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Abstract

With the surge of new machine learning methods, research in classic problems like
the Traveling Salesman Problem (TSP) is receiving a resurgence of popularity. One
of the biggest goals in this renewed interest is to create a model that can not only out-
perform state-of-the-art heuristic solvers in speed for trivial sizes, but also generalize
to larger TSP instances that are currently intractable. In this thesis we approach the
TSP with the Decision Transformer, a transformer-based architecture transforming
reinforcement learning environments into transformer-compatible sequence-modeling
problems. By modeling a TSP instance as an graph-based environment with states
and actions, we can input partial tours into the Decision Transformer to infer the
next best action in an autoregressive fashion. With the power of the transformer,
we take the first step in making headway on the issue of generalization where past
models have failed.
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Chapter 1

Introduction

The “Traveling Salesman Problem” (TSP) is a classic operations research problem

first formulated in 1930 yet still studied today. A traveling salesman is given the task

of selling merchandise in several cities, and needs to schedule a tour to visit each

city exactly once, before returning back where they began. How should he schedule

the tour to minimize the amount of distance he has to travel? Despite its simple

appearance, this problem is NP-hard, making larger instances exponentially harder

and eventually intractable to solve. This issue is what machine learning techniques

aim to solve. As model inference typically takes time linear to the input size to

the model, solutions found via machine learning models in comparison can scale

arbitrarily well, making even the task of finding approximate solutions appealing. The

main hurdle is thus to create a machine learning model that can zero-shot generalize

well enough. In fact, the traveling salesman problem is only one of many operations

research problems of interest in the machine learning community; Hubbs et al. (2020)

provides a gym for designing models for various kinds of operations research problems

including the traveling salesman problem. Here, we focus our efforts entirely on TSP.

1.1 Decision Transformer

When solving a reinforcement learning (RL) problem, we are given three things: the

state of the world, the set of actions available to us, and the resulting reward once

13



Figure 1-1: Decision Transformer architecture, as described in Chen et al. (2021)
(used with permission).

we take an action. As we explore the space, we create a sequence of states, actions,

and corresponding rewards. Standard solutions to reinforcement learning will try to

propagate information on the amount of reward earned back to its causal actions

to learn which actions were “good” and which were “bad”. This is done via various

methods like dynamic programming, temporal difference learning, or policy gradients.

However, Chen et al. (2021) noted that since the reinforcement learning pipeline pre-

dicts the next action in a sequence, it may be possible to use sequence modelling

methods common in natural language processing to do the same job. Their solution

was the “Decision Transformer” (DT), a model based on the lauded transformer ar-

chitecture (Vaswani et al., 2017) of natural language processing fame that processes

state-action-rewards from a reinforcement learning environment in a sequence suitable

for transformers.

The most natural context of the decision transformer is in offline reinforcement

learning, where we are given a set of not necessarily optimal policies, and we wish to

train a model to learn a best possible policy with these as reference. Thus, we are

usually given as data a sequence of states, actions, and rewards from various policies;

we are not allowed the liberty of exploring the environment ourselves.

14



Imagine we have a sequence of rewards, states, and actions:

𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, 𝑎2, . . . , 𝑟𝑇 , 𝑠𝑇 .

The idea of DT is to predict the next action 𝑎𝑇 to take given this sequence. Struc-

turally, this is done by utilizing the transformer architecture, an NLP-based model

architecture renowned for its ability to make connections between distant elements of

a sequence. This way, DT hopes to execute credit assignment better than traditional

RL algorithms.

There is an important detail we need to clarify. As we currently set it up, we are

feeding the model the reward 𝑟𝑡 gathered at state 𝑠𝑡 after taking action 𝑎𝑡. However,

deciding what action to take given the reward we will gather prevents an ability

to gain foresight. Thus, instead of giving rewards 𝑟𝑡 in the sequence, we shall give

rewards-to-go �̂�𝑡, defined as

�̂�𝑡 =
𝑇∑︁

𝑡′=𝑡

𝑟𝑡′ .

This is the amount of reward remaining to be gathered after action 𝑎𝑡 is taken at

state 𝑠𝑡. This way, the sequence knows from the beginning what “goal” return we

wish to attain, and by the end it knows how much of that goal return we ended up

achieving. This completes the paper’s definition of the decision transformer’s task:

Theorem 1 (Chen et al. (2021)) Given a sequence of rewards-to-go, states, and

actions

�̂�1, 𝑠1, 𝑎1, �̂�2, 𝑠2, 𝑎2, . . . , �̂�𝑇 , 𝑠𝑇 ,

the decision transformer predicts the action 𝑎𝑇 taken at time 𝑇 .

1.2 Graph Neural Networks

The data in TSP instances consists of cities and the cost it takes to get from one city

to another. This is most naturally encapsulated in a graph, a mathematical object

with nodes and edges between nodes.
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Figure 1-2: Example of a directed graph with letter node labels instead of numbers.

Definition 2 A graph 𝐺 with 𝑁 nodes and 𝐸 edges is an object with nodes which

we label 1, . . . , 𝑁 , as well as 𝐸 edges 𝑒𝑖𝑗 (possibly with labels 𝑐𝑖𝑗) connecting node 𝑖 to

node 𝑗, where 𝑖, 𝑗 ∈ [1, . . . , 𝑁 ]. If edge 𝑒𝑖𝑗 exists iff edge 𝑒𝑗𝑖 exists, the graph is known

as undirected; otherwise, it is known as directed.

However, working with graph data natively is not easy, as the structure is too abstract

to easily be represented in the matrix-heavy framework of a machine learning model.

One could consider the adjacency matrix of the graph as a first pass on repre-

senting it. This is a square matrix where column or row indices correspond to node

indices, and the element at row 𝑖 and column 𝑗 is the edge label 𝑐𝑖𝑗 if 𝑒𝑖𝑗 exists, and 0

otherwise. (If the graph edges are unlabelled, a label of 1 is used for edges that exist,

and 0 otherwise.)

Example 1 In the graph in Figure 1-2, the adjacency matrix 𝑀 is

𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 0 4 3 0

0 0 3 0 1 0

0 0 0 0 0 5

0 0 3 0 3 3

0 0 0 0 0 8

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, the 𝑖th row/column corresponds to the 𝑖th letter of the alphabet.
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Figure 1-3: Message passing via three GNN layers. The dotted line indicates the
trajectory of a message being passed from a node to the nodes in the next layer
corresponding to the node’s neighbors. Figure originally from Sanchez-Lengeling
et al. (2021).

One could then imagine using classical machine learning methods for processing ma-

trix data, such as convolutional neural networks. Unfortunately, since the order of

the node labels is assigned arbitrary, the adjacency matrix has the property of row

and column permutation invariancy, which CNNs unfortunately cannot deal with.

A theory based in machine learning principles that mirrors the functionality of the

CNN is the graph neural network, or GNN. In parallel to how CNNs aggregate

information between pixels within a certain locality, GNNs send messages along its

edges to locally pass information via a message passing protocol.1 These message-

passing GNNs are also called message-passing graph convolutional network

(MP-GCN) or just GCN for short. With more GCN layers, nodes in the graph are

able to pass information to more distant nodes, mimicking the ability of CNNs to

aggregate information across more distant pixels over several layers.

The design space for GNN layers is vast, with 13 distinct types of GNN surveyed

in Dwivedi et al. (2020) alone. For ease of example, we shall provide the vanilla GCN

1GNN architectures that do not use message passing, e.g. Weisfeiler Lehman GNNs (Xu et al.,
2018; Maron et al., 2019) exist but are beyond the scope of this thesis.
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definition, a simplification of the graph convolutional network originally proposed by

Kipf and Welling (2016).

Definition 3 (Adapted from Dwivedi et al. (2020)) Let ℎ0
𝑖 denote the node fea-

tures of node 𝑖 in the initial input layer. For each GCN layer 0 ≤ ℓ < 𝐿 we define

the output embedding

ℎℓ+1
𝑖 = ReLU

(︀
𝑈 ℓ

(︀
Mean𝑗∈𝒩𝑖

ℎℓ
𝑗

)︀
+ 𝑉 ℓ

)︀
.

Here, 𝒩𝑖 denotes the set of neighbors of node 𝑖, and 𝑈 ℓ, 𝑉 ℓ are a trainable linear map

and bias, respectively.

Given the final output embeddings ℎ𝐿
𝑖 , we produce node, edge, and graph predictions

respectively as follows:

Node Prediction 𝑖 = MLP(ℎ𝐿
𝑖 )

Edge Prediction 𝑒𝑖𝑗 = MLP(Concat(ℎ𝐿
𝑖 , ℎ

𝐿
𝑗 ))

Graph Predictions = MLP
(︀
Mean1≤𝑖≤𝑁(ℎ

𝐿
𝑖 )
)︀

18



Chapter 2

Related Work

The predecessor of this thesis, Smith (2022), and also looked to find TSP tours

with the Decision Transformer, but with a different method of defining the TSP

environment states and actions. They adopt the standard method of defining the

node the agent resides as the state, and the node the agent wishes to travel to as

the action. However, due to the fact that this state action definition is so specific

to the distribution of cities in the given instance, it does not produce an agent that

can generalize to random city distributions and as a result there was no training

improvement.

In other literature, there are three main approaches of using reinforcement learning

for TSP: applying it on a fixed TSP instance, applying it as a step of a heuristic

solution generator, or applying it over many distinct TSP instances.

The first class of approaches is the most straightforward application of reinforce-

ment learning on TSP, where an agent explores a single TSP instance repeatedly

until a permissible solution is found. Alipour et al. (2017) innovates on this funda-

mental approach by applying various optimizations after the reinforcement learning

algorithm produces a tour.

Also worth mentioning are hybrid solvers imbuing a part of a heuristic solver

with a reinforcement-learning based approach. da Costa et al. (2020) uses reinforce-

ment learning to optimize choices in the 2-opt heuristic, a basic TSP heuristic based

on swapping pairs of connections. Similarly, Zheng et al. (2021) investigates the
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possibility of using reinforcement learning techniques to aid in a single step of the

Lin-Kernghan-Helsgaun (LKH) heuristic, currently one of the best combinatorial al-

gorithms for finding TSP tours.

However, both of these main methods do not have the advantage of generaliz-

ing the agent’s knowledge to different TSP instances without completely relearning.

Thus, we are more interested in reinforcement learning approaches that span over

many distinct TSP instances. Part of the challenge in this approach is determining

a generalizable way of representing each TSP instance in a standardized format for

model consumption. Miki et al. (2018) attacks this problem by representing TSP

instances as images, and using a convolutional neural network model in both a rein-

forcement learning and a typical deep learning context. Meanwhile, Bello et al. (2016)

takes the sequence of TSP coordinates as an input to an encoder-decoder recurrent

neural network model and generates a permutation of the sequence as a tour.

With the rise of graph neural networks, utilizing their power in an obviously

graph-natured problem like the TSP seems the best way to proceed. Song et al.

(2021) makes this switch, using a graph neural network to calculate node embeddings,

then autoregressively determining the next node to visit via a node-to-node attention

mechanism.

An advantage of training a model over many TSP instances is the possibility

of generalizing the solver to larger TSP instances unseen in training. Joshi et al.

(2020) is one of the first to investigate this, applying both non-autoregressive and

autoregressive attention-based GNN models to greater-sized TSP instances, but their

generalization accuracy was limited. One of the main goals of this research is to

achieve the power of generalization.
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Chapter 3

The Model

In lieu of using the decision transformer, we view the TSP as a reinforcement learning

problem. At any point in time on the tour, we consider the configuration of cities as

well as the path we’ve taken so far to be the state of the environment, and the choice

to travel to a city as the action. Furthermore, we associate the amount of distance

(or in general, cost) it takes to travel to that city from the city we currently reside

with a reward, defined in this context to be the negative distance between the cities.

The model we propose consists of two components, a GNN and a decision trans-

former. At a high level, we use the GNN as a tool to generate vector embeddings

of graph elements that can be inputted into the decision transformer. These vector

embeddings are used to create both the state embeddings and the action embeddings

that are required for the decision transformer to work. Then, the decision transformer

takes these embedding inputs, and outputs a predicted action embedding in the same

embedding space as the actions supplied in the input. Finally, the best action to take

is extracted by choosing the action out of all possible next moves most similar with

the predicted action. During inference this is repetitively done in an autoregressive

fashion until an entire path is constructed. Let’s take a look at how this works in

more detail.
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Graph Input

GNN Return
Prediction

Node
Embeds

Path
Data

Returns-to-go

States
Actions

Returns-to-go

States
Actions

Decision
Transformer

Predicted
Actions

Nearest
Neighbor

MSE Loss

Loss

Final Tour

Figure 3-1: Decision transformer model containing a GNN input processing layer, an
MSE loss function for training, and a nearest neighbor-based inference layer. Training
directly computes a loss from a single pass-through, while inference involves autore-
gressively looping through the decision transformer until the path is entirely gener-
ated.

22



Graph Input

GNN Return
Prediction

Node
Embeds

Path
Data

Returns-to-go

States
Actions

Returns-to-go

States
Actions

Decision
Transformer

Predicted
Actions

Nearest
Neighbor

MSE Loss

Loss

Final Tour

Graph Input
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Predicted
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Nearest
Neighbor

MSE Loss

Loss

Final Tour

Figure 3-2: Training pathway (left). Inference pathway (right). Note (in red) the
bypass of the “Return Prediction” module during training, and the autoregressive
loop during inference.

3.1 The Data

We use the TSP data supplied by Dwivedi et al. (2020). This contains graphs of

nodes randomly distributed in [0, 1]2, as well as a list of edges connecting each node

to their 𝑘-nearest neighbor (𝑘 = 25) labelled with their Euclidean distances. The data

contains 10,000 graphs for training, and 1,000 graphs each for validation and testing.

To prepare the training and validation data for our model design in particular, we

supplement them by generating several complete tours on each graph, represented by

permutations of the graph’s nodes in visiting order.

There are several ways we can generate these tours, each with a trade-off between

generation speed and quality.

• Randomized k-NN. At each node, randomly choose a node in the 𝑘-nearest

neighbors (𝑘 = 25) to travel to. If all nearest neighbors have already been

visited, visit a random not yet visited node.

This path generation is relatively poor in quality but very efficient to generate

as we are already given the 𝑘-nearest neighbors by the data. In practice, this

generation method is useful to determine the model’s ability to improve on
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relatively poor offline examples.

• Greedy with Optimization.2 A quick summary of the algorithm is as follows.

Consider every node a path fragment of length 1. At each step, connect two

path fragments with the smallest distance until two path fragments are left,

then complete the tour with the shortest length possible. Afterwards, sweep

through the tour a constant number of 2-opt cycles (Croes, 1958) to output a

final tour.

This path generation typically takes slightly longer to generate than the ran-

domized k-NN method, but creates solutions of much higher quality. A full

description of the algorithm can be found in Appendix A.

• Concorde TSP Solver (Cook, 2003). Generate the optimal path via the

Concorde TSP Solver, currently regarded as the fastest algorithm that finds the

optimal TSP tour.

This path generation is significantly slower than the previous two sub-optimal

tour generation methods, and is computationally intractable as a method of

creating large volumes of offline tour data.

For our experiments we exclusively used the first two tour generation methods for

training, mainly because generating optimal solutions on Concorde is computation-

intensive, and from software incompatibility issues. Inference does not require the

use of generated offline tours at all, as the model autoregressively generates the tour

itself from scratch.

In addition to the TSP data from Dwivedi et al. (2020) we also create several

more datasets that mirror this dataset, but with varying ranges of graph size. The

dataset from Dwivedi et al. (2020), which we will call TSP, contains graphs with sizes

ranging from 100 to 500. We also generate several more datasets, with properties

listed below:

• TSP10: Contains graphs of size between 4 and 10.
2Code provided by the tsp-solver2 Python package.
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• TSP20: Contains graphs of size between 5 and 20.

• TSP50: Contains graphs of size between 12 and 50.

• TSP100: Contains graphs of size between 25 and 100.

• TSP200: Contains graphs of size between 50 and 200.

• TSP10f: (short for TSP10 fixed) Contains graphs of size exactly 10.

It is worth noting that for both training and inference, the tour is sliced into a con-

tiguous subpath of context length 𝐾 due to a limitation of transformers. Transformer

attention layer computations scale in 𝑂(𝑛2) which becomes intractable for arbitrarily

long context lengths; see e.g. Dai et al. (2019).

3.2 The GNN Component

The design of the GNN component consists of two halves. As mentioned in Section 1.2,

a GNN takes as input a graph, and outputs an embedding for each node and edge,

as well as an embedding for the entire graph. After obtaining GNN embeddings, we

then design a scheme to convert them into inputs suitable for the DT.

3.2.1 GNN Designs

We choose a fixed embedding dimension size of 64 for all GNN designs. Since node

positions start out in R2, we first convert all positions to R64 through a fixed linear

map.

Now let’s describe the several design choices we tried for this GNN itself. For all

of these designs, the graph itself consists of the union of all edges connecting each

node to its 25-nearest neighbors.

• Basic GCN. We stack three layers of graph convolutional networks (GCN) as

defined in Definition 3, with normalization layers after each GCN layer. Each

normalization layer normalizes the node embeddings over the nodes of the graph

to have mean 0 and variance 1, followed by a learnable scale factor and bias,
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with the exception of the last norm layer, which only has a learnable scale factor

with no bias.

• Deep GCN. In order to increase the expressivity of the GNN, we can increase

the number of GCN layers. However, it is well documented (Li et al., 2018)

that GNNs quickly become ineffective with too many GCN layers due to van-

ishing gradients. Li et al. (2019) showed that if deep GNNs add residual (skip)

connections, the same innovations that ResNet (He et al., 2015) made for deep

neural networks, vanishing gradients can be avoided.

We design our deep GNN to have residual blocks with two GCNs each, incor-

porating the skip connection from the input to the output of the residual block

and aggregating the outputs via addition. In addition, we add normalization

layers as defined in the previous section as well as ReLU’s in the preactivation

style, described in He et al. (2016) to be the most effective way to organize the

layers within a residual block in ResNet.

• Custom GNN. The previous GNNs do not take into account the actual nu-

merical distances between nodes, which could be suboptimal. Thus, we also try

a custom-defined GNN that does take these distances directly in its message-

passing scheme.

Definition 4 (Custom Message Passing Scheme) Let ℎ0
𝑖 denote the node

features of node 𝑖 in the initial input layer, and 𝑒𝑖𝑗 the distance between nodes

𝑖 and 𝑗. For each GNN layer 0 ≤ ℓ < 𝐿 we define the output embedding

ℎℓ+1
𝑖 = ReLU

(︀
𝐴ℓ

(︀
Mean𝑗∈𝒩𝑖

ℎℓ
𝑗

)︀
+𝐵ℓ

(︀
Mean𝑗∈𝒩𝑖

𝑒ℓ𝑖𝑗
)︀
+ 𝐶ℓ

)︀
.

Here, 𝒩𝑖 denotes the set of neighbors of node 𝑖, and 𝐴ℓ, 𝐵ℓ, and 𝐶ℓ are two

trainable linear maps and a bias, respectively.

This custom scheme was implemented in a normal three-layer GNN similar to

the Basic GNN described above.
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3.2.2 State-Action Embedding Schemes

After obtaining embeddings for the various components of a graph, we now define

how to combine them into inputs suitable for the decision transformer to parse. This

includes both the state of a TSP instance, as well as the action taken at that state,

both as vector representations.

In order to capture the state of a partial TSP tour, fundamentally we must include

the a representation of the list of nodes yet to be visited, as well as the tour’s starting

node and the node we currently reside, all in a conglomerated state vector. Note that

other than the starting node, since we never visit a node twice, we can safely ignore

all nodes we’ve already passed. For a redundancy of information we still choose to

create an entire graph representation as well. We decide to represent each piece as

follows:

• Graph Representation. We use the basic graph representation we introduced

earlier, but without the MLP.

h𝐺 = Mean1≤𝑖≤𝑁(ℎ
𝐿
𝑖 ).

• Unvisited Nodes Representation. We consider a representation similar to

the graph representation. Letting 𝑈𝑡 be the set of nodes yet to be visited at

timestep 𝑡, we get

h𝑈𝑡 = Mean𝑖∈𝑈𝑡(ℎ
𝐿
𝑖 ).

• Starting and Current Node Representation. Letting 𝑛𝑖 be the node vis-

ited at timestep 𝑖, the starting node representation is then simply

h0 = ℎ𝐿
𝑛0
,

while the current node representation is

h𝑡 = ℎ𝐿
𝑛𝑡
.
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Together, we may create a conglomerate representation of the TSP state with a simple

multi-layer perceptron.

• State Representation. Given the state of a partial TSP tour, we associate

to it the embedding

TSP State𝑡 := MLP(Concat(h𝐺,h𝑈𝑡 ,h0,h𝑡))

which we denote in short by 𝑠𝑡. This MLP was chosen to be a simple two-layer

feed forward neural network with output dimension 64, giving a state space of

dimension 64.

Actions in the TSP setting correspond to single moves from a start node to a des-

tination node. We create a single embedding by taking the signed difference between

the end node embedding and the start node embedding.

• Action Representation. Given an action to move from city 𝑖 to city 𝑗, we

use the edge embedding

TSP Action𝑡 := 𝑒𝑖𝑗 = ℎ𝐿
𝑗 − ℎ𝐿

𝑖

which we denote in short by 𝑎𝑡. As we previously specified the GNN embedding

dimension to be 64, the action space has dimension 64 as well.

This representation method does have a notable limitation. Both the state and ac-

tion spaces are finite-dimensional. This limitation stems from the finite-dimensionality

of the state and action space inputted into the decision transformer. However, as

the arbitrary large graph size of the TSP instance naturally lies in a continuous

infinite-dimensional state space [0, 1]∞, projecting this state information to the re-

quired finite-dimensional space is lossy. Further discussion about this issue can be

found in Section 5.3.
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3.2.3 A Control Representation

Because of this limitation, we also adopt a separate “control group” representation

suitable only for TSP instances with exactly 10 cities. Here, states are given the

common-sense definition of a direct enumeration of city coordinates:

• State Representation (Control). Let p𝑖 be the position in R2 of the node

during timestep 𝑖. Given the starting and current node locations p0,p𝑡 ∈ R2,

as well as the sequence of nodes p𝑡+1, . . . ,p9 ∈ R2 yet to be visited, the state is

defined by Concat(p0,p𝑡,p𝑡+1, . . . ,p9). However, since as we proceed with tour

generation the list of unvisited nodes shrinks, we pad this state by a vector -1

of enough −1’s to set the total length to be 22 (the max length obtainable by

this state representation).

TSP State𝑡 := Concat(p0,p𝑡,p𝑡+1, . . . ,p9, -1)

Meanwhile, the actions are represented identically to before, but taken directly from

the positions of the source and destination nodes.

• Action Representation (Control). Let 𝑝𝑖 be the position in R2 of node 𝑖.

Then if at timestep 𝑡 we choose to move from node 𝑖 to node 𝑗, we define

TSP Action𝑡 := 𝑝𝑗 − 𝑝𝑖.

Note that since these state action representations directly use node positions, this

scheme does not utilize the GNN component at all. Thus, we can think of the control

representation as a scheme that depends solely on the decision transformer to learn

agent policies.

3.3 The Decision Transformer Component

The GNN provides us with a vector representation suitable for consumption by the

decision transformer of both the TSP state and action at each timestep 𝑡 of the tour.
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In order to predict the next action to take (in the form of a prediction vector in action

embedding space), we must finally supply the decision transformer with a sequence

�̂�𝑡 of returns-to-go at each timestep 𝑡 of the tour. This works differently depending

on whether we’re in training or inference mode.

• Training. We compute the returns-to-go for the entire path by computing the

returns from each action (defined as the negative distance) and cumulatively

summing:

�̂�𝑡 =
𝑇∑︁

𝑡′=𝑡

𝑟𝑡′

Then, we extract the returns-to-go relevant to the randomly chosen length 𝐾

contiguous subpath of the tour.

• Inference. We initialize the inference with a “predicted” total return, estimated

as precisely as possible. We choose to underestimate rather than overestimate,

as giving the agent an underestimated unachievable return-to-go incentivizes it

to try harder than giving it an easily achievable return-to-go. To this means

we use the 1-tree TSP lower bound, which is shown by Wolsey (1980) to be

at worst 1.5 times shorter than the optimal TSP tour. Further details of this

algorithm are outlined in Appendix B.

After the initial return-to-go prediction, as per inference we autoregressively

generate actions, and update the return-to-go with the reward obtained from

the action.

In either case, we generate a return-to-go �̂�𝑡 for each timestep. The sequences

{𝑠𝜏}𝑡𝜏=𝑡−𝐾+1, {𝑎𝜏}𝑡−1
𝜏=𝑡−𝐾+1, and {�̂�𝜏}𝑡𝜏=𝑡−𝐾+1 (with a context length 𝐾) are then

input to the decision transformer in the sequence

�̂�𝑡−𝐾+1, 𝑠𝑡−𝐾+1, 𝑎𝑡−𝐾+1, . . . , �̂�𝑡, 𝑠𝑡

in order to predict the next action �̂�𝑡.
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In training, we propagate loss with a mean squared error loss function between �̂�𝑡

and the true 𝑎𝑡. However, in inference, this predicted action �̂�𝑡 will not correspond

directly to a valid action to do at our current node. The actual action is chosen

by calculating the valid action with the closest Euclidean distance to the predicted

action �̂�𝑡. Explicitly, let 𝑖 be the current node, and 𝑈𝑡 be the set of nodes not yet

visited at timestep 𝑡. Then the node 𝑗* we visit next is determined by

𝑗* = argmin
𝑗∈𝑈𝑡

‖𝑒𝑖𝑗 − �̂�𝑡‖2

recalling that 𝑒𝑖𝑗 is the action embedding for traveling from city 𝑖 to city 𝑗.
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Chapter 4

Experiments and Results

4.1 Experimental Setup

All models are trained with stochastic gradient descent (Bottou and Bousquet, 2007)

with a learning rate of 0.01, and a minimum squared error loss. Models were trained

on one of the listed datasets mentioned in Section 3.1 for five epochs, or sometimes for

twenty epochs if more training was needed. Based on the dataset and path generation

chosen, the experiment represents one of several learning heuristics.

• Large Datasets. This includes TSP and TSP200, and improved performance

represents the ability of the model to make good macroscopic optimizations.

• Small Datasets. This includes TSP10 and TSP10f, and improved performance

represents the ability of the model to find the optimal solutions at the micro-

scopic scale.

• Randomized Tours. This is the option of generating offline path data via

the randomized k-NN algorithm. Improved performance represents the model’s

ability to learn from and surpass low quality path generation.

• Greedy Tours. This is the option of generating offline path data via a greedy

method with optimization. Improved performance represents the model’s ability

to learn from and surpass relatively high quality path generation.
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4.2 Results

Models were initially tested on the same dataset that they were trained on, with the

intention of testing on datasets with larger graphs afterwards to test for generaliz-

ability.

The industry-standard metric of rating models is by how much longer in per-

centage the model solution is compared to a benchmark. Typically the benchmark

is the optimal solution. We found it more instructive to set the benchmark to the

generated path data for comparison for three reasons. First, bear in mind that the

model only has offline paths generated by either a randomized k-NN or an optimized

greedy algorithm as input for its training. Thus, it is natural to compare the model’s

performance against the performance of the paths it is given as training to determine

whether the model has the power to not only learn the algorithm’s path generation

from scratch, but to even exceed it in path efficiency. Second, our model unfor-

tunately was not competitive against state-of-the-art algorithms, so comparing its

length to the optimal path length is less revealing. The optimized greedy algorithm

given in the tsp-solver Python package generates visually acceptable solutions, so

we believe comparing the model performance to the optimized greedy algorithm is a

good enough first-order approximation of performance.

Thus, we instead measure performance by how much shorter in percentage the

model solution’s length is compared to the path generated for offline training. Here,

a positive percentage indicates that the model’s solution is shorter than the offline

generated path, which indicates that the model is learning better movement than the

data it was given. On the other hand, a negative percentage indicates that the model’s

solution was worse than the offline generated path, which indicates the model’s failure

to learn past the threshold of the data it was given. For completeness we also supply

the absolute tour length of the model’s paths and benchmark paths.
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Model Type Tour Type Dataset U T B %U %B

GCN Random kNN TSP 32.75 21.31 37.80 34.9 43.6
GCN Greedy TSP 31.44 21.09 13.00 32.9 −62.2
DeepGCN Greedy TSP 19.52 20.02 13.00 −2.6 −54.0
CustomGNN Greedy TSP 17.13 15.99 13.00 6.7 −23.0
GCN Random kNN TSP10 3.57 3.54 3.40 0.8 −4.1
GCN Greedy TSP10 3.58 3.59 2.46 −0.3 −45.9
DeepGCN Greedy TSP10 3.16 3.14 2.46 0.6 −27.6
CustomGNN Greedy TSP10 2.72 2.72 2.46 0.0 −10.6
Control Greedy TSP10f 3.47 3.28 2.96 5.5 −10.8

Table 4.1: Experimental results of the model as we vary the dataset, pre-generated
tour type, and model type. Listed are the (U)ntrained model tour length, (T)rained
model tour length, (B)enchmark (pre-generated tour) length, as well as the (%U)
and (%B) percent improvement of the trained model length over the untrained model
and benchmark length,respectively. Model was trained on five epochs; test data was
averaged over 100 test trials.

From Table 4.1, we conclude the following:

• Out of all the experiments, the basic GCN model trained on randomized kNN

tour data saw the greatest improvement over both the untrained model and the

tour data, with a percentage improvement of 34.9% and 43.6% respectively. As

a result, the majority of the remaining experiments focused on achieving the

same performance improvement on the higher quality greedy tour data.

• The greedy tour data is much shorter than the random kNN tour data, with an

average tour length of 13.00 compared to an average tour length of 37.80.

• The custom GNN design saw the best performance on the TSP dataset with

greedy tour data, with an average untrained tour length of 17.13 and an average

trained tour length of 15.99. However, this still fell 23.0% short of the average

greedy tour data length of 13.00.

• The custom GNN design saw the best performance on the TSP10 dataset with

greedy tour data as well, with a tour length of 2.72 on both the untrained and

trained models.
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• The trained model saw almost no improvement over the untrained model for the

TSP10 datasets, and the margin of improvement decreased on the TSP dataset

as the overall untrained performance improved.
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Chapter 5

Analysis and Future Work

The model was able to not only mirror, but exceed the performance of the offline

random k-NN path generation, producing paths on average 43.6% more efficient than

the random k-NN paths. This provides evidence to the crucial ability for the model

to take as training input solutions of a certain level of quality, and output solutions of

higher quality. Ideally, if this property were to hold true in general, the model should

be able to take in high quality solutions and learn to generate even higher quality

solutions.

Contrary to this inductive reasoning, we observe an inability for the model to

improve past the performance threshold set by the optimized greedy algorithm path

generation, becoming “stuck” at a certain performance level even after further train-

ing. We can glean on the model’s deficiencies by observing some example tours in

Figure 5-1. It appears that the model is able to formulate well-formulated paths

between nodes locally. Rarely are small clusters of nodes “forgotten”, classified by

a large jump to said cluster followed immediately by another large jump after the

cluster is visited. However, it has trouble avoiding crosses between two sequentially

distant sections of path, as well as the tendency to jump large distances between

stretches of well-formulated paths. These factors combined results in a less optimal

tour than the greedy algorithm.

Next we discuss the various attempts at breaking through this performance ceiling

as listed in the findings of Chapter 4, as well as other potential factors that we did
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Figure 5-1: The greedy-based tour data, the untrained model’s path, and the trained
model’s path on an example TSP instance for the CustomGNN model.

not experiment on.

5.1 Factors in Model Design

The main part of this model’s design that could fundamentally affect the performance

is the difference in logic path between training and inference. Training and validation

loss is calculated through comparing the predicted action embeddings with the actual

action embeddings of the pre-generated tour through a single pass-through of the de-

cision transformer. On the other hand, the autoregressive prediction style of inference

necessitates many recursive calls on the decision transformer, and the restriction of

generating actions that move the agent to valid nodes necessitates an extra nearest

neighbors component in the model not seen by training and validation. These differ-

ences could very well cause a discrepancy between training/validation performance

and inference performance.

The naive method of reconciling this difference is to have training and validation

follow the same logic path as inference, and calculate the negative log likelihood loss

directly on the generated tour as a classification objective. There are two reasons why

this idea could fail. First, computing a loss between the model’s final tour output and

the pre-generated training data tour is a further logical leap than comparing single

actions between the output and the training data. One would expect that generating
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a loss in the action prediction process should guide the model in a more fine-grained

way than a single tour-based loss at the end. Second, autoregressively generating a

tour from scratch calls the decision transformer many more times than calling it to

compare actions. Indeed, generating a tour from scratch to compute a single loss

value necessitates the same number of calls to the decision transformer as there are

nodes in the graph, while 𝑁 calls to the decision transformer at random length 𝐾

subsequences of the tour already produces 𝑁 · 𝐾 predicted actions to compute a

loss to. For the sake of computational efficiency during training, the current model

provides the best compromise

Future work on this issue could involve computing a loss from both comparing

actions and comparing final tour results. There is plenty of precedence in applying

loss functions in this way; in the field of knowledge distillation, Gou et al. (2020) trains

student networks based on both a logit loss and a distillation loss, which closely

parallels this model’s predicted action-based loss and final tour loss, respectively.

The issue of computational efficiency remains a hurdle this approach would need to

overcome.

5.2 Factors in GNN Design

Another component that we thought could affect the efficacy of the model is the

design of the GNN component. As a result, we experimented on three GNN designs as

mentioned in Section 3.2.1. We iterated through several GNN designs in Section 3.2.1

to try to include as much information as possible for the GNN to consume and

interpret. Section 4.2 shows that iterating the GNN design had an improvement in

baseline performance for both the TSP dataset and TSP10 dataset. For example,

between the GCN, DeepGCN, and CustomGNN designs on the TSP dataset, the

untrained model achieved a steadily improving tour length of 31.44, 19.52, and 17.13

respectively, while the trained model exhibited improving tour lengths of 21.09, 20.02,

and 15.99 respectively. Figure 5-2 shows an example of the performance of the GCN

model versus the CustomGNN model on a TSP instance.
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GCN

CustomGNN

Figure 5-2: Comparison between the greedy-based tour data, the untrained model’s
path, and the trained model’s path on an example TSP instance for both the basic
GCN model and the CustomGNN model. Observe that through the use of Cus-
tomGNN, even the untrained tour appears better constructed than the GCN model’s
tours.
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Figure 5-3: Principal component analysis of the GNN node embeddings of a randomly
chosen graph. Shown is a randomly chosen node, as well as its list of nearest neigh-
bors based on node embedding. Each node is also labelled with its original position
in [0, 1]2, revealing that nodes which are considered nearest neighbors via node em-
bedding are close in absolute position to the original node position as well. (Diagram
generated by TensorBoard Embedding Projector.)

Unfortunately, changing the GNN design did not make any significant break-

through in the performance of the model in relation to the tour data performance

as all of the comparisons %𝐵 on the TSP dataset heavily leaned negative. How-

ever, there is reason to believe that the GNN is not necessarily the component that

is causing learning issues. A principal component analysis (Figure 5-3) of the GNN

embeddings of the three-layer GCN we implemented does give evidence that even this

most basic iteration of the GNN produces node embeddings that correctly preserves

relative distance.

Finally, it is interesting to note that although the design of the GNN was not

able to allow the model to train better, it did affect how well the model performed

untrained on observation. Perhaps this is due to better relative distance preservation

of node embeddings. Future work should be done to better understand why one GNN
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design may improve the baseline untrained model performance more than another.

5.3 Factors of State-Action Embedding Schemes

The embedding scheme we propose in Section 3.2.2 came about as a compilation of all

the information intuitively needed to produce quality TSP tours, but any embedding

scheme could have been used. For example, a previous iteration of the embedding

scheme we propose here was similar except we produce an embedding corresponding

to the set of nodes we have already visited instead of the set of nodes we have yet to

visit. There was no observed performance change under this modification, so it was

omitted from the results.

There is reason to believe that the necessity of creating a state-action embed-

ding scheme is a cause for the performance limitations. As mentioned briefly in

Section 3.2.2, we must specify the state and action embeddings to exist in a finite

dimensional state space 𝒮 ∼= R64 and action space 𝒜 ∼= R64, respectively. However,

the state of a TSP instance includes the positions of an arbitrary number of nodes,

which naturally lies in the space [0, 1]∞. Bearing in mind the finite precision of floats,

there is no injective map from [0, 1]∞ to 𝒮, with the implication that there will always

exist some state representations in 𝒮 that correspond to more than one configuration

of nodes in [0, 1]∞. In short, there is no way of perfectly representing a TSP state in

a finite-dimensional space; there is always some amount of information loss.

Nevertheless, the current embedding scheme mainly utilizes node embedding av-

eraging over a set of nodes to represent that set of nodes, which is particularly lossy.

Future work should try to find a method of representation that, although is lossy,

still acts as a good approximate representation of the original TSP state.

5.4 Lessons of the Control Experiment

As a final control experiment, we created a state-action embedding scheme that is

taken directly from the positions of the nodes, assuming that the number of nodes is
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fixed at exactly 10. This control experiment sought to eliminate as much influence

from the previous factors as possible, and isolate the decision transformer as the main

component of the model to determine whether the decision transformer itself could

be the limiting factor.

Indeed, with the use of node positions directly instead of GNN embeddings, we

remove the GNN from the pipeline entirely. In addition, with the number of nodes

set at exactly 10, we remove the non-unique representation concern of the TSP state.

Thus, the concerns of neither Sections 5.2 and 5.3 should affect this model design,

with the decision transformer essentially acting as the only learnable component.

Unfortunately, we see that even this simplified model was unable to break through

a performance barrier and produce optimal solutions for the 10-node TSP. Thus, we

conclude that either the design of the model is suspect as Section 5.1 describes, or

the use of the decision transformer itself in the TSP is not sufficient.

Future work should be done to verify whether the limitations are due to the

offline decision transformer-based model or due to something inherent in the use of

reinforcement learning on distinct TSP instances itself. One proposal to achieve this

could be training a model in an online style with direct reward responses from the

environment after every agent action as opposed to the offline supervised model done

here. It is worth noting though that this proposed online model is not a complete

analogue of the offline model done here as there is no longer any pre-generated path

data to supervise the model, so its success or failure does not necessarily correlate

with the success or failure of the decision transformer.
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Chapter 6

Conclusion

The decision transformer has some potential in offline reinforcement learning. Through

the use of the a model powered by the decision transformer, we see its ability to gen-

erate TSP tours significantly shorter than the tours it is fed as training data in the

case of low quality tour data. We also see the ability for it to formulate good tour

segments given higher-quality tour data.

Unfortunately, due to high-level errors like crossings and large jumps between

well-constructed paths, the decision transformer model does not output tours of bet-

ter quality than its input tour data. We experimented with several measures to fix

this issue, including changing the GNN specifications, changing the state-action em-

bedding schemes, and even stripping the model down to the bare minimum of just

the decision transformer component, but the model saw no significant improvement.

Nevertheless, the paths produced by the model appear a promising first step, and

the model was able to learn and improve past its training data in at least one circum-

stance, confirming its ability to infer past its baseline training data performance. It

remains as further investigation to refine the model to succeed in a higher-performance

training environment for the traveling salesman problem.
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Appendix A

tsp-solver2’s Greedy TSP Solver

Here is a full description of the optimized greedy algorithm implemented by the

tsp-solver2 Python package, used as the high-quality offline path generation for

our model training data.

Algorithm 1 Greedy-based TSP solver, tour generation step
Require: 𝑛 ≥ 3, 𝑉 = {𝑣𝑖}1≤𝑖≤𝑛, 𝐸 = {𝑒𝑖𝑗}1≤𝑖 ̸=𝑗≤𝑛, 𝐺 = (𝑉,𝐸) symmetric
𝑉endpoints ← 𝑉
𝐸tour ← ∅
while |𝐸tour| < 𝑛− 1 do

𝐸valid ← {𝑒𝑖𝑗 ∈ 𝐸 − 𝐸tour | 𝑖, 𝑗 ∈ 𝑉endpoints, 𝑒𝑖𝑗 does not form a cycle in 𝐸tour}
(𝑎, 𝑏)← argmin 𝑎,𝑏{𝑒𝑎𝑏 | 𝑒𝑎𝑏 ∈ 𝐸valid}
𝐸tour ← 𝐸tour ∪ {𝑒𝑎𝑏}
if deg𝐸tour

(𝑎) = 2 then
𝑉endpoints ← 𝑉endpoints − {𝑎}

end if
if deg𝐸tour

(𝑏) = 2 then
𝑉endpoints ← 𝑉endpoints − {𝑏}

end if
end while
{𝑠, 𝑡} ← 𝑉endpoints

𝐸tour ← 𝐸tour ∪ {𝑒𝑠𝑡}
return 𝐸tour

In words, Algorithm 1 repeatedly adds the shortest edge that connects two degree

≤ 1 nodes (𝑉endpoints) such that the edge does not prematurely form a cycle, until one

big path encompassing every node is created, for when the endpoints are joined to

create a full tour.
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Next, this tour is plugged into Algorithm 2 a constant number of times (default

to 3) to further optimize it.

Algorithm 2 Greedy-based TSP solver, optimization step (2-opt)
Require: 𝑛 ≥ 3, 𝑉 = {𝑣𝑖}1≤𝑖≤𝑛, 𝐸 = {𝑒𝑖𝑗}1≤𝑖 ̸=𝑗≤𝑛, 𝐺 = (𝑉,𝐸) symmetric
Require: 𝐸tour ⊂ 𝐸 is a cycle, |𝐸tour| = 𝑛
𝑎← 1
while 𝑎 ≤ 𝑛− 2 do

𝑏← 𝑎+ 1
𝑐← 𝑏+ 1
while 𝑐 ≤ 𝑛 do

if 𝑐 = 𝑛 then
𝑑← 1

else
𝑑← 𝑐+ 1

end if
𝛿 ← 𝑒𝑎𝑏 + 𝑒𝑐𝑑 − 𝑒𝑎𝑐 − 𝑒𝑏𝑑
if 𝛿 > 0 then

𝐸tour ← 𝐸tour − {𝑒𝑎𝑏, 𝑒𝑐𝑑}
𝐸tour ← 𝐸tour ∪ {𝑒𝑎𝑐, 𝑒𝑏𝑑}

end if
𝑐← 𝑐+ 1

end while
𝑎← 𝑎+ 1

end while

In words, Algorithm 2 loops through pairs of edges in the tour, and upon finding

that the four nodes involved in these two edges have a shorter pair of edges that

connect them, swaps the original edges for the shorter pair. This algorithm is known

as 2-opt.
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Appendix B

1-Tree TSP Lower Bound

More sophisticated lower bounds involving 1-trees exist such as the Held-Karp lower

bound (Held and Karp, 1970), but for our purposes a very rough lower bound should

suffice. Here we use a single 1-tree as a lower bound. Let 𝐺 be an undirected graph

with edge distances 𝑒𝑖𝑗 between nodes 𝑖 and 𝑗. Let 𝐺 − 𝑣 for a graph 𝐺 and a

vertex 𝑣 ∈ 𝐺 be the subgraph induced by the vertices in 𝐺 excluding 𝑣. Let MST

be a standard minimum spanning tree algorithm such as Prim’s or Kruskal’s. Define

[𝑛] := {1, 2, . . . , 𝑛}.

Algorithm 3 Calculating a basic 1-tree lower bound for a generic TSP instance
Require: 𝑛 ≥ 3, 𝑉 = {𝑣𝑖}1≤𝑖≤𝑛, 𝐸 = {𝑒𝑖𝑗}1≤𝑖 ̸=𝑗≤𝑛, 𝐺 = (𝑉,𝐸) symmetric
𝑎← argmin 𝑗∈[𝑛]−{1}{𝑒1𝑗}
𝑏← argmin 𝑗∈[𝑛]−{1,𝑎}{𝑒1𝑗}
𝑇 ← MST(𝐺− 𝑣1)
return 𝑒1𝑎 + 𝑒1𝑏 + len(𝑇 )

The proof that this is indeed a lower bound for the optimal TSP tour is simple.

Note that 𝑣1 must be entered and exited exactly once each in the optimal TSP tour;

the distance traveled during these two actions must then be at least the sum 𝑒1𝑎+ 𝑒1𝑏

of the distances from 𝑣1 to the closest two nodes 𝑣𝑎, 𝑣𝑏. Next, delete node 𝑣1, and

observe that the optimal tour creates a path on the remaining nodes. Since a path

is a tree, the distance traveled on this path must be at least the total length of the

minimal spanning tree 𝑇 of 𝐺−𝑣1, giving us a total lower bound of 𝑒1𝑎+𝑒1𝑏+ len(𝑇 ).
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