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Abstract

Multinomial logit (MNL) model is widely used to predict the probabilities of different
outcomes. However, standard MNL model suffers from several issues, including but
not limited to heterogeneous population, the restricted independence of irrelevant al-
ternative (IIA) assumption, insufficient model capacity, etc. To alleviate these issues,
mixed multinomial logit (MMNL) models were introduced. MMNL models are highly
flexible. McFadden and Train [2000] showed that it can approximate any random util-
ity based discrete choice models to arbitrary degree of accuracy under appropriate
assumptions. In addition, it removes other limitations of standard MNL models, in-
cluding lifting the IIA assumption, allowing correlation in unobserved utility factors
overtime, and most importantly, reducing the chance of model misspecification when
modeling real world applications where the data composition is often found to be
heterogeneous.

Despite its importance and versatility, the study on the learning theory of MMNL
is limited and learning MMNL models remains an open research topic. In this thesis,
we will tackle this learning problem from two different perspectives. First, inspired
by the recent work in Gaussian Mixture Models (GMM), we aim to explore the
polynomial learnability of MMNL models from a theoretical point of view. Next, we
present an algorithm that is designed to be more applicable and utilizes the rich source
of data available in the modern digitalization era, yet still yielding ideal statistical
properties of the estimators.

Chapter 2 studies the polynomial learnability of MMNL models with a general K
number of mixtures. This work aims to extend the current results that only apply to
2-MNL models. We analyze the existence of ϵ-close estimates using tools from abstract
algebra and will show that there exists an algorithm that can learn a general K-MNL
models with probability at least 1−δ, if identifiable, using polynomial number of data
samples and polynomial number of operations (in 1

ϵ
and 1

δ
), under some reasonable

assumptions.

In Chapter 3, motivated by the Frank-Wolfe (FW) algorithm, we propose a frame-
work that learns both mixture weights and component-specific logit parameters with
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provable convergence guarantees for arbitrary number of mixtures. Our algorithm uti-
lizes historical choice data to generate a set of candidate choice probability vectors,
each being ϵ-close to the ground truth with high probability. The convex hull of this
set forms a shrunken feasible region with desired properties to the linear subproblems
in FW, which subsequently enables independent parameter estimation within each
mixture and in turn, leads to convergence of the mixture weights. This framework
also resolves the issue of unboundedness in estimated parameters present in the orig-
inal FW approach. Complexity analysis shows that only a polynomial number of
samples is required for each candidate in the target population.

Extensive numerical experiments are conducted in Chapter 4, including both sim-
ulation and case studies on the well-known Nielsen Consumer Panel Data, to demon-
strate the effectiveness of recovering the true model parameters and/or learning real-
istic component-level parameters, as compared to the original FW framework.

Thesis Supervisor: David Simchi-Levi
Title: Professor, Institute of Data, Systems, and Society,
Department of Civil and Environmental Engineering,
Operations Research Center
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Chapter 1

Introduction

Multinomial logit models (MNL) are widely used in a variety of settings to predict

the probabilities of discrete outcomes. It generalizes the standard logistic regression

to accommodate for the situations where there are more than 2 outcomes and com-

putes the probability of choosing outcome j from a set of n possible values using the

following formula:

Pj =
exp(vj)∑n
i=1 exp(vi)

,

where vj = σ(zj) can be thought as a score function that takes the attributes of op-

tion j, zj ∈ Rd, as input. It is termed as multinomial logistic regression in statistics,

where linear predictor function σ(zj) = β · zj is a popular choice for σ with β ∈ Rd

representing the coefficients to be estimated from data. Such simplicity makes the

analysis of statistical properties of the estimators more accessible. In many machine

learning frameworks, it is well known as the softmax function for multi-class clas-

sification problems where σ can be highly complex and non-linear. For instance, in

neural networks, σ is a chain of sequential linear transformations and activation fil-

ters. In choice modeling, it is a type of discrete choice model that is broadly used to

analyze and understand people’s choice behaviors, where vj is viewed as the utility of

choosing option j.

However, in many cases using a single MNL model to model the entire data does

not yield good performances. This can happen due to the following reasons:
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� heterogeneous population

Think of a case where a population of decision makers have different valuations

on the options’ attributes. In the linear score function case, this means there

are multiple β values for σ = β · z. If we model the data with one universal

function σ, we face the problem of model misspecification.

� violation of the “independence of irrelevant alternative” (IIA) assumption

When an MNL is used to model choices, it relies on the assumption of IIA,

which states that the relative odds of choosing one option over another do not

depend on the presence of other alternatives or their attributes. This can be

seen from taking the following computation:

Pj

Pi

=
exp(vj)/

∑
k exp(vk)

exp(vi)/
∑

k exp(vk)
=

exp(vj)

exp(vi)
.

Nevertheless, this is not always desirable. In the famous blue-bus-red-bus prob-

lem [Chipman, 1960], a traveler originally has a 1:1 odds ratio choosing between

traveling by a car and a blue bus. Suppose a new option of red bus is intro-

duced, with all aspects the same as the blue bus except for the color. Intuitively,

we should observe a 1:1 odds ratio between the blue bus and the red bus. In

order for this to be true, the ratio between the three options becomes 1:1:1,

which means there are now twice the probability to choose the bus compared to

the car. However, introducing a bus of a new color should not really alter the

traveler’s preference for car versus bus in reality. Such violation of IIA arises

because a red bus was a perfect substitute for a blue bus. Similar examples are

also discussed in de Dios Ortuzar [1983], Brownstone and Train [1998].

� insufficient model capacity

In high dimensional multi-class classification problems, the number of possible

outcomes can be much larger than the attribute size, i.e. n≫ d. For instance, in

language models, attributes are usually word embeddings with length between

27 to 210, while the number of classes is the size of the vocabulary which can
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easily reach tens of thousands. Yang et al. [2018] formulate this situation using

matrix factorization and demonstrates that using a single softmax does not

have enough capacity to theoretically recover the model parameters. This is

referred to as softmax bottleneck.

To alleviate these issues, mixed multinomial logit (MMNL) models were intro-

duced. They were used extensively to model the automobile markets in the U.S in

the 1980s, as well as other industries such as telephone services and coffee purchases,

in order to “explicitly incorporates variations in consumer tastes across the car-buying

population” [Boyd and Mellman, 1980, Cardell and Dunbar, 1980, Train et al., 1987,

Guadagni and Little, 2008]. McFadden and Train [2000] shows that MMNL models

can lift the restrictive IIA assumption present in single MNL models. In a similar

fashion for the high dimensional classification problem, new method named Mixture

of Softmaxes (MoS) has been shown to have higher expressiveness and can better

incorporate the contextual information [Yang et al., 2018, 2019].

Despite its importance and versatility, the study on the learning theory of MMNL

is limited and learning MMNL models remains an open research topic. In this thesis,

we will tackle this learning problem from two different perspectives. First, inspired by

the recent work in Gaussian Mixture Models (GMM), we aim to explore the polyno-

mial learnability of MMNL models from a theoretical point of view. Next, we present

an algorithm that is designed to be more applicable and utilizes the rich source of data

available in the modern digitalization era, yet still yielding ideal statistical properties

of the estimators. Note that we will mainly adopt the discrete choice modeling setting

to concretize concepts, definitions, and data assumptions in this work; however, the

algorithms and properties we develop are not application dependent.

In this chapter, we will first introduce the basics of MNL and MMNL models,

including random utility models (RUM), derivation of logit formula from RUM under

appropriate assumptions, as well as the mathematical formulation of MMNL and its

advantage over standard MNL models. In Section 1.2, we summarize the previous

work on learning MMNL, together with the challenges and existing issues, many

of which have inspired our work, from both theoretical and empirical perspectives.
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Finally, we will outline the thesis structure in Section 1.3 aligning with these two

streams of work.

1.1 MMNL Formulation

1.1.1 Multinomial Logit and Random Utility Models

MNL models are discrete choice models derived under an assumption of utility-

maximizing behavior by the decision maker [Train, 2009]. This type of models are

called random utility models (RUM) [Manski, 1977]. Consider a decision maker who

needs to make a choice among n options. The decision maker will obtain certain level

of utility from each option and the decision maker will choose the option that offers

the largest utility. However, in reality we do not observe their utilities directly when

trying to model the choice behavior of the decision makers. Instead, we observe some

attributes of the options, denoted as zj ∈ Rd. As a remedy, we assume utility is a

function that models the valuation of decision makers with respect to these option

attributes. Mathematically, this means the utility of choosing option j is vj = σ(zj).

On the other hand, note that there are certain aspects of utility which may depend

on attributes that are not being observed. We let ϵj capture the factors that affect

utility but are not included in vj. In other words, the true utility uj = vj + ϵj is

consisted of two parts: an observed portion and an unobserved portion. RUM claims

that option j will be chosen by the decision maker if uj > ui, ∀ i ̸= j.

The characteristics of ϵj can vary depending on the model specifications. In probit

models, ϵj are assumed to be normally distributed. In logit models, ϵj are assumed

to be independently, identically distributed (i.i.d.) random variables drawn from a

standard Gumbel distribution, i.e. Gumbel(0, 1), which is also called Generalized

Extreme Value distribution Type-I. Gumbel distribution is usually used to represent

the distribution of maximum value of a sequence of i.i.d random variables. The

associated density is

f(ϵj) = e−ϵje−e−ϵj
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and the corresponding cumulative distribution is

F (ϵj) = e−e−ϵj

Thus we can write the probability that option j is chosen as

Pj = P(vj + ϵj > vi + ϵi,∀ i ̸= j)

= P(ϵi < ϵj + vj − vi, ∀ i ̸= j)

Since all ϵi are independent, we can write

Pj|ϵj =
∏
i ̸=j

e−e−(ϵj+vj−vi)

by plugging the cumulative distribution function. Note that ϵj is not give, so we need

to integrate over all values of ϵj to obtain

Pj =

∫ (∏
i ̸=j

e−e−(ϵj+vj−vi)

)
e−ϵje−e−ϵj

dϵj

By variable substitution and some algebraic manipulation, we then obtain

Pj =
exp(vj)∑
i exp(vi)

=
expσ(zj)∑
i expσ(zi)

which gives us the familiar logit formula of MNL models.

1.1.2 Mixed Multinomial Logit

In the most generic form, MMNL are the integrals of standard logit probabilities

over a density of parameters [Train, 2009]. Specifically, the choice probabilities of an

MMNL model exhibit the form of

Pj =

∫
expσ(zj;β)∑
i expσ(zj;β)

f(β)dβ (1.1)
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where f(β) is the density function of parameters β in the utility function σ.

In this thesis, we consider one class of MMNL models, where β can takeK discrete

values with certain probabilities, so Eqn. (1.1) becomes

Pj =
K∑
k=1

αk
expσ(zj;βk)∑
i expσ(zj;βk)

(1.2)

where f(βk) = αk, ∀ k and
∑K

k=1 αk = 1.

In this case, MMNL are consisted of K individual MNL components or mixtures

and is sometimes referred to as latent class models (LCM) [Greene and Hensher,

2003]. We can think of the situation where we want to model the choice behavior of

a decision maker population which contains K different types. Each type possesses

difference choice preferences when facing a set of options and can be modeled by one

MNLmodel. Such model is frequently used in psychology and marketing [Chintagunta

et al., 1991].

We call Pj the aggregated choice probability, which is computed as a weighted sum

of all corresponding choice probability values for option j in each individual MNL

component, with the weight equal to the mixture weights, i.e. αk’s.

MMNL models are highly flexible. As shown by McFadden and Train [2000],

it can approximate any random utility based discrete choice models to arbitrary

degree of accuracy under appropriate assumptions. In addition, it removes other

limitations of standard MNL models, including lifting the IIA assumption, allowing

correlation in unobserved utility factors overtime, and most importantly, reducing

the chance of model misspecification when modeling real world applications where

the data composition is often heterogeneous.

1.2 Literature Review

In this section, we will discuss the existing literature on learning the MMNL model

and their limitations. One common approach is to presume a parametric family of

distributions on the parameters and apply parametric estimation methods such as the
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maximum likelihood estimation (MLE) method (c.f. Train [2009]) or the least square

regression model to compute the parameters. A well-known work in this regime is

by Berry et al. [1995]. They assume the component-specific parameters are normal

distributed and proposed a two-step estimation method to learn the parameters using

an aggregated market share data. A potential issue for this stream of methods is

model misspecification, which leads to inaccurate predictions. In particular, if the

assumed parametric family is different from the true one, there could be systematical

errors in the estimation.

Non-parametric estimation is also widely adopted when learning MMNL models,

with the most commonly known and used method being the Expectation-Maximization

(EM) algorithm (c.f. Dempster et al. [1977]). Train [2008] studied three different

types of EM algorithms using historical choice data from each individual decision

maker. The two main restrictions for the EM algorithm are 1) the algorithm can

get stuck in local optimum, meaning there is no guarantee on the convergence of the

estimators; and 2) the number of mixture types needs to be pre-specified, which is

usually done via additional heuristics such as Akaike information criterion (AIC) or

Bayesian information criterion (BIC). In the case where such heuristic fails to identify

the ground-truth number of mixtures, model misspecification will also happen.

Jagabathula et al. [2020] recently developed an estimation method for mixture

models also from a non-parametric perspective based on the Frank-Wolfe (FW) algo-

rithm, which is an iterative method originally designed to solve constrained quadratic

optimization. Jaggi [2013] established a sublinear convergence rate for the FW al-

gorithm. Since achieving remarkable performance in various applications such as

the collaborative filtering [Jaggi and Sulovskỳ, 2010] and submodular function opti-

mization [Bach, 2013], various variants have also been proposed. Examples of some

important variants include Harchaoui et al. [2015] who incorporated a regularization

term in the loss function to improve predictive performance, and Lacoste-Julien and

Jaggi [2015] who introduced away-steps FW, pairwise FW and fully-corrective FW to

achieve global linear convergence rate under mild conditions. Jagabathula et al. [2020]

incorporated these desired properties of the FW variants and in turn established a
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sublinear convergence rate of the proposed estimation method for MMNL models.

However, this convergence only applies to the aggregated choice probabilities and

their algorithm cannot recover the true individual MNL parameters.

There is also another stream of work related to MMNL models from a theoretical

learning perspective. The key idea is to solve a system of equations in terms of all the

parameters and prove that there is one and only one solution (identifiability). Due to

the entanglement of the individual logit parameters and mixture weights, as well as

the high non-linearity in the system of equations, only 2-MNL models (MMNL with

two mixture types) have been studied so far. Chierichetti et al. [2018] considers the

setting where the mixture weights are equal (i.e., each mixture represents 50% of the

population) and Tang [2020] recently studied 2-MNL with unknown weights. Both

have shown that 2-MNL models are polynomial learnable.

We compare the past attempts for learning MMNL models in Table 1.1.

Table 1.1: MMNL learning algorithm comparisons

Algorithm Data Assumption Model Assumption Theoretical Properties

Parametric Estimation # × #

EM Algorithm × ⊗ ×

Frank-Wolfe # # ⊗

2-MNL Models # × #

� The data assumption column indicates whether the algorithm requires only

population level data (#) versus personal level choice data (×). The population

level data usually refers to the overall distribution of the option set from the

population over multiple time periods, while personal level choice data records

the repetitive choices from each decision maker in the population. Even though

the latter poses additional requirement on the data, we do not consider it a

strong assumption due to the abundant data availability in such format, which

is called panel data and are commonly used statistics and econometrics for

longitudinal studies.
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� The model assumption column indicates whether the algorithm can be applied

to any MMNL models (#) or are restricted to a smaller subset (×). It can also

be thought as an indicator whether model misspecification is likely to occur, i.e.,

when there are stronger model assumptions, the chance of them being violated

is also higher if the algorithm is not being applied appropriately. Note for the

EM case, while the algorithm itself is very generic, it requires the knowledge of

the number of mixtures in advance. Model misspecification can still happen if

this hyperparameter is not set correctly, hence we give it a ⊗ mark.

� The theoretical properties column indicates whether the estimators possess any

desired statistical properties, such as convergence. Note that the Frank-Wolfe

algorithm receives a ⊗ mark because its convergence property only applies to

the aggregated choice probability values, instead of the model parameters which

are the target of interest in the learning problem.

1.3 Overview

In this thesis, we aim to develop new learning algorithms for MMNL that can address

the issues in existing work as shown in Table 1.1, by relaxing the assumptions on

model structures and proving desirable theoretical properties. In particular, we are

interested in the provable convergence of the estimators. Formally, we want the

algorithms to generate estimates α̂k and β̂k, such that ∀ϵ > 0, 0 < δ < 1, P(|α̂k−αk|<

ϵ) ≥ 1− δ and P(∥β̂k − βk∥< ϵ) ≥ 1− δ, ∀k.

Chapter 2 studies the polynomial learnability of identifiable MMNL models with

a general K number of mixtures. This work relaxes the model assumption of 2-MNL

models as shown in Table 1.1, while not trying to impose additional data assumption

or sacrificing the important theoretical properties. We analyze the existence of ϵ-

close estimates using tools from abstract algebra and will show that there exists an

algorithm that can learn a general K-MNL models with probability at least 1 − δ,

if identifiable, using polynomial number of data sample and polynomial number of

operations (in 1
ϵ
and 1

δ
) under some reasonable assumptions.
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Chapter 3 proposes a new algorithm called Stochastic Subregion Frank-Wolfe

(SSRFW), as inspired by the recent work by Jagabathula et al. [2020] that uses Frank-

Wolfe algorithm to iteratively learn new MNL components by solving a linear sub-

problem then redistributing the mixture weights via another optimization step. The

advantage of the FW framework over the EM algorithm is that no prior knowledge

on the number of mixtures, K, is needed, hence eliminating the possibility of model

misspecification. SSRFW is designed with the objective to recover the ground truth

parameter values, which the original FW approach failed to achieve. This is done by

making better utilization of personal level choice data. In addition, we are also able

to provide a sample complexity analysis to show that a polynomial number of data

points are required under the SSRFW framework.

Table 1.2 summarizes the two algorithms we develop in this thesis. The algorithm

used to demonstrate the polynomial learnability of K-MNL models is marked with

⊗ as we impose some mild conditions on the model hyperparameters, but they are

much more generic than the 2-MNL model setting. On the other hand, while the

algorithm is polynomial in sample and time, it is designed to explore the theoretical

structure of MMNL models instead for practical usage. Therefore we also developed

SSRFW as a good complement as it is more applicable in many real world situations.

Table 1.2: MMNL learning algorithms developed in this thesis

Algorithm Data Assumption Model Assumption Theoretical Properties

Ch2 K-MNL (grid-search) # ⊗ #

Ch3 SSRFW × # #

Chapter 4 conducts numerical experiments to evaluate the performance of the

SSRFW algorithm in various settings. In the first part, we carry out comprehensive

simulation studies to demonstrate the effectiveness of SSRFW in recovering the ground

truth parameter values using several evaluation metrics. In the second part, we run a

real case study that applies the SSRFW algorithm to the well-known Nielsen Consumer

Panel data, which is one of the most popular datasets used for longitudinal studies
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in marketing science and have been collecting consumer grocery purchase data for

around 20 years.

Finally, Chapter 5 provides a summary to the work done in this thesis. It also

provides examples of use cases where MMNL model can be applied to solve real world

problems.

25



26



Chapter 2

Polynomial Learnability of MMNL

In this chapter, we will explore the polynomial learnability of MMNL models. While

various heuristics have been developed for learning MMNL models, theoretical ap-

proaches that utilize the unique structures of MMNL models are scarce. Chierichetti

et al. [2018] and Tang [2020] recently studied this problem but have limited their

scope to 2-MNL models. In comparison, there exits another stream of work that also

study the (mixture of) choice models under random utility model (RUM) assump-

tions. For instance, see Ragain and Ugander [2016], Blanchet et al. [2016], Seshadri

et al. [2020]. Such models are called Plackett-Luce (PL) models and instead of choice

data, they use rank data. Nevertheless, PL models are closely related to MNL models.

In fact, the logit formula was first derived by Luce [1959] and its important property

“independence from irrelevant alternatives” (IIA) are also known as Luce’s Choice

Axiom. We will discuss more about PL and mixed PL models in Section 2.1.

Aside from the lacking of study of MMNL models from the theoretical perspective

in literature, this work is also inspired by the recent progress in understanding Gaus-

sian mixture models (GMM) for its polynomial learnability. Even though GMM have

been around for more than 100 years, not until recently did we observe the settling

of polynomial learnability for general GMM without assuming any special structures.

Kalai et al. [2010] first derived results for mixtures of two Gaussians, followed by

Moitra and Valiant [2010] who then generalized the results to K-GMMs. Belkin and

Sinha [2015] further extends the theory to a broader class of mixture models whose
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moments are polynomial functions of the model parameters.

To show that K-MNL models are polynomial learnable under certain assump-

tions, we will break down the process into several steps. First, we will re-introduce

the problem in Section 2.1 to follow the convention of existing works in this area

and discuss the assumptions we impose. Second, we will present some concepts and

theories in algebraic geometry and mathematical logic in Section 2.2.1, followed by

the core building block of our approach, the method of moments (MOM), in Section

2.2.2. Section 2.3 will utilize these tools to derive the main theorem, based on a

proposed grid search algorithm.

2.1 Problem Formulation

We introduce a slightly different notation in this chapter to be consistent with the

past work done in the theoretical learning setting. Specifically, consider {pθ}θ∈Θ the

family of K-MNL models for a set of m alternatives, denoted by [m] = {1, . . . ,m}.

We also refer to this setting as K-MNL models under an m-item universe. We can

also think of pθ as an m-size vector, where the j-th element in pθ is the probability

of choosing alternative j.

pθ is parameterized by θ ∈ Θ ⊂ RK(m+1). Specifically, we can write

Θ = {θ ∈ RK(m+1)|(θm(k−1)+1, . . . , θmk) ∈ ∆m−1, k = 1, . . . , K,

(θKm+1, . . . , θK(m+1)) ∈ ∆K−1}
(2.1)

where ∆n−1 = {(θ1, . . . , θn) ∈ Rn
+

∣∣∑n
j=1 θj = 1} is the (n − 1)-simplex. To simplify

notation, we use θ(k) = (θk1, . . . , θkm) to denote
(
θm(k−1)+1, . . . , θmk

)
for k = 1, . . . , K

and (w1, . . . , wK) for
(
θKm+1, . . . , θK(m+1)

)
. The k-th MNL mixture is characterized

by (θk1, . . . , θkm), with θkj representing the probability of choosing alternative j given

the entire alternative universe. The remaining (w1, . . . , wK) parameters specifies the

mixture weight. By definition, Θ is a compact set.

Note that this parameter set has a one-to-one mapping with the notations intro-

duced in Chapter 1. Specifically, we have θkj = expσ(zj;βk) and wk = αk. Once we
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learn all θkj’s, we can compute βk values given that σ is an invertible function, such

as the linear utility function.

An s-slate is a subset S ⊆ [m] of size s and the probability of choosing alter-

native j in this slate is defined as qk(j|S) =
θkj∑
i∈S θki

for mixture k. The aggre-

gated population-level choice probability for alternative j given slate S is pSθ (j) =∑K
k=1wkqk(j|S) for j ∈ S. We will use qSk ∈ Rs and pSθ ∈ Rs to denote the individual

logit vector (for mixture k) and the aggregated mixed logit vector respectively. In

addition, when we consider the MMNL model for given a slate S ⊆ [m], we let ΘS ,

as a parameter subspace of Θ, denote the components of θ for alternatives in S.

Let DS
θ be an oracle that returns the true value of pSθ (j),∀ j ∈ S. In general,

we do not have access to this oracle and will use choice (order) data to approximate

the values of pSθ . A choice (order) data is the observed probability distribution for

alternatives in a slate S, yS ∈ Rs. With n samples, we can compute p̂Sθ = 1
n

∑n
t=1 y

S
t .

Polynomial Learnability. Let K be a fixed constant. Let {pθ}θ∈Θ be the family

of identifiable K-MNL models parameterized by θ ∈ Θ ⊆ RK(m+1) with Θ defined in

2.1. Assume ∥ · ∥ is the l2 norm. Given precision ϵ and confidence δ, if there exists an

algorithm that can provide an estimate to θ, θ̂, such that
∥∥θ̂−θ

∥∥ < ϵ with probability

at least 1− δ using n data samples, where n is a polynomial function of 1
ϵ
and 1

δ
, i.e.

n = poly(1
δ
, 1
ϵ
), and the number of operations in the algorithm is also polynomial, we

say this problem is polynomial learnable.

While the sample complexity is polynomial in 1
ϵ
and 1

δ
, we expected it to be

exponential in K in general. As for the Gaussian Mixture Model (GMM) case, where

K being in exponential is unavoidable [Moitra and Valiant, 2010], we conjecture

the same for K-MNL models. Since the learnability of K-MNL models is not well-

understood even when K is small constant, we focus on studying the polynomial

learnability of K-MNL models assuming that K is an arbitrarily given constant.
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2.1.1 Identifiability

Identifiability of a model determines whether it is possible to learn the true values

of the model’s parameters after obtaining an infinite number of observations from it.

We first define the identifiability of MMNL models.

Definition 2.1 (Identifiability). Let {pθ}θ∈Θ be a family of K-MNL models over an

m-item universe, θ ∈ Θ ⊆ RK(m+1). We say pθ, for all θ ∈ Θ, is identifiable if

pSθ1 = pSθ2 for every S ⊆ [m] implies θ1 = θ2, ∀ θ1, θ2 ⊆ Θ.

Denote the power set of a set S as P(S), which contains all of the subsets of S.

We have |P(S)| = 2n if |S| = n.

Adapting from Tang [2020, Assumption 1.2], we make the following assumption:

Assumption 2.1 (ϕ-identifiability). The family of K-MNL models {pθ}θ∈Θ over a

ϕ(K)-item universe is identifiable.

In other words, we consider ϕ(K) as the smallest size of an alternative set in order

for an MMNL model with K mixtures to be identifiable. For notation simplicity and

when there is not ambiguity, we use m0 to denote ϕ(K), assuming K as given.

The intuition why such m0 exists is the follows:

The parameters need to satisfy the following system of equations:

K∑
k=1

wk
θkj∑
i∈S θki

= DS
θ (j),∀ j ∈ S,∀ S ∈ P([m0]) (2.2)

K∑
k=1

wk = 1 (2.3)

m0∑
i=1

θki = 1,∀ k = 1, . . . , K (2.4)

where DS
θ is the oracle defined as above. In Equation (2.2), there are s − 1

independent equations for each |S| = s. Therefore, this system has a total of

m0∑
s=1

(s− 1)

(
m0

K

)
+ 1 +K = 1 +K + 2m0−1(m0 − 2)
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equations. If {pθ}θ∈Θ is identifiable over the m0-item universe, this system has

a unique solution θ. When we increase the universe size such that m ≥ m0,

we introduce more equations to the system and making the solution set for the

system even restrictive. This means it is extremely unlikely that there exists

both θ and θ′ such that θ′ ̸= θ while both θ and θ′ satisfy the larger number of

1 +K + 2m−1(m− 2) equations.

In this chapter, we will studyK-MNL models withm-item universe wherem ≥ m0

using choice data.

Identification condition

A natural question to ask is what is ϕ(K) for a K-MNL model. In fact, the definition

of ϕ(K) precisely characterizes the identification condition of K-MNL models. At

the time of this work, only the identification conditions for 2-MNL models have been

established, namely m ≥ 3 for uniform 2-MNL (w1 = w2 = 1
2
) by Chierichetti et al.

[2018] and m ≥ 4 for arbitrary weight 2-MNL (more discussion below).

There is another stream of work that studies a different type of choice models

that is closely related to MNL, namely the Plackett-Luce (PL) models. We will

briefly discuss the (non)-identification conditions for K-PL models since there are

better established results associated with this class of models.

For PL models, let X = {x1, . . . , xm} be a set of m alternative and denote L(X )

as the set of linear orders (full rankings) over X . A ranking R ∈ L(X ) is xi1 ≻

xi2 ≻ . . . ≻ xim where xi1 and xim are the most and least preferred alternative

respectively. Ranking data are obtained by repeatedly selecting items after removing

the previously selected items, according to the MNL choice model. Developed by

Plackett [1968, 1975], the ranking distribution for R = [xi1 ≻ xi2 ≻ . . . ≻ xim ] is
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characterized by

P(R|θ) =
m−1∏
p=1

P(xip|X \ ∪
p−1
q=1xiq ; θ)

=
m∏
p=1

θip∑m
q=p θiq

(2.5)

Manski [1977] shows that any RUM models, e.g. MNL, can be composed into a

utility-based ranking model, e.g. PL, via such repeated selection.

Zhao et al. [2016] showed that the identifiable condition for K-PL models using

rank data is as follows:

� For anyK ≥ 2, the mixture ofK PL models for no more than 2K−1 alternatives

is non-identifiable and this bound is tight for K = 2.

� Mixture of K PL models over m alternatives is generically identifiable if K ≤⌊
m−2
2

⌋
!.

The concept of generic identifiability is introduced by Allman et al. [2009]. It

describes the property of a model, which is not strictly identifiable in the parameter

space Θ, but the non-identifiable parameter choices form a set of Lebesgue measure

zero. The way to understand the identifiability conditions for K-PL models above is:

when m+1
2
≤ K ≤

⌊
m−2
2

⌋
!, though K-PL model is not identifiable in the strict sense

(i.e., ∀ pθ, we can recover θ), it is in general safe to ignore this problem in practice due

to generic identifiability. They also conjecture that the identification condition for

K-PL models is m ≥ 2K for K ≥ 3, but this still remains an open research question.

Later, Zhao and Xia [2019] showed 2-PL model given appropriate choice data

are identifiable, which can be used directly to induce the identification condition for

2-MNL models. We summarize this conclusion below.

Corollary 2.1 (Theorem 2 [Zhao and Xia, 2019]). Let Φchoice-l be some structure

(oracle) that returns the choice order of l-size slate S. Let Φ∗ = ∪4
l=2Φ

choice−l. For

any Φ ⊃ Φ∗, 2-MNL model over m ≥ 4 alternatives is identifiable.
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The choice order in Zhao and Xia [2019] is defined as the probability of choosing

any item j, for any given slate S, i.e. P(j|S), for j ∈ S. This is exactly what we

referred to as the choice data as discussed earlier. On the other hand, even though

the original theorem in Zhao and Xia [2019] is proven for 2-PL models, the learned

parameters can be used directly to construct the 2-MNL model, as we can see from

Equation (2.5). Therefore we can conclude that m ≥ 4 is the identification condition

for 2-MNL models, i.e., ϕ(2) = 4.

The identification conditions for K-PL models have been shown to be closely

related to K-MNL models in Zhao and Xia [2019], and identical in the case of K = 2.

While rigorous derivations are still needed to establish the (generic) identification

conditions for K-MNL models, we believe that the identification conditions hold for

a class of K-MNL models are realistic assumptions — as we have seen, ϕ(K) is 4 for

K = 2, and what we assume in Assumption 2.1 is essentially ϕ(K) <∞ for any given

K (in fact, based on existing literature, we believe that a natural conjecture is “ϕ(K)

is a polynomial function of K”, which we leave as an open problem).

On top of Assumption 2.1, we will focus on exploring the polynomial learnability

for K-MNL models with choice data over an m-item universe where m ≥ m0 with

m0 = ϕ(K) the minimum size of the alternative set for K-MNL being identifiable.

While studying the identification conditions for K-MNL models is one of the central

topics in studying the learnability of K-MNL models, we believe exploring the lower

bounds for m0 is also a good research direction. Recall that we conjecture that the

sample complexity is exponential in K and on top of that, m0 = ϕ(K) is a polynomial

function of K. It follows that sample complexity is also exponential in m0. Based on

this conjecture, if we can find smaller m0 values, it can guide the design of efficient

learning algorithms and reduce the sample complexity.

33



2.2 Mathematical and Statistical Tools

2.2.1 Semialgebraic Set and Tarski-Seidenberg Theorem

In this section, we introduce some tools used in algebraic geometry, including the

definition of semialgebraic set and the Tarski-Seidenberg Theorem. We will also

discuss some basic mathematical logic concepts that will also be used in the following

sections.

Definition 2.2. A set is said to be a semialgebraic subset of Rd if it can be represented

as a finite union of sets defined by a system of polynomial equalities and inequalities.

By the definition of Θ or ΘS if given a slate S, which are composed by a set of

algebraic equations, it is a semialgebraic set.

Theorem 2.1 (Tarski-Seidenberg). A linear projection of a semialgebraic set is semi-

algebraic.

The important implication of Tarski-Seidenberg theorem is quantifier elimination,

which states that every formula constructed from polynomial equations and inequali-

ties by quantifiers (∀,∃) is equivalent to a similar formula without quantifiers. This is

known as the elimination of quantifiers and will be a key component when we prove

our main result. For a simple example, consider the statement that a quadratic poly-

nomial has a real root, i.e. ∃x ∈ R, (a ̸= 0 ∧ ax2 + bx+ c = 0). This can equivalently

be written as a ̸= 0 ∧ b2 − 4ac ≥ 0, where it no longer involves using the quantifier

∃x ∈ R.

Proposition 2.1. Let P (x) and Q(x) be some polynomial function of x. {x|(P (x) >

0)⇒ (Q(x) > 0)} = {x|Q(x) > 0} ∪ {x|(Q(x) ≤ 0)&(P (x) ≤ 0)}.

Proof. Denote p and q as the logical statements for P (x) > 0 and Q(x) > 0 respec-

tively. In the formal form of mathematical logic, the conditional statement p→ q has

the following truth table:

The logical implication p⇒ q holds if p→ q is true. In other words, p⇒ q is only

false when the hypothesis (p) is true and the conclusion (q) is false. Therefore, we
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Table 2.1: Truth Table for p→ q

p q p→ q

T T T

T F F

F T T

F F T

can establish the equivalence between p⇒ q and (p∧ q)∨ (¬p∧ q)∨ (¬q ∧¬p) which

is the same as q ∨ (¬q ∧¬p). Plug in back the expression of p and q, we can see that

set {x|(P (x) > 0) ⇒ (Q(x) > 0)} can be written as set {x|Q(x) > 0} ∪ {x|(Q(x) ≤

0) & (P (x) ≤ 0)}.

2.2.2 Method of Moments

Given a slate S ⊆ [m] of size s, we can think of the MMNL model pSθ as a prob-

ability distribution on the discrete set {i1, . . . , is}, similar as a standard categorical

distribution. This allows us to utilize relevant probability tools to analyze this learn-

ing problem, such as the moments and methodologies depending on the concept of

moments. Without loss of generality, we index the alternatives with {1, . . . , s}.

First developed by the famous statistician Karl Pearson in the early 20-th century,

method of moments (MOM) is widely used in statistical estimation through solving a

system of equations established by equating sample moments with unobserved ground-

truth moments to get the parameters to be estimated [Pearson, 1894]. Compared to

the maximum likelihood estimation (MLE) method which can be intractable in certain

scenarios without computers, method of moments in general can be computed more

quickly and easily. Since intractability happens inevitably for learning mixture models

using MLE, MOM is broadly used in developing learning algorithms for mixture

models, including mixed exponential distribution [Rider, 1961], mixed hidden Markov

models [Anandkumar et al., 2012], mixed PL models [Zhao et al., 2016], and Gaussian

Mixture Models (more generically the class of polynomial distributions) [Belkin and
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Sinha, 2015].

To use the method of moments in our setting, we start by showing that if we can

uniquely determines the first s moments of the MMNL distribution on slate S, then

we can uniquely recover the aggregated logit vector.

Proposition 2.2. Let pSθ be a categorical distribution over s different values in the

set S. pSθ1(x) = pSθ2(x), ∀x ∈ S, if and only if Mi(θ1|S) = Mi(θ2|S), ∀i = 1, . . . , s,

where Mi(θ|S) = E[xi|S] is the i-th raw moment of pSθ .

Proof. It is easy to show that if pSθ1 = pSθ2 , we have Mi(θ1|S) =
∑

x∈S p
S
θ1
(x) · xi =∑

x∈S p
S
θ2
(x) · xi = Mi(θ2|S), ∀i.

For the reverse direction, define X i = [1i, 2i, . . . , si]⊤ and

Pi(θ1, θ2|S)
def
= Mi(θ1|S)−Mi(θ2|S)

=
s∑

x=1

pSθ1(x) · x
i −

s∑
x=1

pSθ2(x) · x
i

= (pSθ1 − pSθ2)
⊤X i

If Mi(θ1|S) = Mi(θ2|S) for ∀i = 1, . . . , s, we can represent Pi(θ1, θ2|S) = 0,∀i as

a system of equations as:[
X1 X2 · · · Xs

]
︸ ︷︷ ︸

A

⊤

[
pSθ1 − pSθ2

]
︸ ︷︷ ︸

ξ

= 0

where A ∈ Rs×s is a Vandermonde matrix and ξ ∈ Rs. Since the columns of A are

independent, A is invertible and the system has the unique solution ξ = 0. Therefore,

we have pSθ1(x) = pSθ2(x), ∀x ∈ S.
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Theorem 2.2. Let pθθ∈Θ be the family of mixed multinomial logit models over an

m-item universe, θ ∈ Θ ⊆ RK(m+1). Assume pθ is m0-identifiable and m ≥ m0. Let

S0 be an arbitrary subset of [m] and |S0| = m0. There exists t > 0 such that ∀ϵ > 0

and θ1, θ2 ∈ Θ, if |Mi(θ1|S)−Mi(θ2|S)| ≤ ϵ, ∀i ≤ |S| for all slates S ⊆ S0, we have

∥θ1 − θ2∥≤ O(ϵt).

Proof. Let P(S0) be the power set of S0. We start by observing that we can replace

the condition |Mi(θ1|S)−Mi(θ2|S)|≤ ϵ by

Q(θ1, θ2)
def
=

∑
S∈P([S0])

|S|∑
i=1

|Mi(θ1|S)−Mi(θ2|S)|2 (2.6)

≤ Nϵ2 = ϵ′

where we assume N is the total number of summands in Equation (2.6).

Recall that for ℓ ∈ {1, 2}

Mi(θℓ|S) =
∑
x∈S

xi

(
K∑
k=1

w
(ℓ)
k

θ
(ℓ)
kx∑

j∈S θ
(ℓ)
kj

)

where we add a superscript "(ℓ)" to the individual parameters to indicate which

model they are representing. Next, we define a set of functions that serve as common

denominator multipliers in the moment expression. Define

Fθℓ =
∏

S∈P(S)

K∏
k′=1

∑
i∈S

θ
(ℓ)
k′i

and

Fθℓ(¬k,S) =
∏

S′∈P(S0)

K∏
k′=1
k′ ̸=k

∑
i∈S′

θ
(ℓ)
k′i =

Fθℓ∑
i∈S θ

(ℓ)
ki

We have Fθℓ and Fθℓ(¬k,S),∀k are polynomials in θ. In addition, ∀S,∀k ∈ S,

0 < θ
(ℓ)
kj ≤ 1, hence 0 < Fθℓ ≤ 1.
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Let

Q̃(θ1, θ2) = F 2
θ1

F 2
θ2
Q(θ1, θ2)

=
∑

S∈P([S0])

|S|∑
i=1

[∑
x∈S

(
Fθ1Fθ2pθ1(x)−Fθ1Fθ2pθ2(x)

)
· xi

]2

=
∑

S∈P([S0])

|S|∑
i=1

[∑
x∈S

Fθ1Fθ2

( K∑
k=1

w
(1)
k

θ
(1)
kx∑

j∈S θ
(1)
kj

−
K∑
k=1

w
(2)
k

θ
(2)
kx∑

j∈S θ
(2)
kj

)
· xi

]2

=
∑

S∈P([S0])

|S|∑
i=1

[∑
x∈S

K∑
k=1

(
Fθ1(¬k,S)Fθ2w

(1)
k θ

(1)
kx −Fθ1Fθ2(¬k,S)w

(2)
k θ

(2)
kx

)
· xi

]2

The intuition here is that by multiplying the multiplier functions to Q, Q̃(θ1, θ2) now

becomes a polynomial function in (θ1, θ2). In addition, let ϵ′′ be some ϵ′′ ≤ ϵ′, such

that when Q(θ1, θ2) ≤ ϵ′, we have Q̃(θ1, θ2) ≤ ϵ′′.

The following part of the proof is similar to Belkin and Sinha [2015], which we

adapted to our particular setting. Since Θ is compact, {(θ1, θ2)|θ1, θ2 ∈ Θ, Q̃(θ1, θ2) ≤

ϵ′′} is also compact. Hence, there exists some constant C such that for ϵ′′ ≤ ϵ′ < 1,

sup
θ1,θ2∈Θ

Q̃(θ1,θ2)≤ϵ′′

∥θ1 − θ2∥< C (2.7)

since ∥θ1 − θ2∥ (ℓ2 norm unless otherwise specified) is continuous in (θ1, θ2)

Consider the set

Dϵ′′ =
{
δ > 0

∣∣∣∀(θ1,θ2)∈Θ (
Q̃(θ1, θ2) ≤ ϵ′′

)
⇒
(
∥θ1 − θ2∥< δ

)}
Equation 2.7 indicates that Dϵ′′ is non-empty. According to Proposition 2.1, Dϵ′′ can

be written as

{δ > 0|∀θ1,θ2∈Θ ∥θ1 − θ2∥≥ δ} ∪ {δ > 0|∀θ1,θ2∈Θ ∥θ1 − θ2∥≥ δ, Q̃(θ1, θ2) > ϵ′′}
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By the Tarski-Seidenberg theorem, we can see that Dϵ′′ is a semialgebraic set of R.

Let δ(ϵ′′) = infDϵ′′ . We can show that δ(ϵ′′) is also a semialgebraic set by first writing

δ(ϵ′′) = inf Sϵ′′ = {z|∀x ∈ Sϵ′′ (z ≤ x)} ∩ {z|∀ϵ > 0 ∃x ∈ Sϵ′′ (z + ϵ > x)}

then applying again the Tarski-Seidenberg theorem.

According to Proposition 2.2, Q(θ1, θ2) = 0 implies pθ1 = pθ2 for any choice of S0

since pθ is m0 identifiable. By definition, we also have Q(θ1, θ2) = 0 if Q̃(θ1, θ2) = 0.

In turn, we obtain limϵ′′→0∥pθ1−pθ2∥= 0. If pθ family is identifiable, then limϵ′′→0∥θ1−

θ2∥= 0 as Q̃(θ1, θ2) is continuous in (θ1, θ2). This gives limϵ′′→0 δ(ϵ
′′) = 0.

Since δ(ϵ′′) is a single point set and strict inequalities alone cannot define the cor-

responding semialgebraic set, δ(ϵ′′) satisfies an algebraic equation whose coefficients

are polynomial in ϵ′′. We can write this polynomial as qϵ′′(x) = qM(ϵ′′)xM+. . .+q0(ϵ
′′)

such that qϵ′′(δ(ϵ
′′)) = 0 and δ(ϵ′′) is a positive root qϵ′(x) = 0.

From Lemma 2.1 (see below), we obtain δ(ϵ′′) < C ′(ϵ′′)
1
M for some constant C ′ > 0.

The definition of δ(ϵ′′) indicates that

∀θ1,θ2∈Θ
(
Q̃(θ1, θ2) ≤ ϵ′′

)
⇒
(
∥θ1 − θ2∥< C(ϵ′′)

1
M

)
Note that ∀θ1,θ2∈Θ

(
Q̃(θ1, θ2) ≤ ϵ′′

)
means ∀θ1,θ2∈Θ (Q(θ1, θ2) ≤ ϵ′), hence equivalent

to ∀i≤|S|,S⊆P(S0) (|Mi(θ1|S)−Mi(θ2|S)|≤ ϵ) for any S0 as an m0-size subset of [m].

Thus we have

∀S0⊆[m],∀i≤|S|,S∈P(S0) (|Mi(θ1|S)−Mi(θ2|S)| ≤ ϵ)⇒
(
∥θ1 − θ2∥< C(ϵ)

2
M

)

Lemma 2.1. [Belkin and Sinha, 2015, Lemma 2.8] Let δ(ϵ) be a positive root of

the polynomial qϵ(x) = qM(ϵ)xM + . . . + q0(ϵ), where each qi(ϵ) is a polynomial in

ϵ. Assume also that limϵ→0 δ(ϵ) = 0. Then there exists a constant C > 0 such that

δ(ϵ) < C(ϵ)
1
M .

The proof below is in general the same as in the original paper, but included here
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for the sake of completion.

Proof. We can write qϵ(x) = ϵP (x, ϵ) + Q(x), where Q(x) is a polynomial in x and

P (x, ϵ) is a polynomial in x and ϵ. Since δ(ϵ) is a root of qϵ(x), we have

ϵP (δ(ϵ), ϵ) +Q(δ(ϵ)) = 0.

Note that δ(0) = 0. It follows that from the above equation, Q(0) = 0. This allows

us to write the polynomial Q(x) as Q(x) = xjQ1(x), j > 0, so that Q1(x) ̸= 0.

On the other hand, for x that is small enough, we have |Q(x)|≥ 1
2
|Q1(0)x

j|. Since

limϵ→0 δ(ϵ) = 0, we can thus write |Q(δ(ϵ))|≥ C1(δ(ϵ)
j) and |P (δ(ϵ), ϵ)|< C2 for some

C1, C2 > 0. Combining these two inequalities we have

C1(δ(ϵ))
j ≤ |Q(δ(ϵ))|= ϵ|P (δ(ϵ), ϵ)|< C2ϵ

Since j ≤M , we have δ(ϵ) < C(ϵ)
1
M for some constant C > 0.

2.3 Polynomial Learnability

We first provide a high-level description of how we plan to establish the polynomial

learnability for m0-identifiable K-MNL models and then discuss the details in each

subsections.

We will be working with three types of moments, namely

True moments : based on the true parameters, denoted by Mi(θ|S) =
∑

x∈S x
ipSθ

Observed moments : empirical, computed by M̂i(θ|S) =
∑

x∈S x
ip̂Sθ where p̂Sθ is

the observed aggregated distribution over the alternatives in S; we will use θe

to denote the parameter values corresponding to the empirical moment values

Estimated moments : computed moments based on a given set of estimates θ̂, i.e.

Mi(θ̂|S) =
∑

x∈S x
ipS

θ̂

The idea is as follows:
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1. Sample enough data to ensure M̂i(θ|S) is close to Mi(θ|S)

2. Use Theorem 2.2 to show θe is close to θ

3. Design an algorithm to make sure M̂i(θ|S) is close to Mi(θ̂|S) and θ̂ is close to

θe

4. Achieve Mi(θ̂|S) is close to Mi(θ|S) and θ̂ is close to θ

5. Return θ̂ as estimators

For the first step above, we quantify the notion of enough data.

Proposition 2.3 (Concentration of Moments). Let pSθ ∈ Rs, θ ∈ Θs ⊆ RK(s+1), be

a family of MMNL models over a given slate S ⊆ [m] of size s. Let X1, X2, . . . , Xn

be i.i.d random variables sampled from pSθ . Let M̂(θ|S) be the empirical moments of

the samples drawn. Then given sample size n ≥ s2s+1

ϵ2δ
, for any ϵ > 0 and 0 < δ < 1,∣∣∣M̂i(θ|S)−Mi(θ|S)

∣∣∣ ≤ ϵ with probability greater than 1− δ for i ≤ s.

Proof. Recall that the i-th raw moment Mi(θ|S) = E [X i|S] =
∑

x∈S x
ipSθ . The

empirical moments M̂i(θ|S) =
∑

x∈S x
ip̂Sθ (x), where p̂Sθ is the empirical aggregated

logit vector or distribution over all the alternatives in S, which can be computed as

p̂Sθ (x) =
1
n

∑n
j=1 1[Xj=x]. Note that M̂i(θ|S) is a random variable since it is a function

of X1, X2, . . . , Xn. In particular, we can write M̂i(θ|S) =
1

n

n∑
j=1

X i
j.

The expectation of the empirical moments is equal to the true moments since

E
[
M̂i(θ|S)

]
=

1

n

n∑
j=1

E
[
X i

j

]
= Mi(θ|S), for all i. On the other hand, the variance of
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the empirical moments is upper bounded:

Var
(
M̂i(θ|S)

)
=

1

n
Var

(
X i

j

)
=

1

n

(
E
[
X2i

j

]
− E2

[
X i

j

])
≤ 1

n
E
[
X2i

j

]
=

1

n

∑
x∈S

x2ipSθ (x)

≤ s2i

n

This means ∀i ≤ s, we have Var
(
M̂i(θ|S)

)
≤ s2s

n
.

Finally, we can use Chebyshev’s inequality to compute an upper bound on the

discrepancy of the empirical moments and the true moments:

P
(∣∣∣M̂i(θ|S)−Mi(θ|S)

∣∣∣ > ϵ
)
= P

(∣∣∣M̂i(θ|S)− E
[
M̂i(θ|S)

]∣∣∣ > ϵ
)

≤
Var

(
M̂i(θ|S)

)
ϵ2

≤ s2s

nϵ2

Denote the event
∣∣∣M̂i(θ|S)−Mi(θ|S)

∣∣∣ > ϵ as Ai.

P
(∣∣∣M̂i(θ|S)−Mi(θ|S)

∣∣∣ ≤ ϵ,∀i
)
= 1− P

(
∃i s.t.

∣∣∣M̂i(θ|S)−Mi(θ|S)
∣∣∣ > ϵ

)
= 1− P

( ⋃
1≤i≤s

Ai

)

≥ 1−
s∑

i=1

P(Ai)

≥ 1− δ

where the last inequality follows from the fact that the number of data samples
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n > s2s+1

ϵ2δ
.

Proposition 2.3 first established the fact with a polynomial number of data points,

we can approximate the true moments with the empirical moments with high accuracy

and high confidence. The next question we will address is how to learn the parameters

using the empirical moments. This is done using the grid-search algorithm as shown

below.

2.3.1 The Grid Search Algorithm

In this section, we will present the grid-search algorithm with appropriate grid size

for learning close-to-ground-truth parameters for MMNL models.

Algorithm 1: Grid Search Algorithm

1 in ϵ > 0, 0 < δ < 1, grid size 1
N

= O( ϵt√
K(m+1)

), list of slates

S = {S1, . . . ,ST}

2 for τ ← 1 to T do

3 Draw x1, x2, . . . , xn samples from pSt
θ and compute p̂St(j) = 1

n

∑n
i=1 1[xi=j]

with n ≥ s
ϵ2δ

4 end

5 Let θ = { 1
N
, 2
N
, . . . , N−1

N
} for r = 1, . . . , K(m+ 1)

6 Random choose θ̂ from ΘS

7 for θ ∈ θ1 × . . .× θK (m+1 ) do

8 if maxτ∥p̂Sτ − pSτ
θ ∥2< maxτ∥p̂Sτ − pSτ

θ̂
∥2 then

9 θ̂ = θ

10 end

Output: θ̂

Figure 2-1 provides an intuitive illustration of the idea we introduced at the begin-

ning of this section and the grid search algorithm. With enough data sample, we can

obtain a set of empirical moments that are close to the true moments. By Theorem
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2.2, there exists some θe that is close to θ in the θ-space. Now assume that Algorithm

1 returns θ̂ = θA as the output. If we have an appropriate grid size, we can ensure

that θ̂ and θe is also close to each other. In turn, we can obtain the estimated mo-

ments using the estimated θ. The estimated moments will be close to the empirical

moments, hence close to the true moments. Applying Theorem 2.2 again, we have

the upper bound for ∥θ̂ − θ∥.

Figure 2-1: Grid search algorithm illustration

Next, we will discuss how to choose the appropriate grid size.

Proposition 2.4 (Moments Upper bound). Let pθθ∈Θ be a family of MMNL models

over an m-item universe. For a given slate S ⊂ [m] with |S| = s, there exists some

constant C > 0, bounded above, such that

s∑
i=1

|Mi(θ1|S)−Mi(θ2|S)|2< C∥θ1 − θ2∥2

Proof. We can show this using the mean value theorem:

|Mi(θ1|S)−Mi(θ2|S)|
|θ1 − θ2|

≤ sup
θ∈Θ
∥grad(MS

i )(θ)∥

We will analyze the element in grad(Mi)(θ|S). It contains the following three

types of gradients and we will show each is bounded above by some constant:
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�

d
∑

x∈S
∑

k wk
akx∑
i∈S aki

xi

d akj
=
∑
x∈S

(
wk∑
i∈S aki

− wkakj(∑
i∈S aki

)2
)
xi

≤
∑
x∈S

wk
1∑

i∈S aki
xi

≤
∑
x∈S

wk

a0k
xi

where a0k = minj∈S,akj>0 akj, i.e., the smallest akj value in the slate for mixture k

such that probability of choosing alternative j is non-zero. Note that a0k > 0 for

a given slate, otherwise, all alternatives in S will not be chosen, hence making

it a meaningless slate.

�

d
∑

x∈S wk
akj∑
i∈S aki

xi

d aki
= − wkakj(∑

i∈S aki
)2

≥ −
∑
x∈S

wk(∑
i∈S aki

)2xi

≥ −
∑
x∈S

wk

(a0k)
2x

i

�

d
∑

x∈S wk
akj∑
i∈S aki

xi

dwk

=
∑
x∈S

akj∑
i∈S aki

xi

≤
∑
x∈S

akj
(a0k)

xi

Putting everything together, we have

∥grad(Mi)(θ)∥ ≤

√√√√√ K∑
k=1

∑
x∈S

(wk

a0k

)2

+

(
wk

(a0k)
2

)2

+

(
akj
a0k

)2
xi

≤
√
KC ′
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where C ′ is an appropriate constant.

Lemma 2.2 (Grid Search Accuracy). Let pθ be a family of MMNL models. Let θ∗ be

the ground truth parameter values. For any given ϵ > 0, 0 < δ < 1, θ̂ generated from

Algorithm 1 can achieve ∥θ̂− θ∗∥< ϵ with probability at least 1− δ for the same ϵ and

δ used in Algorithm 1.

Proof. We can show that

∣∣∣Mi(θ̂|S)−Mi(θ|S)
∣∣∣ = ∣∣∣Mi(θ̂|S)− M̂i(θ|S) + M̂i(θ|S)−Mi(θ|S)

∣∣∣
≤
∣∣∣Mi(θ̂|S)− M̂i(θ|S)

∣∣∣+ ∣∣∣M̂i(θ|S)−Mi(θ|S)
∣∣∣ (2.8)

≤ C1 · ϵt + C2 · ϵt

The second inequality holds because

� For the first component in Equation (2.8), it is a direct result of the grid search

algorithm. With small enough grid size, we can achieve

∥θ1 − θ2∥ =

√√√√K(m+1)∑
i=1

ϵ2t

K(m+ 1)

= ϵt

By Proposition 2.4, this tells us that we

∣∣∣Mi(θ̂|S)− M̂i(θ|S)
∣∣∣ ≤ C1 · ϵt

� For the second component in Equation (2.8), it holds when we have enough

sample as described in Proposition 2.3.

Finally, we apply Theorem 2.2 to get the desired bound on ∥θ̂− θ∗∥, with t = M
2
.
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Complexity

Since the grid search algorithm divides the parameter space into O( ϵt√
K(m+1)

) grids,

the number of operations needed to complete this process is a polynomial in 1
ϵt
, i.e.

poly(1
ϵ
).

2.3.2 Main Result

We putting all pieces discussed in this section together and present the main theorem.

Theorem 2.3 (Main result). Let pθ be the family of mixed multinomial logit models.

If pθ is identifiable, then, ∀ϵ > 0, 0 < δ < 1, there exists an algorithm which can

generate θ̂ such that
∥∥∥θ̂ − θ

∥∥∥ ≤ ϵ with probability 1 − δ using a polynomial number

of data samples n = poly(1
ϵ
, 1
δ
) drawn from pθ. The algorithm requires a polynomial

number of operations in 1
ϵ
.

Proof. In order to learn the MMNL model, we will collect n > s2s+1

ϵ2tδ
data samples for

a given slate Sτ of size s. This allows us to achieve |M̂i(θ|S) −Mi(θ|S)|< ϵt with

probability at least 1− δ.

We then apply the grid search algorithm in the parameter space Θ to obtain an

estimate θ̂. By setting the correct grid size, we have ∥θ̂−θe∥< ϵt. Then by Proposition

2.4, we have |Mi(θ̂|S)− M̂i(θe|S)|< ϵt with probability at least 1− δ.

By triangular inequality, we have |Mi(θ̂|S)−Mi(θ|S)|< C · ϵt. Finally, according

to Theorem 2.2, this gives ∥θ̂ − θ∥< ϵ with probability at least 1− δ.

Slate selection

Finally, we discuss how to choose the set of slates. Since we are assuming that pθ is

m0-identifiable. This means if we look at a slate S = {i1, . . . , im0} of size m0, with

enough sample, we can uniquely determine the parameters θS that is ϵ-close to the

true parameters with probability at least 1−δ. Therefore, we can create such m0-size

slates like S = {{1, 2, . . . ,m0}, {1,m0+1, . . . , 2m0− 1}, . . . , {1, . . . ,m, 2, . . . , }}, each
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with alternative 1 as the common alternative in all. Note that if the last one is of size

smaller than m0 when we hit alternative m, we can add other alternatives despite

overlapping. In worst case, it requires querying all 2m0 subslates of each of these

slates to learn the parameters θS . We need to do this for the
⌈

m−1
m0−1

⌉
elements in S

elements in S.

While we have shown that K-MNL models under them0 identifiability assumption

are polynomial learnable the order of the polynomial is unknown. We tried imple-

menting the grid search algorithm for the case where K = 2,m = 4 and found that

it can be very slow. This leads us to develop a more practical algorithm for learning

MMNL models, which will be discussed next.
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Chapter 3

Learning MMNL with Provable

Guarantees - A Data Driven

Approach

In this chapter, we will present a new learning framework for the MMNL models.

Our algorithm, called Stochastic Subregion Frank-Wolfe (SSRFW), aims to learn the

parameters from a data-driven perspective while still providing provable guarantees

to the estimators. The key difference between SSRFW and Chapter 2 lies in that this

chapter makes assumptions on the data structure and is a more practical method that

can be used in real-world applications.

In Section 3.1, we will formalize the learning problem and identify some key as-

sumptions in our setting. In Section 3.2, we will describe the original Frank-Wolfe

approach, analyze its underlying issues and present our framework, which is consisted

of two parts: the SSRFW algorithm itself and a Q-construction algorithm whose out-

put will be taken as input to the former. Finally, in Section 3.3, we will prove the

theoretical properties of SSRFW , including its provable guarantees on the parameters

as well as the corresponding sample complexity.
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3.1 Problem Formulation

Different from the previous chapter, we will resume using the standard MMNL nota-

tions as introduced in Chapter 1. Recall the setting where the decision makers need

to choose among a set of [M ] = {1, . . . ,M} items, where each alternative j ∈ [M ]

is associated with a feature vector zj ∈ Rd. Assume the population is modeled by

a MMNL model consisted of K individual MNL mixture components, with decision

makers within each component exhibit the same logit parameters. Furthermore, we

will focus on a linear utility function with respect to the observed attributes, i.e.

vkj = β⊤
k zj, where βk ∈ Rd represents the decision makers’ taste on different item

attributes for decision maker of type k. Finally, the mixture weights are denoted as

αk, where
∑K

k=1 αk = 1.

Under these settings and RUM, the probability of choosing alternative j for a

particular mixture k can be written as

qj(βk) =
exp(β⊤

k zj)∑M
i=1 exp(β

⊤
k zi)

, j ∈ [M ]

and the aggregated counterpart for the entire population can be computed as

gj =
K∑
k=1

αkqj(βk), j ∈ [M ].

When there is no ambiguity, we will simplify the notation qj(βk) with qkj. We also

denote the individual and aggregated logit vectors as qk = [qk0, · · · , qkM ]⊤ ∈ RM ,∀k

and g = [g0, · · · , gM ]⊤ ∈ RM , respectively. Since these logic vectors characterize

categorical distributions among the choice set, we use the term “choice probability

vectors” interchangeably.

As discussed in Chapter 1, the setting we adopt here formulates the MMNL into a

latent class model and is non-parametric. In other words, βk’s are not drawn from a

parametric prior f(β) and we are not trying to estimate the parameters for the mixing

distribution f(β). Instead, we assume β can take K possible discrete values labeled

β1, . . . ,βK , each with probability α1, . . . , αK . Our goal is to develop an algorithm
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that can learn all αk’s and βk’s with some theoretical guarantees on the estimators.

3.1.1 Model Assumption

For the MMNL models to be learnable, we need to assume that none of the individual

MNL is identical to any of the other mixtures. Let F and G be the cumulative

distribution functions (CDF) for two different choice probability distribution qk and

qk′ , i.e.

F (x) =
x∑

j=1

qkj, G(x) =
x∑

j=1

qk′j.

Define the Kolmogorov-Smirnov (KS) distance between the two distributions as

DKS(qk, qk′) = sup
x
|F (x)−G(x)|

Formally, we assume the MMNL model to be learned is ϵ-standard, as defined below:

Definition 3.1. We call a mixed multinomial logit model (MMNL) g ϵ-standard if

for a given ϵ > 0, we have

1. mink αk ≥ ϵ

2. βkd ≤ 1
ϵ
,∀k,∀d

3. DKS(qk, qk′) ≥ ϵ,∀k ̸= k′

Definition 3.1 is adapted from a similar assumption introduced in Moitra and

Valiant [2010] for learning Gaussian mixture models. Intuitively, it imposes some

regularity to the MMNL model:

1. none of the mixtures has zero weight;

2. all parameters in the model are bounded;

3. each individual logit model has some level of separation from others.

We consider this as a very mild assumption in our setting, as later we will see that

we will not predetermine the number of mixtures (K) and if a mixture/component is
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not present in the observed data (since it has zero weight), the algorithm will simply

not learn it. This is also one of the advantages of our algorithm over the traditional

approaches, such as EM.

3.1.2 Data Assumption

The SSRFW framework will assume to work with repeated choice data, such as con-

sumer panel or survey data. This is a reasonable assumption in many real-world

scenarios, for instance, see Revelt and Train [1998] and Brownstone et al. [2000]. In

particular, we assume the data consists of historical choice decisions from the target

population of size N . For each time period t = 1, . . . , T , we consider each decision

maker i’s choice X
(t)
i as i.i.d random variables drawn from a categorical distribution

with parameters qk if the decision maker is of type k. This means the support of Xi

is [M ]. Let x
(t)
i be the realization of X

(t)
i and Y t

i be the one-hot encoding vector of

x
(t)
i , i.e. Y t

i = [0, · · · , 1, · · · , 0]⊤ ∈ RM , where Y t
ij = 1 if x

(t)
i = j.

The observed aggregated logit vector for period t is thus the average among all

decision makers in the population:

yt =
1

N

N∑
i=1

Y t
i ∈ RM

Define P = {q(β)|β ∈ Rd}, the set of all valid logit vectors for the given choice set

[M ], and P as its closure. Note that since g =
∑K

k=1 αkqk, by definition we have

g ∈ Conv(P).

Finally, we state our main learning objective as to minimize the difference between

the observed (from data) and theoretical aggregated choice probability vector, as

follows

min
g∈Conv(P)

L(g;y) ≡ min
g∈Conv(P)

1

2

T∑
t=1

∥∥g − yt
∥∥2 (3.1)

To simplify notation, we omit the observed data terms in the expressions and only use
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L(g) for the loss term. We can expand Eqn. (3.1) with the actual set of parameters:

min
αk,βk

1

2

T∑
t=1

∥∥∥∥∥
K∑
k=1

αk
exp(β⊤

k zj)∑M
i=1 exp(β

⊤
k zi)

− yt

∥∥∥∥∥
2

Note that this is a highly non-linear optimization problem where the decision variables

αk’s and βk’s also entangle together with each other.

While various heuristic methods have been proposed for MMNLmodels, there does

not exist an algorithm that can yield theoretical guarantees on the estimators. As

one of the first attempts in this research problem, Jagabathula et al. [2020] designed a

Frank-Wolfe framework that aims to establish some convergence properties as a direct

result from the subgradient method, which was originally proposed by Marguerite

Frank and Philipin Wolfe in 1956 with many additional nice properties proved by

Jaggi [2013]. However, we will see that the convergence property in the original FW

algorithm by Jagabathula et al. [2020] applies to the aggregated choice probabilities,

g, instead of the estimators αk’s and βk’s.

As many downstream applications require accurate estimations of these param-

eters and observing the abundant data that are available nowadays which exist in

electronic forms, we design a new data-driven approach to learn the MMNL models.

The Stochastic Subregion Frank-Wolfe (SSRFW) algorithm, inspired by the original

FW, has an carefully constructed stochastic feasible region derived from the data,

which restricts the search space for candidate choice probability vectors. As a conse-

quence, the generated candidates from the algorithm can be shown to be within an

ϵ-ball of the ground truth choice probability vectors with high probability. This allows

us to establish provable convergence on the estimators. Roughly speaking, we can

say the estimators from SSRFW, α̂k and β̂k, satisfy that for any given ϵ > 0, 0 < δ < 1,

there exists some mapping π : [K] → [K] such that P(|α̂k − απ(k)|< ϵ) ≥ 1 − δ and

P(∥β̂k − βπ(k)∥< ϵ) ≥ 1 − δ, ∀k. In addition, we will also quantify the sample com-

plexity of the learning algorithm. To the best of our knowledge, this is the first paper

to prove these results for MMNL models with an arbitrary number of mixture types

and minimal assumptions on the model parameters.
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3.2 Stochastic Subregion Frank-Wolfe Algorithm (SSRFW)

3.2.1 Original FW

We will first present the original FW algorithm in Algorithm 2 and illustrate how it

works. Then we will discuss the problems with this approach.

Algorithm 2: Original Frank-Wolfe (Fully Corrective Update)

Input: data y, P

Initialization: k = 0; α(0) = [1], a random g(0)

1 while stopping condition not met do

2 k ← k + 1

3 Compute q = argmin
v∈Conv(P)

⟨∇L
(
g(k−1);y

)
,y − g(k−1)⟩

4 Compute α(k) = argmin
α∈Δk

L

(
α
(k)
0 g(0) +

k∑
s=1

α(k)
s q(s);y

)
5 Update g(k) := α

(k)
0 g(0) +

∑k
s=1 α

(k)
s q(s)

6 end

Output: set of choice prob. {q(0), . . . , q(k)};

mixture weights α(k) ∈ ∆k ⊂ Rk+1

Note on Line 4, ∆k is the (k+1)-simplex, defined as ∆k = {α ∈ Rk+1|
∑k+1

k′=1 αk′ =

1}.

Each iteration k is consisted of two steps: 1) the supporting finding step (Line

3) which searches for a new direction represented by a choice probability vector q(k)

(as a new latent class k) via solving a linear optimization subproblem in the search

space Conv(P), and 2) the proportion update step (Line 4) which updates the mixture

proportion αi, i = 0, . . . , k, assigned to all choice probability vectors obtained so far.

At the end of each iteration, the aggregated logit vector gk is updated with the new

direction and new mixture weights, which is needed for computing the gradient for

the next iteration. The stopping criteria to the iteration process can be set as a

simple convergence checking of g(k−1) and g(k) or g(k) and y, which if occurred, we

obtain the final learning outcome ĝ is
∑k

i=0 αkq
(k). The algorithm above uses a fully-

corrective variant of the generic Frank-Wolfe algorithm, yet is still guaranteed to find
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the optimal solution to the optimization problem for the decision variable g [Jaggi,

2013].

Note in the above algorithm, after k iterations, we have generated k choice prob-

ability vectors q(s), s = 1, . . . , k, all of which will be the output of the learning

algorithm. The mixture weight estimator is slightly different. α(k) ∈ Rk+1 represents

the mixture weight vector for the k choice probability vectors we have generated so

far, where α
(k)
s refers to the s-th element in the vector, corresponding to the mixture

associated with q(s). In other words, the vector length of α increases by 1 for each

iteration and only the final vector α(k) is outputted from the algorithm.

To help better understand the mechanism, we illustrate this process with a simple

example as shown in Figure 3-1.

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

q(1)

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

q(1)

g(1)

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

q(1)

g(1)

q(2)

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

q(1) q(2)

g(2)

Figure 3-1: Illustration of the Frank-Wolfe algorithm

We start from a random point g(0) in the feasible region (the shaded area). Enter
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the first iteration. In the support finding step, we find the gradient direction q(1) by

solving the linear optimization (first figure). In the proportion update step, we re-

distribute the weights α(0) and α(1) such that the distance between g(1) = α(0)g(0) +

α(1)q(1) and y is minimized (second figure). Next, enter the second iteration. We

find a new direction again by solving the LP and locate q(2) (third figure). The

redistribution of weights will give us g(2) (fourth figure). The iteration then stops,

and the outputs from the algorithm are the logit vectors q(0)(= g(0)), q(1), q(2) and

the mixture weights, α(0), α(1), α(2).

The problem with the original FW approach is that the feasible region Conv(P)

contains the complete set of all logit vectors and their limiting points. The former

corresponds to non-boundary types, whose choice model can be characterized by a

standard MNL choice model, and the latter corresponds to boundary types, whose

standard MNL parameters become unbounded, resulting infinite utility for some op-

tions and zero for the rest. As illustrated in Figure 3-2, the grey area is P ; the grey

area together with the black boundaries form P .

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

q(1)

g(1)

q(2)

g(2)

Algorithm return: g(0), q(1), q(2)

Ground truth: q∗
1 , q

∗
2 , q

∗
3

Figure 3-2: Intuition: the original FW algorithm

Such broad search space Conv(P) in FW generates mixture compositions with a

considerable number of the boundary types. More specifically, this problem is rooted
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to the linear subproblem solved at each support finding step, whose optimal solution

always lies on the extreme point (or the sides) of the feasible region which contains

many of these limiting choice probability vectors ∈ P \ P as its extreme points, e.g.

q(1) and q(2) in Figure 3-2. In addition, they can be very far from the ground truth.

Often, each limiting choice probability vector corresponds to an unbounded βk and

cause the learning outcome unusable for downstream applications. Though significant

effort is made to justify the legitimacy of these boundary types in the paper, the

convergence result only applies to the population’s aggregate choice probability, i.e.

ĝ →
∑

k αkqk, which is an Frank-Wolfe property. In other words, their method fails

to recover each of the individual logit models and the corresponding mixture weights

accurately.

3.2.2 The SSRFW Algorithm

To remedy the issue present in the original FW and seek convergence guarantees for

the actual MMNL estimation problem, we designed the Stochastic Subregion Frank-

Wolfe (SSRFW), as shown in Algorithm 3.

Algorithm 3: Stochastic Subregion Frank-Wolfe

Input: data y, Q from Algorithm 4
Initialization: k = 0; α(0) = [1], a random g(0) = q(0) chosen from Q

1 while stopping condition not met do
2 k ← k + 1

3 Compute q = argmin
v∈Conv(Q)

⟨∇L
(
g(k−1);y

)
,v − g(k−1)⟩

4 Update g(k) := α
(k)
0 g(0) +

k∑
s=1

α(k)
s q(s) Compute

α(k) = argmin
α∈Δk

L

(
α
(k)
0 g(0) +

k∑
s=1

α(k)
s q(s)

)
5 end

Output: choice prob. q(0), . . . , q(k)

mixture weights. α(k) ∈ ∆k ⊂ Rk+1

It takes in an additional input Q from the Q Construction Algorithm (discussed

in detail in Section 3.2.3), which is the key to eliminate the possibility of producing
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boundary types. In particular, the new feasible region Conv(Q) (grey area in Figure

3-3) is a subset of Conv(P), where each element q ∈ Q will be learned from data

and is guaranteed to be within an ϵ-ball of the true choice probability vector for some

mixture type with high probability, as shown in Figure 3-3.

(0, 1, 0)

(1, 0, 0) (0, 0, 1)

y

g(0)

Ground truth: q∗
1 , q

∗
2 , q

∗
3

Figure 3-3: Intuition: the SSRFW algorithm

Subsequently, this also ensures the SSRFW algorithm to recover the mixture weight

for each latent class. Note that the extreme points of Conv(Q) by definition is a

subset of Q. Since we only care about the extreme points of the feasible region, we

can safely ignore any points ∈ Conv(Q)\Q and replace Conv(Q) with Q in Algorithm

3.

Since Frank-Wolfe will converge to the optimal solution [Jaggi, 2013], and as we

will see in Section 4 that the optimal solution to problem (3.1) is an interior point of

the feasible region Conv(Q), the stopping condition can simply be set as ∥g(k)−y∥≤ ϵ.

3.2.3 The Q Construction Algorithm

Our primary goal in this section is to learn the input set Q for SSRFW (Algorithm

3). In particular for this set Q = {q̂ℓ}l=1,...,L, we require that ∀ q̂ℓ, there exists some

mapping π : [L] → [K] such that
∥∥q̂ℓ − qπ(ℓ)

∥∥ ≤ ϵ, where qπ(ℓ) is one of the ground
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truth logit vectors. Once this property holds, each of the SSRFW ’s q outputs will also

be ϵ-close to some true choice probability vector as the algorithm always selects an

extreme point of Conv(Q) in each iteration.

The two major components for the Q Construction Algorithm is first computing

a distance score matrix and then creating subsamples that contain decision makers

from only one mixture type through random seeding and non-uniform sampling. The

final part in this subsection presents the algorithm and discusses the properties of the

learning outcomes.

Distance Score Matrix We first define a distance score matrix S, whose element

sij measures the dissimilarity between any two decision makers i and j in term of

their choice decisions. Recall that each x
(t)
i are realizations of i.i.d random variables

with pmf qk if i is of mixture type k. Denote its associated empirical cumulative

distribution function (CDF) as FT (x; i) when a total of T decisions are observed. In

particular,

FT (x; i) =
1

T

T∑
t=1

1{x(t)
i ≤x}, x ∈ [M ]

Define the distance score function for each pair of decision makers as

sij := s(i, j) = ||FT (x; i)− FT (x; j)||∞

where || · ||∞ represents the infinity norm.

Subsample Construction We now want to create a number of subsamples such

that each subsample of decision makers contains only one mixture type with high

probability. Each of these subsamples is generated following a procedure that contains

a random seeding step, and a subsampling step. These steps are repeated L times to

create a Q set of size L.

� Random Seeding.

This step randomly samples a decision maker i ∈ [N ] from the population and

can be done with simple uniform sampling technique. The selected decision
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maker is called a seed. We will generate L seeds and later investigate how large

L needs to be in order to cover all mixture types in Q.

� Subsampling Strategy.

This step generates an index set I(i) for a seed i such that, with high probability,

decision makers whose indices belonging to this set are of the same type as i.

I(i) is called the subsample originated from seed i.

Given a selected seed i, we first calculate an accepting probability pj|i which

determines the likelihood of another decision maker j being accepted to the

corresponding subsample I(i). It is designed to be a monotonically decreasing

function with respect to the distance score we defined earlier:

pj|i = f (s(i, j))

A simple example can be pj|i = 1 − s(i, j). Intuitively, when s(i, j) is small,

seed i and decision maker j’s empirical CDF is close to each other, indicating

there is a higher chance that they are of the same type and sharing the same

choice probability q. Subsequently, pj|i will be larger compared to a large value

of s(i, j′) for another person j′, resulting we accept j with higher probability

than j′. This is consistent with our objective that we want each subsample to

be composed of decision makers of the same type as the seed.

For implementation, we first initiate an empty index set I(i) for the selected

seed i. Then we repeat the following two steps until we reach a desired subsam-

ple size n: 1) draw a random sample from set [N ] \ I(i), 2) accept this sample

into the index set with probability pj|i and reject with 1− pj|i.

Algorithm and Properties The remaining step is to obtain the set Q whose

elements q̂ℓ are computed as the average of historical choice decisions from decision

makers in the subsamples Iℓ, i.e. q̂ℓ =
1

nT

∑
i∈Iℓ

T∑
t=1

Y
(t)
i . Finally, we present the Q

Construction Algorithm in Algorithm 4.
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Algorithm 4: The Q construction algorithm

Input: score matrix S, number of subsamples L, subsample size n
Initialization: Q = set()

1 for ℓ← 1 to L do

2 Choose seed: i ∼ U(0, N)
3 Initiate: Iℓ = set()
4 while |Iℓ| ̸= n do

5 j ← random_sample([N ] \ Iℓ)
6 Generate u ∼ U(0, 1)
7 if u < pj|i then
8 Iℓ.add(j)
9 end

10 end

11 Compute q̂ℓ =
1

nT

∑
i∈Iℓ

T∑
t=1

Y
(t)
i

12 Q.add(q̂ℓ)

13 end

Output: Q

Next, we discuss a few properties of the two algorithms. SSRFW returns the logit

vectors q instead of the parameters β. We can simply perform maximum likelihood

estimation under the single MNL setting where, if the extreme point corresponding

to subsample ℓ is selected during an SSRFW iteration, the log-likelihood is

lℓ(β) = −
T∑
t=1

∑
i∈Iℓ

∑
j∈[M ]

Y
(t)
ij

(
log

exp(β⊤zj)∑
m∈[M ] exp(β

⊤zm)

)

and we have β̂ℓ = argmaxβ lℓ(β). With the assumption of linear utility in β, we can

obtain the optimal solution using MLE (c.f. McFadden and Train [2000]).

In general, we prefer learning βk’s compared to qk’s. This makes the algorithm

more robust when item attributes change over time which results in change in the

qk’s whereas βk values persist. To achieve this, we just need to add two additional

steps after the index set is created:

� MNL parameter estimation: apply the MLE step outlined above; create

B = {β̂ℓ}ℓ=1,...,L
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� Map B to Q: fix item attributes of current interest, calculate Q = {q̂|q̂ =

q(β̂ℓ), β̂ℓ ∈ B}

Next, stochasticity in our algorithm comes from two parts, namely the realization

of each decision makers’ choices, as well as the randomness in the process of generating

subsamples. Yet we will show that under appropriate assumptions, SSRFW can still

recover all individual mixture parameters with high probability.

In addition, we do not impose any restriction on the subsamples created during

Q construction to be mutually exclusive. As long as they only contain one single

mixture type (i.e., with high purity), it creates a legitimate estimation of q̂ or β̂ with

MLE.

Last but not least, this is a more robust strategy than clustering algorithms to

segment the population. Not only do we not require the number of mixtures K as

a hyper-parameter, each decision maker’s data being used more than once for the

estimation can be thought of as a special bootstrap mechanism that has custom

weights tailored to our objective in creating homogeneous subsamples.

3.3 Theory of the SSRFW Algorithm

We first state the main result of our algorithm.

Theorem 3.1. Let g =
∑K

k=1 αkqk be a mixed multinomial logit (MMNL) model over

a set of M items. Assume M ≥ K. For any ϵ > 0, 0 < δ < 1, Algorithm 3 outputs

an MMNL ĝ =
∑K′

k=1 α̂kq̂k where K ′ ≥ K such that, with probability ≥ 1 − δ, there

exists a many-to-one mapping π : k′ 7→ k, k′ ∈ [K ′], k ∈ [K] such that

∥∥q̂k′ − qπ(k′)

∥∥ ≤ ϵ,∀ k′,

and ∣∣∣∣∣∣
∑

k:π(k′)=k

α̂k′ − αk

∣∣∣∣∣∣ ≤ ϵ,∀ k.

The number of samples required by Algorithm 1 is O( 1
ϵ2
log(1

δ
)).
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We will divide the proof into two parts: 1) how to derive the provable convergence

from the properties of Frank-Wolfe and the stochastic subregion construction and 2)

how to analyze the sample complexity.

3.3.1 Provable Convergence

Assume K ′ is the total number of iterations that the algorithm has performed before

reaching the stopping criteria. To simplify notation, we denote the generated outcome

from k-th iteration q(k) in SSRFW as q̂k to indicate they are the estimators and the final

updated mixture weight corresponding to q(k), α
(K′)
k , as α̂k. In other words, we have

gSSRFW =
∑K′

k′=1 α̂k′ q̂k′ , We use a similar notation gFW for the original FW approach.

We outline the proof sketch for Theorem 3.1 in Figure 3-4, which shows how we

break down to smaller components and prove them individually. Note that all the

statements hold in a provable way, meaning it happens with probability 1 − δ given

enough data, where the number of data points required is a function of both δ and ϵ,

which we will discuss in the following section.

Property 1:

|gFW −
∑

k αkqk| ≤ ϵ

Property 2:

∀ k′, q̂k′ ∈ E(Conv(P))

Property 3:∑
k αkqk ∈ Conv(Q)

Property 4:

∀ q ∈ E(Conv(Q)),∃ k

s.t. ∥q − qk∥ ≤ ϵ

|gSSRFW −
∑

k αkqk| ≤ ϵ

∀ k′,∃ k = π(k′)

s.t. |q̂k′ − qk| ≤ ϵ

∣∣∣∣∣∣
∑

k′:π(k′)=k

αk′ − αk

∣∣∣∣∣∣ ≤ ϵ, ∀ k

FW properties SSR properties

Figure 3-4: Proof sketch of Thoerem 3.1

In Figure 3-4, Property 1 and 2 (purple boxes) are adapted from existing results

of the Frank-Wolfe framework [Jaggi, 2013]. We prove Property 1 in Lemma 3.1.

Property 2 follows from the fact that each of the q̂k′ , obtained by solving a linear

optimization problem, has to be an extreme point (denoted by E(·)) of the feasible
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region.

On the other hand, Property 3 and 4 (red boxes) hold as a consequence of the

stochastic subregion we constructed in Algorithm 4. Property 3 claims that with high

probability, the ground truth aggregated choice probability vector is still an interior

point of the shrunken feasible region Conv(Q). We will prove this using Corollary

3.2. Together with Property 1, this tells us that |gSSRFW −
∑

k αkqk|≤ ϵ. That is to

say the aggregated choice probability vector of SSRFW also converges to the ground

truth. To achieve Property 4 from the Q construction algorithm, we need to supply

enough of data, the details of which will be discussed in the sample complexity part.

Combining Property 2 and 4, we have ∀ k′,∃ k = π(k′) s.t. |q̂k′ − qk|≤ ϵ. Finally, by

doing some algebraic manipulation, we can obtain |
∑

k′:π(k′)=k αk′ − αk|≤ ϵ.

In particular, Lemma 3.1 and Corollary 3.2 established Property 1 and 3 as shown

in the figure, which in turn result in |gSSRFW −
∑

k αkqk| ≤ ϵ. On the other hand, recall

that each of the q̂k′ is an extreme point (denoted by E(·)) of the feasible region from the

Frank-Wolfe framework (Property 2). Together with the property that each element

in Q is ϵ-close to some true choice probability vector (Property 4) as a direct result

of the Q construction algorithm, we have ∀ k′,∃ k = π(k′) s.t. |q̂k′ − qk| ≤ ϵ. Finally,

by doing some algebraic manipulation, we can obtain
∣∣∣∑k′:π(k′)=k αk′ − αk

∣∣∣ ≤ ϵ.

Lemma 3.1. Denote g∗ as the optimal solution to the Stochastic Subregion Frank-

Wolfe algorithm and g(k) denote the k-th iterate generated by Algorithm 1. Then

L(g(k))− L(g∗) ≤ 4

k + 2

for all k ≥ K.

Proof. This Lemma follows directly from the existing results of the original Frank-

Wolfe algorithm and its variants [Jaggi, 2013], which states that for an optimization

problem minx∈D f(x) where f is a convex and continuously differentiable function

and that the domain D is a compact convex set of any vector space, then for each
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k ≥ 1, the iterates x(k) of the fully-corrective Frank-Wolfe algorithm satisfy:

f(x(k))− f(x∗) ≤ 2 · Cf

k + 2
(3.2)

where Cf , defined as

Cf := sup
x,s∈D
γ∈[0,1]

r=x+γ(s−x)

2

γ2
(f(r)− f(x)− ⟨∇f(x), r − x⟩) ,

is the curvature constant, which measures the “non-linearity” of function f over do-

main D. The type of the Frank-Wolfe we use in Algorithm 3 is precisely the fully-

corrective variant in that we optimize for α’s in each iteration.

Claim 3.1. L(g;y) = ||g − y||2 is a twice differentiable convex function. Conv(Q)

is a compact convex set.

The first statement in Claim 3.1 is true by definition. The second statement can

be shown by observing that Q is a finite set, hence compact, followed by the fact that

convex hulls of compact set are compact.

For squared loss function L used in our model, Jagabathula et al. [2020] proved

that CL ≤ 2. The result of Lemma 3.1 follows by plugging CL into Equation 3.2.

Note that with enough sample, we also have ∥y −
∑K

k=1 αkqk∥≤ ϵ by the law of

large numbers, which leads to gSSRFW converges to
∑K

k=1 αkqk with high probability.

This shows that Frank-Wolfe can reach any tolerance level ϵ with enough number of

iterations by setting appropriate stopping criteria.

Lemma 3.2 (Wendel [1962]). If X1, . . . , Xn are i.i.d. random points in Rd whose

distribution is symmetric with respect to the center O and assigns measure zero to

every hyperplane through O, then

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1− 1

2n−1

d−1∑
k=0

(
n− 1

k

)
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Lemma 3.2 is an interesting result from stochastic geometry, which states that if

we randomly sample n points in a d-dimensional ball, the probability that the convex

hull formed using these points contains the center point can be computed using the

above formula.

Corollary 3.1.

limn→∞ P
(d)
n (O ∈ Conv{X1, . . . , Xn}) = 1

Proof. When n ≥ 2d − 1,
(
n−1
k

)
is a monotonically increasing function of k for k =

0, . . . , d− 1. We then have

d−1∑
k=0

(
n− 1

k

)
≤ d

(
n− 1

d− 1

)
≤ d

(n− 1)d

(d− 1)!

Therefore, when n ≥ 2d− 1,

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1− 1

2n−1

d−1∑
k=0

(
n− 1

k

)
≥ 1− d

(d− 1)!

(n− 1)d

2n−1

Since limn→∞
(n−1)d

2n−1 = 0, we get

lim
n→∞

P (d)
n (O ∈ Conv{X1, . . . , Xn}) = 1

Corollary 3.2.

With high probability, Conv({qk}1,...,K) ⊆ Conv(Q)

The proof of Corollary 3.2 will be included in the proof of Theorem 3.1 in Subsec-

tion 3.3.3. We will also quantify what “high probability” it is referring to. Corollary

3.2 establishes the fact that g =
∑K

k=1 αkqk ∈ Conv({qk}k=1,...,K) ⊆ Conv(Q) with

high probability. We illustrate this idea in Figure 3-5 for an intuitive understanding.

For each mixture type k, with enough data points, we have with probability 1− δ,

∀ℓ such that π(ℓ) = k, q̂ℓ is within an ϵ-ball of qk given sufficient number of samples.

In addition, according to Lemma 3.2, with high probability, such convex hull (small
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∑K
k=1 αkqk

true qk

q̂ℓ ∈ Q

Figure 3-5: Constructed convex hull using logit vectors generated from subsamples

regions with green firm lines for each k) contains the ground truth choice probability

vector qk, i.e. qk ∈ Conv({qℓ ∈ Q|π(ℓ) = k}). Since the true aggregated choice

probability
∑K

k=1 αkqk is a convex combination of qk’s (so it is in the blue shaded

region) and
⋃

k Conv({qℓ ∈ Q|π(ℓ) = k}) ⊂ Conv(Q), we have Conv(Q) encloses the

blue region and
∑K

k=1 αkqk is an interior point of Conv(Q).

Next, we move on to discuss the sample complexity and how that establishes

Property 4, before we prove the main result.

3.3.2 Sample Complexity

Recall we use T as the number of choice data records for each decision maker. Denote

Tmin as the minimum number required and Tmin ≥ 1.

Define in-types to be the decision makers who share the same type as the seed, and

out-types to be the ones of different types. We focus on the following three properties:

� probability of accepting the in-types,

� probability of rejecting the out-types,

� probability of covering all mixture types.
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Consider a seed i, with type ki = k. Assume there is a total of mk decision makers

in the population that is of type k.

Accepting In-Types. Denote the empirical choice probability for the seed i as

Fn and that for another decision maker j as Gm, with n and m representing the

number of independent price experiments from i and j, respectively. Recall that

s(i, j) = ||Fn(x) − Gm(x)||∞ = supx |Fn(x) − Gm(x)|. For exposition simplicity, we

use F and G to denote F (x) and G(x) in the subsequent presentation if no confusion

incurred.

We first extend the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality with the fol-

lowing Lemma, where both CDFs in the inequality are empirical.

Lemma 3.3. Let Fn and Gm be independent empirical distribution based on m and n

i.i.d. samples drown from a common cumulative distribution F (·). Denote min{m,n}

as Tmin. We have

P
(
sup
x
|Fn(x)−Gm(x)| > ϵ

)
≤ 4 exp

(
−1

2
Tminϵ

2

)

Proof. Lemma 3.3 differs from the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality

in that it investigates the tail probability of the maximum difference between two

empirical distributions. By DKW, we know that

P
(
sup
x
|Fn(x)− F (x)| > ϵ

)
≤ 2 exp

(
−2nϵ2

)

P
(
sup
x
|Gm(x)− F (x)| > ϵ

)
≤ 2 exp

(
−2mϵ2

)
if Fn and Gm are empirical distributions of samples drawn from their true distribution
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function F and G respectively. We can show

P
(
sup
x
|Fn − F |+ sup

x
|Gm − F | > ϵ

)
(3.3)

≤ 1− P
(
sup
x
|Fn − F | ≤ ϵ

2
∩ sup

x
|Gm − F | ≤ ϵ

2

)
≤ 1−

(
1− 2 exp

(
−1

2
nϵ2
))(

1− 2 exp

(
−1

2
mϵ2

))
≤ 4 exp

(
−1

2
Tminϵ

2

)

where the first inequality makes use of the fact that supx |Fn−F |+supx |Gm−F | > ϵ

implies that either supx |Fn − F | > ϵ
2
or supx |Gm − F | > ϵ

2
. The second inequality

comes from the independent assumption between Fn and Gm. On the other hand, we

also have

sup |Fn − F |+ sup |F −Gm| (3.4)

≥ sup |Fn − F |+ |F −Gm|

≥ sup |Fn − F + F −Gm|

= sup |Fn −Gm|

Combining (3.3) and (3.4), we can obtain

P(sup
x
|Fn(x)−Gm(x)| > ϵ)

≤ P(sup
x
|Fn(x)− F (x)|+ sup

x
|Gm(x)− F (x)| > ϵ)

≤ 4 exp

(
−1

2
Tminϵ

2

)
.

Theorem 3.2 (Sample Complexity I). Assume i and j are of the same type. Define

pj|i = 1 − s(i, j). ∀δ > 0, ϵ > 0, we can achieve pj|i > 1 − ϵ with probability at least

1− δ with sample size Tmin = O( 1
ϵ2
log
(
1
δ

)
).

Proof. For simpler notation, denote s(i, j) = s. Since i and j are of the same consumer
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type k, Fn and Gm are empirical distributions based on n and m samples drawn from

the same distribution qk. According to Lemma 3.3,

P(pj|i > 1− ϵ) = P(s < ϵ) ≥ 1− 4 exp(−1

2
Tminϵ

s)

Let δ = 4 exp(−1
2
Tminϵ

2), we have Tmin = O( 1
ϵ2
log 1

δ
).

Theorem 3.2 indicates that with sufficient amount of data, there is a high proba-

bility to accept a in-type—who shares the same type as the seed—into the subsample

if it is chosen from the population after the random draw.

Rejecting Out-Types. Assume a decision maker j is of a different type from

the seed i. We use F and G to denote their CDFs. Let Fn and Gm represent

the corresponding empirical CDFs based on samples drawn from the two different

distributions with sample size n and m, respectively. s(i, j) is defined the same as

before.

Theorem 3.3 (Sample Complexity II). Assume F and G correspond to the choice

CDFs of two different types and supx |F (x)−G(x)| ≥ ξ. Let Fn and Gm be indepen-

dent empirical distribution based on m and n i.i.d. samples drawn from F and G,

respectively. Denote Tmin = min{m,n}. Define pj|i = 1 − s(i, j). ∀δ > 0, ϵ > 0, we

can achieve pj|i < 1− ξ + ϵ with probability at least 1− δ with Tmin = O( 1
ϵ2
log 1

δ
).

Proof. By definition,

ξ ≤ supx |F −G|

≤ supx |F − Fn + Fn −Gm +Gm −G|

≤ supx |F − Fn|+ supx |Fn −Gm|+ supx |Gm −G|

(3.5)
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Therefore,

P(sup
x
|Fn −Gm| ≤ ϵ) (3.6)

≤ P(sup
x
|F − Fn|+ sup

x
|Gm −G| > ξ − ϵ)

≤ P(sup
x
|F − Fn| >

ξ − ϵ

2
∪ sup

x
|G−Gm| >

ξ − ϵ

2
)

= 1− P(sup
x
|F − Fn| ≤

ξ − ϵ

2
)P(sup

x
|G−Gm| ≤

ξ − ϵ

2
)

≤ 4 exp

(
−2Tmin

(
ξ − ϵ

2

)2
)

where the first inequality is based on (3.5) and the second inequality makes use of the

fact that supx |Fn−F |+supx |Gm−F | > ξ−ϵ implies that either supx |Fn−F | > ξ−ϵ
2

or

supx |Gm − F | > ξ−ϵ
2
. The equality comes from the independent assumption between

Fn and Gm. The last inequality is from the DWK inequality.

We want to restrain the sampling probability such that pj|i = 1 − s is within

ϵ-radius of the smallest possible sampling probability, which is 1− ξ, i.e.

P(1− s < 1− ξ + ϵ) = P(s > ξ − ϵ)

= 1− P(s ≤ ξ − ϵ)

≥ 1− 4 exp

(
−2Tmin

( ϵ
2

)2)

as a result of Equation 3.6.

Let δ = 4 exp(−1
2
Tminϵ

2). Then we have Tmin = O( 1
ϵ2
log 1

δ
).

Theorem 3.3 complements Theorem 3.2 to rule out the out-types from being se-

lected with a high probability. The more separable (larger ξ) their underlying distri-

butions are, the lower accepting probabilities are.

Lemma 3.4. For ϵ > 0 and 0 < δ < 1, with minimum of choice records T required

by Theorem 3.2 and Theorem 3.3, ∀ qℓ ∈ Q,
∥∥qℓ − qπ(ℓ)

∥∥ ≤ ϵ with probability at least

1− δ, where q̂ℓ =
1
nT

∑
i∈Iℓ

∑T
t=1 Y

(t)
i .
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Proof. Based on Theorem 2, for in-type decision makers, we can achieve P(supx |FT (x)−

F (x)| ≤ ϵ) > 1− δ with enough samples, where F (x) is the CDF of qk and FT (x) is

the empirical CDF. In addition, the sampling probability for in-types is at least 1− ϵ.

Subsequently, we can show, ∀x,

P

(∣∣∣∣∣ 1T
T∑
t=1

Y
(t)
ix − qkx

∣∣∣∣∣ ≤ ϵ

)
> 1− δ

if i is in-type.

For out-type decision makers, Theorem 3 states, if i′ is of mixture k′ and with

enough samples, we have

P

(
−ϵ+ ξ <

∣∣∣∣∣ 1T
T∑
t=1

Y
(t)
i′x − qkx

∣∣∣∣∣ < ϵ+ ξ

)
≥ 1− δ,∀x,

where supx |F (x) − G(x)| = ξ ≥ ϵ (Definition 1) and F (x) and G(x) are CDFs for

mixture k and k′ respectively.

On the other hand, note that the sampling probability is upper bounded by 1−ξ+ϵ

for out-type. This implies that if ξ is large, then it is unlikely that an out-type will be

added to the subsample while if ξ is small,
∣∣∣ 1T ∑T

t=1 Y
(t)
i′x − qkx

∣∣∣ becomes negligible. In

particular, setting ϵ such that ϵ < ξ
2
can make sure that out-type sampling probability

is less than 1− ϵ while for in-type, it is least 1− ϵ with high probability. By doing so,

we can distinguish between in-type and out-type and obtain Iℓ such that it contains

only in-type with high probability given enough samples.

Lemma 3.4 states that with enough data samples, the Q-construction algorithm

achieves Property 4, as shown in Figure 3-4, which SSRFW’s desired provable conver-

gence builds upon.

Sample complexity vs computational complexity. As a final remark, we dis-

cuss the number of subsamples (i.e. L) needed in the Q-construction process. We

distinguish this from sample complexity as we are not requesting more data points

with a larger L. Instead, we should view L as a computation complexity factor. Recall
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that each moving direction derived from the support finding step is viewed as a learned

logit vector of one mixture component. Therefore, we want the Q-construction algo-

rithm to include at least one q̂ℓ for each mixture k in order for it to be picked in SSRFW

. This impose a requirement on L. Theorem 3.4 states that the expected number of

the number of subsamples is controlled by the smallest mixture weight.

Theorem 3.4. Assume α1 ≤ α2 ≤ · · ·αK. The expected number of subsamples L we

need to construct is bounded by 1
α1

log 1
α1
.

Intuitively, this means if we have one mixture component that is very under-

represented, then we need to create more subsamples to ensure that one of the seeds

belongs to this mixture.

Proof. As in Algorithm 3, we use L as the number of subsamples we need to construct.

Let Lk be the number of subsamples needed to hit the k-th mixture type after k − 1

types of seeds have been selected. We have L = L1 + · · ·+ LK .

We first construct a simple and fake scenario where we have K ′ mixture types

with each mixture weight equal to α1, i.e. K ′ = 1
α1
. Similarly, we can define L′ and

L′
k as above and also have L′ = L′

1 + · · · + L′
K′ . Think of L′ and L′

k, k = 1, . . . , K ′

as random variables and we know the probability of selecting a seed from a new type

k is pk = K′−k+1
K′ since in the fake scenario, each type has the same probability α1

of being chosen. This tells us that L′
k has a geometric distribution with expectation

1
pi
= K′

K′−k+1
.

By the linearity of expectations we have

E[L′] = E[L′
1 + L′

2 + · · ·+ L′
K′ ]

= E[L′
1] + E[L′

2] + · · ·+ E[L′
K′ ]

=
K ′

K ′ +
K ′

K ′ − 1
+ · · ·+ K ′

1

= K ′ ·
(
1

1
+

1

2
+ · · ·+ 1

K ′

)
= K ′ ·HK′
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where H ′
K is the K ′-th harmonic number. Using the asymptotics of the harmonic

numbers, we get

E[L′] ≈ K ′ log(K ′) =
1

α1

log(
1

α1

)

Since α1 ≤ · · · ≤ αK , we know K ′ ≥ K. On the other hand, we know the

E[Lk] ≤ E[L′
k] since there is a higher probability of choosing any mixture type k ≥ 2,

due to the same reason, i.e. αk ≥ α1. Therefore, we have E[L] ≤ 1
α1

log( 1
α1
)

We can further characterize the probability of event H, which describes the event

that all mixture types are included in the constructed set Q by creating L subsamples.

Claim 3.2. For any δ > 0, we have P(HL) ≥ 1 − δ with L chosen according to the

criteria described below.

Proof. Denote ZL
k as the event that k-th mixture type is not being chosen as seed in

the L trials. Similarly, we can define Z
′L
k for the fake scenario as described above.

We then have

P(ZL
k ) = (1− αk)

L ≤
(
1− 1

K ′

)L

= P(Z ′L
k ) ≤ e−

L
K′

DenoteWk as the event that the convex hull formed by the set {q̂ℓ =
1
nT

∑
i∈Iℓ

∑T
t=1 Y

(t)
i |π(i) =

k} for mixture type k covers the true choice probability vector. Note that each

1
T

∑T
t=1 Y

(t)
i can be viewed as a sample mean of qk and by central limit theorem, it

is symmetric with respect to qk, hence so are the q̂ℓ’s. According to Lemma 3.2 and

Corollary 3.1,

P(Wk) = 1− 1

2Lk−1

d−1∑
i=0

(
Lk − 1

i

)
≥ 1− d

(d− 1)!

(L− 1)d

2L−1
when L ≥ 2d− 1
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Putting everything together, we have

P(H) =
(
1− P(∪Kk=1Z

L
k )
)
P(∩Kk=1Wk) (3.7)

≥
(
1− P(∪K′

k=1Z
L
k )
)(

1− 1

2L−1

d−1∑
i=0

(
L− 1

i

))K

(3.8)

≥
(
1− 1

α1

e−Lα1

)(
1− d

(d− 1)!

(L− 1)d

2L−1

)K

(3.9)

For any δ > 0, we can then choose L such that 1 − δ ≤ RHS of Equation (11) and

L ≥ 2d− 1.

We can now conclude that according to Theorem 3.2, Theorem 3.3, the sample

complexity is O( 1
ϵ2
log(1

δ
)) for the SSRFW algorithm.

3.3.3 Proof of the Main Theorem

We first discuss Corollary 3.2 and what “high probability” refers to.

Denote Wk as the event that the convex hull formed by the subsamples for a

mixture type k covers the true choice probability vector. If we have subsampled all

mixture types and for each type k, event Wk occurs, we can obtain qk ∈ Conv(Q).

Subsequently, we have Conv({qk}1,...,K) ⊆ Conv(Q).

On the other hand, we have already analyzed the probability for event that sub-

sampled all mixture types and Yk occurs ∀k to occur, which is precisely HL as defined

above. Specifically, it happens with probability≥
(
1− 1

α1

e−Lα1

)(
1− d

(d− 1)!

(L− 1)d

2L−1

)K

.

As L increases, this number quickly increases to 1. This completes the proof of Corol-

lary 3.2. Finally, we combine all the results above and prove the provable convergence

part in Theorem 3.1.

Proof. As illustrated in Figure 3-4, we want to show with probability ≥ 1−δ we have

S.1 |gSSRFW −
∑

k αkqk|≤ ϵ

S.2 ∀ k′, ∃ k = π(k′) s.t. |q̂k′ − qk|≤ ϵ

S.3 |
∑

k′:π(k′)=k αk′ − αk|≤ ϵ
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First, S.1 is proved by Lemma 3.1 (Property 1: |gFW−
∑

k αkqk|≤ ϵ) and Corollary

3.2 (Property 3:
∑

k αkqk ∈ Conv(Q)), together with the fact that P
(
| 1
T

∑T
t=1 y

t −
∑

k αkqk|≤ ϵ
)
>

1− δ by central limit theorem. Since
√
T ( 1

T

∑T
t=1 y

t−
∑

k αkqk)
d→ N (0, σ2), number

of samples required is also in the order of 1
ϵ2
log(1

δ
).

Second, S.2 is also a combined result by Frank-Wolfe’s solving a linear program as

an intermediate step (Property 2: ∀ k′, q̂k′ ∈ E(Conv(P)), E(·) denoting the extreme

point set of the input region) and by construction using Algorithm 4 (Property 4:

∀ q ∈ E(Conv(Q)),∃ k s.t. ∥q − qk∥≤ ϵ).

Subsequently, we can show S.3. Denote K ′ as the number of mixtures output by

the SSRFW algorithm. Using S.1, we first write

|
K′∑
k′=1

α̂k′ q̂k′ −
K∑
k=1

αkqk|≤ ϵ′ (3.10)

According to S.2, ∃ π such that π(k′) = k and we can write q̂k′ = qπ(k′) + ϵ′ where

|ϵ′|≤ ϵ′. Rearranging Eq. (3.10) gives

|
K∑
k=1

qk

 ∑
k′:π(k′)=k

α̂k′ − αk

+
K′∑
k′=1

α̂k′ϵ
′|≤ ϵ′ (3.11)

By triangle inequality, we get

|
K∑
k=1

qk

 ∑
k′:π(k′)=k

α̂k′ − αk

 |−ϵ′ ≤ ϵ′

Since qk is some arbitrary non-zero vector, we must have
(∑

k′:π(k′)=k α̂k′ − αk

)
≤ 2ϵ′,

∀ k, which completes S.3 by letting ϵ = 2ϵ′.

Note the above result holds assuming K ′ ≥ K. To see why this is always the case,

consider the linear system Qx = [q1q2 . . . qK ][x1, x2, . . . , xK ]
⊤ = g, where Q ∈ RM×K

and g =
∑K

k=1 αkqk. According to Definition 1, DKS(qk, qk′) ≥ ϵ, we know that all

qk’s are linearly independent. Since M ≥ K, rank(Q) = rank(Q|g) = K. The linear

system has a unique solution that x = α, where all xk’s are non-zero. On the other
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hand, we have gSSRFW =
∑K′

k′=1 α̂k′ q̂k′ and ∥gSSRFW − g∥≤ ϵ. Assume K ′ < K, then

upto a difference of ϵ, the linear system Q̂x = g, where Q̂ =

[
q̂1q̂2 . . . q̂K′

]
∈ RM×K′

,

is inconsistent. In other words, we will not be able to obtain a gSSRFW that is ϵ-close

to g, making it impossible to reach the stopping condition in the SSRFW algorithm.

Therefore, the algorithm will keep going for more iterations, until we have at least

K ′ = K.

Finally, according to Theorem 3.2, Theorem 3.3, the sample complexity isO( 1
ϵ2
log(1

δ
)).

Additional discussion. In the proof, we showed that number of mixtures returned

by SSRFW ,K ′, is at least the ground truth number of mixtures, K. A natural question

to ask is that how the misaligned number of mixtures affect the learning result, if

K ′ ̸= K. In many situations, this would not be a problem.

Consider the case that ∃k1, k2, such that π(k1) = π(k2) = k while the rest are all

one-to-one mapping. According to Theorem 3.1, we have P(|qki−qk|< ϵ) ≥ 1− δ, for

i = 1, 2 and P(|αk1 + αk2 − αk|< ϵ) ≥ 1 − δ. We can view the ground-truth MMNL

model as an (M + 1)-MNL model, where the original k-th mixture is now divided

into two MNL components which share the identical logit parameters, where one of

them has mixture weight αk1 and the other one αk − αk1 . It is not hard to see that

for the first component, we learned the correct mixture weight with an ϵ-close logit

vector q̂k1 while for the second, the mixture weight is off by at most ϵ with an ϵ-close

logit vector q̂k2 .

Finally, we give some comment on the mapping function π. Note that we do

not need this information other than using it as a tool in the proofs, though we can

design heuristics to learn the mapping. In real world applications, we do not know

the ground truth parameters, so we cannot derive such mapping anyways. On the

other hand, if we run the algorithm multiple times, we will get different results due

to the stochasticity embedded in the algorithm. In general, the lexicographic order of

the mixtures is not important and can be reordered arbitrarily. This is referred to as

“label swapping” for mixture model learning problems but in general it can be safely
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ignored.

To summarize, SSRFW mainly benefits from making better utilization of the per-

sonal level choice data. Such data are called panel data in statistics and econometrics

and commonly used for longitudinal studies. In the next chapter, we will demonstrate

how to apply our algorithm in both simulation studies and real world panel datasets.
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Chapter 4

Numerical Experiments and Case

Studies

In this chapter, we will demonstrate the advantage of SSRFW over the original FW al-

gorithm in several settings. First, we will conduct simulation studies, which allows us

to compared the learning outcome to the ground truth values. Second, we will apply

both algorithms to the Nielsen Consumer Panel Data and report different statistics

for performance comparison.

4.1 Simulation Studies

4.1.1 Data Generation

We generate the data using the following set of hyperparameters:

� Choice set size: M = 10 with an offset option 0

� Population size: N = 2000

� Number of mixtures: K = 5, denoted as "A", "B", "C", "D", "E"

� Feature vector dim: d = 10

� Time periods: T ∈ [5, 300] with increment of 5
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� Number of seeds: L = 75 (cardinality of Q)

Note that we also include the offset option to allow the possibility of choosing

nothing from the option set. This is a more realistic case in many real world applica-

tions.

Attributes of different options and preference vector βk’s are randomly generated

in the interval [−1, 1]. αk’s are randomly generated such that
∑

k αk = 1 and the

minimum mixture proportion mink αk ≥ 1
K+3

to ensure that not a particular type is

under-represented. We set L = 75.

Sample Purity

After running Algorithm 4, we obtain a candidate set Q of choice probability vectors

q, corresponding to each subsample. This will then be fed into the SSRFW algorithm.

Since the SSRFW algorithm chooses moving direction from this candidate set, a high

quality Q will directly affect the learning outcome of SSRFW . Therefore we report

the subsample purity as an intermediate performance measure. The intuition lies in

that if a subsample has higher purity, i.e., more decision makers in the set are of the

same type, the higher the chance that it is closer to the true value associated with

the majority type within this sample.

Figure 4-1: Average subsample purity
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Figure 4-1 shows the average subsample purity with respect to the number of

repetitive choices a decision maker has made. We can see that the constructed sub-

samples can achieve 90% purity (i.e. 90% of the consumers in the subsample are of

the same type) with as few as 30 experiment epochs, and quickly reaches 99% around

T = 150.

Quality of Set Q

Next we evaluate the quality ofQ. According to SSRFW, the estimated choice probabil-

ity outcome is essentially a subset of these candidate vectors in Q—the ones emitted

by SSRFW at each iteration. Therefore, the higher the quality of Q—in the sense it

is concentrated near the ground truth—the better mixture estimation we can obtain

using the learning algorithm SSRFW. We categorize each subsample to each mixture

type in the ground truth with the closest choice probability. For instance, we find

that 19 out of 75 subsamples are categorized as generated from Type A. We plot

the distribution of choice probability values for all mixture types in Figure 4-2, with

Figure 4-2a showing the result with 50 repetitive choices and Figure 4-2b with 300

repetitive choice.

These figures show that the estimated choice probability values are very concen-

trated near the ground truth when T = 300 and are also reasonably good even with a

small T = 50. This suggests that when use our algorithm in real world applications,

the number of choices that the algorithm requires for each decision makers is within

a reasonable range, depending on the application. For instance, as we will see later

in the Nielsen consumer panel data, the average number of purchases (choices) for

grocery items is close to the hundred.
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(a) T = 50 (b) T = 300

Figure 4-2: Choice Probability Estimation Result for All Consumer Types
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4.1.2 Mixture Type Recovery

Since we have obtain good estimates with T = 50, we will keep this in the rest of the

experiments.

After feeding the Q above to Algorithm SSRFW, it generated 8 mixture types

(as expected, larger than the ground truth number of mixtures) and we would like to

compare these generated segments against the ground truth. We refer to the mapping

π(j) = i as the “closest type” if the majority in the subsample which generated this

q̂ is of that type.

(a) SSRFW

(b) Original FW

Figure 4-3: Comparison of empirical cumulative distribution of logit vectors
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Figure 4-3 compares j and π(j) using the cumulative distribution of the choice

probability vectors. The orange lines are the learning outcome from the two algo-

rithms while the light blue line in the background depicts the ground truth for the

closest type. We can see that the results from SSRFW are very close to the true mixture

CDFs (Figure 4-3a). In contrast, the original FW algorithm is incapable of recovering

the true choice probabilities (Figure 4-3b). We further verify the validity of this out-

come by checking the mixture proportion estimates α’s. Table 4.1 shows that if we

have a one-to-one mapping (such as A and E), the α estimates from the algorithm

is close to the true values. If we have many-to-one mappings, i.e., the algorithm

outputs multiple mixtures to the same latent class, the sum of the estimated mixture

proportions is also close to the true values of each mixture.

Table 4.1: Mixture Proportion α Estimation

Type Ground Truth α SSRFW Generated α̂ Type-wise summation of α̂

A 0.2000 α̂5: 0.1904 0.1904

B 0.2364
α̂1: 0.0713

0.2320
α̂7: 0.1607

C 0.1636
α̂3: 0.0741

0.1498
α̂8: 0.0757

D 0.2182
α̂4: 0.0387

0.2530
α̂6: 0.2143

E 0.1818 α̂2: 0.1748 0.1748

4.1.3 Comparison with the Original FW Algorithm

We define another performance measure as the weighted average of distance from al-

gorithm generated choice probabilities to its closest ground truth choice probabilities,
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with weights equal to the corresponding mixture proportion:

∑
k

αk

#(k′)

∑
k′:π(k′)=k

∥q̂k′ − qk∥

which looks at the aggregated discrepancy of the learned logit vectors from ground

truth. Figure 4-4 plots this quantity with respect to the number of repetitive choices,

from which we can see that the total discrepancy is much smaller using the SSRFW

algorithm regardless the number of choice repetitions. This is exactly due to the fact

that the original Frank-Wolfe approach only aims to minimize the distance between

the aggregated choice probability of the entire population and its estimators for each

individual mixture can be very different from the ground truth. It also suggests that

even we have a small amount of the repetitive choice data, we could still benefit from

using that info as well as the SSRFW algorithm.

Figure 4-4: Comparison with the original FW

4.1.4 Comparison with the EM Algorithm

Finally, we compare our algorithm to the most widely applied algorithm to estimate

mixed MNL choice models, the EM algorithm. EM algorithm works well when the

true number of consumer types is known, however, in general we do not have this
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information.

We first compare the performance of SSRFW to EM with various different hyperpa-

rameter K̃ values, as shown in Figure 4-5.

Figure 4-5: Comparison with EM

We can see from the plot that when K̃ < K, SSRFW usually outperforms the EM

algorithm. On the other hand, when K̃ >= K, while EM can achieve a marginally

better performance, it suffers from its instability. Then, we adopted the conventional

strategy (c.f. Train [2008]) to use AIC/BIC to determine the best K̃, which corre-

sponds to the lowest of these two criteria respectively. Both AIC/BIC measure the

relative quality of statistical models for a given dataset, by balancing the trade-off

between goodness of fit and the simplicity of the model and are commonly used in

model selection. In our experiment, K = 3 gives the lowest value for both AIC and

BIC. This indicates we should choose K = 3, yet it will result in worse estimation

quality as shown in Figure 4-5.
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4.2 Case Study: The Nielsen Consumer Panel Data

In this section, we demonstrate how we have applied SSRFW to the Nielsen Consumer

Panel data. This comprehensive dataset is provided by the Kilts Center for Marketing

at the University of Chicago Booth School of Business, NielsenIQ, and Nielsen. It

contains panelists (i.e., households) purchase decisions on grocery items included in

the NielsenIQ food and nonfood departments (roughly 1.4M UPC codes) dated back

to 2004 with regular annual updates The panel size varies from 40K to 60K and the

characteristics include product description, brand, multipack, size, etc. This panel

data is widely used for longitudinal studies in marketing science.

4.2.1 Data Curation

We consider applying the algorithm to a substitute set of products under a particular

category. This is a realistic setting as consumers usually choose one item from the

substitution set. We curated data for six different categories, including yogurt, cereal,

snack, candy, soft drinks and pet food and provide some summary statistics in Table

4.2.

Table 4.2: Nielsen case study: categories and data information

Category Panel size Number of features Average # purchases

yogurt 1443 9 178

pet-food 2451 8 403

candy 1499 14 127

cereal 1085 13 96

snack 665 16 61

soft-drinks 412 12 209
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4.2.2 Experiment Setup

We cannot evaluate the model performance the same as in simulation studies since

we no longer have the ground truth knowledge. Instead, we split the data into a

training and test set, with the former used for learning the model parameters and

the latter for evaluation. Specifically, we apply our algorithm to the training set,

and use the learned parameters to compute the theoretical aggregated market share∑
k α̂kq̂k. Then we compute its distance to the aggregated market share of the test

set, i.e. ∥
∑

k α̂kq̂k−ytest∥. The assumption is, if we have similar mixture composition

in the training and test set, then the estimated parameter values from the training

set should yield aggregated choice probability values close to that of the test set. To

avoid randomness in the data split, we used a 10-fold cross validation, with the entire

process repeated for five times.

The stopping criteria was set to ∥g −
∑

k α̂kq̂k∥≤ 1e− 3.

4.2.3 Results

Figure 4-6 plots the distribution of ∥
∑
k

α̂kq̂k − ytest∥ from the repeated runs of both

algorithms. We can see that SSRFW in general outperforms the original FW algorithm

in that the discrepancy is close 0.

Figure 4-7 plots the deviation of product-level choice probability values from the

test set,
|
∑

k α̂kq̂kj − ytestj |
ytestj

, for j = 1, 2, 3, 4, 5. The light orange horizontal line indi-

cates a zero deviation and we observe that the predicted aggregated choice probability

per product level from SSRFW is more concentrated around zero than the original FW.

In addition, there is a smaller variance with respect to different runs.
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(a) Category: yogurt (b) Category: pet food

(c) Category: candy (d) Category: cereal

(e) Category: snack (f) Category: soft drinks

Figure 4-6: ∥
∑

k α̂kq̂k − ytest∥ for the six product categories
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(a) Category: yogurt

(b) Category: pet food

(c) Category: candy
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(d) Category: cereal

(e) Category: snack

(f) Category: soft drinks

Figure 4-7: Deviation-from-test distribution of product-level choice probability values
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Next, we examine the number of iterations required until convergence. We also

report the percentage of active directions for the given number of iterations. We think

these two metrics measures the effectiveness of each direction being chosen during the

learning process.

Table 4.3: Other Statistics

# iteration %active direction

FW SSRFW FW SSRFW

yogurt
4.78 4.24 0.877 0.74

(0.18) (0.12) (0.017) (0.020)

pet food
4.60 4.00 0.817 0.863

(0.10) (0.09) (0.002) (0.015)

candy
10.42 3.74 0.239 0.675

(0.21) (0.19) (0.020) (0.024)

cereal
4.48 4.06 0.848 0.871

(0.07) (0.12) (0.012) (0.015)

snack
4.38 4.46 0.642 0.808

(0.09) (0.10) (0.026) (0.021)

soft drinks
5.70 4.88 0.835 0.866

(0.33) (0.17) (0.010) (0.014)

The last metric we look at is the percentage of boundary types in the learning
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result. Figure 4-9 shows that the original FW still exhibits the same problem of

generating boundary-type logit vectors while SSRFW is much less likely to suffer from

this problem.

Figure 4-9: Percentage of boundary types

Finally, as requested by Kilts Center for Marketing at the University of Chicago

School of Business, we make the following disclaimers:

� Researcher(s)’ own analyses calculated (or derived) based in part on data from

Nielsen Consumer LLC and marketing databases provided through the NielsenIQ

Datasets at the Kilts Center for Marketing Data Center at The University of

Chicago Booth School of Business.

� The conclusions drawn from the NielsenIQ data are those of the researcher(s)

and do not reflect the views of NielsenIQ. NielsenIQ is not responsible for, had

no role in, and was not involved in analyzing and preparing the results reported

herein.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we focus on the topic of learning mixed multinomial logit models with

theoretical guarantees, which is the process of estimating the model parameters using

data and making sure that the estimators possess desirable statistical properties.

Chapter 2 studies the polynomial learnability of MMNL models with K number of

mixtures, extending the current literature in 2-MNL setting. In particular, we show

that there exists an algorithm that can learn a more general set of K-MNL models,

if identifiable, using polynomial number of data points and polynomial number of

operations under some mild assumptions. On the other hand, there is still many

more directions one can explore under this regime of work. For instance, what is

the identification condition for the general K-MNL models? Essentially, this aims to

explore the relationship between m0 and K. Another good research question is once

m0 can be precisely defined, what will be an efficient algorithm to learn a K-MNL

model over the m0-item universe without query the entire power set.

In Chapter 3, we propose the SSRFW algorithm, which provides an end-to-end

solution for learning MMNL models using historical choice data. This novel approach

utilizes a carefully designed sampling method to construct a meaningful search space.

Not only does it resolves the drawback of the original Frank-Wolfe approach with

boundary-type issues but also enables us to obtain provable guarantees for the model
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estimates and sample complexity. It is also more robust than traditional unsupervised

approaches such as clustering method and EM methods.

We then conduct numerical experiments in Chapter 4 to evaluate the performance

and demonstrate the advantage of the SSRFW algorithm in various settings. Simulation

studies show that SSRFW is capable of recovering the ground truth parameter values

while the original FW fails to do so. We then present how to apply our algorithm in

real case studies using the Nielsen Consumer Panel data, where we investigate a few

metrics to compare more aspects between the two models’ learning outcomes.

It does not only remove some of the restrictive assumptions present in standard

MNL models, more importantly, it is more suitable for modeling real world scenarios.

In addition, the learning outcome can be used in a variety of ways in many downstream

tasks in areas such as marketing, operations research, urban planning, etc. We will

describe some sample use cases in the next section.

5.2 Use Cases

� Consumer Segmentation

Under the linear utility model, the utility for choosing option j for the k-th

mixture is σ(zj;βk) = βk · zj, where βk, zj ∈ Rd. We can think of these βk

as a unique “preference vector” associated with each consumer type. It repre-

sents the taste of the consumers over different attributes of the options. Such

information can then be utilized by manufacturers and retailers to better de-

sign their product design and marketing strategies. As an example, Kamakura

and Russell [1989] used MMNL to model brand preferences and created market

structure that links the pattern of brand switching with price elasticities. The

result provides a ‘managerially useful description of brand competition”, which

then in turn allows them to explore the characteristics of competition between

national brands and private labels.

From another point of view, we can also think of βk’s as interpretable user

embeddings. The concept of embedding is widely used in a variety of machine
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learning settings, including natural language processing and computer vision,

which is a relatively low-dimensional vector that can be used to quantify simi-

larities and distances between complex and/or non-numerical objects.

� Multi-product pricing problem

While MMNL are discrete choice models, they can also be utilized as tools to

model relative consumer demands. In particular, MMNL models provide an

accurate demand model thanks to its capability of capturing the heterogeneity

in the consumer population, making it a fundamental tool for demand prediction

in revenue management and supply chain management.

An important application that benefits from MMNL demand models is the

multi-product pricing problem. The objective is to maximize the total revenue

by finding the optimal price for a set of M products:

max
p

M∑
j=1

pj

K∑
k=1

αk
expσ(zj,p;βk)

1 +
∑

i expσ(zj,p;βk)

s.t. pj ≥ 0 ∀j ∈ [M ]

First note that the decision variables p ∈ RM are also part of the utility function

σ. This is due to the fact that in the multi-product pricing setting, prices

— not only the price of a product itself, but also prices of other products in

the same set — are often an important factor that will impact people’s choice

behavior. Because of this entanglement, it does not suffice if we only learn the

aggregated choice probabilities of the population. Instead, we have to accurately

estimate the parameters for each individual MNL mixture before we can solve

this optimization problem.

Note in the above formulation, we also include an offset option, which allows

the consumer to choose not to purchase anything from the set. The probability

of the offset can be expressed as
1

1 +
∑

i expσ(zj,p;βk)
.
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M. Jaggi and M. Sulovskỳ. A simple algorithm for nuclear norm regularized problems.
In ICML, 2010.

A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two gaussians.
In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC ’10, pages 553–562, 2010.

W. A. Kamakura and G. J. Russell. A probabilistic choice model for market seg-
mentation and elasticity structure. Journal of Marketing Research, 26(4):379–390,
1989. ISSN 00222437. URL http://www.jstor.org/stable/3172759.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of frank-wolfe
optimization variants. In Advances in neural information processing systems, pages
496–504, 2015.

R. D. Luce. Individual Choice Behavior. John Wiley, 1959.

C. F. Manski. The structure of random utility models. Theory and Decision, 8(3):
229–254, 1977. doi: 10.1007/BF00133443.

D. McFadden and K. Train. Mixed mnl models for discrete response. Journal of
Applied Econometrics, 15(5):447–470, 2000.

A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaus-
sians. 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,
pages 93–102, 2010.

K. Pearson. Contributions to the mathematical theory of evolution. Philosophical
Transactions of the Royal Society of London. A, 185:71–110, 1894.

R. L. Plackett. Random permutations. Journal of the Royal Statistical Society: Series
B (Methodological), 30(3):517–534, 1968.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 24(2):193–202, 1975.

S. Ragain and J. Ugander. Pairwise choice markov chains. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

D. Revelt and K. E. Train. Mixed logit with repeated choices: Households’ choices of
appliance efficiency level. Review of Economics and Statistics, 80:647–657, 1998.

P. R. Rider. The Method of Moments Applied to a Mixture of Two Exponential
Distributions. The Annals of Mathematical Statistics, 32(1):143 – 147, 1961.

A. Seshadri, S. Ragain, and J. Ugander. Learning rich rankings. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9435–9446, 2020.

101



W. Tang. Learning an arbitrary mixture of two multinomial logits, 2020.

K. E. Train. Em algorithms for nonparametric estimation of mixing distributions.
Journal of Choice Modelling, 1(1):40–69, 2008.

K. E. Train. Discrete choice methods with simulation. Cambridge university press,
2009.

K. E. Train, D. McFadden, and M. E. Ben-Akiva. The demand for local telephone
service: a fully discrete model of residential calling patterns and service choices.
The RAND Journal of Economics, 18:109–123, 1987.

J. G. Wendel. A problem in geometric probability. Mathematica Scandinavica, 11(1):
109–111, 1962.

Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen. Breaking the softmax bottle-
neck: A high-rank rnn language model. In ICLR, 2018.

Z. Yang, T. Luong, R. Salakhutdinov, and Q. V. Le. Mixtape: Breaking the softmax
bottleneck efficiently. In NeurIPS, 2019.

Z. Zhao and L. Xia. Learning mixtures of plackett-luce models from structured partial
orders. Advances in Neural Information Processing Systems, 32, 2019.

Z. Zhao, P. Piech, and L. Xia. Learning mixtures of plackett-luce models. In Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 2906–2914. PMLR, 20–22 Jun
2016.

102


