑛
(A.5)

𝐶g,𝑛+1 =
2𝐶J,𝑛𝐶g,𝑛

𝐶g,𝑛 + 2𝐶J,𝑛
+ 𝐶g,𝑛 (A.6)

𝐶ground,𝑛+1 =
𝐶J,𝑛𝐶g,𝑛

𝐶g,𝑛 + 2𝐶J,𝑛
+ 𝐶ground,𝑛 (A.7)

(A.8)

where 𝑛 is number of transformations, corresponding to 𝑁JJ ∼ 2𝑛 total junctions. In

general, these recurrence relations must be computed numerically, but simple analytic

solutions exist for two important limits.

When 𝑁JJ ≪
√︀
𝐶J/𝐶g, the total capacitance to ground for each end node is given

by

𝐶ground ≈ 𝑁JJ − 1

2
𝐶g ≈

𝑁JJ

2
𝐶g. (A.9)

This can be understood as the total summed parallel capacitance split up across the

two end nodes, which can then be added together in parallel to obtain 𝑁𝐶g as the

total chain capacitance to ground.

Interestingly, in the limit 𝑁JJ ≫
√︀
𝐶J/𝐶g, or equivalently in the limit of infinite

junctions, the total ground capacitance does not diverge to infinity. Instead, a non-
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trivial fixed point (denoted by *) of the recurrence relation exists:

𝐶*
J = 0 (A.10)

𝐶*
g =

√︁
4𝐶J𝐶g + 𝐶2

g (A.11)

𝐶*
ground =

1

2

(︁√︁
4𝐶J𝐶g + 𝐶2

g − 𝐶g

)︁
≈
√︀
𝐶J𝐶g, (A.12)

where the final approximation is made in the regime where 𝐶J ≫ 𝐶g. Intuitively,

the finite steady-state behavior of the total ground capacitance can be thought of as

a compromise between the resultant series capacitance across the two nodes tending

to zero and the resultant parallel capacitance to ground summing to infinity. Full

numerical evaluations of the recurrence relations are plotted as a function of 𝑁JJ

for a variety of 𝐶J/𝐶g ratios and compared against the analytic limits in Fig. A-2.

Typical fluxonium qubits used in this thesis have a simulated value of 𝐶J/𝐶g ≈ 30.

Figure A-2: Numerical computational of ground capacitance. The exact
recurrence relation is numerically evaluated as a function of 𝑁JJ for three different
values of 𝐶J/𝐶g. The gray dashed line corresponds to the small junction limit, and
the colored dashed lines represent to the corresponding infinite junction limit.

177



A.2 DC Electromagnetic Simulations

DC electromagnetic simulations provide a method to simulate the capacitance matrix

of a designed circuit. The familiar kinetic component of the circuit QED Hamiltonian

is completely governed by the capacitance matrix

𝑇 = 2𝑒2 ˆ⃗𝑛C−1 ˆ⃗𝑛, (A.13)

as derived in Section 2.1.3. It is important to understand that this kinetic energy

term contains all the capacitive coupling information, and parameters just need to be

extracted one by one and converted to their more conventional definitions in litera-

ture. In this section, we use Maxwell to numerically simulate this capacitance matrix

[Fig. A-3(a)] and outline a procedure for extracting various quantities of interest, such

as qubit 𝐸𝐶 ’s, qubit-qubit coupling strengths, qubit-resonator coupling strengths, and

qubit-charge line coupline strengths. Figure A-3(b) shows the capacitance matrix di-

rectly displayed from the Maxwell software. In order to convert this matrix into the

circuit QED capacitance matrix, a few modifications must be made. First, junction

capacitances must be manually added in. Individual junctions will add their capac-

itance value between its two nodes, and junction arrays will contribute to a direct

capacitance to ground. Second, the resonators in our simulation were cropped, thus

their capacitance to ground is inaccurate. We replace each total resonator capaci-

tance with its theoretical value assuming a desired resonator frequency and a 50Ω

impedance. This value will factor into the charge matrix element of the resonator

mode. Finally, we delete the original indices 5, 6, and 10 to remove the charge lines

and ground plane from the capacitance matrix [Fig. A-3(b)]: the ground plane is not

treated as a separate node in the circuit QED formalism, and we will use a classical

treatment of the charge control lines.
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Figure A-3: Maxwell DC electromagnetic simulation of FTF device. (a)
Imported .gds file corresponding to the capacitance network of the FTF design. (b)
Simulated capacitance matrix in units of fF. Diagonal entries are total summed capac-
itances touching the node, and off-diagonal entries are the negative of the capacitance
between the two corresponding nodes.
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A.2.1 Qubit Parameters

Due to the presence of differential qubits, we perform the standard variable transfor-

mation into difference and sum coordinates

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.14)

with the new effective capacitance matrix defined as C̃ = M−1CM−1. The qubit

charging energies and coupling strengths are then straightforwardly read off as

𝐸𝐶1 =
𝑒2

2
C̃−1[1, 1] 𝐽1𝑐 = 4𝑒2C̃−1[1, 2]

𝐸𝐶𝑐 =
𝑒2

2
C̃−1[2, 2] 𝐽2𝑐 = 4𝑒2C̃−1[2, 4] (A.15)

𝐸𝐶2 =
𝑒2

2
C̃−1[4, 4] 𝐽12 = 4𝑒2C̃−1[1, 4],

with the Hamiltonian (truncated to only qubit degrees of freedom) as defined in

Eq. (5.1).

A.2.2 Qubit - Resonator Couplings

The coupling strength between a qubit and a resonator can be computed through the

corresponding matrix element of the inverse capacitance matrix. As an example, the

coupling Hamiltonian term between qubit 1 and resonator 1 is

4𝑒2C̃−1[1, 5]𝑛̂1𝑛̂𝑟1. (A.16)
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For a fluxonium qubit, the coupling strength 𝑔 is conventionally defined with the

resonator matrix element included and qubit matrix element excluded.

−𝑖ℏ𝑔𝑛̂1(𝑎̂𝑟1 − 𝑎̂†𝑟1) = 4𝑒2C̃−1[1, 5]𝑛̂1𝑛̂𝑟1 (A.17)

ℏ𝑔 = 𝑒

√︂
𝜋ℏ
2𝑍0

C̃−1[1, 5]. (A.18)

The impedance 𝑍0 in this expression uses the special case of a 𝜆/4-resonator

𝑍0 =
𝜋

4

√︂
𝐿

𝐶
= 50Ω, (A.19)

where 𝐿 and 𝐶 are the inductance and capacitance of the resonator [76]. This ex-

pression can be used with any qubit; however, transmon literature typically features

a slightly different convention for the definition of 𝑔. In that case, the qubit charge

matrix element is often included inside the coupling strength

−ℏ𝑔(𝑎̂1 − 𝑎̂†1)(𝑎̂𝑟1 − 𝑎̂†𝑟1) = 4𝑒2C̃−1[1, 5]𝑛̂1𝑛̂𝑟1 (A.20)

ℏ𝑔 = 𝑒

√︂
𝜋ℏ
2𝑍0

(︂
32𝐸𝐶

𝐸𝐽

)︂1/4

C̃−1[1, 5]. (A.21)

For a typical transmon with 𝐸𝐽/𝐸𝐶 ≈ 50, this correction amounts to multiplying the

original expression by ∼ 0.9, a small factor compared to typical design uncertainties.

A.2.3 Qubit - Charge Line Couplings

As derived in Fig. 2.4.3, an arbitrary collection of voltage sources capacitively coupled

to the nodes of the circuit results in the Hamiltonian

𝐻 = 2𝑒2𝑛⃗𝑇 (C+Nxy)
−1𝑛⃗+ 2𝑒𝑉⃗ 𝑇CxyC

−1𝑛⃗+
1

2
Φ⃗𝑇𝐿invΦ⃗ + 𝑉JJ(Φ⃗). (A.22)

To determine the coupling of each charge line to each qubit, this equation can be

used after computing the new effective capacitance matrices according to the variable
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transformation M

C → (M−1)𝑇CM−1 (A.23)

Nxy → (M−1)𝑇NxyM
−1 (A.24)

Cxy → CxyM
−1. (A.25)

A.2.4 Capacitive Quantum Crosstalk

In addition to each resonator coupling to the intended qubit, there is also unwanted

coupling to other qubits due to the renormalization of capacitances which occurs when

computing the matrix inverse. This crosstalk exists even if the direct capacitance (we

would denote this classical crosstalk) between the two components is zero. Using the

same capacitance matrix from previous examples, the quantity

C̃−1[2, 5]

C̃−1[1, 5]
(A.26)

describes the coupling strength ratio between resonator 1 to the coupler and resonator

1 to qubit 1. Likewise, C̃−1[4, 5]/C̃−1[1, 5] would describe the crosstalk ratio between

resonator 1 to qubit 2 and resonator 1 to qubit 1. In the designed FTF circuit,

we observe significant crosstalk between the coupler resonator and the fluxonium

qubits (up to ∼ 30% of the coupler resonator - coupler coupling strength) and lower

crosstalk between the fluxonium resonators and the coupler qubit (up to ∼ 15% of

the fluxonium resonator - fluxonium qubit coupling strength). This asymmetry is due

to the transmon qubit having a larger qubit capacitance than the fluxonium qubits;

a fixed amount of coupling capacitance will produce a larger coupling strength to the

fluxonium than the transmon. In the discussion thus far, we’ve considered only the

crosstalk ratios for the readout resonators, but since the charge lines couple to the

qubits in the same capacitive manner, the same crosstalk ratios computed here also

apply to the charge line crosstalk.
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A.3 RF Electromagnetic Simulations

In this Section we use Sonnet to perform planar RF electromagnetic simulations to

extract relevant circuit parameters. We use Sonnet to obtain the resonator frequen-

cies, resonator linewidths, Purcell filter parameters, mutual inductance of flux lines,

and 𝑇1 loss of charge and flux lines. Sonnet also provides a way to double check

the qubit capacitances, qubit-resonator coupling strengths, and qubit-qubit coupling

strengths, though we note that Maxwell is much more time efficient for quantities

that both simulation techniques are able to extract.

A.3.1 Resonator Simulations

We consider quarter wavelength hanging resonators inductively coupled to a reflection

feed line [Fig. A-4(a)]. Assuming a loss rate of 𝜅 from the resonator into the feed line

and no other loss channels, the 𝑆11 reflection coefficient probed at the input of the

feed line is [12]

𝑆11(𝜔) = −𝜅/2− 𝑖(𝜔 − 𝜔𝑟)

𝜅/2 + 𝑖(𝜔 − 𝜔𝑟)
. (A.27)

For convenience, we fit to the derivative of the phase of 𝑆11(𝜔) [see Fig. A-4(b)], which

becomes a familiar Lorentzian with full-width half-max 𝜅 and center frequency 𝜔𝑟

𝑑

𝑑𝜔
∠𝑆11(𝜔) =

𝑑

𝑑𝜔
arctan

(︃
− 𝜅(𝜔 − 𝜔𝑟)(︀

𝜅
2

)︀2 − (𝜔 − 𝜔𝑟)2

)︃
(A.28)

𝑑

𝑑𝜔
∠𝑆11(𝜔) = − 𝜅(︀

𝜅
2

)︀2
+ (𝜔 − 𝜔𝑟)2

. (A.29)

Since the signal passing through the resonator is coherently reflected at the end of

the feed line, the full structure of the feed line is important in capturing the coupling

strength between the resonator and the feed line. Simulations involving transmission

feed lines, in contrast, do not need to contain the full feed line.
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Figure A-4: Sonnet resonator simulations. (a) Sonnet screenshot setting up
scattering matrix simulations of the resonator probed at the input of the feed line.
(b) The normalized derivative of the phase of 𝑆11(𝜔) fitted to a Lorentzian.

A.3.2 Purcell Filter Simulation

For the main devices used in the FTF experiment, the resonators were instead coupled

to a Purcell filter, which was in turn coupled to the feed line [Fig. A-5(a)]. Assuming

a loss rate of 𝜅𝑓 for the Purcell filter resonator to the feed line, 𝛾𝑓 for the internal

loss of the Purcell filter, 𝛾𝑟 for the internal loss of the readout resonator, and 𝒢 the

coupling strength between the Purcell filter resonator and the readout resonator, the

𝑆11 scattering matrix element is given by [84, 13]

𝑆11(𝜔) = −
𝑖(𝜔𝑓 − 𝜔)− 𝜅𝑓/2 + 𝛾𝑓/2 +

𝒢2

𝑖(𝜔𝑟−𝜔)+𝛾𝑟/2

𝑖(𝜔𝑓 − 𝜔) + 𝜅𝑓/2 + 𝛾𝑓/2 +
𝒢2

𝑖(𝜔𝑟−𝜔)+𝛾𝑟/2

. (A.30)

Since |𝑆11(𝜔)| = 1, we retain full information by fitting ∠𝑆11(𝜔), as shown in [Fig. A-

5(b)]. The effective decay rate as a function of frequency caused by the Purcell filter

is then given by [84]

𝜅(𝜔) =
4𝒢2

𝜅𝑓

1

1 + [2(𝜔 − 𝜔𝑓 )/𝜅𝑓 ]2
. (A.31)

The Purcell filter used in the experiment was designed with a ∼ 7.25GHz resonance

frequency with a loss rate of ∼ 375MHz into the feed line and a coupling strength of

𝒢 = 11−14MHz. These parameters result in effective readout linewidths of 1− 2MHz
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Figure A-5: Sonnet Purcell filter simulations. (a) Screen shot of simulation
setup for one resonator. (b) Fitting to ∠𝑆11(𝜔) to extract all relevant parameters.

for each qubit, and the Purcell filter safely covers the frequency range of all resonators.

More importantly for the FTF experiment, the Purcell filter reduces the relaxation

due to the Purcell effect for the |1⟩transmon → |0⟩transmon and |2⟩fluxonium → |1⟩fluxonium

transitions.

A.3.3 Flux Lines

The mutual inductance between a flux line and a qubit is simulated by importing

the junctions in a closed loop and placing one port at the input of the flux line and

another port in the middle of the qubit loop [Fig. A-6]. The impedance matrix is

simulated at a single arbitrary frequency 𝜔 and the mutual inductance follows as

𝑀 =
Im[𝑍12]

𝜔
. (A.32)

The designed values in the experimental device were ∼ 0.16 pH.

A.3.4 Decay Rate into Control Lines

The loss rate of each qubit to an input line (flux or charge) can be simulated by

probing the line in reflection while creating a harmonic mode with the qubit capac-
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Figure A-6: Sonnet mutual inductance simulations. Screenshot of simulation
setup for one flux line - qubit pair.

itor pads and a lumped element inductor [Fig. A-7(a)]. For this simulation and all

following simulations, lumped element capacitors are also added to each qubit to com-

pensate for the missing junction capacitances. As in other reflection measurements,

Figure A-7: Sonnet simulation for loss into local lines (a) Simulation setup for
the loss into the qubit 1 charge line by qubit 1. The qubit is modeled as a harmonic
oscillator with the correct capacitance and resonance frequency. (b) Lorentzian fit to
the derivative of the phase of 𝑆11(𝜔).

the microwave reflection coefficient, assuming a loss rate of 𝜅 (due to the qubit), is

given by Eq. (A.27), which can be fit to a Lorentzian by taking a derivative of the

phase Eq. (A.29) [Fig. A-7(b)]. In the case of qubit loss, this 𝜅 is governed by Fermi’s

golden rule

𝜅(𝜔) = 2𝜋
∑︁
𝑖

|𝑔𝑖|2𝛿(𝜔 − 𝜔𝑖). (A.33)
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When extracting this 𝜅 in our Sonnet simulation, the qubit becomes a harmonic oscil-

lator, which has the same charge matrix elements as a transmon (for fixed capacitance

and qubit frequency), but not a fluxonium. To convert this loss rate to that of a flux-

onium qubit, the loss rate needs to be re-scaled according to the matrix element ratio

between a fluxonium and a harmonic oscillator

𝑔qubit

𝑔HO
=

⟨0qubit| 𝑛̂ |1qubit⟩
⟨0HO| 𝑛̂ |1HO⟩

(A.34)

=

(︂
𝐸𝐿,qubit

𝐸𝐿,HO

)︂1/4

⟨0qubit| 𝑎̂− 𝑎̂† |1qubit⟩ . (A.35)

We note that since the qubit frequency and qubit capacitance are accurately repre-

sented in the Sonnet simulation, the ratio between charge matrix elements is equal

to the ratio between phase matrix elements [see Eq. (2.104)]. If 𝜅HO is the loss rate

extracted from the fit in Fig. A-7(b), then the loss rate of the qubit is

𝜅qubit = 𝜅HO

√︃
𝐸𝐿,qubit

𝐸𝐿,HO
| ⟨0qubit| 𝑎̂− 𝑎̂† |1qubit⟩ |2 . (A.36)

A.3.5 Qubit Capacitance

All parameters extracted from this point onward can also be simulated through DC

electromagnetic simulations (Maxwell). As such, these techniques mainly serve to

double-check the extracted parameters. We found that the RF and DC simulation

techniques agreed to within 15% for all matching simulations.

To extract the qubit capacitance, a lumped element inductor is inserted in place

of the qubit loop [Fig. A-8]. The qubit once again is modeled as a harmonic oscillator,

and the total qubit capacitance is

𝐶 =
1

𝐿𝜔2
HO

+ 𝐶JJ, (A.37)

where 𝐶JJ is the additional capacitance from Josephson junctions.
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Figure A-8: Sonnet simulation to extract the qubit capacitances. Simulation
setup probing the resonance of qubit 1 by placing a lumped element inductor between
the qubit 1 capacitor pads and measuring the reflection at the qubit 1 resonator port.

A.3.6 Qubit - Qubit Coupling

To extract the qubit-qubit coupling strength between a desired pair of qubits, lumped

element inductors are used to create harmonic oscillators in place of the two qubits

[Fig. A-9(a)]. The inductance of one of the qubits is swept so that the two qubit

frequencies tune through each other [Fig. A-9(b)], and the difference between the

dressed qubit frequencies is fit to the hyperbola [Fig. A-9(c)]

Difference Frequency =
√︀

∆2 + 4𝐽2
sonnet, (A.38)

where ∆ is the bare frequency difference between the two qubits and 2𝐽sonnet is the

avoided crossing size as measured in the Sonnet simulation. This expression can be

derived by taking the difference between the two eigenvalues of the familiar two-level

system Hamiltonian

𝐻 =

⎛⎝ 0 𝐽sonnet

𝐽sonnet ∆

⎞⎠ . (A.39)

At this point, we once again need to account for matrix elements to convert away

from the harmonic oscillator coupling strength. As usual, we define the coupling
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strength 𝐽 between two qubits (1 and 2 without loss of generality) to be

𝐻̂qubit-qubit/ℏ = 𝐽𝑛̂1𝑛̂2. (A.40)

To equate this with the avoided crossing extracted in the Sonnet simulation, we insert

harmonic oscillator matrix elements in Eq. (A.40), which is valid because 𝐽 defined in

this way is a geometric quantity depending on the capacitance network, independent

of the qubit matrix elements:

𝐻qubit-qubit/ℏ = −𝐽
2

(︂
𝐸𝐿1

8𝐸𝐶1

)︂1/4(︂
𝐸𝐿2

8𝐸𝐶2

)︂1/4

(𝑎̂1 − 𝑎̂†1)(𝑎̂2 − 𝑎̂†2) (A.41)

= − 𝐽

16

ℏ𝜔√︀
𝐸𝐶1𝐸𝐶2

(𝑎̂1 − 𝑎̂†1)(𝑎̂2 − 𝑎̂†2) (A.42)

=⇒ 𝐽sonnet =
𝐽

16

ℏ𝜔√︀
𝐸𝐶1𝐸𝐶2

(A.43)

𝐽 = 16𝐽sonnet

√︀
𝐸𝐶1𝐸𝐶2

ℏ𝜔
. (A.44)

In this derivation, we defined 𝜔 = 𝜔1 = 𝜔2 as the common frequency when the two

qubits are on resonance, extracted as the mean resonance frequency at the avoided

crossing [Fig. A-9(d)].
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(a)

(b) (c) (d)

Figure A-9: Sonnet simulation to extract qubit-qubit coupling strengths.
(a) Simulation setup with qubits 1 and 2 modeled as harmonic oscillators using
lumped element inductors. The microwave reflection coefficient can be measured
through either port 2 or port 3. (b) Avoided crossing between the two qubits as
one of the qubit inductances is scanned. (c) The difference between the two dressed
harmonic oscillator frequencies as the inductance of one of them is scanned. The
points are fit to a hyperbola to extract the avoided crossing size. (d) The mean
frequency as a function of the inductance to extract the bare frequency on resonance.

A.3.7 Qubit - Resonator Coupling

Similar to the procedure for extracting the qubit-qubit coupling strength, the qubit-

resonator couplings strengths are extracted by representing a qubit as a harmonic

oscillator and then tuning it through resonance with a resonator by scanning the

inductance [Fig. A-10(a-b)]. By fitting the difference frequency to the hyperbola

Difference Frequency =
√︀

∆2 + 4𝑔2sonnet, (A.45)
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we extract the avoided crossing size 2𝑔sonnet, where ∆ is the bare frequency difference

between the qubit and the resonator [Fig. A-10(c)].

Figure A-10: Sonnet simulation to extract qubit-resonator coupling
strengths. (a) Simulation setup with resonator 1 coupled to qubit 1. The qubit
1 inductance is scanned until qubit 1 goes through resonance with resonator 1. (b)
Avoided crossing between the qubit and resonator as the inductance is scanned. (c)
The difference between the two dressed frequencies as the inductance is scanned. (d)
The mean frequency of the two resonances as the inductance is scanned to extract
the bare frequency on resonance.

Since the qubit frequency is altered (with fixed 𝐸𝐶) when measuring the avoided

crossing, the qubit matrix element artificially changes. Furthermore, due to the trans-

mon and fluxonium literature often using different conventions for the qubit-resonator

coupling strength 𝑔, it behooves one to be very careful when designing for these quan-

tities. To aid in our conversion between different definitions of the coupling strength,

we introduce another definition of this coupling strength 𝑔geo, defined as the coefficient
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of the two charge operators in the coupling Hamiltonian

𝐻̂qubit-res/ℏ = 𝑔geo𝑛̂qubit𝑛̂res. (A.46)

As in the case of the qubit-qubit coupling strength, 𝑔geo is completely determined by

the capacitance network fo the circuit. Our approach will be to convert between 𝑔geo

and all other conventions for the coupling strength. We first derive a relation between

𝑔geo and 𝑔sonnet by approximating the qubit as the harmonic oscillator used in Sonnet

𝐻̂qubit-res/ℏ = −𝑔geo

√︃
ℏ𝜔qubit

16𝐸𝐶qubit

√︃
ℏ𝜔res

16𝐸𝐶res

(𝑎̂qubit − 𝑎̂†qubit)(𝑎̂res − 𝑎̂†res). (A.47)

Thus, for our first relation, we have

𝑔sonnet = 𝑔geo
ℏ𝜔res

16
√︀
𝐸𝐶qubit𝐸𝐶res

, (A.48)

where we have set 𝜔qubit equal to 𝜔res because the size of the avoided crossing is

measured in Sonnet when the qubit is resonant with resonator. We more formally

arrive at this expression by noting that the size of the avoided crossing 2𝑔sonnet should

be equal to 2| ⟨01| 𝐻̂qubit-res |10⟩ | when the qubit and resonator are resonant. The

exact value of 𝜔res is once again extracted as the mean frequency at the avoided

crossing [Fig. A-10(c-d)].

Transmon Convention

In the transmon convention, 𝑔transmon is defined as the coefficient of the raising and

lowering operators

𝐻̂qubit-res/ℏ = −𝑔transmon(𝑎̂qubit − 𝑎̂†qubit)(𝑎̂res − 𝑎̂†res). (A.49)

Notably, since the qubit matrix element is included in 𝑔transmon, it depends on the

qubit frequency and is not constant. By comparing this with Eq. (A.46) and then

substituting 𝑔geo with 𝑔sonnet using Eq. (A.48), we arrive between the desired conver-

192



sion between the simulated 𝑔sonnet and the desired 𝑔transmon

𝑔transmon = 𝑔geo
ℏ
16

√︂
𝜔qubit𝜔res

𝐸𝐶qubit𝐸𝐶res

(A.50)

𝑔transmon = 𝑔sonnet

√︂
𝜔qubit

𝜔res
. (A.51)

To summarize, in order to convert between the Sonnet simulation and the traditional

transmon definition, the qubit frequency needs to be scaled back from its altered value

to its real value. Since matrix elements are proportional to 𝐸1/4
𝐽 , they are equivalently

proportional to
√
𝜔 (using ℏ𝜔 =

√
8𝐸𝐶𝐸𝐽).

Fluxonium Convention

In the fluxonium convention that we use, 𝑔fluxonium excludes the qubit matrix element

and contains the resonator matrix element

𝐻̂qubit-res/ℏ = −𝑖𝑔fluxonium𝑛̂qubit(𝑎̂res − 𝑎̂†res). (A.52)

Once again, we compare this with Eq. (A.46) then substitute 𝑔geo with 𝑔HO using

Eq. (A.48) obtain

𝑔fluxonium = 𝑔geo

√︃
ℏ𝜔res

16𝐸𝐶res

(A.53)

𝑔fluxonium = 4𝑔sonnet

√︃
𝐸𝐶qubit

ℏ𝜔res
(A.54)
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