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Abstract

Air Force flight, training, and crew scheduling is a labor-intensive and largely manual pro-
cess across all flying squadrons. Complex training requirements and dependencies, operational
constraints, numerous qualifications, and unforeseen missions confound the schedule develop-
ment process. We develop multiple optimization formulations for the Air Force crew scheduling
problem. Furthermore, we present multiple objective functions aiming at mimicking reality to
account for pilot qualification upgrades and their ability to stay current and mission ready. To
compare candidate schedules, we identify numerous metrics that show the impact of the dif-
ferent objective functions. Finally, we briefly discuss how to incorporate scheduler preferences
and focus on creating human-interpretable schedules so that the scheduler can select the most
desired schedule for the squadrons’ current needs.
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Chapter 1

Introduction

The United States Air Force has a complex resource scheduling problem. They operate globally,

even in remote regions of the world, with a diverse set of missions. There are fighter jets for

combat operations, cargo planes to transport people and equipment, tankers to provide in-flight

fuel to the other aircraft, and many others. Some Air Force missions have the benefit of a

regular demand pattern, but most arise unexpectedly. Thus scheduling pilots to fly missions,

while also ensuring that they keep up with their training requirements, and are allowed sufficient

leave time is a complicated optimization problem. Like many legacy practices, flight scheduling

is currently an extremely non-standardized, manual, and tedious process that relies on several

different data sources to ensure a flight is legally able to fly. In every flying squadron, schedulers

are often pilots themselves, and when they are not flying, typically spend eight hours per day

assigning crews to flights.

With the recent push within the Department of Defense and the Air Force for automated

methods and artificial intelligence, there is an opportunity to significantly enhance the schedul-

ing process [7, 10]. Puckboard is a web-based software application aimed at automating schedul-

ing for C-17 crews, while having all necessary data in one centralized location. Puckboard is

one of many recent initiatives across the Air Force to move towards a more digital and agile

Air Force. It was created by TRON, which is a part of the Aloha Spark Office at Hickam Air

Force Base (AFB) in Honolulu, Hawaii. TRON’s focus is to build software that will reduce

administrative tasks and allow more time for Airmen to execute their missions. The objective

of our research is not to replace schedulers, but to design optimization-based algorithms, to

be transitioned to the Air Force through Puckboard, that will greatly decrease the time spent

on the labor-intensive and largely manual process of scheduling so that the Airmen can focus

more on their primary missions. Furthermore, the longer-term goal of Puckboard is to create

an application used in every flying squadron across the Air Force and eventually be used to

coordinate with outside squadrons and agencies.

1.1 Contributions

We make the following contributions in this thesis:

• We present our baseline integer optimization formulation for the Air Force crew scheduling

problem, with a few different objective functions for the scheduler to choose from.
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CHAPTER 1. INTRODUCTION

• Next, we provide an extension to our baseline formulation that incorporates a pilot’s flight

training requirements such that they are able to work towards qualification upgrades and

staying constantly qualified. This formulation thus generates schedules that more closely

mimic an actual schedule in a typical flying squadron. Similar to our baseline model,

we also present a few different objective functions to include the pilot’s flight training

requirements.

• Lastly, we present metrics and graphics to allow the schedulers to analyze the objective

functions to see how a specific schedule affects a squadron as time progresses.

1.2 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we describe the basic considerations

that go into assigning crews to a flight schedule. We also compare how the process currently

looks in an Air Force squadron, how Puckboard works right now, and then our team’s goals

and approach. Additionally, we provide a brief literature review. We discuss all the data and

information necessary for creating a feasible schedule in Chapter 3, while further detailing our

team’s approach and methodologies. In Chapter 4, we detail the mathematical formulations

to solve the Air Force crew scheduling problem. Next, in Chapter 5, we look at a specific

squadron’s personnel and historical flights from a six month time period to analyze the effects

of our methodologies based on proposed relevant metrics and visualizations. Finally, in Chapter

6, we present our conclusions and key takeaways, and provide some thoughts and avenues for

future work.
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Chapter 2

Background and Literature Review

Puckboard is currently focused on only one type of air-frame, the C-17, which is the closest

plane the Air Force has to a commercial airliner with respect to the size and capabilities of

the plane. It can be used to transport people and/or cargo. A C-17 is staffed with mainly

two different types of positions: pilots and loadmasters. Pilots fly the aircraft, and loadmasters

are in charge of the part of the aircraft where the people and cargo are located. Both pilots

and loadmasters have different levels of qualifications that designate if they are able to fly on

various flights. The three general flight events that will be discussed throughout this thesis

include simulators, training (commonly referred to as locals), and missions, which all require

specific qualifications of personnel depending on the task(s) to be executed on the flight. The

objective for the scheduler is then to take all of this into consideration to create a feasible and

legally qualified flying schedule.

Typically, simulators and locals are scheduled months ahead of time. In particular, sim-

ulators are managed through contractors, and the Air Force covers a non-refundable cost for

simulator flights well in advance, so the schedule is also set well in advance. Missions, on the

other hand, are usually given to a squadron scheduler only two to three weeks in advance, and

sometimes there are missions that pop up within just a few days of notice. When these urgent

missions appear, the scheduler is short on time and the scheduling process becomes very hectic.

Due to these unforeseen flights, which occur fairly often, schedulers usually only schedule crew

to flights at most two weeks in advance to prevent the need to have to adjust a large number

of flights. For these reasons, an automated tool like Puckboard can be very helpful and make a

great impact in the reduction of time a scheduler spends scheduling crews.

The remainder of the chapter is organized as follows. In Section 2.1, we highlight the original

planning process and where the name Puckboard came from. We detail how most squadrons’

current scheduling processes work in Section 2.2. We explain the current use of Puckboard in

Section 2.3, along with challenges and shortfalls. We initially propose our planning process in

Section 2.4. Lastly, we conclude in Section 2.5 with a literature review of the pertinent research

describing solution approaches to similar problems.
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.1 Original Planning Process

Every squadron operates and schedules flights based on what works best for their personnel.

However, for many years, flying squadrons and their leadership would congregate around a

white board and lay out all the flights for the upcoming week(s). Each member in the squadron

was then assigned a designated “puck,” and then the leaders and schedulers spent an inordinate

amount of time assigning personnel to all the possible flights, deconflicting everyone’s schedules

by hand. The notion of moving “pucks” around a white board is where the name Puckboard

came from.

2.2 Current Planning Process

Our team was fortunate to be able to visit a C-17 squadron at Hickam AFB and get a glimpse

into one specific squadron’s operating procedures. We had the chance to interview schedulers

and witness the way their current scheduling process is handled. Like most flying squadrons

across the Air Force, they currently use a Microsoft Excel based scheduling tool, which displays

the flights, the dates, and who is assigned to the flight. There is a separate data source that

displays the details for simulator flights, and different databases that are home to necessary

personnel information. Typically, an Airman can request to be on a flight if there are open

positions, but if a scheduler needs to fill empty slots, they have to call, text, or personally talk

to a specific pilot or loadmaster to see if they are available. This can be a very tedious and time

consuming task, especially when a squadron receives an unexpected mission that is to be flown

in the next few days. A scheduler must then cross reference all of these different data sources

and contact available personnel to successfully schedule these urgent missions.

2.3 Puckboard Planning Process

Puckboard currently can assign crews to a batch of flights within a desired time window ac-

counting for three constraints: 1) a crew member cannot fly when they are unavailable due to

leave, temporary duties (TDYs), appointments, etc., 2) each person can only be in one place at

a time, and 3) each flight must have the correct number of qualified personnel to fill the differ-

ent roles required to be legally safe to fly. When it comes to the third constraint, Puckboard

treats all loadmasters as if they have the same qualification and only considers two different

qualifications for pilots: whether or not they are qualified to be an Aircraft Commander (AC).

In reality there could be upwards of 30 different combinations of qualifications at a specific

squadron for pilots depending on the flight and task(s) they are assigned to accomplish on that

particular flight (more detail on this to come in subsequent sections). Additionally, the appli-

cation allows for the schedulers to lock in crew members when a specific member requests to be

on a flight, or when a scheduler confirms with a member that they will accept a specific flight

assignment. Puckboard then uses a simulated annealing based heuristic through OptaPlanner

to automatically assign available crew to the desired flight.

However, the basic constraints and modeling put in place right now do not provide results

that mimic the reality of a schedule actually used in practice. Thus, the squadrons that have
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

already adopted Puckboard, mostly just use the basic functionality of schedule visualization and

the benefit of all necessary data located in one central location. Therefore, there is still plenty of

room to improve the automation capabilities and the optimization algorithms to provide more

meaningful solutions.

2.4 Proposed Planning Process

Our goals for the overall Air Force scheduling problem are two-fold: 1) enhance Puckboard’s

automation capabilities for the crew scheduling problem, and 2) expand Puckboard to automat-

ically schedule the flight events and the specific event types to enhance schedule efficiency and

maximize training accomplished. In this thesis, we analyze and propose optimization methods

for the first task, commonly referred to as the crew rostering problem. Throughout this paper,

we focus only on the pilot problem space as it is more complicated from the vast number of

qualifications and there are more pilots required for each flight compared with loadmasters.

However, our methods can easily expand to include loadmasters as well. See the subsequent

chapters for a more detailed explanation of the team’s approach.

2.5 Literature Review

Workforce scheduling is a classic optimization problem which dates back to the 1950s. The

development of optimization methods that can identify or approximate optimal solutions for

complex scheduling problems in practical computation times remains an active area of research.

The challenge when it comes to these types of problems in the real world is that each problem

typically provides its own unique characteristics not captured in standard formulations. With

Puckboard, some unique challenges include the complicated hierarchical qualification struc-

ture, the crew requirements for the combination of different flights and tasks, urgent missions

that disrupt previously scheduled missions, pilot training requirements, and the fact each pilot

possesses additional duties outside of flying.

Very little work has been documented on the military scheduling problem and most prior

efforts have studied the Naval flight training scheduling problem. One of the first papers that

studied the military scheduling problem [15], encountered many of the same constraints rele-

vant to the scheduling problem today; Honour used a network formulation, which is not used

in this thesis, but could potentially be a valid alternative explored to represent our assignment

of pilots to flights. Hall et al. [12] analyzes current scheduling practices in the Navy, many

which are analogous to the Air Force scheduling problems, however, their analysis is primarily

focused on a pilot training scenario where their main objective is to train pilots in the fastest

way possible. Both Jacobs [16] and Slye [21] presented mixed integer linear optimization formu-

lations to different Navy scheduling problems, where we were able to leverage some of the basic

constraints in our formulations. Jacobs focused on the Navy pilot training problem with really

only two different kinds of qualifications (student pilots and instructor pilots) and an objective

of minimizing the time each student spends at pilot training. Additionally, Slye more heavily

focused on the scheduling of flight events due to constrained resources rather than the crew

scheduling aspect of the problem. These efforts have looked at slightly different circumstances
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and there has not been an attempt to elicit and accommodate user preferences in the process or

to generate human-interpretable schedules, both of which we believe are essential for practical

adoption. These articles provided a good starting point for certain constraints, but we quickly

diverged from these efforts due to the unique challenges mentioned above.

There has been significantly more research discussed on scheduling in the commercial airline

industry. Typically their scheduling process occurs in roughly three stages: 1) demand modeling,

2) flight scheduling (number of flights, flight legs, flight times, etc.), and 3) crew scheduling.

Here we focus on the last stage of their scheduling problem, which is usually broken up into

crew pairing and crew rostering [17]. Crew pairing involves assigning a pairing of flights or

legs that start and end at the same base, and crew rostering refers to assigning crew to these

pairings under specific constraints. Most of the crew scheduling research has been done on

the crew pairing phase and not necessarily the crew rostering stage, although more and more

research on rostering is starting to appear. Caprara et al. [5] propose generic models and

formulations for a variety of crew rostering problems (CRP), that provide useful insights into

different constraints necessary in such problems, and offer ideas in modeling them as linear

functions. Zhang et al. [26] provide more detailed research on specifically the airline crew

rostering problem (ACRP) and offer several models and formulations in solving the ACRP.

Additionally, they provide algorithms that help balance the trade-offs between hard and soft

constraints present in all crew scheduling problems. The overall goal of the ACRP is usually

to minimize the overall cost for the specific company, but Zhou et al. [27] describe ways to

account for crew fairness and maximizing the satisfaction of their employees. Furthermore,

they provide useful insights into multi-objective optimization formulations, which is briefly

discussed in our research, where we ultimately try to have a reasonable work-life balance for

the military members. While the military scheduling problem has some direct parallels to the

commercial airline’s scheduling problem, there are some stark differences and challenges that we

are presented with. Ultimately, the commercial airline industry is able to leverage pattern based

flight schedules and the crew pairing phase, both of which simplify the crew rostering phase,

that the military scheduling problem does not have the luxury of leveraging. Also, the complex

qualification hierarchy, abundant training requirements, and the pop-up missions present in

the military scheduling problem provide further complications not necessarily present in the

commercial airline scheduling problem.

Scheduling problems are not unique to only airline problems. Other common industries and

applications where scheduling literature arises is healthcare [13, 18, 20], aircraft maintenance

[14, 23], distribution and call centers [3, 19], and transit industries [8, 9]. Additionally, there

are popular literature surveys on all types of scheduling problems as a good starting point for

more research [17, 22].
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Chapter 3

Scheduling Problem Inputs

As mentioned in previous chapters, information and relevant data are needed from various data

sources to solve the scheduling problem. Data is currently being pulled and used from multiple

databases within the Air Force, which include Aviation Resource Management System (ARMS),

LeaveWeb, Graduate Training Integration Management System (GTIMS) and Global Reach.

Global Reach is a C-17 specific database, so we heavily rely on a manually provided subset of

the data for our modeling approaches. The relevant data within all these different data sources

include historical flights (dates/type/crew type/etc.), legally flyable crew requirements for each

type of flight, pilot training requirements, pilot evaluation dates, pilot unavailability, and pilots’

qualifications. The following provides a more detailed discussion on the intricacies within the

given and necessary data.

We begin this chapter by introducing the necessary inputs and data to consider in order

to solve the scheduling problem in Sections 3.1 and 3.2. In Section 3.3, we introduce some

assumptions to simplify the problem. We conclude in Section 3.4 with a discussion on how

we solve the Air Force crew scheduling problem qualitatively, explaining the relevance of the

objective functions and necessary constraints.

3.1 C-17 Flight Data

The three flight events are simulators, locals, and missions. These flights can be broken down

further into different flight types: Air Land (AL), Airdrop (AD), and Special Operations Low

Level II (SOLL II). AL flights are the most common type of flight (usually the assumed type if

not specified) and do not require special qualified pilots, whereas the AD and SOLL II flights

require the pilots to have special qualifications. Additionally, all types of flights may require

Air Refueling (AR), if the flight happens to have a long flying time. This leads to the discussion

of required crew to fly on each one of these flights. Normally there are two types of crews:

either augmented or basic. Augmented crew flights require a minimum of three pilots to fly a

flight and basic crew flights have a minimum requirement of two pilots. Within the augmented

crew types, there are special augmented designations if the flight requires AD, SOLL II, or AR.

Thus, the pilots with special qualifications are required for these more specialized flights.

The schedulers are given information from parent organizations like Air Mobility Command

(AMC) for the different flights a particular squadron needs to accomplish. For simulator and
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CHAPTER 3. SCHEDULING PROBLEM INPUTS

local flights, the scheduler is usually given the date, start time, and type of flight training. For

each mission, the scheduler is given the entire plan including required crew, any other special

requirements, itinerary, full schedule of stops and locations, etc. Then once a scheduler has all

of this information, they must take into account all personnel information to assign necessary

crew to meet the minimum flight requirements.

3.2 Personnel Data

The most important personnel data discussed above are unavailability dates and pilot qualifi-

cation designations. There are various reasons a pilot might be unavailable: leave, temporary

duties (TDYs), additional duties, appointments, etc. Unavailability is usually described with a

start and end date, and sometimes could include specific time periods if it is simply a short med-

ical appointment. A pilot’s qualification is typically a five-character designation (e.g., FPCC5 ),

where the first three letters refer to their AL qualification, the fourth letter is their training

level, and the last digit is their special duty qualification. The training level qualification (usu-

ally designated as level A, B, or C) is typically set by the squadron commander to establish

the more experienced pilots and those who require fewer flight hours to stay current or become

recurrent. The special duty qualifications are for flights that are tasked to execute AD, SOLL

II, or other atypical tasks embedded within a squadron’s specific mission set (e.g., landing on ice

in Antarctica). For C-17 crews there are generally four distinct groups of qualifications. From

highest to lowest qualification group they are: evaluator pilots (EPs), instructor pilots (IPs),

mission pilots (MPs), and flight pilots (FPs). Based on discussions with C-17 pilots, a typical

C-17 squadron has about 70 pilots, where there is roughly 7 EPs, 10 IPs, 15 MPs, and 38 FPs.

Also discussed above in regards to personnel data are the pilot’s semi-annual or periodic

training requirements and their different evaluation dates. Pilots have required types of flights

they must fly semi-annually or periodically to stay current with their qualifications and ability

to fly. So usually, pilots prefer to fly on flights that help them to constantly work towards

meeting their training requirements. For instance, a specific pilot would be against flying the

same type of simulator over and over again because that repetition would not help them progress

in their flying career. Furthermore, pilots typically like to be in control of their own schedule

for various reasons, so they will voluntarily request to fly flights they are interested in or are

necessary to continue to move up the ranks.

3.3 Assumptions

In this thesis we make a few assumptions to simplify the proposed methods. First, we assume

each pilot can only fly one event per day. In reality, a pilot can fly two simulators in the same

day, but it does not happen very often and really only happens when a specific squadron is

struggling to find available pilots. In determining pilot availability, we also have to account for

crew rest, which is the rest time a pilot is legally required to take after completing a flight.

There is typically no crew rest for simulator flights, but for training and mission flights, the

necessary crew rest can be from hours to days [1]. We assume crew rest is taken care of for

the locals based on our first assumption that only one flight can be flown per day. However,
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for the missions, we are given historical data on how long a pilot is on crew rest for based

on the day the postmission debrief occurs, so we assume that accounts for crew rest for those

flights. Scheduling a future event has a projected duration, but of course this time is truly

uncertain. Thus, adding in a buffer time, like in the commercial airline industry, and using

crew rest regulations allow us to obtain a projected duration that a pilot is unavailable both

for the flight and the accompanied crew rest.

3.4 Model Description

Integer optimization is a natural way to model the CRP, where our goal is to assign pilots to

flights. The three most important constraints given a set of flights are that we need sufficient

pilots, both the quantity and the correctly qualified pilots, and that no pilot can be assigned to

overlapping flights.

Talking to subject matter experts, many whom are or were schedulers in their respective

squadrons, describe their conflicting and evolving priorities when creating schedules. They

explain their main goal is to make sure each flight is fully staffed, but after that they consider

two other main priorities. First, they aim to keep their most qualified pilots, EPs and IPs,

close to their home base as much as possible, as these pilots are the only ones able to sign off

on training flights. Second, schedulers try to schedule pilots to a variety of different types of

flights so that they are able to stay current with their different flight training requirements.

Taking these priorities into account, we offer different objective functions into our optimization

formulations so that schedulers can choose the objective function that best tailors to their

immediate needs. Moving forward with some of these ideas, we present our mathematical

formulations in the following chapter.
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Chapter 4

Formulation

The Air Force crew scheduling problem can be solved as an assignment based integer optimiza-

tion problem. The goal of this problem, given a set of flights, is to properly assign personnel to

these flights based on Air Force flight regulations [2], the crew that best meets the squadron’s

current objectives, and the crew that best executes the specific flight’s tasks. To further com-

plicate the problem, we must include the military specific constraints that we have previously

mentioned.

We introduce the baseline formulation in Section 4.1, which is the minimum set of constraints

needed to have a legally flyable crew. We present an extension of the baseline formulation

in Section 4.2, where it aims to consider additional constraints a scheduler accounts for to

create the best possible schedule and to ensure personnel are meeting necessary flight training

requirements.

4.1 Baseline Model Formulation

This section presents the mathematical formulation of the baseline problem, formulated as a

integer optimization problem. The baseline problem is also presented in [6].

4.1.1 Indices and Sets

i ∈ I Pilots

f ∈ F Flights

p ∈ P Periods

j ∈ J Qualifications
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4.1.2 Subsets

IEP ⊂ I The set of pilots qualified to be EPs

IIP ⊂ I The set of pilots qualified to be IPs

Uf ⊂ F The set of flights that overlap with flight f for f ∈ F

Jf ⊂ J The set of required qualifications for flight f ∈ F

Pf ⊂ P The set of periods in flight f ∈ F

4.1.3 Parameters

Imin
f Minimum number of pilots required for flight f ∈ F

Imax
f Maximum number of pilots allowed for flight f ∈ F

aip 1 if pilot i ∈ I is available during period p ∈ P , zero otherwise

zij 1 if pilot i ∈ I satisfies qualification j ∈ J , zero otherwise

qfj Number of pilots with qualification j ∈ Jf or higher needed on flight f ∈ F

Wi Negative weight ∈ [−1, 0) attached to deploying pilot i ∈ I on a flight

4.1.4 Decision Variables

Xif 1 if pilot i ∈ I is assigned to flight f ∈ F

4.1.5 Mathematical Formulation

min
∑
i∈I

∑
f∈F

Xif (4.1)

subject to: ∑
i∈I

Xif ≥ Imin
f ∀f ∈ F (4.2)∑

i∈I
Xif ≤ Imax

f ∀f ∈ F (4.3)∑
i∈I

zijXif ≥ qfj ∀f ∈ F, j ∈ Jf (4.4)

Xif +Xif ≤ 1 ∀i ∈ I, f ∈ F, f ∈ Uf (4.5)

Xif ≤ aip ∀i ∈ I, f ∈ F, p ∈ Pf (4.6)

Xif ∈ {0, 1} ∀i ∈ I, f ∈ F (4.7)

The first equation, the objective function, minimizes the number of pilots scheduled to fly

in the desired time window. Additionally, (4.1) can be used for feasibility as sometimes in last

minute situations, a scheduler might solely be in search for a legally flyable crew. We name each
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objective function so we can easily refer to them in future sections and we name (4.1) “Min #

Assignments.”

Equations (4.2) and (4.3) ensure that the number of required pilots on flight f are filled; all

flights have a minimum required number of pilots, but some also have a maximum number of

pilots allowed to be on a flight.

Equation (4.4) ensures that each flight has enough pilots with the appropriate qualifications.

Consider a flight where you need two pilots; one pilot with a minimum qualification level of A

and the other pilot with a minimum qualification level of B, where A is a higher qualification

than B. Then, qfj = 1 for qualification j = A and qfj = 2 for j = B. The way this constraint

is formulated, if qfj = 1 instead of qfj = 2 for j = B, it could be the case that the second pilot

the optimization model assigned to that flight would not be qualified enough to fill the seat for

j = B.

Equation (4.5) ensures each pilot can only be in one place at a time; the set Uf also takes

into account unavailability due to crew rest requirements (12 hours) after each flight and the

assumption pilots can only fly one event per day. Equation (4.6) ensures that a pilot cannot fly

if they are unavailable and Equation (4.7) establishes the domain of the decision variables to

be binary.

4.1.6 More Objective Functions

min
∑
i∈IIP

∑
f∈F

Xif +
∑

i∈IEP

∑
f∈F

Xif (4.8)

max
∑
i∈I

∑
f∈F

XifWi (4.9)

Equation (4.8) or “Max EP/IP”, minimizes the number of IPs and EPs assigned to flights,

in order to account for the scheduler’s priorities discussed in Section 3.4 of maximizing the

availability of the highly qualified pilots.

Equation (4.9) or “Penalize Overqual”, is similar to the previous equation, but attempts

to assign the lowest qualified pilot feasible for each pilot seat. Lower ranked pilots will have

less of a negative impact on the objective value, and will thus be used before higher qualified

pilots who have a higher negative penalty. This allows the more qualified pilots to be available

for important missions and administer training flights. Wi is used in the objective function to

assign the lowest qualified, feasible pilot to each slot. More qualified pilots have a more negative

Wi, so in a maximization problem, they will be used sparingly. We normalize these weights to

be in the interval [−1, 0), so to get Wi values in the appropriate range, we divide the integer

qualification levels by the number of unique qualification levels in the squadron.

4.2 Training Requirements Model Formulation

Now we expand upon the baseline formulation to incorporate training requirements, so that

pilots stay current and legally qualified. Additionally, this will prevent pilots from flying the

same type of flight repeatedly.
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All constraints and information from Section 4.1 are also included in this model, but for the

sake of simplification we choose to not rewrite them. Instead we present additional constraints

that are to be added to the baseline model, and offer substitute objective functions for the sched-

uler to consider. Like in the baseline model, this model’s mathematical formulation can also be

formulated as a integer optimization problem and is described in the following subsections.

4.2.1 Additional Indices and Sets

s ∈ S All types of flight training requirements

4.2.2 Additional Sub Sets

Fs ⊂ F Flights that are of type requirement s ∈ S

Si ⊂ S Set of requirements that pilot i ∈ I needs to satisfy

4.2.3 Additional Parameters

Ris Number of requirements of type s ∈ S needed for pilot i ∈ I

tis Time until requirements of type s ∈ S are due for pilot i ∈ I

4.2.4 Additional Variables

rkis 1 if k ∈ 1 : Ris of requirement s ∈ Si is satisfied by pilot i ∈ I

4.2.5 Mathematical Formulation

max
∑
i∈I

∑
s∈Si

∑
k∈1:Ris

rkis (4.10)

subject to: ∑
k=1:Ris

rkis ≤
∑
f∈Fs

Xif ∀i ∈ I, s ∈ Si (4.11)

rkis ≤ rk−1,i,s ∀i ∈ I, s ∈ Si, k ∈ 2 : Ris (4.12)

rkis ∈ {0, 1} ∀i ∈ I, s ∈ Si, k ∈ Ris (4.13)

Equation (4.10) or “Training Equal”, the objective function, maximizes the number of train-

ing requirements satisfied, weighting all requirements equally.

Equation (4.11) says that the number of requirements completed of type s by pilot i is less

than or equal to the number of flights flown of type s by pilot i. Equation (4.12) ensures that

the binary variable representing one requirement satisfied of type s by pilot i is 1 before the
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binary variable representing two requirements satisfied is 1, and so on. Finally, Equation (4.13)

establishes the domain of these additional auxiliary variables to be binary.

4.2.6 More Training Requirements Based Objective Functions

max
∑
i∈I

∑
s∈Si

∑
k∈1:Ris

rkis(Ris − k + 1) (4.14)

max
∑
i∈I

∑
s∈Si

∑
k∈1:Ris

rkis(Ris − k + 1)(
1

tis
) (4.15)

max
∑
i∈I

∑
s∈Si

∑
k∈1:Ris

rkis(Ris − k + 1) +
∑
i∈I

∑
f∈F

XifWi (4.16)

In contrast to Equation (4.10), Equation (4.14) or “Training Linear”, weights the training

requirements linearly by rewarding more if there are more outstanding requirements of that

type of flight for a pilot. For instance, if for a pilot there are 3 of Type 1 requirements and 2

were flown in a period, the 1st requirement flown would have a reward of 3 and the 2nd would

have a reward of 2.

Equation (4.15) or “Training Time”, has the same structure as (4.14), but now we account

for time such that the pilots who have more urgent requirements to finish before they become

non-current are rewarded more heavily.

Equation (4.16), referred to as “Training Penalize Overqual”, is a multi-objective function

that accounts for both training requirements and overqualification. The first part of the ob-

jective function rewards the training requirements linearly like in Equation (4.14), whereas the

second part of the objective function, similar to (4.9), assigns the lowest qualified pilot feasible

for each slot. Lower ranked pilots will have less of a negative impact on the objective value, and

will thus be used before higher qualified pilots who have a higher negative penalty. We note

that the training requirements part of the objective function is more heavily prioritized than

the overqualification part of the objective function.

Furthermore, any combination of any of the objective functions proposed in Sections 4.1 and

4.2 are valid substitutions to the already described equations, but more research and exploration

needs to be done on multi-objective optimization and we briefly explain this further on in the

thesis.
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Computational Experiments and

Findings

To test our methodologies and formulations, we applied them to a provided dataset from a

single C-17 squadron. The dataset consisted of 87 pilots (9 EPs, 37 IPs, 8 MPs, and 33 FPs)

and about six months worth of flights (486 simulator flights and 314 local/mission flights).

The dataset also had 245 records of unavailability, where certain pilots were linked to multiple

unavailability periods. Throughout this chapter we present the effectiveness of our formulations

along with evaluations of the different objective functions on this data.

The rest of the chapter is organized as follows. In Section 5.1, we further describe the dataset

and the relevant features important to obtain our results. We describe the computational tools

used and the efficiency of our optimization algorithms in Section 5.2. We propose important

metrics discussed by users and subject matter experts to evaluate schedules in Section 5.3. In

Section 5.4, we display the results of the objective functions for the proposed metrics, as well as

visualizations to help schedulers analyze candidate schedules. Lastly, in Section 5.5, we conclude

this chapter summarizing the results and offering a few recommendations.

5.1 Dataset Description

We further detail all the data within the provided dataset in this section. First, the pilot

data provides their name or pilot ID and their qualification for which types of flights they are

able to fly. Next, is the pilot unavailability data file, which gives the start date, end date,

and reason for being unavailable. For the simulator flights data, each entry consists of the

specific type of simulator and the date the simulator flight was accomplished. We note that

in this dataset, there are nine unique types of simulator flights. The locals and missions were

combined in one file, where one entry in the file consists of the type of flight, the crew type,

the premission brief date, the departure date, the return date, the postmission debrief date,

whether the flight was at night, and whether the flight had AR or not. The main thing to note

from this file is that if a pilot is assigned to a flight, they are completely assigned to that flight

from the premission brief date to the postmission debrief date, and not only from the departure

date to the return date. We were also provided the training requirements necessary for each

qualification level that we extrapolated out to each pilot, where certain qualifications require
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more training requirements of a specific type of flight than others. In our modeling we consider

9 simulator training requirements and 5 locals/missions training requirements, for a total of 14

different flight training requirements. Finally, we note that the data provided did not actually

contain which pilots were assigned to which flights.

Now to preprocess all the data to be used in the model, we first set the pilots to be unavailable

for all their record dates in the unavailability dataset. Next, based on the event type (simulators

and locals/missions), we are able to determine the quantity of pilots needed for each flight based

on Air Force documentation and details provided by schedulers. Once we know the event type,

we further determine the necessary crew qualifications makeup from the type of flight and crew

type information in the data, which is again based on Air Force documentation and provided

details. We are also able to determine which flights overlap with each other based on the dates

provided in the data, so that our algorithms do not schedule pilots on overlapping flights. Lastly,

we determine the necessary training requirements for each pilot based on the data provided such

that our algorithms can track and reward pilots for completing their necessary training.

5.2 Computational Efficiency

To carry out our experiments, we used the programming language Julia, the modeling language

JuMP for optimization, and the commercial solver Gurobi to solve our integer optimization prob-

lems. Typically with combinatorial and integer optimization problems, heuristics are needed

to ensure the optimization problems are solved to optimality. However, because we were only

solving the problem every two weeks as recommended by the schedulers and leveraging the

functionality of Gurobi, we were able to solve each two week problem instance to optimality in

only a matter of seconds. If a commercial solver like Gurobi or CPLEX is unavailable, then

further heuristic methods might need to be explored to solve the problem instances efficiently

and to ensure the problems are solved to optimality.

5.3 Metrics Description

Recall the two main priorities in a schedule for the schedulers after feasibility are keeping their

highly qualified pilots available, or preventing overqualification, and maximizing the number of

training requirements completed. We propose methods to quantify each of these priorities into

metrics to display to the scheduler in order for them to decide what is best for the squadron at

that time. Furthermore, talking to pilots in different flying squadrons, they explain an additional

metric they care about in their own schedule is the total number of locals and missions flown.

We directly optimize the metrics for overqualification and training requirements completed in

our formulations, but the other metric is used for schedule evaluation after the fact and to

confirm the objective functions work as intended. We analyze the total number of locals and

missions flown per pilot for the different qualification groups, where we would expect the more

experienced pilots to fly fewer flights when we optimize for overqualification.
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5.3.1 Overqualification

To maximize the availability of highly trained pilots, we introduce the notion of overqualification.

We define overqualification to be the act of assigning a more qualified pilot then necessary to

fill an individual pilot seat on a particular flight. The idea of preventing overqualification is

exactly why Equations (4.8) and (4.9) were introduced in Section 4.2.

We further define how to quantify the notion of overqualification by introducing an overqual-

ification score (OQS). The OQS for one single pilot assignment is the number of qualification

levels greater than the minimum qualification necessary for a specific pilot seat. For example, if

the minimum qualification level needed for a particular seat was 1, but a pilot with qualification

5 was assigned to that seat, then the OQS for that seat would be: (5−1) = 4. We then take the

cumulative OQS for every single pilot assignment to get the total OQS. Additionally, we also

present the average OQS, by dividing the total OQS by the total number of pilot assignments.

We also note that the Wi’s in the objective functions are set in such a way to minimize OQS.

We set the lowest qualified pilots to be the smallest integer value and the highest qualified pilots

to be the number of unique pilot qualifications so the higher qualified pilots are penalized more

than the inexperienced pilots in a maximization problem.

We refine this previous metric by introducing an advanced OQS (AOQS). The calculation

is the same for each pilot assignment as OQS, but instead we use a subset of qualifications for

the AD and SOLL II events. Only the special qualified pilots are able to fly AD and SOLL II

events, so it would be unnecessary to consider the entire array of qualifications for these types

of flight events in our scoring. Again, aggregating across all pilot assignments gives us the total

AOQS, and dividing the total AOQS by the total number of pilot assignments gives us the

average AOQS.

5.3.2 Training Requirements

To compare the number of training requirements accomplished by the different objective func-

tions in Section 4.2, we count the total number of training requirements completed for each

pilot. For each training requirement a pilot accomplishes, they receive a single point, however

it is possible to accomplish more than one training requirement on a particular flight. We then

aggregate the total number of training requirements accomplished for each pilot across all flights

and time periods to get the total number of training requirements accomplished.

5.3.3 Total Locals and Missions Flown

Work-home balance is a crucial aspect of a pilot’s life. More qualified and older pilots, who

have families and training to evaluate, tend to like to stay close to home. By contrast, younger

and more inexperienced pilots usually prefer to jump on missions and locals to gain more real

flying experience while being able to fly to new places around the world. Additionally, locals

and missions tend to be more rigorous and time consuming due to all the preparation needed

before and after each flight. These are all reasons pilots or users are interested in the total

number of locals and missions each one of them are flying.
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5.4 Metrics Results

To gather results for each objective function, we solve the problem for the first two weeks, save

the optimal flight-pilot assignments, take that into account for the next two weeks, solve the

problem for that next two weeks, and continue that process until we assigned pilots to all of

the flights in the dataset. We then aggregate all of this information across all thirteen two

week time periods to gather the six months worth of assignments for each objective function to

compare metrics.

5.4.1 Overqualification

We present the different scores for the three baseline objective functions in Table 5.1. We see

that Equation (4.1) has the highest scores, which is expected because this objective function

does not capture overqualification. Now both Equations (4.8) and (4.9) were used to directly

minimize the OQS. However, we see that Equation (4.9) had the lower score because it attempted

to assign the lowest qualified pilot for each pilot seat, whereas Equation (4.8) only focused on

preventing overqualification for the highest two qualification groups.

Equation Total OQS Ave. OQS Total AOQS Ave. AOQS

Min # Assignments (4.1) 18,652 9.869 17,186 9.093
Max EP/IP (4.8) 7,840 4.148 6,691 3.540

Penalize Overqual (4.9) 4,188 2.216 3,288 1.740

Table 5.1: Total and average OQS and AOQS for each objective function.

5.4.2 Training Requirements

Before we discuss training requirements results, we illustrate the difference between Equations

(4.10) and (4.14) by referencing Figures 5.1 and 5.2. Figure 5.1 corresponds to the objective

function where each training requirement is weighted equally and Figure 5.2 corresponds to the

objective that weights the training requirements linearly based on the explanation in Section

4.2.5. Each color represents the number of outstanding training requirements for a particular

flight event and the height of each line represents the frequency of outstanding training re-

quirements across all pilots and all flight events. For example, if one pilot has four training

requirements left for all fourteen training requirement categories, then the frequency for that

particular pilot would be fourteen for four outstanding requirements and zero for the others. The

x-axis is the time period, the y-axis is the frequency of outstanding training requirements, and

the stacked bars represent the number of outstanding training requirements at the beginning of

each time period.

The key takeaway is that the linear objective function heavily favors completing the two,

three, and four outstanding requirements before completing the one outstanding requirement.

This is most clearly seen in how the blue bars are larger in Figure 5.2 compared with Figure

5.1, especially between periods 3 through 10; as pilots complete events with at least two out-

standing requirements, there are more pilot-event combinations left with just one outstanding

requirement. Furthermore, we see that the linear based objective function in Figure 5.2 has
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almost eliminated all three or four outstanding requirements after time period 8, whereas the

same is not accomplished until about time period 11 for the equally weighted objective function

in Figure 5.1. Thus, the linear based function prioritizes the pilot-event combinations that have

the most outstanding requirements initially, which ultimately will make it easier for pilots to

finish all their training requirements in time.

Figure 5.1: Outstanding Training Requirements for Equation (4.10).

Figure 5.2: Outstanding Training Requirements for Equation (4.14).
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Now we display the total number of training requirements accomplished for all the objective

functions in Section 4.2, which can be found in Table 5.2. We see from the results that the total

number of requirements completed is comparable across the training requirements objective

functions, but the objective function that incorporates time (Equation (4.15)) completes a few

less requirements. This is due to the fact that training requirements are not prioritized until

closer to their due date. An objective function like this could be valuable for the few types of

training requirements that renew on a periodic or rolling horizon basis, which is best to fulfill

the training towards the end of the time horizon to avoid flying that type of flight so often.

Equation Training Requirements

Training Equal (4.10) 1,288
Training Linear (4.14) 1,288
Training Time (4.15) 1,282

Training Penalize Overqual (4.16) 1,290

Table 5.2: Total Training Requirements completed by objective function.

We further illustrate the difference between the training requirements objective functions by

looking at a time series plot in Figure 5.3. The x-axis is each one of the thirteen time periods

and the y-axis is the number of training requirements completed for each time period. Each

line closely follows one another, but we see the most obvious differences between the objective

functions are in time periods 6, 7, and 10-12, which ultimately lead to the differences seen in

Table 5.2.

Figure 5.3: Training Requirements completed over time by objective function.
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5.4.3 Overqualification vs. Training Requirements

It is imperative to compare the trade-offs between the OQS and the total number of training

requirements completed to see how favoring one of these priorities impacts the other. Table 5.3

displays both of the metrics for every proposed objective function proposed in Chapter 4.

Equation Average OQS Training Requirements

Min # Assignments (4.1) 9.869 808
Max EP/IP (4.8) 4.148 657

Penalize Overqual(4.9) 2.216 504
Training Equal (4.10) 9.277 1,288
Training Linear (4.14) 9.279 1,288
Training Time (4.15) 9.279 1,282

Training Penalize Overqual (4.16) 5.873 1,290

Table 5.3: OQS vs. Total Training Requirements completed for each objective function.

To further investigate this trade-off, we introduce the parameter B ∈ [0,∞) to Equation

(4.16), such that we have the following objective function:

max
∑
i∈I

∑
s∈Si

∑
k∈1:Ris

rkis(Ris − k + 1) +B ∗
∑
i∈I

∑
f∈F

XifWi. (5.1)

We iterate over several values of B and obtain results for the OQS and the total number

of training requirements completed for each B. We visualize the findings of the trade-offs in

Figure 5.4 for both the proposed objective functions in Chapter 4 and the results for varying

B. The x-axis is the average OQS for each iteration, the y-axis is the total number of training

requirement accomplished for that iteration, and the solid black line represents the maximum

number of training requirements possible for the entire six month time window.

We observe in Figure 5.4 that a Pareto frontier appears between Equations (4.9) and (4.16).

Additionally, we note that as B tends to infinity, we approach Equation (4.9), when B = 1 we

get exactly Equation (4.16), and when B = 0 we get exactly Equation (4.14). Lastly, we note

that Equations (4.1), (4.8), (4.10), (4.14), and (4.15) are all Pareto dominated.
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Figure 5.4: OQS vs Training Requirements trade-off.

5.4.4 Total Locals and Missions Flown

To display the total number of locals and missions each pilot is to fly under a specific objective

function we refer to the histograms in Figures 5.5 and 5.6. We choose to display histograms for

only two of the objective functions proposed: the first one is for Equation (4.1) and the second

graph is for Equation (4.9). The y-axis is the total number of locals and missions flown and the

x-axis represents each pilot ordered in increasing order of total flights flown. The color of each

bar represents the qualification group, where the lighter colors are the less qualified pilots and

the the darker pilots are the more qualified pilots.

Figure 5.5: Histogram of total locals and missions flown by pilot for Equation (4.1).
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Figure 5.6: Histogram of total locals and missions flown by pilot for Equation (4.9).

To quantify these histograms, we present the summary statistics for each objective function

we have proposed thus far in Table 5.4. We display the minimum and maximum number of

locals and missions flown by any one pilot, the average number of locals and missions flown

by each pilot, and then the standard deviation (σ) of the number of locals and missions flown

for each pilot. We note the average number of locals and missions flown for each pilot are all

identical because the total number of flight assignments are all the same.

Equation Min Max Average σ

Min # Assignments (4.1) 2 28 10.552 5.203
Max EP/IP (4.8) 1 32 10.552 6.405

Penalize Overqual (4.9) 0 30 10.552 7.959
Training Equal (4.10) 1 26 10.552 4.266
Training Linear (4.14) 2 27 10.552 4.341
Training Time (4.15) 3 24 10.552 4.157

Training Penalize Overqual (4.16) 1 37 10.552 7.135

Table 5.4: Total locals and missions flown per pilot for each objective function.

In addition to the histograms and summary statistics, we are also able to display the dis-

tribution of total locals and missions flown for each pilot qualification group. Again, we only

display the distributions for the objective functions in Equations (4.1) and (4.9).

In the objective function used to create the results for Figure 5.8 we are minimizing overqual-

ification, whereas the objective function for Figure 5.7 is more randomly assigning pilots to

flights. This is evident by noting the difference between the two figures by focusing on the

EP qualification group because the average number of locals and missions flown for the second

figure is much lower than that of the first figure. This helps us confirm that objective function

(4.9) is working as intended by placing the more qualified pilots on less locals and missions to

keep them more available. These visualizations, as well as the others above, can help schedulers

and users to evaluate schedules.
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Figure 5.7: Distribution of total locals and missions flown by qualification group for Equation (4.1).

Figure 5.8: Distribution of total locals and missions flown by qualification group for Equation (4.9).

5.4.5 Example Schedules

In addition to the visualizations above, we are also able to display the schedule in a personnel-

centric manner. Due to the complex nature of this visualization, we choose to only present a

small example of a personnel-centric schedule in Figure 5.9. The y-axis represents each pilot

ordered by increasing qualification and the x-axis is the progression of time. Each row then

contains all flight assignments or unavailability for a given pilot, where F represents a local or

mission and S represents a simulator flight.
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Figure 5.9: Small example of a personnel-centric gantt chart.

5.5 Summary and Recommendations

We presented many results in this chapter and now provide a brief summary. Equation (4.9)

provides the lowest OQS, with Equation (4.8) being a valid alternative when optimizing for

overqualifications. All the proposed training requirements objective functions produce a similar

number of training requirements completed, although Equation (4.16) has the lowest OQS of

the group. In the end, each one of the proposed objective functions have their pros and cons,

but nevertheless they provide suitable options for a scheduler to choose from depending on their

squadron’s current situation.

We offer the following recommendations and situations for when the scheduler should pos-

sibly choose one objective function over another:

1. If the sole priority is to minimize overqualification, then undoubtedly Equation (4.9) is

the best fit. However, if it is only important to minimize overqualification for the EP and

IP qualification groups, then Equation (4.8) might be a better choice.

2. If the priority is to maximize training requirements completed, then any of the require-

ments based objective functions would be a valid choice. In spite of that, Equation (4.16)

not only maximizes the number of training requirements completed, but offers the lowest

OQS of the requirements based objective functions. Therefore, we would recommend us-

ing Equation (4.16) in most circumstances, but as previously mentioned, more research is

necessary into the prioritizations for the multi-objective optimization domain.
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Conclusions

Using optimization-based algorithms for the military scheduling problem continues to be an

active area of research, and the recent initiative for AI and automation within the Department

of Defense keeps us optimistic about the path forward. In this thesis, we have presented math-

ematical formulations that encapsulate multiple objective functions, and introduced metrics

and visualizations that could be used by schedulers. Our methods ultimately provide feasible

solutions significantly faster than the manually created schedules.

When we first started developing our research, Puckboard was only being used in one or two

C-17 squadrons across the Air Force, but now it is being used in over 120 (and growing) flying

squadrons in the Air Force. Needless to say, as we on-board our algorithms into Puckboard’s

application, we have the ability to make a huge impact in the lives of Airmen, who will then be

able to focus primarily on their mission on a daily basis.

6.1 Future Work

Our thesis presents optimization-based algorithms to solve the Air Force crew scheduling prob-

lem, but nevertheless, there is still scope for extensions and further research. We detail some

ideas for future work.

• As we gather user feedback and begin the process of on-boarding our algorithms to Puck-

board, continued refinement and development of the core algorithms will be crucial in the

utility of our formulations moving forward.

• In optimization problems, fairness and equity can sometimes be difficult to achieve. An

interesting idea would be to propose further objective functions to help optimize for these

ideas. Possible examples would be to prevent a pilot from flying only simulator events, or

avoid assigning the same pilot to all of the less desirable missions.

• As scheduler and pilot priorities continue to emerge, there could be an investigation of

having user inputs for objective function weightings in multi-objective settings. Correctly

implementing this will involve the normalization of each part of the objective function

[11]. However, allowing a very large degree of customization by users can sometimes lead

to unforeseen challenges and consequences.
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• Finally, disruptions and uncertainties in a schedule are more prevalent than ever in a

military setting. For example, the weather could delay flights, aircraft maintenance issues

could reduce resources, mission times could be prolonged in enemy territories, unexpected

missions could arise, pilots could become unavailable, and so on. Therefore, it is necessary

to develop algorithms and formulations to account for these uncertainties. One way to do

this is for multi-stage optimization, where our formulations are the first stage, and the

optimization formulations developed in Chin [6] are used as the second stage. Another

option is to develop Robust Optimization (RO) formulations to account for uncertainty

and guard against the worst case scenarios. In particular, recent research on RO applied

to airline flight and crew scheduling [4, 24, 25] are relevant to our problem.
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