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Robust Control of Arrivals into a Queuing Network
Sandeep Badrinath, Student member, IEEE, Hamsa Balakrishnan, Member, IEEE

Abstract—Queuing networks have been widely-used to model
congestion in transportation systems. Due to their interconnected
nature, delays in a queuing network can propagate as customers
traverse through the network; similarly, downstream resources
can be underutilized due to poor control policies. This paper
considers the regulation of arrivals into a queuing network in
order to maintain a desired level of occupancy (queue length) in
the system. The dynamics of the queuing network is represented
by a fluid-flow model, which is then used to develop a robust
controller for tracking the desired queue length. The controller
is based on a sliding mode control approach, with predictor-based
feedback to account for propagation delays. For a single queue,
we determine sufficient conditions for tracking the queue length,
and bounds on the tracking error. We also present an analysis
of the tracking performance for queues in tandem.

We demonstrate our approach for the example of airport sur-
face congestion control. The proposed robust control framework
is based on a queuing network model of the airport, and is
used to tactically manage aircraft departures in order to reduce
congestion on the airport tarmac.

Index Terms—robust control, queuing networks, time-delay
systems, airport surface congestion

I. INTRODUCTION

Queuing networks have been used to model congestion in
a wide range of infrastructures, including communication sys-
tems, industrial supply chains, and transportation systems [1]–
[4]. A queuing network is a collection of interconnected
servers that represent the system’s capacitated resources, and
customers who wish to utilize these resources. For example,
in an urban traffic network, road intersections can be viewed
as the servers, and vehicles as the customers. The demand for
a resource can be close to – or even exceed – its capacity,
leading to congestion and the formation of large queues; this
impact could cascade further into other resources. Congestion
results in higher operating costs and increased wait times. A
key challenge in queuing systems is the development of control
strategies that can reduce congestion, while still satisfying
operational constraints. The control inputs can vary depending
on the specific application: examples include the rate at which
customers are sent into the system, or the capacity of servers.

A. Control of queuing networks

A variety of control frameworks, based on models of
varying complexity, have been proposed to reduce congestion
in queuing networks. A significant amount of early research
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focused on the optimal control of arrival and service rates
using Markov Decision Processes (MDPs) [5], [6]. However,
the Markov chain representation for queuing dynamics that
was used in this MDP framework relied on very restrictive
assumptions (such as Poisson arrivals, exponential service time
distributions, stationarity, and no propagation delays), which
may not be valid in practice. In order to better understand
the problem of congestion control in queuing networks, we
describe the two main contexts in which it has typically been
studied: Internet congestion control and urban traffic networks.

1) Internet congestion control: With the growth of the
Internet, there was much interest in the analysis of conges-
tion control protocols for communication networks [7]. The
objective of these protocols is to maintain a desired quality
of service, as measured in terms of delay, throughput, packet
loss, or jitter. The primary congestion control mechanism in
these networks was the regulation of the sending rate at the
source (e.g., the transmission control protocol), and the queue
length at the routers by dropping packets (e.g., active queue
management techniques) [8], [9]. Control-theoretic techniques
have been used to analyze the stability of such protocols and
tune parameters [10]. Internet congestion control also presents
some domain-specific challenges; for example, feedback to a
source can only be based on delayed packet-loss information
rather than actual queue length information.

Control-theory has been used to a limited extent in the
design of congestion control protocols. Prior work has consid-
ered fluid-flow models, typically non-linear delay differential
equations with time-delays to account for the round-trip travel
time from the source to the receiver [4]. The resulting models
have allowed researchers to use standard control techniques
such as PID, H∞, and variable structure controllers [11], [12].
To apply these standard techniques, the models were often
linearized around an equilibrium point, and in a few cases,
even the time-delays were ignored [10], [11], [13]. Most
models assumed that the queue length of the bottleneck server
is always positive, and that the queue lengths elsewhere are
zero. Consequently, the resulting approaches tend to perform
poorly in practice due to the lack of robustness to time-varying
traffic, delays, and capacity [12].

2) Urban traffic networks: Traffic congestion on urban
roads is often represented as a queuing network [14]. The
problem of congestion control through regulating traffic sig-
nals corresponds to controlling the service rates for each
of the flows in the queuing network. Timed traffic lights
have been shown to be inefficient under time-varying arrival
rates. Furthermore, the control policy needs to account for
the downstream impacts of throttling upstream flows. To over-
come these challenges, adaptive traffic signaling approaches,
such as optimization-based techniques, have been proposed
to reduce congestion [15]–[17]. However, online optimization
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techniques for large queuing networks are computationally
intensive, while decentralized approaches and heuristics are
often sub-optimal.

B. Airport surface congestion

Despite the increase in air traffic demand in recent years,
there have not been significant increases in infrastructure and
capacity at major airports. The imbalance between airport
capacity and demand, particularly during periods of peak
traffic, has led to congestion and delays. Consequently, there is
a significant interest among airlines and airport operators alike
in developing operational strategies to reduce congestion.

Departure metering has been widely-recognized as a
promising operational approach to mitigate airport surface
congestion [18]–[21]. In the absence of departure metering,
pilots push back from the gate and start taxiing whenever
ready, resulting in long queues during periods of high depar-
ture demand. A departure metering procedure tactically holds
aircraft at their gates during periods of congestion, and releases
them in an appropriate manner such the surface experiences
smaller queues, while still maintaining runway throughput.
The result is a reduction in the taxi-out time of flights (travel
time from the departure gate to take-off) and fuel savings.

The algorithms that determine the hold-decisions for de-
parture metering most often rely on a model of the aircraft
movements on the airport surface. Queuing networks have
been shown to be effective in modeling airport surface opera-
tions [3], [22]–[24]. They have enabled delay prediction on the
airport surface, as well as for the entire network of airports [3],
[22]. Queue-based models have been used to develop departure
metering algorithms using dynamic programming techniques
or various heuristics [18], [25]. The resulting control strategies
have been shown to perform well in simulations as well
as in field demonstrations [18]. However, most prior work
assumed congestion occured only at the runway, and modeled
the departure process as a single queue. This assumption is
not necessarily valid at major airports with multiple congested
locations. We have previously developed and validated models
of traffic movement at such airports using a larger queuing
network [23]. Controlling such a queuing network is chal-
lenging because the queues are inherently time-varying (due to
demand and capacity fluctuations), and due to the propagation
of congestion effects between the nodes of the network, and
the time-delays involved. Furthermore, the problem is not
amenable to traditional probabilistic models, particularly for
large dynamic queuing networks with time-delays.

C. Contributions of this paper

We consider the problem of controlling the arrivals into a
queuing network in order to maintain the lengths of queues
in the network at desired levels. In the context of departure
metering, this corresponds to determining the release times of
aircraft from their gates in order to maintain a limited queue
at the runway, resulting in reduced taxi-out delays, without
under-utilizing the runway. More generally, we propose a
feedback controller to track desired queue lengths by con-
trolling the sending rate at the source. The proposed approach

accommodates queuing networks with propagation time-delays
between nodes, and arbitrary service time distributions.

We use a fluid-flow model to represent the evolution of
queues in the queuing network [26], [27]. Although deter-
ministic, the model captures the dynamic behaviour of non-
stationary queues, and allows us to develop robust control
strategies that account for uncertainties. Prior work on control-
ling queues using fluid models with techniques from nonlinear
control theory did not account for time-delays, and only
considered single servers [28], [29]. Time-delays can be desta-
bilizing; traditional techniques for analyzing the stability of
time-delay systems (e.g., Lyapunov-Krasovskii or Lyapunov-
Razumikhin methods) are challenging and often result in very
conservative results for nonlinear systems [30], [31].

In this paper, queue length tracking is achieved through a
sliding mode control approach, with predictor-based feedback
to compensate for the time-delays. Using Lyapunov analysis,
we determine sufficient conditions for tracking the queue
length, and bounds on the tracking error, for the case of
a single queue. We also illustrate the performance of the
controller for tandem queues using simulations. We build a
queuing network model of the movement of departure traffic
at Charlotte Douglas International Airport (CLT), one of the
busiest airports in the world. Using this model, we develop a
robust controller to determine the modified pushback times of
departing flights to reduce congestion on the airport surface.
Simulations indicate that our robust control methodology
performs better than a heuristic that is currently being used
in field trials at CLT [32].

II. PRIOR WORK: QUEUING NETWORK MODEL [23]

The exact analysis of non-stationary queuing networks is
analytically challenging, causing researchers to resort to nu-
merical simulations or approximations. In this paper, we use a
fluid-flow model based on point-wise stationary approximation
to represent the queuing process [23], [26], [33]. The model is
a continuum approximation to the discrete queuing problem,
derived by combining results from steady-state queuing theory
with the flow conservation principle. The results in this paper
leverage a previously-developed queuing network model [23],
which we summarize for completeness. We first present the
model for a single queue, and then extend it to the case of a
queuing network.

A. Single queue

Consider a single queue with a server that has a stochastic
service time distribution. We assume that the queue has infinite
buffer capacity (no blocking), a common assumption in queu-
ing network analysis. Let x(t) represent the average number
of customers in the queue at time t. Let λ(t) and µ(t) denote
the average arrival rate and service rate, respectively. Note that
these correspond to the ensemble averages. Assuming that the
arrival rates into the queue are Poisson, the evolution of x(t)
can be approximated by

ẋ(t) = −µ(t)
C(t)x(t)

1 + C(t)x(t)
+ λ(t). (1)
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Here, Cx/(1 + Cx) represents an approximation for the uti-
lization factor of the server, whose value is zero for x = 0 and
one as x → ∞. The parameter C depends on the coefficient
of variation of the service time distribution, and is given by

C = argmin
C′

∫ xm

0

(
y + 1−

√
y2 + 2Cv

2 + 1

1− Cv2
− C′y

C′y + 1

)2

dy.

Here, xm is the expected maximum queue length, and Cv is
the coefficient of variation of the service time distribution of
the server. Fig. 1(a) shows the mean queue length obtained
from the analytical queue model for a Mt/M/1 queue, and a
stochastic simulation of the queuing process. The stochastic
queuing simulation involves sampling from the arrival and
service time distributions, and the ensemble average queue
length is computed using 3,000 independent samples. We see
that the results from the analytical queue model closely match
the simulation results. The model is seen to perform similarly
well for other general service time distributions.
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(a) Comparison between simula-
tion and proposed model.
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(b) Simulation results.

Fig. 1. Mean queue length for Mt/M/1 queue (λ/µ = 0.9 +
0.45 sin(0.1t); µ = 2).

It is worth noting that the model governs the evolution of
the ensemble mean queue length and not the actual queue
length. Since the arrival times and service times are stochastic
in nature, the actual queue length is a random variable. Proba-
bilistic queuing models, such as a Markov chain representation
of the queuing process, provide the queue length probabilities
at any time using the Chapman-Kolmogrov equation. How-
ever, such models are often complex and restrictive, and are
difficult to scale to controlling queue lengths in large queuing
networks. Fig. 1(b) shows the ensemble mean queue length for
a Mt/M/1 system obtained from the simulations, along with
the 75th percentile and 25th percentile of the queue length at
any time instant. The figure shows that the actual queue length
at any time can be considered to be a small deviation from
the mean queue length. Consequently, we can use a model
of the mean queue length to control the actual queue length,
by considering uncertainties in the model prediction. Our
proposed model for the mean queue length, Eq. (1), allows us
develop robust controllers to account for model uncertainties.

B. Queuing networks

The single queue model can be extended to multiple queues
using the flow conservation principle: the output of one queue
becomes the input to another queue, if they are connected.
Let R be the routing matrix, with elements rij representing

the fraction of customers joining queue j after being served
by server i. Let λi be the exogenous input into queue i with
mean service rate µi. The dynamics of the mean queue length
for queue i, denoted xi, is given by:

ẋi = −µi(t)
Ci(t)xi

1 + Ci(t)xi
+λi(t)+

∑
j

µj(t)
Cj(t)xj

1 + Cj(t)xj
rji(t).

(2)
Time-delays due to propagation are a feature of many queuing
networks. This propagation delay does not include the wait
time in the queue. Let τij be the propagation time (travel time)
from server i to j. Then, the mean queue length is given by
the following delay differential equation:

ẋi = −µi(t)
Ci(t)xi(t)

1 + Ci(t)xi(t)
+ λi(t)

+
∑
j

µj(t− τji)
Cj(t− τji)xj(t− τji)

1 + Cj(t− τji)xj(t− τji)
rji(t− τji).

The model can also be extended to handle multiple classes
of customers [33]. Let i = 1, 2, .. l be the different class
of customers in the system, with xTi being the number of
customers of class i in the queue buffer and λTi being the
mean arrival rate of customers of class i. The evolution of
total number of customers in the queue (xT =

∑l
i=1 xTi) can

be obtained based on Eq. (1) using:

ẋT = −µ(t)
C(t)xT

1 + C(t)xT
+

l∑
i=1

λTi(t). (3)

The effective mean service rate for each class in the queuing
dynamics is assumed to be proportional to the fraction of cus-
tomers of that particular class in the queue buffer, considering
the same service time distribution for all customers. Then, the
evolution of mean queue length of class i is given by:

ẋTi = −µ(t)
xTi
xT

C(t)xT
1 + C(t)xT

+ λTi(t) (4)

ẋTi = −µ(t)
C(t)xTi

1 + C(t)xT
+ λTi(t). (5)

III. TRACKING CONTROLLER FOR A SINGLE QUEUE

In this section, we consider the case of a single queue
served by a single server, and then present the analysis for
more complex queuing networks in Sections IV and V. The
objective is to maintain a desired queue length by controlling
the release times into the queue. We first consider the case
in which there is no travel time from the source (where the
customers are released) to the point of entry into the queue.
We will later consider the scenario with propagation delays.

A. Case without propagation delays

The fluid-flow model for a single queue served by a single
server is given by the following equation:

ẋ = ᾱ(x, t) + u(t), (6)

where ᾱ(x, t) = −µ(t)C(t)x/(C(t)x + 1), µ is the mean
service rate of the server, and the parameter C primarily
depends on the coefficient of variation of the service time
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distribution. We assume that the actual dynamics deviates from
the model, but has a similar structure of the form:

ẋ = α(x, t) + u(t), (7)

where α(x, t) is an unknown function that is bounded as
follows:

|α(x, t)− ᾱ(x, t)| ≤ F (x, t). (8)

Motivated by the fact that the errors arise primarily due to
uncertainties in the individual service times, we consider,

F (x, t) = a(C(t)x)/(C(t)x+ 1). (9)

Here, a is a design parameter that needs to be chosen depend-
ing on the level of uncertainty. The objective of the control
problem is to determine a sending rate (u(t)) in order to
maintain the queue length at a desired value, xd(t) ≥ 0.

We first present a few standard definitions and theorems
on stability properties that are used to develop the feedback
controller [34], [35].

Definition 1 (Equilibrium point). The state x∗ is said to be
an equilibrium point of the system ẋ = f(x, t) if:
x(t0) = x∗ =⇒ f(x∗, t) = 0 for all t ≥ t0. Without loss
of generality, one can always consider the origin to be the
equilibrium point through a simple coordinate transformation.

Definition 2 (Stability). The equilibrium point x = 0 is said
to be stable at initial time t0 if, for any R > 0, there exists
r(R, t0) > 0, such that if ‖x(t0)‖ < r, then ‖x(t)‖ < R
for all t ≥ t0. Otherwise, the equilibrium point is said to
be unstable. Additionally, the equilibrium point is said to be
uniformly stable if the value of r in the preceding definition
can be chosen independent of t0.

Definition 3 (Asymptotic stability). The equilibrium point
x = 0 is asymptotically stable at initial time t0, if it is stable
and, in addition, there exists some r(t0) > 0 such that if
‖x(t0)‖ < r then ‖x(t)‖ → 0 as t → ∞. Additionally,
the system is globally uniformly asymptotically stable if these
properties hold true for any choice of r.

Definition 4 (Class K, KR functions). A function φ(x) belongs
to class K if it is continuous, strictly increasing, and φ(0) = 0.
Additionally, φ(x) belongs to class KR if φ(x) belongs to class
K and φ(x)→∞ as x→∞.

Definition 5 (Positive definite functions). A continuous func-
tion V (x, t) is said to be a positive definite function if for
some φ(.) of class KR, V (0, t) = 0 and V (x, t) ≥ φ(|x|) for
all t ≥ 0. Additionally, V (x, t) is called a negative definite
function if −V (x, t) is positive definite.

Definition 6 (Decrescent functions). A continuous function
V (x, t) is said to be decrescent if there exists a function γ(.)
of class K, such that, V (x, t) ≤ γ(|x|) for all t ≥ 0.

Theorem III.1 (Lyapunov theorem for global asymptotic sta-
bility [35]). Assume there exists a scalar function V (x, t) with
continuous partial derivatives such that: (a) V (x, t) is positive
definite and decrescent, and (b) V̇ (x, t), which is given by(
∂V
∂t + ∂V

∂x f(x, t)
)

, is negative definite. Then, the equilibrium
point at the origin is globally uniformly asymptotically stable.

Next, we develop a feedback controller for the sending
rate such that the queue length asymptotically tracks a de-
sired value. The control input must be non-negative since it
represents the sending rate, thereby imposing an additional
constraint on the model uncertainty (F (x, t)) to guarantee
tracking. The following lemma presents the control law for
tracking the queue length.

Lemma III.2. Consider the fluid-flow model for a single
queue served by a single server without any propagation
delays from the source (represented by the dynamics in Eq. (7),
with the bounded model uncertainties described by Eq. (8)).
A control input of the form u(t) = max

(
− ᾱ(x, t) + ẋd −

k sgn(x(t) − xd(t)), 0
)

, with k = F (x, t) + η for some
η > 0, guarantees asymptotic tracking of the desired queue
length (xd(t)) if the bounds on the model uncertainty satisfy
F (x, t) < −

(
ᾱ(x, t)− ẋd

)
when x > xd(t).

Proof. A feedback law for the sending rate is determined using
a sliding mode control approach [34]. A sliding variable (s)
is defined in terms of the tracking error (e) as follows:

s = e(t) = x(t)− xd(t) =⇒ ṡ = α(x, t) + u(t)− ẋd(t).

Asymptotic tracking (i.e., e(t) → 0 as t → ∞) of the queue
length is achieved by requiring the squared distance to the
sliding surface (s = 0) decreases along all trajectories:

1

2

ds2

dt
≤ −η|s|, η > 0 =⇒ sṡ ≤ −η|s| (10)

The best approximation to the control input that would achieve
ṡ = 0 is represented by û, and is given by, û = −ᾱ(x, t)+ ẋd.
Consider the control law of the form

u(t) = û− k sgn(s) = −ᾱ(x, t) + ẋd − k sgn(s). (11)

The discontinuity is added across the sliding surface to account
for model uncertainties [34]. To determine the gain parameter,
k, consider,

sṡ = s
(
α(x, t) + u(t)− ẋd

)
(12)

= s
(
α(x, t)− ᾱ(x, t)− k sgn(s)

)
(13)

= s
(
α(x, t)− ᾱ(x, t)

)
− k|s| (14)

If we chose k ≥ F (x, t) + η, then the sliding condition in
Eq. (10) is satisfied, and therefore the resulting control law
in Eq. (11) is guaranteed to asymptotically track the desired
queue length. However, the control input needs to be non-
negative since it represents the sending rate from the source.
Therefore, the feedback law is modified as:

u(t) = max
(
û− k sgn(s), 0

)
,
(
û− k sgn(s)

)+
. (15)

Next, we show that the resulting closed loop dynamics asymp-
totically tracks the desired queue length even with the saturated
control input under certain conditions.

We make use of the Lyapunov theorem (Theorem III.1) to
show that the queue length tracks the desired value using
the control input given in Eq. (15). Consider the Lyapunov
function candidate, V (s, t) = s2. Here, V (s, t) is a positive
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definite function and decrescent. The time derivative of V is
given by

V̇ = sṡ = s
(
α(x, t) +

(
û− k sgn(s)

)+ − ẋd). (16)

When the control input is not saturated (û − k sgn(s) ≥ 0),
the sliding condition ensures that V̇ is negative definite.

Next, we consider the case when the control input is
saturated. Using Eq. (15), the condition for control input
saturation is given by(

− ᾱ(x, t) + ẋd − (F (x, t) + η) sgn(s)
)
< 0. (17)

The control input can saturate only when s > 0, if we choose
η > max

(
(ᾱ − ẋd − F (x, t)), 0

)
. For the case of saturated

control input,

V̇ ≤ F (x, t)|s|+ s
(
ᾱ(x, t)− ẋd

)
. (18)

From the above inequality, V̇ ≤ −η|s| if F (x, t) =
−
(
ᾱ(x, t) − ẋd

)
+ η for any η > 0 and s > 0. Therefore,

V̇ is negative definite even with control input saturation if
F (x, t) < −

(
ᾱ(x, t)−ẋd

)
. Hence, the equilibrium s = 0 (that

corresponds to x = xd), is asymptotically stable, guaranteeing
perfect tracking.

Remark: The bounds on the uncertainty in the dynamics
(F (x, t)) becomes more conservative if the desired queue
length, xd(t), has larger fluctuations.

B. Case with propagation delays

Consider the case in which there is a travel time, τ , to move
from the source to the server. Assume that the travel time is
a known constant. The queue length is given by

ẋ = ᾱ(x, t) + u(t− τ). (19)

Applying the delay-free controller that we developed earlier
on the time-delay system can lead to poor tracking. To illus-
trate this, let us consider a simple example where the desired
queue length to be tracked is of the form xd = 8 + 2 sin(0.1t).
The system response with the delay-free controller that we
developed earlier is shown in Fig. 2. If there are no delays,
the tracking is perfect with the robust controller as intended.
However, the observed queue length deviates from the desired
value with the introduction of time-delay, indicating the need
to develop a controller that explicitly accounts for it.

1) Predictor-based feedback control: A predictor based
feedback controller is used to compensate for the time-delays
in the system [36]. The system is forward-complete, that is, the
state trajectories are well-defined for all t ≥ 0, for every initial
condition and bounded input signal. Forward-completeness
ensures that the state does not become unbounded before the
control acts on the state due to delays. Let Pt(t + τ) be the
predictor for the state at time (t+τ), computed at time t. The
predictor, Pt(θ), ∀θ ∈ (t, t+ τ ] is obtained by integrating the
model equations with input delays (Eq. (19)) forward in time
with the initial condition, Pt(t) = x(t), as:

Pt(t+τ) = Pt(t)+

∫ t

t−τ

(
ᾱ
(
Pt(θ+τ), θ+τ

)
+u(θ)

)
dθ. (20)
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Fig. 2. Queue length obtained when the delay-free controller is applied on
the time-delay system, for xd = 8 + 2 sin(0.1t)), τ = 5, C = 1, µ = 1.

Using the feedback law for the delay-free system (Eq. (15)),
the predictor-based feedback law for the delayed system is
obtained by replacing the current state values with the corre-
sponding predicted states, as:

u(t) =
(
− ᾱ(Pt(t+ τ), t+ τ) + ẋd(t+ τ)

− k sgn(Pt(t+ τ)− xd(t+ τ))
)+

(21)

Next, we determine the tracking guarantees with the above
predictor-based feedback law. We determine bounds on the
prediction errors, and use those bounds to obtain guarantees
for tracking the queue length. The following lemma provides
the bounds for the prediction errors.

Lemma III.3. Consider the fluid-flow model for a single
queue served by a single server with a known propagation
delay (τ ) to move from the source to the server (i.e., dynamics
given by Eq. (19), and bounded model uncertainties as in
Eq. (8)-(9)). The error between the predicted queue length
(given by Eq. (20)) and its actual value is bounded by

|Pt−τ (t)− x(t)| < aτ. (22)

Proof. For the ease of notation, we denote P̂ (θ) = Pt−τ (θ),
the predictions for x(θ) computed at time (t − τ). Using
Eq. (20), the dynamics of P̂ (θ) is as follows:

˙̂
P (θ) = ᾱ

(
P̂ (θ), θ

)
+ u(θ − τ); θ ∈ [t− τ, t], (23)

with the initial condition P̂ (t − τ) = x(t − τ). Suppose that
the actual queue dynamics evolves according to

ẋ = α(x, t) + u(t− τ). (24)

Similar to the delay-free case, we assume that the function
α(x, t) is unknown but bounded by |α(x, t) − ᾱ(x, t)| <
F (x, t), and that the time delay (τ ) is known. The error in
predicting x(t) at time (t− τ) is given by ê(θ) = et−τ (θ) =
P̂ (θ)−x(θ). From Eqs. (23)-(24), the error dynamics is given
by:

˙̂e(θ) = ᾱ
(
P̂ (θ), θ

)
− α(x(θ), θ); θ ∈ [t− τ, t], (25)

with the initial condition e(t − τ) = 0. Simplifying further,
we obtain

˙̂e(θ) = −γ(θ)ê(θ) + d(x(θ)), (26)
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where γ(θ) = µ(θ)C(θ)/
(

(C(θ)P̂ (θ) + 1)(C(θ)x(θ) + 1)
)

,
and d(x(θ)) =

(
ᾱ(x(θ), θ)−α(x(θ), θ)

)
. The error dynamics

is stable since γ(θ) > 0, and the solution is given by

ê(t) = exp
(
−
∫ t

t−τ
γ(θ)dθ

)
ê(t− τ)

+

∫ t

t−τ
exp

(
−
∫ t

r

γ(θ)dθ
)
d(x(r))dr ≤ aτ,

since exp
(
−
∫ t
r
γ(θ)dθ

)
≤ 1 (since γ(θ) > 0) and d(x(t)) ≤

F (x, t) < a. Therefore, the error bound (D) for the prediction
of x(t) computed at time t− τ is given by

|P̂ (t)− x(t)| < D = aτ. (27)

The above result indicates that the prediction error is propor-
tional to the time delay (τ ) and magnitude of uncertainty in the
dynamics (a). Next, we investigate the impact of the prediction
error on tracking the queue length.

2) Tracking performance of the controller: Using the re-
sults from Lemma III.3, we can show that with predictor-based
feedback control, the queue length always converges to a set
around the desired value. To do so, we define the concept of
ultimate boundedness [37].

Definition 7 (Ultimate boundedness for time-delay sys-
tems [38]). The solutions xt(t0, φ) of ẋ = f(t, xt) are said to
be uniformly ultimately bounded if there exists an η > 0 and
a t̂ = t̂(η, δ) > 0 independent of t0 such that ‖xt(t0, φ)‖ ≤ η
for all t ≥ t0 + t̂, when |φ| < δ. Here, xt(t0, φ) refers to the
solutions of ẋ = f(t, xt) with the initial condition φ at t0.

The following theorem presents the key result for tracking
guarantees using predictor-based feedback control:

Theorem III.4. Consider the fluid-flow model for a single
queue served by a single server, with a known propagation
delay (τ ) to move from the source to the server (i.e., dynamics
from Eq. (19) and bounded model uncertainties given by
Eq. (8)-(9)). Then, the control input

u(t) =
(
−ᾱ(Pt(t+τ), t+τ)+ẋd(t+τ)−k sgn(Pt(t+τ)−xd(t+τ))

)+
(28)

with
Pt(t+ τ) =

∫ t

t−τ

(
ᾱ
(
Pt(θ + τ), θ + τ

)
+ u(θ)

)
dθ, Pt(t) = x(t); (29)

and k = F (x, t) + η + µCaτ ; η >
(
ᾱ− ẋd − (F + µCaτ)

)+
guarantees that the queue length is uniformly ultimately
bounded if F (x, t) < (−ᾱ(x, t) + ẋd) when x > xd + aτ .
Furthermore, the ultimate bounds are given by ‖x − xd‖ <
aτ ∀ t ≥ t0 + T , where T = (x0−xd)

2−a2τ2

kaτ .

Proof. Consider the Lyapunov function candidate, V (s, t) =
s2, where s = (x − xd), as before. The time derivative of V
is given by

V̇ = s
(
α(x, t) +

(
− ᾱ(P̂ (t), t) + ẋd − k sgn(P̂ (t)− xd(t))

)+ − ẋd).

When x > xd +D, we have P̂ (t)− xd > 0 from Eq. (27) and
s > 0. Then,

V̇ = s
(
α(x, t)− ᾱ(P̂ (t), t)− k

)
≤ sF (x, t) + s

(
ᾱ(x, t)− ᾱ(P̂ (t), t)

)
− sk.

However, since
(
ᾱ(x, t) − ᾱ(P̂ (t), t)

)
= −µC(x−P )

(Cx+1)(CP+1) ≤
µCD, we obtain

V̇ ≤ sF (x, t) + sµCD − sk (30)

For the case when x < xd−D, we have P̂ (t)− xd < 0 from
Eq. (27) and s < 0. Then, similarly:

V̇ ≤ |s|F (x, t) + |s|µCD + sk. (31)

Eqs. (30)-(31) imply that V̇ < 0 for |x − xd| > D when the
gain, k, is appropriately chosen. With the above results, we
can show that queue length always converges to a set around
the desired value with predictor-based feedback control, or
equivalently, the trajectories of the closed-loop system are
uniformly ultimately bounded.

If the gain k in Eqs. (30)-(31) is chosen such that k =
µCD + F (x, t) + η, η > 0, then we obtain V̇ ≤ −η|s|
for ‖s‖ > D. Therefore, for ‖s‖ > D, V̇ ≤ −ηD, which
implies that the trajectory behaves as if the origin (s = 0) is
asymptotically stable and satisfies an inequality of the form,
s2 ≤ s20 − ηD(t − t0). The trajectories that start in or those
that reach the set, {s : ‖s‖ ≤ D}, will remain within that set
since V̇ is negative on the boundary of that set. Therefore,
the system is uniformly ultimately bounded with an ultimate
bound D, which implies ‖x− xd‖ < D ∀ t ≥ t0 + T , where
T = (x0−xd)

2−D2

ηD . Therefore, the queue length converges to a
set around the desired queue length, {x : ‖x−xd‖ < D = aτ},
in finite time. This set depends on the time-delay and model
uncertainty.

The above results are valid even when the controller satu-
rates under certain conditions. From Eq. (21), the control input
saturates if:

−ᾱ(P̂ (t), t) + ẋd − (F + µCD + η) sgn(P̂ (t)− xd(t)) < 0.

If η > max
(
ᾱ− ẋd− (F +µCD), 0

)
, then the control input

does not saturate when x < xd −D (from Eq. (27)). For the
case when the controller saturates and x > xd +D, we have:

V̇ ≤ F (x, t)|s|+ s
(
ᾱ(x, t)− ẋd

)
.

From the above inequality, V̇ is negative for x > xd + D if
F (x, t) ≤ −

(
ᾱ(x)− ẋd

)
. The condition on F (x, t) is similar

to what we had obtained earlier for the case without time-
delays. Therefore, even with controller saturation, the above
system is uniformly ultimately bounded with these additional
conditions.

The predictor in Eq. (29) is computed through numerical
integration. To eliminate chattering (i.e., the control input
switching at high frequencies at the sliding surface), the
sgn(.) function in the control input is replaced by a saturation
function, {sat(x) = x if |x| < 1, or sgn(x) otherwise}, as is
standard practice for sliding mode controllers [34].



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

0 50 100 150

Time

0

2

4

6

8

10

12
Q
u
eu
e
le
n
gt
h
(x
)

Output
Desired
Ultimate bound

(a) Queue length

0 50 100 150

Time

0

2

4

6

8

u

(b) Control input

Fig. 3. Output queue length when there are no model uncertainties.

C. Numerical experiments

To illustrate the tracking performance of the proposed ap-
proach, we consider the following sinusoidal reference signal
for the desired queue length: xd(t) = 8 + 2 sin(0.1t), and
the parameter values µ = 1, C = 1, τ = 5, a = 0.3. The
parameters represent a server with exponential service time
distribution with a mean equal to one; however, the analysis
can be adapted to other general service time distributions by
appropriately changing the value of C.

Figure 3 shows the control input and the achieved queue
length (along with the ultimate bounds) for the case with no
model uncertainties. We see that one obtains perfect tracking,
and that the control input is continuous (no chattering). Next,
we consider the case with model uncertainty. Figure 4 shows
the resulting queue length for the three cases that correspond to
instances when the uncertainty in the model dynamics is either
lesser than, equal to, and greater than the assumed value. In
these examples, we assume that the actual mean service rate
deviates from the model. The output queue length deviates
from the desired value, but lies within the ultimate bound when
the actual uncertainty is within the assumed range. We note
that the ultimate bound (xd±aτ ) for the queue length that we
have obtained is very tight in this example.

The condition that the model uncertainty is within the
assumed range (|α(x, t) − ᾱ(x, t)| < F (x, t)) to guarantee
uniform ultimate boundedness is a sufficient but not necessary
condition. Trajectories could lie within the ultimate bound
even if the model uncertainty is greater than the assumed
value, if the prediction error over the time-horizon is smaller
than aτ . This observation is particularly important when we
apply this control framework to discrete stochastic queuing
systems, wherein, the instantaneous deviation of the model
might be large but the prediction errors over the horizon
are small. Finally, the ultimate bound collapses to xd when
there are no time-delays. Therefore, the robust controller
guarantees nearly-perfect tracking, even in the presence of
model uncertainties, when there are no time-delays.

Next, the control law is tested on a discrete queuing
simulator. The simulator advances in discrete time-steps, and
the customers released at the source join the queue after a
time-delay that corresponds to the travel time. The customers
in the queue are served on a first-come-first-serve basis and the
service times of the server are sampled from an exponential
distribution. From an implementation point of view, we note
that the control law (Eq. (28)) provides a continuous release
rate into the queue, while the simulator requires as an input

the number of customers that are released into the queue. Let
∆t be the discrete time-step of the simulator and u(tn) be the
release rate determined from the feedback law (Eq. (28)) at
time-step tn. The number of customers released into the queue
at time tn is represented by U(tn), and is given by

U(tn) =

⌊
n∑
i=1

u(ti)∆t−
n−1∑
i=1

U(ti)

⌋
,

where b.c represents the floor function. The objective in the
simulation experiments is to release customers into the queue
to track a desired queue length. The ultimate bounds obtained
from the analytical model, xd± aτ , essentially depend on the
error bounds for the state predictions (aτ ). We obtain tighter
empirical bounds for the predictor errors using the simulated
data and model predictions. Let E be the empirical distribution
of the predictor error obtained from the simulation. We then
define an approximate ultimate bound from the simulation data
as [xd −E1, xd −E99], where, Ek denotes the kth percentile
of the error distribution. Fig. 5(a) shows the profile of the
desired queue length, achieved queue length and the ultimate
bounds for a single realization of the simulation. We can
see that the queue length tracks the desired trajectory and
stays almost within the bounds. To highlight the fact that
the output trajectories mostly remain within the approximate
ultimate bounds, we present multiple output trajectories in
Fig. 5(b). The ensemble mean and standard deviation over
multiple realizations (50 in this case) are shown in Fig. 5(c).
The ensemble mean of the queue length closely follows
the desired queue length, and the standard deviation of the
resultant trajectories is relatively low, as desired.

IV. CONTROL OF QUEUES IN TANDEM

To illustrate the methodology for a queuing network, we first
consider the simplest queuing network: two queues in tandem
as shown in Fig. 6. Let x1 and x2 be the length of the first and
second queue, respectively. Let µ1 and µ2 be the mean service
rates of the first and second server, respectively. For the present
discussion, we assume that the service time distributions are
time-invariant. Let the sending rate at the source be u(t). The
time taken by a customer to reach the first queue from the
source is denoted τ1, and the time taken to reach the second
queue after completing service in the first queue is denoted τ2.
The objective is to control the arrivals into the first queue in
order to maintain a desired queue length in the second queue.
For this objective to be feasible, the mean service rate of the
first server is assumed to be greater than that of the second
server. The input rate into the second queue depends on the
out-flow rate from the first queue, which is bounded by µ1.
Moreover, the out-flow rate from the second queue depends
on µ2.

Using the fluid flow model discussed earlier, the queuing
model for tandem queues with time-delays is given by the
following delay differential equations with appropriate initial
conditions:

ẋ1(t) = -µ1(t)
C1(t)x1(t)

(1+C1(t)x1(t))
+ u(t− τ1)

ẋ2(t) = -µ2(t)
C2(t)x2(t)

(1+C2(t)x2(t))
+ µ1(t− τ2)

C1(t−τ2)x1(t−τ2)
(1+C1(t−τ2)x1(t−τ2))

(32)
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(a) µa = 1.1; |α(x, t) −
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(b) µa = 1.3; |α(x, t) −
ᾱ(x, t)| = F (x, t)

0 50 100 150
Time

0

5

10

15

Q
u
eu
e
le
n
gt
h
(x
) Output

Desired
Ultimate bound

(c) µa = 1.5; |α(x, t) −
ᾱ(x, t)| > F (x, t)

Fig. 4. Tracking accuracy when the actual service rate (µa) is different from the nominal service rate assumed in the model (µ = 1).
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Fig. 5. Queue length from the queuing simulation with exponential service time distribution.

Fig. 6. Schematic of two queues in tandem.

A. Controller for dynamics without propagation delays

As we had done in the case of a single queue, we first
develop a robust controller for the non-delayed system and
then account for the delay terms through a predictor-based
feedback. The model for the queue length without time-delay
is:

ẋ1 = -µ1(t) C1(t)x1

(1+C1(t)x1)
+ u(t)

ẋ2 = -µ2(t) C2(t)x2

(1+C2(t)x2)
+ µ1(t) C1(t)x1

(1+C1(t)x1)
.

(33)

The objective is to track the second queue length at a desired
value considering model uncertainties. The state that has to
be tracked, x2, needs to be differentiated twice to obtain the
control input, leading to the following second-order differential
equation:

ẍ2 = ᾱ(x, t) + β̄(x, t)u

ᾱ(x,t) = -µ2
1

C2
1x1

(C1x1+1)3 + µ2
2

C2
2x2

(C2x2+1)3 − µ1
µ2C1C2x1

(C2x2+1)2(C1x1+1)

β̄(x, t) = µ1C1

(1+C1x1)2
,

where x = [x1, x2]T . We assume that the dynamics for the
actual queue length is of the form ẍ2 = α(x, t) + β(x, t)u,
where α(x, t) and β(x, t) are unknown functions. However,
we assume that the error between the model and the actual

dynamics is bounded. We assume the following form for the
error bounds:

|α(x, t)− ᾱ(x, t)| ≤ F (x, t), (34)
1
c β̄(x, t) ≤ β(x, t) ≤ cβ̄(x, t), c > 1. (35)

Since errors arise primarily due to uncertainties in the service
times, we consider the following form for F (x, t):

F (x, t) = a1
C2

1x1

(C1x1 + 1)3
+a2

C2
2x2

(C2x2 + 1)3
+a3

C1C2x1

(C2x2 + 1)2(C1x1 + 1)

where ai, i = 1, 2, 3 are constants that determine the level
of uncertainty. The goal is to design a sliding controller to
have x2 track a desired queue length, x2,d(t). Assume that
the desired trajectory is continuous and twice-differentiable.
The sliding variable (s) is defined in terms of the tracking
error, e = x2 − x2,d, as s = ė+ λe, λ > 0.

ṡ = ë+ λė = ẍ2 − ẍ2,d + λė = α+ βu− ẍ2,d + λė (36)

The best approximation of the control input that would achieve
ṡ = 0 is given by û = β̄−1(ẍ2,d−λė−ᾱ). Consider the control
law of the form

u = û− k sgn(s). (37)

The gain parameter (k) is determined from the sliding con-
dition (Eq. (10)) to guarantee asymptotic tracking. Using the
definitions for s, the control law Eq. (37), and the sliding
condition (Eq. (10)), we get:

sṡ = s
(
α+ β(û− k sgn(s))− ẍ2,d + λė

)
= s
(
α+ β(β̄−1(ẍ2,d − λė− ᾱ)− k sgn(s))− ẍ2,d + λė

)
= s
(
α− ββ̄−1ᾱ

)
+ s(−ẍ2,d + λė)(1− ββ̄−1)− βk|s|

= s
(
α− ᾱ

)
+ (ᾱ− ẍ2,d + λė)(1− ββ̄−1)− βk|s|

= s
(
α− ᾱ

)
− β̄û(1− ββ̄−1)− βk|s|
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Consider k ≥ β̄−1c(F + η) + (c− 1)|û|, then,

sṡ ≤ s
(
α− ᾱ

)
− û(β̄ − β)− β

(
β̄−1c(F + η) + (c− 1)|û|

)
|s| (38)

sṡ ≤ s
(
α− ᾱ

)
−
(
ββ̄−1c(F + η)

)
|s| − ûβ(β̄β−1 − 1)− β(c− 1)|û||s|

(39)

From the assumptions on the error bounds (Eqs. (34)-(35)),
we obtain the following conditions: ββ̄−1c ≥ 1, (c − 1) ≥
(β̄β−1 − 1), (α − ᾱ) ≤ F , and hence Eq. (39) implies
sṡ ≤ −η|s|. Therefore, the gain parameter (k) if chosen as per
the above condition satisfies the sliding condition (Eq. (10))
to guarantee asymptotic tracking. To reduce the effect of
chattering and to account for the non-negativity of the control
input, we modify the feedback law (as done in the single queue
case) as follows:

u =
(
û− k sat(s)

)
.+

As a result of saturating the control law, we lose the tracking
guarantees obtained from the sliding mode controller. In the
case of a single queue, we were able to obtain conditions for
tracking even with controller saturation. While the analysis
that was presented for the case of a single queue is difficult
to extend to the case of multiple queues, we show that the
feedback law performs well in numerical experiments.

1) Evaluating controller performance: To evaluate the per-
formance of the feedback controller, we consider the case
in which the service time of the servers follows an expo-
nential distribution. We first illustrate the performance of
the controller by applying the feedback law to the model
equations with uncertain service rates. The model parameters
used to develop the feedback control law are µ1 = 2, µ2 =
1, C1 = C2 = 1. Here, to show the performance under
model uncertainty, the actual service rates are considered to be
1.2 times the nominal service rates that were used to derive
the feedback controller. The state derivative that is required
for the feedback law is estimated using the model equations.
Figure 7 shows the control input and the resulting queue length
for the case in which the desired queue length is sinusoidal
(x2,d = 8 + 2 sin(0.1t)). The controller is seen to offer good
tracking even though the assumed service rate differs from the
actual service rate.
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Fig. 7. Controller performance for tracking the length of the second queue.

Next, the feedback controller is tested on a stochastic queuing
simulator. The continuous sending rate obtained from the
control law is converted into discrete sending times in the same
way as done earlier for the single queue case. In addition,
we drop the state dependence of the nominal value of the
control gain for better transient performance (β̄(x) = β̄ = 3).
Figures 8(a)-8(b) show a single realization of the first and
second queue length obtained from the simulations. We see
that the length of the second queue remains close to the desired
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Fig. 8. Single realization and statistics over multiple realizations of the queue
length. Simulation parameters: µ1 = 2, µ2 = 1, λ = 23, η = 0.5, ∆t =
0.1, x2,d = 8 + 2 sin(0.1t)

value. The mean and standard deviation of the queue length
calculated from 30 realizations are shown in Figs. 8(c)-8(d).

2) Comparison to exact solutions: The solution obtained
using the sliding mode controller is compared with an exact
solution obtained using a Markov Decision Process (MDP).
We can represent the queuing process as a Markov chain
(Fig. 9) for the case in which the service time is exponentially
distributed and there are no time-delays (τ1 = τ2 = 0). The
state of the Markov chain is X = (i, j), with i being the length
of the first queue and j being the length of the second queue.
The control input, u, determines the number of customers
released to the first queue. The transition probability (P ) of
the Markov chain conditioned on the control input, u = k, is
as follows:

p(i,j)→(l,m)|u=k =



µ1∆tδi, if (l,m) = (i− 1 + k, j + 1)

&(i 6= 0|k > 0)

µ2∆tδj , if (l,m) = (i+ k, j − 1)&(j 6= 0)

1− (µ1δi + µ2δj)∆t, if (l,m) = (i+ k, j)

0, otherwise.

Fig. 9. Markov chain representation for tandem queue

Here, δm = 0 if m = 0, or 1 otherwise. The aim of the con-
trol problem is to track the length of the second queue at some
desired value (xd). Here, we consider the desired value to be a
constant to obtain a static policy. The cost function (C(X,u))
for the MDP is considered to be the following:

C(X,u) = (j − xd)2.
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The cost function penalizes the deviation from the desired
queue length. The s−horizon cost under a stationary control
policy, π, is given by:

Js(X,π) = Eπ

[ s−1∑
n=0

γnC(Xn, un)|Xo = X
]
,

where Eπ denotes the expectation over the path of the process
under policy π, γ is the discount factor, and (Xn, un) denotes
the state and control input pair at time n∆t. The infinite−
horizon cost under policy π is given by

J(X,π) = lim
s→∞

Js(X,π),

and the optimal stationary policy π∗ satisfies the Bellman
equation [39]:

J∗(X) = min
u

[
C(X,u) + γ

∑
X′

PX→X′J∗(X ′)
]
.

The optimal policy, that is the solution to the above equation,
is obtained using value iteration. Fig. 10(a) shows the control
policy as a function of the queue length for xd = 8, µ1 =
2, µ2 = 1. The resulting control policy is to release a customer
only when there is not more than one customer in the first
queue fewer than the desired value in the second queue.
The mean and standard deviation of the second queue length
obtained from the stochastic simulations (over 30 sample
realizations) with the MDP control policy and the sliding mode
controller are shown in Fig. 10(b). The mean queue length
obtained from both the control methodologies are close to the
desired value, while the standard deviation of the queue length
obtained from the sliding controller is slightly more than the
optimal solution obtained from the MDP.

The main drawback of an MDP-based approach is its
computational complexity, since the Markov chain represen-
tation for queuing networks results in a large state space.
Additionally, one may have to include additional state vari-
ables to represent a queuing system that is inherently non-
Markovian (e.g., non-exponential service time distribution and
time-delays) as a Markov process, further increasing the size
of the state space. Although there are efficient approximate
techniques for solving large-scale MDPs, their computational
complexity is significantly higher than that of a robust control
approach, which involves the numerical integration of the
system dynamics, and an algebraic evaluation of the control
law.
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Fig. 10. Control policy and queue length obtained from simulation (xd =
8, µ1 = 2, µ2 = 1, ∆t = 0.1, γ = 0.99).

3) Comparable service rates: In the discussion so far, we
considered the mean service rate of the first server to be
significantly greater than that of the second server. As a result,
the length of the first queue is negligible compared to the
second queue. We now consider the case when the mean
service rate of the second server is only slightly larger than that
of the first one, and there is consequently significant queuing
in the first queue. Fig. 11 shows the queue length obtained with
the feedback controller for the analytical model as well as for
the discrete queuing simulations (50 trials). The length of the
first queue is longer than in the previous case, as expected. We
also notice perfect tracking for the analytical model. However,
there is some tracking error even for the mean queue length
in the simulations. This is primarily due to the fact that when
the first server has high utilization, then the outflow rate from
the first queue (i.e., the inflow rate into the second queue) is
determined by the service rate of the first server, making it
more difficult to track the second queue length.
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Fig. 11. Queue length for tandem queues without time-delays: x2,d = 8 +
2 sin(0.1t), µ1 = 1.25, µ2 = 1, λ = 0.3, η = 0.5, ∆t = 0.1.

4) Feedback control without information on the length of
the first queue: Although the second queue is the primary
bottleneck, controlling the second queue without considering
the first queue length information in the feedback leads to
poor tracking performance. This effect is more pronounced
when the two service rates are comparable. Fig. 12 shows the
queue length obtained when only the second queue length is
considered in the feedback using the controller developed for
a single queue. In this case, the mean service rate of the first
server is 1.25 and the mean service rate of the second server
is 1. We see, in particular, that the standard deviation of the
second queue length is higher in Fig. 12 than in Fig. 11.

B. Controller for tandem queues with time-delays

Eq. (32) presents the model for tandem queues with time-
delays. The system has delays in the state and the control
input, and is forward complete. We can use a predictor-based
feedback controller for tracking the queue length. Using the
feedback controller for the non-delayed dynamics presented
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Fig. 12. Queue length for tandem queue obtained by using a controller without
considering the first queue length information in the feedback.

earlier (Eq. 37), we can write the predictor-based feedback
controller for the time-delayed system as follows:

u(t) =
(
β̄−1(xp)[û(xp)− k(xp) sgn(s(xp))]

)+
Here, xp(t) = (P1,t(t + τ1), P2,t(t + τ1 + τ2)), with Pi,t(.)
defined as follows:

P1,t(t+ τ1) = x1(t) +

∫ t

t−τ1

(
− µ1

C1P1,t(θ + τ1)

(1 + C1P1,t(θ + τ1))
+ u(θ)

)
dθ,

P2,t(t+ τ1 + τ2) = x2(t)

+

∫ t

t−τ2−τ1

(
− µ2

C2P2,t(θ + τ1 + τ2)

(1 + C2P2,t(θ + τ1 + τ2))

)
dθ

+

∫ t

t−τ2

(
µ1

C1P1,t(θ + τ1)

(1 + C1P1,t(θ + τ1))

)
dθ

+

∫ t

t−τ1

(
µ1

C1x1(θ)

(1 + C1x1(θ))

)
dθ

with appropriate initial conditions for the state predictors,
P1,t(t) = x1(t) and P2,t(t) = x2(t). If the server parameters
are time-varying, the integrands in the above equations need
to be modified to account for this factor.

The performance of the predictor-based control law for
tracking the second queue length is shown in Fig. 13. We
consider the following model parameters: µ1 = 2, µ2 = 1,
τ1 = τ2 = 2.5, and C1 = C2 = 1. The control parameters
(λ, η) are picked to avoid overshoot. We see that output queue
length tracks the desired sinusoidal value after a small initial
transient. Fig. 14 shows the tracking performance obtained
using discrete stochastic queuing simulations (statistics com-
puted over 30 independent realizations). The ensemble mean
queue length of the second queue is seen to closely match
the desired value. However, as expected, the queue length has
higher variability than in the case without time-delays.

0 100 200

Time

0

1

2

C
o
n
tr
o
l
in
p
u
t

(a) Control input

0 100 200

Time

0

5

10

Q
u
eu
e
1

(b) Queue 1

0 100 200
Time

0

5

10

Q
u
eu
e
2

Output value
Desired

(c) Queue 2

Fig. 13. Tandem queues with time-delays (µ1 = 2, µ2 = 1, τ1 = τ2 =
2.5, η = 0.1, λ = 0.04, x2,d = 8 + 2 sin(0.1t)).
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Fig. 14. Queue length for tandem queue with time-delays.

V. APPLICATION TO AIRPORT SURFACE OPERATIONS

We apply the robust controller to a queuing network model
of airport surface traffic movements.

A. Background

Congestion at airports manifests as long queues of aircraft
on the surface (Fig. 15(a)), resulting in excessive fuel burn
for the aircraft waiting in these queues. Departure metering is
widely-considered a promising approach to mitigating surface
congestion. The key idea behind departure metering is to
tactically hold the departures at the gate and to release them
appropriately so that they pass through smaller queues during
taxi, thereby reducing taxi-out times and fuel consumption.

B. Model for the airport surface traffic

The traffic movement (departures and arrivals) in congested
airports can be represented using a queuing network model.
The analysis in this paper uses a queuing network model that
we previously developed for Charlotte Douglas International
airport (CLT) [23]. Fig. 15(a) shows a snapshot of surface
traffic at CLT. The black triangles represent aircraft taxiing-
out (departures), and the white triangles represent the flights
taxiing-in (arrivals). Departing aircraft form long queues in
the ramp area (close to the airport terminals) as well as near
the departure runways. The movement of departures can be
represented as a queuing network as shown in Fig. 15(b). The
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departures pass through a ramp queue and one of the two
runway queues (36C or 36R), before they takeoff.

(a) Layout of CLT with a focus on
departure operations.

(b) Queuing representation for the
departure operations at CLT.

Fig. 15. Airport layout and queuing representation.

The corresponding queuing model for the departure process is
given by the following set of delay differential equations:

xs(t) = xs1(t) + xs2(t)

ẋsi(t) = −µs(t)
Cs(t)xsi(t)

1 + Csxs(t)
+ uri(t− t1), i = 1, 2;

ẋri(t) = −µri(t)Crixri(t)
1 + Crixri(t)

+
µs(t− t2)Cs(t− t2)xsi(t− t2)

1 + Cs(t− t2)xs(t− t2)
.

Here, xsi represents the number of aircraft in the ramp queue
headed to runway i, xri represents the number of aircraft in the
ith departure runway queue, (Cs, µs) are the server parameters
of the ramp server, (Cri , µri) are server parameters of the ith

departure runway server, t1 is the average unimpeded time
from the gate to the spot (exit of the ramp), t2 is the average
unimpeded time from the spot to the departure runway, and uri
is the pushback rate to the ith departure runway. The pushback
rate is the number aircraft in a given time interval (5-min, in
this paper) that pushback from the gate and enter the system.

The service time distributions were obtained from opera-
tional data. For the runway server, the service time distribu-
tion depends on the number arrivals landing on the runway
and the airport weather (instrument or visual meteorological
condition). For the ramp server, the service time distribution
depends on the number of arrivals (flights taxiing-in) in the
ramp queue [40].

We assume that the service time distributions are piece-
wise constant over 5-min intervals. Fig. 16(a) illustrates the
variation of the mean service rate for the ramp and runway
servers on a typical good weather day. The observed fluc-
tuation in the mean service rate is because of the variation
in the arrival traffic level over the course of the day. The
mean service rate for 36R varies more than 36C because it
handles more number of arrivals. The service rate of the ramp
server is slightly more that the sum of the service rates of the
two runway servers, confirming that the runway is the critical
bottleneck. The arrival and departure demand at the airport
also fluctuate through the day (Fig. 16(b)), highlighting the
need for a dynamic policy to reduce congestion.

The queue lengths can be predicted by integrating the model
equations with appropriate initial conditions. The taxi-out time
can be estimated as the sum of the unimpeded time plus the
wait time in these queues. A detailed model validation has
been presented in our earlier paper [23]: The mean taxi-out
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Fig. 16. Variation of the mean service and demand for a typical good weather
day (07/12/2015).

time prediction error is -1.4 min, and the mean absolute error
is 4.4 min, for a mean taxi-out time of 20.1 min.

C. Departure metering to control runway queue lengths

In the absence of departure metering, pilots pushback when-
ever they are ready to leave. There are times during the day
when many aircraft pushback around the same time, resulting
in the formation of large queues, and leading to high taxi-
out times. The objective of departure metering is to tactically
control departure pushbacks in order to reduce taxi-out time
without underutilizing the runway. The runway is said to be
underutilized if the departures are held longer than necessary
at the gate, causing avoidable take-off delays and a decrease
in airport throughput. While having a queue length of zero
will result in departing aircraft taking off without waiting, it
will almost certainly lead to under-utilization of the runway,
because of uncertainties. We therefore try to maintain a (small)
target runway queue length.

We present a methodology, based on the discussion so far,
for determining the pushback times to achieve desired runway
queue lengths. The queuing model for the airport surface
leads to a multi-input-multi-output system, unlike the single-
input-single-output systems discussed earlier. The outputs to
be tracked are the two runway queue lengths (xr1 , xr2 ) and
the inputs correspond to the pushback rate to each runway
(ur1 , ur2 ). The inputs do not directly appear in the equations
of the output dynamics. Differentiating the outputs twice yields
the following second-order differential equations (for the non-
delayed dynamics):

¨̄y = ᾱ(x, t) + β̄(x, t)u

Here, x = [xs1 , xs2 , xr1 , xr2 ]T and u = [ur1 , ur2 ]T . The
functions ᾱ(x, t) ∈ R2 and β̄(x, t) ∈ R2×2 are given by

ᾱ(x, t) =

 µ2
r1
Cr1

xr1

(1+Cr1
xr1

)2 −
µr1

µsCsxs1

1+Csxs
− µ2

sC
2
sxs1

(1+Csxs)2

µ2
r2
Cr2

xr2

(1+Cr2
xr2

)2 −
µr2µsCsxs2

1+Csxs
− µ2

sC
2
sxs2

(1+Csxs)2

 ,
β̄(x, t) =

µs Cs(1+Csxs2
)

(1+Csxs)2
−µs

C2
sxs1

(1+Csxs)2

−µs
C2

sxs2

(1+Csxs)2
µs

Cs(1+Csxs1
)

(1+Csxs)2

 .
The terms containing the derivatives of the server parameters
in the queue model are ignored (note that the service time
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distribution is considered to be a piecewise constant). As done
earlier, we shall assume that the actual dynamics is of the
following form ÿ = α(x, t) + β(x, t)u. Here, α(.) and β(.)
are unknown functions, with the following error bounds:

|αi(x, t)− ᾱi(x, t)| < Fi(x, t), i = 1, 2.

β(x, t) = (I + ∆)β̄(x, t), |∆ij | < Dij ; i, j = 1, 2.

Motivated by the fact that the uncertainties arise primarily
in the service times in the actual system, we consider the
following form for F:

F(x, t) =

a1
Cr1xr1

(1+Cr1
xr1

)2 + a2
Csxs1

1+Csxs
+ a3

C2
sxs1

(1+Csxs)2

a4
Cr2xr2

(1+Cr2
xr2

)2 + a5
Csxs2

1+Csxs
+ a6

C2
sxs2

(1+Csxs)2

 .
The ais and Dijs are design parameters that need to be picked
appropriately depending on the level of uncertainty in the
system. The goal is to track the runway queue lengths at
desired values (xrid , for each runway i). The sliding variable
(s ∈ R2) is defined in terms of the tracking error (e) as
follows:

si = ėi + λei; ei = xri − xrid ; i = 1, 2.

Perfect tracking is guaranteed for the model dynamics if the
sliding variable satisfies the following sliding condition (note
similarity to Eq. (10)):

1

2

d

dt
s2i ≤ −ηi|si|, ηi > 0 =⇒ siṡi ≤ −ηi|si| (40)

Consider the control input of the form

u = β̄−1(ū− k� sgn(s)), (41)

where ū = (−ᾱ(x, t)+ẍd,rid−λėi) and � represents element-
wise multiplication operation. The value of k is obtained from
the sliding condition to achieve perfect tracking (Eq. (40)),
along with constraints on the error bounds. After some alge-
braic manipulation, we get:

Fi(x, t)+

2∑
j=1

Dij |ūj(x, t)|−
2∑

j=1,j 6=i

Dijkj+ηi ≤ (1−Dii)ki.

A particular value of k is chosen by solving the following
linear equation:

(1−Dii)ki +

2∑
j=1,j 6=i

Dijkj = Fi +

2∑
j=1

Dij |ūrj(x, t)|+ ηi.

The control law in Eq. (41) is guaranteed to track the desired
queue length if the value for k is chosen such that it satisfies
the above equation. However, the control input needs to be sat-
urated at zero since the pushback rate cannot be negative. The
time delays in the original model dynamics is handled using a
predictor-based feedback. We consider the following substitu-
tions in the delay-free feedback law to account for time-delays:
xsi(t) → Psi,t(t + t1), (µs(t), Cs(t)) → (µs(t + t1), Cs(t +
t1)), xri(t)→ Pri,t(t+ t1 + t2), xri,d(t)→ xri,d(t+ t1 + t2),
(µri(t), Cri(t)) → (µri(t+ t1 + t2), Cri(t+ t1 + t2)). Here,
Py,t(t+ z) refers to the prediction of state y(t+ z) computed
at time t. The derivatives of the states present in the control

input are also transformed in a similar way. We use the
delay differential equations to compute the predictions of the
derivatives given the predictions of the states. Guarantees for
tracking are no longer possible, since we have saturated the
control input and considered a predictor-based feedback to
account for the time-delays. Nevertheless, we show through
numerical simulations that the control law performs well.

Pushback rate decisions need to be converted into flight-
specific hold decisions. The day is divided into 5-min intervals.
At the beginning of each interval, t, the pushback rate is
determined for t + Tp, where Tp is the planning horizon.
A planning horizon is included to improve predictability in
the system. The planning horizon introduces additional input
delay in the dynamics. The number of aircraft that can be
released during each 5-min window (n) is determined from
the pushback rate. The first n aircraft in the 5-min window
are released as per the control decision, and the remaining
aircraft are postponed to the beginning of the next time
window, awaiting decision for release. This approach specifies
the flights that need to be released in the [t+ Tp, t+ Tp + 5]
time-window, and postpones the remaining flights to the next
time-window.

D. Evaluating the performance of departure metering

1) Simulation environment: The performance of the de-
parture metering algorithm is evaluated using simulations of
the airport surface. The simulator is based on the discrete
version of the queuing network model for the airport. The
empirical service time distributions are functions of the airport
weather, fleet mix and traffic. The service times are randomly
sampled from the empirical distributions and the simulations
are repeated multiple times to obtain consistent statistics
(a Monte Carlo simulation with 10 runs). The simulator is
validated by comparing the baseline taxi-out time predictions
(with no departure metering) with the historical operational
data for 6,474 flights from the test set.

2) Benefits of departure metering: We apply the controller
developed earlier to compute the release rate for departure
flights to maintain a certain target queue length at the runway.
Figs. 17(a)-17(b) show the mean queue length for the two
runways over multiple realizations of the simulation obtained
using the pushback control strategy as well as the baseline
case. We see that the queue length with departure metering is
close to the desired target value during periods of high demand
(when there is a large queue in the baseline case). The queue
lengths are significantly lower than the target value during
periods of low demand. The figure clearly shows the banking
strategy adopted by airlines at their hubs.

The target queue length is set to 3.75 for each runway
queue; this value is determined such that the runway does
not get starved (under-utilized). Runway under-utilization can
occur due to low values of target queue length, and result in
unnecessary gate-holds and takeoff delays. On the other hand,
higher values of target queue length lead to decreased benefits
in terms of taxi-out time savings. The optimal target queue
length is determined through a parametric simulation analysis
that ensures an average wheels-off delay of close to zero,
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Fig. 17. Average queue length, taxi-out time and wheels-off delay from the
simulations of the departure metering strategy for a typical day (May 7, 2015).

while still maximizing taxi-out time reduction. Figure 17(c)
shows the average taxi-out time of flights in the baseline and
departure metering scenarios. We see that the peaks in the taxi-
out time are reduced with departure metering. The fuel savings
from departure metering are approximately 10.2 kg/min at
CLT. Moreover, the departure metering strategy effectively
holds the flights at the gate, and does not result in significant
wheels-off delays (Fig. 17(d)).

3) Comparison to a heuristic departure metering strategy:
We compare the performance of the proposed robust con-
trol approach with a heuristic that models NASA’s Airspace
Technology Demonstration - 2 (ATD-2) logic. ATD-2 has
been tested in field trials at CLT since November 2017. The
departure metering logic in ATD-2 computes a gate-hold time
for each flight based on its predicted taxi-out time. The gate-
hold time assigned to each flight is the predicted wait time
in queue for that flight minus a pre-specified excess queue
time buffer [32]. We use the queuing model presented earlier
to obtain the taxi-out time predictions for each flight. The
underlying idea is to transfer the predicted wait time in the
queues to a gate-hold time, thereby saving fuel. The excess
queue time buffer helps accommodate errors in the taxi-out
time prediction. The optimal buffer is chosen such that it yields
the maximum reduction in taxi-out time, while ensuring that
there is no significant change in wheels-off time. The optimal
excess queue time buffer for a 20-min planning horizon was
determined to be 7 min for CLT [40].

Tab. I shows some key statistics comparing simulations of
the two departure metering approaches over three days of
operations (6 AM-10 PM local time). The reduction in taxi-
out time is higher with the robust control approach compared
to the heuristic based on the ATD-2 logic, and results in no
significant wheels-off delay. It is worth noting that a smaller
fraction of flights are held for a larger duration with the robust
controller compared to the heuristic.

The maximum computation time for a 5-min decision
window is less than 30 ms for both the approaches, allowing

TABLE I
COMPARISON OF SIMULATIONS OF DEPARTURE METERING APPROACHES

FOR CLT.

Mean statistics ATD-2-based heuristic Robust control
Taxi-out reduction 2.6 min 2.89 min

Hold time 2.71 min 2.97 min
Wheels-off delay 0.10 min 0.08 min

Proportion of flights held 63% 35%
Hold time of flights held 4.33 min 8.40 min

for practical implementation. The computation time slightly
varies by time window because of varying demand and queue
length (example, for the robust control approach, the average
computational time for a 5-min window is 2 ms whereas
the maximum value is 28 ms). These computations were
performed with MATLAB on a computer with 2.8 GHz Intel
Core i7 processor.

VI. DISCUSSIONS

In this section, we present a few extensions and promising
directions for future research.

A. Correcting for the prediction errors

The model uncertainties lead to tracking errors for time-delay
systems while using a predictor-based feedback controller (as
seen earlier for tracking a single queue in Fig. 4). We propose
a heuristic, based on the classical Smith Predictor linear time-
delay systems [41], to improve the tracking performance in
the presence of uncertainties. The Smith predictor provides
feedback control not just using the predicted state, but also
accounts for errors between the output and model predictions.
Similarly, we account for the state prediction errors by esti-
mating a correction factor online using past predictions and
observations. Instead of using model predictions as inputs
to the feedback law, we use corrected predictions based on
past observations. Let P̂k be the corrected value of the state
predictor, Pk, at time tk (note a change in convention for the
subscript, k here refers to the time index. We will illustrate
the method for discrete version of the dynamics as used in the
implementation of the controller). We assume P̂k = wkPk.
The correction factor, wk, is determined online using weighted
recursive least squares based on past model predictions and
current state observations. The recursive algorithm to obtain
wk is as follows:

Kk = Qk−1Pk(λf +Qk−1P
2
k )−1

Qk = (Qk−1 −KkPkQk−1)/λf
wk = wk−1 −Kk(wkPk − xk)

Here, λf ∈ (0, 1] is an exponential discount factor; a smaller
value corresponds to higher weighting of recent prediction
errors compared to the past errors. Since the actual prediction
error can be determined only after waiting for the system
delay, the correction factor (wk) corresponds to past predic-
tions. However, we ignore this lag. This method is effective
for handling prediction errors that have a fixed bias or are
slowly varying. To illustrate the improvement in tracking
performance, we consider queue length tracking for a single



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 15

queue. The mean service rate of the of the actual dynamics
is considered to be 1.5 times the service rate used in the
model to design the controller. Fig. 18 shows the queue length
obtained with a corrected estimate for the predictor and it is
compared with the value obtained without the correction. The
results are shown both for the analytical model (Fig.18(a)) and
the simulation (Fig.18(b)). We see significant improvements in
the tracking performance compared to the case where naïve
state predictions were used (Fig. 4(c)). A higher value of the
forgetting (discount) factor is used in the simulation (λf = 1)
than in the analytical model (λf = 0.98), to account for the
stochasticity in the simulations. An alternative approach to
deal with model uncertainty is to use a robust adaptive control
approach to correct for the model parameters [34]. However,
one would still have to deal with delayed prediction errors.
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Fig. 18. Correcting for the prediction errors using recursive least squares
(µ = 1, µa = 1.5, C = Ca = 1).

B. Multiple arrival sources into the queuing network

This paper, motivated by the congestion control on the
airport surface, focused on controlling the sending rate from a
single source into a queuing network. We could extend the
analysis to the control of queuing networks with multiple
sources as given in the general expression for the dynamics
in Eq. (2). For example, in the tandem queue system that
we had considered, instead of having a single source feeding
customers into the first queue, we could have two sources
feeding into each of the two queues. The model queuing
dynamics for the non-delayed system would be of the form,
ẋ = ᾱ(x, t) + u, where, x = [x1, x2]T ; u = [u1, u2]T

and α(x, t) as obtained from Eq. (2). We can compute the
control inputs using the sliding mode approach to track the
queue length for the two queues with the sliding variable,
s = x − xd. Similar to the control input for a single
queue, the control input for tracking would be of the form
u(t) = (−ᾱ(x, t) + ẋd − k� sgn(s))+.

C. Runway assignment for flights

In the results presented earlier in this paper, the runway
assignment for flights was fixed as per historical schedules.
However, there are instances when there is large queuing on
one of the runways while the other is empty, indicating an
inefficient runway assignment. Some fights might have some
flexibility with regards to runway assignment, while many
might not (e.g., because of constraints on the departure fix
or runway length requirement). The same framework could be

utilized to decide on the runway assignments, when possible.
Instead of using the runway-specific demands to determine the
release rates, one can use the total demand to determine release
rates, while respecting the runway assignment constraints for
any flight. This approach will ensure that the runways are
equally loaded and utilised, increasing the overall airport
throughput.

VII. CONCLUSIONS

This paper presented an approach to control the release time
of customers into a queuing network, to maintain the length of
the queues at desired values. The proposed approach was based
on a sliding mode controller, with predictor-based feedback to
account for time-delays. For the case of a single queue and
server, we were able to determine error bounds for tracking
the queue length in the presence of model uncertainties. Using
a tandem queuing system as an example, we showed that
controlling the queue length with just the bottleneck queue
can result in poor tracking, and that it is important to include
information of all queue lengths in the feedback. The robust
controller was found to have similar tracking performance
compared to an exact solution obtained using a dynamic pro-
gramming approach for the delay-free case, while being more
scalable and flexible than dynamic programming in handling
large, dynamic networks with time-delays and general service
time distributions.

Using a validated queuing network model of Charlotte
airport (CLT), we applied our robust control framework to
tactically decide the pushback times (release times from
gates) for departure flights in order to maintain the runway
queue length at a desired value. This approach resulted in
a significant reduction in taxi-out times without a loss in
airport throughput. Moreover, stochastic simulations of airport
operations indicated that our proposed approach performs
better in terms of taxi-out time reduction (by about 11%) than
an alternative heuristic that is currently under consideration.

REFERENCES

[1] M. H. Veatch and L. M. Wein, “Optimal control of a two-station tandem
production/inventory system,” Operations Research, vol. 42, no. 2, pp.
337–350, 1994.

[2] C. Wang, “Urban transportation networks: analytical modeling of spatial
dependencies and calibration techniques for stochastic traffic simula-
tors,” Ph.D. dissertation, Massachusetts Institute of Technology, 2013.

[3] N. Pyrgiotis, K. M. Malone, and A. Odoni, “Modelling delay prop-
agation within an airport network,” Transportation Research Part C:
Emerging Technologies, vol. 27, pp. 60–75, 2013.

[4] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based analysis of a
network of AQM routers supporting TCP flows with an application to
RED,” in ACM SIGCOMM Computer Communication Review, vol. 30,
no. 4. ACM, 2000, pp. 151–160.

[5] S. Stidham and R. Weber, “A survey of Markov decision models for
control of networks of queues,” Queueing systems, vol. 13, no. 1-3, pp.
291–314, 1993.

[6] S. Stidham Jr, “Analysis, design, and control of queueing systems,”
Operations Research, vol. 50, no. 1, pp. 197–216, 2002.

[7] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
“A survey on recent advances in transport layer protocols,” arXiv
preprint arXiv:1810.03884, 2018.

[8] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on networking, no. 4,
pp. 397–413, 1993.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 16

[9] W.-c. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The blue active
queue management algorithms,” IEEE/ACM Transactions on Networking
(ToN), vol. 10, no. 4, pp. 513–528, 2002.

[10] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE control systems magazine, vol. 22, no. 1, pp. 28–43, 2002.

[11] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and
design of controllers for AQM routers supporting TCP flows,” IEEE
Transactions on automatic control, vol. 47, no. 6, pp. 945–959, 2002.

[12] G. Kahe, A. H. Jahangir, and B. Ebrahimi, “AQM controller design
for TCP networks based on a new control strategy,” Telecommunication
Systems, vol. 57, no. 4, pp. 295–311, 2014.

[13] Q. Chen and O. W. Yang, “Robust controller design for AQM router,”
IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 938–943,
2007.

[14] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang,
“Review of road traffic control strategies,” Proceedings of the IEEE,
vol. 91, no. 12, pp. 2043–2067, 2003.

[15] J. Gregoire, X. Qian, E. Frazzoli, A. De La Fortelle, and T. Wong-
piromsarn, “Capacity-aware backpressure traffic signal control,” IEEE
Transactions on Control of Network Systems, vol. 2, no. 2, pp. 164–
173, 2015.

[16] L. Chong and C. Osorio, “A simulation-based optimization algorithm
for dynamic large-scale urban transportation problems,” Transportation
Science, vol. 52, no. 3, pp. 637–656, 2017.

[17] R. Sanchez-Iborra and M.-D. Cano, “On the similarities between urban
traffic management and communication networks: Application of the
random early detection algorithm for self-regulating intersections,” IEEE
Intelligent Transportation Systems Magazine, vol. 9, no. 4, pp. 48–61,
2017.

[18] I. Simaiakis, H. Khadilkar, H. Balakrishnan, T. G. Reynolds, and
R. J. Hansman, “Demonstration of reduced airport congestion through
pushback rate control,” Transportation Research Part A: Policy and
Practice, vol. 66, pp. 251–267, 2014.

[19] Federal Aviation Administration, “TFDM Overview,” 2018,
https://www.faa.gov/.

[20] Eurocontrol, “Airport CDM implementation manual,” 2017.
[21] H. Chen and S. Solak, “Lower cost departures for airlines: Optimal

policies under departure metering,” Transportation Research Part C:
Emerging Technologies, vol. 111, pp. 531–546, 2020.

[22] I. Simaiakis and H. Balakrishnan, “A queuing model of the airport
departure process,” Transportation Science, vol. 50, no. 1, pp. 94–109,
2015.

[23] S. Badrinath, M. Z. Li, and H. Balakrishnan, “Integrated surface–
airspace model of airport departures,” Journal of Guidance, Control,
and Dynamics, vol. 42, no. 5, pp. 1049–1063, 2019.

[24] Y. Wan, C. Taylor, S. Roy, C. Wanke, and Y. Zhou, “Dynamic queuing
network model for flow contingency management,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1380–1392,
2013.

[25] A. Jacquillat, “A queuing model of airport congestion and policy im-
plications at JFK and EWR,” Ph.D. dissertation, Massachusetts Institute
of Technology, 2012.

[26] W.-P. Wang, D. Tipper, and S. Banerjee, “A simple approximation for
modeling nonstationary queues,” in INFOCOM’96. Fifteenth Annual

[32] S. Verma, W. J. Coupe, H. Lee, I. Robeson, Y. Jung, S. Sharma,
V. L. Dulchinos, and L. Stevens, “Tactical surface metering procedures
and information needs for Charlotte Douglas International Airport,” in
International Conference on Applied Human Factors and Ergonomics.
Springer, 2018, pp. 157–169.

Joint Conference of the IEEE Computer Societies, vol. 1. IEEE, 1996,
pp. 255–262.

[27] S. Badrinath and H. Balakrishnan, “Control of a non-stationary tandem
queue model of the airport surface,” in American Control Conference
(ACC), 2017. IEEE, 2017, pp. 655–661.

[28] K. Bouyoucef and K. Khorasani, “Robust feedback linearization-based
congestion control using a fluid flow model,” in American Control
Conference, 2006. IEEE, 2006, pp. 6–pp.

[29] A. Pitsillides, P. Ioannou, M. Lestas, and L. Rossides, “Adaptive
nonlinear congestion controller for a differentiated-services framework,”
IEEE/ACM Transactions on Networking (TON), vol. 13, no. 1, pp. 94–
107, 2005.

[30] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-delay Systems.
Birkhauser, Boston, 2003.

[31] E. Fridman, “Tutorial on Lyapunov-based methods for time-delay sys-
tems,” European Journal of Control, vol. 20, no. 6, pp. 271–283, 2014.

[33] D. Tipper and M. K. Sundareshan, “Numerical methods for modeling
computer networks under nonstationary conditions,” IEEE Journal on
Selected Areas in Communications, vol. 8, no. 9, pp. 1682–1695, 1990.

[34] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[35] S. Sastry, Nonlinear systems: analysis, stability, and control. Springer
Science & Business Media, 2013, vol. 10.

[36] I. Karafyllis and M. Krstic, Predictor feedback for delay systems:
Implementations and approximations. Springer, 2017.

[37] M. Corless and G. Leitmann, “Continuous state feedback guaranteeing
uniform ultimate boundedness for uncertain dynamic systems,” IEEE
Transactions on Automatic Control, vol. 26, no. 5, pp. 1139–1144, 1981.

[38] A. Thowsen, “Uniform ultimate boundedness of the solutions of un-
certain dynamic delay systems with state-dependent and memoryless
feedback control,” International Journal of control, vol. 37, no. 5, pp.
1135–1143, 1983.

[39] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[40] S. Badrinath, H. Balakrishnan, E. Clemons, and T. G. Reynolds, “Evalu-
ating the impact of uncertainty on surface operations,” in 2018 Aviation
Technology, Integration, and Operations Conference. AIAA, 2018.

[41] N. Abe and K. Yamanaka, “Smith predictor control and internal model
control-a tutorial,” in SICE 2003 Annual Conference (IEEE Cat. No.
03TH8734), vol. 2. IEEE, 2003, pp. 1383–1387.

Sandeep Badrinath is a PhD candidate in the Department of Aeronautics
and Astronautics at the Massachusetts Institute of Technology. His research
focuses on system modeling, design of control and optimization algorithms,
with applications to airport operations and air traffic management.

Hamsa Balakrishnan is the Associate Department Head and a Professor of
Aeronautics and Astronautics at the Massachusetts Institute of Technology.
Her research is in the design, analysis, and implementation of control and
optimization algorithms for air transportation systems.


