
Operational Scheduling of Deep Space Radars for
Resident Space Object Surveillance

by

Lindsey Blanks

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Sloan School of Management

May 06, 2022

Certified by. .
Hamsa Balakrishnan

Professor, Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Georgia Perakis

William F. Pounds Professor of Management Science
Co-Director, Operations Research Center

2

Operational Scheduling of Deep Space Radars for Resident

Space Object Surveillance

by

Lindsey Blanks

Submitted to the Sloan School of Management
on May 06, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract

As space becomes increasingly congested and contested, new capabilities of rivals to
threaten vital assets and exploit the area for military advantages make it more impor-
tant than ever for the United States to proficiently track and monitor space traffic and
debris. However, currently the system of radars used by the Department of Defense to
track objects in deep space operates in a way that is labor intensive, uncoordinated,
and inefficient. In this thesis, we address these issues by automating and coordinating
the radar scheduling process. We consider several complex radar systems that operate
in an asynchronous, distributed environment and target space objects with varying
priority levels, time windows, arrival frequencies, and task mission requirements.

We develop a mixed integer program capable of intelligently distributing task
requests and building radar slew plans in a way that aligns with user objectives
and system characteristics. We solve the optimization problem repeatedly over time,
all while receiving and incorporating updated information, new task requests, and
available feedback throughout the planning process. We test our methodologies on
various tactical military scenarios and show that an optimization-based approach
allows us to maintain custody of more space objects, better prioritize high value
objects, and reduce operating costs when compared to a baseline greedy algorithm.
We conclude that an automatic, centralized way of scheduling is viable and beneficial
for use in the Space Situational Awareness (SSA) mission.

Thesis Supervisor: Hamsa Balakrishnan
Title: Professor, Aeronautics and Astronautics

3

4

Acknowledgments

Far too many people than I have room to name are responsible for making the last

two years such an incredible experience. I feel so blessed that I have been able to

learn and work alongside some of the brightest minds in the world, all while having

so much fun in the process.

I would first like to thank my amazing MIT advisor, Professor Hamsa Balakrish-

nan, for her endless support and guidance over the past two years. I am extremely

grateful that I have had the opportunity to develop and learn from someone with

such incredible commitment, passion, and intellect.

Next, I would like to thank my MIT Lincoln Laboratory advisor, Robert Morrison.

Thank you for your incredible patience and help as I came up to speed on all things

sensors and space surveillance! Not only did your expert knowledge and feedback

make this possible, but your mentorship has been invaluable during my time here.

I would also like to express how immensely appreciative I am to both the United

States Air Force and MIT Lincoln Laboratory for allowing me this incredible oppor-

tunity. My hope is to take all that I have learned, both academically and personally,

and use it to make a positive impact throughout my service.

I cannot express how thankful I am to all of the faculty, staff, and members of

the ORC for helping me during these past two years. I am in awe of the talent, work

ethic, character, and compassion that I have found in everyone in this department.

Starting school during a pandemic definitely came with its challenges, but somehow

you all still made me feel like I was part of a big family.

Next, I want to thank my family. Mom, Dad, Lauren, Sammy, and Alicia – I am

so blessed to have you all. Thank you so much for your encouragement, advice, and

willingness to always pick up the phone when I call (no matter what time zone you’re

in). I would not be where I am today without the unconditional love and support

from all of you.

Most Importantly, I give all thanks to God for all of the blessings and opportunities

He has given me so far in my life.

5

6

Contents

1 Introduction 15

1.1 Thesis Overview . 16

1.2 Thesis Motivation . 17

1.3 Contributions . 18

1.4 Background . 19

1.4.1 SSA . 20

2 Literature Survey 33

2.1 Scheduling Algorithms . 33

2.1.1 Scheduling with Temporal Constraints 36

2.1.2 Dynamic Scheduling . 37

2.1.3 Coordinated Planning . 37

2.2 Vehicle Routing Problem . 38

2.2.1 Vehicle Network Flow Formulation 39

2.2.2 Set Partitioning Formulation 41

2.2.3 Commodity Flow Formulations 42

2.2.4 Vehicle Routing Problem Variants 43

3 Model Context and Development 49

3.1 Problem Scope . 49

3.1.1 Key Terminology . 50

3.1.2 Terminology and Assumptions in the United States Space Force

Context . 56

7

3.2 Modeling Assumptions . 58

3.2.1 Stochastic Nature of the Problem 58

3.2.2 Simulation of Real-World Problem 59

3.2.3 Complete Knowledge Operational Cycles and Data 59

3.2.4 Radar Signals Modeling . 60

4 Algorithmic Approach 69

4.1 Mathematical Formulation . 69

4.2 Notation and Definitions . 70

4.2.1 Input Sets . 71

4.2.2 Initialization Program . 73

4.2.3 Mixed Integer Optimization Problem 79

4.3 Vehicle Routing Problem Construction 87

4.3.1 Deep Space Radar Scheduling Static Formulation 87

4.3.2 Dynamically Updating and Scheduling 89

4.4 Alternative Version of the DSRS . 91

4.5 Implementation of DSRS . 92

4.5.1 Software Architecture . 93

4.5.2 Input Data . 93

4.5.3 Test Set Development - Operational Scenarios 93

4.5.4 Output . 95

5 Results and Analysis 97

5.1 Comparison of Scheduling Approaches 97

5.1.1 Testing Method . 99

5.1.2 Run Time Comparison . 100

5.1.3 Slew Comparison . 103

5.1.4 Cost Analysis Comparison . 105

5.2 Objective Function Component Analysis 106

5.2.1 Full Day Experiments with DSRS 107

5.2.2 Full Day Experiments with Alt-Scheduler 111

8

5.3 Operational Scenarios . 114

5.3.1 Foreign launch . 115

5.3.2 Overload of Observation Requests 116

5.3.3 Many High Priority Targets 117

5.3.4 Radar Outage . 118

6 Conclusions and Future Work 121

6.1 Summary of Contributions . 121

6.2 Possible Extensions and Future Applications 122

6.2.1 Expand Surveillance Capabilities to Other Orbits 123

6.2.2 Inclusion of Additional Sensor Types 123

6.2.3 Improvements to the Current Framework 124

6.3 Conclusions . 125

A List of Acronyms 127

B Tables 129

9

10

List of Figures

3-1 Stages of DSR Scheduler . 56

3-2 U.S. Military Task Request Labels 57

3-3 DSR Scheduler Task Request Labels 57

3-4 Waves and Frequency Ranges used by Radar [44] 67

4-1 Flow of Scheduling . 70

4-2 Terms for Coordinate Calculation . 75

4-3 Terms for Azimuth Angle Calculation 76

4-4 Example Input Data . 94

4-5 Example Published Schedule Output 95

5-1 Cost Analysis and Comparison . 107

11

12

List of Tables

3.1 Task Request Attributes . 52

3.2 SNR Variable Definitions . 63

4.1 Sets used to define DSRS . 71

4.2 Task Request Data Inputs . 72

4.3 Radar Data Inputs . 73

4.4 System-Level Data Inputs . 73

5.1 Run time results for schedulers at various problem sizes 101

5.2 Average run times for schedulers at various problem sizes 101

5.3 Standard deviation of run times for schedulers at various problem sizes 102

5.4 Slew time results for schedulers at various problem sizes 104

5.5 Average slew times for schedulers at various problems sizes 104

5.6 Standard Deviation of slew times for schedulers at various problem sizes105

5.7 DSRS - Change in 𝑢𝑠 Results . 108

5.8 DSR - Change in 𝑢𝑝 Results . 110

5.9 Alt - Change in 𝑢𝑠 Results . 112

5.10 Alt - Change in 𝑢𝑝 Results . 113

5.11 Foreign Launch Results . 115

5.12 Task Request Overload Results . 116

5.13 Many High Priority Task Requests Results 117

5.14 Outage Results . 119

B.1 Cost Analysis Results . 132

13

14

Chapter 1

Introduction

Congested, Contested, and Competitive - characterization of space power within the

United States almost always falls back to these three words. Justifiably so, for space

has seen a dramatic transformation in recent decades with technological advancements

that have to cheaper, easier ways for actors of all kinds to enter the space arena. The

movement towards a more accessible space has resulted in new opportunities as well

as new challenges in ensuring secure space operations.

Currently tens of thousands of objects are being tracked in various orbits, with an

unknown number of smaller objects and debris dispersed yet too small to be picked

up by many modern-day sensors. In the past two years alone, the amount of objects

in space has doubled, and by 2030 it is estimated that 150,000 active satellites could

be in space [40]. Competition is also on the rise as private companies and government

actors located around the globe look to space for prestige as well as a chance for profit.

While the government and their regulatory regimes struggle to keep pace with the

commercial space sector, the United States national security space enterprise is also

facing many challenging questions. Nations and private actors around the world have

increasing space capability, and this trend is only expected to continue as launches

and providing space services becomes more routine. Although there are international

agreements establishing space be kept as a peaceful domain, the ambiguity and lack

of enforcement mechanisms when it comes to actually governing behavior makes this

extremely difficult. The new capabilities of rivals to threaten space assets and exploit

15

space for military advantages make it more important than ever for the United States

to proficiently track and monitor space traffic and debris.

The purpose of this thesis is to develop an algorithm to plan radar operations

for obtaining observations of satellites in the deep space regime - an area we define

as being 37,000 km away in the geosynchronous orbit. The algorithm, namely, the

Deep Space Radar Scheduler (DSRS), will fully automate radar scheduling in a way

that is flexible, centralized, and coordinated among all radar sites in the system. The

development of this algorithm addresses three main challenges in deep space radar

scheduling. The first challenge is generating plans that include individual heteroge-

neous radars, with independent planning cycles, mission sets, and users. The second

challenge is planning operations which are entirely dependent upon location for sev-

eral assets in a distributed environment. The third challenge is planning operations

in a dynamic environment that must incorporate new information and input from the

user, oftentimes on the timescale of seconds.

This chapter will introduce the topics discussed throughout this work. The first

section provides an overview of the chapters included in the thesis. The second

section summarizes the contributions of this thesis. Finally, the third section states

the background and motivation for this work.

1.1 Thesis Overview

This thesis discusses the deep space radar scheduling problem in six chapters. An

overview of each of the remaining chapters is given in the following paragraphs:

Chapter 2 explores previous literature related to the deep space radar scheduling

problem. Related works involving space assets and sensor systems are reviewed to

assist in the construction of the algorithm and the modeling of specific features of the

problem. We then survey various scheduling algorithms more generally, with various

characteristics and algorithmic approaches. We conclude by exploring the Vehicle

Routing Problem in more depth, and show how a variant of this problem’s network

formulation can be used to model the DSRS.

16

Chapter 3 introduces the model used for DSRS. We first define the scope of the

problem and key assumptions made during the development process. We then go

through important considerations and features that must be included in the program

and detail how we choose to model them in the final scheduler.

Chapter 4 details the algorithmic approach used in the DSRS. We give details on

the inputs, constraints, variables, and objectives of the model. Each of the heuristics

and important functions is described in detail, and the final formulation for the Mixed

Integer Program (MIP) is presented. The chapter concludes with a discussion of the

file inputs and outputs in the scheduler, as well as the software architecture that is

used for solving.

Chapter 5 presents the results from the various schedules produced in each of

the test scenarios. Specifically, we compare three different scheduling approaches in

their achieved run time and Measures of Performance. We then focus on the objective

function of the optimization program and show how different user objectives may be

emphasized during scheduling. Finally, we use the scheduler on various operationally

tactical scenarios to test its performance.

Chapter 6 summarizes the contributions of this thesis. It also provides possible

extensions for the deep space radar scheduling problem as well as improvements to

the current framework. The chapter then closes with the conclusions found in our

work.

1.2 Thesis Motivation

The purpose of this thesis is to develop an algorithm capable of creating schedules

for the viewing of target satellites by various deep space radars. The individual

radar observation plans should be coordinated across an asynchronous and distributed

environment, while satisfying the physical and temporal constraints of the problem.

The plans must also be flexible, with the ability to incorporate new information and

emphasize various, sometimes changing user objectives throughout the planning cycle.

The goal of our work is to develop an algorithm that generates operation schedules

17

for various deep space radars that allows for the collection of valuable data for the

Department of Defense Space Situational Awareness (SSA) mission.

We apply the algorithm to notional operational scenarios including a foreign

launch scenario, high number of simultaneous task requests scenario, a radar outage

scenario, and a large number of high-priority targets scenario. While our algorithm

focuses on scheduling Department of Defense (DoD) radars for deep space viewing,

the centralized planning framework could provide benefits for scheduling other assets

and observing different orbits within the SSA mission.

1.3 Contributions

In developing an algorithm to address the deep space radar scheduling problem in an

automated and centralized manner, this thesis hopes to make the following contribu-

tions:

• An objective function that is capable of building schedules that align

with a user’s end objectives and system characteristics. The objective

function captures specific user objectives by allowing for weights to be tuned

to emphasize any of the three measures of performance (total radar slew time,

total task lateness/gaps, total operational cost).

• An optimization problem that schedules various radars across time

and space at any instance in time and can be solved using Mixed Inte-

ger Programming. We create an algorithm that solves a series of optimization

problems over time, all while receiving and incorporating new information and

available feedback from various radar sites and the user.

• Empirical testing and analysis of the objective cost function with

two scheduling approaches. We perform empirical analysis of the objective

function components by varying the input user weights in the testing of many

realistic scheduling scenarios. We also test the model on problem instances of

various sizes and make-ups (different number of task requests and the percentage

18

of task requests at each priority). We use these problem instances to demon-

strate how the scheduler would operate on a day-to-day scheduling basis and

display how users can emphasize different objectives using the input weights.

We also conduct experiments using a baseline greedy scheduling algorithm and

an alternative, less centralized version of the DSRS and compare the results.

• Development and testing of “tactical” operational scenarios to demon-

strate the effectiveness of the algorithm in scheduling and reschedul-

ing all deep space radar operations on short notice. We develop and

demonstrate the benefit of an automatic, centralized planner with the ability to

receive and incorporate new information with tests on four relevant operational

scenarios. Specifically, we use the algorithm to schedule radar operations dur-

ing a foreign launch scenario, overload of observation requests scenario, a radar

outage scenario, and many high-priority task requests scenario. We analyze how

these scenarios affect our Measures of Performance when the DSRS is restricted

in solve time since these operationally tactical scenarios oftentimes require a

fast response.

1.4 Background

This section introduces the operational concept for the DSRS. Lincoln Laboratory

has been working alongside the United States military to accomplish various national

security objectives in the space sector, including the SSA capabilities in deep space.

After describing the importance of this national space policy goal, we describe the

current operations and the inefficiencies they present. Next, we discuss how we may

use the DSRS within larger contexts in the future, with more sensor assets and dif-

ferent orbital regimes. The third section outlines real-world scenarios which we can

directly apply the results of this thesis. Finally, the fourth section presents our goals

for this thesis in utilizing the DSRS to address the current scheduling hurdles and

inefficiencies.

19

1.4.1 SSA

Recent decades have seen development of more advanced space capabilities by nu-

merous new actors. As activity in space continues to grow and advance, so too do the

number of objects in orbit. As an added challenge, the actual objects entering space

are smaller, faster, and more maneuverable than ever before, shrinking the timeline

to respond to potentially harmful actions. Due to the incredible energy level that ob-

jects sustain in orbit, any impact or collision between these space objects could cause

catastrophic damage. Managing the risks posed by this increasingly congested space

environment is critical to ensuring the safety and sustainability of space operations

[11]. Space services are integrated into everyday life, so a disturbance or outage to

a U.S. space asset could have devastating impacts on national security, the economy,

and the daily activities of the public. As space activity continues to expand and de-

velop, we can only adequately address these possible threats if our identification and

tracking techniques expand and develop in parallel. Early and accurate observation

of resident space objects (RSOs) is crucial as it allows capable objects to maneuver

away from danger and for the attribution of attacks or negligence to particular actors

in order to appropriately respond. To protect space assets and services, the U.S.

DoD works to maintain guaranteed custody of certain space objects. The guaranteed

custody mission is one that is often resource intensive, because it requires having the

most up-to-date information on a space object’s kinematic state.

The United States maintains these SSA capabilities with the use of a variety of

assets. Included in these important assets is the ground-based radar, one of the

sensors responsible for monitoring space beyond 37,000 km from Earth’s surface. In

this thesis we will focus on how to improve the benefits offered by the deep space

radars by improving utilization and coordination among various radar sites. We

focus specifically on the DoD’s SSA capabilities and their efforts to minimize the risk

from space debris to maintain operational readiness. An efficient radar scheduler for

observation of the space regime is valuable due to the highly tactical, dynamic nature

of the environment, coupled with the vital satellite activities in orbit.

20

1.4.1.1 Various Deep Space Sensors

A system of ground-based and space-based sensors in the Space Surveillance Net-

work are tasked in a way that allows them to work together to identify and track

resident deep space objects. Each of these sensors offers different advantages and

disadvantages in the SSA mission.

• Ground-Based Optical Sensors - This type of sensor is great at large, synop-

tic searches because they are able to “sweep” their field of view (FOV) across

the sky and gather large numbers of observations at once. However, these sen-

sors are limited in the sensitivity of their observations by optical aperture size

- that is, the observation quality is heavily dependent on their physical size.

Additionally, these sensors lack the ability to collect accurate range and range-

rate information of space objects, often translating to longer observation dwell

times for high quality data collection. Finally, optical sensors located on the

ground are unable to operate during the daylight hours or when there is sig-

nificant cloud cover overhead, further limiting their ability to accomplish the

guaranteed custody mission alone.

• Space-Based Optical Sensors - Another type of optical sensor, the space-based

optical sensor, is subject to the same advantages in large searches and disad-

vantages in sensitivity and range information as the ground-based version of

the sensor. Space-based optical sensors do have the advantage of being able

to search deep space more frequently as they are not subject to weather or

nightly outages. However, these sensors are usually in low-Earth-orbit (LEO)

or medium-Earth-orbit (MEO) and are thus still constrained in where and when

they may conduct their searches by their orbital periods. In areas such as the

solar exclusion zone, an area where the Sun comes extremely close to an optical

sensor’s line of sight, certain space-based sensors are unable to monitor deep

space for a couple of hours, so there are gaps in coverage.

• Ground-based Radars - While optical sensors may be able to maintain custody

of objects so long as they have little movement and maneuverability, deep space

21

radars are needed to fill in the gaps and maintain effective custody of RSOs.

Deep space radars are able to provide more timely operations, are not limited

by weather or time of day, and have an advantage over optical sensors when

it comes to fixing and tracking objects in deep space. Ground-based radars

are also able to provide much more accurate and efficient range and range-rate

information when compared to optical sensors. Radar capacity is one major

hurdle in deep space radar operations in the Space Surveillance Network due to

the limited supply of this valuable space asset.

Currently, the DoD has three radars capable of searching deep space, and there

are potential plans to add a fourth to the system. Efficient scheduling and utilization

is needed to ensure the best use of this scarce and critical resource. Only by properly

coordinating a network of deep space radars alongside the optical and space-based

sensors will we have the ability to collect various forms of valuable data and will

continued space awareness and dominance be possible.

1.4.1.2 Space Situational Awareness Functional Capabilities

As was previously stated, the major motivation for the DSRS comes from the desire for

complete SSA. SSA in general refers to knowledge of the space environment through

tracking and maintaining custody of all space objects. The United States military

views SSA as an essential part of conducting missions in outer space. According to

Joint Publication 3-14 [41], a document prepared to govern activities and performance

of the Armed Forces of the United States, “SSA is a key component for space control

because it is an enabler, or foundation, for accomplishing all other space control

tasks.”

Effective SSA is the only option to truly understanding and characterizing the

space domain - it allows for the effective command and control that makes the de-

sired leadership, sustainability, and dominance of space possible [42]. When it comes

to maintaining this awareness, SSA is typically divided into the following four func-

tional capabilities: Detect/Track/Identify (D/T/ID), Threat and Warning Assess-

ment (TW&A), Characterization, and Data Integration and Exploitation (DI&E).

22

Executing these mission sets is essential to be able to accurately characterize the

space domain and ensure the safety of U.S. and allied space assets.

• Detect/Track/Identify (D/T/ID) - For SSA, the D/T/ID functional capability

has the primary goal of ensuring safe flight of U.S. space assets by acting in both

offensive and defensive space control missions. This capability is mainly tied

to the ability to search, track, maintain custody, and distinguish space objects

from one another. Important data about the inventory of space objects and

characterizations of space events is given and used directly by decision makers.

• Threat and Warning Assessment (TW&A) - TW&A is the ability to predict

and characterize both potential and actual attacks. This capability is also

responsible for reporting updates on the space weather environment as well as

space anomalies that could be potentially harmful to U.S. assets. Because this

capability relies entirely on accurate and fast information, it is heavily reliant

and tied to D/T/ID. TW&A is responsible for providing advanced warning on

potential threats and their impacts to space and non-space infrastructure and

capabilities.

• Characterization - SSA would not be possible without the ability to character-

ize activities, intent, tactics, and impacts of activities in space. This provides

the military and other decision makers with the knowledge necessary to make

informed, confident decisions about allied and adversarial space activities. An

important part of the deep space radar mission set is updating orbital charac-

teristics of deep space objects for cataloging.

• Data Integration and Exploitation (DI&E) - DI&E can be thought of as the

crucial step in SSA where all information from the other functional capabili-

ties is fused together into a single source of relevant information. Because all

of the functional capabilities are inevitably connected and dependent on one

another, this is the compilation of all of the data and information from these

capabilities into one streamlined source. DI&E facilitates decision making and

the development of the best possible courses of action for the government.

23

1.4.1.3 Deep Space Missions

In the effort to provide the best possible SSA capabilities to the United States, a few

mission areas are applicable to the deep space radar scheduling problem in particular.

Deep space radar sensors are mostly involved in the maintaining custody of RSOs,

in this context “custody” is defined to mean continuous knowledge of an object’s

kinematic state. Observation characteristics such as the revisit rate, dwell time,

and priority level are determined by the mission area of the RSO. The following are

custody mission areas that have emerged as especially important in the ever-changing

deep space environment:

• High Interest Object (HIO) Monitoring - This mission is oftentimes referred to

as “headcount.” It involves the more normal, day-to-day custody mission that

a deep space radar is tasked with. The radar will regularly revisit HIOs at a

rate determined by the object’s priority level and user objectives to maintain

custody. If a HIO maneuvers or is not found during the regular headcount, an

alert is sent to command and control, and detecting and tracking the object

could move to a higher priority. Examples of other objects that could also

be considered higher priority even during normal operations are Super High

Interest Objects (SHIOs) and Separable Objects (SOs). Both of these objects

are typically more maneuverable, smaller in size, and probably contain a larger

radar search space. For these reasons, keeping custody of this subset of higher

priority HIOs is very resource intensive and drives much of the planning for the

radar’s observation schedule. It is likely that the future of space will increasingly

involve RSOs that are considered higher priority HIOs, so learning to efficiently

track and observe these objects in a way that is not a drain on resources is of

great importance [5].

• High Value Asset (HVA) Neighborhood Clearing - Neighborhood clearing in-

volves searching the space around an important space asset. The deep space

radar conducts this search to detect and track any potential debris or adversarial

objects that may threaten the space asset. The overall goal of this mission is to

24

provide timely warning to operators so that an appropriate and swift response

may be taken.

• Foreign Launch Surveillance - New foreign launches into deep space are an

ever increasing high priority event which takes immediate precedence to regular

daily tasking. Usually, intelligence and information about a launch arrives from

other sensors who then handover the task of searching and tracking the launched

object, as well as the task of providing early characterization. We will explore

this event in one of the tactical operational scenarios, described in more detail

in Section 1.4.1.5.

• Discovery of Uncorrelated Targets (UCTs) - The DoD maintains an up-to-date

catalog of space objects and their orbital characteristics. When an object is

detected that does not correlate with any currently known objects, it is classified

as a UCT. While many sensor types may aid in the initial characterization of

such objects, certain UCTs require rapid initial orbit determination which is

best achieved by systems of radars.

1.4.1.4 Current Operations Framework

The structure of current operations makes coordination among various, dispersed

radar sites extremely difficult, if not impossible. The following section describes in

detail some of the specific characteristics that make a centralized, coordinated way

of scheduling challenging and the inefficiencies that result.

Lack of System-Wide Coordination – Individual radar sites receive a list of

satellites to track throughout the day in what is known as the “consolidated tasking

list.” Currently however, each radar site receives their tasking list for the day from a

different agency with no coordination and communication between sites about what

objects will be observed elsewhere. This leads to the an inefficient system in which

radar sites are functioning independently - even though there is the potential to share

data or functionality, this is not the case. Individual missions and observation plans

25

are managed completely isolated from other sensor sites, leading to a situation where

some objects may be over-tracked or over-observed, while others are under-tracked

or missed entirely. One reason these systems apply little coordination is the fact that

they were constructed at different times, with differing capabilities, and with differing

mission sets.

Asynchronous Systems – Another complication resulting from the complete

independence of various radar sites is the fact that each sensor has its own planning

cycles and operational methods. Individual planning algorithms, or lack thereof,

common times for updating observation data, scheduled maintenance or other outage

periods, all differ at different radar sites. Additionally, each radar site is responsible

for accomplishing various missions in addition to that of SSA. Each radar site may

also have their own specific objectives depending on their radar operators and carry

out their various missions on their own schedules rather than having one common,

unified goal for sensor scheduling.

Lack of Rescheduling Capability - Tasking for the deep space radar systems

is currently done completely manually. After receiving the consolidated tasking list

for the day, it is up to one of the radar operators to determine the observation path

a radar will take to view each satellite. Not only does this take a large amount

of time to initially schedule, but it also leaves little to no room for adjusting or

completely rescheduling a radar with any new information throughout the planning

cycle. New task requests, changes in sensor availability, updated user objectives,

or emergencies all may require a change in a sensor’s schedule. Incorporating this

information without completely deserting an old schedule could be difficult at times,

leading to little dynamic capability.

User Communities – Another real-world issue to consider in understanding

the deep space radar scheduling problem is the existence of disparate user communi-

ties. Each radar site is run and operated by different personnel, so planning may be

done in different ways and with different overall objectives in mind. A unified goal and

26

vision is key for any successful mission, and that is certainly the case in maintaining

adequate SSA. Because no one radar site is able to view the entire geosynchronous

belt due to FOV and capacity restrictions, maintaining custody of important space

assets fails if one radar site is not accomplishing the SSA mission goals. The users

and operators at the various radar sites must communicate and coordinate in some

way to ensure all mission objectives are indeed accomplished.

1.4.1.5 Future Operations Framework

Currently, we are not realizing the full potential of our deep space radars. In order

to keep up with the growing number of objects in space, smaller and more maneu-

verable than ever, we need to be smarter about how we designate tasks and schedule

observations for this vital space asset. As deep space continues to evolve, there is

evidence that the role of deep space radars will change as well. Radar sensors already

provide valuable data and information to contribute to SSA functional capabilities,

but in the future they may be called upon to fulfill even more mission sets and be

tasked with more requests than what is seen today.

The ability to schedule tasks on all deep space radar assets in a synchronous

manner, where all are subject to the same planning cycle, has benefits for users and

may be crucial for the continued success of SSA and future space mission sets. The

goal of this thesis is to create an automatic, coordinated way of scheduling deep space

radars, even in a distributed and heterogeneous environment. The scheduler would

offer several advantages over the current system of scheduling deep space radars.

A fully automated scheduler would shrink the observation planning timeline from

its current length of hours down to seconds. This would save time for the radar

operator as well as allow for faster response time and flexibility in case of schedule

adjustment or rescheduling. If new information or time-sensitive task requests come in

during the planning horizon, an automatic scheduler would have more dynamic capa-

bility and be able to react swiftly. Additionally, a coordinated, centralized scheduler

would have better “hand-off” capability in case of scheduled maintenance or outages

at a particular radar site. Coordination and data integration from across all deep

27

space radar sites would also allow for smarter scheduling by reducing the number of

objects that go untracked or over-tracked. Deep space sensors are a powerful but

scarce resource, so they must be operated in a way that achieves the best possible

results.

Looking Ahead

A centralized, coordinated way of scheduling radar operations opens the door for new

applications such as sensor cross-targeting. Simultaneously viewing an object or area

in space with sensors in different locations may have a number of benefits. While

sensors sometimes offer different capabilities based on their design characteristics

(such as frequency), utilizing multiple radars to view the same satellite also allows for

additional position information. Most often, radars are very beneficial at determining

range information about an object in space but with the ability to make observations

from multiple lines of sight, even more may be characterized about an object such as

size, shape, object movement, etc. The onset of smaller, more maneuverable targets

may bring the need for coordination amongst radar sites to get accurate predictions

and observations quickly.

Although we do not address sensor cross-targeting in this thesis, a coordinated

way of planning all of the radars in the system is the only way this would be possible.

One automatic, centralized scheduler could enable near real-time observation planning

for multiple sensor systems at the same time. Overall, deep space sensors could be

utilized more efficiently and in a more useful way if there were more coordination

between sensor sites.

Eventually, it could also be advantageous to coordinate and schedule all space

sensor types and orbit regimes in one central scheduler, and the DSRS program itself

may be easily generalized for this broader use. Integrating new data is done quickly

due to the fact that most data processing is done in a initialization step beforehand.

The optimization algorithm is also very flexible, with constraints that may be easily

modified. With that being said, this work focuses on how ground-based radar systems

monitor the deep space regime specifically. We also choose to design our DSRS for

28

use by the DoD in accomplishing SSA for national security objectives in space. The

following paragraphs introduce four real-world scenarios that demonstrate how the

DSRS could provide increased efficiency as well as play a larger role in the national

security mission.

Foreign Launch - Since the famous “Space Race” in the 1950’s, space capabil-

ities have grown far beyond what many thought would have been possible. Today, the

arena formerly dominated by the United States and Soviet Union has seen a number of

countries enter with the capability to launch and function independently. Many more

countries will likely enter space in the near future, each one with the hope of being

able to compete in the international market and advance national security strategies

that are enabled by access to space – “the ultimate high ground.” Inevitably there is

the concern that other countries could use their space launch capabilities to test bal-

listic missile technologies or other weapons in various orbits. Aside from the threat of

physical danger, potential adversaries are developing weapons that could jeopardize

U.S. civil and military space services such as global navigation and communications

satellites [2].

One of the best ways to ensure the continued safety and sustainability of U.S.

systems and operations is the ability to provide early detection and observation data

on foreign space objects. Technological development has enabled a situation in which

early launch detection and characterization may need to occur on a tactical timescale

so that proper warnings and courses of action can be decided upon as soon as possible.

Because the ground-based radar is less restricted by time of day, weather, or

physical position than other sensor types, it makes it a vital component of early launch

detection and characterization. A radar operator must be able to respond immediately

when intelligence arrives about a possible foreign launch. Currently however, it is hard

to fit this high-priority mission directly into the sensor’s more traditional day-to-day

operations without completely foregoing the initially tasked observation schedule.

The DSRS would allow the radar operator to input new information and incorporate

the foreign launch characterization mission into a schedule along with the previous

29

consolidated tasking list in a matter of seconds.

Overload of Observation Requests - The reduced costs, increased access,

and proliferation of space systems and technologies have driven many countries to in-

tegrate space into military, as well as commercial activities. More and more satellites

entering orbit bring greater risk for collisions and the creation of debris. When look-

ing specifically at deep space, the Geosynchronous Earth Orbit (GEO) is essential but

scarce space real estate. This is due to the fact that an object in this orbit has contin-

uous, nearly hemispheric coverage of an area, making it extremely advantageous for

communication, surveillance, reconnaissance, and weather collection missions. Today

the International Telecommunications Union (ITU) is responsible for assigning orbital

slots in the GEO orbit on a first-come-first-served basis, but there is still debate over

the specific assignment process and what may be done to create additional room for

more space objects in the future.

With so many objects entering deeper and deeper into space, the way sensor

scheduling occurs will need to be able to meet this higher demand. Maintaining

custody of space objects requires continuous knowledge of their state, so objects

must be revisited and re-characterized often. While the current system of scheduling

may have been able to maintain custody of all important space objects at one point in

time, future success of the SSA mission will rely on the coordination of all deep space

sensors. Therefore, there is great benefit in the development and use of a centralized,

coordinated scheduler like the DSRS.

Many High Priority Task Requests - As space becomes more crowded,

there will also inevitably be increased risk. Governments and private actors around

the world may approach space as an arena with far less rules than on Earth, making

it the perfect place to engage in malicious activity. Additionally, there is also the

increasing risk of collisions as more and more objects enter space.

For example, Russia carried out an anti-satellite missile test on November 15,

2021, generating thousands of pieces of space debris that continued to generate more

30

debris as it crashed into more objects within the orbit. Some of the material came

extremely close to the International Space Station, forcing astronauts on board into

a state of emergency [2]. Space debris and the danger of serious collisions is high

because objects achieve extremely high velocity in space, giving them high energy

with the capacity for immense collisions and the ability to stay in orbit for years.

In situations such as this one, it is an important matter of national security that

the United States is able to track foreign satellites and any space debris very quickly.

Swift and accurate information about the location of space objects and debris is

important for providing warnings to protect our space systems, personnel, and opera-

tions. This scenario involves observing and maintaining custody of many high-priority

targets at a time. The DSRS allows for better scheduling in this case by prioritizing

time-sensitive, high-priority task requests while also aiming to minimize the overall

slew time of the radar to visit more objects in the same amount of time.

Radar Outage - The SSA mission relies on a large system of sensors continu-

ously working to collect and update information. A centralized, coordinated approach

to scheduling allows for the sensors to operate in a more efficient manner, ensuring

the distribution and path plans of jobs make the most sense from a more global

perspective of surveillance.

An important scenario to consider is the effect of a radar outage in the system of

deep space radars. Individual radars have their own sets of satellites they can feasibly

view based on their FOV in the sky, so there will inevitably be gaps in coverage in

some of these scenarios. There may also be impacts on the operational price at the

rest of the radar sites in the system as they take on more jobs in attempt to mitigate

the gaps in surveillance.

We conduct the radar outage scenario by removing one radar from the system for

one full day of scheduling. For each of the individual radars we assess the impact on

the overall operational costs at the global system level, and we examine the impact

the outage has on the custody mission by looking at the number of tasks dropped.

31

1.4.1.6 The Role of the DSRS

There is interest and research being conducted on the impact a fully automatic,

coordinated scheduling approach would have in the SSA mission. This is a look

into how scheduling radars for deep space custody would work under this proposed

framework.

Our goals for the project include formulating and addressing the problem of au-

tomatically scheduling sensors in a way that preserves the realisms of actual DoD

operations while also remaining tractable and reasonable. We aim to demonstrate

the ability to balance different objectives in planning many heterogeneous targets

and radar systems in an asynchronous, distributed environment. We choose to quan-

tify the benefit of coordinated, automatic scheduling by conducting testing on several

real-world scenarios and reporting measures of performance against a baseline greedy

scheduler and an alternative version of schedule optimization that is less centralized

in the task request distribution among radar sites.

32

Chapter 2

Literature Survey

This section reviews the literature that addresses problems related to the deep space

radar scheduling problem. We first review ways that radar and satellite observation

planning has been studied and conducted in the past. We then discuss scheduling

problems in a more general sense, focusing on works that have features similar to those

found in the deep space radar scheduling problem. Finally we explore the class of

problems known as the Vehicle Routing Problem, a well-known optimization problem

whose different variants have been studied extensively. We review several proposed

ways to solve this particular problem as well as review the different variants that have

been studied in literature. Finally, we present and explain the choice of the model we

choose to use in the DSRS.

2.1 Scheduling Algorithms

We begin by discussing various scheduling problems and the proposed algorithms

and methods for solving them. We focus first on how space surveillance assets have

been studied and scheduled in the past and how certain problem features relate to

the DSRS. Problems involving the scheduling of sensors and satellites include char-

acteristics that are present in our problem because they are subject to many of the

same feasibility and signals processing constraints. Next, we look at algorithmic

approaches to scheduling more generally, focusing on those examples with problem

33

features present in the deep space radar scheduling problem.

Radar Scheduling

An important data point in any radar scheduling problem is the amount of time a

radar spends observing or collecting data on a particular target. It is critical that

planning includes a dwell time long enough for the radar to successfully complete a

task, but not an amount of time so conservative that it slows down the productivity of

the radar. In [34], Li, Xu, Zhang, and Kong create a scheduling model that focuses on

the relationship between task execution performance and the length of time a radar

spends dwelling on a certain target in a the network. First, time periods of tasks and

radar availability are determined and then tasks are assigned to radars with open

time slots using a greedy algorithm and heuristic algorithm.

Reinsos-Rondinel, Yu, and Torres create a model based on a time-balanced (TB)

scheduler and test on a single radar system simulation used in adaptive weather

sensing in [45]. The concept of TB scheduling was first developed and applied to radar

scheduling by Stafford in [49], and this methodology was later applied to scheduling

radars for multiple point targets in a military application by Butler in [10]. In the

algorithm, the TB values indicate the “degree of urgency” of scheduling a specific

task, with positive values indicating that a sensor is already late for execution. These

values are constantly changing within the system based on priority, due time of the

task, and other external factors. The scheduler then simply chooses the tasks with

the highest TB value to be processed next.

Kintz, Lee, and Rejto approach the problem of scheduling a single radar’s ob-

servations with two separate algorithms - the first algorithm is a greedy heuristic

that schedules targets based on the next soonest task that is due to be executed [5].

The second method however, their Dynamic Sensor Scheduler algorithm, models the

problem as a variant of the Traveling Salesman Problem, with the objective being to

minimize total distance that the radar’s antenna must slew across the sky to different

target locations. Even while task priority and the stochastic nature of the mission

were not included in the study, the Dynamic Sensor Scheduler significantly outper-

34

formed the greedy solution, allowing custody of more deep space objects while also

conserving valuable radar resources [5]. Our work is similar to this previous project

but in our application we work to extend the problem to a system of sensors and

include various new problem features rather than focus on the scheduling capacity of

one radar.

Satellite Scheduling

Although our problem considers the scheduling of radars to make observations of

satellites, there are many spatial and temporal constraints that are similar to those

problems that involve planning satellites to make observations.

Cho, Kim, Choi, and Ahn propose a two-step binary linear program for tasking and

scheduling a constellation of satellites in LEO[13]. The overall goal of scheduling is to

distribute tasks to satellites and schedule their start times in a way that maximizes

the predetermined performance parameters. First, the program determines the set

of feasible candidate communication time intervals for each satellite-ground-station

pair and then tasks are allocated [13]. Tan and P. Wang approach the problem

of Earth Observing Satellite imagery with a heuristic approach[52]. The problem

relates to the radar scheduling problem in that it includes the element of competing

task requests and the limited agility or availability of the observing resource, in this

case the satellites. The heuristic algorithm selects and schedules satellites while also

automatically choosing image parameters that maximize coverage and quality of the

requested images [52].

X. Wang, Gu, Wu, and Woodward formulate a robust version of a satellite schedul-

ing algorithm to address the uncertainty in image quality that arises due to cloud

cover[53]. The authors robustify the formulation with a budget uncertainty set with

a bounded value determined by the satellite operational costs and how conservative

the model plans to be in protecting against uncertainty. The final formulation is

solved with column generation due to the large number of variables introduced in the

robust linear scheduling problem [53].

35

2.1.1 Scheduling with Temporal Constraints

An important aspect of the radar scheduling problem is the temporal constraints

associated with each task request. There has been much research in how to properly

leverage operations research techniques to schedule single agents with various release

times, due times, and priority levels.

One approach to scheduling with temporal constraints has been a dynamic pro-

gramming approach known as the successive sublimation dynamic programming (SSDP)

method. As is explained in [24], SSDP involves constructing a carefully defined relax-

ation of the combinatorial optimization problem and computing the optimal policy

of the relaxation. If the relaxed optimal policy is also optimal in the original prob-

lem, that is the solution; if not, the relaxed version of the problem is modified to

carry more detailed information about the original problem. This process continues

iteratively until finding the optimal solution.

Tanaka and Fujikuma propose an exact algorithm for scheduling a single machine

where idle time is permitted by using the SSDP method [50]. The algorithm is the

applied to four different realistic scheduling scenarios with the goal being to minimize

total weighted tardiness when release times are given .

Akturk and Ozdemir also focus on minimizing total weighted tardiness or lateness

of executed tasks of a single machine in both [3] and [4]. The authors use branch

and bound algorithm but introduce a new dominance rule that is able to find a local

optimal solution. The authors are able to show that the computational results of

their derived algorithm outperform a number of other heuristics on simulated test sets.

Davari, Demeulemeester, Leus, and Nobibon employ the branch and bound method to

solve a generalized single agent scheduling problem to schedule jobs that have similar

features to the task requests present in our radar scheduling problem[15]. Each job

has a specific processing time, release date, due date, deadline, and penalty weight.

The goal then becomes to schedule these jobs in a way that minimizes tardiness

of the jobs’ completion while also respecting hard time window and set precedence

constraints [15].

36

2.1.2 Dynamic Scheduling

Scheduling problems may be divided into two classes – “predictive scheduling” which

addresses problems with deterministic process times, machine availability, and task

requests and “reactive scheduling” which must create schedules for a dynamic envi-

ronment. While predictive scheduling may create a schedule valid for the entire time

span, scheduling in a dynamic environment may need to be much more flexible and

have the ability to adapt to new information quickly throughout the planning horizon.

One approach to dynamic programming, SSDP, has already been introduced, but in

this section we review a few more approaches to scheduling in a dynamic, uncertain

environment.

Several approaches to a heuristic priority rule-based scheduling are studied by

Haupt in [22]. Haupt conducts a survey on various scheduling rules, ranging in

complexity, in various problem instances. He finds a dynamic version of the rule-

based scheduling algorithm in which only the first job is selected in a job sequence

for certain, before the algorithm runs again, rescheduling or revising the remaining

jobs in the sequence.

Fabrycky and Shamblin approach the dynamic environment differently - using

a search-based attempt that first reduces the search space of possible solutions[17].

Then, they use probability-based sequencing algorithms to come up with completion

dates that are ultimately used to schedule the tasks. Gittens uses sequencing based

on an assigned allocation index[21]. The allocation index for each job is developed

based on specific Markov decision processes and forward induction policies. Next,

the jobs are scheduled in decreasing order of this specified index. As jobs arrive and

are processed, the indices are continuously updated and arrival and service times are

learned over time.

2.1.3 Coordinated Planning

This section addresses the problem of coordination in planning multiple agents for

some overall objective. In most cases the sub-planners are entirely subservient to the

37

coordinating agent, with little ability to provide feedback or schedule operational “out-

ages.” Additionally, less research has been done with distributed and heterogeneous

agents operating simultaneously.

Pedrasa, Spooner, and MacGill address the coordinated scheduling problem and

how it pertains to providing energy services to homeowners [43]. Residential con-

sumers first assign values to desired energy services and then these resources are

scheduled to maximize net benefits to the system. The problem coordinates and op-

timizes which energy resources will be used to service certain users by using swarm

optimization, a technique that optimizes a problem by iteratively improving a candi-

date solution based on the net benefits.

Freuder and Wallace address a coordinated satellite scheduling problem with con-

straints and variables similar to those used in the DSRS in [19]. The authors em-

ploy constraint programming methods and model complex task requests by creating

variables for each request with associated support variables specifying the time win-

dows, resources required, durations, and other problem features. Because of the large

number of variables created, the authors employ a heuristic search and constraint

propagation method to create feasible solutions in a timely manner.

In [23], Herold coordinates both air and space assets in an asynchronous and

distributed environment to collect Earth observations based on requests that have

specified time windows and priority levels. Herold constructs a value function as

the objective in an optimization problem that can be used to solve a linear program

repeatedly over time.

2.2 Vehicle Routing Problem

The main objective of the radar scheduling problem is to create an observation plan

for each radar that incurs the least cost. In this case, “cost” may be viewed as a

function of slew distance, the dwell time, the penalties for soft constraints in the

problem, and the price associated with operating the radar. For this reason, one

possible way to formulate this type of scheduling problem is as a Vehicle Routing

38

Problem. The Vehicle Routing Problem is an important application of optimization

that first appeared in a paper by George Dantzig and John Ramser in 1959 [14]. This

problem is a generalization of the famous Traveling Salesman Problem but instead

of one “salesman” that must complete a route, there is a fleet of vehicles that must

visit and service a set of locations. The Vehicle Routing Problem becomes difficult

to solve because the number of possible routes grows extremely fast with each added

customer location. For this reason, Vehicle Routing Problems are classified as NP-

complete or NP-hard problems [7]. Typically, problems may be classified as either

“hard” or “easy” depending on whether or not there exists an algorithm that can find

a solution in polynomial time. An algorithm is said to be solvable in polynomial time

if the number of steps required for algorithm is on the order of 𝑛𝑘 where 𝑛 is the

complexity of the problem and 𝑘 is a non-negative integer. Currently, there are no

algorithms that are able to solve the Vehicle Routing Problem in polynomial time

– in some cases solution methods may have to search the entire solution space of

the problem to find the optimal solution. Therefore, there have been a number of

methods proposed that attempt to reduce the solve time for the model by intelligently

searching the solution space [39].

2.2.1 Vehicle Network Flow Formulation

The most popular model proposed to formulate the Vehicle Routing Problem uses

integer programming to represent the problem as a network. Network problems rep-

resent the problem in a graph 𝐺 = (𝑁,𝐴), with a set of nodes, 𝑁 , and arcs, 𝐴.

The formulation of the Traveling Salesman Problem introduced by Dantzig et al.

was extended to create the two-index vehicle flow formulations for the Vehicle Routing

Problem [14]. In this network structure of the problem, 𝑁 nodes represent customer

locations, with 𝐴 arcs between nodes having an associated cost of travel, 𝑐. In the

classical Vehicle Routing Problem, the set of 𝐾 identical vehicles each travel exactly

one route that must begin and end at the central depot, node 0. The main goal is to

minimize overall cost. Therefore, the classical network flow approach to the Vehicle

Routing Problem is modeled as:

39

min
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑐𝑖𝑗𝑥𝑖𝑗 (2.1)

∑︁
𝑖∈𝑁

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝑁∖{0} (2.2)

∑︁
𝑗∈𝑁

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝑁∖{0} (2.3)

∑︁
𝑖∈𝑁

𝑥𝑖0 = 𝐾 (2.4)

∑︁
𝑗∈𝑁

𝑥0𝑗 = 𝐾 (2.5)

∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

𝑥𝑖𝑗 ≤ |𝑆| − 𝑟(𝑆), ∀𝑆 ⊆ 𝑁∖{0}, 𝑆 ̸= ∅ (2.6)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑁 (2.7)

In this formulation 𝐾 is the number of available vehicles, 𝑆 is a subset of 𝑁 , and 𝑟(𝑆)

is a function corresponding to the minimum number of vehicles needed to serve the set

𝑆. Constraints (2.2) and (2.3) ensure that exactly one arc 𝑥𝑖𝑗 enters and leaves each

vertex associated with a customer. Constraints (2.4) and (2.5) ensure the number of

vehicles leaving the depot, node 0, is the same as the number entering. Constraints

(2.6) are the generalized sub-tour elimination constraints. They impose that at least

𝑟(𝑆) arcs leave set 𝑆. Finally, constraints (2.7) are the integrality constraints due to

the fact that 𝑥𝑖𝑗 is a binary variable [51].

The size and complexity of the problem increases dramatically with the addition

of the sub-tour elimination constraints - without them the problem would resemble

a more classic assignment problem with a much faster solve time. These constraints

increase problem size so much because they must prohibit any possible sub-tour that

may occur in the problem, so any additional node produces a large number of new

sub-tour elimination constraints. Solving the complete problem would include every

single one of the 2𝑁 sub-tour elimination constraints and the single-tour elimination

constraints and be very computationally expensive. This makes the formulation im-

40

practical for large instances common in real-world scenarios where solve time must

be low and the number of nodes 𝑁 is typically large.

2.2.2 Set Partitioning Formulation

Another proposed formulation for the Vehicle Routing Problem is the set partitioning

formulation. The set partitioning formulation was first introduced by Balinski and

Quandt in [6] and offers a stronger linear relaxation than many other model choices.

The number of constraints remains relatively low compared to other formulations

such as the network flow version, but the number of variables is extremely large –

one variable for every possible feasible route in the system. Therefore, in the set

partitioning formulation, each vehicle route is represented by a binary 𝑛-vector 𝑎𝑗,

representing one feasible route. Elements 𝑎𝑖,𝑗 make up the 𝑎𝑗 vectors and are equal

to 1 if stop 𝑖 is visited on route 𝑎𝑗 and 0 otherwise. There is also a predetermined set

cost 𝑐𝑗 for each of the 𝑎𝑗 vectors. Therefore, the classic set partitioning formulation

is:

min
∑︁
𝑗∈𝑁

𝑐𝑗𝑥𝑗 (2.8)

∑︁
𝑗∈𝑁

𝑎𝑗𝑥𝑗 = 𝑒 (2.9)

𝑥𝑗 ∈ 0, 1 ∀𝑗 ∈ 𝑁 (2.10)

Where 𝑒 is a vector of ones and all routes 𝑎𝑗 are predetermined to be feasible.

The major drawback to the Set Partitioning formulation is defining the vectors

𝑎𝑗. The number of possible, feasible columns 𝑎𝑗 is computationally impractical to

generate, store, and finally solve. Cutting planes, branch and bound, and implicit

enumeration have all been explored as possible methods to solving the problem. The

cutting plane methods start by solving the linear program relaxation of the set par-

titioning problem and then adding additional constraints gradually to “cut away”

non-integer solutions. Branch-and-bound methods similarly start by solving the lin-

ear program relaxation of the integer program to get a lower bound on the solution.

41

The algorithm continues to solve sub-problems in an attempt to find an integer solu-

tion [8]. These basic methods are often used in heuristics to find solutions to “hard”

routing problems.

Agarwal, Mather, and Salkin approach the problem of solving the set partitioned

Vehicle Routing Problem in [1] in three basic steps. First, they solve the linear pro-

gramming relaxation using column regeneration. Second, using the columns from

the first step’s linear relaxation optimal basis, the set-covering problem is solved to

obtain a heuristic solution. In the third step, a relatively small set of columns is

generated and added to the problem using set partitioning theory. The optimal so-

lution is then obtained by solving the set partitioning problem over this smaller set

of columns. Desrosiers, Soumis, and Desrochers followed a very similar method to

solve the Vehicle Routing Problem but with the added element of time windows for

customer service and no constraints on the capacity of each vehicle [16]. Foster and

Ryan also describe an integer program based on set partitioning using a heuristic al-

gorithm with the Revised Simplex Method, a method that is the same as the standard

Simplex Method aside from its actual implementation [18].

Due to the difficulty of solving large-scale routing problems to optimality, meta-

heuristics such as those listed above have been extremely successful in obtaining

solutions. These algorithms often utilize and combine a number of the basic methods

presented. Although an exact, optimal solution is not always found, these algorithms

are often very efficient and can solve Vehicle Routing Problems within 0.5 or 1 percent

of the optimal solution. They are also easily adaptable to fit many different variants

of this class of problems [54].

2.2.3 Commodity Flow Formulations

A final formulation that has been popular in Vehicle Routing Problems is the com-

modity flow formulation. This formulation is similar to the network representation

of the vehicle routing problem in that the problem is seen is a graph 𝐺 = (𝑁,𝐴).

Additional flow variables are added to this network structure, however, representing

the flow of commodities along arcs in the graph. Letchford and Salazar-González

42

compared several different variations of integer programming formulations, including

those with a number of commodity flow variables, on a number of variants of the

Vehicle Routing Problem in [32]. In 2015, Letchford and Salazar-González updated

their work in [33] by presenting two new multi-commodity flow formulations that

dominate previous methods with the addition of only a polynomial number of vari-

ables. The authors show that for some variants of the Vehicle Routing Problem these

new methods offer significantly lower bounds than former models and may be solved

in faster time.

2.2.4 Vehicle Routing Problem Variants

In the classical Vehicle Routing Problem, optimal routes are found for 𝐾 vehicles

to visit 𝑁 customer location nodes. However, there are many ways this problem

may be expanded to better fit more complicated real-world scenarios. Some possible

variants to the classical Vehicle Routing Problem are: Vehicle Routing Problem with

Time Windows, which constrains service to certain periods of time; Vehicle Routing

Problem with with Pickup and Delivery, where precedence constraints are added

to ensure pickup locations are always visited before delivery locations; Capacitated

Vehicle Routing Problem, where vehicles have a limited carrying capacity on board

or limited distance they are able to travel; and Dynamic Vehicle Routing Problem,

where service requests are not completely known at the start of service and instead

arrive during the distribution process. This section describes Vehicle Routing Problem

variants that are similar to the radar scheduler problem.

The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem with Time Windows is defined as a Vehicle Routing

Problem where there are specific time windows that each customer must be serviced

within or service must begin. Sometimes these constraints are modeled as “hard”

constraints, meaning they must be obeyed or the customer goes without service and

the solution is infeasible. They may also be modeled as “soft” constraints, where

43

there is a penalty added to the overall “cost” if a customer receives service outside

their specific time window. The objective is still to minimize total cost for all of the

vehicles to visit a set of customers. The difference in this version of the problem

is that there are additional constraints and variables added to ensure that the time

windows restrictions are obeyed.

Kallehauge, Larsen, Madsen, and Solomon formulated the Vehicle Routing Prob-

lem with Time Windows as a multi-commodity work flow problem in [28]. Much like

in the traditional Vehicle Routing Problem, there is a fleet of vehicles, 𝑉 , a set of

customers, 𝐶, and a directed graph, 𝐺. In their formulation, Kallehauge et al. con-

sidered the graph to contain |𝐶|+2 vertices, 𝑁 , with the additional two vertices being

for the source and sink nodes that vehicles are required to start and end their routes.

The graph also contains arcs (𝑖, 𝑗) with an associated cost 𝑐𝑖,𝑗 and time 𝑡𝑖,𝑗, which

in this case includes the service time at customer 𝑖. Additionally, each vehicle has a

limited capacity 𝑞 and each customer an associated demand 𝑑𝑖. Every customer also

has a predetermined time window [𝑎𝑖, 𝑏𝑖] that customer 𝑖 must be serviced in. Time

windows for the two depots, node 0 and node 𝑛 + 1, are identical and represent the

scheduling horizon. The decision variables in this problem are the binary variables

𝑥𝑖,𝑗,𝑘 which takes value 1 if vehicle 𝑘 drives directly from vertex 𝑖 to vertex 𝑗 and

0 otherwise. The second decision variable, 𝑠𝑖,𝑘 denotes the time vehicle 𝑘 starts to

service customer 𝑖. The final formulation is:

min
∑︁
𝑘∈𝑉

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑐𝑖𝑗𝑥𝑖𝑗𝑘 (2.11)

∑︁
𝑘∈𝑉

∑︁
𝑗∈𝑁

𝑥𝑖𝑗𝑘 = 1 ∀𝑖 ∈ 𝐶, (2.12)

∑︁
𝑖∈𝐶

𝑑𝑖
∑︁
𝑗∈𝑁

𝑥𝑖𝑗𝑘 ≤ 𝑞 ∀𝑘 ∈ 𝑉, (2.13)

∑︁
𝑗∈𝑁

𝑥0𝑗𝑘 = 1 ∀𝑘 ∈ 𝑉, (2.14)

∑︁
𝑖∈𝑁

𝑥𝑖ℎ𝑘 −
∑︁
𝑗∈𝑁

𝑥ℎ𝑗𝑘 = 0 ∀ℎ ∈ 𝐶, ∀𝑘 ∈ 𝑉, (2.15)

44

∑︁
𝑖∈𝑁

𝑥𝑖,𝑛+1,𝑘 = 1 ∀𝑘 ∈ 𝑉, (2.16)

𝑠𝑖𝑘 + 𝑡𝑖𝑗 −𝑀𝑖𝑗(1− 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘 ∀𝑖, 𝑗 ∈ 𝑁,∀𝑘 ∈ 𝑉, (2.17)

𝑎𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝑉, (2.18)

𝑥𝑖,𝑗,𝑘 ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝑉. (2.19)

Constraints (2.13) are the capacity constraints, (2.14), (2.15), and (2.16) are the path

flow constraints, and (2.17) and (2.18) are the time window constraints.

Solomon and Desrosiers conducted a survey and analysis of different methods

that have been proposed for different variants of the Vehicle Routing Problem with

time windows [48]. After conducting their research, they proposed that algorithm

development that utilizes smart integer programming techniques like Lagrangian re-

laxation and column generation could be an efficient algorithm for a solution. Kohl

and Madsen were the first to apply a Lagrangian relaxation on the Vehicle Routing

Problem with Time Windows with a free number of vehicles [29]. Jörnsten, Madsen,

and Sorensen presented a method for solving the problem with a variable splitting

technique, also known as Lagrangian decomposition, to find an exact solution in fi-

nite time [27]. Kallehauge et al. show that incorporation of branching and cutting

methods on solutions obtained through the Dantzig-Wolfe decomposition, where the

problem is broken down into a sub-problem and a master problem, are some of the

best performing algorithms to date [28].

Dynamic Vehicle Routing Problem

In the static version of the Vehicle Routing Problem, all information relevant to the

planning of the routes is known before the service and routing process begins, and

this relevant information does not change after the routes have been constructed. On

the other hand, not all information relevant to the planning of the routes is known

to the planner at the beginning of a Dynamic Vehicle Routing Problem, and this

information is subject to change after the initial routes have been constructed.

Stochasticity could come from a number of different places within the Vehicle

45

Routing Problem. For example, there could be stochastic customers, stochastic travel

times, or stochastic customer demands.

One approach to dealing with a dynamic version of the Vehicle Routing Problem is

through an a-priori optimization based method. In this method, an “a-priori solution”

is determined based on probabilistic nature of future events. When this approach is

taken, the likelihood of certain outcomes is processed before scheduling begins so

there is no need to re-optimize the problem every time new information is received.

Jaillet first introduced a Probabilistic Traveling Salesman Problem in [25] in which

each node is present in the network with a probability 𝑝𝑖, so it handles the problem of

stochastic customers. Laporte, Louveaux, and Mercure formulate this Probabilistic

Traveling Salesman Problem as an integer linear program and then use a branch-and-

cut approach to solve it [30]. Segiun in [47] and Genreau, Laporte, and Séguin in [20]

propose an exact algorithm for the probabilistic Vehicle Routing Problem based on

the integer L-shaped method, an extension of the stochastic, integer case of Bender’s

decomposition, for both a Vehicle Routing Problem with stochastic demands and a

Vehicle Routing Problem with stochastic customers. One significant drawback to the

a-priori optimization approach is the fact that it relies on detailed information about

the probability of customer requests and locations which is often not available in a

real-world application.

When the stochastic nature of the problem is not folded into the problem prior to

solving, there are a few ways for the system to respond. Gendreau, Guertin, Potvin,

and Taillard model first the static and then the dynamic versions of the Vehicle

Routing Problem with uncertainty in the customers [37]. They solve the problem

using a tabu search heuristic, a common meta-heuristic for optimization. Malandraki

in [37] and Malandraki and Daskin in [38] introduce several heuristic algorithms based

on nearest-neighbor method to solve the time-dependent Traveling Salesman Problem

where there are variations in travel speed along arcs in the graph depending on time

of day and other unknown factors in the system.

Methods that use more local procedures may find a new solution more quickly by

searching for the best insertion of the new customer into the current planned vehicle

46

routes, although this may not ensure global optimality. On the other hand, a global

search procedure would completely resolve the problem every time an input revision

has occurred. Lund, Madsen, and Rygaard implement a heuristic procedure that

attempts to minimize the weighted sum of detour and delay with each new insertion

[36]. Larson also focuses on local search by presenting an algorithm which is based on

the fast insertion of new immediate requests received in the system, an improvement

heuristic, and the insertion of dummy customers [31].

Choosing a Model

After having reviewed the applicable literature, we now present the mathematical

model for solving the deep space radar scheduling problem. We choose the solution

approach based on applicability of past techniques as well as the similarity of the

problem constraints and overall objective.

We choose to model the DSRS as a Dynamic Vehicle Routing Problem with Time

Windows. In this problem we let the various satellites associated with incoming task

requests represent the customer nodes and each individual radar is represented as

one vehicle. In our case, the radar sensors and the satellites are heterogeneous and

operate in a dispersed environment.

We recognize that this problem is NP-hard, leading to potentially long, unpractical

solve times. For this reason, we choose to first implement an initial program that

cleans the input data and conducts initial feasibility checks for each satellite-sensor

pair. This reduces the search space that serves as input to the Vehicle Routing

Problem portion of the problem where the optimization occurs. We use the Gurobi

Optimizer for solving this portion of the problem, a mathematical solver that employs

the branch-and-cut algorithm to solve mixed integer programs. The branch-and-cut

algorithm works by solving a linear relaxation of the mixed integer program. Then, if

the acquired optimal solution to the relaxation meets all integrality constraints, it is

the optimal solution. If not, integrality constraints are added to the relaxed problem

iteratively, each time checking to see if all constraints are met. This process continues

until an optimal solution is obtained that respects all constraints from the original

47

problem.

The objective in the optimization problem will be to minimize the overall “cost”

to the system. The cost is a function of the slew time, the dwell time, the lateness

of the tasks, and the prices associated with operating each one of the radars. This

cost value is minimized while several other hard constraints must be met. Namely,

a satellite must be above the radar’s lowest allowable pointing elevation while it is

executing a task request associated to that satellite. The radar must dwell on a satel-

lite for the required duration of time that is dependent on the specific radar-satellite

pair. The time window constraints for each of the task requests and the execution of

task requests are both soft constraints in the problem that are incorporated into the

lateness value in the objective function.

48

Chapter 3

Model Context and Development

This chapter explains the development of our model for the DSRS. The first section

defines the problem scope and terminology necessary to fully understand the problem

features and to define the model. The second section describes the key assumptions

that are made when developing the algorithm and coming up with an appropriate

solution approach. The third section provides an overview of the inputs, decisions,

objectives, and constraints that we use to model the final radar scheduler.

3.1 Problem Scope

As has been previously discussed, the deep space radar scheduling problem studied

in this thesis has numerous approaches that may be used for scheduling, and there

are many different opportunities for the application for Operations Research (OR)

techniques to reduce the inefficiencies of current operations. The problem’s dynamic

nature, efficient resource distribution elements, signal processing constraints, and

queuing problem characteristics are all features that are well-handled by many OR

approaches and researched topics.

In all scheduling scenarios we choose to focus on in this work, there are multiple

resources available to make observations and take measurements of multiple targets.

In each case, the user might invoke the planner to focus on certain types of targets

or prioritize different objectives depending on the mission request. For example,

49

if an object is thought to be “red” or potentially hostile, a user may require more

frequent or even constant surveillance of the target. If an object is unknown or has

not been previously cataloged, the user may require many more observations as soon

as possible to gather information about characteristics such as size, maneuverability,

priority classification, etc. In any case, the proposed radar scheduler must be able to

make decisions on which requests should be sent to which radar sites, what specific

slew path each radar should take upon receiving a list of tasks, how long the radar

should spend dwelling on a satellite, and all the while be continuously gathering and

storing information about target satellites that have already been viewed. With the

ability to directly control paths taken by each radar, a good sequence of scheduling,

planning, executing, and rescheduling must be taken to ensure objects are truly being

visited successfully and sensors are not being scheduled for blocks of time when they

are unavailable. Additionally, the fact that radar scheduling is being done for military

surveillance may require observation at specific times and may happen with very little

warning. For all of these reasons, it is crucial to define the problem that this thesis

addresses carefully and clearly.

3.1.1 Key Terminology

We begin by introducing the key terminology used to define this problem for clarity

in how the real world scenarios translate to the proposed formulation. It is also

important in detailing how certain problem features are defined and later incorporated

into the model. Some terms are considered standard terminology, others are specific

to military operations and procedures, and others are specific to this thesis and may

not be used until potential future operations.

3.1.1.1 Task Requests and Targets

When it comes to SSA, a request refers to the indication that there is the need for

a certain object in space to be viewed a single time. In some cases, objects must be

revisited multiple times but we use separate task requests for each individual visit

50

to a particular object. For any sensor asset or target, a task could entail different

requirements or dwell times depending on the characteristics of the target itself or

the task request parameters. Each task request is made up of a certain number of

observations depending on the priority level of the task request. Each observation is

made with a preset interval of time in between (usually 10 seconds) to allow the radar

to capture any movement or change that could be occurring over time. A target refers

to a RSO, in this case a deep space RSO, that requires action be taken on it. RSO

and satellites are used interchangeably in this thesis because the cases we study focuse

on satellite viewing, but in reality the DoD sensors are used to keep surveillance of

satellites, space debris, satellite daughter objects, space weather, etc.

For the DSRS, a target RSO with a corresponding location make up the task

request – these are the inputs into the system that require action. The United States

Air Force 18th Space Command is the party responsible for sending a consolidated

tasking list of task requests to be viewed by a radar each day. It is important to

note that requests are accepted, serviced, or executed when the radar scheduler has

actually added the task request to a specific radar schedule. A task is accomplished

or successful when all of the observations for the request are completed for the re-

quired duration of time. The scheduler must be able to accommodate heterogeneous

request and target types, with different priority levels and varying requirements for a

“successful” observation of a target.

A user is the human agent that may alter the preset objective function weights.

Adjusting the weights of the cost function and corresponding objective function in

the optimization problem is simple, allowing it to be accessible to a wide range of

user types. Allowing for changes to the objective function also allows the user to

have more control in the scheduling process if necessary. For example, some users

may restrict the program to only allow observations by one sensor if it is cheaper or if

there is some piece of observational data needed immediately at a specific radar site.

Users may also prioritize certain types of targets or missions such as in the foreign

launch scenario where observations have inherently high value because early detection

and characterization is so critical in these cases. While the radar sites receive task

51

requests from the U.S. Air Force, the employees at each of the radar sites are currently

responsible for executing these tasks.

We attempt to create a model that captures as many of the real-world features and

details of the problem as possible to ensure it remains executable and realistic, while

also balancing that with achieving a practical solve time. To model the important

task request characteristics, we choose to associate the following attributes with each

request:

Attribute Description
Name An object number that uniquely identifies each resident

space object
Priority The associated value with the request. Can take one of

3 discrete levels with higher number representing more
important requests (high priority = high value)

Label The associated alpha-numeric term given to each tar-
gets indicating how often it should be revisited

Location The targets’ and radars’ associated latitude, longitude,
and altitude

Earliest Time A single number indicating the earliest time (starting
from 0 at beginning of planning period) when the target
must begin being observed

Due Time A single number indicating the latest time (starting
from 0 at the beginning of the planning period) when
the target must begin being observed

Dwell Time A number indicating the amount of time (in seconds)
that a target must be observed by a radar for it to be
considered successfully serviced

Table 3.1: Task Request Attributes

3.1.1.2 Coordinate System

As Table 3.1 indicates, we model all target locations as point locations defined by ei-

ther latitude, longitude, and altitude or input directly into the program as a Two Line

Element (TLE). There are many different ways to define a coordinate frame when it

comes to point objects on and around Earth, and it is important to remain consistent

throughout the problem for accurate calculations and programming efficiency. We

52

convert the various location inputs to define all sensor and target locations in the

same coordinate system. The specifics on conversion calculations may be found in

Section 4.2.2.2.

3.1.1.3 Independent Radar Sites

Currently, the U.S. deep space custody mission is conducted by the various individual

radar sites across the globe independently. Rather than this dispersed, isolated sys-

tem of scheduling, the DSRS would have master control over task request assignment

and the slewing radar observation paths. We refer to the radars or sensors as the

devices that actually make observations and collect data of the RSOs in deep space.

There may be and are multiple sensors at the same relative location, but they all

operate with their own specific observation path plan. Although for this thesis we

only consider one type of space surveillance asset, the deep space radar, our methods

are extendable to include both ground and space-based optical sensors as well. The

main approach to the deep space radar scheduling problem may also be extended to

include observations of objects in other areas of space, such as LEO and MEO. How-

ever, this would require additional astrodynamic constraints to match point locations

to precise time windows.

While the DSRS maintains centralized control over scheduling, users at indepen-

dent radar sites also many be able to exercise some level of control depending on the

circumstance. Users at independent radar sites operate dependent upon the produced

master schedule when it comes to observing deep space RSOs, but they may also be

able to schedule or add in additional jobs or tasks outside of the planned task assign-

ments. Users may also over-rule a new schedule and deny certain task assignments at

one of the radar locations if necessary. In this case, the task would simply be updated

as “unsuccessful” during the feedback stage before the next stage of scheduling begins.

This goes along with the idea that each of the individual radar sites may be viewed

as available or unavailable during the scheduling process. Unavailability may be due

to planned or unplanned radar outages and may last for any length of time the user

specifies.

53

3.1.1.4 Planning Horizon

The planning horizon in the problem is the length of time that the DSRS actually

plans observations for. A planning horizon of 24 hours means that the scheduler will

attempt to schedule all of the received task requests to satisfy user objectives to the

available radars during the 24-hour time window. This makes the assumption that

all task requests received occur during the planning horizon.

We model the planning horizon for the various radar sites in the same planning

horizon period. Although radar sites are geographically dispersed, because we are

scheduling for a full 24-hour day and the radar scheduler runs automatically starting

with a global time of 0, this will take care of the need to differentiate time zones in

the assignment process.

3.1.1.5 Planning Stage

The first stage of scheduling is the Planning Stage, which refers to the time at which

the DSRS is collecting task request information and user information and then subse-

quently creating the plans for the various radar sites. Each Planning Stage begins by

processing the consolidated target list with the most up-to-date target satellite due

times. Because the formulation of the problem makes it NP-hard, we usually choose

to schedule in smaller batches based on the due times that occur within the next

planned iteration. This allows for a faster solving time and more optimal schedule. It

is important to note that we associate each Planning Stage with a single Execution

Stage iteration. Because in some planning iterations there may be little to no change

in the schedule, we also run a few experiments in which the radar scheduler plans

all task requests in the planning horizon at once rather than in small batches for

comparison.

3.1.1.6 Approval Stage

During the Approval Stage, we allow the user to over-ride any of the newly created

radar schedules in favor of an old schedule before the schedules are actually executed.

54

If this happens to be the case, we return to the Feedback and Update Stage to input

this information into the system and incorporate it into a new schedule before the

Execution Stage. It is important to note that this step is completely optional. Because

the DSRS runs automatically, it will continue to execute the planned schedules unless

the user chooses to deny a proposed plan.

3.1.1.7 Execution Stage

The period of time when a radar at a specific site is carrying out its assigned schedule is

called the Execution Stage. We assume that observation information or measurements

are being sent to operators simultaneous to the satellite being viewed, so radars may

continue to execute tasks while this occurs within the same stage. It is important

to note that oftentimes a schedule may be updated while radar assets are executing

some task, so the scheduler may need to create schedules that are then joined into

currently scheduled plans already being executed.

3.1.1.8 Feedback and Update Stage

At the end of each Execution Stage comes the Feedback and Update Stage. It is ex-

tremely important to keep track of which tasks were successfully completed because

information updates and future scheduling is based on this information being accu-

rate. This stage accepts new information from the various radar sites and updates

the consolidated tasking list accordingly.

If there is any new feedback from the user or any system-wide events that also must

be incorporated into scheduling, that is also processed during this stage of planning.

Although the scheduler is accepting updates during the entire scheduling horizon, this

stage is when this information is actually processed for future use.

55

Figure 3-1: Stages of DSR Scheduler

3.1.2 Terminology and Assumptions in the United States Space

Force Context

We design the DSRS for use by the DoD laboratories. We present the specific ter-

minology used for this case in this section to ensure clarity in the translation from a

military context to how it fits into the described radar scheduler context.

The DSRS receives the task requests for specific satellites each day from the 18th

Space Command Squadron. 18th Space Command Squadron is the optical portion

of the United States Space Surveillance Network. The command maintains a RSO

catalog with all known satellites in orbit and determines a subset to be viewed by

deep space radars each day – this subset is sent to the scheduler in the form of a

consolidated tasking list. The radar scheduler then takes these requests as input and

creates coordinated observation schedules for each of the DoD radar sites.

Included in the consolidated tasking list are alpha-numeric labels on each task

request. The structure and meaning of these labels is explained in Figure 3-2. We

use this system of labels to assign the task requests to the priority system and revisit

structure we use in the DSRS. In our experiments, we choose to assign task requests

56

to one of the three discrete priorities seen in Figure 3-3.

Figure 3-2: U.S. Military Task Request Labels

Figure 3-3: DSR Scheduler Task Request Labels

In this envisioned scenario for DoD space surveillance, we assume that the DSRS

has the ability to assign all radar observations across all sites. All user adjustments,

such as radar outages or other planned events, must be indicated to the overall

scheduling level rather than just carried out at the specific radar sites themselves.

In other words, the DSRS must have knowledge of any and all pertinent information

during scheduling.

57

3.2 Modeling Assumptions

In this section we lay out the key assumptions that allow us to create a tractable

and yet still realistic model. We describe our assumptions about the unknown, prob-

abilistic nature of the problem, the amount of knowledge we have about the various

radar planning cycles, the astrodynamics of the problem, our model of both time and

space, and the sensor-to-target satellite interactions.

3.2.1 Stochastic Nature of the Problem

The radar scheduling problem is inherently stochastic because the arrival time and

rate of task requests to the system each day is unknown. There is uncertainty sur-

rounding the frequency and requirements of task requests that may not be included

in the initial RSO consolidated tasking list at the beginning of each planning cycle.

While many day-to-day operations would include viewing the targets only contained

in this predetermined list, there is always the probability of additional targets coming

in, of varying priorities, that need to be scheduled during the planning process. As

launches into space become more routine, this is something that is likely to occur at

a much higher frequency in the future.

We model the stochastic nature of the problem by using a program that randomly

draws certain task requests from the U.S. military’s list of relevant RSOs that could

potentially require viewing in the geosynchronous belt. We sample from this list with

a predetermined probability throughout the process of scheduling. Additionally, each

time a task request is sent to a radar as part of an observation schedule there is

the possibility that the observation will be unsuccessful during the execution phase,

although this is very uncommon. There are a number of reasons this could possibly

occur – the search for the target could take longer than is planned and thus limit the

amount of time left in the schedule for the actual observation collection, the radar

could point and dwell on a target from an angle that is not advantageous for the

best measurement quality, or the radar scheduler could even override a previously

scheduled observation in the event of timely, high-priority target observation requests

58

entering the system.

For this thesis, we assume that feedback received from the individual radar sites

is accurate, and we build in additional slew and dwell times to be conservative in case

of longer target search or detection, longer slew time, or other factors that may slow

operations. By building in additional time as a “factor of safety” for the stochastic

nature of the problem, we will not only reduce the amount of time resources spend

on observations that end up being unsuccessful, but we are also able to relax some of

the more complex stochastic features of the problem when it comes to modeling task

completion.

3.2.2 Simulation of Real-World Problem

For each planning horizon of 24 hours, we allow the user to specify the number of

planning iterations that must occur. At each iteration, the DSRS runs through each

individual stage of scheduling – the scheduler will update the schedule based on new

information if necessary, send the newly updated schedules to the various radar sites,

allow for denial of schedules at the radar sites if applicable, and finally begin the next

phase of execution. We assume that each radar site is able to provide observation

information and measurement data to the user during the Execution Stage of the

schedule. The radar scheduler is also continuously receiving feedback from radar sites

and accepting new task requests through all phases of scheduling, so the next iteration

may begin the planning process with the most up-to-date information and be able to

incorporate it appropriately.

3.2.3 Complete Knowledge Operational Cycles and Data

For our radar scheduling problem, we also make the assumption that the DSRS has

full knowledge of the operational cycles and important characteristics at the inde-

pendent radar sites. Radar characteristics such as operational capabilities, slew rate

and slew acceleration, field of view restrictions, and similar data points are all well-

studied and documented by experts in the field. Because the orbital characteristics

59

of satellites are continuously updated, the approximate locations are also assumed

to be correct as listed in the RSO catalog maintained by the U.S. military. We also

assume the data collected on the satellite characteristics such as size, radar cross sec-

tion (RCS), maneuverability, etc. is also accurate. Data sets for “normal” target size

and corresponding RCS values include target RCS values over many aspect angles to

ensure more accurate, robust estimates.

The only time when adjustments may need to be made to the reported slew and

dwell numbers is when there is an UCT spotted in deep space by one of the various

sensor assets. In this case observations need to be taken in an effort to quickly and

accurately characterize the object, but because of the unknown nature of the object

it may take longer to search, detect, and adequately observe than well-known RSOs.

Examples of UCTs that may need more attention and resources include space debris,

daughter objects that broke or separated from another RSO, or objects that were

newly launched into deep space.

Another important consideration is the fact that some of the deep space radars

are tasked with other mission sets or are responsible for space surveillance in different

orbital regimes as well. At all of the radar sites, the DSRS may have difficulty

determining the times reserved for maintenance or slotted for other mission tasks.

For this reason, we make the assumption that the radar scheduler has full knowledge

of the planned execution cycles at the radar sites. In in the actual scheduling process,

we choose to combine all scheduled radar “outages” that may make them unavailable

into one category of “scheduled outage” that may be input by the user prior to the

next scheduling iteration.

3.2.4 Radar Signals Modeling

In this section we describe how we incorporate radar signal processing features into

our model of the problem. Specifically, we discuss how we determine satellite dwell

durations, how we model radar and satellite locations, and how we model radar slew

times. More detailed calculations are included in Chapter 4.

60

3.2.4.1 Satellite Dwell Time Calculations

Various radar and RSO features must all be considered and incorporated in order to

determine how long a radar must dwell on a specific target. The dwell time, or the

length of time a radar spends “servicing” or observing a particular RSO, is entirely

dependent upon the amount of time required for that specific radar to achieve a high

enough signal-to-noise ratio (SNR) at the specific target. Various radar and RSO

features can affect the time for a sufficient SNR and they are discussed below.

RCS and Target Size

The size of a target satellite and its associated RCS value are critical parameters

when determining a radar’s capacity. RCS is the electromagnetic signature of an

object and a measure of how detectable the object is by a radar sensor measured

in decibels (dB). The RCS values determine how long a radar will need to dwell on

a specific target satellite in order for the observations to be “successfully” executed.

There is a very strong correlation between the physical size of a target object and its

RCS value.

Based on the relationship found and verified in previous work [5], we choose to

model the relationship as the following:

𝑅𝐶𝑆50 = (𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑧𝑒)2 * 0.20

Here we define “TargetSize” as the average of the RSO’s height, width, and length in

meters (m).

RCS Fluctuations

Another important consideration when it comes to RCS is the fluctuations in this

value due to the target object’s shape and angle to the sensor. RCS is a key charac-

teristic in driving the radar’s capacity and resource allocation, so it is important to

select the right value while still accounting for these fluctuations. Aside from satel-

lites that are intentionally designed to calibrate sensors by returning a constant RCS

61

value, all objects in space will exhibit some amount of RCS fluctuation.

When it comes to maintaining custody in the SSA mission, it is an important

matter of national security that radars are able to detect a target satellite with an

extremely high probability. This means that radars must be able to detect a target

even when the RCS value has fluctuated very low for the objects size. For this

reason, we choose a more conservative estimate for the RCS value used in the model,

to capture instances where low fluctuations occur. Sometimes low RCS fluctuations

can lead to dwell times that are magnitudes longer than the median RCS value, so

this adjustment ensures that we are allotting enough time in the schedule to truly

dwell on objects for enough time to collect successful and useful observations. On

average, a 95% probability of detection equates to an adjustment of -11.7 dB from

the median RCS value [5], so we choose to make this adjustment when using RCS

values to calculate dwell time.

RSO Maneuverability

Another factor that comes into play when determining the observation number re-

quirements as well as the total dwell time for a sensor-target pair is the maneuver-

ability of the object itself. The maximum acceleration and total delta velocity that a

satellite is able to achieve drive most of the maneuverability of a given object. Some

objects that are smaller in size may be harder to detect due to a smaller RCS, but

they are also limited by their capacity to store fuel to perform maneuvers in orbit.

In contrast, larger objects typically have more room to store fuel and thus typically

have a higher total available change in velocity.

Objects that are able to maneuver may take longer to track and detect than those

that are somewhat restricted to one position in orbit, therefore, keeping custody

of larger, more maneuverable objects may be very resource intensive and costly in

scheduling.

62

Signal-to-Noise Ratio

Because of the importance of deep space custody in maintaining SSA for national

security, an extremely high probability of detection and low probability of false alarm

for target verification is needed. For this thesis, we follow the same numerical values

as was used by Kintz et al. in [5], a probability of detection set at 99.9% and a

probability of false alarm set at 10−5. Using these values we can follow the Neyman-

Pearson threshold to determine the required SNR for a dwell [46].

After the SNR value is determined, we use the following equation to solve for the

radar dwell for a single observation:

𝑆𝑁𝑅𝑗,𝑘 =
𝑃𝑇𝐺𝑇

4𝜋𝑅2
𝑇

𝜎

4𝜋𝑅2
𝑅

𝐺𝑅𝜆
2

4𝜋

𝐵𝜏𝑁𝑝

𝐿

1

𝑘𝑇𝑅𝐵

Where we define:

Variable Definitions
𝑃𝑇 Transmit power of the radar
𝐺𝑇 Transmit gain of the radar
𝑅𝑇 Range from radar transmitter to target
𝑅𝑅 Range from target object to receiver
𝐺𝑇 Receive gain
𝜆 Wavelength
𝐵 Bandwidth
𝜏 Pulse length
𝑁𝑝 Number of pulses
𝐿 Losses
𝑘 Boltzmann Constant, 1.38064852*10−23 m2 kg s−2 K−1

𝑇𝑅 Receiver temperature
𝑁𝑅 Number of receivers
𝑁𝑇 Number of transmitters

Table 3.2: SNR Variable Definitions

The dwell time for a single observation for a sensor-target satellite pair is found by

solving the equation for the integration time required to achieve the specified SNR.

63

Dwell Time

Each satellite has a specified number of required observations determined by its alpha-

numeric label as well as its size and maneuverability. The previously calculated dwell

time is the time for one observation, and we assume there should be a few seconds

between observations taken by the radar so they are not completely identical. The

specifics of these calculations are discussed in Chapter 4.

3.2.4.2 Radar and Satellite Point Locations

In the DSRS we choose to model all locations for satellites and radars as point lo-

cations in the Range-Azimuth-Elevation (RAE) coordinate system. Although the

locations of sensors and space objects are originally defined and input to the program

as Latitude-Longitude-Height (LLH) coordinates, the RAE coordinate system makes

the most sense when doing later calculations for slew time. This is due to the fact that

slew time for a sensor is a function of the angle pointing from the sensor to the target

object in space. For the starting point or “depot” positions of the radars’ antennas,

we assume that it begins the first Execution Stage with the antenna pointing straight

towards the geosynchronous orbit. Because the RAE coordinate system is position

defined by angles from some reference point, the point location of each satellite will

be different for each of the independent radar sites.

Coordinate conversions for both the target RSOs and the radar sensors occur

in a initialization program that prepares all of the data before the mixed integer

optimization program. There are 𝑘 (number of radars) different lists of satellite

locations calculated in this heuristic. Specific explanation of calculations may be

seen in Chapter 4.

3.2.4.3 Radar Slew Times

As was previously mentioned, the time a radar spends slewing across the sky is

dependent upon its location and other system characteristics. The slew distance is

calculated as a function of the azimuth and elevation angles for each of the satellites

64

from the perspective of the radar’s location on Earth and each radar is characterized

by a specific slew rate and acceleration in the azimuth and elevation directions. These

inputs allow for the slew time computation.

Because the slew time is calculated based on the angular location from the per-

spective of one radar site, these calculations must be done 𝑘 (number of radars) times.

The data initialization program that occurs before the optimization portion outputs 𝑘

𝑁x𝑁 matrices of slew times, where 𝑁 is the number of satellites with corresponding

task requests. The slew time is calculated based on the azimuth and elevation angles

for two target satellites from the perspective of one radar location.

3.2.4.4 Modeling Time and Space

When it comes to modeling temporal and spatial features in a problem, there are

generally two approaches – one involves discretizing space and time and the other

involves modeling the two as continuous. Continuous modeling of time and space

tends to be more complex and translating into longer solve times, so we choose to

look at discrete time and space in this thesis. Usually, this is done by transforming the

real-world problem into a graphical structure that is easier to visualize and analyze.

Because this thesis focuses on target objects specifically in the geosynchronous

belt, we are able to make the assumption that the actual location of the nodes in the

graphical structure will not change much from time period to time period. This is

due to the fact that objects in the geosynchronous orbit have an orbital period that

is the same as that of the rotation of the Earth. The synchronization of objects in

this orbit creates ground tracks that appear as points on the Earth’s surface, thus

allowing us to model these objects as point locations.

Given the astrodynamics features still present in the problem, we allow the radar

antenna to slew to any location at any time. That is, we do not discretize three-

dimensional space in regions or sections, but rather allow the target satellite locations

to take on any value from a continuum. We also allow sensor pointing angles to take

on arbitrary values and target locations, time windows, and required durations are

arbitrary in that there is no finite set from which we choose values. We allow a

65

continuum of latitude, longitude, and time values quantized to four decimal places.

3.2.4.5 Quality of Observations

One metric of interest for potential users of the DSRS is the quality of the mea-

surements that it is able to plan for and achieve. The quality of an observation is

dependent on many different controllable and uncontrollable factors, including the

following: target satellite type, sensor type, and length of observation.

Although there are far more factors that may play into the quality of an obser-

vation, we model the quality using these three values. We do this by determining

the threshold for an observation with a quality that is still considered adequate and

deemed “successful” by the user for each target object-sensor pair. We then determine

the minimum dwell time needed for this level. The needed quality of the observation

plays a role in the required SNR and number of observations collected.

3.2.4.6 Real-World Sensors

As has been previously stated, many aspects of this problem rely on the specific

characteristics of the deep space radars included in the model. Characteristics such

as sensor slew rate, slew acceleration rate, system temperature, system loss, etc. may

change from sensor to sensor. There is also a big difference between sensors that

operate at different frequencies when it comes to mission sets and priorities. The

various wave and frequency ranges used by radars can be seen in Figure 3-4.

We address these differences in modeling in the initialization step prior to the

optimization program. We take these characteristics as input and prepare data and

sets appropriately based on these values so the program is flexible and generalizable.

Because this thesis focuses on the scheduling of deep space radars within the DoD,

we choose to model the actual radars used for military deep space custody in this

problem. Although there are three radars that are currently operational, we model

a fourth radar named “Radar 4” in this study as it will enter the space surveillance

system in the near future.

66

• HUSIR-X - This deep space radar is located in Westford, MA. It is an X-band

radar that is used for imaging and tracking.

• Millstone Hill Radar - This deep space radar is located in Westford, MA. It is

an L-band radar that is used exclusively for tracking objects.

• Altair - This deep space radar is located at Reagan Test Site on the Marshall

Islands. It is a VHF-band radar that is used for tracking space objects, specifi-

cally missiles for ballistic missile defense (BMD).

• Radar 4 - We choose to model a radar at White Sands Beach, AZ. This is a

proposed radar not yet under operational but has plans to enter in the future.

It is assumed to be an L-band radar used for tracking space objects.

Figure 3-4: Waves and Frequency Ranges used by Radar [44]

3.2.4.7 Real-World Satellites

Much of the modeling and scheduling in this problem relies on the characteristics

of the space objects that serve as targets for the radars. Characteristics such as

size, RCS, maneuverability, and priority change the requirements and standards for

a successful task completion in the model.

For this reason, it is extremely important that we model the target satellites with

the best actual data and approximations to ensure the problem remains realistic and

useful. In this thesis we use the military’s continuously updated catalog of space

objects in the geosynchronous belt for the satellite location, size, and launch data.

Because the information about specific RCS values, revisit times, and observation

67

collection requirements may be sensitive, we come up with a way to quickly generate

realistic values for these specific characteristics drawn from a set constructed after

consulting with engineers in the field. This step occurs in the data initialization

portion of the program, so it is easily generalized to include a wider range of objects.

68

Chapter 4

Algorithmic Approach

In this chapter we give more details on the mathematical formulation and calculations

used in the DSRS. The first section introduces the overall flow of the model, giving

details on the functions and calculations used in various parts of the initial heuristic

and optimization program. Next, we discuss how we specifically implement the DSRS

in practice.

4.1 Mathematical Formulation

In order to solve the deep space radar scheduling problem, we develop an optimization

problem with an objective function designed to maintain custody of all deep space

objects in the consolidated tasking list by minimizing the overall lateness and jobs

dropped, slew time, and total operating cost. Although the objective function of the

optimization program has default weights on each of the objective function’s terms,

we also allow the coefficients of the function to be adjusted by the user in order to

better capture user objectives with the user weights. The final formulation of the

problem is a modified version of the Vehicle Routing Problem that is able to quickly

and intelligently schedule the deep space radar sensors.

The objective function contains various elements that capture specific satellite

and radar characteristics that may change the value of the penalty or benefit to

the overall system during the optimization. We are also able to alter radar schedules

69

dynamically based on feedback from the user as well as new outside information as it is

introduced into the system. We accomplish this by using a program that incorporates

feedback data into the list of requested tasks and use a rolling horizon-type approach

to accommodate interaction with the various radar sensor sites over time. We also

use the initialization portion of the program to execute feasibility checks in order to

reduce the search space of the optimization program and allow for faster solve time.

In this initial heuristic we also calculate various components of the radar scheduling

objective function that are used later as inputs into the optimization portion of the

scheduler.

To get better insight into the execution of the functions, interactions, and flow of

information in the DSRS, we present a diagram of the program in Figure 4-1.

Figure 4-1: Flow of Scheduling

4.2 Notation and Definitions

We choose to solve the deep space radar scheduling problem by using a modified

version of the Vehicle Routing Problem using a mixed integer program – a program

that utilizes both continuous and binary variables to optimize some objective. We

70

will now define the constructed sets of data, inputs, and decision variables that are

used in the mathematical formulation.

4.2.1 Input Sets

In order to schedule radars for satellite viewing for the entire planning period, the

user must specify or input several sets of information. The following are the sets that

are used in the DSRS.

Set Description
𝐴 Set of planning periods scheduled for the planning hori-

zon, number of iterations of scheduling
𝑇 Set of all task requests and corresponding satellite in-

formation
𝐾 Set of available radars and corresponding radar infor-

mation

Table 4.1: Sets used to define DSRS

Although these are the only sets needed to initially define the model at the begin-

ning of planning, there are various pieces of information included or calculated from

these sets that are used later as input into the optimization portion of the scheduling

program. Users may also indicate additional information about the planning period

such as scheduled outages at one or more of the radar sites or adjustments to the

default user weights for optimization.

Table 4.2 displays the inputs associated with the satellite task request data. Some

of this information is input directly by the user via the previous sets while other values

are calculated in the beginning of the scheduler during the data preparation and initial

heuristic phase. This information is initialized at the beginning of the scheduling

process, but then continuously updated throughout the full planning period. This

information for each task request is stored in a running log so users may access it at

any time during scheduling.

71

Task Request Inputs Descriptions
𝑂𝑏𝑗_𝑁𝑎𝑚𝑒𝑖 A unique numerical identifier corresponding to the in-

dividual RSO 𝑖.
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 The location of the RSO associated with task request

𝑖 as defined by latitude (degrees), longitude (degrees),
and altitude (meters)

𝑆𝑖𝑧𝑒𝑖 the size of the RSO associated with task request 𝑖. This
is later used to calculate the RCS of 𝑖

𝑅𝐶𝑆𝑖 The RCS value associated with task request 𝑖 (dBsm)
𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 The RSO’s priority associated with task request 𝑖. Note

that an increased value corresponds to increased prior-
ity. We allow the priority to take on 4 discrete levels
from 1 to 4.

𝑅𝑒𝑣𝑖𝑠𝑖𝑡_𝑇𝑖𝑚𝑒𝑖 The amount of time in between radar visits to the object
corresponding to task request 𝑖.

𝑅𝑒𝑚_𝑅𝑒𝑣𝑖𝑠𝑖𝑡𝑠𝑖 The number of remaining times a radar must visit the
RSO corresponding to task request 𝑖 before the end of
the planning period.

𝐸𝑎𝑟𝑙𝑦𝑖 The time corresponding to the beginning of the time
window for task request 𝑖 to begin to receive service (in
minutes from the start of the planning period)

𝐷𝑢𝑒_𝑇𝑖𝑚𝑒𝑖 The time corresponding to the end of the time window
for task request 𝑖 to begin to receive service (in minutes
from the start of the planning period).

𝑁𝑢𝑚_𝑂𝑏𝑠𝑖 The number of observations required during for task
request 𝑖.

Table 4.2: Task Request Data Inputs

Table 4.3 includes the inputs associated with the individual radars that are avail-

able for planning. Some of this information is input directly by the user via the

initialization sets, while other values are uploaded directly from lab sites to get the

most up-to-date radar information.

Finally, there are several system-wide characteristics that serve as inputs into the

DSRS, seen in Table 4.4. All of these values have default settings if the schedule is

operating under normal, daily scheduling conditions, but the user is also able to alter

these inputs prior to scheduling.

72

Radar Inputs Descriptions
𝐷𝑒𝑝𝑜𝑡𝑘 The location of the radar 𝑘 as defined by its latitude

(degrees), longitude (degrees), and altitude (meters)
𝑃𝑘 The transmit power of radar 𝑘 (watts)
𝐷𝑢𝑡𝑦_𝐶𝑦𝑐𝑙𝑒𝑘 The duty cycle of radar 𝑘 (ask units)
𝑓𝑟𝑒𝑞𝑘 The center frequency of radar 𝑘 (Hz)
𝐷𝑖𝑎𝑚𝑘 The diameter of radar sensor 𝑘 (meters)
𝐴𝑝𝑝_𝐸𝑓𝑓𝑘 The aperture efficiency of radar 𝑘 (percentage)
𝑇𝑒𝑚𝑝𝑘 The receive temperature of radar 𝑘 (K)
𝐶𝑃𝐼𝑘 The coherent processing interval (CPI) of radar 𝑘 (Hz)
𝑅𝑎𝑡𝑒_𝐴𝑍𝑘 The slew rate in the azimuth angle direction of radar 𝑘

(m/s)
𝑅𝑎𝑡𝑒_𝐸𝐿𝑘 The slew rate in the elevation angle direction of radar

𝑘 (m/s)
𝐴𝑐𝑐_𝐴𝑍𝑘 The acceleration in the azimuth angle direction of radar

𝑘 (m/s2)
𝐴𝑐𝑐_𝐸𝐿𝑘 The acceleration in the elevation angle direction of

radar 𝑘 (m/s2)
𝐿𝑜𝑠𝑠_𝑑𝐵𝑘 The system loss of radar 𝑘 (dB)
𝑂𝑢𝑡𝑎𝑔𝑒_𝑡𝑖𝑚𝑒𝑠,𝑘 Time of scheduled outage 𝑠 for radar 𝑘, if one is sched-

uled (in minutes from the start of the planning period).
𝑂𝑢𝑡𝑎𝑔𝑒_𝑙𝑒𝑛𝑔𝑡ℎ𝑠,𝑘 The length of time for the scheduled outage 𝑠 for radar

𝑘 if one is scheduled (in minutes from the start of the
planning period).

Table 4.3: Radar Data Inputs

System Inputs Descriptions
𝑇𝑖𝑚𝑒_𝐻𝑜𝑟𝑖𝑧𝑜𝑛 The length of the planning horizon (minutes)
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 The number of iterations of updating and rescheduling

for the duration of the planning horizon
𝑆𝑡𝑎𝑟𝑡_𝑇𝑖𝑚𝑒 The start time of the planning horizon (minutes)
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜_𝐶𝑙𝑎𝑠𝑠 This numerical value indicates which of the five pos-

sible scenarios for scheduling ranging from day-to-day
scheduling (1) to one of the four operational scenarios
(2-5).

Table 4.4: System-Level Data Inputs

4.2.2 Initialization Program

After reviewing results from previous works and studying the success in using heuris-

tics in speeding up solve time for scheduling problems, we create a simple heuristic

that is implemented before the optimization program is executed. The sets 𝐴, 𝑇 , 𝐾

73

are run through an initial heuristic to process and prepare data for optimization as

well as perform feasibility checks on satellite-sensor pairs. Specifically, this includes

generating synthetic values for which the actual values may be sensitive or confiden-

tial, calculating more computationally expensive data values prior optimization, and

running FOV and capacity feasibility checks.

4.2.2.1 Generate Synthetic Data

Because of the classified nature of much of the data available from the DoD on satel-

lites in deep space, an important part of the data pre-processing step is the genera-

tion realistic synthetic portions of the data. Namely, the 𝑅𝑒𝑣𝑖𝑠𝑖𝑡_𝑇𝑖𝑚𝑒, 𝑁𝑢𝑚_𝑂𝑏𝑠,

𝐷𝑢𝑒_𝑡𝑖𝑚𝑒, and 𝑅𝐶𝑆 values are calculated using various methods for each of the

satellites in the consolidated tasking list. For the 𝑅𝑒𝑣𝑖𝑠𝑖𝑡_𝑇𝑖𝑚𝑒, 𝑁𝑢𝑚_𝑂𝑏𝑠, and

𝐷𝑢𝑒_𝑇𝑖𝑚𝑒 values, we randomly sample from a predefined uniform distribution of

data values based on the satellite’s assigned priority level. These distributions are

created after consulting with engineers in the field.

In order to calculate the RCS values for a satellite, we first sample random values

from a list of common satellite dimensions to ensure we have a realistic satellite

size. We then use these dimensions to calculate the 𝐿𝑖𝑛𝑒𝑎𝑟_𝑆𝑖𝑧𝑒 of satellite 𝑖 as the

average of the satellite’s height, width, and length. Next, we calculate the median

𝑅𝐶𝑆 value based on the relationship derived in Chapter 3.

𝑅𝐶𝑆𝑖 = (𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑖𝑧𝑒)2 * 0.20

From there, we adjust the 𝑅𝐶𝑆 values to ensure protection against low fluctuations

in RCS by performing the adjustment of -11.7 dB to ensure a 95% probability of

detection.

4.2.2.2 Converting Coordinates

When it comes to optimizing scheduling for deep space radars, an important consid-

eration is how long the radar will spend slewing across the sky to different locations.

74

All slew acceleration and velocity information is reported in the azimuth and eleva-

tion directions. Because these values are based on angular location, it is dependent

upon where the radar is physically located on Earth and where the radar’s antenna

is pointed at the beginning of the planning period. This section describes how to

convert from the input LLH coordinate values to the more useful RAE coordinate

values that will be used in the rest of the problem.

We assume that the antenna for each of the radars begins pointed at 0 degrees in

the azimuth direction and directly towards the geostationary orbit near the equator.

We then calculate the 𝑑𝑒𝑝𝑜𝑡𝑘 value for each radar’s position.

Figure 4-2: Terms for Coordinate Calculation

We define the sensor position as 𝑃𝑠 and use the World Geodetic System (WGS84)

definitions of 𝑎 = 6378137 and 𝑒 = 8.1819190842622𝑒−2 in the following calculations

[35].

• we convert sensor position,
−−−→
𝑃𝐿𝐿𝐻
𝑠 to

−−−→
𝑃𝐸𝐶𝑅
𝑠

𝑁 = 𝑎/
√︀

1− 𝑒2 * sin (𝑙𝑎𝑡)2

𝑥 = (𝑁 + 𝑎𝑙𝑡) * cos (𝑙𝑎𝑡) * cos (𝑙𝑜𝑛)

𝑦 = (𝑁 + 𝑎𝑙𝑡) * cos (𝑙𝑎𝑡) * sin (𝑙𝑜𝑛)

𝑧 = ((1− 𝑒2) *𝑁 + 𝑎𝑙𝑡) * sin (𝑙𝑎𝑡)

𝑃𝐸𝐶𝑅
𝑠 = (𝑥, 𝑦, 𝑧)

75

• define the sensor zenith angle, 𝑧𝑠 =
−−−−→
𝑃𝐸𝐶𝑅
𝑠

||
−−−−→
𝑃𝐸𝐶𝑅
𝑠 ||

• we define earth zenith angle, 𝑧𝑒 = [0, 0, 1] and calculate 𝑣⊥, to get orthogonal

angle to sensor and earth zenith angles with magnitude one.

𝑣⊥ =
𝑧𝑠 * 𝑧𝑒

||𝑧𝑠 * 𝑧𝑒||

• we define �̂�, the vector pointing to the geosynchronous belt from the sensor as

�̂� = 𝑧𝑒 * 𝑣⊥

• Now, having defined 𝑅𝑒 = 6300 km as the Earth’s radius and 𝑅𝑔 = 37000 km as

the range to the geosynchronous belt from Earth, we calculate the sensor depot

position vector with correct magnitude as
−−→
𝑃𝐺𝑒𝑜 = (𝑅𝑒 +𝑅𝑔)�̂�

• This is the sensor depot position vector in earth-centered, earth-fixed coordinate

system so we now convert
−−−→
𝑃𝐸𝐶𝑅
𝐺𝑒𝑜 to

−−−→
𝑃𝑅𝐴𝐸
𝐺𝑒𝑜 . We use several new terms seen in

Figure 4-3 defined in the sensor frame in this calculation, where 𝜑 is elevation

angle and 𝜃 is azimuth angle.

Figure 4-3: Terms for Azimuth Angle Calculation

76

We begin by calculating range:

𝜌 = ||
−−−→
𝑃𝐸𝐶𝑅
𝑠 −

−−−−−−→
𝑃𝐺𝑒𝑜

𝐸𝐶𝑅||2

𝑟𝑎𝑛𝑔𝑒 =
√︀

(𝑥𝑠 − 𝑥𝐺𝑒𝑜)2 + (𝑦𝑠 − 𝑦𝐺𝑒𝑜)2 + (𝑧𝑠 − 𝑧𝐺𝑒𝑜)2

Next, we calculate the elevation angle:

sin𝜑 = 𝑧𝑠 *
−−−→
𝑃𝐸𝐶𝑅
𝑠 −

−−−→
𝑃𝐸𝐶𝑅
𝑠

||
−−−→
𝑃𝐸𝐶𝑅
𝑠 −

−−−→
𝑃𝐸𝐶𝑅
𝑠 ||

𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 = sin−1 (𝑧𝑠 *
−−−→
𝑃𝐸𝐶𝑅
𝑠 −

−−−→
𝑃𝐸𝐶𝑅
𝑠

||
−−−→
𝑃𝐸𝐶𝑅
𝑠 −

−−−→
𝑃𝐸𝐶𝑅
𝑠 ||

)

Finally, we calculate the azimuth angle:

We define −−→𝜌𝑆𝐹 ′ as 𝜌 in the sensor’s coordinate frame (SF):

−−→𝜌𝑆𝐹 ′ =

⎡⎢⎢⎢⎣
−→𝜌 * �̂�
−→𝜌 * 𝑣⊥

0

⎤⎥⎥⎥⎦
Next, we convert to the ECR frame:

−−−→
𝜌𝐸𝐶𝑅′ =

[︁
�̂� 𝑣⊥ 𝑧𝑠

]︁⎡⎢⎢⎢⎣
−→𝜌 * �̂�
−→𝜌 * 𝑣⊥

0

⎤⎥⎥⎥⎦−−−→
𝜌𝐸𝐶𝑅

We are able to perform this operation because we are projecting
−−−→
𝜌𝐸𝐶𝑅 onto the

ground plane
[︁
�̂� 𝑣⊥ 0

]︁
.

𝐴𝑧𝑖𝑚𝑢𝑡ℎ = cos−1 �̂� * ˆ𝜌𝐸𝐶𝑅
′

where 𝜌′ =

−−−→
𝜌𝐸𝐶𝑅′

||
−−−→
𝜌𝐸𝐶𝑅′||

77

Similarly, we calculate the locations of all satellites from the perspective of each of

the 𝑘 radars present in the problem. The last step is the only one that changes in

the calculations, with the satellites position 𝑆𝐿𝐿𝐻 replacing the term 𝑃𝐿𝐿𝐻
𝐺𝑒𝑜 . The

RAE coordinate system defines locations based on the angles from a specific point

on Earth, so we must calculate the satellite’s point locations 𝑘 times, once for each

of the radar locations as the reference point.

4.2.2.3 Feasibility Check

This section describes how we incorporate physical constraints in the problem into

the optimization problem. Because we are viewing satellites from locations on Earth,

we must account for the fact that not every satellite in orbit is visible from a given

location on Earth at all times. We make the assumption that radar sensors are able

to slew anywhere above 10 degrees above the level of the ground. Therefore, after

converting the radar depot locations and satellite locations to the RAE coordinate

system, we check the polar angle. The polar angle is simply 90 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 angle,

measured in degrees. As long as the polar angle from the radar location to the satellite

location in space is above 10 degrees, it is feasible that the radar can view the satellite.

Another consideration is the best sensor-task request pairings based on the radar’s

defining characteristics such as frequency. The choice of frequency for a radar depends

on the radar’s application and usually involves trade-offs among several factors [12].

Because the deep space radars in the space surveillance system are involved in dif-

ferent missions and consequently have different frequencies, some may be capable of

executing certain types of task requests while others may not be. We perform checks

to determine which radars are capable of performing which task requests in the given

consolidated tasking list beforehand.

For each of the 𝑘 radars we create a set of feasible satellites and satellite paths

in the sky and store them to be used as input in the optimization portion of the

program. We choose to check feasible satellite and path requirements prior to the

mixed integer program to reduce the search space in the optimization, speeding up

solve time.

78

4.2.3 Mixed Integer Optimization Problem

After the initial heuristic is executed, scheduling begins during the optimization por-

tion of the program. The next section describes the various features and calculations

that occur in this step.

4.2.3.1 MIP Objective Function

This section describes how the objective function in the mixed integer program is

defined, calculated, and constructed to address the problem of radar scheduling. We

discuss the various elements in the objective function, giving details as to why they

were selected and how they are appropriately scaled and computed. Because we use a

convex combination of elements as the objective function in the optimization problem,

it is important to scale the data so it becomes more generalized and the program will

not be biased towards some feature that is simply higher in magnitude.

As was previously mentioned, the objective function of the DSRS is a linear,

convex combination of several components. A subset 𝐴 of a vector space is said to be

convex if any point 𝑥 ∈ 𝐴 and all scalers 𝜃 are of the form 𝑥 = 𝜃1𝑥1+ 𝜃2𝑥2+ ...+ 𝜃𝑘𝑥𝑘

with 𝜃1 + ... + 𝜃𝑘 = 1, 𝜃𝑖 ≥ 0. This is said to be a convex combination of the vectors

𝑋, and all convex combinations of vectors in 𝐴 constitute the convex hull of 𝐴. In

a linear integer program, the optimal solution is also optimal over the convex hull of

all feasible solutions [9].

In our case, we introduce user weights, 𝑢, in place of the 𝜃 and vectors specific

to the radar scheduling problem take the place of the 𝑥 values in the example. The

objective function is then constructed as follows: for any task request 𝑖 and 𝑗 and

radar 𝑘, the scaled value of the objective function is a convex combination of the

vectors and the user weights, where
∑︀

𝑢 = 1. Therefore, each value in the objective

function lies in the range [0,1]. Algebraically, we calculate the value for any request

𝑖, 𝑗, served by radar 𝑘, as follows:

Cost𝑡𝑖,𝑗,𝑘 = 𝑓(late𝑗, price𝑘, dwell𝑗,𝑘, slew𝑖,𝑗,𝑘)

79

Cost𝑡𝑖,𝑗,𝑘 = 𝑢𝑙𝑎𝑡𝑒late𝑗 + 𝑢𝑝𝑟𝑖𝑐𝑒price𝑖,𝑗,𝑘 + 𝑢𝑠𝑙𝑒𝑤slew𝑖,𝑗,𝑘

where 𝑢𝑙𝑎𝑡𝑒 + 𝑢𝑝𝑟𝑖𝑐𝑒 + 𝑢𝑠𝑙𝑒𝑤 = 1

We include the superscript 𝑡 that corresponds to a given planning iteration number

to allow the value of the objective function to change throughout the planning period

based on the feedback received from the various radar sites, planned or unplanned

events such as outages, and the user’s input. This objective function provides a con-

struct to compute a relative cost to the system of a certain radar and sensor-to-sensor

pair based on some parameters. The subsequent sections will go into more detail de-

scribing the notation used in the function and how each component is calculated.

4.2.3.2 Objective Function Components

In this section we describe each component of the objective function that we use

for the DSRS. It is important to note that each of these values are specific to the

scheduler on a specific planning cycle - they are dependent on the sensors available as

well as the requested tasks for the planning period. These values are also not seen by

the user or reported in the final schedules at the various radar sites; they simply serve

as a metric for controlling what is being optimized in the MIP. At each iteration, the

scheduler chooses the best task distribution and slew path plans for each of the radars

based on the decided upon Measures of Performance. Thus, the values inherent to

each request and those values inherent to the sensors are not the scheduler’s only

concern in the planning process. Each value computed by the objective function is

for a radar and satellite-satellite pair based on user weights and other problem specific

features. The objective function components themselves are selected because they are

directly tied to one or more of the Measures of Performance in the problem, making

them important features for the user to be able to modify if needed.

Lateness

This component of the objective function is a measurement of the lateness of the time

of the start of service, 𝑡𝑖, to task request 𝑖. The lateness portion is included to enforce

80

the time constraints in the problem. While there is the option to strictly enforce

the time constraints of the tasks by making them tight constraints in the problem,

this version allows the optimization to program to drop task requests in lieu of some

other objective if it decreases overall cost to the system. The user is able to adjust

the weights and tightness of the time window constraints before planning begins.

Because the problem is a minimization problem and 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑖 is a variable calcu-

lated and input directly to the objective function, our goal is to minimize the 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠,

with the ideal value equal to 0. The 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑖 is computed for each task request 𝑖

based on the 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 that is associated with that task request. Note that the higher

the assigned priority, the more important or urgent that task request. We use the

input task request 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 to calculate the penalty incurred for being late or not

executing task request 𝑖. The penalty value is one of five discrete values from 0 to

100. To scale the penalty value in this portion of the objective function, we divide

each penalty value by the maximum penalty of 100.

𝑝𝑖 =
𝑝𝑒𝑛𝑎𝑙𝑡𝑦𝑖

100

In order to model and enforce the time constraints as soft constraints, we model

them using variables 𝐸𝑎𝑟𝑙𝑦𝑖 and 𝐷𝑢𝑒_𝑇𝑖𝑚𝑒𝑖 as well as 𝑎𝑖 and 𝑏𝑖. As was previously

stated, 𝐸𝑎𝑟𝑙𝑦𝑖 and 𝐷𝑢𝑒_𝑇𝑖𝑚𝑒𝑖 specify the earliest and latest time for start of service

of 𝑖, respectively. The variables 𝑎𝑖 and 𝑏𝑖 are positive, nonzero numbers only when

the task is serviced outside of a specified time window.

We model this feature of the problem with the following constraints:

𝑡𝑖 + 𝑎𝑖 ≥ 𝐸𝑎𝑟𝑙𝑦𝑖 ∀𝑖 ∈ 𝑇

𝑡𝑖 − 𝑏𝑖 ≤ 𝐷𝑢𝑒_𝑇𝑖𝑚𝑒𝑖 ∀𝑖 ∈ 𝑇

If the user wishes to enforce tight time window constraints, there is an option to set

constraints specifying that all 𝑎𝑖 and 𝑏𝑖 variables should be strictly equal to zero.

81

Additionally, we keep track of any unexecuted task request 𝑖 with constraints

containing variables 𝑥𝑖,𝑘 and 𝑔𝑖. The variable 𝑥𝑖,𝑘 is a binary variable equal to one

when radar 𝑘 executes task request 𝑖. However, 𝑔𝑖 is a binary variable equal to one

when the task request 𝑖 is not completed successfully. In this way, the 𝑔 variables

keep track of the “gaps” in the system as it schedules for the day.

We model this feature of the problem with the following constraint:

∑︁
𝑘

𝑥𝑖𝑘 + 𝑔𝑖 = 1 ∀𝑖 ∈ 𝑇

This finally leads to our calculation of the 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 variable that is input directly into

the objective function of the DSRS.

𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠𝑖 =
∑︁
𝑖∈𝑇

0.1(𝑝𝑖)(𝑎𝑖 + 𝑏𝑖) +
∑︁
𝑖∈𝑇

(𝑝𝑖)𝑔𝑖

We weight the portion of the 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 that penalizes being outside of the time window

for a certain task request by 0.1 times the penalty of the task request, versus weighting

the portion of 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 that penalizes dropping a task request by the full value of the

penalty of the task request. This is to reflect the idea that making some observation

of a given satellite, even if it is earlier or later than is ideal, is still much better for

maintaining custody than never observing the satellite at all.

Slew Time

As was previously mentioned, each radar in the system has specific characteristics

that differ from site to site. The slew rate and slew acceleration rate, in both the

azimuth and elevation directions, are important radar characteristics affecting the

slew time from location to location in space.

We use the angular locations in RAE as input in this step of the program. The

starting location in azimuth and elevation angles and the new location in azimuth

and elevation are used as input in the slew time calculation.

We begin by calculating the distance and time it takes a radar to get up to its

82

max velocity in the following calculations:

𝑎𝑐𝑐_𝑡𝑖𝑚𝑒𝑎𝑧 =
𝑟𝑎𝑡𝑒𝑎𝑧
𝑎𝑐𝑐𝑎𝑧

𝑎𝑐𝑐_𝑡𝑖𝑚𝑒𝑒𝑙 =
𝑟𝑎𝑡𝑒𝑒𝑙
𝑎𝑐𝑐𝑒𝑙

𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑎𝑧 = 2 * (1/2 * (𝑎𝑐𝑐𝑎𝑧) * 𝑎𝑐𝑐_𝑡𝑖𝑚𝑒2𝑎𝑧)

𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑒𝑙 = 2 * (1/2 * (𝑎𝑐𝑐𝑒𝑙) * 𝑎𝑐𝑐_𝑡𝑖𝑚𝑒2𝑒𝑙)

Next we check to see if the distance from one location to another is less than 𝑎𝑐𝑐𝑑𝑖𝑠𝑡

in the azimuth and elevation directions. If the distance is less, we assume the radar

antenna accelerates for half of the distance and then decelerates the other half of the

distance to stop on the target.

if |𝑎𝑧𝑖 − 𝑎𝑧𝑗| < 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑎𝑧 then:

𝑑𝑖𝑠𝑡 = |𝑎𝑧𝑖 − 𝑎𝑧𝑗|/2

𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑎𝑧 = 2(2 * 𝑑𝑖𝑠𝑡

𝑎𝑐𝑐𝑎𝑧
)2

if |𝑎𝑧𝑖 − 𝑎𝑧𝑗| ≥ 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑎𝑧 then:

𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑎𝑧 = 2 * 𝑎𝑐𝑐_𝑡𝑖𝑚𝑒𝑎𝑧 +
|𝑎𝑧𝑖 − 𝑎𝑧𝑗| − 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑎𝑧

𝑟𝑎𝑡𝑒𝑎𝑧

Next, we calculate the elevation direction with the same steps:

if |𝑒𝑙𝑖 − 𝑒𝑙𝑗| < 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑒𝑙 then:

𝑑𝑖𝑠𝑡 = |𝑒𝑙𝑖 − 𝑒𝑙𝑗|/2

𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑒𝑙 = 2(2 * 𝑑𝑖𝑠𝑡

𝑎𝑐𝑐𝑒𝑙
)2

if |𝑒𝑙𝑖 − 𝑒𝑙𝑗| ≥ 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑒𝑙 then:

𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑒𝑙 = 2 * 𝑎𝑐𝑐_𝑡𝑖𝑚𝑒𝑒𝑙 +
|𝑒𝑙𝑖 − 𝑒𝑙𝑗| − 𝑎𝑐𝑐_𝑑𝑖𝑠𝑡𝑒𝑙

𝑟𝑎𝑡𝑒𝑒𝑙

𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤 = max(𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑎𝑧, 𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒𝑒𝑙)

Because slew time is calculated based on the angular location of the satellite from

the radar’s location on Earth, all of the possible slew times for one radar 𝑘 from

83

any location 𝑖 to any location 𝑗 must be considered. This means that the slew time

calculations must be done 𝑘 (number of radars) times for each of the 𝑇x𝑇 matrices.

These slew times are all compared in the optimization problem in order to minimize

the slew time in the generated schedules. We scale the slew times before they are

input into the optimization problem by dividing by the maximum distance a radar in

the system may slew to reach a task request.

Operational Price

Another important factor that comes into play when scheduling is the individual price

associated with operating each of the radars, 𝑝𝑟𝑖𝑐𝑒𝑘. If the goal is to minimize overall

total cost to the system, it may be cheaper to schedule more task requests to certain

sensors than others. Operational price differences may result from a variety of factors

including age of the sensor, location of the sensor, limited operational capacity due

to maintenance, and mission set differences. For example, the radar Altair has a

primary mission of missile defense, so the price of devoting radar time and resources

to the deep space custody mission may be higher than other radar sites where this

may not be the case. We consult experts in the field to come up with rough price

estimates for each radar in the model. We scale these numbers to be in the range

(0,1] by dividing each price by the maximum operational price in the system.

We define “price” to be the price of operating one specific radar 𝑘 for 1 min, and we

use the radar’s total slew time plus its total dwell time on all targets in the schedule

as “operational time.” So, in addition to calculating the slew time for each radar as

was detailed in the previous section, we also need to calculate the dwell time for each

radar.

Dwell Time The total dwell time is the amount of time a radar must stay at a

given RSO’s location in order for the task request to be considered successful. As was

previously explained in Chapter 3, we use the SNR with a built in factor of safety for

added robustness to determine this time.

Using given radar and task request parameters, we use the Radar Equation solved

84

for SNR to calculate the SNR for one second as was described in Chapter 3. This

value, 𝑆𝑁𝑅_1𝑠𝑒𝑐𝑖,𝑘, is specific to the radar-task pair (𝑖, 𝑘) and is reported in dB.

𝑆𝑁𝑅_1𝑠𝑒𝑐𝑖,𝑘 =
𝑃𝑇𝐺𝑇

4𝜋𝑅2
𝑇

𝜎

4𝜋𝑅2
𝑅

𝐺𝑅𝜆
2

4𝜋

𝐵𝜏𝑁𝑝

𝐿

1

𝑘𝑇𝑅𝐵

We then use this value to calculate the dwell time for a single observation based on

the calculated RCS of the space object and the task request requirements.

𝑜𝑏𝑠𝑑𝑖,𝑘 =
10𝑆𝑁𝑅_𝑟𝑒𝑞𝑘/10

𝑆𝑁𝑅_1𝑠𝑒𝑐𝑖,𝑘

If all observations in a task request have the same requirements, then all 𝑜𝑏𝑠𝑑 variables

for a specific radar-task request pair will have the same values. However, depending

on the location of the satellite and the specifics of the task request, this may not

always be the case.

It is also important for observations to not be taken immediately after one another

during a task request. Because one of the main goals of satellite surveillance is

gathering and updating orbital and satellite features continuously, observations must

be executed in a way that allows for the best possible data points. By allowing

even a few seconds to pass in between observations, characteristics such as current

positional information, satellite movements, and maneuverability become available.

Therefore, we add the requirement that 10 seconds must pass before the start of the

next observation on one satellite. Then we use the input number of observations for

each task request to calculate the total dwell time. For example, if task request 𝑖 has

3 required observations, the total dwell time in seconds would be

𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑖,𝑘 = 𝑜𝑏𝑠1𝑖,𝑘 + 10 + 𝑜𝑏𝑠2𝑖,𝑘 + 10 + 𝑜𝑏𝑠3𝑖,𝑘 + ...

We scale the 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤𝑖,𝑗,𝑘 components before they are input into the objective

function by dividing by the maximum slew time from one node in the system to

another node in the system. Likewise, we scale the and 𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑖,𝑘 components

by dividing by the maximum dwell time of all of the radar-satellite pairs in the system.

85

We then use the 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤𝑖,𝑗,𝑘, 𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑖,𝑘, and the 𝑝𝑟𝑖𝑐𝑒𝑘 to come up with the

total operational price for executing a schedule with the following variable:

𝑜𝑝_𝑝𝑟𝑖𝑐𝑒 =
∑︁
𝑖,𝑗,𝑘

𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤𝑖,𝑗,𝑘𝑝𝑟𝑖𝑐𝑒𝑘 +
∑︁
𝑗,𝑘

𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑗,𝑘𝑝𝑟𝑖𝑐𝑒𝑘

Number of Active Radars

Another component we include is the objective function is the number of radars that

are actively being used in each iteration. It could be beneficial for the user to try to

find a feasible schedule where the minimum number of radars are operating at one

time, perhaps to set aside the unused radars to work on some other mission set or

task.

We use the binary variable 𝑟𝑘 to keep track of whether or not radar 𝑘 is used in a

given planning iteration. Therefore, we model the number of active radars component

as:

𝑎𝑐𝑡𝑖𝑣𝑒_𝑟𝑎𝑑𝑎𝑟 =
∑︁
𝑘

𝑟𝑘

Total Operational Time

An additional factor that may be important for scheduling purposes is the amount

of time the radar spends slewing to and then dwelling on a particular satellite. This

component is very similar to the Operational Price component, but this time we do

not factor in radar price in the parameters; the goal is to simply reduce the amount of

time the radar is operating rather than the overall price associated with the operation.

We once use 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤 and 𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙 parameters that have been scaled in the

same way described as in the Operational Price Subsection. Therefore, the component

is modeled as:

𝑡𝑜𝑡_𝑡𝑖𝑚𝑒 =
∑︁
𝑖,𝑗,𝑘

𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤𝑖,𝑗,𝑘 +
∑︁
𝑗,𝑘

𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑗,𝑘

86

4.3 Vehicle Routing Problem Construction

In this section we present the actual mixed integer programming formulation used to

schedule various radars within the DoD system. The formulation closely resembles a

Vehicle Routing Problem variant, with the “vehicles” being represented by the radars

and the “customer locations” being the satellites in deep space. We use the objective

function established and defined in the previous section to solve the routing problem

in a way that meets hard feasibility constraints, while also minimizing the lateness,

slew time, and overall operational cost.

4.3.1 Deep Space Radar Scheduling Static Formulation

Although a static formulation for the classic Vehicle Routing Problem was given in the

Literature Review in Chapter 2, in this section we present the modified formulation

of a Vehicle Routing Problem that is used in the DSRS. This is the model that is

solved at the beginning of each iteration during the Planning Stage.

The objective function is constructed as previously defined, with the final objec-

tive value being entirely dependent on the radar-satellite-satellite pairings chosen.

Although we do have a recommended default vector of user weights 𝑢, we also allow

the user to input these weights directly, which impacts the schedule and final objective

value achieved during scheduling.

Some of the constraints are similar to those found in the classic Vehicle Routing

Problem model, with slight modifications to account for the additional feasibility and

details of this specific problem.

min
∑︁
𝑖∈𝑇

∑︁
𝑗∈𝑇

∑︁
𝑘∈𝐾

𝑢𝑙(𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠) + 𝑢𝑠(𝑠𝑙𝑒𝑤_𝑡𝑖𝑚𝑒) + 𝑢𝑝(𝑜𝑝_𝑝𝑟𝑖𝑐𝑒) + 𝑢𝑟(𝑎𝑐𝑡𝑖𝑣𝑒_𝑟𝑎𝑑𝑎𝑟) + 𝑢𝑡(𝑡𝑜𝑡_𝑡𝑖𝑚𝑒)

(4.1)∑︁
𝑘∈𝐾

𝑥𝑖,𝑘 + 𝑔𝑖 = 1 ∀𝑖 ∈ 𝐹𝑘 (4.2)

∑︁
𝑘∈𝐾

𝑥𝑖,𝑘 ≤ 1 ∀𝑖 ∈ 𝑇 (4.3)

87

∑︁
𝑗∈𝑇

𝑦𝑖,𝑗,𝑘 = 𝑥𝑖,𝑘 ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑇 (4.4)

∑︁
𝑖∈𝑇

𝑦𝑖,𝑗,𝑘 = 𝑥𝑗,𝑘 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝑇 (4.5)

𝑡𝑗 ≥ 𝑡𝑖 + 𝑓𝑖𝑛𝑎𝑙_𝑑𝑤𝑒𝑙𝑙𝑖,𝑘 + 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤𝑖,𝑗,𝑘 −𝑀(1−
∑︁
𝑘∈𝐾

𝑦𝑖,𝑗,𝑘) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑇 (4.6)

𝑡𝑖 ≥ 𝐸𝑎𝑟𝑙𝑦𝑖 − 𝑎𝑖 ∀𝑖 ∈ 𝑇 (4.7)

𝑡𝑖 ≤ 𝐷𝑢𝑒_𝑇𝑖𝑚𝑒𝑖 + 𝑏𝑖 ∀𝑖 ∈ 𝑇 (4.8)∑︁
𝑖∈𝑆𝑘

∑︁
𝑗∈𝑆𝑘

𝑦𝑖,𝑗,𝑘 ≤ |𝑆𝑘| − 1 𝑆𝑘 ⊆ 𝑇 (4.9)

𝑥𝑖,𝑘, 𝑦𝑖,𝑗,𝑘, 𝑔𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑇 (4.10)

𝑡𝑖, 𝑎𝑖, 𝑏𝑖 ≥ 0 ∀𝑖 ∈ 𝑇 (4.11)

In the final static formulation, 𝑥, 𝑦, and 𝑡 are the decision variables. 𝑥𝑖,𝑘 is a binary

variable that is equal to 1 when radar 𝑘 is assigned to task request 𝑖 sometime in the

planning iteration. The 𝑦𝑖,𝑗,𝑘 variable is a binary variable that is equal to one when

radar 𝑘 takes a path from task request 𝑖 directly to task request 𝑗. Finally, 𝑡𝑖 is a

continuous variable that chooses what the start time of service is for task request 𝑖.

Constraint (4.1) is the objective function that minimizes some or all of the com-

ponents depending upon the user weights, 𝑢. (4.2) is the constraint that enforces that

each satellite must be visited one time or a “gap” is declared. Because the feasibility

check determines which radars are able to view and successfully observe which satel-

lites in the initialization program, the MIP only considers the radar-satellite pairs

that are feasible. This information is included and stored in the feasible set of satel-

lites for each radar 𝐹𝑘. (4.3) ensures that at most one radar is assigned to a specific

task request. (4.4) and (4.5) are both constraints that ensure the radars form a tour;

in other words, if the variable 𝑦𝑖,𝑗,𝑘 equals 1, then both the corresponding 𝑥𝑖,𝑘 and

𝑥𝑗,𝑘 variables must also be 1. (4.6) is a constraint that ensures the start of service at

a new location does not begin before the start of service at the previous location plus

the dwell time at the previous location plus the slew time from the previous location

to the new location. (4.7) and (4.8) are both time window constraints. (4.9) is a

88

constraint that eliminates all sub-tours within the various vehicle routes to ensure

that all are connected and there are no infinite or closed loops. Finally, (4.10) and

(4.11) constrain the various problem variables to being binary and positive numbers,

respectively.

After each Execution Stage of the scheduler, we receive feedback and any updated

user inputs that are then incorporated back into the objective function and relevant

constraints before resolving the optimization problem.

4.3.2 Dynamically Updating and Scheduling

In order to make the DSRS useful for realistic space surveillance it must be able

to adapt to changes in the environment that may affect future or currently planned

scheduling. It is important for the scheduling program to keep track of which task

requests were completed successfully and which requests went uncompleted. The

radar scheduler is also constantly receiving new information about the system, user

objectives, and the arrival of new task requests throughout the planning horizon.

This information must be incorporated into future scheduling, and in this section we

describe how we update the information that serves as input in the MIP after each

iteration to include past feedback and requests as well as new information.

4.3.2.1 Types of Feedback

Updating with new information and potentially altering the current schedule happens

regularly at the beginning of each new iteration of scheduling following the Execution

Stage or if the execution of the current schedule is stopped directly by the user. After

either of these events occur, the DSRS will receive feedback about which tasks were

completed and which were not. The scheduler will also keep track of radars that may

still be in the process of executing a task request at the time of the feedback process

and may not be immediately available to accept new tasks.

Feedback may come in a few different forms. One form of feedback is direct

feedback from the user - this could be in the form of updated user weights that are

89

used to emphasize certain values in the objective function of the MIP, it could be an

update as to which radars are unavailable for scheduling for a certain amount of time,

or it could be more specific requirements about which radars must fulfill certain task

requests.

Additionally, feedback information is regularly received automatically from the

individual radar sites about the state of task requests in the system. Tasks may be

accepted but not completed, rejected, or successfully completed. If a task is rejected

by the system we assume that it will not be accepted in the future and it is removed

from the list of task requests. This is, unless this decision is overridden by the

user. Most often, this occurs when all available radars in the system have no way to

feasibly execute the task request. If a task is accepted but not yet completed, the

task request stays in the current consolidated tasking list for the system and may or

may not be scheduled in the future. This depends largely on whether or not a newly

updated schedule that incorporates the request is seen as an “improvement” by the

system. If a task request is successfully completed in a previous execution phase, the

request is either updated to reflect its next due time, or if the request requires no

further observations for the day, it is documented as completed and removed from

the consolidated tasking list altogether.

4.3.2.2 Choosing a Schedule

As was discussed above, feedback from previous planning iterations can affect the

system-wide schedules and allocations of task requests. In some cases, a specific radar

may accept a task request that makes it impossible to execute a previously accepted

task request - the new task request essentially forces out a previously accepted one.

In order to deal with the fact that rescheduling could possibly result in some requests

being forced from the system if they are replaced by new ones, the scheduler must

check for conflicts of current plans with existing plans. At each planning iteration 𝑡,

we compute the objective value of the schedule based on the specified user weights.

The incorporation of new information gained during the feedback phase could change

the value of the objective function and have significant impact on the schedule, so it

90

is important to compare both the previous value with the value of a new schedule,

taking into account any penalties associated with missing new tasks. It is important

to note that we choose to evaluate the system cost when comparing different schedules

on a global level rather than at a local level at each individual radar site. The only

time the new, updated schedule is immediately chosen to replace the previous without

any such comparison is if it is specified by the user. This capability comes into place

most of the time in more operationally tactical or urgent scenarios where a RSO may

need to be tracked and characterized immediately, regardless of the overall impact on

the objective function value.

In the case of no user override, the DSRS will automatically compare the schedule

based on the objective value of a previous schedule with adjustments for missing

new tasks against the objective value in the newly created schedule. If 𝑂𝑏𝑗_𝑉 𝑎𝑙𝑡 ≤

𝑂𝑏𝑗_𝑉 𝑎𝑙𝑡−1 then we forgo the previous schedule in favor of the new one and update

problem parameters and radar path plans to reflect the decision.

4.4 Alternative Version of the DSRS

The DSRS is meant to employ optimization at every step of the planning process - in

both the task distribution steps, where task requests are assigned to specific radars,

but also the individual slew path plans of the radars. While this type of scheduling

may be more ideal because of the ability to take a more global approach by optimizing

for the entire surveillance system at once, it does come with computational expense.

The DSRS is formulated in a graphical structure that includes nodes for every radar

and satellite in the system and arcs for every possible combination of radar and

satellite-to-satellite pairings. For a problem size that is typical of current scheduling,

the scheduler is able to quickly solve to optimality and create schedules in a matter

of seconds. With that being said, solve time could become impractical if problem

sizes increase to much larger levels in the future - a possibility if space activities and

services continue to rapidly expand in the coming years.

For this reason, it may be important to introduce various heuristics prior to opti-

91

mization that could help speed up the run time of the scheduling program. Although

heuristics are not able to ensure global optimality, they are often able to significantly

decrease solve time and still produce very useful and effective results. For this reason,

we create an alternative version of the DSRS which we refer to as Alt-Scheduler.

In this scheduling approach, we use a heuristic to distribute the tasks to the

radars before any optimization occurs in the problem. This heuristic is implemented

immediately following the initialization step because it uses the resulting feasible sets

of satellites for each radar. Satellites that are only feasibly observed by one radar are

automatically assigned to those radars. After that, the radars alternate in accepting

feasible task requests so that the number of task requests assigned to each radar

is relatively even. This process continues until all of the task requests have been

assigned from the planning period.

After this heuristic, the optimization program is equivalent to that of the DSRS

for each individual radar. The problem set up and formulation is the same except

that there is one radar and its predetermined list of task requests being optimized at

a given time. This decreases the number of variables, constraints, and potential path

plans, allowing for a faster solve time and output solution.

The goal of this thesis is to develop a completely centralized, coordinated sched-

uler. The DSRS has been developed to do this with optimization at every step, but

it is not the only option. With the Alt-Scheduler we explore another scheduling

approach and compare the results with that of the DSRS in Chapter 5.

4.5 Implementation of DSRS

This section describes our implementation of the above algorithms in software. We

begin by describing the software architecture and detail the algorithmic flow of the

DSRS. Then we discuss the format of the input and output data with examples, and

finally we discuss the development of the experimental tests.

92

4.5.1 Software Architecture

To test our algorithm’s ability to generate efficient schedules, we implement the al-

gorithm in software that is available and widely used by one of the radar operators,

Lincoln Laboratory. The radar characteristics for all radar sites are reviewed and

maintained by Lincoln Laboratory in a macro-enabled excel file that we upload into a

Python Jupyter notebook. The satellite data may be accessed by a csv file containing

all satellite input characteristics or this information may be uploaded directly in the

form of a TLE from space-track.org. We upload, generate, and clean the data for the

problem and control the software using Python. To solve the scheduling optimization

problems, we call Gurobi Optimizer, an optimization modeling system that utilizes a

branch-and-cut algorithm.

4.5.2 Input Data

The data for requests being considered by the radar scheduler are input in one of the

two ways previously mentioned - information may be read in from a csv file as seen in

Figure 4-4 or this information may be uploading directly into Python from www.space-

track.org. Both methods require data cleaning and formatting accomplished with the

initialization program.

The radar data is all contained in one macro-enabled excel file that is maintained

and updated routinely by the DoD laboratories. This file is also read into python for

data cleaning and initialization.

The last pieces of information for solving the DSRS are the user inputs. The

vector of user weights, the number of planning iterations and planning horizon, and

the time of day are the required parameters. These values have default settings but

may be changed at any time in the scheduling process.

4.5.3 Test Set Development - Operational Scenarios

Each run of the DSRS requires a significant amount of data input, so we automate

the process of pulling satellites to be included in the consolidated tasking list and

93

Figure 4-4: Example Input Data

generating task request requirements with a program in Python to randomly and

quickly generate realistic request data.

Although this program is used for all testing of the scheduler, we control the

volume and rate of requests received and the specific task request characteristics

to give rise to more operationally tactical scenarios for testing. Some data were

chosen manually based on realistic operational values after consulting with engineers

in the advanced sensors field. Other values such as satellite RCS, revisit times, and

observation request arrival rates were chosen from a set of realistic values that was

constructed after consulting engineers in the advanced sensors field. Satellite positions

for these scenarios were also extracted from www.space-track.org and [26] and thus

also represent real satellite locations and information.

Random number generators and the constructed sets are used to create the request

data. The request priorities and penalties are chosen from a discrete uniform distri-

bution, while the time windows and RSO sizes are chosen from continuous uniform

distributions with reasonable upper and lower bounds.

94

4.5.4 Output

The final output of the program provides the assignments of requests to radar sites and

the planned start time of all task request servicing. The file also contains important

satellite information for locating and tracking in the future and includes information

about when and how often the satellite will need to be serviced again. This pub-

lished schedule can be seen in Figure 4-5. We additionally output a separate file for

each individual radar site containing each radar’s specific slew path plan and timing

throughout the planning horizon. These files are updated throughout the planning

process to reflect any changes in scheduling, so that the latest version produced is the

most up-to-date.

Figure 4-5: Example Published Schedule Output

We also report on the primary Measures of Performance after the program is com-

plete. Intermediate output updates on these Measures of Performance and feedback

on the status of task requests are possible but must be specified by the user.

95

96

Chapter 5

Results and Analysis

This chapter presents and evaluates the results of the DSRS. In the first section

we compare the results of the scheduler against two other scheduling approaches –

a greedy scheduler, and the modified version of the DSRS, the Alt-Scheduler. We

compare the solution approaches by comparing the run time results as well as their

achieved Measures of Performance. In the first section we also present the results of a

more specific cost analysis that was conducted between the three scheduling methods

to better examine how price may affect the overall created schedules.

The chapter then focuses on the objective function of the optimization portion of

the DSRS. We perform various empirical tests to ensure the function responds as is

intended when the user weights are adjusted.

The third section utilizes the introduced operational scenarios to analyze the per-

formance of the scheduler. We analyze the achieved Measures of Performance, pro-

gram run time, and any gaps in coverage or custody to evaluate the performance of

the scheduler in these more operationally tactical scenarios that are likely to be more

common in the future.

5.1 Comparison of Scheduling Approaches

In this section we provide an initial evaluation of the performance of three different

scheduling approaches, each varying in the level of coordination and optimization

97

present in task distribution and assignment. To provide an initial evaluation on

which method achieves the best results in the deep space radar scheduling problem,

we analyze two characteristics: the run time and the overall radar slew times achieved

in each method.

The three algorithms that are discussed in this section are the Greedy Scheduler,

an alternative version of the DSRS, the Alt-Scheduler, and the DSRS.

The Greedy Scheduler plans operations in a manner that automates the way

current operational scheduling in manually done. Each radar site is given a randomly

assigned predetermined tasking list at the beginning of the planning period. After

receiving the list, the scheduling process is very straightforward – the radar simply

orders and executes tasks in the order of the next soonest due time. It is important

to note that while the Greedy Scheduler does function as a baseline comparison in

the following examples, it is still a faster, more efficient scheduling approach to the

current way radars in the DoD are scheduled due to the fact it produces schedules

automatically versus employees manually creating schedules each day.

The Alt-Scheduler schedules in a way that preserves the feature of current opera-

tions wherein the task requests are not optimally assigned to radar sites, but instead

uses a heuristic based on feasibility to distribute the requests. The scheduler does

however optimize the actual path the radar takes to slew to these locations. After

receiving the predetermined tasking list for a specific radar, the scheduler then works

to meet the time constraints of the problem while minimizing the time the radar

spends slewing across the sky.

Finally, the DSRS optimizes the entire process of task distribution, assignment,

and path planning. Rather than receiving a subset of the tasking list at each site, the

full profile of task requests for a planning period serve as input into the centralized

DSRS. From there, the tasks are distributed to each radar site with an accompanying

path plan that attempts to minimize slew time. Because there are a number of

possible radar-satellite paths that are possible in this scenario, we attempt to speed

up solve time by reducing the solution space before optimization occurs with feasibility

checks that eliminate any infeasible solutions based on radar capacity and field of view

98

restrictions.

We expect that the DSRS will have the longest solve time due to the larger set of

variables and constraints in the mixed integer optimization portion of the problem.

We also expect that this solution will achieve the best resulting operations plan due

to its more global optimization approach rather than the more localized approach

with Alt-Scheduler and the lack of optimization in the Greedy Scheduler.

5.1.1 Testing Method

To analyze the various scheduling approaches, thirty pseudo-random tests were gen-

erated by randomly sampling in the manner introduced in Chapter 4. This method

allows us to manipulate the proportion of objects at certain priority levels in the task-

ing list. For these experiments, we chose to include various problem sizes of satellites

from a list of High Interest Objects (HIOs). These HIOs are typically assigned a level

two or three priority and only have one required revisit during the planning horizon.

We choose to test with HIOs because it makes the final observation plans simpler to

compare. The problem instances include satellites of various sizes, highly dispersed

locations, and encompassing a range of dwell requirements.

There are five test sets for each of the following problem sizes: 80, 100, 120, 140,

200, and 260. In each of these cases we also include all four radar sensors as available

for scheduling. We begin by increasing the problem size by increments of 20 when

we analyze the more realistic task request sizes of 100 - 140, but then we increase the

increment the problem sizes by increments of 60 to analyze the limits of solve time

in the larger test cases of 200 and 260 task requests. For the set of run time tests

alone we do not employ the batch scheduling approach that we normally use in the

DSR-Schedule and Alt-Scheduling approaches because we want to evaluate the time

it takes each method to solve while working to schedule all tasks at one time.

99

5.1.2 Run Time Comparison

The goal of the run time comparison is to determine how fast the Greedy scheduler,

the Alt-Scheduler, and the DSRS are able to create operations plans that solve the

deep space radar scheduling problem. While we are concerned with which scheduling

approach solves the fastest and slowest, we are mostly interested in examining which

of the schedulers is able to solve large problem instances in “reasonable” amounts of

time for military operational scheduling. After consulting with radar operators, we

determined that a “desirable solve time” for operationally tactical or urgent scenarios

need be below 60 seconds. To test this capability, the thirty test sets discussed in the

previous section were solved using each method. Each test set size was solved five

times to ensure trends were consistent across samples.

We expect that the Greedy Scheduler will have the fastest run time by far – this is

because the scheduling approach and resulting algorithm is relatively straightforward

and simple. We expect the Alt-Scheduler and the DSRS to have longer run times

because we are actually optimizing the slew paths in these these algorithms, and it

takes time for various path plans to be compared and formed. We expect that DSRS

will have the longest run time to optimality because the solution space is much larger

due to its optimization of both task allocation and the task execution path plan.

Table 5.1 provides the run times of each of the testing runs.

The data presented in Table 5.1 indicate that for each test set the Greedy Scheduler

indeed created a path plan for the radars in the shortest amount of time. The Alt-

Scheduler solved in the second fastest amount of time and still achieved desirable solve

times even for the largest test case of 260 HIO task requests, with the maximum solve

time for the Alt-Scheduler being only 13.71 seconds.

By comparison, the DSRS was able to achieve consistently desirable solve times

for test cases up to 120 HIO task requests. Beyond this number, the program was

still able to solve the problem to optimality, but with solve times that fluctuated from

below 30 seconds to upwards of 1,000 seconds of solving in one of the large test cases.

Table 5.2 shows the averages of the previous run times results for each problem

100

Problem Size Greedy (s) Alt (s) DSR (s)

80 0.12 1.34 7.34
80 0.12 1.40 5.88
80 0.11 1.45 5.63
80 0.13 1.86 5.44
80 0.12 1.20 9.12
100 0.13 1.78 11.19
100 0.14 1.72 10.87
100 0.13 1.59 10.02
100 0.18 1.94 9.61
100 0.14 1.90 9.13
120 0.15 2.03 11.76
120 0.15 1.91 13.62
120 0.15 2.25 13.60
120 0.16 1.85 18.54
120 0.15 2.04 10.89
140 0.19 2.62 65.34
140 0.20 2.94 36.55
140 0.17 3.45 23.14
140 0.18 2.84 117.12
140 0.17 3.17 53.75
200 0.23 4.95 74.46
200 0.54 6.00 97.37
200 0.23 5.47 56.29
200 0.27 5.16 63.28
200 0.24 5.33 54.51
260 0.65 10.55 1161.11
260 0.23 7.94 281.99
260 0.47 7.71 299.26
260 0.49 13.71 283.91
260 0.48 6.81 312.74

Table 5.1: Run time results for schedulers at various problem sizes

Problem Size Greedy (s) Alt (s) DSRS (s)

80 0.12 1.45 6.68
100 0.15 1.79 10.16
120 0.15 2.02 13.68
140 0.18 3.00 59.18
200 0.30 5.38 69.18
260 0.46 9.34 467.80

Table 5.2: Average run times for schedulers at various problem sizes

101

size tested. The average run times support that both the Greedy Scheduler and Alt-

Scheduler are able to solve all problem size test cases in an amount of time that is

useful and desirable in tactical military scenarios. The DSRS is, on average, able

to schedule problem instances up to 140 task requests in the appropriate amount of

time for a more urgent scenario. It is important to note that engineers estimate the

number of incoming task requests does not exceed 100 in a day currently. So while

the DSRS is fully able to handle even higher fluctuations in current scheduling, if in

the more distant future this number does indeed grow, additional heuristics like the

one employed in the Alt-Scheduler could be added to DSRS to reduce solve time in

larger problem instances.

Another important metric to consider is the variance of the run times. Because

the scheduling approach is for the use of the Department of Defense, a consistent

solve time is highly preferable. If a scheduler takes much longer than expected, it

could put behind critical operations and opportunities for appropriate response or

action. For this reason, we report the standard deviations of the run times for the

three different scheduling algorithms in Table 5.3.

Problem Size Greedy (s) Alt (s) DSRS (s)

80 0.01 0.24 1.55
100 0.02 0.14 0.85
120 0.01 0.15 2.96
140 0.01 0.31 36.17
200 0.13 0.39 17.59
260 0.14 2.81 387.77

Table 5.3: Standard deviation of run times for schedulers at various problem sizes

The DSRS has a standard deviation that is magnitudes higher than the other two

scheduling approaches, very dependent on the problem size and the specific random

problem instance. We once again see the benefit to an initial heuristic before opti-

mization in the Alt-Scheduler. In this case we see its effect on the variance of the run

time, as it is able to achieve a much smaller magnitude standard deviation than the

full optimization approach in the DSRS.

102

5.1.3 Slew Comparison

The overall time that radars in the surveillance system spend slewing during a plan-

ning period is an extremely important metric for comparison. Not only is the slew

time a large driver in the overall cost of operations for the day, but it also determines

how much time is leftover in a planning period that may be allotted to fulfill other

important space surveillance missions and tasks. Two of the scheduling approaches,

the Alt-Scheduler and DSRS, use optimization as an approach to scheduling. These

algorithms allow the user to input specific weights on the elements in the objective

functions to emphasize certain metrics while meeting hard constraints. In the follow-

ing test cases, we choose to emphasize the lateness element in the objective function

so that the most weight is associated with minimizing tardy or missed tasks. In later

results we show the effect that increasing the weights on the slew or cost variables

has on the overall slew time in the system.

To compare the total slew time in the resulting operations plans produced by each

scheduling approach, we once again run the thirty tests discussed in Section 5.1.1 and

used in the Run Time Comparison Section.

The results in Table 5.4 indicate that the DSRS is able to minimize the achieved

total slew time in a majority of problem instances. In a few tests, the Alt-Scheduler

has a lower total slew time than the DSRS. This is due to the fact that the Alt-

Scheduler uses a heuristic for the initial assignment of tasks to radars whereas the

DSRS uses optimization. The DSRS works to minimize the total slew time but also

distributes tasks to radars in a way that minimizes operational costs. For example,

HUSIR-X has a higher price associated with radar operation, so even though it may

be able to slew to a satellite in a shorter amount of time than one of the other radars

in the system, the DSRS may not always assign the task request to HUSIR-X if it is

actually cheaper to assign that request to a different, even further radar. We provide

the average slew results for each problem size test in Table 5.5.

It is once again important to consider the variance in slew times achieved by each

of the scheduling methods. If radar operators are able to consistently estimate the

103

Problem Size Greedy (min) Alt (min) DSRS (min)

80 189.92 94.58 92.05
80 172.94 91.55 87.07
80 164.13 102.58 96.19
80 193.92 91.59 91.45
80 157.03 88.72 87.83
100 222.84 124.95 112.18
100 196.78 121.27 112.38
100 225.67 120.39 120.04
100 182.46 119.52 111.09
100 233.06 120.98 105.36
120 259.24 122.35 131.12
120 231.46 135.23 124.26
120 244.41 139.26 131.93
120 265.79 128.58 124.68
120 257.81 134.24 114.31
140 281.28 169.90 142.25
140 368.91 158.24 153.71
140 315.23 156.17 152.44
140 306.48 178.50 168.07
140 305.09 167.04 139.49
200 236.27 36.28 34.53
200 271.23 39.47 38.14
200 264.24 40.64 34.86
200 267.78 36.20 34.15
200 261.80 38.86 34.71
260 333.53 50.09 42.83
260 288.41 53.11 48.66
260 376.41 52.22 44.79
260 246.31 52.64 43.29
260 309.02 46.68 41.63

Table 5.4: Slew time results for schedulers at various problem sizes

Problem Size Greedy (min) Alt (min) DSRS (min)

80 29.26 15.63 15.48
100 35.36 20.23 18.72
120 41.95 21.98 20.87
140 52.56 27.66 25.19
200 260.26 38.29 35.27
260 310.74 50.95 44.23

Table 5.5: Average slew times for schedulers at various problems sizes

104

amount of time a radar will spend slewing, they are better able to determine how

much time is available for other mission tasks or outages. We present the standard

deviations of the slew times for the three different scheduling algorithms in Table 5.6.

Problem Size Greedy (min) Alt (min) DSRS (min)

80 2.66 0.88 1.04
100 3.58 0.34 0.87
120 2.29 1.09 1.17
140 5.41 1.51 1.88
200 13.87 1.97 1.62
260 48.68 2.64 2.72

Table 5.6: Standard Deviation of slew times for schedulers at various problem sizes

The Greedy Scheduler has a standard deviation that is magnitudes higher than

the other two scheduling approaches - this value increases as problem size increases

and is very dependent on the randomly sampled task requests. We see that both

the Alt-Scheduler and DSRS have much lower standard deviations, indicating that

the average amount of time the radars spend slewing in a planning period is more

predictable and is less likely to have high fluctuations.

5.1.4 Cost Analysis Comparison

In this section we run a more substantial comparison on the cost achieved by each

of the models for pseudo-random samples of HIO satellites. We once again include

satellites with one required revisit during planning for ease of comparison, but for

these tests we keep the sample size at a constant 100 task requests per planning

period.

As was previously mentioned, each radar has a particular price associated with

its operation. This price serves as a sort of “price weight” because it is scaled before

optimization. In this section, we vary the base cost associated with radar operation,

but leave the weights at a constant ratio because these values do not change. For

example, if the base cost is $1 and the price weight for a radar is 0.5, then the

operational price for the radar is ($1 x 0.5) = $0.5. One can imagine that cost of

operating radars for space surveillance could change for a multitude of operational

105

reasons or gradually over time with the rise and fall of prices of other goods and

services. For this reason, we test the operational cost at values from the set [.1, 15.0]

dollars per operational minute.

The average results of these experiments are reported in the Appendix, with the

Average Total Cost values reported in hundreds of dollars. The results show that

the DSRS is consistently able to distribute tasks and create slew path plans for the

radars that achieve a lower cost than the other two methods. This is due to the fact

that the DSRS optimizes both the radar-task assignment process and the radar slew

path plans simultaneously, so it is able to assign task requests to the radars and with

start times in the cheapest way possible, even as price increases. The results also

indicate that the Alt-Scheduler is still able to achieve lower operational costs than

the Greedy Scheduler in all instances due to its ability to optimize the slew path plan

of the radars during scheduling.

Another important observation is that the Greedy Scheduler’s cost of operations

experiences many different fluctuations whereas both the Alt-Scheduler and the DSRS

are able to remain much more steady with changes in price. High fluctuations in cost

are very undesirable because of the difficulties it may cause in budgeting for the radar

sites. Having the ability to accurately predict price of operations allows for better

resource allocation and builds confidence in the scheduling approach. We see that as

operational cost increases, these patterns and average differences in results become

all the more pronounced.

5.2 Objective Function Component Analysis

We use the objective function introduced and detailed in Chapter 4 as the way for

users to adjust optimization outcomes to reflect different mission goals. In this sec-

tion, we conduct empirical testing to observe how modifying the user weights in the

objective function can be used to lead to different scheduling outcomes.

106

Figure 5-1: Cost Analysis and Comparison

5.2.1 Full Day Experiments with DSRS

For this section we conduct experiments where we vary the input user weight 𝑢 for

the various objective function components: the 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 component, the 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤

component, and the 𝑜𝑝_𝑝𝑟𝑖𝑐𝑒 components. Although there are more components

introduced in Chapter 4 that may be minimized in the objective function, we choose

to focus on these three elements in the analysis because they are the most common

features that radar operators are currently likely to seek to control during scheduling.

For each of the sections to follow, tests are performed using psuedo-random sam-

ples of 100 task requests. Each test contains the same proportion of task requests

from each priority level - 70% low priority (priority level one), 20% medium priority

(priority level two), and 10% high priority satellites (priority level three). In this test

set, high priority satellites must be revisited every hour, medium priority satellites

must be revisited every six hours, and low priority satellites only require one visit

per day. This gives a total of 390 total satellite task request visits to schedule in the

planning period. Additionally, to make the scenario more realistic and dynamic we

also add in one additional randomly drawn high priority task every two hours. We

107

allow all four radar sensors to be available for scheduling in the entire planning period

in the scenarios. For these experiments we employ a rolling horizon type scheduling

approach where we schedule the task requests in batches based on the next soonest

due times. We choose to solve the problem with a 24 hour planning horizon and 24

iterations, or one per hour. We report all cost results in hundreds of dollars.

5.2.1.2 Total Slew Component

In this section we show the effect of increasing the overall slew time component’s

user weight, 𝑢𝑠, while keeping all other input weights at 0 except for the the overall

lateness parameter, which we set equal to 1 − 𝑢𝑠. The lateness component enforces

the time constraints and gaps in coverage by penalizing tardiness or missed tasks.

We average the output values for our Measures of Performance over five runs for each

of the 11 values of 𝑢𝑠 in the range [0.0, 1.0]. The average results of these tests are

reported in Table 5.7.

𝑢𝑠 Weight Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

0 77.26 185.43 0
0.1 37.03 99.91 0
0.2 36.92 95.06 0
0.3 35.64 98.65 0
0.4 37.72 106.21 0
0.5 36.13 94.21 0
0.6 36.74 94.81 0
0.7 35.47 94.59 1
0.8 34.96 91.58 2.5
0.9 35.36 91.82 11
1.0 0 0 100

Table 5.7: DSRS - Change in 𝑢𝑠 Results

108

By design, when the weight 𝑢𝑠 associated with the 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤 is emphasized in

the objective function during scheduling, the slew time decreases on average. We see

that the slew time is minimized and tends to flatten out as there are no better options

for reducing overall slew time in the system, although there are some irregularities

that are likely data-driven because task requests are randomly sampled and added

to the program during scheduling. We see that as 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤 is weighted at around

0.7 or higher in the model, the scheduler starts opting to drop certain task requests

in an effort minimize slew time because it is so highly emphasized in the model.

5.2.1.3 Total Price Component

In this section we show the effect of increasing the overall operational price compo-

nent’s user weight, 𝑢𝑝, while keeping all other input weights at 0 except for the the

overall lateness parameter, which we set equal to 1 − 𝑢𝑝. We average the output

values for our Measures of Performance over three runs for each of the 11 values of

𝑢𝑝 in the range [0.0, 1.0].

109

𝑢𝑝 Weight Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

0 70.50 175.31 0
0.1 30.86 93.39 0
0.2 30.21 97.53 2
0.3 29.72 96.44 12.25
0.4 25.70 65.10 75
0.5 24.75 61.57 80
0.6 19.36 48.76 88.5
0.7 17.82 46.78 88.5
0.8 18.71 36.60 89.75
0.9 0 0 97.25
1.0 0 0 100

Table 5.8: DSR - Change in 𝑢𝑝 Results

In this case we see that the user weight 𝑢𝑝 associated with the 𝑜𝑝_𝑝𝑟𝑖𝑐𝑒 component

has a roughly linear relationship with average slew time and average price values. This

is expected as the average price value is so closely tied to the amount of time the radar

spends slewing across the sky. We also see a roughly positive linear relationship with

the price weight and the average lateness value. This is due to the fact that as radar

110

operations become more expensive, the radar is more likely to drop tasks or execute

tasks outside of their specified time windows if it decreases the operating costs.

5.2.2 Full Day Experiments with Alt-Scheduler

For this section we conduct experiments where we vary the input user weights in the

same way as the Section 5.2.1 with the DSRS, but this time with the Alt-Scheduling

approach. We once again vary the user weights for the selected objective function

parameters: the 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 component, the 𝑓𝑖𝑛𝑎𝑙_𝑠𝑙𝑒𝑤 component, and the 𝑜𝑝_𝑝𝑟𝑖𝑐𝑒

components.

The tests on the Alt-Scheduler are identical to those run on the DSRS. Each test

set 0f 100 task requests contains 70% low priority, 20% medium priority, and 10%

high priority satellites. We once again introduce one randomly drawn additional high

priority task every two hours. We allow all four radar sensors to be available for

scheduling in the entire planning period in the scenarios.

5.2.2.2 Total Slew Component

Here we show the effect of increasing the overall slew time component’s user weight,

𝑢𝑠, while keeping all other input weights at 0 except for the the overall lateness

parameter, which we set equal to 1 − 𝑢𝑠. We average the output values for our

Measures of Performance over three runs for each of the 11 values of 𝑢𝑠 in the range

[0.0, 1.0]. The average results of these tests are reported in Table 5.9 below.

111

𝑢𝑠 Weight Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

0 81.77 298.18 0
0.1 58.01 262.95 0
0.2 54.48 247.26 0
0.3 54.34 245.35 0
0.4 57.95 257.48 0.5
0.5 59.91 266.54 0.5
0.6 50.03 244.32 1.5
0.7 55.23 238.39 3
0.8 46.12 212.18 14
0.9 33.71 95.66 86.5
1.0 0 0 100

Table 5.9: Alt - Change in 𝑢𝑠 Results

We can see in the results that an increase in the 𝑢𝑠 variable indeed decrease the

average slew time and average cost, but at a much slower rate than in the DSRS. This

is most likely due to the fact that the Alt-Scheduler is only able to minimize slew

time through the individual radar slew path plans, rather than also by optimizing

task distribution for this goal. In these experiments we see the slew time reach more

of a steady state in the range of 55 – 60 minutes. The slew time only dramatically de-

creases when the slew component weight is significant enough that the Alt-Scheduler

begins dropping many more tasks. This is also why we see a large jump in the lateness

value around a weight of 0.6 – 0.7.

112

5.2.2.3 Total Price Component

Here we show the effect of increasing the overall operational price component’s user

weight, 𝑢𝑝, while keeping all other input weights at 0 except for the the overall

lateness parameter, which we set equal to 1 − 𝑢𝑝. We average the output values for

our Measures of Performance over three runs for each of the 11 values of 𝑢𝑝 in the

range [0.0, 1.0]. These are reported in Table 5.10.

𝑢𝑝 Weight Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

0 79.18 292.26 0
0.1 52.11 255.97 2
0.2 35.95 142.68 80.5
0.3 34.57 128.41 90.75
0.4 18.78 58.37 94.25
0.5 7.48 14.90 98
0.6 0 0 100
0.7 0 0 100
0.8 0 0 100
0.9 0 0 100
1.0 0 0 100

Table 5.10: Alt - Change in 𝑢𝑝 Results

113

We once again see a negative relationship in the weight associated with the op-

erational price, 𝑢𝑝, and the average slew and average price values. Because the Alt-

Scheduler is unable to redistribute tasks to radar sites in order to decrease operations,

we see that tasks are dropped earlier to decrease prices instead. Many of the early

dropped tasks come from those assigned to the more expensive radar sites to operate,

such as HUSIR-X or Altair.

5.3 Operational Scenarios

Because the deep space radar scheduling problem in this thesis is for the purpose of

SSA as it pertains to national defense, it is important to consider this context when

testing the algorithm. The DSRS is designed for use by the U.S. DoD, with hopes

of being useful in the future even as space continues to grow and progress. We now

turn to the more tactical operational scenarios introduced in Chapter 1, some which

may occur in current operations and others which are likely to become part of the

deep space radar mission in the future.

For each of the following scenarios, we choose to test the full version of the DSRS

and use preset user weights that place a majority of the emphasis on the timeliness

of task completion with the rest of the emphasis on minimizing the operational price

for a day of surveillance. We choose to calculate the base price at $1/min of radar

operation. Because all of these scenarios are considered tactical or urgent, we allow

the scheduler to run for a maximum of 60 seconds before cutting off and accepting the

operations plan; however, in all of the scenarios the scheduler was able to schedule to

114

optimality in the alloted time due to the rolling horizon batch scheduling approach.

5.3.1 Foreign launch

In this scenario, we assume that a foreign launch occurs and requires urgent charac-

terization and tracking. For this reason, we take all deep space radar sensors in the

system away from the custody mission to put towards the foreign launch detection

mission for a time period of two hours. While in some cases this scenario may not

require all radars be “unavailable” for scheduling in the DSRS, we model the effects

of taking one radar out of the system at a time in a later subsection.

We test this scenario by modeling with 100 task requests as in previous sections.

Each test contains the same proportion of task requests from each priority level - 70%

low priority (priority level one), 20% medium priority (priority level two), and 10%

high priority satellites (priority level three). In this test set, high priority satellites

must be revisited every hour, medium priority satellites must be revisited every six

hours, and low priority satellites only require one visit per day. We once again add in

one randomly drawn high priority task request every two hours to make the scenario

more realistic. For each test, we choose a random 𝑔𝑙𝑜𝑏𝑎𝑙_𝑡𝑖𝑚𝑒 to indicate a foreign

launch in need of characterization has occurred. Planning for the deep space custody

mission halts for a period of two hours before resuming for the rest of the day. The

scenario is conducted 10 times, and the average results are reported below in Table

5.11, once with the results from no launch and then again on the same problem

instance with the indication that a foreign launch has occurred.

Scenario Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

No Launch 41.97 127.59 0
Launch 39.34 128.17 12.0

Table 5.11: Foreign Launch Results

Interestingly, we see that while the average slew time in the event of a launch is

slightly lower, the average cost is slightly higher than when no launch occurs. This

is due to the fact that as the DSRS gets back online after the launch, it attempts to

115

“catch up” on previous tasks even if they may be served late. As the system recovers

from the launch, tasks may be sent to radars that are available, albeit more expensive,

leading to the increased cost. Because the scheduler was offline, 12% of objects still

do not have guaranteed custody for the full length of the planning period due to the

outage.

These results show the benefit of having a way of scheduling that is centralized and

allows for coordination between sensor sites. The DSRS is able to regain custody of

objects very quickly following the foreign launch because it is able to quickly distribute

tasks in a way that allows for swift recovery on a system-wide level. The DSRS is

able to do reassign and reschedule in a way that maximizes custody for the remainder

of the planning period even after the unscheduled outage event.

5.3.2 Overload of Observation Requests

In this scenario, we assume that for a given planning period of scheduling a large

number of task requests are sent as input to the DSRS compared to what is considered

regular and routine. After consulting with radar operators, currently a scheduling day

will consist of a maximum of 100 task requests. For this scenario, we choose to test

with double this amount and schedule a day with 200 task requests.

We draw the 200 task requests and keep the same proportion of priority levels as

in previous tests - 70% low priority (priority level one), 20% medium priority (priority

level two), and 10% high priority satellites (priority level three). We also continue

to add in one randomly drawn high priority task every two hours. The scenario is

conducted ten times, and the average results are reported below in Table 5.12.

Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

56.69 224.49 0.4

Table 5.12: Task Request Overload Results

Because we choose to emphasize guaranteed custody of all objects as well as

minimization of the operational price, while the average slew time and average values

are indeed higher with more task requests, the scheduler was still able to produce

116

operations plans with less than one, only .4%, of objects that did not have guaranteed

custody, on average.

These results once again show the value in having an automatic, central scheduler

when it comes to planning radar operations. With double the number of task requests

from what is commonly seen, the current, isolated system of scheduling would further

waste valuable money and resources. Additionally, without a way to intelligently

plan task distribution and path assignment, there is also the increasing chance that

we lose custody of many more RSOs than what is possible by employing optimization.

Finally, further human time and energy is wasted manually creating the schedule for

this unprecedented number of task requests while the automatic scheduler is able to

adjust and plan accordingly in a matter of seconds.

5.3.3 Many High Priority Targets

In this scenario, we imagine a situation in which there is a very large proportion

of high priority satellites (priority level three) that need to be observed every hour

of the planning period. This scenario is likely in the future if objects become more

maneuverable or if more critical national security services are provided in space that

need almost continuous coverage to guarantee custody.

To model the scenario, we again draw 100 task requests from the master list of

satellites kept and maintained by the U.S. military. This time, however, we alter

the proportion of high priority satellites from 10% to 30%, and then 20% of medium

priority satellites and 50% of low priority satellites. This brings the total task requests

up to 850, once again with the additional high priority task requests being added in

randomly every two hours. The scenario is conducted 10 times and the average results

are reported below in Table 5.13.

Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

60.97 236.19 0.2

Table 5.13: Many High Priority Task Requests Results

We once again see an increase in the average slew time and average cost values

117

due to the increase in the number of task requests in this scenario. We do see that

in this particular case however, the number of average satellites that the scheduler is

unable to keep custody of is only 0.2%. This reflects the fact that, although there

are many objects the radar surveillance system is charged with keeping custody of,

many of these additional task requests are high priority and therefore incur a much

larger penalty if they are dropped from the schedule than the lower priority tasks.

Indeed, after the lower priority tasks have been visited for their required visits, most

of the radars’ operations plans include it slewing to high priority objects for continued

coverage.

For many of the same reasons as is the case in the Overload of Observation Re-

quests Scenario, the DSRS’s automatic, centralized approach to planning radar oper-

ations is extremely beneficial. While slew time is inevitably increased with so many

more high priority task requests, we see that the average items we are able to keep

in custody is also very high. This assignment and scheduling is done quickly and

intelligently so that the user does not have to manually adjust.

5.3.4 Radar Outage

The final scenario for scheduling is the Radar Outage Scenario. In these experiments,

we assume that one of the deep space radars in the space surveillance system is

unavailable for the entirety of the planning period. This could occur if a radar requires

maintenance, if the radar is needed for another mission, or any other number of other

various user-specified reasons. In this section we explore how losing a radar in the

system affects the system gaps in coverage as well as the overall cost of operation.

Testing for this scenario is conducted with a consolidated tasking list that contains

100 task requests with the same 70/20/10 split in low/medium/high priority level

satellites. The tests were conducted with each radar removed from the system ten

times. The results for for each radar being removed from the surveillance system are

reported below in Table 5.14.

In these results we can see that the most dramatic increase in cost occurs when

Radar_4, located in White Sands, Arizona, is removed from the radar system. When

118

Removed Radar Avg Slew (min) Avg Total Cost (USD) Avg % Dropped

HUSIR-X 47.24 137.86 0
MHR 43.23 145.27 0
Altair 33.74 75.59 34.4

Radar_4 42.72 160.92 0

Table 5.14: Outage Results

this occurs, the other radars are able to adjust to take over the task requests and

maintain custody of all objects, but it does require more expensive radars and slew

path plans on average.

While the average cost and average slew time values are the lowest when Altair

is removed from the surveillance system, this is largely due to the fact that this is

the only radar that leads to a large gap in coverage when removed. Indeed, about

34% of objects do not have guaranteed custody in this case. This is due to the

physical location of Altair - in the Marshall Islands. The other radars in the system

are geographically located such that they are unable to fill in the gaps in custody

because they are unable to adequately make observations. Overall, these scenarios

do display the benefit to a centralized and coordinated way of scheduling the radar

surveillance system. When one radar is removed, the other radars in the system are

largely able to take over and keep custody of objects, which is not the case when

scheduling is done independently. With current, “stovepiped” system of scheduling, a

radar outage would simply mean that the radar’s assigned tasks would go completely

unfulfilled for the length of the outage. Alternatively, with the DSRS’s system of

planning there is limited loss of custody from a system perspective. The only time

when items go completely unobserved when using the default user objective weights

is when the remaining radars are not feasibly capable of executing the task requests.

The results of these scenarios provide some examples of cases where an automatic,

centralized, and coordinated way of conducting scheduling operations is extremely

beneficial. The DSRS is more resilient when faced with both planned and unplanned

outages, with the ability to recover quickly and reschedule if necessary. It has the

ability to hand off tasks to other radars or make up for missed task requests to quickly

119

regain custody. It also handles large volumes of task requests with varying priorities

in a way that keeps operating costs and slew times much lower than other approaches

to scheduling. Finally, the DSRS saves the user valuable time; manually scheduling,

rescheduling, and keeping track of object information when faced with large volumes

of task requests or unplanned events and outages would be extremely difficult if not

impossible to do in an appropriate amount of time.

120

Chapter 6

Conclusions and Future Work

The purpose of this chapter is to summarize the work presented in this thesis. The first

section presents the contributions made throughout this thesis. The second section

proposes possible improvements to our scheduling approach and suggests possible

uses and future extensions for the deep space radar scheduling problem. The third

and final section is a summary of our conclusions.

6.1 Summary of Contributions

In this section we review the contributions of this thesis that were first introduced in

Chapter 1. The goal of this thesis was to create a scheduling algorithm to address

the inefficiencies present in current deep space radar scheduling operations within the

DoD. We summarize the contributions of this work in the following paragraphs.

• Formulation of an objective function that is capable of building sched-

ules that align with a user’s end objectives and system characteristics.

We create an objective function for the optimization portion of scheduling that

is able to change and prioritize different user weights. These user weights may

be tuned to emphasize the lateness value of the task, the overall slew time, the

total operating time, the total operating price, or the number of active radars.

While we have default weights that prioritize timeliness of tasks while minimiz-

ing operational costs, the user is able to adjust these metrics at any point in

121

the planning period.

• Implementation of an optimization problem that schedules various

radars across time and space at any instance and can be solved us-

ing Mixed Integer Programming. Our algorithm is able to schedule large

problem instances in a dynamic environment by solving a series of optimization

problems over time. By focusing on scheduling the objects in blocks of time,

the solve time is kept at a reasonable length and the schedules better reflect

changes to the system or new information.

• Empirical testing and analysis of objective cost function in two dif-

ferent scheduling approaches. We perform testing on the objective function

components by varying the user weights in two different schedulers - namely, the

Alt-Scheduler and the DSRS. We also test the various scheduling approaches

on problem instances of various sizes and make-ups and compare the achieved

Measures of Performance as well as average run time.

• Development and testing of operationally “tactical” scenarios to demon-

strate the benefits and effectiveness of the algorithm in scheduling and

rescheduling all deep space radar operations on short notice. Through

the testing of these scenarios, we are able to demonstrate the resilience and

recover capability of the scheduler in outages and other unforeseen events. We

also show the advantages of a centralized, coordinated way of planning when it

comes to filling in gaps in coverage or custody during scheduling.

6.2 Possible Extensions and Future Applications

While the DSRS is able to address some of the inefficiencies with current scheduling

practices in the space surveillance mission, it still has many areas that can be improved

and extended. Some of our suggestions are listed in the following paragraphs.

122

6.2.1 Expand Surveillance Capabilities to Other Orbits

This work focuses exclusively on keeping custody of objects in the geosynchronous

belt, but the space surveillance mission encompasses much more than this. Critical

U.S. objects and systems are located throughout LEO and MEO, which also require

up-to-date characterization and guaranteed custody. Additionally, in the future it

may also be important to keep custody of objects farther into deep space than the

geosynchronous orbit. Because the number of sensors that are capable of execut-

ing the space surveillance mission are limited, a centralized and coordinated way of

scheduling these assets could be extremely beneficial. Working to allow the DSRS to

plan missions in more orbital regimes is a promising extension that could accomplish

this goal. The extension would require additional constraints to control for the newly

introduced physical and temporal limitations that come with planning in new orbits,

but the basic formulation could remain similar to our work.

6.2.2 Inclusion of Additional Sensor Types

This thesis focuses on constructing the slew path plans for deep space radars located

across Earth, but there are many other sensor assets available to aid in the space

surveillance mission. As was previously introduced in Chapter 1, ground-based optical

sensors, space-based optical sensors, and smaller radars are additional assets that

could be incorporated into the scheduling approach and algorithm for the custody

mission.

There are a few options in how coordinated and centralized planning could occur

in the future. One approach is accomplished with one centralized scheduler that is

responsible for distributing tasks to each sensor in the system and constructing the

observation path plans for each of these sensors. This is similar to how the DSRS

currently operates, with master control over all the deep space radars in the system.

Another option is to create one master scheduler that is responsible for assigning tasks

to a specific sensor asset type, and then utilizing “sub-planners” to distribute tasks

amongst that specific sensor and create their path plans. This two-step approach

123

would allow for more detailed and specific planning at the sensor level, but loses

some of the global perspective in scheduling. If this were the case, the DSRS would

serve as the deep space radar “sub-planner.”

6.2.3 Improvements to the Current Framework

While there are exciting ways this work may be extended, there are also areas for

improvement within our current framework that may allow for its continued utilization

even as space becomes more congested, contested, and competitive in the future. One

improvement is the creation of fast, intelligent heuristics to continue to decrease the

achieved solve time during scheduling. Currently, there is one simple heuristic tested

in this work that assigned tasks to radars based on feasibility sets, but no other

methods are used to attempt to create smarter radar-task request matches. Methods

like assigning “clusters” of task requests that are located close together to a specific

radar may help minimize the slew time without employing more costly optimization

techniques.

Another possible way to improve this work is through additional ways of evaluating

and altering the objective function of the optimization portion of the program. We

focus our efforts mainly on minimizing overall slew time and operational costs while

meeting time constraints, but new formulations may be able to better capture more

advanced mission objectives or user preferences. This could be through the addition

of more objective function terms or by modeling more complex interactions and the

use of nonlinear terms.

Another possible supplement to our current framework is altering our optimiza-

tion program to make it more robust to uncertainty in the system. Although we

make adjustments to some of the estimates in data to protect against uncertainty,

robust optimization techniques allow us to formalize this process with well-studied

methodologies. Because scheduling in the space environment carries many unknowns,

the use of robust optimization allows for protection against factors and features that

are inherently unpredictable.

124

6.3 Conclusions

In summary, this thesis has addressed the problem of scheduling deep space radars in

a centralized and coordinated way for space surveillance. We have created a mixed

integer program that is capable of scheduling these task requests in a way that cap-

tures the physical and temporal constraints in the problem, as well as incorporates

unique satellite and radar characteristics. We have also created an objective function

that is capable of capturing specific objectives through adjustable user weights.

Our analysis shows that the scheduling approach used in the DSRS is beneficial to

the DoD’s scheduling for space surveillance because of its ability to better coordinate

plans, respond to changes or new system information, and quickly, automatically

generate schedules. The ability of DSRS to create efficient, optimized schedules saves

the user’s time, the radars’ operating time, and costs of operations. We have also

provided an alternate scheduling approach through the Alt-Scheduler that is capable

of significantly decreasing the solve time associated with creating feasible schedules,

while still greatly reducing the slew time and operational costs when compared to

traditional scheduling.

We conclude that our algorithm is a simple approach to coordinate and schedule

task requests among multiple, heterogeneous deep space radars. The methods em-

ployed in the DSRS are a viable option for scheduling by the DoD because of their

adherence to important constraints, prioritization of high value objects, allowance of

human operator input in the creation of plans, and overall flexibility and resilience

in scheduling. While this work is one step in examining the benefits of a centralized,

coordinated scheduler for this type of national security mission, it is our hope that

the framework and scheduling approach may be useful in observation planning in the

future.

125

126

Appendix A

List of Acronyms

BMD - Ballistic Missile Defense

D/T/ID - Detect/Track/Identify

DI&E - Data Integration and Exploitation

DoD - Department of Defense

FOV - Field of View

GEO - Geosynchronous Orbit

HIO - High Interest Object

HVA - High Value Asset

ITU - International Telecommunication Union

LEO - Low-Earth-Orbit

LLH - Latitude-Longitude-Height

MEO - Medium-Earth-Orbit

MIP - Mixed Integer Program

OR - Operations Research

127

RAE - Range-Azimuth-Elevation

RCS - Radar Cross Section

RSO - Resident Space Object

SHIO - Super High Interest Object

SNR - Signal-to-Noise-Ratio

SO - Separable Object

SSA - Space Situational Awareness

SSDP - Successive Sublimation Dynamic Programming

TLE - Two-Line Element

TW&A - Threat Warning and Assessment

UCT - Uncorrelated Target

128

Appendix B

Tables

Weight DSR Cost DSR Slew Grdy Cost Grdy Slew Alt Cost Alt Slew

0.1 0.63 6.34 0.77 18.42 0.77 17.27

0.3 1.81 7.31 2.50 15.76 2.35 17.57

0.5 3.23 8.33 6.014 16.73 3.81 18.12

0.7 4.17 6.81 5.79 16.60 5.54 18.57

0.9 5.28 7.77 8.49 19.96 6.95 18.51

1.1 6.64 7.84 9.21 24.12 8.62 19.50

1.3 7.78 8.04 10.52 21.92 9.95 17.78

1.5 8.84 6.90 14.03 19.86 11.56 18.94

1.7 10.43 6.65 18.91 18.34 13.63 20.29

1.9 11.87 7.01 16.56 18.67 14.43 14.91

2.1 14.21 7.25 39.14 15.55 16.13 18.12

2.3 12.97 6.83 19.65 19.82 18.16 16.87

2.5 15.27 7.43 19.10 16.14 19.19 16.86

2.7 16.64 7.37 48.17 22.96 20.04 15.71

2.9 16.98 7.10 22.88 15.62 22.29 16.66

3.1 19.23 8.53 24.92 20.83 24.35 19.14

3.3 19.95 6.74 30.58 14.30 25.08 17.16

3.5 21.51 7.34 28.95 12.47 26.95 17.68

129

3.7 20.34 6.33 30.08 15.44 27.87 16.76

3.9 25.20 7.40 57.95 18.03 30.23 18.07

4.1 25.15 8.12 37.86 23.15 31.62 20.05

4.3 27.48 7.73 41.43 18.74 32.71 17.55

4.5 26.42 6.59 52.68 20.09 33.65 15.04

4.7 28.71 7.72 45.89 18.06 36.45 16.51

4.9 30.63 7.50 41.51 17.27 37.47 17.87

5.1 30.53 8.01 49.71 17.83 38.56 16.19

5.3 32.38 7.14 65.36 19.30 39.17 17.57

5.5 32.96 7.58 60.30 22.72 43.10 18.91

5.7 35.45 6.68 71.49 21.65 43.89 17.77

5.9 34.05 6.48 86.40 19.50 44.66 16.57

6.1 37.08 7.32 60.74 19.58 46.13 16.01

6.3 38.65 6.12 47.46 16.70 48.96 19.11

6.5 39.40 8.29 61.23 19.49 49.71 19.43

6.7 38.81 7.59 54.53 15.98 51.93 17.28

6.9 41.35 7.82 75.04 22.12 50.63 15.46

7.1 44.45 8.59 59.07 21.99 54.87 17.78

7.3 41.48 7.70 64.62 22.78 53.09 15.47

7.5 44.01 6.51 82.03 20.50 57.60 18.56

7.7 43.13 6.72 61.16 17.73 60.22 18.23

7.9 49.13 7.28 63.71 19.14 61.66 17.22

8.1 48.56 7.38 72.03 22.68 61.96 19.93

8.3 46.09 6.78 73.68 19.86 63.35 15.13

8.5 50.11 7.44 77.17 21.80 66.17 17.11

8.7 53.63 7.35 152.42 22.62 64.75 14.80

8.9 53.93 6.92 83.09 21.37 65.42 15.41

9.1 57.41 6.89 156.72 16.62 70.07 15.41

130

9.3 54.29 6.27 122.59 19.81 72.75 19.25

9.5 55.97 7.24 158.69 20.24 73.72 18.02

9.7 56.93 7.32 88.12 21.44 71.74 15.96

9.9 60.87 6.97 160.27 15.86 76.59 17.17

10.1 62.81 7.11 148.94 15.17 74.21 13.75

10.3 59.49 6.89 110.35 19.18 78.16 15.71

10.5 60.70 6.52 95.41 16.38 81.09 17.49

10.7 55.30 5.77 86.25 16.26 83.47 20.98

10.9 68.26 6.54 136.03 17.26 82.70 16.47

11.1 64.87 7.71 177.91 15.54 84.73 16.32

11.3 67.39 7.95 166.34 15.83 87.99 18.76

11.5 69.32 7.47 154.35 19.41 90.98 19.18

11.7 66.13 6.68 94.51 20.37 89.07 17.46

11.9 72.52 8.31 100.71 17.98 89.06 16.83

12.1 76.37 8.48 97.77 21.46 92.51 18.10

12.3 73.44 6.52 234.60 20.68 96.89 20.23

12.5 70.32 7.12 118.61 22.92 94.95 16.17

12.7 78.91 7.73 155.12 22.90 97.26 16.63

12.9 81.21 8.11 147.98 16.43 96.96 15.81

13.1 82.57 7.43 107.37 16.54 98.48 16.55

13.3 82.45 7.67 129.51 20.54 99.93 16.13

13.5 79.93 7.63 119.26 20.85 103.96 16.78

13.7 82.08 7.11 125.64 21.96 104.58 15.99

13.9 92.08 7.72 266.41 19.29 105.72 18.17

14.1 78.74 7.74 109.17 18.72 109.69 19.02

14.3 85.05 7.04 127.81 20.61 111.50 18.20

14.5 90.61 7.23 184.42 17.91 110.66 17.18

14.7 94.03 7.52 256.98 19.03 115.10 20.46

131

14.9 91.33 6.75 188.97 20.59 113.05 17.82

Table B.1: Cost Analysis Results

132

Bibliography

[1] Yogesh Agarwal, Kamlesh Mathur, and Harvey M Salkin. A set-partitioning-
based exact algorithm for the vehicle routing problem. Networks, 19(7):731–749,
1989.

[2] National Air and Space Intelligence Center. Competing in space. 2018.

[3] M Selim Akturk and Deniz Ozdemir. An exact approach to minimizing total
weighted tardiness with release dates. IIE transactions, 32(11):1091–1101, 2000.

[4] M Selim Akturk and Deniz Ozdemir. A new dominance rule to minimize total
weighted tardiness with unequal release dates. European Journal of Operational
Research, 135(2):394–412, 2001.

[5] J.K. Rejto A.L Kintz, R.K. Lee. Dynamic sensor scheduler: Capacity simulations
for deep space custody radars. 2019.

[6] Michel L Balinski and Richard E Quandt. On an integer program for a delivery
problem. Operations research, 12(2):300–304, 1964.

[7] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization,
volume 6. Athena Scientific Belmont, MA, 1997.

[8] Norman Biggs. The traveling salesman problem a guided tour of combinatorial
optimization, 1986.

[9] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[10] Joseph MacKay Butler. Tracking and control in multi-function radar. University
of London, University College London (United Kingdom), 1998.

[11] John Paul Byrne, Robin Dickey, and Michael P. Gleason. A space policy primer:
Key concepts, issues, and actors.

[12] Joseph P Camacho. Federal radar spectrum requirements. 2000., 2000.

[13] Doo-Hyun Cho, Jun-Hong Kim, Han-Lim Choi, and Jaemyung Ahn.
Optimization-based scheduling method for agile earth-observing satellite con-
stellation. Journal of Aerospace Information Systems, 15(11):611–626, 2018.

133

[14] George B Dantzig and John H Ramser. The truck dispatching problem. Man-
agement science, 6(1):80–91, 1959.

[15] Morteza Davari, Erik Demeulemeester, Roel Leus, and Fabrice Talla Nobibon.
Exact algorithms for single-machine scheduling with time windows and prece-
dence constraints. Journal of Scheduling, 19(3):309–334, 2016.

[16] Jacques Desrosiers, François Soumis, and Martin Desrochers. Routing with time
windows by column generation. Networks, 14(4):545–565, 1984.

[17] WJ Fabrycky and JE Shamblin. A probability based sequencing algorithm. Jour-
nal of Industrial Engineering, 17(6):308, 1966.

[18] Brian A Foster and David M Ryan. An integer programming approach to the ve-
hicle scheduling problem. Journal of the Operational Research Society, 27(2):367–
384, 1976.

[19] Eugene C Freuder and Richard John Wallace. Constraint Programming and Large
Scale Discrete Optimization: DIMACS Workshop Constraint Programming and
Large Scale Discrete Optimization, September 14-17, 1998, DIMACS Center,
volume 57. American Mathematical Soc., 2001.

[20] Michel Gendreau, Gilbert Laporte, and René Séguin. An exact algorithm for the
vehicle routing problem with stochastic demands and customers. Transportation
science, 29(2):143–155, 1995.

[21] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society: Series B (Methodological), 41(2):148–164, 1979.

[22] Reinhard Haupt. A survey of priority rule-based scheduling. Operations-
Research-Spektrum, 11(1):3–16, 1989.

[23] Thomas Herold, Mark Abramson, Hamsa Balakrishnan, Alexander Kahn, and
Stephan Kolitz. Asynchronous, distributed optimization for the coordinated
planning of air and space assets. In AIAA Infotech@ Aerospace 2010, page 3426.
2010.

[24] T. Ibaraki. Successive sublimination methods for dynamic programming compu-
tation. Annals of Operations Research 11, 1987.

[25] Patrick Jaillet. Probabilistic traveling salesman problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1985.

[26] Eric Johnston. List of satellites in geostationary orbit, 2022.

[27] Kurt O Jörnsten, Oli BG Madsen, and Bo Sørensen. Exact solution of the vehicle
routing and scheduling problem with time windows by variable splitting. 1986.

134

[28] Brian Kallehauge, Jesper Larsen, Oli BG Madsen, and Marius M Solomon. Ve-
hicle routing problem with time windows. In Column generation, pages 67–98.
Springer, 2005.

[29] Niklas Kohl and Oli BG Madsen. An optimization algorithm for the vehicle
routing problem with time windows based on lagrangian relaxation. Operations
research, 45(3):395–406, 1997.

[30] Gilbert Laporte, Francois V Louveaux, and Hélene Mercure. A priori opti-
mization of the probabilistic traveling salesman problem. Operations research,
42(3):543–549, 1994.

[31] Allan Larsen and OB Madsen. The dynamic vehicle routing problem. PhD thesis,
Institute of Mathematical Modelling, Technical University of Denmark, 2000.

[32] Adam N Letchford and Juan-José Salazar-González. Projection results for vehicle
routing. Mathematical Programming, 105(2):251–274, 2006.

[33] Adam N Letchford and Juan-José Salazar-González. Stronger multi-commodity
flow formulations of the capacitated vehicle routing problem. European Journal
of Operational Research, 244(3):730–738, 2015.

[34] Xueting Li, Longxiao Xu, Tianxian Zhang, and Lingjiang Kong. A scheduling
method of generalized tasks for multifunctional radar network. In 2019 Interna-
tional Conference on Control, Automation and Information Sciences (ICCAIS),
pages 1–6, 2019.

[35] Franz Josef Lohmar. World geodetic system 1984—geodetic reference system of
gps orbits. In GPS-Techniques Applied to Geodesy and Surveying, pages 476–486.
Springer, 1988.

[36] Karsten Lund, Oli BG Madsen, and Jens Moberg Rygaard. Vehicle routing with
varying degree of dynamism. 1996.

[37] Chryssi Malandraki. Time-dependent vehicle routing problems: Formulations,
solution algorithms and computational experiments. PhD thesis, Northwestern
University, 1989.

[38] Chryssi Malandraki and Mark S Daskin. Time dependent vehicle routing prob-
lems: Formulations, properties and heuristic algorithms. Transportation science,
26(3):185–200, 1992.

[39] Blair Ellen Leake Negron. Operational planning for multiple heterogeneous un-
manned aerial vehicles in three dimensions. 2010.

[40] John O’Callaghan. Space debris: Special report. Aerospace America, 2022.

[41] Chairman Joint Chiefs of Staff. Joint publication 3-14: Space operations. 2020.

135

[42] Air Force Doctrine Publication 3-14 Counterspace Operations. Space situational
awareness. 2021.

[43] Michael Angelo A. Pedrasa, Ted D. Spooner, and Iain F. MacGill. Coordinated
scheduling of residential distributed energy resources to optimize smart home
energy services. IEEE Transactions on Smart Grid, 1(2):134–143, 2010.

[44] Pulse Radar. Classification of radar systems (1).

[45] Ricardo Reinoso-Rondinel, Tian-You Yu, and Sebastián Torres. Multifunction
phased-array radar: Time balance scheduler for adaptive weather sensing. Jour-
nal of Atmospheric and Oceanic Technology, 27(11):1854–1867, 2010.

[46] Mark A Richards. Fundamentals of radar signal processing. McGraw-Hill Edu-
cation, 2014.

[47] Réne Séguin. Problemes stochastiques de tournees de vehicules. 1996.

[48] Marius M Solomon and Jacques Desrosiers. Survey paper—time window con-
strained routing and scheduling problems. Transportation science, 22(1):1–13,
1988.

[49] WK Stafford. Real time control of a multifunction electronically scanned adap-
tive radar (mesar). In IEE Colloquium on Real-Time Management of Adaptive
Radar Systems, pages 7–1. IET, 1990.

[50] Shunji Tanaka and Shuji Fujikuma. A dynamic-programming-based exact algo-
rithm for general single-machine scheduling with machine idle time. Journal of
Scheduling, 15(3):347–361, 2012.

[51] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[52] Pei Wang and Yuejin Tan. A heuristic method for selecting and scheduling
observations of satellites with limited agility. In 2008 7th World Congress on
Intelligent Control and Automation, pages 5292–5297, 2008.

[53] Xinwei Wang, Yi Gu, Guohua Wu, and John R Woodward. Robust scheduling
for multiple agile earth observation satellites under cloud coverage uncertainty.
Computers & Industrial Engineering, 156:107292, 2021.

[54] N Wassan. Reactive tabu adaptive memory programming search for the vehicle
routing problem with backhauls. Journal of the Operational Research Society,
58(12):1630–1641, 2007.

136

