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Abstract

It has long been recognized that pumping fluids into or out of the Earth has the
potential to cause earthquakes. Some of the earliest field evidence dates to the 1960s,
when earthquakes were turned on and off by water injection in Rangely, Colorado.
More recently, induced seismicity has been reported worldwide in connection with
many subsurface technologies, including wastewater disposal, natural gas storage, en-
hanced geothermal systems, and hydraulic fracturing. As a result, there has been
a growing public concern around the world about the potential seismic hazard and
environmental impact of subsurface energy technologies. Understanding the physi-
cal mechanisms that lead to induced seismicity is essential in efforts to mitigate the
risk associated with subsurface operations. As a first step in this thesis, we develop a
spring-poroslider model of frictional slip as an analogue for induced seismicity, and an-
alyze conditions for the emergence of stick-slip frictional instability—the mechanism
for earthquakes—by carrying out a linear stability analysis and nonlinear simulations.
We found that the likelihood of triggering earthquakes depends largely on the rate
of increase in pore pressure rather than its magnitude. Thus, the model explains the
common observation that abrupt increases in injection rate increase the seismic risk.
Second, we perform an energy analysis using the same spring-poroslider model to shed
light into the partitioning of energy released into frictional and radiated energy—since
the latter is associated with the overall size of the earthquake and its potential for
damage to man-made structures. Two key elements of the analysis are: (1) incorpo-
rating seismic radiation within the model using a precisely-defined viscous damper,
and (2) partitioning the energy supplied by fluid injection into dissipated and stored
energy in fluid and skeleton. The analysis shows how the rate of increase in pore
pressure controls the radiated energy, stress drop, and total slip of the earthquake.
Third, we study the effect of heterogeneity on the dynamics of frictional faults. In
particular, we develop an objective (frame-indifferent) formulation of frictional con-
tact between heterogeneous surfaces at a small scale, and introduce the notion that
friction is a function of the states of the two surfaces in contact, each representing
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roughness and microstructural details for the surface. We then conduct dynamic sim-
ulations of a spring-slider model and show that heterogeneous Coulomb friction alone
is capable of reproducing the transitions in complex frictional behavior, from stable
creep to regular earthquakes and slow slip. This thesis, as a whole, enhances our
understanding of the mechanics of fluid-injection-induced earthquakes and suggests
strategies that mitigate or minimize the seismic risk associated with a wide range of
subsurface operations, from hydraulic fracturing and geothermal energy extraction to
wastewater injection and geologic CO2 sequestration.

Thesis Supervisor: Ruben Juanes
Title: Professor of Civil and Environmental Engineering
Professor of Earth, Atmospheric, and Planetary Sciences
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Chapter 1

Introduction

Induced seismicity is a central issue in the development of subsurface energy tech-

nologies around the world (National Research Council, 2013). Examples include sub-

surface waste water injection, reservoir impoundment in the vicinity of large dams,

and development of mining, geothermal or hydrocarbon resources. Recently, induced

seismicity has also become a concern in connection with geologic carbon sequestration

projects. Figure 1-1 provides an overview on the geographical distribution of induced

seismicity, classified by magnitude and industrial activity (Grigoli et al., 2017). The

majority of events are related to fluid injection. In Basel Switzerland, for example,

the injection of water at high pressure into permeable basement rocks to develop

and enhance geothermal system underneath the city induced earthquakes in 2006

and 2007 (Deichmann and Giardini, 2009). In central United States, the number of

earthquakes of magnitude Mw>3 rose significantly over the past few years; from an

average rate of 21 events per year in the period between 1970 and 2000 to more than

300 earthquakes in the years from 2010 to 2012 (Ellsworth, 2013). While most of the

injection-induced earthquakes are micro-tremors, they can occasionally be of large

magnitude, such as the Prague Mw 5.7 earthquake in 2011 (Keranen et al., 2014),

the Pawnee Mw 5.8 earthquake in 2016 (Yeck et al., 2017), and the Pohang Mw 5.5

earthquake in 2017 (Grigoli et al., 2018), among others.
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Figure 1-1: Induced and triggered seismicity has been observed worldwide in con-
junction with several industrial activities (taken from Grigoli et al. (2017)).

1.1 Field observations

It has been hypothesized that increases in fluid pressure could induce earthquakes

since the 1960s (Pratt and Johnson, 1926; Hough and Page, 2015; Hubbert and Rubey,

1959), but it was not until 1976 when this hypothesis was confirmed by a field ex-

periment at Rangely Colorado (Raleigh et al., 1976). The experiment began in 1969,

when a seismic network of 14-short period, vertical seismometers was installed. The

network recorded the seismic activity under unaltered fluid pressure conditions for

one year. After then, two full cycles of increased fluid injection and back-flowing were

performed. Raleigh et al. (1976) found that seismic activity responded promptly

to changes in fluid pressure. However, high fluid pressures do not always result in

earthquakes. Cogdell oil field in Texas, for example, had numerous injection sites

with high injection pressures and volumes of injected fluid (Davis and Pennington,

1989). Failure could occur by Mohr-Coulomb law in these sites, but no earthquakes

have been observed. It was concluded that failure must have occurred aseismically.

Interestingly, earthquakes were found to occur in sites of relatively low pressure sur-

rounded by high fluid pressure. Rangely and Cogdell are not the only fields where
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increases in fluid pressure led to inconsistent outcomes. Increases in fluid pressure

led to seismic slip in many other fields (Majer et al., 2007; Healy et al., 1968; Raleigh

et al., 1976; Keranen et al., 2014; Yeck et al., 2017; Grigoli et al., 2018) and aseismic

slip in others (Guglielmi et al., 2015; Cornet et al., 1997; Bourouis and Bernard, 2007;

Zoback et al., 2012; Wei et al., 2015).

Several field observations link the temporal variations in fluid pressure with the

occurrence of earthquakes. Seismicity in Hutubi gas field in China between 2013 and

2015, for example, did not correlate with total gas injection volume or well pressure

(Tang et al., 2018). It instead occurred eleven to seventeen hours after simultaneous

abrupt increases and decreases of well pressure. At Val d’Agri oil field in Italy, seis-

micity has been induced by rapid communication of fluid pressure perturbations along

a high-permeability fault zone favorably oriented with respect to the local extensional

stress field (Improta et al., 2015; Hager et al., 2021). It was found, for the period

between 2006 and 2015, that seismicity rate correlates with short-term injection pres-

sure. Youngstown, Ohio—an area with no known earthquakes—experienced 109 small

earthquakes close to a deep injection well from 2011 to 2012. It was observed that

several periods of quiescence of seismicity follow minima in injection volumes and

pressure, indicating that earthquakes were directly caused by sharp pressure buildup

and stopped when pressure dropped. At the enhanced geothermal simulation site of

Soultz-sous-Forets in France, the evolution of seismicity was also found to strongly

depend on the variations of well head pressure. Abrupt increases led to changes in

the number and magnitude of micro-seismic events.

Spatial heterogeneity and variations in fluid pressure have also been observed

to influence the occurrence of earthquakes. Measurements of the spatial decay of

induced earthquakes from causative wells worldwide indicate two types of spatial

decay (Kraft and Deichmann, 2014; Ogwari et al., 2018; Block et al., 2014; Martínez-

Garzón et al., 2014; Horton, 2012; Duboeuf et al., 2017; Baisch et al., 2006; Albaric

et al., 2014; Baisch et al., 2002; Diehl et al., 2021; Evans et al., 2012). The first type

is sequences with an extended plateau close to the well followed by an abrupt decay

within less than 1 km, and the second is sequences with steady, power law-like decay
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out to distances of more than 10 km (Goebel and Brodsky, 2018). The rate of spatial

decay of aftershocks also varies. For example, it has been observed that the decay

is more rapid in Oklahoma than in Southern California (Rosson et al., 2019). The

spatial distribution of induced earthquakes follows fluid pressure diffusion, in respect

of their rate of spatial growth, their geometry, and their spatial density (Shapiro

et al., 2003). Low permeability in regions of stratigraphic transitions can limit the

spatial extent of seismicity (Lambert, 2017). For example, seismicity is observed to

be contained within carbonate reefs at Cogdell Texas (Davis and Pennington, 1989),

and concentrates along the edges of reefs in Alberta, Canada (Schultz et al., 2016).

High permeability, on the other hand, can extend seismicity tens of kilometers from

wells (Keranen et al., 2014; King et al., 2014; Mulargia and Bizzarri, 2014; Yeck et al.,

2016).

1.2 Laboratory observations

To the best of our knowledge, there are at least 13 experimental studies that consider

the effects of fluid pressurization on friction and fault stability, with the goal of

explaining field observations of induced earthquakes. Six of these experiments are

performed on bare rock surfaces (Byerlee and Brace, 1972; Wang et al., 2020b; French

et al., 2016; Ougier-Simonin and Zhu, 2013; Rutter and Hackston, 2017; Gori et al.,

2021), six are performed on granular gouge materials (Sawai et al., 2016; Scuderi and

Collettini, 2016; Scuderi et al., 2017; Scuderi and Collettini, 2018; Cappa et al., 2019;

Ikari et al., 2009), and one combines both (Xing et al., 2019).

Bare rock surfaces

French et al. (2016) performed axial compression and lateral relaxation tests on per-

meable sandstones with saw-cut surfaces. Their experiment shows that a gradual

increase in pore pressure results in unstable slip during the transient-state, and that

the degree of instability measured by the total slip, slip rate, and shear stress drop

correlates with the rate of pore pressure increase.
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Wang et al. (2020b) conducted fluid-induced fault slip experiments in the labo-

ratory on critically stressed saw-cut sandstone samples with high permeability using

different fluid pressurization rates. Their experimental results demonstrate that fault

slip behavior is governed by fluid pressurization rate rather than injection pressure.

Slow stick-slip episodes (peak slip velocity < 4 𝜇m/s) are induced by fast fluid injec-

tion rate, whereas fault creep with slip velocity < 0.4 𝜇m/s mainly occurs in response

to slow fluid injection rate. Their results indicate that the coefficient of friction is

generally between 0.6 and 0.85. During fluid pressurization, the coefficient of fric-

tion appears to slightly increase up to a static friction coefficient just before onset

of sliding, and then drops rapidly as fault sliding accelerated to maximum sliding

velocity.

Gori et al. (2021) used a laboratory earthquake setup with PMMA to compare the

rupture behavior for different rates of fluid injection: fast (megapascals per second)

versus slow (megapascals per hour). They found that, in cases of rapid increase in

pore pressure, unstable, fast slip is promoted nearly instantaneously and for rupture

lengths considerably smaller than the critical sizes predicted by the quasistatic the-

oretical estimates. In cases of gradual pore pressure increase, considerably less fluid

is delivered into the fault prior to the nucleation of seismic events, and dynamic slip

is triggered at lower levels of fluid pore pressure. They also found that the resulting

dynamic ruptures propagating over wetted interfaces exhibit dynamic stress drops

almost twice as large as those over the dry interfaces.

Byerlee and Brace (1972) performed triaxial loading experiments on a fine-grained

gabbro rock. They found that sliding between two rock surfaces is much more stable at

high than at low steady-state pore pressure. Sliding is observed to be by slow, steady-

type motion at high pore pressure, and by stick-slip at low pore pressure. Rutter and

Hackston (2017) performed triaxial experiments on pre-cut planar surfaces in Darley

Dale and Pennant sandstones. They found that sudden access by overpressured fluid

to the fault plane via hydrofracture causes seismic fault slip. Ougier-Simonin and Zhu

(2013) conducted deformation experiments with and without excess pore pressure on

intact porous Berea sandstone samples. They found that excess pore pressure induces
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slow slip.

Granular gouge materials

Ikari et al. (2009) and Scuderi and Collettini (2018) conducted experiments using a

pressure vessel within a servocontrolled biaxial testing apparatus under true-triaxial

conditions and experiments using a biaxial apparatus configured in a double-direct

shear geometry within a pressure vessel, respectively. They measured the strength

and friction constitutive properties of saturated shale and clay-rich fault gouges. They

found that the gouges are consistently weak with steady-state coefficient of sliding of

friction of < 0.35. They also found that, at effective normal stresses from 12 to 59

MPa, all gouges show velocity-strengthening frictional behavior in the sliding velocity

range 0.5 – 300 mm/s.

Cappa et al. (2019) conducted triaxial loading experiments on limestone fault

gouge sample. They examined rate dependence of frictional behavior as a function

of slip velocity for different values of fluid pressure and effective normal stress. They

found that rate weakening mainly occurs at low velocities (< 10 𝜇m/s), which is a

necessary condition for the nucleation of seismic slip. At higher velocities, the fault

mainly becomes rate strengthening, which is indicative of stable aseismic slip. At

fluid pressure above 1.5 MPa, the fault friction switches from rate weakening at low

slip velocity (0.1 to 1 𝜇m/s) to rate strengthening at high slip velocity (10 to 𝜇m/s),

delineating two regimes of frictional behavior. This transition means that the unstable

slip is suppressed above a threshold velocity and the aseismic creep is sustained.

Sawai et al. (2016) performed shear experiments on blueschist fault gouge using

a hydrothermal ring shear apparatus. Their results show a transition from stable to

unstable slip with increasing fluid pressure caused by a decrease in parameters con-

trolling frictional evolution. Scuderi et al. (2017) and Scuderi and Collettini (2016)

performed shear experiments on carbonate fault gouge in a double direct shear config-

uration with a triaxial pressure vessel. They found that fluid pressurization triggers

dynamic instability even in cases of velocity strengthening friction, and that friction

evolves from velocity strengthening to velocity neutral as a result of increase fluid
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pressure—possibly facilitating dynamic slip.

Rock surfaces separated by gouge materials

Xing et al. (2019) investigated whether the strengthening effect of high pore pressure

holds true for frictional slip along gouge-bearing experimental faults. Saw cut porous

sandstone samples with a layer of gouge powders, placed between the precut surfaces

were deformed in the conventional triaxial loading configuration. In disagreement

with the previous experiments performed on shearing granular gouge materials, they

demonstrate that under constant effective pressure, increasing pore pressure stabilizes

the frictional slip of faults with all four gouge materials including antigorite, olivine,

quartz, and chrysotile. The stabilizing effect, enhanced by increasing fluid pressure,

is characterized by a gradual increase in parameters controlling frictional evolution.

1.3 Previous modeling studies

Field and laboratory observations have motivated the development of different mathe-

matical and numerical models to understand the physical mechanisms behind injection-

induced seismicity, including seismicity-rate models (Langenbruch et al., 2018; Nor-

beck and Rubinstein, 2018; Zhai et al., 2019; Shapiro and Dinske, 2009) and 2D nu-

merical simulations of coupled flow-geomechanics (Torberntsson et al., 2018; Pampil-

lón et al., 2018). Seismicity-rate models consider the large-scale spatiotemporal ef-

fects of nonlinear diffusion on the probability of a given magnitude earthquake using

Gutenberg-Richter statistics. The numerical simulations study fault slip triggered by

fluid injection and diffusion in a 2D poroelastic continuum, where earthquake trigger-

ing depends the Coulomb failure criterion (Hubbert and Rubey, 1959; Healy et al.,

1968; Segall and Lu, 2015). According to this criterion, pore pressure perturbations

and poroelastic stress changes increase the ratio of shear to effective normal stress

which in turn cause a fault to slip. These models, however, do not address the dynam-

ics of the rupture and whether a fault slips seismically or aseismically. An increase

in pore pressure from fluid injection, for instance, leads to seismic slip in some sites
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(Majer et al., 2007; Healy et al., 1968; Raleigh et al., 1976; Keranen et al., 2014; Yeck

et al., 2017; Grigoli et al., 2018) and aseismic slip in others (Davis and Pennington,

1989; Guglielmi et al., 2015; Cornet et al., 1997; Bourouis and Bernard, 2007; Zoback

et al., 2012; Wei et al., 2015).

Different criteria, derived from stability analyses of models of frictional slip be-

tween elastic media, are often used to differentiate between seismic and aseismic fault

slip (Ruina, 1983; Rice and Tse, 1986; Ranjith and Rice, 1999). Frictional slip is de-

scribed by the laboratory-derived rate-and-state constitutive laws, which are capable

of reproducing a wide range of observed seismic and aseismic fault behaviors ranging

from preseismic slip and earthquake nucleation to coseismic rupture and earthquake

after slip (Dieterich, 1979a,b; Ruina, 1983; Marone, 1998). The formulation of rate-

and-state laws combines the logarithmic increase of static friction with hold time and

the slip weakening behavior during dynamic instabilities in a unified and consistent

manner. They describe frictional stress as a function of effective normal stress and

a coefficient of friction that is dependent on slip velocity and the state of the sliding

surface, and take the following form

𝜏 = 𝜇(𝑣, 𝜃)𝜎′, (1.1)

𝜇(𝑣, 𝜃) = 𝜇* + 𝑎 ln
𝑣

𝑣*
+ 𝜃, (1.2)

𝜃 = − 𝑣

𝑑c
(𝜃 + 𝑏 ln

𝑣

𝑣*
)− 𝛼

𝜎̇′

𝜎′ , (1.3)

where 𝜏 is the frictional stress, 𝜎′ is the effective normal stress (the difference between

total normal stress and pore pressure), 𝜇 is the coefficient of friction, 𝑣 is the slider’s

velocity or slip rate, and 𝜃 is a state variable with the physical interpretation of

the fractional contact area that is associated with time dependent creep (Linker and

Dieterich, 1992). It is also related to the age of asperity contacts. The parameter 𝑎 is

an experimentally derived parameter, 𝑣* is a normalizing velocity, and 𝜇* is a constant

appropriate for steady-state at velocity 𝑣*, 𝑑c is the characteristic sliding distance

required to replace the old contact population with a new one, 𝑏 is a constitutive
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parameter, and 𝛼 is a scaling factor. The slip velocity and state dependence is

complex in natural fault zones and sensitive to changes in loading conditions. A

sudden increase in loading causes a sudden increase in slip velocity, which in turns

results in accelerated seismic slip or a stick-slip instability (Brace and Byerlee, 1966;

Scholz, 1998).

On a discrete level, zero dimensional spring-slider models of frictional slip provide

insights into the stability of rate-and-state faults (Ruina, 1983; Rice and Tse, 1986;

Ranjith and Rice, 1999). Some spring-slider models consider normal stress variations

by inclining the spring at an angle with respect to the sliding surface and by incorpo-

rating periodic loading (Dieterich and Linker, 1992; He et al., 1998; Perfettini et al.,

2001; Perfettini and Schmittbuhl, 2001). Others include an evolution of effective nor-

mal stress in a fluid infiltrated fault via shear-induced dilatancy and pore compaction

of gouge materials (Segall and Rice, 1995; Iverson, 2005). None of these models, how-

ever, address the poroelastic coupling with the rock mass surrounding the fault—an

effect that likely plays a causal role in the occurrence of induced earthquakes.

On a continuum scale, modeling of steady sliding between elastic materials using

rate-and-state friction gives insights into earthquake nucleation and propagation of

rupture fronts. Previous studies analyzed the linearized response of frictional sliding

between identical materials to anti-plane and in-plane perturbations of steady-state

sliding, and derived analytical criteria for the onset of the instability (Rice et al.,

2001; Bar-Sinai et al., 2013). Previous studies also considered frictional sliding along

an interface between elastically or geometrically dissimilar materials, where spatially

inhomogeneous slip is coupled to normal stress variations (Rice et al., 2001; Shlomai

et al., 2020; Aldam et al., 2017, 2016). Sliding in this case was found to be especially

susceptible to a type of an instability, called slip-pulses, regardless of the frictional law

or parameters. Others examined the role of heterogeneity in frictional properties in

earthquake nucleation (Ray and Viesca, 2017; Luo and Ampuero, 2018)—an aspect

that is relevant to spatially complex fault zones in nature (Blanpied et al., 1991;

Scholz, 1988). Only one study so far considered the stability of sliding between

poroelastic materials with rate-and-state friction (Heimisson et al., 2019), with a
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focus on the slip-induced poroelastic effects on the occurrence of slow slip-pulses.

This study, however, did not address the fluid injection-induced poroelastic effects on

the occurrence or energy partitioning of induced earthquakes—a major focus of this

thesis.
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Chapter 2

Understanding rate effects in induced

earthquakes

The occurrence of induced earthquakes of large magnitude has motivated develop-

ment of different operational strategies for seismic hazard mitigation. In particular,

an early attempt to control seismicity at the Rangely oil field suggested maintaining

the magnitude of fluid pressure below a critical threshold (Raleigh et al., 1976), based

on a Mohr-Coulomb failure model that links the magnitude of fluid pressure to the

occurrence of induced earthquakes (Hubbert and Rubey, 1959). This model, however,

does not address the evolution of the rupture and whether a fault slips seismically

or aseismically. It was also insufficient to explain seismicity at Cogdell oil field, for

instance, where earthquakes were observed in regions of low rather than high fluid

pressure (Davis and Pennington, 1989). A different strategy to control seismicity in-

volved maintaining the cumulative volume of injected fluid below a critical threshold

(Hofmann et al., 2019), based on empirical observations and modeling linking the cu-

mulative volume of injected fluid to the maximum magnitude of induced earthquakes

(McGarr, 2014). This model, however, is at odds with the 2017 Pohang earthquake,

as its magnitude exceeded the size estimated from the injected volume by 500 times

(Lee et al., 2019).

A growing number of field observations suggests that fluid injection rate is linked

to the occurrence of induced earthquakes. It is observed that low-rate wells, for
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instance, are much less likely to be associated with earthquakes than high-rate wells,

and that the critical rate above which earthquakes are induced is likely dependent

on reservoir properties (Frohlich, 2012; Weingarten et al., 2015). It is also observed

that temporal variation in injection rates is generally correlated with the frequency of

earthquakes (Healy et al., 1968; Improta et al., 2015; Langenbruch and Zoback, 2016;

Barbour et al., 2017), and that abrupt increases in injection rates tend to shortly

precede the occurrence of earthquakes (Cuenot et al., 2008; Kim, 2013; Tang et al.,

2018).

Here we develop a poroelastic model of induced earthquakes in the manner of

spring–sliders (Byerlee, 1970; Ruina, 1983; Rice and Tse, 1986; Segall and Rice, 1995;

Iverson, 2005) based on rate-and-state friction (Dieterich, 1979a; Ruina, 1983), and

we study the effect of injection rate on stick-slip frictional behavior—the mechanism

for earthquakes (Brace and Byerlee, 1966).

2.1 Spring-poroslider model

When fluid is injected into a faulted reservoir, the pore pressure change induces

effective stress variations in the reservoir and surrounding rock (Fig. 2-1A). To model

the effects of variations in effective normal stress on a creeping fault segment, we

develop a poroelastic spring–slider model of frictional slip (Fig. 2-1B). Our model

consists of a slider of unit base area that is pulled by a spring whose end is constrained

to move at a steady slip rate. The spring stiffness accounts for the elastic interaction

of the sliding surface with the surrounding rock. The slider represents the injection-

driven deformation process, where a piston is loaded vertically and compresses a

spring inside a fluid-filled space. The vertical spring is analogous to the rock skeleton,

while the fluid inside the slider represents fluid in the rock pores subject to increase

from fluid injection and decrease from pressure diffusion. Our model accounts for the

poroelastic coupling between the shear and effective normal stresses along the fault.
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A B

Figure 2-1: Conceptual picture of induced seismicity including poroelastic effects.

2.1.1 Frictional evolution

Frictional evolution is modeled by the rate-and-state constitutive laws, which are

capable of reproducing a wide range of observed seismic and interseismic fault behav-

iors ranging from preseismic slip and earthquake nucleation to coseismic rupture and

earthquake after slip (Dieterich, 1979a,b; Ruina, 1983; Marone, 1998). These laws

propose that frictional shear stress 𝜏 can be described as

𝜏 = 𝜇(𝑉,Θ)Σ′, (2.1)

where Σ′ is the effective normal stress (the difference between total normal stress and

pore pressure), 𝜇 is the coefficient of friction, 𝑉 is the slider’s velocity or slip rate,

and Θ is a state variable with the physical interpretation of the fractional contact

area that is associated with time dependent creep (Linker and Dieterich, 1992). It is

also related to the age of asperity contacts.

We adopt Ruina’s (Ruina, 1983) slip law for the coefficient of friction because it

fits experimental data at variable normal stress better than Dieterich’s (Dieterich,

1979a) aging law (Richardson and Marone, 1999),

𝜇(𝑉,Θ) = 𝜇* + 𝑎̂ ln
𝑉

𝑉*
+Θ, (2.2)

where 𝑎̂ is an experimentally derived parameter, 𝑉* is a normalizing velocity, and
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𝜇* is a constant appropriate for steady-state at velocity 𝑉*. Laboratory experiments

on dry rocks show that a step change in normal stress results in a sudden change in

the coefficient of friction followed by a displacement-dependent decay back toward

the initial steady-state value (Olsson, 1988; Linker and Dieterich, 1992; Wang and

Scholz, 1994; Kilgore et al., 2012). Linker and Dieterich (Linker and Dieterich, 1992)

interpret this as due to a normal stress effect on the state variable and propose

to model the magnitude of the sudden change as 𝛼̂Σ̇/Σ. Although the model is

based on step test experiments, it captures, at least qualitatively, the pressurization-

weakening effect on the coefficient of friction observed from ramping experiments by

Olsson (Olsson, 1988). He performed laboratory tests in which the normal stress was

increased at constant rate while the load point speed was held constant. He found

that shear stress is a function of the normal stress rate. When the normal stress rate

was increased by 10 during steady sliding, the rate of increase of shear stress with

normal stress (coefficient of friction) decreased by a factor of two—a significant effect.

Here, we combine the proposed state evolution model with the effective stress

principle to get

Θ̇ = −𝑉

𝑑c
(Θ + 𝑏̂ ln

𝑉

𝑉*
)− 𝛼̂

Σ̇′

Σ′ , (2.3)

where 𝑑c is the characteristic sliding distance required to replace the old contact

population with a new one, 𝑏̂ is a constitutive parameter, and 𝛼̂ is a scaling factor.

Theoretical and laboratory studies for a sudden change in normal stress show that

𝛼̂ ranges from 0 to 𝜇 (Linker and Dieterich, 1992; Perfettini et al., 2001; Hong and

Marone, 2005), but more studies are needed to determine the value of 𝛼̂ for a gradual

change in normal stress. From momentum balance of forces acting on the slider, the

equations of motion of the system evolution at variable effective normal stress become

𝑈̇ = 𝑉0 − 𝑉, (2.4)

𝑉̇ =
1

(𝑇/2𝜋)2

[︂
𝑈 − 1

𝑘s
𝜇(𝑉,Θ)Σ′

]︂
, (2.5)

where 𝑇 = 2𝜋
√︀

𝑚/𝑘s is the vibration period of the analogous freely slipping system
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(Rice and Tse, 1986).

2.1.2 Poroelastic coupling

To obtain a physical evolution of effective stress on the frictional surface, we couple

it with a poroelastic model of pore pressure and rock deformation. Starting with the

principle of mass conservation, we specify the change of mass from fluid diffusion to be

Δ𝑚diff , mass accumulation due to rock expansion or fluid compressibility 𝜕
𝜕𝑡
(𝜌𝑉f)Δ𝑡,

and injection source term to be 𝑄̃Δ𝑡. We assume that both the fluid and rock matrix

are compressible (Wang, 2000), and so mass balance leads to

Δ𝑚diff =
𝜕(𝜌𝑉f)

𝜕𝑡
Δ𝑡− 𝑄̃Δ𝑡, (2.6)

where the change in fluid mass due to pressure diffusion can be written using Darcy’s

law as

Δ𝑚diff = −𝜌𝑘𝐴(𝑃 − 𝑃0)

𝜂𝐿
Δ𝑡, (2.7)

where 𝜂 is fluid dynamic viscosity, 𝑘 is permeability, and 𝐿 is the pressure diffusion

length. The mass accumulation term can be expressed as

𝜕

𝜕𝑡
𝜌𝑉fΔ𝑡 =

𝜕

𝜕𝑡
𝜌(𝑃 )𝐻𝐴Δ𝑡 =

𝜕

𝜕𝑡
(𝜌0(1 + 𝑐f(𝑃 − 𝑃0))(𝐻0 +𝑊 )𝐴Δ𝑡, (2.8)

where 𝐻 is the current height of the slider, 𝜌0 is the initial fluid density, 𝑐f is fluid

compressiblity, 𝐻0 is the initial height of the slider, and 𝑊 is the position of the

piston. When fluid is injected into a rock that is free to deform in the direction

orthogonal to sliding, the addition of mass induces an increase of volume equivalent

to

𝑉f − 𝑉f,0 = 𝐴𝑊, (2.9)
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where 𝑉f,0 is the initial fluid volume. We then derive an expression for rock deforma-

tion 𝑊 from force balance, while using the convention of compression positive,

𝑊 =
𝐴

𝑘n
(Σ′

0 − Σ + 𝑃 ), (2.10)

where 𝑘n is the normal spring stiffness and Σ′
0 is the initial effective stress. We further

approximate the mass accumulation term to

𝜌
𝜕

𝜕𝑡
[𝐴𝐻]Δ𝑡+ 𝐴𝐻

𝜕𝑃

𝜕𝑡
Δ𝑡 = 𝜌

𝐴

𝑘n

𝜕𝑃

𝜕𝑡
Δ𝑡+𝐻

𝜌0
𝜌
𝑐f
𝜕𝑃

𝜕𝑡
Δ𝑡 ≈ 𝜌

𝐴

𝑘n

𝜕𝑃

𝜕𝑡
Δ𝑡+𝐻0𝑐f

𝜕𝑃

𝜕𝑡
Δ𝑡.

(2.11)

Note that we consider that the total stress Σ is analogous to overburden stress

in the earth, and is therefore constant in time. By substituting Eqs. (2.7)-(3.1)

into Eq. (2.6), we find that pore pressure satisfies a diffusion equation that leads to

transient behavior at early times and steady-state behavior at late times

𝑃̇ =
𝑘eff
n 𝑘

𝜂𝐿𝐴
(𝑃0 − 𝑃 ) +

𝑘eff
n

𝐴
𝑄, (2.12)

where 𝜂 is fluid dynamic viscosity (𝜂 = 𝜈𝜌), 𝑄 is the volumetric injection rate per unit

area (𝑄 = 𝑄̃/𝜌𝐴), and 𝑘eff
n = (1/𝑘n + 𝑐f𝐻0/𝐴)

−1 is an effective stiffness somewhat

equivalent to the uniaxial bulk modulus or the reciprocal of the uniaxial specific

storage per diffusion length in a continuum (Wang, 2000). Since the slider has a unit

base area (𝐴 = 1), the evolution of the pore pressure as a result of fluid injection

follows

𝑃̇ =
𝑘eff
n 𝑘

𝜂𝐿
(𝑃0 − 𝑃 ) + 𝑘eff

n 𝑄. (2.13)
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2.1.3 Governing equations

The dimensional equations describing the dynamic motion of the poroelastic spring–

slider system with an evolving pore pressure take the form:

𝑈̇ = 𝑉0 − 𝑉, (2.14)

𝑉̇ =
1

(𝑇/2𝜋)2

[︂
𝑈 − 1

𝑘s
(𝜇* + 𝑎̂ ln

𝑉

𝑉*
+Θ)(Σ− 𝑃 )

]︂
, (2.15)

Θ̇ = −𝑉

𝑑c
(Θ + 𝑏̂ ln

𝑉

𝑉*
) + 𝛼̂

𝑃̇

(Σ− 𝑃 )
, (2.16)

𝑃̇ =
𝑘eff
n 𝑘

𝜂𝐿
(𝑃0 − 𝑃 ) + 𝑘eff

n 𝑄. (2.17)

where 𝑈 is the relative displacement between the load point and the slider, ˙( ) denotes

time derivative, 𝑉0 is the loading velocity, 𝑉 is slip rate, 𝑇 is the vibration period,

𝑘s is the shear stiffness, 𝑉* is a normalizing slip rate, 𝜇* is a constant appropriate for

steady-state at slip rate 𝑉*, 𝑎̂ and 𝑏̂ are experimentally derived parameters relating

friction to changes in slip rate and state, respectively, Θ is a state variable describing

the sliding surface, Σ is the total stress, 𝑃 is the pressure inside the slider (pore

pressure), 𝑑c is the characteristic slip distance, 𝛼̂ is a scaling factor ranging from

0 to 𝜇 (Linker and Dieterich, 1992; Kilgore et al., 2012), 𝑘eff
n is the effective normal

stiffness (related to the uniaxial bulk modulus or the reciprocal of the uniaxial specific

storage per diffusion length in a continuum), 𝑘 is the permeability, 𝜂 is fluid dynamic

viscosity, 𝐿 is the pressure diffusion length, 𝑃0 is the ambient pressure, and 𝑄 is the

volumetric injection rate per unit area.

Choosing the following characteristic quantities: 𝑢c = 𝑑c, 𝑣c = 𝑉*, 𝜇c = 𝜇*,

𝑝c = 𝑃0, 𝜏c = 𝜇*(Σ − 𝑃0), 𝜃c = 𝜇*, and 𝑡c = 𝑑c/𝑉*, the equations describing the
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dynamic motion of the system, in dimensionless form, become:

𝑢̇ = 𝑣0 − 𝑣, (2.18)

𝑣̇ =
1

𝜖2

[︂
𝑢− 1

𝜅
(1 + 𝑎 ln 𝑣 + 𝜃)(𝜎 − 𝑝)

]︂
, (2.19)

𝜃 = −𝑣(𝜃 + 𝑏 ln 𝑣) + 𝛼
𝑝̇

(𝜎 − 𝑝)
, (2.20)

𝑝̇ = 𝑐(𝑝0 − 𝑝) + 𝑟𝑞, (2.21)

where 𝜅 = (𝑘s𝑑c)/𝜏c, 𝑎 = 𝑎̂/𝜇c, 𝑏 = 𝑏̂/𝜇c, 𝛼 = 𝛼̂/𝜇c, 𝜖 = (𝑇/2𝜋)/𝑡c, 𝑐 = 𝑡c/(𝜂𝐿/𝑘
eff
n /𝑘),

𝑟 = 𝑡c𝑘
eff
n , and 𝑞 = 𝑄/𝑝c. The parameter 𝜅 is the normalized shear stiffness, and

𝑎, 𝑏, 𝛼 are normalized frictional parameters. The parameter 𝜖 is the normalized

oscillation period or ratio of inertial to state-evolution timescales, which may range

from 10−8 to 10−6 depending on rupture diameter and shear wave speed. The param-

eter 𝑐 is the normalized diffusivity or ratio of the pore-pressure to the state-evolution

timescales, which may range from 10−4 to 101 depending on reservoir permeability,

uniaxial bulk modulus, and well-fault distance. The parameter 𝑟𝑞 is the normalized

injection rate, which may range from 10−5 to 10−1 depending on injection rate and

reservoir size.

2.2 Linear stability analysis

The stability of steady frictional sliding to small perturbations in velocity, which

determines whether motion is by slow steady-sliding or violent stick-slip, depends

on the evolution of the frictional resistance. Stick-slip occurs whenever a change of

frictional resistance with sliding occurs at a rate greater than the loading system is

capable of following (Byerlee, 1970). At a constant pore pressure, linear stability

analysis of the system about steady-state leads to the stability condition by Ruina

(1983). Pore pressure, however, is not constant in time and its evolution depends on

the injection rate and on the poroelastic and hydraulic parameters of the rupture.

To quantify this, we carry out a linear stability analysis of the system about a quasi

32



steady-state where sliding is steady but pore pressure is evolving as a result of fluid

injection.

The equations describing the quasi-static motion of the spring–poroslider system

evolving at variable pore pressure 𝑝, in dimensionless form, are

𝑢̇ = 𝑣0 − 𝑣, (2.22)

0 = (𝜎 − 𝑝)𝜇(𝑣, 𝜃)− 𝜅𝑢, (2.23)

𝜃 = −𝑣(𝑏 ln 𝑣 + 𝜃) + 𝛼
𝑝̇

(𝜎 − 𝑝)
. (2.24)

The quasi-steady-state values of the variables are 𝑣qss = 𝑣0 and 𝜃qss = 𝛼𝑝̇/(𝜎 −

𝑝)/𝑣0 − 𝑏 ln 𝑣0. Linearizing Eqs. (2.22)–(2.24) about the quasi-steady-state, and then

taking the time derivative of Eq. (2.23), yields

Δ𝑣̇ =
𝑣0

𝑎

[︂
𝑏+

𝛼

𝑣0

𝑝̇

(𝜎 − 𝑝)
− 𝜅

(𝜎 − 𝑝)

]︂
Δ𝑣 +

𝑣20
𝑎
Δ𝜃, (2.25)

Δ𝜃 = −
[︂
𝑏+

𝛼

𝑣0

𝑝̇

(𝜎 − 𝑝)

]︂
Δ𝑣 − 𝑣0Δ𝜃. (2.26)

Equations (2.25)–(2.26) represent a 2×2 system of autonomous linear ODEs with

solutions of the form Δ𝑣 = 𝑉 𝑒𝜆𝑡, Δ𝜃 = Θ𝑒𝜆𝑡, where 𝜆 is the growth rate and 𝑡 is

time. Substituting these forms into the linearized equations (2.25)–(2.26) yields the

characteristic equation

𝑎(𝜎 − 𝑝)𝜆2 + (−𝛼𝑝̇+ 𝜅𝑣0 − (𝑏− 𝑎)(𝜎 − 𝑝)𝑣0)𝜆+ 𝜅𝑣20 = 0. (2.27)

If the real part of the roots 𝜆i are negative for all 𝑖, perturbations from the quasi-

steady-state are damped and the system is stable. If the real part of the roots 𝜆i are

positive for some 𝑖, then perturbations grow exponentially and the system is unstable.

At ℜ(𝜆i) = 0, we find that the dimensionless critical stiffness is

𝜅crit = (𝑏− 𝑎)(𝜎 − 𝑝) +
𝛼

𝑣0
𝑝̇. (2.28)
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So, motion is by stick-slip when the dimensionless shear stiffness of the loading

system is lower than a critical value (𝜅 < 𝜅crit) given by

𝜅crit = (𝑏− 𝑎)(𝜎 − 𝑝) +
𝛼

𝑣0
𝑝̇, (2.29)

and is by steady-sliding otherwise (𝜅 > 𝜅crit). Variables 𝑝 and 𝑝̇ are dimensionless

pore pressure magnitude and pore pressure rate, respectively, at any point in time.

Accordingly, frictional instability for the spring–poroslider system with an evolving

pore pressure depends not only on the magnitude of pore pressure, but also on the

rate of change of pore pressure.

As pore pressure evolves from initial to steady-state conditions in response to

fluid injection, we find that the competing effects of 𝑝 and 𝑝̇ exhibit a transition in

their dominance over frictional instability (Fig. 2-2A). The destabilizing effect of 𝑝̇

dominates when pore pressure grows rapidly at early times, resulting in an increase

in critical stiffness (dashed curve in Fig. 2-2A). It then decreases as pore pressure

diffuses and approaches steady state, giving rise to the stabilizing effect of 𝑝, which

explains the decrease in critical stiffness at late times (dotted curve in Fig. 2-2A). This

result is generally consistent with a linear stability analysis of slow slip with mildly

rate-strengthening friction in a poroelastic continuum (Heimisson et al., 2019), in

which undrained slip-induced poroelastic pressure has a destabilising effect and a

sufficiently fast equilibration process has a stabilizing effect. In our analysis, the

early-time destabilizing effect of 𝑝̇ is likely attributed to a short-term effect on contact

interlocking, where a decrease in effective normal stress results in fault opening and

loss of asperity contacts (Wang and Scholz, 1994). The late-time stabilizing effect

of 𝑝, in contrast, is likely attributed to a long-term effect on interface locking. A low

effective normal stress tends to reduce the degree of interface locking, and thus limit

the magnitude of stress drops (Moreno et al., 2010; Kitajima and Saffer, 2012; Segall

et al., 2010).
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Figure 2-2: Dimensionless critical stiffness and critical injection rate.

This behavior is also qualitatively consistent with laboratory observations of slid-

ing between saturated rocks at both transient and steady-state pore pressure condi-

tions. The early-time destabilizing effect agrees with an experimental study showing

that a gradual increase in pore pressure results in unstable slip during the transient-

state, and that the degree of instability measured by the total slip, slip rate, and

shear stress drop correlates with the rate of effective normal stress reduction (French

et al., 2016). The late-time stabilizing effect also agrees with another experimental

study, showing that sliding between two rock surfaces is much more stable at high

than at low steady-state pore pressure (Byerlee and Brace, 1972). Sliding is observed

to be by slow, steady-type motion at high pore pressure, and by stick-slip at low pore

pressure. This behavior, however, is different from the observations of shearing gran-

ular fault gouge materials (Sawai et al., 2016; Scuderi and Collettini, 2016), where

the frictional parameter (𝑏− 𝑎) is observed to decrease in magnitude with increasing

steady-state pore pressure, an effect related to shear-induced dilatancy strengthening

and pore compaction creep.

2.2.1 Quasi-steady-state approximation

The quasi-steady-state approximation, in general, is an approach to simplify dynamic

systems of ordinary differential equations with an initial fast transient, after which
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some of the dependent variables can be assumed to be in steady-state with regard to

the other slowly evolving dependent variables (Segel and Slemrod, 1989). In particu-

lar, the QSSA is a good approach to use in our analysis because it allows us to study

the stability of steady frictional sliding to small perturbations in velocity while pore

pressure is evolving. The sliding velocity and the velocity-dependent part of the state

variable are in steady state with respect to the pore pressure. Here, we analyze the

QSSA in the context of singular perturbation theory following the analysis by Segel

and Slemrod (1989), identify the small parameter(s) necessary for the validity of the

QSSA, and quantify the error associated with it.

Reduced dimensional equations

As shown earlier, the dynamics of our poroelastic spring-slider model is governed by

a system of four coupled nonlinear ODEs. Under quasi-static loading, velocity is the

fastest evolving variable of the system and it responds instantaneously (negligible

inertia) to small perturbations. Thus we can focus our analysis on a reduced system

of ODEs at steady-state velocity 𝑉 = 𝑉0,

Θ̇ = −𝑉0

𝑑c
(Θ + 𝑏̂ ln

𝑉0

𝑉*
) + 𝛼̂

𝑃̇

Σ− 𝑃
, (2.30)

𝑃̇ =
𝑘eff
n 𝑘

𝜂𝐿
(𝑃0 − 𝑃 ) + 𝑘eff

n 𝑄, (2.31)

with initial conditions

Θ(0) = 0, (2.32)

𝑃 (0) = 𝑃0. (2.33)

Timescales

As a first step in the analysis, we estimate the fast timescale 𝑡Θ of the pre-steady-state

period and the slow timescale 𝑡P for the evolution of pore pressure. To estimate 𝑡Θ

we make the approximation 𝑃 ≈ 𝑃0 in Eq. (2.30). The solution for the state variable
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becomes

Θ(𝑡) = Θ̄(𝑒−
𝑉0
𝑑c

𝑡 − 1), (2.34)

where Θ̄ = 𝑏̂ ln𝑉0/𝑉* − 𝛼̂(𝑑c/𝑉0)(𝑃0/(Σ− 𝑃0)). Subsequently, we take

𝑡Θ =
𝑑c
𝑉0

. (2.35)

Since the pore pressure evolution is independent of the evolution of the state

variable Θ, we estimate 𝑡P by solving Eq. (2.31) with the initial condition 𝑃 (0) = 𝑃0

to obtain

𝑃 (𝑡) = 𝑃0 +
𝜂𝐿

𝑘
𝑄(1− 𝑒−

𝑘effn 𝑘

𝜂𝐿
𝑡). (2.36)

Similarly, we take

𝑡P =
𝜂𝐿

𝑘eff
n 𝑘

. (2.37)

Scaled dimensionless equations

During the pre-steady-state, it is reasonable to scale time by 𝑡Θ, where the dimen-

sionless time 𝜏 is given by

𝜏 =
𝑡

𝑡Θ
. (2.38)

Thus, the scaled dimensionless governing equations become

𝜕𝜃

𝜕𝜏
= −𝑣0(𝜃 + 𝑏 ln 𝑣0) +

𝛼

𝜎 − 𝑝

𝜕𝑝

𝜕𝜏
, (2.39)

𝜕𝑝

𝜕𝜏
=

𝑡Θ
𝑡P

(𝑝0 − 𝑝) + 𝑡Θ𝑞, (2.40)

with initial conditions

𝜃(0) = 0, (2.41)

𝑝(0) = 𝑝0, (2.42)

where we have defined 𝑏 = 𝑏̂/𝜇0, 𝛼 = 𝛼̂/𝜇0, and 𝑞 = 𝑄/𝑝0. After the pre-steady
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state, the QSSA is assumed to be valid and 𝑡P becomes a reasonable timescale. We

introduce a new dimensionless scaled time 𝑇 by

𝑇 =
𝑡

𝑡P
, (2.43)

with which the scaled dimensionless governing equations become

𝑡Θ
𝑡P

𝜕𝜃

𝜕𝑇
= −𝑣0(𝜃 + 𝑏 ln 𝑣0) +

𝑡Θ
𝑡P

𝛼

𝜎 − 𝑝

𝜕𝑝

𝜕𝑇
, (2.44)

𝜕𝑝

𝜕𝑇
= (𝑝0 − 𝑝) + 𝑡P𝑞. (2.45)

Singular perturbation

Approximate solutions can now be obtained by methods of singular perturbation

theory (Lin and Segel, 1988), for 0 < 𝑡Θ/𝑡P ≪ 1. A solution of Eqs. (2.39)-(2.40) is

obtained of the form

𝜃(𝜏) = 𝜃(0)(𝜏) +
𝑡Θ
𝑡P

𝜃(1)(𝜏) + ..., (2.46)

𝑝(𝜏) = 𝑝(0)(𝜏) +
𝑡Θ
𝑡P

𝑝(1)(𝜏) + ..., (2.47)

where

𝜃(0)(𝜏) = 𝜃(𝑒−𝜏 − 1), (2.48)

𝑝(0)(𝜏) = 𝑝0. (2.49)

Similarly, the solution of Eqs. (2.44)-(2.45) obtained of the form

𝜃(𝑇 ) = 𝜃0(𝑇 ) +
𝑡Θ
𝑡P

𝜃1(𝑇 ) + ... , (2.50)

𝑝(𝑇 ) = 𝑝0(𝑇 ) +
𝑡Θ
𝑡P

𝑝1(𝑇 ) + ... , (2.51)

38



where

𝜃0 = −𝑏 ln 𝑣0 +
𝛼

𝑣0

𝑡Θ𝑞

𝜎 − 𝑝0
, (2.52)

𝜕𝑝0
𝜕𝑇

= 𝑡P𝑞. (2.53)

Note that Eqs. (2.52)-(2.53) are associated with initial conditions Eqs. (2.32)-

(2.33), and represent the initial state about which we linearized the spring-poroslider

system (section 3). The results of this analysis remain valid for general initial condi-

tions Θ(0) = Θi and 𝑃 (0) = 𝑃i (Segel and Slemrod, 1989), where Θ𝑖 ranges from 0

to Θss and 𝑃𝑖 ranges from 𝑃0 to 𝑃ss. Linearizing the spring-poroslider system about

the true steady-state, where

𝜃0 = −𝑏 ln 𝑣0, (2.54)
𝜕𝑝0
𝜕𝑇

= 0, (2.55)

thus yields the Ruina (1983) stability condition (Ruina, 1983).

QSSA validity conditions

A necessary aspect of the QSSA is that the duration of the pre-steady-state period is

much shorter than the characterstic time for the pore pressure evolution. An essential

condition for the QSSA to be valid after the pre-steady state is therefore 𝑡Θ ≪ 𝑡P,

0 < 𝑐 =

(︂
𝑑c
𝑉0

)︂⧸︂(︂
𝜂𝐿

𝑘eff
n 𝑘

)︂
≪ 1. (2.56)

Note that the initial condition 𝑃 (0) = 𝑃0 is reasonable for the QSSA only if there

is a negligible relative change |Δ𝑃/𝑃0| in pore pressure during the pre-steady state.

We estimate |Δ𝑃/𝑃0| by ⃒⃒⃒⃒
Δ𝑃

𝑃0

⃒⃒⃒⃒
≈ 1

𝑃0

⃒⃒⃒⃒
𝜕𝑃

𝜕𝑡

⃒⃒⃒⃒
max

𝑡Θ. (2.57)
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An additional condition for the validity of the QSSA is therefore

0 < 𝑟𝑞 =
𝑑c𝑘

eff
n

𝑉0

𝑄

𝑃0

≪ 1. (2.58)

Recall that parameter 𝑐 is the normalized diffusivity or ratio of the pore pressure

to the state evolution timescales and parameter 𝑟𝑞 is the normalized injection rate,

where 𝑟 = 𝑡Θ𝑘
eff
n and 𝑞 = 𝑄/𝑃0.

Error estimates

This analysis shows that using the QSSA to study the stability of steady frictional

sliding to small perturbations in velocity with an evolving pore pressure is justified

when conditions Eqs. (2.56) and (2.58) are met. In other words, if in a timescale

𝑡Θ sliding reaches steady state with a constant pore pressure, then assuming that

sliding is in a quasi-steady state with a changing pore pressure is valid when the pore

pressure change occurs on a time scale 𝑡P that is long compared to 𝑡Θ and Δ𝑃 |𝑡Θ is

small compared to 𝑃0.

Therefore, we expect that the accuracy of our instability criterion depends on

dimensionless parameters 𝑐 and 𝑟𝑞. Here we evaluate the error in the analytical

estimate of the critical stiffness required to trigger the first slip event (Figure 2-

3). We indeed find that the error decreases as 𝑐 or 𝑟𝑞 decrease. It becomes small

(< 15%) when the normalized diffusivity and normalized injection rate reach small

values (𝑐 ≤ 5 × 10−2, 𝑟𝑞 ≤ 5 × 10−3). It is also interesting to note that the QSSA

validity may be extended to instances where 𝑐 is of order one provided that 𝑟𝑞 is

significantly smaller than one (green curve).
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Figure 2-3: Error in the instability criterion as a function of normalized diffusivity
and injection rate.

2.2.2 Validation against nonlinear simulations

To validate our analytical instability criterion (Eq. (2.28)), we simulate the fully

dynamic equations of motion of the spring–poroslider system (Eqs. (2.18)-(2.21))

with the following initial conditions

𝑢(𝑡 = 0) = 𝑣0(𝜎 − 𝑝0)(1 + (𝑎− 𝑏) ln 𝑣0)/𝜅, (2.59)

𝑣(𝑡 = 0) = 𝑣0, (2.60)

𝜃(𝑡 = 0) = 0, (2.61)

𝑝(𝑡 = 0) = 𝑝0. (2.62)

These coupled nonlinear ordinary differential equations are solved in MATLAB

using the ode15s solver for stiff systems. Representative results of motion without

fluid injection and motion while fluid is being injected into the poroslider at a constant

rate are shown in Figures 2-4 and 2-5, respectively.
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Figure 2-4: Dynamics of the spring-poroslider system without fluid injection, for
velocity-weakening friction.
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Figure 2-5: Dynamics of the spring-poroslider system under constant fluid injection
rate, for velocity-weakening friction.
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The simulation without fluid injection is performed using parameter values 𝑎 =

0.01, 𝑏 = 0.02, 𝛼 = 1, 𝜖 = 10−6, 𝑐 = 3 × 10−2, and 𝜅 = 0.011. The simulation with

fluid injection is performed using the same parameter values along with 𝑟𝑞 = 5×10−3.

The poroslider is initially sliding steadily at a fixed loading velocity 𝑣0 = 1 and a zero

fluid injection rate 𝑞 = 0. It is then made unstable by suddenly increasing the loading

velocity to a new fixed value 𝑣0 = 1.5 and injecting fluid at a constant rate 𝑞 = 10−9.

This triggers two stick-slip events, consisting of a slow build-up followed by a sudden

discharge of accumulated stress. The buildup occurs at a nearly stationary state

𝑣 ≈ 0.1 over a time period of 15, whereas the discharge is significantly faster reaching

a peak velocity 𝑣 ≈ 107, and has a duration of 0.5 (Fig. 2-5A). Following the two

stick-slip events, the poroslider evolves toward steady sliding at a relatively low and

constant velocity 𝑣 ≈ 1.5.

The normalized stress variations with velocity, slip, and time are shown in Fig-

ure 2-5B. Initially, the sudden change in load point velocity and effective normal

stress creates an excess of spring force over the frictional resistance, which in turn

accelerates the poroslider. The stress drops to a steady state value corresponding to

slip velocity. The poroslider continues to slip at a high rate until further shortening

of the spring becomes too difficult. It then decelerates to reach a nearly stationary

state. During this stage, the stress builds up to a peak value corresponding to stick

velocity, and the stick-slip cycle repeats. Note that the cycle is not repeated exactly,

the stress buildup after a slip event is dependent on the current effective normal

stress. Eventually, the decrease in effective normal stress terminates the stick-slip

cycle and initiates an indefinite period of steady-sliding. The stress exhibits decaying

oscillations that decrease in amplitude with time.

As a whole, Figure 2-5 shows that the analytical critical stiffness (Eq. (2.28)) is

in good qualitative agreement with the numerical simulation results. To validate our

instability criterion quantitatively, we compare our instability criterion against esti-

mates obtained empirically from the fully dynamic nonlinear simulations (Fig. 2-6).

The analytical estimate (blue) works well when the growth rate of perturbations is

large compared to the growth rate of the pore pressure. Initially, when pore pres-
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sure grows rapidly, estimates differ slightly, but they become indistinguishable at late

times, when pore pressure changes relatively slowly. We suspect that the small dif-

ference in estimates at early times is due to, at least partially, the use of the QSSA

in our analysis, which we discuss in detail in section 6.

Figure 2-6: Analytical vs. numerical estimates of critical stiffness.

2.3 Application to the Denver earthquakes

Our findings, if they are applicable to natural faults, hold interesting and important

implications for induced seismicity. The poroelastic spring-slider may be viewed as

a simple model of a fault segment in contact with a reservoir, steady-sliding as an

analog of aseismic creep, and stick-slip as a seismic wave-producing rupture cycle

(Brace and Byerlee, 1966; Rice and Tse, 1986). Within this view, our findings may

be generalized to indicate that a slowly creeping fault segment is destabilized and

generates an earthquake if the condition for instability in Eq. (2.29) is met.

To bridge the gap between the analysis of the idealized spring-poroslider model

and the real world, we express our instability criterion in dimensional form, and
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identify values of dimensionless parameters 𝑐 and 𝑟𝑞 that correspond to real-world

settings.

In dimensional form, the critical stiffness from the linear stability analysis is

𝑘s,crit =
(𝑏̂− 𝑎̂)

𝑑c
(Σ− 𝑃 ) +

𝛼̂

𝑉0

𝑃̇ , (2.63)

or, equivalently,

𝑘s,crit =

[︃
(𝑏̂− 𝑎̂) + 𝛼̂

𝑑c
𝑉0

𝑃̇

(Σ− 𝑃 )

]︃
(Σ− 𝑃 )

𝑑c
, (2.64)

where the term 𝑏̂− 𝑎̂ represents the original velocity weakening effect and the dimen-

sionless term 𝛼̂(𝑑c/𝑉0)𝑃̇ /(Σ−𝑃 ) represents an additional weakening effect from fluid

pressurization. Note that this pressurization term is maximum at early times and is

approximately equal to 𝑟𝑞.

The 1960s Denver earthquakes is a good example of a real-world setting, where it is

well-documented that injection of wastewater into the fractured Precambrian granite

gneiss underneath the Rocky Mountain Arsenal triggered the earthquakes and where

injection rate is directly related to the frequency of earthquakes (Evans, 1966; Healy

et al., 1968). The reservoir spans a depth interval from 3.7 to 7 km below the surface.

Experimental data on granite at this depth shows velocity weakening behavior (𝑏̂− 𝑎̂

in the range 0.002 to 0.005, 𝜇0 = 0.7 to 0.75) (Blanpied et al., 1991).

To identify values of dimensionless parameter 𝑐 that correspond to this setting, we

estimate the state evolution timescale 𝑡Θ and the pore pressure evolution timescale

𝑡p:

𝑐 =
𝑡Θ
𝑡P

. (2.65)

The state evolution timescale 𝑡Θ is

𝑡Θ =
𝑑𝑐
𝑉0

. (2.66)

We find that 𝑡Θ ranges from 10 days to 4 months based on field data of the charac-

teristic slip distance and loading rate (𝑑c = 10−3 to 10−2 m, 𝑉0 = 10−9 m/s) (Scholz,
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1988; Marone, 1998).

The pore pressure evolution time scale 𝑡P can be transferred from the poroslider

model to field settings,

𝑡P =
𝜂𝐿

𝑘eff
n 𝑘⏟  ⏞  

poroslider

=
𝐿

𝑘/𝜂

[︂
1

𝑘n
+𝐻0𝑐f

]︂
=

𝐿2

𝑘/𝜂

[︂
1

𝐾v

+ 𝜑
1

𝐾f

]︂
=

𝐿2

𝑘/𝜂

𝑆s

𝜌𝑔
=

𝐿2𝑆

𝑇⏟ ⏞ 
field

. (2.67)

We find that 𝑡P is approximately 2 years based on a reservoir analysis of the Denver

earthquakes, with transmissivity 𝑇 = 10−5 m2/s, storativity 𝑆 = 10−5, and charac-

teristic length scale 𝐿 = 8× 103 m (Hsieh and Bredehoeft, 1981).

In a similar manner, we identify values of dimensionless parameter 𝑟𝑞. We trans-

late this quantity from the poroslider model to field settings:

𝑟𝑞 =
𝑑c
𝑉0

𝑘eff
n

𝑄

𝑃0⏟  ⏞  
poroslider

=
𝑑c
𝑉0

𝑘eff
n

𝑄w

𝑃0𝑊𝐵
=

𝑑c
𝑉0

[︁
1
𝐾v

+ 𝜑 1
𝐾f

]︁−1

𝐿

𝑄w

𝑃0𝑊𝐵
=

𝑑c
𝑉0

𝜌𝑔

𝐿𝑆

𝑄w

𝑃0𝑊⏟  ⏞  
field

, (2.68)

and evaluate values based on the reservoir analysis and injection data, with reservoir

pressure 𝑃0 = 30 MPa, reservoir width 𝑊 = 3×103 m, and field injection rate 𝑄w = 2

to 9 million gal/mo (Evans, 1966; Hsieh and Bredehoeft, 1981).

Therefore, reasonable estimates of 𝑐 and 𝑟𝑞 for this setting would be in the order

of 10−2 to 10−1 and 10−3 to 10−1, respectively. Note that both estimates are much

smaller than one, and thus meet the QSSA validity conditions.

Having determined the validity of the QSSA analysis to this setting, we now assess

whether pressurization rate effects were likely significant during fluid injection leading

to the Denver earthquakes. In dimensionless form, the critical stiffness 𝜅crit is given

by Eq. (2.28). Prior to fluid injection, the pore pressure is constant and the critical

stiffness,

𝜅crit = (𝑏− 𝑎)(𝜎 − 𝑝0), (2.69)

is estimated to be 0.005 (𝑏 − 𝑎 = 0.003 to 0.007, 𝜎 − 𝑝0 = 1). Shortly following

the start of fluid injection, the pore pressure increases rapidly and the dimensionless
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critical stiffness takes the form:

𝜅crit

⃒⃒⃒
𝑡=0

= (𝑏− 𝑎)(𝜎 − 𝑝0) +
𝛼

𝑣0
𝑝̇
⃒⃒⃒
𝑡=0

= (𝑏− 𝑎)(𝜎 − 𝑝0) +
𝛼

𝑣0
𝑟𝑞. (2.70)

This results in an increase in critical stiffness at early times in the range of 30% to

3000% (𝛼 = 1, 𝑣0 = 1), thus indicating that the additional weakening effect from

fluid pressurization is likely significant in this setting.

2.4 Phase diagram of injection-induced seismicity

To study the influence of reservoir properties on injection-induced seismicity, we

simulate the occurrence of earthquakes as a function of dimensionless injection rate

𝑟𝑞 = 𝑑c𝑘
eff
n 𝑄/(𝑝c𝑉*) and normalized diffusivity 𝑐 = 𝑑c𝑘

eff
n 𝑘/(𝜂𝐿𝑉*) for the case 𝑎 = 0,

𝑏 = 0.01, 𝛼 = 1, and 𝜅 = 0.011 (Fig. 2-7). Diffusivity is varied by varying perme-

ability. Each point on the phase diagram represents the maximum slip velocity of a

different simulation run with a particular injection rate and a particular normalized

diffusivity. The red dots indicate the occurrence of one or more earthquakes over a

finite time period, whereas the grey dots indicate the absence of earthquakes over the

same period. We observe two distinct regimes depending on the normalized diffusiv-

ity: a high diffusivity regime for 𝑐 > 1, and a low diffusivity regime for 𝑐 < 0.01.

48



-5          -4         -3          -2         -1          0          1          2 

0

-1

-4

-3

-2

log10 c

log10 rq

vslip = 107

vslip = 0

Figure 2-7: Phase diagram of triggered earthquakes as a function of dimensionless
injection rate normalized diffusivity.

When the normalized diffusivity is higher than one, the dimensionless pressure

diffusion time is less than one. Pore pressure reaches steady-state on a very short

time scale, and so the rate of change in pore pressure is negligible. To quantify this,

we write

𝑝̇ ≈ 0, (2.71)

𝑝 ≈ 𝑝0 +
𝑟𝑞

𝑐
. (2.72)

It is helpful to express the condition for instability (Eq. (2.28)) in terms of 𝑟𝑞crit

so that an earthquake is triggered if the injection rate is higher than a critical value

given by

𝑟𝑞crit ≈
[︂
(𝜎 − 𝑝0)−

𝜅

(𝑏− 𝑎)

]︂
𝑐. (2.73)

We find that the injection rate required to trigger an earthquake is proportional

to diffusivity 𝑐, which explains the simulation results in Figure 2-7: In the regime of

high diffusivity 𝑐 > 1, 𝑞crit ∼ 𝑐. Accordingly, earthquakes are more easily triggered

when fluid is injected into a low permeability reservoir rock than a high permeability,

for a fixed effective stiffness.
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Conversely, when the normalized diffusivity is lower than 0.001, the dimension-

less pressure diffusion time is more than 100. Pore pressure stays near the initial

transient-state throughout the simulation period and so the magnitude of change in

pore pressure is negligible. To quantify this, we write

𝑝̇ ≈ 𝑟𝑞, (2.74)

𝑝 ≈ 𝑝0. (2.75)

If we express the condition for instability in terms of 𝑟𝑞crit, similar to the high

diffusivity case above, we find that the injection rate required to trigger an earthquake

is

𝑟𝑞crit ≈
𝑣0
𝛼

[︂
𝜅− (𝑏− 𝑎)(𝜎 − 𝑝0)

]︂
. (2.76)

This also explains the simulation results in Figure 2-7: In the regime of low diffusivity

𝑐 < 0.01, 𝑞crit ∼ const. Accordingly, in this regime, earthquake triggering is indepen-

dent of permeability. These results, as a whole, suggest that reservoirs with high

hydraulic diffusivity and low stiffness may be safer sites for fluid injection operations

compared to sites with low hydraulic diffusivity and high stiffness.

2.5 Injection scenarios

To further understand how injection rate may be used to minimize or mitigate the

seismic hazard, we simulate three different injection scenarios, and examine the sta-

bility of each. Figure 2-8 demonstrates how injecting the same volume of fluid can

have very different seismic potential depending on the injection profile. We observe

that injecting at constant rate in scenario (A) causes the critical stiffness to increase

at early times, potentially triggering earthquakes, and decrease at late times, poten-

tially resulting in the cessation of earthquakes. In addition, we observe a dramatic

drop in critical stiffness upon stopping injection followed by recovery to the value

prior to injection. Scenario (B) shows that a higher injection rate yields higher crit-

ical stiffness, implying an increased risk of seismicity for this higher injection rate.
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Scenario (C), where the injection rate ramps up in stages, seems to be most stable

because the maximum critical stiffness is lower than its value in both (A) and (B).

This suggests that a gradual increase in injection rate, where pore pressure is allowed

to stabilize between injection stages, may be the safest injection strategy.

A B C

Figure 2-8: Comparison of stability profiles for three different injection scenarios with
the same total injected volume.
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Chapter 3

Influence of fluid injection on energy

partitioning

Earthquakes occur naturally on subsurface faults in the earth’s crust, or anthropo-

logically by subsurface energy activities (National Research Council, 2013). Natural

earthquakes are caused by the slow buildup of elastic strain energy over geologic

times. When tectonic shear stress exceeds fault friction, an earthquake occurs, dur-

ing which the energy is released as frictional energy, fracture (or breakdown) energy,

and radiated energy in the form of seismic waves. The energy partitioning of natu-

ral earthquakes has been theoretically investigated by a large body of research using

analytical models of dynamic shear cracks and numerical simulations (Kanamori and

Rivera, 2006; Beeler, 2001; Scholz, 2002; Kostrov, 1974; Dahlen, 1977). Specialized

studies include non-mechanical processes such as flash heating, thermal pressuriza-

tion and melting (Brantut and Viesca, 2017; Kanamori et al., 2000), complex fault

networks and dip-slip faults (Cooke and Murphy, 2004; Dempsey et al., 2012), and

variable earthquake rupture modes such as self-healing pulses and mild cracks (Lam-

bert et al., 2021).

Anthropogenic earthquakes can be induced or triggered (McGarr et al., 2002;

Albano et al., 2017; Silva et al., 2021). They are induced when subsurface activities

perturb stresses around faults originally far from failure, and triggered when faults

are already close to failure. Typically, there is a delay between the beginning of
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fluid injection and the start of seismicity (Van Der Elst et al., 2013). The energy

partitioning of anthropogenic earthquakes has not yet been explicitly studied, but

there have been some studies done on the radiated energy and related parameters of

such earthquakes. The radiated energy is found by laboratory and in situ experiments

to be extremely low compared to the product of injected fluid volume and pressure

(or injection energy), and the ratio is lower for induced earthquakes compared to

triggered ones (Goodfellow et al., 2015; Kwiatek et al., 2018). A related parameter

is the seismic moment (Kanamori, 1978), which is the product of fault slip, rupture

area, and shear modulus. It is hypothesized that its maximum is bounded by the

product of injected fluid volume and shear modulus (McGarr, 2014; Hallo et al.,

2014; Galis et al., 2017). This hypothesis assumes that earthquakes are induced and

that most of the energy released come from fluid injection. It is, however, not always

accurate (e.g., 2017 Pohang earthquake (Lee et al., 2019; Li et al., 2021)). It is also

found by laboratory experiments that the temporal evolution of seismic moment is

directly related to fluid pressurization rate (Wang et al., 2020a). To date, there is no

physics-based framework that rationalizes or predicts these disparate findings.

To address this gap, we perform an energy analysis of the full anthropogenic

earthquake cycle using a single-degree-of-freedom spring poroslider and rate-and-state

friction (Alghannam and Juanes, 2020). The model captures stick-slip motion on a

fault in contact with a reservoir (Fig. 2-1), where the stick is the interseismic period

of elastic strain accumulation and the slip is the seismic wave-producing rupture

(Brace and Byerlee, 1966). A key element of the analysis is incorporating the seismic

radiation within the spring poroslider using a precisely-defined viscous damper. We

then use it to study fluid injection and assess its effects on the energy partitioning

during induced and triggered earthquakes.

3.1 Fluid injection into a poroelastic reservoir

When fluid is injected into a reservoir, pore pressure change induces effective stress

variations in the reservoir and surrounding rock. We model the corresponding de-
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formation process by a poroslider (Alghannam and Juanes, 2020), where a piston

is loaded vertically and compresses a spring inside a fluid-filled space. The vertical

spring is analogous to the rock skeleton, while the fluid inside the slider represents

fluid in the rock pores subject to increase from fluid injection and decrease from pres-

sure diffusion. In this section, we derive an energy balance for this process from the

work-energy theorem.

Starting with force balance, we specify the total load acting on the poroslider to

be 𝜎𝐴, the force acting on the fluid to be 𝑝𝐴, and the force acting on the skeleton to

be 𝜎′𝐴. This, using the convention of compression positive, leads to

𝐴𝜎 = 𝐴𝜎′
0 − 𝑘n𝑤 + 𝐴𝑝, (3.1)

where 𝑤 is the vertical displacement, 𝑘n is the normal spring stiffness, and 𝜎′
0 is the

initial effective stress. The net work done on the poroslider as the spring deforms

vertically, as a result of fluid injection, is the product of the net load and vertical

displacement. In rate form, it is expressed as

𝜎𝐴𝑤̇ = 𝜎′
0𝐴𝑤̇ −

(︂
1

2
𝑘n𝑤

2

)︂˙

+ 𝑝𝐴𝑤̇, (3.2)

where 𝑤̇ is the rate of vertical displacement.

We specify the change of mass from fluid seepage to be 𝜌𝐴𝑢f , mass accumulation

due to rock expansion or fluid compressibility is (𝜌𝑣f )̇, and injection source term to

be 𝑞. We assume that both the fluid and rock matrix are compressible (Wang, 2000),

and so mass balance leads to

(𝜌𝑉f)
˙ = 𝑞 − 𝜌𝐴𝑢f . (3.3)

The relative fluid velocity with respect to the skeleton is expressed using Darcy’s law

as 𝑢f = (𝜅/𝜂)(𝑝− 𝑝0)/𝐿, where 𝜂 is fluid dynamic viscosity, 𝜅 is permeability, and 𝐿

is the pressure diffusion length. The mass accumulation term can be expressed using

chain rule and equation of state as (𝜌𝑉f)
˙ = 𝜌𝑣̇f+(Ψ̇𝜌2/𝑝)𝑉f , where Ψ is the Helmholtz
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free energy density such that, 𝑝 = 𝜌2𝜕Ψ/𝜕𝜌 (Truesdell, 1984). When fluid is injected

into a rock that is free to deform in the direction orthogonal to sliding, the addition

of mass induces an increase of volume equivalent to 𝑉f − 𝑉f,0 = 𝐴𝑤, where 𝑉f,0 is the

initial fluid volume. We can now re-write the last term in Eq. (3.2) as

𝑝𝑉̇f = 𝐴𝑝𝑞 − 𝑝𝐴𝑢f − 𝜌Ψ̇𝑉f , (3.4)

where 𝑞 is the volumetric injection rate per unit area (𝑞 = 𝑞/𝜌𝐴).

By substituting Eq. (3.4) into Eq. (3.2) and re-arranging terms, the energy balance

for fluid injection into a poroelastic reservoir becomes

𝐸̇in − 𝑊̇ex = 𝐸̇e,s + 𝐸̇e,f + 𝐸̇v. (3.5)

The terms in Eq. (3.5) have a physical significance as follows: 𝐸̇in = 𝑝𝑞𝐴 is the power

source or power supplied by fluid injection, 𝑊̇ex = 𝐴𝑝0(𝑤̇ + 𝑢f) is the rate of work

done by the system on external boundary where (𝑤̇ + 𝑢f) is the absolute velocity of

the fluid, 𝐸̇e,s = (1
2
𝑘n𝑤

2)˙ is the rate of elastic energy stored in the spring, 𝐸̇e,f = 𝜌Ψ̇𝑉f

is the rate of energy stored in the fluid by compressibility, and 𝐸̇v = 𝜂𝐿
𝑘
𝐴𝑢2

f is the

rate of energy dissipated by viscous forces. This energy balance (Eq. (3.5)) provides

a basis for the problem of energy partitioning during fluid injection in section 3.4.2.

3.2 Stick-slip motion on a fault

To model the effects of variations in pore pressure on a creeping fault segment, we

attach the poroslider to an elastic spring. The coupled model represents frictional

slip and consists of a slider that is pulled by a spring whose end is constrained to

move at a steady velocity. The spring stiffness accounts for the elastic interaction of

the sliding surface with the surrounding rock (Rice and Tse, 1986). In this section,

we derive an energy balance for frictional stick-slip from the work-energy theorem.

From momentum balance of forces acting on the slider, the equation of motion of
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the system evolution at variable effective normal stress is

𝑚𝑥̈ = 𝑘s(𝑥̇∞𝑡− 𝑥)− 𝜇(𝑥̇, 𝜃)𝜎′𝐴, (3.6)

where 𝑥 is the slip distance, 𝑥̇∞ is the loading velocity, 𝑢 = 𝑥̇∞𝑡 − 𝑥 is the relative

displacement between the load point and the slider, 𝑚 is the mass, 𝑘s is the shear

stiffness, and 𝜇(𝑥̇, 𝜃) is the Linker and Dieterich (1992) form of rate-and-state friction.

Parameter 𝜃 is a state variable describing the sliding surface. According to Eq. (3.6),

the sum of friction and spring forces acting on the slider, or the net force, determines

the rate of change in momentum. The work done by all the forces acting on the slider,

or the net work, is the product of the net force and slip distance. In rate form, this is

𝑚𝑥̈𝑥̇ = 𝑘s(𝑥̇∞𝑡− 𝑥)𝑥̇− 𝜇(𝑥̇, 𝜃)𝜎′𝐴𝑥̇. (3.7)

Note that 𝑥(0) is not always zero, as the spring may have a pre-stretched initial state

corresponding to background tectonic stresses in the Earth. By writing the relative

displacement as 𝑢 = (𝑥̇∞𝑡−𝑥)−𝑢(0)+𝑢(0) and re-arranging terms, Eq. (3.7) becomes

(︂
1

2
𝑚𝑥̇2

)︂˙

= 𝑘s𝑢𝑥̇∞ −
(︂
1

2
𝑘s(𝑢− 𝑢(0))2

)︂˙

− 𝑘s𝑢(0)𝑢̇− 𝜎′𝐴𝜇(𝑥̇, 𝜃)𝑥̇. (3.8)

We then re-express Eq. (3.8) to obtain the energy balance for stick-slip motion on

a fault

𝐸̇k = 𝑊̇ − 𝐸̇e − 𝐸̇e,0 − 𝐸̇f , (3.9)

where 𝐸̇k is the rate of kinetic energy released, 𝑊̇ is the power supplied to produce

motion 𝑥̇∞, 𝐸̇e is the rate of change in elastic strain energy, 𝐸̇e,0 is the power supplied

through the pre-stretch, and 𝐸̇f is the rate of dissipated energy including frictional

and breakdown energies. The frictional energy is due to constant friction on the fault

plane. It is often equated to the energy dissipated as heat (Kanamori and Rivera,
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2006). The breakdown energy is due to a combination of many processes (e.g., plastic

yielding, micro cracking, breaking of asperity contacts, etc) (Lin and Segel, 1988). It

is the part of the dissipated energy that controls the dynamics of the rupture and

is often considered as the frictional analog of the fracture energy from singular and

cohesive-zone models of dynamic fracture theory (Kanamori and Rivera, 2006; Cocco

et al., 2004). This energy balance (Eq. (3.9)), however, is missing seismic radiation—a

key element of the problem of energy partitioning during earthquakes.

3.3 Seismic radiation

One of the most fundamental measures of earthquake dynamics is the total radiated

energy. It is defined as the amount of energy that would be carried to the far field in

the form of seismic waves if an earthquake occurred in an infinite and non attenuat-

ing medium (Rivera and Kanamori, 2005). In seismological practice, seismic radiated

energy is obtained from the transient dynamic displacements inferred from examina-

tion of seismograms or from measurements of deformation in the epicentral region

(Udías et al., 2014; Shearer, 2019). This energy is theoretically determined from the

energy flux carried by P and S waves at the far-field (Rudnicki and Freund, 1981).

It can also be expressed as a surface integral over the fault plane with the integrand

containing the slip function on the fault plane (Rivera and Kanamori, 2005; Kostrov,

1974). Both methods assume a dynamic shear crack in a two- or three-dimensional

continuum.

Spring sliders, however, are zero-dimensional and do not take into account the fact

that seismic radiation is a mechanism in nature whereby part of the elastic energy

lost during rupture can travel away from the fault. A radiation damping term, 𝜂𝑥̇, is

sometimes used to approximate energy lost as propagating seismic waves (Burridge

and Knopoff, 1967; Beeler, 2001). The coefficient 𝜂 governs the rate at which energy

is radiated away from the fault. In multi-dimensional simulations, it is often taken

as 𝐺/2𝑐, where 𝐺 is the shear modulus and 𝑐 is the shear wave speed (Rice, 1993;

Thomas et al., 2014), or as a large constant in “quasi-dynamic” simulations (Segall and
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Rice, 1995; Pampillón et al., 2018). The former assumes planar waves in a continuum

and the later is arbitrary—neither is appropriate to simulate seismic radiation in a

spring slider.

Radiation effects can be simulated is by attaching a semi-infinite multi-degree-of-

freedom spring-mass system to the slider such that the motion of the slider exciteps

a wave traveling upward (Fig. 3-1). The equations of motion for the system are

𝑚𝑥̈0(𝑡) + 𝑘s𝑥0(𝑡) + 𝑘s(𝑥0(𝑡)− 𝑥1(𝑡)) = 𝑘s𝑥̇∞𝑡− 𝜎′𝐴𝜇(𝑥̇0, 𝜃), (3.10)

𝑚𝑥̈1(𝑡) + 𝑘s(𝑥1(𝑡)− 𝑥0(𝑡)) + 𝑘s(𝑥1(𝑡)− 𝑥2(𝑡)) = 0, (3.11)
... (3.12)

𝑥̇n(𝑡) +
√︀
𝑘s/𝑚(𝑥n(𝑡)− 𝑥n−1(𝑡)) = 0, (3.13)

where Eq. (3.13) represents an absorbing boundary condition to prevent significant

wave reflection.

Figure 3-1: A semi-infinite multiple-degree-of-freedom system representing seismic
waves radiating away from a moving spring slider on a frictional interface.

The simplest analytical solution to the single-degree-of-freedom spring slider is

for the case when the effective normal stress is constant and friction is assumed to

drop from an initial static value to a lower dynamic value instantly upon sliding
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(Scholz, 2002; Nur, 1978; Jaeger and Cook, 1976). The driving force is therefore the

difference between static and dynamic frictions, 𝐹 = Δ𝜇𝜎′𝐴. If we further assume

that, during the slip phase, the load point velocity 𝑥̇∞ is negligible compared with the

average velocity of the slider, the first-order approximation of the motion becomes

𝑚𝑥̈0 + 𝑘s𝑥0 = Δ𝜇𝜎′𝐴 with initial conditions 𝑥0(0) = 𝑥̇0(0) = 0. The solutions for

displacement and velocity are 𝑥0(𝑡) = (Δ𝜇𝜎′𝐴/𝑘s)(1 − cos (
√︀

𝑘s/𝑚 𝑡)) and 𝑥̇0(𝑡) =

(Δ𝜇𝜎′𝐴/𝑚) sin (
√︀

𝑘s/𝑚 𝑡), respectively.

By the D’Alembert solution, the displacement and velocity of a wave traveling

in a continuum are 𝑥(𝑦, 𝑡) = 𝑥0(𝑡 − 𝑥/𝑐) and 𝑥̇(𝑦, 𝑡) = 𝑥̇0(𝑡 − 𝑦/𝑐), where 𝑐 is the

wave speed (Bekefi and Barrett, 1977; Pinchover and Rubinstein, 2005). We assume

unit length for spacing between masses, and so the displacement and velocity of

the multi-degree-of-freedom spring mass system attached to the slider are 𝑥i(𝑡) =

𝑥0(𝑡− 𝑖/
√︀

𝑘s/𝑚) and 𝑥̇i(𝑡) = 𝑥̇0(𝑡− 𝑖/
√︀

𝑘s/𝑚), where 𝑖 is a mass index and
√︀
𝑘s/𝑚

is the velocity of the wave traveling upward. The force exerted by the spring on

the mass is 𝑘s(𝑥i(𝑡) − 𝑥i−1(𝑡)). By Taylor expansion about 𝑡 − 𝑖/
√︀

𝑘s/𝑚, it is equal

to 𝑘s(𝑥0(𝑡 − 𝑖/
√︀

𝑘s/𝑚) − 𝑥0(𝑡 − (𝑖 − 1)/
√︀

𝑘s/𝑚)). It may be further approximated

by 𝑘s𝑥̇i(𝑡 − 𝑖/
√︀
𝑘s/𝑚)(−1/

√︀
𝑘s/𝑚). This gives a dissipative force proportional to

velocity, −
√
𝑘s𝑚𝑥̇i(𝑡). Therefore, seismic radiation can be modeled within the zero-

dimensional spring slider by adding a radiation damping term 𝜂𝑥̇ to the equations of

motion, with coefficient 𝜂 =
√
𝑘s𝑚.

The final energy balance for stick-slip motion on a fault including seismic radiation

is

𝐸̇k + 𝐸̇r = 𝑊̇ − 𝐸̇e − 𝐸̇e,0 − 𝐸̇f , (3.14)

where 𝐸̇r =
√
𝑘s𝑚𝑥̇2 is the power radiated away from the slider—analogous to the

seismic power radiated away from a fault. The validation of this analytical expression

against numerical simulations with the multi-degree-of-freedom system is found in

section 3.3.1. This energy balance (Eq. (3.14)) provides a basis for the problem of

energy partitioning during the full earthquake cycle in section 3.4.
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3.3.1 Validation against numerical simulations

To validate the radiation damping term we derived, we simulate motion of the multi-

degree-of-freedom system (Eqs. 3.10-3.13) and the single-degree-of-freedom system

with damping (below)

𝑢̇ = 𝑣∞ − 𝑣, (3.15)

𝑣̇ =
1

(𝑇/2𝜋)2

[︂
𝑢− 1

𝑘s
(𝜇* + 𝑎 ln

𝑣

𝑣*
+ 𝜃)𝐴(𝜎 − 𝑝)−

√︂
𝑚

𝑘s
𝑣

]︂
, (3.16)

𝜃 = − 𝑣

𝑑c
(𝜃 + 𝑏 ln

𝑣

𝑣*
) + 𝛼

𝑝̇

(𝜎 − 𝑝)
, (3.17)

𝑝̇ =
𝑘eff
n 𝑘

𝜂𝐿𝐴
(𝑝∞ − 𝑝) +

𝑘eff
n

𝐴
𝑞, (3.18)

where 𝑢 is the relative displacement between the load point and the slider, ˙( ) denotes

time derivative, 𝑣∞ is the loading velocity, 𝑣 is slip rate, 𝑇 is the vibration period, 𝑘s is

the shear stiffness, 𝑣* is a normalizing slip rate, 𝜇* is a constant coefficient appropriate

for steady-state friction at slip rate 𝑣*, 𝑎 and 𝑏 are experimentally derived parameters

relating friction to changes in slip rate and state, respectively, 𝜃 is a state variable

describing the sliding surface, 𝜎 is the total stress, 𝑝 is the pressure inside the slider

(pore pressure), 𝑑c is the characteristic slip distance, 𝛼̂ is a scaling factor ranging

from 0 to 𝜇, 𝑘eff
n is the effective normal stiffness (related to the uniaxial bulk modulus

or the reciprocal of the uniaxial specific storage per diffusion length in a continuum),

𝑘 is the permeability, 𝜂 is fluid dynamic viscosity, 𝐿 is the pressure diffusion length,

𝑝0 is the ambient pressure, and 𝑞 is the volumetric injection rate per unit area.

Figure 3-2 illustrates the radiated energy (the difference between the change in

elastic energy and the energy dissipated by breakdown and friction) for a 3 degree-of-

freedom system (A) and an 11 degree-of-freedom system (B). The results are almost

identical as the same seismic wave travels up both systems. The 3 DOF system

exhibits less numerical oscillations than the 11 DOF system. The results of the

radiated energy of the single-degree-of-freedom spring slider system with radiation

damping are illustrated in Figure 3-3. Three cases are presented: (A) 𝜂 = 2
√
𝑘s𝑚,
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(B) 𝜂 =
√
𝑘s𝑚, and (C) 𝜂 = (1/2)

√
𝑘s𝑚. Case (A) exhibits no dynamic overshoot and

case (C) overpredicts overshoot. The results given by damping term in case (B) are

closest to those obtained by simulating the multi-degree-of-freedom, and show that

our estimate of seismic radiation is 92% to 96% accurate. In this case, the dynamic slip

overshoots the static slip by about 15 percent—in agreement with theoretical studies

of dynamic circular faults and laboratory observations (Madariaga, 1976; McGarr,

1999; Lockner and Okubo, 1983). The amount of overshoot is a direct result of

inertia and seismic radiation.

Figure 3-2: Estimates of the radiated energy from a full couple 3 degree-of-freedom
system (A) and 11 degree-of-freedom system (B) (quantities expressed here are di-
mensionless).
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Figure 3-3: Estimates of the radiated energy from a single degree of freedom system
with radiation damping term: (A) 𝜂 = 2

√
𝑘𝑚, (B) 𝜂 =

√
𝑘𝑚, and (C) 𝜂 = (1/2)

√
𝑘𝑚

(quantities expressed here are dimensionless).

3.4 Energy partitioning

Understanding the mechanisms controlling anthropogenic earthquakes is key in defin-

ing strategies to mitigate them (National Research Council, 2013). The partitioning of

energy released during an earthquake into frictional, breakdown, and radiated energy

gives an indication of the overall size of the earthquake and its potential for dam-

age to man-made structures (Boatwright and Choy, 1986; Kanamori, 1978; Kanamori

and Rivera, 2006). Coupling it with the partitioning of energy supplied by fluid in-

jection into dissipated and stored energy in fluid and skeleton gives an indication

of the source of energy released, and how it is influenced by injection parameters

(Kwiatek et al., 2018; Li et al., 2021). In this section, we consider the energy budget

of a spring poroslider model without fluid injection as a base case (section 3.4.1),

and then analyze how it is altered by fluid injection (section 3.4.2). We simulate

the spring-poroslider system of equations (section 3.3.1) with the properties listed in

table 3.1. Note that these properties do not reflect a specific real setting, but rather

generally represent sandstone reservoirs with velocity-weakening faults. Performing

energy partitioning analyses for specific real settings could be the subject for future
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studies.

Table 3.1: Reservoir and fault properties.
𝑝∞ (Pa) 30 * 106 𝑣* (m/s) 10−9

𝜎 (Pa) 90 * 106 𝑣∞ (m/s) 1.5 * 10−9

𝑞 (m/s) 10−7 − 10−8 𝑑c (m) 10−2

𝐾f (Pa) 3 * 109 𝜇* 0.6
𝐾v (Pa) 6 * 109 𝑎̃ 0.006

𝜑 0.2 𝑏̃ 0.0108
𝜂 (Pa.s) 0.001 𝛼̃ 0.6
𝜅 (m2) 3 * 10−14 𝑘s (Pa.m) 4.3 * 106
𝐿 (m) 3 * 103 T (s) 500

3.4.1 Natural earthquakes

Consider a slider on a frictional surface and connected to a spring which is driven

slowly at a uniform velocity. While the slider is nearly stuck, the spring is stretched

by the uniform motion of its end at constant velocity 𝑥̇∞. The stick period (shaded

by grey in Fig. 3-4A) represents the strain loading of the medium by tectonic forces.

By integrating Eq. (3.14) over this time period, the elastic energy accumulated in the

spring is

Δ𝐸e|stick =
𝑘s
2
(𝑥̇∞𝑡)2, (3.19)

where 𝑥̇∞𝑡 is the elongation of the spring. In our example, Δ𝐸e|stick = 4.3×107 J/m2.

The slider is then made unstable by suddenly increasing the loading velocity. This

change creates an excess of spring force over the frictional resistance, which in turn

accelerates the slider. The friction drops to a lower dynamic value over a characteristic

slip distance. The slider continues to slip at a high rate until further shortening of

the spring is no longer possible, overshoots, and then decelerates to reach a nearly

stationary state. The slip period (shaded by grey in Fig. 3-4B) represents the seismic

rupture. As the spring force drops from an initial value 𝜏s,i to a final value 𝜏s,f , the
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Figure 3-4: Dynamics of stick-slip cycle without fluid injection.

change in elastic energy in the spring is,

Δ𝐸e|slip = −1

2
(𝜏s,i + 𝜏s,f)𝐴Δ𝑥, (3.20)

where Δ𝑥 is the total slip. In our simulations, Δ𝐸e|slip = 4.2 × 107 J/m2. Most of

this energy is dissipated,

Δ𝐸f =

∫︁ 𝑥2

𝑥1

𝜇(𝑥̇, 𝜃)𝜎′𝐴 𝑑𝑥. (3.21)

This integral includes both the breakdown and frictional energies (section 3.2). The

former is generally much smaller than the latter (Scholz, 2002), and so we just compute

the lumped value Δ𝐸f = 4× 107 J/m2. The remaining energy is radiated as seismic

waves,

Δ𝐸r =

∫︁ x2

x1

√︀
𝑘s𝑚𝑥̇ 𝑑𝑥. (3.22)

In our simulations, Δ𝐸r = 2.3 × 106 J/m2. Note that the kinetic energy vanishes

before and after slip, and so Δ𝐸k = 0.

Graphically, the energy budget during a natural earthquake is illustrated in Fig. 3-

5. The change in elastic strain energy is given by the trapezoidal area under the curve

for spring load, the total dissipated energy is given by the area under the curve for
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frictional resistance, and the seismic radiated energy given is the difference between

the two. The ratio of the radiated energy to the change in elastic strain energy is

referred to as the seismic efficiency. It serves as an indicator of earthquake potential

for damage to man-made structures. McGarr (1994, 1999) shows that it is typically

less than 6%. For the particular set of reservoir and fault properties in table 3.1, it is

estimated to be around 5%. Stress drop and total slip—indicators of the overall size

of an earthquake—can also be estimated from our energy budget. They are around

5 MPa and 1.2 m, respectively.

Figure 3-5: Energy partitioning during a natural earthquake.

3.4.2 Anthropogenic earthquakes

When fluid is injected into a faulted reservoir, pore pressure change induces effective

stress variations in the reservoir and surrounding rock. It increases at high rate

at early times, and then reaches steady state at late times by balancing the rate

of fluid injection with the rate of pore pressure diffusion (Alghannam and Juanes,

2020). Fluid injection induces or triggers slip when the resulting change in frictional

resistance occurs at a rate greater than the loading system is capable of following,

that is, when the stiffness of the loading system is lower than a critical value given
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by

𝑘s,crit =

[︂
(𝑏− 𝑎) + 𝛼

𝑑c
𝑣∞

𝑝̇

𝜎′

]︂
𝜎′

𝑑c
, (3.23)

where 𝑎, 𝑏, 𝑑c, 𝛼 are rate-and-state frictional parameters (Byerlee, 1970). The term

(𝑏− 𝑎) represents an original velocity-weakening effect and the term 𝛼𝑑c𝑝̇/𝑣∞𝜎′ rep-

resents an additional weakening effect from fluid pressurization. Fluid injection in-

terrupts the stick-slip cycle during the period of elastic strain accumulation. The

associated reduction in effective normal stress accelerates the point at which the

spring force exceeds the frictional resistance, which in turn leads to a premature slip

(Fig. 3-6).

Figure 3-6: Dynamics of stick-slip cycle with fluid injection.

There is a delay from the beginning of fluid injection to the start of slip (Van

Der Elst et al., 2013). By integrating Eq. (3.5) over this time period, we can write

an expression for the energy input from fluid injection

Δ𝐸in = Δ𝑊ex +Δ𝐸e,s +Δ𝐸e,f +Δ𝐸v. (3.24)

We simulate four cases (tables 3.2-3.4) corresponding to two injection rates (10−7 m/s

and 10−8 m/s) and two types of anthropogenic earthquakes (induced and triggered).

The earthquake is induced when fluid injection interrupts the stick-slip cycle early

during the period of elastic strain accumulation, and is triggered when fluid injection

interrupts the cycle late (Albano et al., 2017; Silva et al., 2021; McGarr et al., 2002).
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Table 3.2: Summary of fluid injection into the reservoir.
type of time to cumulative

case earthquake q first event injection 𝐸in Δ𝐸e,s/Δ𝐸in

(m/s) (s) (m) (J/m2) (%)

1 natural 0 – 0 – –
2 induced 10−7 1.3 * 108 13 4.61 * 108 3.9
3 induced 10−8 6.2 * 108 6.2 1.93 * 108 0.1
4 triggered 10−7 4.5 * 107 4.5 1.47 * 108 3.8
5 triggered 10−8 1.4 * 108 1.4 4.34 * 107 0.4

Table 3.3: Summary of stick-slip energies on the fault.
case Δ𝐸e|stick Δ𝐸e|slip Δ𝐸f Δ𝐸r

(J/m2) (J/m2) (J/m2) (J/m2)

1 4.26 * 107 4.22 * 107 3.98 * 107 2.31 * 106
2 1.39 * 107 4.56 * 107 4.2 * 107 3.57 * 106
3 3.97 * 107 4.34 * 107 4.1 * 107 2.32 * 106
4 3.58 * 107 5.53 * 107 5.1 * 107 4.53 * 106
5 4.09 * 107 4.4 * 107 4.15 * 107 2.4 * 106

Table 3.4: Summary of efficiencies and event size indicators.
case 𝑝̇|event Δ𝐸r/Δ𝐸e|slip Δ𝐸r/Δ𝐸in stress drop total slip

(Pa/s) (%) (%) (Pa) (m)

1 – 5.47 – 5.36 * 106 1.25
2 2.2 * 10−2 7.83 0.77 6.61 * 106 1.53
3 2 * 10−6 5.35 1.2 5.42 * 106 1.27
4 7.5 * 10−2 8.19 3.08 7.45 * 106 1.72
5 1.9 * 10−3 5.45 5.53 5.55 * 106 1.29

We take case 2 as an example. Figure 3-7A illustrates the energy budget for

fluid injection into the poroslider. The energies are represented by the areas under

and between the curves. Most of the energy input goes into performing work on

the external boundary. The remaining energy is initially stored in the compressible

fluid. With time, part of it is dissipated by viscous forces from fluid flow and part

of it is stored in the skeleton. The amount of elastic energy stored in the skeleton is

4.6 × 108 J/m2—the lowest out of the four. It is directly related to the rate of fluid

injection. This indicates that only a small part (4%) of the energy input has any
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potential to contribute to the energy released during frictional slip.

Figure 3-7: Energy partitioning during an induced earthquake.

In case 2, the elastic energy accumulated in the spring during the stick period

is 1.4 × 107 J/m2, lower than the case without fluid injection. During slip, the

energy partitioning is as follows: the drop in elastic energy is 4.6× 107 J/m2, out of

which 4.2 × 107 J/m2 is dissipated and 3.6 × 106 J/m2 is radiated as seismic waves

(Fig. 3-7B). Seismic efficiency, stress drop, and total slip are 8%, 5 MPa and 1.5

m, respectively—all higher than in the case without fluid injection. The increase in

these quantities is a direct consequence of the additional frictional weakening effect

from fluid pressurization (Alghannam and Juanes, 2020; Olsson, 1988). This result

qualitatively agrees with a laboratory experiment (Wang et al., 2020a), in which it

was observed that the temporal evolution of seismic moment (correlated with radiated

energy and total slip (Kanamori, 1978)) is affected by fluid pressurization rates. When

fluid pressure stabilizes at higher value, subsequent slip events tend to be slightly

smaller than the ones prior to fluid injection.

We summarize the results of our analysis of the energy partitioning during an-

thropogenic earthquakes in tables 3.2-3.4, and find three interesting points. First, the

delay between the beginning of fluid injection and the start of seismicity depends on

both the rate and timing of fluid injection within the earthquake cycle. That is, it

depends on the change of frictional resistance on the fault and the state of tectonic

shear loading at the time of injection. Note that our model does not consider the
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influence of spatial extent of pore pressure diffusion on the delay (Shapiro and Dinske,

2009). Second, seismic injection efficiency, or the ratio between the radiated energy

to the injection energy, is generally very low. It is lower for induced earthquakes

(0.8%− 1.2%) compared to triggered ones (3.1%− 5.5%), which agrees with labora-

tory and in situ experiments (Goodfellow et al., 2015; Kwiatek et al., 2018). Third,

seismic efficiency, stress drop, and total slip are not correlated with volume of fluid in-

jected. In contrast with some previous studies (McGarr, 2014; De Barros et al., 2019;

Wang et al., 2020a), our finding represent earthquakes occurring under variable fluid

pressure, while previously published results represent earthquakes occurring under

constant fluid pressure.
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Chapter 4

Heterogeneous friction and

earthquakes

The spring-poroslider is a good first step towards understanding how temporal vari-

ations in fluid pressure affects fault stability, but it cannot capture the spatial com-

plexity of fault zones in nature (Loveless and Meade, 2016; Ye et al., 2018; Barnhart

et al., 2016). Fault zones in nature are heterogeneous in material and complex in

geometry with multiple slip surfaces and deformation zones (Blanpied et al., 1991;

Scholz, 1988). In their simplest form, faults consist of a heterogeneous zone of intense

deformation, or gouge, which macroscopically is seen as a frictional interface between

two surfaces (Childs et al., 1997, 2009). Seismological and laboratory observations

suggest that heterogeneity in fault roughness exists at all length scales from a few

micrometers to a few kilometers, and spatial variations in the rock physical proper-

ties exist at length scales from a few millimeters to hundreds of meters (Kirkpatrick

et al., 2020; Power et al., 1987; Candela et al., 2009; Latour et al., 2011). The critical

slip distance 𝑑c correlates with the roughness of the sliding surface and width of the

gouge zone (Marone, 2002; Ohnaka, 2003; Scholz, 1988), the rate-and-state frictional

parameter 𝑏 − 𝑎 correlates with the physical properties of rocks and gouge at the

interface (Blanpied et al., 1991; Scuderi and Collettini, 2016; Ikari et al., 2009).

To help bridging the gap between the idealized spring-poroslider and natural

faults, we extend the model to study the effect of heterogeneity on the dynamics
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of frictional slip. In particular, we develop an objective or frame-indifferent formu-

lation of frictional contact between heterogeneous surfaces at the microscopic-scale.

We describe friction as a function of the states of the upper and lower surfaces, each

representing roughness and microstructual details for the surface. We then spatially

average the heterogeneous stress and frictional parameters to obtain a macroscopic-

scale representation of time-varying interface friction. Results of this work indicate

that the simple heterogeneous Coulomb friction gives rise to complex slip patterns

ranging from stable creep to unstable regular stick-slip and slow—potentially leading

to a fundamentally new understanding of frictional instabilities and earthquakes.

4.1 Frame-indifferent formulation of frictional slip

Seismological data indicates that subsurface displacements on natural fault planes

can go up to a few meters during regular and slow earthquakes (Wells and Copper-

smith, 1994; Ohnaka, 2000). The typical sample size in laboratory experiments of

friction, for comparison, is around a few centimeters (Marone, 1998; Scholz, 2002).

Studying stability of steady sliding between elastically deformable continua using

rate- and state-dependent friction laws gives insights into the characteristics of such

earthquakes. While some studies have considered the effects of having dissimilar solids

and heterogeneous frictional properties (Rice et al., 2001; Shlomai et al., 2020; Aldam

et al., 2017, 2016; Ray and Viesca, 2017; Luo and Ampuero, 2018), the description

has not addressed the kinematics of large slip—a fundamental aspect to obtain an

objective, reference-frame-independent formulation.

Here, we focus on formulating an objective (or frame-indifferent) formulation of

friction. We adopt an idealized two-dimensional model of a heterogeneous interface

between elastic solids (Fig. (4-1)), where the frictional parameters vary in space. A

cause of frictional heterogeneity is material or rock type. For instance, clay-rich fault

gouges are weak with coefficient of friction of less than 0.4 whereas basalt is strong

with a coefficient of friction around 0.85 (Phillips et al., 2020). Other causes include

heterogeneity in surface roughness, micro-structural details, varying wear (or gouge)
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thickness, among others (Marone et al., 1990; Kirkpatrick et al., 2020).

The fundamental observation is that points 𝐴+ and 𝑃+ on the upper surface are

in contact with different points on the lower surface at each instant of time, and this

must be taken into account when defining appropriate time derivatives of interface

quantities. Current formulations of friction fail to account for the kinematics of “what

is in contact with what” at large slip distances. A commonly used concept in nonlinear

continuum mechanics to guarantee frame indifference is the material derivative or,

more generally, the Lie derivative (Marsden and Hughes, 1994; Simo et al., 1988).

It basically takes a spatial object, transforms it to the reference configuration before

time differentiating, and then transform the results back to the spatial frame, so that

the effect of the changing basis embedded in the motion is removed from the time

derivative (Laursen, 2013).

73



Figure 4-1: Schematic of frictional sliding in 2D, where (A) represents the reference
configuration and (B) represents the deformed configuration during slip.

4.1.1 Preliminaries

This section follows the work by Anand (1993). We begin by identifying the elastically

deformable continua as two bodies Ω+ and Ω−, respectively, whose motions with
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respect to reference configurations Ω+
0 and Ω−

0 are described by

𝑎+ = Φ+(𝑝+, 𝑡) and 𝑎− = Φ−(𝑝−, 𝑡), (4.1)

while those relative to their current configurations Ω+
t and Ω−

t are described by

𝑦+ = Φ+
t (𝑎

+, 𝑡) and 𝑦− = Φ−
t (𝑎

−, 𝑡), (4.2)

where 𝑡 denotes a time Δ𝑡 later than time 𝑡. The incremental displacements corre-

sponding to these motions are denoted by

𝑢+
t (𝑎

+, 𝑡) = 𝑦+ − 𝑎+ and 𝑢−
t (𝑎

−, 𝑡) = 𝑦− − 𝑎−, (4.3)

and the spatial velocities by

𝑣+(𝑎+, 𝑡) =
𝜕

𝜕𝑡
𝑢+
t (𝑎

+, 𝑡)|t̂=t and 𝑣−(𝑎−, 𝑡) =
𝜕

𝜕𝑡
𝑢−
t (𝑎

−, 𝑡)|t̂=t, (4.4)

respectively.

Consider the situation when the two bodies are in contact, and assume that the

region of contact between the elastically deformable continua is sufficiently “thin” so

that it may be replaced by an interface of zero thickness. In particular, we set

𝑎 ≡ 𝑎+ = 𝑎− (4.5)

for the current positions of representative particles 𝑝+ and 𝑝− on either side of the

interface and denote it by Σ(𝑎, 𝑡) = 0. Let

𝑛(𝑎, 𝑡) (4.6)

denote the unit normal field on Σ(𝑎, 𝑡), where 𝑛 is the unit outward normal to the

surface of the upper body Ω+
t , or equivalently the unit inward normal to the lower

75



body Ω−
t at the point 𝑎 under consideration at time 𝑡. Let

𝑣 ≡ 𝑣+ − 𝑣− (4.7)

denote the relative tangential velocity between the upper and lower bodies. Let

𝑢̄𝑡(𝑡) ≡ 𝑢+
t (𝑎

+, 𝑡)− 𝑢−
t (𝑎

−, 𝑡), (4.8)

denote the relative tangential displacement increment. We assume that there is no

separation or penetration of the two currently contacting points.

An element of area 𝑑𝐴 on the interface Σ(𝑎, 𝑡) is subjected to a contact force

𝜏+(n)(𝑎
+, 𝑡)𝑑𝐴 which acts on the material within Ω+

t , and 𝜏−(−n)𝑑𝐴 = −𝜏−(n)𝑑𝐴 which

acts on the material within Ω−
t . Balance of forces requires that

𝜏+(n)(𝑎
+, 𝑡)𝑑𝐴+ 𝜏−(−n)𝑑𝐴 = 0 → 𝜏+(n)(𝑎

+, 𝑡)𝑑𝐴− 𝜏−(n)𝑑𝐴 = 0. (4.9)

For simplicity, we write

𝜏 = 𝜏(𝑎+, 𝑡) = 𝜏+(n)(𝑎
+, 𝑡) (4.10)

for the traction exerted by the lower body on the upper. This traction 𝜏 may be

decomposed into normal and tangential parts as

𝜏 = 𝜏N + 𝜏T, (4.11)

where

𝜏N = (𝑛⊗ 𝑛)𝜏 = (𝜏 · 𝑛)𝑛 = 𝜏N𝑛 and 𝜏T = (1− 𝑛 · 𝑛)𝜏 = 𝜏 − 𝜏N𝑛. (4.12)

The quantity, 𝜎 = −𝜏N represents the normal pressure or contact pressure. We denote

the magnitude of the tangential traction vector 𝜏T by

𝜏 =
√
𝜏T · 𝜏T, (4.13)

76



and call it the effective tangential traction or simply the shear stress.

Let 𝛼+ and 𝛼− denote the “states” of the upper and lower surfaces, respectively.

These state parameters are different from the one in rate-and-state friction. They

symbolically represent all the surface roughness and microstructural details of the

upper and lower surfaces. We denote the state of the interface by

𝛼 = {𝛼+, 𝛼−}, (4.14)

where 𝛼 depends on the state of the upper 𝛼+ and lower 𝛼− surfaces, and its evolution

depends on the evolution of the state of the upper surface with respect to evolution

of the lower surface.

4.1.2 Two-sided description of friction

Interface friction is the ratio of the shear stress 𝜏 to normal stress 𝜎n. As the surfaces

slip against each other, laboratory observations indicate that friction initially rapidly

increases and then gradually drops to a residual level at steady-state (Rosakis et al.,

2020). This behavior is roughly captured by the slip-weakening model, where the

coefficient of friction 𝜇 evolves with slip 𝑠 according to

𝜇(𝑠) = 𝜇∞ + (𝜇0 − 𝜇∞)𝑒−𝑠/𝑑c , (4.15)

where 𝜇0 and 𝜇∞ are the static and dynamic friction coefficient, and 𝑑c is the e-

folding distance over which 𝜇∞ is reached. The parameters 𝜇0, 𝜇∞ and 𝑑c are material

properties. Here we choose that the coefficient of friction is equal to the state of the

interface

𝜇 = 𝛼, (4.16)

and that the slip distance is equal to the relative tangential displacement increment

𝑠 = 𝑢̄t. (4.17)
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The upper material and lower material descriptions of slip-weakening friction are

formulated for frames of reference (or observers) that are attached to the upper and

lower surfaces, respectively. Here, we formulate an objective slip-weakening model for

an arbitrary placed frame of reference. We describe friction as a function of the states

of the upper and lower surfaces, each representing roughness and microstructural

details for the surface. The state of the frictional behavior of a surface is characterized

by the static coefficient 𝛼0(𝑝
±, 𝑡), dynamic coefficient 𝛼∞(𝑝±, 𝑡), characteristic slip

distance over which the dynamic state is reached 𝑑c(𝑝
±, 𝑡), and slip distance 𝑠(𝑝±, 𝑡).

We consider two heterogeneous surfaces sliding against each other. We choose an

arbitrary frame of reference on the interface, and denote it by (𝑥, 𝑡). This frame of

reference is related to the upper material point 𝑎+ and lower material point 𝑎− by

𝑥 = Ψ+(𝑎+, 𝑡), (4.18)

and

𝑥 = Ψ−(𝑎−, 𝑡), (4.19)

respectively, where 𝑎+ = Φ+(𝑝+, 𝑡) and 𝑎− = Φ−(𝑝−, 𝑡). We then describe interface

friction in the chosen frame of reference as a multiplicative function of the states of the

upper and lower surfaces. If a slippery surface is sliding against a sticky surface, the

friction of the slippery surface would dominate (Rabinowicz, 1965). Here we choose

the following geometric average function but ideally this would need to be determined

by laboratory experiments

𝜇̂(𝑥, 𝑡) = (𝛼̂+(𝑥, 𝑡) · 𝛼̂−(𝑥, 𝑡))1/2, (4.20)

where the evolution of the upper and lower states follows

𝜕𝛼̂+

𝜕𝑡
(𝑥, 𝑡) =

𝐷𝛼+

𝐷𝑡
(𝑎+, 𝑡) =

𝜕𝛼+

𝜕𝑡
(𝑎+, 𝑡) +

𝜕𝑎+

𝜕𝑡

𝜕𝛼+

𝜕𝑎+
(𝑎+, 𝑡), (4.21)

𝜕𝛼̂−

𝜕𝑡
(𝑥, 𝑡) =

𝐷𝛼−

𝐷𝑡
(𝑎−, 𝑡) =

𝜕𝛼−

𝜕𝑡
(𝑎−, 𝑡) +

𝜕𝑎−

𝜕𝑡

𝜕𝛼−

𝜕𝑎−
(𝑎−, 𝑡), (4.22)
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respectively. The partial derivatives in the above expressions are defined by

𝜕𝛼+

𝜕𝑡
(𝑎+, 𝑡) = −𝜕𝑠

𝜕𝑡
(𝑎+, 𝑡)

1

𝑑+c (𝑎
+)

[𝛼+(𝑎+, 𝑡)− 𝛼+
∞(𝑎+)], (4.23)

𝜕𝛼−

𝜕𝑡
(𝑎−, 𝑡) = −𝜕𝑠

𝜕𝑡
(𝑎−, 𝑡)

1

𝑑−c (𝑎
−)

[𝛼−(𝑎−, 𝑡)− 𝛼−
∞(𝑎−)], (4.24)

𝜕𝑎+

𝜕𝑡
=

𝜕(Ψ+)−1

𝜕𝑡
(𝑥, 𝑡), (4.25)

𝜕𝑎−

𝜕𝑡
=

𝜕(Ψ−)−1

𝜕𝑡
(𝑥, 𝑡), (4.26)

𝜕𝛼+

𝜕𝑎+
(𝑎+, 𝑡) =

𝜕𝛼+
∞

𝜕𝑎+
(𝑎+, 𝑡) + [

𝜕𝛼+
0

𝜕𝑎+
(𝑎+, 𝑡)− 𝜕𝛼+

∞
𝜕𝑎+

(𝑎+, 𝑡)]𝑒−𝑠(𝑎+,𝑡)/𝑑+c (𝑎+,𝑡)

+ [𝛼+
0 (𝑎

+, 𝑡)− 𝛼+
∞(𝑎+, 𝑡)]𝑒−𝑠(𝑎+,𝑡)/𝑑+c (𝑎+,𝑡) * [𝑠(𝑎

+, 𝑡)(𝜕𝑑+c /𝜕𝑎
+(𝑎+, 𝑡))

𝑑+c (𝑎
+, 𝑡)2

],

(4.27)

𝜕𝛼−

𝜕𝑎−
(𝑎−, 𝑡) =

𝜕𝛼−
∞

𝜕𝑎−
(𝑎−, 𝑡) + [

𝜕𝛼−
0

𝜕𝑎−
(𝑎−, 𝑡)− 𝜕𝛼−

∞
𝜕𝑎−

(𝑎−, 𝑡)]𝑒−𝑠(𝑎−,𝑡)/𝑑−c (𝑎−,𝑡)

+ [𝛼−
0 (𝑎

−, 𝑡)− 𝛼−
∞(𝑎−, 𝑡)]𝑒−𝑠(𝑎−,𝑡)/𝑑−c (𝑎−,𝑡) * [𝑠(𝑎

−, 𝑡)(𝜕𝑑−c /𝜕𝑎
−(𝑎−, 𝑡))

𝑑−c (𝑎
−, 𝑡)2

].

(4.28)

The slip at the interface is defined by

𝑠(𝑎+, 𝑡) = 𝑠(𝑎−, 𝑡) = Φ+(𝑎+, 𝑡)− Φ−(𝑎−, 𝑡). (4.29)

4.1.3 Test cases

To demonstrate the need for an objective, reference-frame-independent formulation of

slip-weakening friction, we analyze four cases of heterogeneous surfaces sliding against

each other (Fig. 4-2). All four of these cases have a heterogeneous upper surface that

degrades with slip. Note that we define a surface as degradable when it deforms or

weakens with slip (finite 𝑑c) as a result of wear formation or other plastic processes and

non-degradable when it remains unaltered with slip (infinite 𝑑c) (Rabinowicz, 1965).

The heterogeneous degradable upper surface slides against a lower surface that is: (A)
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continuous, homogeneous and non-degradable, (B) discontinuous and non-degradable,

(C) homogeneous and degradable, and (D) heterogeneous and degradable. We show

results of frictional evolution that would not have been achieved if we did not include

the transport term in the objective description of friction.

Figure 4-2: Schematic of two surfaces sliding against each other. Red and blue
represent degradable surfaces with different frictional properties, and grey represents
non-degradable surfaces (figures not drawn to scale).

Continuous non-degradable lower surface

We start by analyzing a simple model of single material discontinuity with slip-

weakening friction law (Fig. 4-2A). Material point (A) moves with the upper surface
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at constant velocity, while spatial point (B’) is fixed. Note that point (A) on the

upper surface is in contact with different points on the lower surface at each instant

of time. We therefore need to take this into account when defining appropriate time

derivatives of interface quantities or evolution of friction.

When simulating the evolution of friction at upper surface material point (A) and

lower surface spatial point (B’), we obtain the curves in Fig. (4-3). Note that the

variations in frictional parameters are described by smooth step functions. The curve

associated with (A) follows the frictional evolution associated with left-side (blue)

frictional parameters. The curve associated with (B’) describes the frictional values

of upper surface material points passing at each point in time. At 𝑡 = 0, the friction

evolves with right-side (red) frictional parameters. At 𝑡 = 1, a frictional discontinuity

takes place associated with the change to left-side (blue) frictional parameters. At

𝑡 = 2, points (A) and (B’) are in contact and so the frictional values are identical.
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Figure 4-3: Frictional evolution of a heterogeneous degradable upper surface sliding
against a continuous non-degradable lower surface.

Discontinuous non-degradable lower surface

Similar to the continuous lower surface case, we analyze a simple model of single

material discontinuity with slip-weakening friction law with the difference that the

lower surface is discontinuous with periodic gaps (Fig. 4-2B). Points (A,B,C,D) on

the upper surface move with the upper surface at constant velocity, while points

(A’,B’,C’,D’) on the lower surface are fixed.

When simulating the evolution of friction at upper surface points (A,B) and lower

surface points (C’,D’), we obtain the curves in Fig. 4-4. Similar to the continuous

case, the variations in frictional parameters are described by smooth step functions.

The curves associated with (A,B) follow the frictional evolution associated with left-

side (blue) frictional parameters. The curves associated with (C’,D’) describe the

frictional values of upper surface material points passing at each point in time. At
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𝑡 = 0, the friction evolves with right-side (red) frictional parameters. At 𝑡 = 0.25 and

𝑡 = 0.75, a frictional discontinuity takes place associated with the change from right-

side (red) to left-side (blue) frictional parameters for (C’) and (D’), respectively. At

𝑡 = 1, points (A,B) and (C’,D’) form pairs and so the frictional values are identical.

Figure 4-4: Frictional evolution of a heterogeneous degradable upper surface sliding
against a discontinuous non-degradable lower surface.

Homogeneous degradable lower surface

Similar to the continuous lower surface case, we analyze a simple model of a material

discontinuity with slip-weakening friction law with the difference that the lower sur-

face is also degradable (Fig. 4-2C). Points (A,B,C,D) move with the upper surface at

constant velocity, while points (A’,B’,C’,D’) are fixed.

When simulating the evolution of friction at the upper point (A) and lower surface

point (C’), we obtain the curves in Fig. 4-5. The curve associated with (A) follows the
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frictional evolution associated with left-side (blue/blue) frictional parameters. The

curve associated with (C’) describes the frictional values of upper surface material

points passing at each point in time. At 𝑡 = 0, the friction evolves with right-side

(red/blue) frictional parameters. At 𝑡 = 0.25, a frictional discontinuity takes place

associated with the change from right-side (red/blue) to left-side (blue/blue) frictional

parameters for (C’). At 𝑡 = 1, points (A) and (C’) form a pair and so the frictional

values are identical.

Figure 4-5: Frictional evolution of a heterogeneous degradable upper surface sliding
against a homogeneous degradable lower surface.

Heterogeneous degradable lower surface

Similar to the homogeneous degradable surface case, we analyze a simple model of

a material discontinuity with slip-weakening friction law with the difference that

the lower surface also contains a material discontinuity (Fig. 4-2D). Again, points
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(A,B,C,D) move with the upper surface at constant velocity 𝑣0, while points (A’,B’,C’,D’)

are fixed.

When simulating the evolution of friction at the upper material point (A) and

lower surface spatial point (C’), we obtain the curves in Fig. 4-6. The curve associ-

ated with (A) follows the frictional evolution associated with left-slide (blue) frictional

parameters of the upper surface and left (blue) right (red) sides frictional parame-

ters of the lower surface. At 𝑡 = 0, the friction evolves according to the (blue/blue)

frictional parameters. At 𝑡 = 0.75, a frictional discontinuity takes place associated

with the change from (blue/blue) to (blue/red) frictional parameters. The friction

coefficient increases with time as a result of heterogeneity. Similarly, the curve asso-

ciated with (C’) depends on both the upper and lower surface frictional parameters.

At 𝑡 = 0, the friction evolves with (red/red) frictional parameters. At 𝑡 = 0.25, a fric-

tional discontinuity takes place associated with the change from right-side (red/red)

to left-side (blue/red) frictional parameters. At 𝑡 = 1, points (A) and (C’) form a

pair and so the frictional values are identical.
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Figure 4-6: Frictional evolution of a heterogeneous degradable upper surface sliding
against a heterogeneous degradable lower surface.

4.2 Stick-slip from heterogeneous Coulomb friction

Brace and Byerlee (1966) recognized that earthquakes are the result of stick-slip fric-

tional instabilities. The seismic rupture is the slip, and the stick is the interseismic

period of elastic strain accumulation. Observed stress drops represent release of a

small fraction of the stress supported by the rock surrounding the earthquake focus.

Since then, many studies have contributed to understanding the nature of these in-

stabilities and the factors controlling them. Experiments have been performed with

many rock types, with and without various fault gouge layers, at a range of slip rates,

confining pressures, pore pressures, temperatures, and in machines with different ge-

ometries and stiffness (Marone, 1998; Scholz, 2002). These experimental observations

led to the development of rate-and-state friction laws—the gold standard in modeling

earthquake dynamics (Dieterich, 1979b; Ruina, 1983; Scholz, 1998).
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Stick-slip, in general, is caused by variations in frictional resistance as a function

of some other variable (Rabinowicz, 1965; Mate, 2008). One variable is velocity,

in which the instability originates from a pure velocity-weakening friction (Carlson

and Langer, 1989). In this case, there is a high static friction when the surfaces

are at rest and, once shear stress exceeds this value, the surfaces slide with a lower

kinetic friction. Another variable is time, in which the static friction increases with

it while the kinetic friction remains relatively constant (Rabinowicz, 1958; Ringoot

et al., 2021). If the increase in static friction during a stick phase is greater than the

variation in kinetic friction during slip, repeated stick-slip cycles occur. Rate-and-

state laws combine both velocity- and time-dependence of friction. A third variable,

and a largely overlooked one in studies of rock friction and earthquakes, is position.

The instability is caused by the frictional resistance varying as a function of position

over the sliding surface.

Topological stick-slip is observed in the macroscopic sliding of metals (Rabinow-

icz, 1965), as well as in atomic force microscopy experiments where the intermittent

motion of a tungsten tip is a measure of the atomic-scale corrugations on a graphite

surface (Mate et al., 1987). In the sliding of metals, fluctuations of friction arise from

junctions growth and thinning, and alternating lubricant coverage. In the second

case, friction fluctuates with the same periodicity as the crystal lattice on the surface.

This type of stick-slip, however, has not yet been experimentally studied in rocks and

only one theoretical study exists (Nur, 1978). It suggests that the slip is caused by

irregular surface roughness and uses nonuniform friction to explain it, but many of

the arguments are only qualitative. Here we revive this approach to understanding

stick-slip motion, develop a position-dependent friction framework, and analyze the

resulting slip dynamics using a spring-slider model.

4.2.1 Position-dependent friction

Rock surfaces, irrespective of their mode of formation, contain irregularities or de-

viations from a prescribed geometrical form at all scales (Fig. 4-7) (Scholz, 2002;

Bhushan, 1998). The protrusions on the surfaces are referred to as asperities and
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the dimples are referred to as valleys. When two nominally flat surfaces are placed

in contact, surface roughness causes contact to occur at discrete contact spots or

junctions.

Figure 4-7: Schematic of irregular contacting surfaces (modified from Scholz (2002)).

Following the framework for interface friction by Anand (1993), we let 𝛼+ and 𝛼−

denote the states of the upper and lower surfaces, respectively. These state parameters

symbolically represent all the roughness and microstructural details of the upper and

lower surfaces. We denote the state of the interface by 𝛼 = {𝛼+, 𝛼−}. We define

the frictional resistance of the interface by 𝜏f = 𝑓(𝜎′, 𝛼), where 𝜏f is a scalar with

dimensions of stress. It represents an averaged resistance to macroscopic slip at a

given normal effective stress 𝜎′ and state 𝛼 of the interface. One of the open problems

for interface constitutive models is to provide a realistic micro-mechanical description

for the state of the interface and its evolution. Here we replace 𝛼 by a mesoscopic

scalar variable 𝜇, which is the Coulomb friction coefficient.

To obtain an objective or frame-indifferent formulation of Coulomb friction be-

tween irregular surfaces, we describe the interface at a point 𝑥 in terms of upper

and lower surface points 𝑎+ and 𝑎−. Using the interface frame of reference, the state

of the upper and lower surfaces may be written as 𝛼+(𝑥, 𝑡) = 𝛼+(Ψ+(𝑎+, 𝑡), 𝑡) and

𝛼−(𝑥, 𝑡) = 𝛼−(Ψ−(𝑎−, 𝑡), 𝑡), where Ψ+ and Ψ− are transformation functions. We then

describe friction as a multiplicative function of the states of the upper and lower sur-

faces. We choose the geometric average, 𝜇(𝑥, 𝑡) =
√︀
𝛼+(𝑥, 𝑡) * 𝛼−(𝑥, 𝑡), but ideally

this constitutive relation would need to be determined by laboratory experiments.

Diagrams of the state of the upper surface, the state of the lower surface, and the

resulting friction of the interface as a function of position and time are illustrated
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in Figure 4-8. If an asperity is sliding over an asperity, the friction at the interface

is maximum, whereas if a valley is sliding over a valley or an asperity, the friction

is minimum. The averaged resistance to slip at a given position on the interface is

illustrated in Figure 4-9. The high values on the curve represent contact spots or

junctions and the low values represent no or weak contact. Friction is approximated

by a cosine function, where its amplitude represents the degree of heterogeneity and

wavelength represents the length of a patch.

Figure 4-8: Characteristic space (x,t) of the state of the upper surface, the state of
the lower surface, and the resulting friction of the interface as a function of time and
position.

Figure 4-9: Exact and approximate averaged resistance to slip at a given position on
the interface.

This shows how the interaction between irregular surfaces results in heterogeneous

Coulomb friction along the interface. Spatial variations in lithostatic load, pore pres-

89



sure, rock type or physical properties would produce a similar effect (Kirkpatrick

et al., 2020; Rabinowicz, 1965). In this case, asperities would be the high-strength or

sticky patches along surfaces and valleys would be the low-strength or slippery ones.

4.2.2 Spring-slider model with heterogeneous Coulomb fric-

tion

Consider a slider of unit base area that is pulled by a spring with stiffness 𝑘s whose

end is constrained to move at a steady slip rate (Fig. 4-10). The stiffness 𝑘 accounts

for the elastic interaction of the sliding surface with the surrounding rock. The slider

has a mass 𝑚 to incorporate the effect of inertia and is attached to a damper with

coefficient
√
𝑘s𝑚 to incorporate the effect of seismic radiation—see section 3.3 for

more details. The slider moves over a heterogeneous surface that is described by a

Coulomb friction varying as a function of position.

Figure 4-10: Spring-slider model of a heterogeneous fault.

The equations describing the dynamic motion of the spring-slider, in dimensional

form, are

𝑈̇ = 𝑉∞ − 𝑉, (4.30)

𝑉̇ =
1

𝑚

[︁
𝑘s𝑈 − 𝐹 (𝑈)Σ′ −

√︀
𝑘s𝑚𝑉

]︁
, (4.31)

where 𝑈 is the relative displacement between the load point and the slider, 𝑉∞ is the

loading velocity, 𝑉 is slip rate, 𝑘s is the shear stiffness, and Σ′ is the normal effective

stress. In the spring-slider model, there is no difference between position-dependent

friction and displacement-dependent friction. We can therefore describe friction as a
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function of the relative displacement, 𝐹 (𝑈) = 𝐴(cos𝐵(𝑈 − 𝑈0) + 1). Amplitude 𝐴

represents the degree of heterogeneity and wavelength 2𝜋/𝐵 represents the length of

a patch.

Choosing the following characteristic quantities: 𝑡c = 1/(𝐵𝑉∞), 𝑣c = 𝑉∞, 𝑢c =

1/𝐵, 𝜇c = 𝐴, and 𝜎c = Σ′
0, the equations describing the dynamic motion of the

system, in dimensionless form, become

𝑢̇ = 𝑣∞ − 𝑣, (4.32)

𝑣̇ =
1

𝜖2

[︂
𝑢− 1

𝜅
𝜇(𝑢)𝜎′ − 𝜖𝑣

]︂
, (4.33)

where 𝜇(𝑢) = cos (𝑢− 𝑢0) + 1, 𝜅 = 𝑘s/(𝐵𝐴Σ′
0), and 𝜖 = 𝐵𝑉∞/

√︀
𝑘s/𝑚. Parameter 𝜅

is the normalized shear stiffness and parameter 𝜖 is the normalized oscillation period

or the ratio of the natural vibration period of the analogous freely slipping system to

the frictional fluctuation period.

4.2.3 Slip dynamics

To analyze the resulting slip dynamics, we simulate the equations of motion of the

spring-slider system (Eqs. (4.32)-(4.33)) with the following initial conditions: 𝑢(0) =

−𝜎′/𝜅, 𝑣(0) = 0. The coupled ordinary differential equations are solved in MATLAB

using the ode15s solver for stiff systems. We find that the simple heterogeneous

Coulomb friction gives rise to complex slip patterns, ranging from stable creep to

unstable regular stick-slip and slow slip. Representative results are shown in Figures 4-

11, 4-12, and 4-13. The simulation of creep (Fig. 4-11) is performed using parameter

values 𝜅 = 2 and 𝜖 = 0.01, regular stick-slip (Fig. 4-12) is performed using 𝜅 = 0.1

and 𝜖 = 0.01, and slow slip (Fig. 4-13) is performed using 𝜅 = 0.01 and 𝜖 = 10.
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Figure 4-11: Creep motion of the spring-slider system with dimensionless parameters
𝜅 = 2, 𝜖 = 0.01.

92



Figure 4-12: Regular stick-slip motion of the spring-slider system with dimensionless
parameters 𝜅 = 0.1, 𝜖 = 0.01.
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Figure 4-13: Slow slip motion of the spring-slider system with dimensionless param-
eters 𝜅 = 0.01, 𝜖 = 10.
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When the spring stretches sufficiently, the slider creeps slowly until it reaches

a peak in frictional resistance. In the case where stiffness is high and oscillation

period is low, there is no unstable motion—only accelerated or decelerated creep

relative to the loading rate (Fig. 4-11). In the case where both stiffness and oscillation

period are low, unstable stick-slip motion occurs. The excess of spring force over

the frictional resistance causes the slider to accelerate rapidly. It moves over two

friction fluctuations, overshoots, and decelerates when further relaxation of the spring

becomes too difficult. At this point, the frictional resistance cannot be overcome. The

slider creeps until it reaches a peak in frictional resistance, and the stick-slip cycle

repeats (Fig. 4-12). In the case where stiffness is low but oscillation period is high,

unstable motion also occurs. The dynamics are similar to the previous case, but the

slip is much slower. It is also interesting to note that the velocity and particularly the

acceleration time functions show irregularities due to the variable friction (Fig. 4-13).

To gain further insights into the influence of heterogeneity on slip motion, we ex-

haustively explore the system dynamics as a function of the normalized shear stiffness

𝜅 = 𝑘s/(𝐵𝐴Σ′
0) and normalized oscillation period 𝜖 = 𝐵𝑉∞/

√︀
𝑘s/𝑚. Each point on

the phase diagram shown in Fig. 4-14A represents the maximum slip velocity of a

different simulation run with a particular shear stiffness and a particular oscillation

period. Similarly, each point on the phase diagram shown in Fig. 4-14B represents the

maximum slip distance. We observe three regimes: a creep regime (low slip rate, low-

to-medium slip distance), a regular stick-slip regime (high slip rate, medium-to-high

slip distance), and a slow-slip regime (medium slip rate, high slip distance).
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Figure 4-14: Phase diagrams of slip rate (A) and slip distance (B) as a function of
normalized shear stiffness 𝜅 and normalized oscillation period 𝜖.

The transition between the different regimes depends on the heterogeneity of the

interface and on the elastic and internal properties of the spring-slider. Stable slip

occurs whenever frictional resistance and spring loading balances, and unstable slip

occurs whenever a change of frictional resistance with sliding occurs at a rate greater

than the loading system is capable of following (Byerlee, 1970). That is, motion is

by creep when the normalized shear stiffness of the loading system is higher than a

critical value (𝜅 > 𝜅crit) given by

𝜅crit =
𝜕𝜇(𝑢)

𝜕𝑢

⃒⃒⃒⃒
max

𝜎′, (4.34)

and is by regular stick-slip or slow slip otherwise (𝜅 < 𝜅crit). The softer the spring,

the greater the number of friction fluctuations over which the slider moves (Fig. 4-15).

The duration of slip is controlled by the normalized oscillation period. Motion is by

regular stick-slip when the natural vibration period is much lower than the frictional

fluctuation period (𝜖 ≪ 1), and is by slow slip otherwise (𝜖 ≫ 1). This shows that

our framework for position-dependent friction is not only capable of modeling stable

and unstable slip, but also the transition between regular stick-slip and slow slip.
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Figure 4-15: Spring loading and frictional resistance for two slider positions (modified
from Mate (2008)).
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Chapter 5

Conclusions

Understanding the physical mechanisms that underpin the link between fluid injec-

tion and seismicity is essential in efforts to mitigate the seismic risk associated with

subsurface technologies (National Research Council, 2013). In Chapter 2, we develop

a poroelastic model of frictional slip based on rate-and-state friction in the manner of

spring–sliders, and analyze conditions for the emergence of stick-slip frictional insta-

bility by carrying out nonlinear simulations and a linear stability analysis. We find

that frictional slip depends largely on the rate of increase in pore pressure rather than

its magnitude. Fluid pressurization can significantly increase the critical stiffness, and

thus increase the risk of triggering earthquakes. This may explain several injection-

induced seismicity observations (Frohlich, 2012; Weingarten et al., 2015; Healy et al.,

1968; Improta et al., 2015; Langenbruch and Zoback, 2016; Cuenot et al., 2008; Kim,

2013; Tang et al., 2018). Our model implies that, for the same cumulative volume of

injected fluid, an abrupt high-rate injection protocol is likely to increase the seismic

risk whereas a gradual step-up protocol is likely to decrease it.

In Chapter 3, we perform an energy analysis of the full anthropogenic earthquake

cycle using the same framework of a spring poroslider and rate-and-state friction

(Alghannam and Juanes, 2020). A key element of the analysis is incorporating the

seismic radiation within the spring poroslider using a precisely-defined viscous damper

(coefficient equal to the square root of spring stiffness times mass). We then use it to

study fluid injection and assess its effects on the energy partitioning during induced
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and triggered earthquakes. The aim of this study is to gain physical insights on the

influence of fluid injection on energy partitioning during the earthquake cycle. We find

that event size indicators (radiated energy, seismic efficiency, stress drop, and total

slip) are directly influenced by the rate of fluid pressurization. The higher the rate of

fluid pressurization at the time of the earthquake, the higher the values of event size

indicators. This effect is more pronounced at high injection rates. The framework

of this work could be generalized to study energy dissipation mechanisms in fluid-

saturated materials to understand the energy budget of slow and silent earthquakes

(Im et al., 2020). It could also be used to study dilatancy and compaction in a fluid-

infiltrated fault, and asses their contributions to the seismic energy budget (Segall and

Rice, 1995). This would facilitate making further advances towards understanding

the influence of fluid pressure on the mechanics of earthquakes.

Fault zones in nature are heterogeneous in material and complex in geometry with

multiple slip surfaces and deformation zones (Blanpied et al., 1991; Scholz, 1988).

They also exhibit large spatial variations in pore pressure (Kirkpatrick et al., 2020;

Rabinowicz, 1965). To bridge the gap between the idealized spring-poroslider and

natural faults, in Chapter 4, we extend the model to study the effect of heterogeneity

on the dynamics of frictional faults. In particular, we develop an objective or frame-

independent formulation of frictional contact between heterogeneous surfaces. We

describe friction as a function of the states of the upper and lower surfaces, each

representing roughness and microstructual details for the surface. We then average the

heterogeneous stress and frictional parameters to obtain a large scale representation

of interface friction. By analyzing the resulting slip dynamics using a spring slider

model, we find that a simple heterogeneous Coulomb friction can give rise to complex

slip patterns, ranging from creep to regular stick-slip and slow earthquakes. Our

formulation provides a complementary, or perhaps an alternative, framework to rate-

and-state friction to modeling the dynamics of earthquakes.

This thesis examines how the rate of fluid injection influences the propensity and

potential damage of induced and triggered earthquakes, and how the temporal varia-

tions in fluid pressure and and spatial heterogeneity in friction control the mechanics
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of earthquakes. Our findings, as a whole, could ultimately lead to new design and

strategies that mitigate or minimize the seismic risk associated with a wide range of

subsurface operations, from hydraulic fracturing and geothermal energy extraction to

wastewater injection and geologic CO2 sequestration. This thesis also highlights the

need to perform further research in the following areas:

∙ Fluid pressure effect on dynamic friction: Natural faults are typically viewed

as rock surfaces filled with wear detritus, called fault gouge. There is currently no

friction model that takes into account the effect of fluid pressurization on both the real

area of contact and frictional properties in gouge-filled rock surfaces. To understand

the effect of fluid pressurization on the evolution of dynamic friction, more laboratory

experiments are needed to (1) identify dominant physical mechanisms governing the

processes of sliding between bare rock surfaces and shearing gouge materials, and (2)

model them holistically.

∙ Microscopic basis of friction: One of the open problems for interface constitutive

models in the field of earthquake mechanics or, more broadly, tribology is to provide

a realistic micro-mechanical description for the state of the interface and its evolu-

tion. It is needed to (1) describe the microstructural details of rough surfaces using

statistical and deterministic methods, and (2) understand the mechanisms governing

the microscopic behavior of fault gouge or wear particles.

∙ Multiscale modeling of frictional sliding and fault poromechanics: Earthquake

source and faulting processes involve multiple spatial and temporal scales, where pro-

cesses that occur at a certain scale can govern the behavior in other scales. Modeling

multiscale processes is a major challenge across all fields of science and engineering.

To help address it in the field of earthquakes, it is needed to develop solution frame-

works for (1) upscaling of heterogeneous or non-planar interfaces, and (2) long-term

quasi-static loading histories with occasional rapid slip events.
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