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2 Executive summary 

Quickly deploying relief items is key to reducing a population’s burden in case of 
sudden onset disasters. Emergency response organizations, such as FEMA or local 
and state agencies hold a strategic stockpile of critical relief items and contract for 
contingency stock in preparation for emergencies. Their response capacity depends 
on their decision to stock items at different depots, contracts with contingency 
suppliers, and procurement of transportation capacity to move these items. 

Building on prior work of Acimovic & Goentzel (2016) we develop a stochastic 
linear programming model to capture carrier capacity and contingency suppliers. 
Inputs to the model are a risk portfolio reflecting the particular disasters and the 
inherent uncertainty with respect to when an organization needs to address a large 
or a small disaster. Further inputs are the organic stockpile of critical relief items, 
referred to as the inventory portfolio, contracts with contingency suppliers, which 
we term the supplier portfolio, and the portfolio of carriers at any depot location. 

The model allows to conduct a system assessment and a system optimization. System 
assessment evaluates the current state and answers how well the current inventory, 
supplier, and carrier portfolio is able to meet a given risk portfolio. We present 
aggregate metrics to assess a system in three dimensions. We evaluate service 
metrics to answer how well the network meets demand of the affected population 
and how rapidly we reach the affected population, and efficiency metrics to indicate 
how much resources are necessary to meet demand. Taken together these metrics 
allow to evaluate the state of an emergency response network. 

System optimization identifies the optimal allocation of inventory for a given 
supplier and carrier portfolio against a given risk portfolio. The models provides the 
above mentioned metrics for a decision-maker to compare to optimal network to 
the current on. In addition, we prescribe an inventory balance, a carrier contract, and 
a carrier utilization metric to capture the value of improvement. 

In both – system assessment and system optimization – we evaluate a time-based 
model and a cost-based model to capture the inherent cost-time trade-off. Typically, 
more responsive suppliers and carriers are more expensive and less responsive 
suppliers and carriers are less expensive. When choosing where to allocate 
inventory, and which suppliers and carriers to contract an organization has to 
resolve this trade-off between cost and time. Our model provides insight into this 
trade-off and the impact on different performance metrics. 

We use data from the openFEMA API to construct a new risk portfolio and estimate 
an inventory and a carrier portfolio to show the feasibility and functionality of our 
approach. 



4 

 

 

  



5 

 

 

3 Introduction 

Quickly deploying relief items is key to reducing a population’s burden in case of 
sudden onset disasters. Emergency response organizations, such as FEMA or local 
and state agencies hold a strategic stockpile of critical relief items and contract for 
contingency stock in preparation for emergencies. Their response capacity depends 
on their decision to stock items at different depots, contracts with contingency 
suppliers, and procurement of transportation capacity to move these items. 

Assessing and optimizing response capacity is difficult for multiple reasons.  
Disasters occur unforeseen and the location and number of people affected varies 
significantly. Transportation capacity is typically constrained following a disaster, 
reducing the response time while increasing costs on the spot market. Procurement 
lead times vary across items and amongst suppliers for any single item, which 
affects the contingency plans during response and the stockpile resupply that 
follows.  

Acimovic and Goentzel (2016) prescribe a model and develop a set of performance 
metrics to assess and improve an organization’s response capacity. These metrics 
enable decision-makers to characterize the sufficiency of an organization’s capacity 
against a portfolio of disaster scenarios and delineate strategies to improve 
performance. Key inputs to the model are disaster scenarios and inventory levels of 
relevant emergency response organizations. Their main objective is to characterize 
and evaluate the mix of air and ground level transportation to meet the needs of an 
affected population considering a global network of disaster relief organizations.  
The key trade-off of a decision-maker in this case is using airfreight, which is very 
responsive but expensive, or truck, which is less expensive but typically incurs 
longer delivery times. 

Their analysis provides valuable insight into the response capability of global 
networks. However, when evaluating a more localized network such as, for example, 
the disaster response network in the continental United States, the main mode of 
transportation is truck. With respect to transportation, the trade-off at hand is using 
responsive but more expensive carriers and less responsive, less expensive carriers. 
In addition, it is important to evaluate the availability of carrier capacity at each 
depot, that is, the mix of different carrier contracts, and how much spot market 
capacity is available, to ensure that inventory levels in depots correspond to the 
carrier capacity. 

This project funded by New England University Transportation Center (UTC) seeks 
to advance the model of Acimovic and Goentzel (2106) and its metrics to more 
accurately consider an emergency response organization’s carrier portfolio and 
supplier capability in the context of continental United States (CONUS) response 
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(though extensions outside CONUS could be developed as well). Our model is 
applicable to a wide range of disaster response organizations. We seek to 
collaborate with the Federal Emergency Management Agency (FEMA), a 
governmental organization who provides first response in large sudden onset 
disasters in the United States. 

We develop a stochastic linear program to capture multiple tiers of carrier capacity 
and the different terms and conditions from pre-contracted carriers and the spot 
market to characterize in more detail the impact of a carrier portfolio onto an 
organization’s response capability.  

This work strives to provide new metrics to capture transportation capacity and to 
evaluate the status-quo of the network (system assessment) and provide insight 
into potential routes to improve performance (system optimization) without forcing 
the decision-maker to go into too much operational details. We develop metrics that 
allow a decision-maker to evaluate (i) how efficient the current carrier contracts 
are, (ii) where to renegotiate carrier contracts, (iii) which items an organization 
should buy, (iv) where the organization should put the items, and (v) if an 
organization should transfer items within its network. 

The model demands five different input categories. We consider a risk portfolio, i.e. 
a set of disasters that could happen, the network’s inventory portfolio, i.e. the 
organic inventory owned by the organization, the supply portfolio, i.e. the contracts 
in place with suppliers of disaster relief items, and the network’s carrier portfolio, 
i.e. the capacity, terms and conditions negotiated with carriers at each depot and 
each supplier. In addition, we use item specific information to ensure that we 
capture the reality correctly. 

The rest of this report is organized as follows. In the next section we introduce the 
stochastic linear program (SLP) and explain the aggregate metrics that we suggest 
to use to evaluate carrier contracts and inventory in a disaster response network. In 
section 5 we explain the inputs to our model and which data sources we use. Section 
6 is dedicated to the results. We conduct a system assessment and a system 
optimization to highlight the capabilities of the model. In section 7 we discuss the 
model results and some extensions, how we used the model to engage with FEMA 
and other stakeholders and also indicate a pathway of going forward. 



7 

 

 

4 Model 

4.1 Model introduction 

To characterize the ability of a disaster response organization such as FEMA to 
respond to sudden onset disasters in the United States we create a stochastic linear 
program. We consider five types of inputs to our model (Figure 1). The risk portfolio 
characterizes potential disasters the organization can face. It characterized the 
source of uncertainty of when a disaster of certain magnitude needs to be served. 
The inventory portfolio captures the capability to respond to a disaster with specific 
relief items that the organization owns. We refer to this inventory as organic 
inventory. The supplier portfolio represents contracts the organization has in place 
with relief item suppliers that amend the organization’s response capabilities. The 
carrier portfolio characterizes the organization’s capability to transport relief items 
to disaster sites and therefore determines cost and time to respond to disasters. In 
addition, we use item and user specific information to accurately capture user 
preferences and need. Before we describe where we obtain data for these inputs 
(Section 5) we explain the model and the output metrics. 

 

Figure 1: Inputs and outputs to the stochastic linear program (SLP) 

 

4.2 Model formulation 

Our model builds on prior research of Acimovic & Goentzel (2016). We extend their 
model by including carrier capacity that emergency response organizations have in 
place to respond to a disaster. 

Before formulating the model, we define all necessary parameters and variables. 

𝐼𝑂 ∋  𝑖𝑂 – Set of all depots with organic inventory owned by the emergency response 
organization. 

𝐼𝑆 ∋  𝑖𝑆 – Set of all inventory locations with contracted supply. 

𝑖𝑤- The dummy supply node. 
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 𝐼 ≡  𝐼𝑂  ∩  𝐼𝑆 ∩ 𝑖𝑤 – Set of all depots available for disaster response including 
dummy node. 

𝐾 ∋ 𝑘 – Set of possible disaster locations. 

𝑅𝑆  ∋ 𝑟𝑆 – set of spot market carriers 

𝑅𝐶  ∋ 𝑟𝐶 – set of carriers the organization has pre-negotiated contracts with 

𝑅 ≡  𝑅𝐶  ∩  𝑅𝑆 – the set of all carriers 

𝑗𝑘 – Staging area j of a disaster in scenario k. 

𝜏𝑖,𝑗
𝑘,𝑟 – Time/cost to respond from depot i to disaster location j in disaster scenario k 

with carrier r. 

𝑐𝑎𝑝𝑖,𝑟 – Transportation capacity available at depot i from carrier r. 

𝑝𝑘 – Probability of occurrence for disaster scenario k. ∑ 𝑝𝑘
𝑘 = 1. 

𝑦𝑖,𝑟
𝑘  – inventory send from location i to supply disaster scenario k via carrier node r. 

𝑦
𝑟,𝑗𝑘
𝑘  – inventory send via carrier node r in disaster scenario k to supply staging area 

𝑗𝑘. 

X – The I-dimensional vector of starting inventory in each depot 𝑋𝑖. 

𝜒 –  Starting inventory in the system as a whole, not including the dummy node. 

𝑇𝐴𝑃𝑘 – Total affected population in disaster scenario k. 

β – Units of item demanded per person. 

𝑑𝑘 ≡  𝛽 𝑇𝐴𝑃𝑘  – Demand generated by the affected population in disaster scenario k. 

Next we formulate our basic model: 

 𝑉(𝑿) ≡ min
𝑦

∑ 𝑝𝑘
𝑘 ∑ 𝜏𝑖,𝑗𝑘,𝑟 ∙ 𝑦

𝑟𝑗𝑘
𝑘

𝑖∈𝐼,𝑟  (1) 

s.t. ∑ 𝑦
𝑟𝑗𝑘
𝑘

𝑟 = 𝑑𝑗
𝑘       ∀𝑘, 𝑗 (2) 

 ∑ 𝑦𝑖𝑟
𝑘

𝑟 ≤ 𝑋𝑖       ∀ 𝑖 ∈ 𝐼, 𝑘 (3) 

 𝑦𝑖𝑟
𝑘 − ∑ 𝑦

𝑟𝑗𝑘
𝑘

𝑗 = 0      ∀ 𝑖 ∈ 𝐼, 𝑅, 𝑘 (4) 
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 𝑦𝑖𝑟
𝑘 ≤ 𝑐𝑎𝑝𝑟       ∀ 𝑖 ∈ 𝐼, 𝑅, 𝑘 (5) 

 𝑦𝑖𝑟
𝑘 , 𝑦

𝑟𝑗𝑘
𝑘 ≥ 0       ∀ 𝑖 ∈ 𝐼, 𝑅, 𝑘 (6) 

The objective function (1) minimizes the expected time-to-respond to potential 
disaster scenarios by calculating the product of probability of occurrence and the 
time-to-deliver relief goods. Constraints (2) ensure that demand at any disaster 
location in any scenario is met. The model ensures this by serving demand that 
cannot be served from organic inventory, i.e. is from depots of the organization, is 
served from the dummy node. Constraints (3) enforce that the volume shipped from 
any depot does not exceed the available inventory. Constraint (4) is a flow balance 
for the carrier nodes at each depot. Also the volume shipped from any location via a 
carrier cannot exceed the carriers transportation capacity (5) and is nonnegative 
(6). The model to minimize cost is similar to the one above by substituting time-to-
respond for cost. 

The measure 𝑉𝑤(𝑿) represents the expected time (cost) the organization incurs to 
serve disasters with the available inventory. To optimize the allocation of inventory 
across the existing network we make X a decision variable and ensure that the 
entire current inventory 𝜒 is used.  

𝑉𝑂𝑝𝑡,𝑤(𝜒)  ≡ {𝑉𝑤(𝑿): ∑ 𝑋𝑖 =

𝑖 ∈𝐼

 𝜒, 𝑋𝑖 ≥ 0 ∀ 𝑖 ∈ 𝐼}. 

For later analyses we define the objective values with dummy costs subtracted as   

𝑉( ) ≡ 𝑉𝑤( ) − ∑ 𝑝𝑘 𝜏
𝑖𝑤,𝑗𝑘
𝑘,𝑟  

𝑘

𝑦𝑖𝑤
𝑘 . 

4.3 Metrics 

Since our model is based on Acimovic & Goentzel (2016) we draw in part on the 
metrics the authors previously developed to evaluate an organization's response 
capacity.  

4.3.1 Balance metrics 

The inventory balance metric  

∆𝐼=
𝑉(𝑿)

𝑉𝑂𝑝𝑡(𝜒)
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compares the objective function value (corrected for the impact of the dummy 
variable) of the current inventory allocation with the optimal allocation of 
inventory. Hence, the balance metric measures the relative benefit of redistributing 
the inventory across the network similar to the work of Acimovic & Goentzel (2016) 
and its deterministic version in Acimovic & Graves (2015). That is, a value ∆𝐼> 1 
indicates an out-of-balance state of the current inventory distribution and a positive 
benefit of redistribution efforts. 

The carrier contract metric  

∆𝐶=
𝑉𝑆(𝑿)

𝑉𝐶(𝑿)
 

compares the objective function value (corrected for the impact of the dummy 
variable) when procuring only the carrier spot market to the (dummy-corrected) 
objective value when using established carrier contracts and the spot market. 
Similar to the inventory balance metric, the carrier contract metric, therefore, 
measures the relative benefit of the established carrier contracts. Note, that we can 
evaluate the carrier contract metric for the current inventory allocation (X) or for 
the optimal inventory allocation (χ). 

4.3.2 Service metrics 

We consider two major service metrics. The weighted-fraction-of-disasters-served-
completely metric (δ) and the fraction-of-demand-served metric (γ) characterize 
the level of service the emergency response network provides.  

The weighted-fraction-of-disasters-served-completely metric (δ) represents the 
ratio of disasters that were served completely from inventory  

𝛿 = ∑ 𝑝𝑘

𝑘:𝑑𝑘≤𝜒

. 

The δ-metric is robust to outliers in demand. Whether a disaster’s demand is not 
met by only 1 unit or 100.000 units does not change the δ-metric. The δ-metric 
therefore provides a sense of the percentage of very large disasters relative to the 
network’s response capacity. A δ-metric close to 1 indicates very few relatively large 
disasters that the emergency response network was not able to serve completely. 

In addition to the δ-metric the fraction-of-demand-served metric (γ) provides a 
decision-maker with a sense of how much of the demand was served. We calculate 
the weighted average demand 𝜇 = ∑ 𝑝𝑘𝑑𝑘

𝑘 , a measure that is independent of the 
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network’s response capability, and the weighted average demand met 𝜇′ =
∑ 𝑝𝑘 min(𝑑𝑘, 𝜒)𝑘 , to find the γ-metric 

𝛾 =
𝜇′

𝜇
. 

The γ-metric is more sensitive to outliers in demand. Missing only 1 unit of demand 
does impact the γ-metric far less than missing 100,000 units. As such the δ-metric 
and the γ-metric together capture different facets about the emergency response 
network’s capacity to serve the affected population.  

4.3.3 Efficiency metrics 

To provide decision-makers with a sense of the network’s efficiency, we calculate 
the average time (or cost) to deliver one unit from a depot as 

𝜑 =
𝑉(𝑿)

𝜇′
. 

The 𝜑-metric represents an aggregate approximation of the time (or cost) to deliver 
items in a configuration of a response network. Lower values indicate high 
efficiency.  

4.3.4 Carrier Utilization 

We characterize the carrier utilization as 

𝜌 = ∑ 𝑝𝑘
∑ 𝑦𝑖𝑟

𝑘
𝑟

∑ 𝑐𝑎𝑝𝑟𝑟𝑘
    ∀ 𝑟 ∈ 𝑅𝐶  

to capture how well the carrier contracts are aligned with the inventory at each 
location. The ρ-metric is provided on an aggregate level for the entire network to 
indicate how well the match between inventory and contracts is overall. It is also 
provided on a depot level (𝜌𝑖) to show where lower and higher utilizations are 
located within the network. 

In general a high utilization (close to 1) indicates that a lot of inventory is moved 
compare to the available contracts. Whereas a lower utilization is indicative of less 
volume moved compared to the inventory.  

4.3.5 Dual variables 

The stochastic linear program (SLP) provides dual variables for the constrained 
resources, that is, for inventory levels and carrier capacity. Dual variables indicate 
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how much increasing a specific constraint increases (or decreases) the objective 
value of the SLP. Therefore, the dual variables quantify the value of procuring an 
additional unit of scarce resource to improve the objective function value. Hence, 
they are sometimes referred to as shadow prices. 

We obtain dual variables for the depots i 

𝜋𝑖
′ = ∑ 𝜋𝑖

𝑘

𝑘
− (1 − 𝛿)𝜏𝑤 

and for each carrier (tier) r 

𝜋𝑟
′ = ∑ 𝜋𝑟

𝑘

𝑘
− (1 − δ)𝜏𝑤. 

We adjust the dual variables (𝜋𝑖
𝑘 , 𝜋𝑟

𝑘)to correct for the impact of the dummy weight 
𝜏𝑤 on the objective value, which is rather arbitrary, and may distort the value of the 
duals and therefore make an interpretation difficult.  

A positive carrier dual variable shows the reduction in expected time (cost) if we 
increase the capacity of a specific carrier (tier) by one unit. Because we assume 
there is always sufficient overall capacity at each depot from the spot market, 
carrier duals will always be non-negative and the highest positive carrier dual 
variable promises the highest benefit from increasing capacity. 

A positive depot dual variable shows the reduction in expected time (cost) if we 
increase the capacity of a depot by one unit. Typically, we will have less inventory 
available than the largest demand in the risk portfolio. Because adding one unit will 
result in delivering one additional unit in one of the disaster scenarios, the expected 
time (cost) will typically increase if we increase the inventory. Therefore, in most 
cases the depot dual variables will be negative indicating that increasing inventory 
results in higher expected times and the smallest (negative) depot dual variable 
promises the highest benefit (lowest negative impact) from increasing inventory. 

Note, that this interpretation of the depot duals variables directly ties into a change 
to the service metrics. Ceteris paribus, increasing inventory at a depot results in 
satisfying additional demand from organic inventory. Although more units delivered 
increase the (adjusted) objective function value, the service metrics will improve. 
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5 Data  

5.1 Demand data 

We use historical data to create a disaster risk portfolio. We consider disasters in 
the continental United States from January 1990 until June 2018 and assume that 
any of these disasters has an equal chance of occurring. 

To acquire disaster information we draw on the open FEMA API (FEMA (2018)), an 
exhaustive collection of US disasters. We collect from open FEMA the information on 
disaster type, location, and date of occurrence. We focus on sudden onset disasters 
in the continental United States. Therefore, we include the disaster categories Costal 
Storm, Earthquake, Fire, Flood, Freezing, Hurricane, Mud/Landslide, Severe Ice 
Storm(s), Severe Storm, Tornado, and Tsunami in our analysis. We exclude any 
disaster sites outside the continental United States (e.g. Hawaii, Alaska). Figure 2 
shows the number of occurrences of disasters in the past 28 years for each county in 
the continental United States. The map highlights that there are geographical 
differences in how strongly certain regions are affected by disasters. More disasters 
occur in the west, south east, Midwest, and north east of the United States. 

 

Figure 2: Number of disaster occurrences per United States county 1990-2018  

Estimating the number of people affected by a disaster is very difficult because 
accurate numbers are not public information. We estimate number of people 
affected by drawing on a method that FEMA uses for internal planning purposes and 
assume that 26% of the population of an affected area (e.g. county or state) need 
assistance. We use census data from 2010 to estimate the population numbers (US 
Census (2010)). 
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Figure 3: Total people affected per disaster (left) and number of sub-locations per disaster (right) 

The data collected from the FEMA API also provides information about the affected 
areas (such as counties or other political regions) at each disaster. That is, for a 
disaster the data indicates which areas are affected at the same time. In most cases 
the areas (sub-locations) refer to US counties. For cases where a reference is given 
other than county we approximate by finding the corresponding county (less than 1 
percent of all entries). We use the sub-locations as a place holder for multiple 
staging areas. Figure 3 shows that many disasters in our risk portfolio are rather 
small and that there are fewer disasters that affect millions of people. In Table 1 we 
report summary statistics for the disasters. We also see that most disasters are 
geographically limited indicated by only a few counties affected. But the disaster 
portfolio also includes some instance where hundreds of counties (sub-locations) 
are involved suggesting large regions were affected. In Table 1 we report also 
summary statistics for the number of counties per disaster. 

 Disaster County 

Count 1,731 34,717 

Minimum 168 1 

Maximum 66,696,256 2612 

Average 634,444 20 

Median 138,359 5 

1st Quartile 31,058 1 

3rd Quartile 530,573 18 

Table 1: Summary statistics for the disasters and the counties in the risk portfolio 
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5.2 Inventory data 

Our model evaluates the emergency response capacity to react to sudden onset 
disasters and serve the affected population with critical relief items. FEMA seeks to 
supply the affected populations with disaster relief items that allow people to 
survive in the aftermaths of a disaster. That is, FEMA seeks to supply people in the 
first 72h after a disaster to bridge the gap to longer-term support from other 
organizations. 

We assume that FEMA operates five warehouse locations strategically positioned 
across the continental United States (see Figure 4) in Philadelphia (Pennsylvania), 
Washington D.C., Atlanta (Georgia), Dallas (Texas), and San Francisco (California). In 
these locations, FEMA holds critical relief items to support people in case of sudden 
onset disasters. Our analysis concentrates on the following categories: bottled 
water, shelf-stable meals, cots, tarps, and blankets. 

 

Figure 4: FEMA warehouse locations across the continental United States 

Our model evaluates the current state of inventory to conduct a system assessment. 
For this we are currently in the process of collecting past FEMA inventory levels of 
the items of interest at important instances in time (for example, the currently held 
organic inventory, or the inventory held prior to hurricane Sandy in 2012). Different 
instances of time allow us to conduct scenario analyses and compare the response 
capability of different inventory portfolios.  

To show the capability of the model to analyze the status-quo of a system and 
provide recommendations for improvement (see Section 6) we use nominal data for 
inventory levels in Table 4 in the appendix. We elaborate on how we already have 
collected feedback from FEMA and how we will further engage with FEMA to 
conduct further validation and implementation of our model (see Section 7).  
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5.3 Carrier data 

We use information on an organization’s contracts with carriers at each warehouse 
location to model transportation capacity. In case of a disaster, an organization such 
as FEMA may draw on three different tiers of carriers. First, they call on trucks that 
pick up pre-loaded trailers at the depot locations. After that, an organization uses 
two options to transport the disaster relief items. On the one hand, they draw on 
pre-arranged contracts with carriers that report to depots in a pre-defined response 
time, load the items onto the truck and sent them out to the disaster sites. On the 
other hand, they procure carrier capacity from the spot market.  

Estimating the carrier capacity is not easy because in addition to the time it takes 
carriers to arrive at the warehouses, the loading dock capacity is limited so that if 
many trucks arrive at the same time additional waiting time is incurred. 

To avoid modeling a detailed arrival and loading process we estimate the carrier 
capacity available at each warehouse by building tiers of carriers that are 
characterized by the number of trucks in each tier, a fixed time, a variable time and  
variable cost. The fixed time is an expert estimate of how much time it takes on 
average to make a specific number of trucks available at the warehouse and load the 
items onto the trucks.  

The variable time reflects the travel time between a depot and a specific staging 
area of a disaster. To estimate the distance between warehouses and the staging 
areas we draw on Google’s distance matrix API (Google (2018)). For given latitude 
and longitude of depot locations and staging areas the API returns the distance 
between the two locations (in kilometers) and the travel time on the most common 
route. The travel time directly enters into our time model so that  

𝜏𝑖,𝑗
𝑘,𝑟 = 𝑓𝑟 + 𝑣𝑖,𝑗

𝑘,𝑟 

where 𝑓𝑟 is the fixed time to make the carrier capacity r available and 𝑣𝑖,𝑗
𝑘.𝑟 is the 

variable travel time between a depot and the disaster site. 

In case of the cost minimization model we use the distance returned from the 
Google API for each relation (in kilometers) and multiply it by the transportation 
cost parameter (per kilometer and kilogram) reflecting an organization’s contracts 
with the carrier. Because we are still in the process of validating our model with 
FEMA representatives, we collect estimates of transportation cost parameters for 
contracts and for the spot market from DAT (DAT (2018)). Our estimates for the 
carrier tiers at each depot, the fixed time, and the variable cost can be found in the 
Appendix in Table 7. 
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In Figure 5 we present aggregate measures to provide an overview of the carrier 
portfolio in our analysis. It shows the total carrier capacity at each depot (excluding 
the spot market), the average fixed time to ready the carrier capacity, and the 
average variable cost. With 200 trucks available Washington offers the highest 
capacity in the carrier portfolio and the smallest number of trucks is available in San 
Francisco and Philadelphia. On average Atlanta’s carriers offer the highest fixed time 
to provide the capacity at the lowest cost. On average carriers are most responsive 
but also most expensive in San Francisco.  

 

Figure 5: Carrier portfolio 

5.4 Item specific information 

To capture the reality appropriately we also collected item specific information. 

To estimate how many affected people FEMA can serve with one item we estimate 
conversion rates. In our model we use the item conversion rate β to convert the 
total affected population (TAP) in unit demand. We consulted experts in the field to 
estimate these conversion rates. We assume that on average within the first 72h of a 
disaster 9 bottles of water serve a person, 6 units of shelf-stable meals serve one 
person, every third person needs a cot, a cot needs two blankets, and 0.3 people 
need a tarp. 

Furthermore we collected information on item specific weights and volume (see 
appendix Table 6). Item weights are important to calculate the variable 
transportation cost  𝜏𝑖,𝑗

𝑘.𝑟 . Since carrier rates r are given in price per kilometer per 

kilogram we multiple the rate by the item specific weight w and the distance 

between a depot and a disaster site 𝑙𝑖,𝑗 to obtain transportation cost so that in the 

cost model 
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𝜏𝑖,𝑗
𝑘.𝑟 = 𝑟 w 𝑙𝑖,𝑗 . 

Carrier capacity is given as the number of trucks available at each depot. Because 
different items require different room on a truck we need to convert the number of 
trucks into an item-specific, i.e. unit-based, transportation capacity. As our items are 
rather low in weight we do not exceed the weight limits of trucks in the United 
States. Rather the volume is the limiting factor. We approximate the loading volume 
of a typical 5-axle tractor semi-trailer with 106 m3 (3743 ft3). Dividing this volume 
by the specific volume of an item and giving 10% for tolerance for odd shaping and 
other factors we estimate the item-specific capacity. 

6 Results  

In this section, we present the results of our analyses. Our model allows evaluating 
the status-quo of an emergency response organization’s current network (system 
assessment) and the optimization of the network to improve performance (system 
optimization). We first present our result of system assessment in Section 6.1 and 
then move to optimize the system in Section 6.2. 

It is important to note that at the time of this report we have not yet validated the 
inventory and carrier data. The reported results are based on estimates and will be 
validated in workshops with FEMA in the coming weeks. In particular, the values for 
inventory levels and carriers are NOT representative for FEMA and should not be 
considered as a reflection of FEMA’s response capability in the past or today. 

6.1 System assessment 

First, we evaluate the state of the system for each item that is of interest. If not 
stated otherwise we report our results in units and not in the number of people 
affected. Table 2 presents the results and shows the average demand (in units) and 
the average demand met. We also report the δ-metric, the γ-metric and the average 
time and cost to serve.  

Item Demand 
(µ) 

Demand 
met 
(µ’) 

Fraction 
of 

demand 
served 

(γ) 

Fraction of 
disasters 

served 
completely 

(δ) 

Average 
time to 
serve 
(Φ) 

Average 
cost to 
serve 
(Φ) 

Water 5,715,795 3,641,791 63.71% 91.1% 31.25h  $0.42 

Table 2: Summary metrics for the time-based model  
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The results of the system assessment allow a decision-maker to evaluate the 
network’s ability to respond with the current inventory (Figure 6) and carrier 
portfolio against the risk portfolio on an aggregate level. For example, the service 
metrics for water bottles suggest that the organization is able to serve 63.71% of the 
demand and that it serves 91.1% of the disasters completely with the current 
inventory portfolio and the carrier portfolio. The efficiency measures indicate that 
on average, it takes the organization 31.25h to ship water bottles to disaster sites at 
average cost of $0.42 per bottle.  

 

Figure 6: Current inventory portfolio for water and the corresponding number of full truck loads 

In Figure 7 we report the fraction of demand served over time. The results show 
how responsive the network is to serve demand for a given inventory and carrier 
portfolio. Figure 7 suggests that the network generally needs around 8h to start 
shipping out the pre-loaded trailers to the destinations and that approximately 55% 
of the demand is served after the first 48h. 

 

Figure 7: Fraction of demand served (γ) over time in the time-based model for cots 
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The demand served over time metric in Figure 7 provides the decision maker with a 
sense of (average) responsiveness to disaster portfolio. The result can be discussed 
and evaluted against organization’s response targets to better understand if the 
current state of the system is sufficiently responsive or if steps to improve the 
response capacity should be considered.  

Our model also allows to identify the value of the prenegotiated contracts with 
carriers. The carrier contract metric for the current inventory and carrier portfolio 
is ∆𝐶=  1.4 . This result suggests that relying only on the spot market – instead of 
using the carrier contracts and the spot market – results in 40% higher response 
time. That is, having carrier contract in place is extremely valuable for the 
organization. 

The metrics provided in the system assessment provide insight into the state of 
response capacity of a system and evaluate if the current setting is able to meet the 
expectations and targets. However, our method also support a decision-maker on 
how to optimize performance. For this we conduct a system optimization in the next 
section. 

6.2 System optimization 

In the previous chapter we performed a system assessment that showed the 
emergency response network’s capacity with the current inventory and carrier 
portfolio to meet a given disaster risk profile. In this section, we perform a system 
optimization by re-distributing the entire inventory available to the emergency 
response organization to minimize delivery time (or cost) given the contracts with 
the carriers, the spot market availability, and the risk portfolio. 

Figure 8 compares the optimal distribution of water bottle inventory across the 
network. The results suggest that it is optimal to distribute the inventory more 
evenly across the network and put more inventory in the Dallas depot to account for 
the large number of disasters in the Midwest and south of the United States 
(compare Figure 2).  
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Figure 8: Actual (dashed) and optimal (yellow) allocation of water bottle inventory in the time-based model and full 
truck load equivalent 

Because we do not increase the entire inventory in the network the service metrics 
remain the same. However, the network becomes more responsive. Table 3 shows 
the key metrics for the time-based and the cost-based model.  The inventory balance 
metrics indicate that expected time and expected cost to serve decrease relative to 
the system assessment suggesting that inventory allocation is indeed beneficial. Also 
the efficiency metrics improve as the same volume can be shipped at less time or 
cost, respectively.  

Item Inventory 
balance metric 

(𝛥𝐼) 

Carrier contract 
metric (𝛥𝐶) 

Average time to 
serve 

Average cost 
to serve 

Water 

1.143 1.45 27.3h $0.26 

1.6785 1.84 29.65h $0.24 

Table 3: Summary metrics for optimization w.r.t. to time and cost (value being optimized is bold)  

 

Figure 9 shows the γ-metric over time. The results suggest that when optimally 
allocating the inventory the network is able to respond to about 60% of demand 
within 48h. That is, we increase the response time to 12% (60% instead of 55%) of 
the population that we can reach with our inventory. In particular the network 
becomes more responsive to the larger disasters that take longer to fulfill and 
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particularly the affected population, that had a long waiting time in the current 
state, is served earlier. This is very important for the disaster response with 
essential disaster relief items (water-bottles, food, blankets, tents, cots) in the first 
72h because reaching the affected population within two instead of three days can 
make the difference between life and death. 

The carrier contract metric for the optimal inventory is  ∆𝐶=  1.45 . This indicates 
that the carrier contracts in place are more valuable in a network with an optimal 
inventory allocation compared to the carrier contract metric in the system 
assessment (∆𝐶=  1.4). This is because the optimal inventory allocation also takes 
the carrier contracts at each depot into consideration and seeks to utilize them best.  
More balanced utilization allows for a better response to disasters.  

The service improvement in time is therefore not only because inventory is 
redistributed and strategically positioned closer to the disaster sites. It is also due to 
a better utilization of available carrier capacity. Previously, more inventory was 
located in depots in Washington and Philadelphia without corresponding higher 
carrier capacity available (see Figure 8). Redistributing the inventory to account for 
free carrier capacity at other depots allows the organization to improve service. 

 

Figure 9: Fraction of demand served (γ) over time in the time-based model for bottled water for the current 
inventory (blue) and the optimal inventory distribution (yellow) 

7 Discussion  

7.1 Discussion 

The objective of this research was to provide support for decision-makers to 
evaluate the current state of an emergency response network and suggest areas for 
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improvement. We developed a stochastic linear program that uses a risk portfolio, 
an inventory portfolio and a carrier portfolio as inputs. We calculate aggregate 
performance metrics to evaluate the system. Our metrics enable a decision-maker to 
evaluate the status-quo of a disaster response network and compare these metrics 
to optimized inventory across the network minimizing either time-to-deliver or 
cost-to-deliver. 

To assess the system, our model reports service metrics. The model calculates how 
well an emergency response organization can satisfy demand (γ-metric) and how 
many disaster of a risk portfolio can be met completely (δ-metric). Furthermore, our 
model allows to calculate a measure of responsiveness – the γ-metric over time – 
and thereby sheds insight into how timely after a disaster the network responds. 
Our model also reports the average cost and the average time per unit as a measure 
of efficiency. These metrics taken together provide insight into how well the 
network can meet the demand of the affected population in its current setup.  

Our model can minimize either expected time-to-deliver or the expected cost-to-
deliver. This allows to consider the inherent trade-off of an emergency response 
network. Delivering in a short period will be very expensive whereas delivering at 
low cost will result in long delivery-times. The outputs allow a decision-maker to 
balance cost and time to find a trade-off that aligns with the organization’s 
objectives. 

In our work, we are particularly interested in analyzing in more detail the role of 
contracts with carriers in the network. Clearly, the cost-time trade-off is an 
important part. Our model also allows us to evaluate the network’s responsiveness 
by plotting the fraction of demand served (γ) over time. This time-based metric 
sheds light onto how rapidly the network begins to deliver and how long it takes to 
reach a certain percentage of the affected population. Comparing the γ-metric over 
time of the system assessment and the system optimization indicates the 
improvements in network responsiveness through optimal allocation of inventory.  

We also include a carrier contract metric that captures the value of pre-negotiated 
contract to a reference case. For this study we decided to use a less responsive and 
more expensive spot market as the reference point. We showed that the value of 
pre-negotiated contracts can be quite high. This supports the idea of this research 
project of modeling specifically the response networks transportation capacity as 
the detailed set-up and availability of carrier capacity largely determines an 
organizations response within the critical initial 72h of a disaster. We can show that 
if carrier contracts and inventory allocation are not aligned the response of the 
network is slower and that carrier contracts become more valuable if inventory is 
optimized. To shed further light into the carrier capacity we also introduced an 
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aggregate and a per-depot carrier utilization rate to flesh out mismatches between 
pre-negotiated contracts and inventory allocation. 

The system optimization not only presents metrics of how service, responsiveness 
and efficiency change. The results also explain where, i.e. in which depots, a 
decision-maker should position the inventory to reach the optimum. 

Our model also offers insights into the emergency response organization’s contracts 
with carriers. We can extract the adjusted dual variables for the carrier capacity 
constraints from the SLP. The adjusted duals represent the benefit of increasing the 
capacity of a carrier by one unit. They provide answers to the question: At which 
depot and with which carrier should the organization buy more carrier capacity? 

Figure 10 shows the adjusted carrier duals for the time-model in the water bottle 
example. It shows the value of the dual for the eight carrier tiers at each depot in the 
disaster response network. The first tier at a depot represents pre-loaded carriers in 
our model, the last tier is the spot market available at a depot, and in between are 
contracts the organization has established with individual carriers. 

Carrier duals are all positive suggesting that expanding carrier capacity at these 
depots reduces the expected time to deliver. More responsive tiers at these depots 
have the highest impact on delivery time and should therefore be prioritized in case 
of carrier capacity adjustments at these depots. That is, contracting more capacity 
for pre-loaded trailers (C1) results in the highest reduction in expected time 
whereas the first contract carrier tiers provide lower benefit (C2, C3, etc.). We can 
also see that higher contract tiers at depots with low inventory (San Francisco, 
Texas, Atlanta) do not substantially contribute to lowering the expected time. These 
tiers are never used because of the low inventory and expanding them does not 
benefit the decision-maker. Rather a decision-maker should consider reducing 
capacity at these tiers. Whereas lower carrier tiers at depots with a lot of inventory 
(Philadelphia, Washington D.C.) still contribute to lowering the expected time if 
capacity is increased. 
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Figure 10: Dual variables for carrier capacity to minimize delivery time of bottled water 

Similarly, we can obtain duals for the cost-based model that can be used to better 
understand at which depots and with which carriers, capacity should be increased 
to reduce expected delivery costs. 

To summarize, the carrier dual variables in the time- and in the cost-model 
complement and extent the network results of the network assessment and 
optimization. The system optimization (in Section 6.2) provides intuition into where 
a decision-maker should move inventory considering – but not changing – the 
available carrier portfolio, i.e. the entire transportation capacity available at each 
depot and the responsiveness of each tier. Whereas the analysis of carrier duals 
provides insights into where a decision-maker should increase carrier capacity 
considering the terms, i.e. fixed time to respond and the carrier rates, in the carrier 
contracts. Accordingly, the duals complement the insights from network 
optimization and provide suggestions which carriers in an organization’s carrier 
portfolio are promising candidates to expand carrier capacity. 

7.2 Extensions and future work 

Within this project, we have developed a new model to more accurately capture 
carrier capacity of a (national) disaster response network. We have shown the 
feasibility of our approach and provided insight into the capabilities of our model. 
We held a half-day workshop with 20 FEMA decision-makers from different FEMA 
departments to validate our approach. We learned that our model is very valuable 
to their problem setting. They intend to conduct a system assessment and 
optimization workshop in Q1/2018 to evaluate their current network and options 
to expand their inventory portfolio and the way they work with carriers. For this 
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workshop we will collect inventory- and carrier-specific data from FEMA at 
different points in time to conduct scenario analyses and show how different 
settings change service, responsiveness, and efficiency metrics of the network.  

We also conducted a live video workshop for the MicroMasters in Supply Chain 
Management students at the MIT Center of Transportation and Logistics’ CAVE lab.1 
We invited two FEMA colleagues to shed light into how the model can help improve 
FEMA’s response capacity and support decision making. The video has been 
accessed by 800 viewers at the time of this report and contributes to educating 
supply chain decision makers in more than 190 countries. 

The workshop also inspired a discussion that FEMA seeks to conduct a workshop 
and invite participants of other response organizations and the private sector, who 
also provides response capacity in case of a disaster, to evaluate the entire response 
network comprising many organizations in a dynamic workshop in MIT CTL’s CAVE 
lab. Our model can enable this discussion by modeling multiple organizations’ assets 
against a risk portfolio and evaluate where assets should be increased best to 
improve response time. 

Finally, we embark this month on a project with USAID/OFDA to analyze their 
global response network. We intend to marry the international response network 
analysis performed by Acimovic & Goentzel (2016) trading of different modes of 
transportation and the extension for a single-mode, multiple-carrier-tiers setting to 
analyze a national response network performed in this next research project. 

7.3 Limitations 

Our work considers each item individually. This approach is reasonable because 
emergency response organizations typically consider the items independently and 
ship them out as full-truck loads. We make this assumption because a holistic model, 
that considers all critical items at once, becomes too complex and its results – if 
computationally achievable – too intricate to interpret to provide benefit for 
practitioners. 

When interpreting our results, one has to consider that to separate each item and 
individually assess or optimize the network we have assume that items do not 
compete for carrier capacity. Essentially, we allocate each carrier (tier) of the entire 
contract to a specific item and run our model. However, in a disaster the allocation 
of items to trucks may be dynamic and dependent on local needs that we cannot 
anticipate with our model.  

                                                        

1 Video of the live event can be accessed here: https://www.youtube.com/watch?v=rjt9ivoiJQE 
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9 Appendix 

Item (units) Philadelphia, 
Pennsylvani
a 

Washingto
n D.C. 

Atlanta, 
Georgia 

Dallas, 
Texas 

San Francisco, 
California  

Blankets 17,000 270 34,000 37,000 40,000 

Cots 26,000 28,000 13,000 24,000 97,000 

Meals 4,495,000 3,540,000 1,010,000 5,450,000 5,460,000 

Tarps 16,000 47,000 22,000 23,000 27,000 

Water 5,000,000 8,000,000 1,000,000 1,000,000 1,000,000 

Table 4: Estimated actual inventory distribution for disaster response items 

 

Units/TAP Blankets Cots Meals Tarps Water 

Conversion 
Rates (β) 

0.666 0.333 0.167 0.3 0.111 

Table 5: User item conversion rates 
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Units/TAP Blankets Cots Meals Tarps Water 

Weight (kg) 0.00123357 0.0027 0.00022 0.00123357 0.001 

Volume (m3) 0.01045 0.5928 0.000286 0.01045 0.001 

Table 6: Item specific weights and volumes 
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Depot Carrier tier 01 02 03 04 05 06 07 08 
P

h
il

ad
el

p
h

ia
 Capacity (# trucks)  16 24 20 20 16 14 10 ∞ 

Fixed Time (h) 4 9 11 14 15 16 20 26 

Var. Cost ($/FTL) 3.6 3.8 3.5 3.6 3.4 3.5 3.1 9.1 

W
as

h
in

gt
o

n
 Capacity (# trucks)  30 32 24 30 30 24 30 ∞ 

Fixed Time (h) 4 8 10 13 14 16 19 26 

Var. Cost ($/FTL) 3.8 3.6 3.7 3.6 3.2 3.4 3.3 9.1 

A
tl

an
ta

 

Capacity (# trucks)  26 32 38 10 32 10 12 ∞ 

Fixed Time (h) 4 10 15 16 18 19 25 26 

Var. Cost ($/FTL) 3.2 3.0 2.6 2.7 2.2 2.9 2.3 7.9 

D
al

la
s 

Capacity (# trucks)  20 30 42 28 10 14 16 ∞ 

Fixed Time (h) 4 9 10 15 20 22 24 26 

Var. Cost ($/FTL) 3.2 2.7 3.0 2.7 2.6 2.5 2.4 6.9 

Sa
n

 F
ra

n
ci

sc
o

 Capacity (# trucks)  20 34 32 6 14 8 6 ∞ 

Fixed Time (h) 4 8 9 11 13 15 17 26 

Var. Cost ($/FTL) 3.9 3.5 3.7 3.4 3.5 3.0 3.4 9.2 

Table 7: Carrier portfolio  

 




