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Abstract

The integration of data-driven methodologies, including techniques from artificial
intelligence and network science, into the research process and funding ecosystem
is an exciting, potentially paradigm-changing opportunity to augment the effective
intelligence of the scientific community—potentially increasing the efficiency, fairness,
and overall impact of the scientific enterprise.

In this thesis, we explore the development of new technologies to extract action-
able insights from large-scale data corpora through the design and deployment of
machine learning approaches. Specifically, we describe (1) the creation of new al-
gorithms that compute on simulations of complex biophysical processes to generate
novel scientific insights, (2) artificial intelligence-based improvements to the academic
publishing system, (3) a study of institutional barriers bottle-necking the development
of large-scale algorithmic approaches to scientific knowledge analysis, and (4) a new
algorithmic framework that, by learning from the history of biotechnology innovation
as models by dynamic knowledge graphs, is able to identify with high-fidelity new
technologies of likely high future impact.

We also develop tools to facilitate the real-world utilization of these quantita-
tive approaches, effectively demonstrating how theses “intelligence-augmenting” algo-
rithms could be used to more efficiently navigate the scientific literature and design
scientifically impactful collaborations. Finally, we conclude by discussing the poten-
tial deployment of these technologies in the future—with a focus on potential appli-
cations in the funding of scientific research and commercialization, and the potential
design of diversified, impact-optimized funding portfolios.

Collectively, our results demonstrate that machine learning approaches can be used
to extract meaningful insight from existing data corpora, and that these signals can be
used synergistically with human intuition to increase the rate at which we collectively
generate breakthrough scientific insights and transformative new technologies.

Thesis Supervisor: Joseph M. Jacobson
Title: Associate Professor
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A-1 (A) Illustration of computation of the TIS flux factor. The red and

gray line represents a long molecular dynamics trajectory originating

in region A. Portions of the trajectory in red indicate the time points

in region A used to normalize the flux factor. Black dots represent

effective crossings of the 𝜆𝐴 interface. (B) Illustration of computa-

tion of a 𝑃 (𝜆𝑖+1 | 𝜆𝑖) ensemble. Each red and white line indicates an

attempted shooting move. Black dots indicate shooting points. Red

lines indicate accepted shooting moves, while white lines indicate re-

jected shooting moves. (C) Illustration of procedure used to compute

the constrained flux factor. The dark red region indicates the reactive

subregion A’ identified using machine learning. Portions of the trajec-

tory in red indicate the time point in either region A’ used to compute

the constrained flux factor. Black dots represent effective crossings of

the 𝜆𝐴 interface. (D) Illustration of a constrained 𝑃 (𝜆𝑖+1 | 𝜆𝑖) ensem-

ble. The dark red region indicates the reactive subregion A’ identified

using machine learning. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A-2 (A) Cumulative log(𝑃 ) for increasing interface placement for each of

the 5 seed trajectories tested. Red lines indicate trajectories sampled

with the reactant basin constrained to only include the region where
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Onwards. And so onwards along the path of wisdom, with a

hearty tread, a hearty confidence! However you may be, be

your own source of experience! Throw off your discontent

about your nature; forgive yourself your own self, for you have

in it a ladder with a hundred rungs, on which you can climb to

knowledge. The age into which you feel yourself thrown with

sorrow calls you blessed because of this stroke of fortune; it

calls to you so that you may share in experiences that men of a

later time will perhaps have to forego. . .

Stroll backwards, treading in the footprints in which humanity

made its great and sorrowful passage through the desert of the

past; then you have been instructed most surely about the

places where all later humanity cannot or may not go again.

And by wanting with all your strength to detect in advance

how the knot of the future will be tied, your own life takes on

the value of a tool and means to knowledge. You have it in

your power to merge everything you have lived

through–attempts, false starts, errors, delusions, passions, your

love and your hope–into your goal, with nothing left over: you

are to become an inevitable chain of culture-rings, and on the

basis of this inevitability, to deduce the inevitable course of

culture in general.

When your sight has become good enough to see the bottom in

the dark well of your being and knowing, you may also see in

its mirror the distant constellations of future cultures.

Human, All Too Human
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1
Augmenting Human Scientific Capacity

with Machine Learning

1.1 Introduction & Perspective

The past introduction of computation over the past few decades has arguably led to

perhaps the greatest paradigm-shift in human interaction, and thus the structure of

society generally, since the agricultural revolution over 12,000 years ago [8]. In this

period, spanning from the development of the first general-purpose Turing-complete

computer in 1945 to the present day, computational processing has become ubiqui-

tous [100]; and the development of data-driven approaches has made the extraction

of increasingly nuanced, super-human insights possible in fields ranging from social

media to radiology.
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Recent advances in machine learning and artificial intelligence can now extract

valuable signals from large corpora of data; in effect, by learning patterns on a high-

dimensional space from input data, machine learning algorithms are able to make

inferences about the likely properties of the new data based on their relationship to

these learned patterns. Because these algorithms are not limited by human cognitive

capacity (e.g. memory and dimensionality constraints), super-human performance

becomes possible in certain tasks. To-date, many of the successful applications of

machine learning algorithms has been within a specific class of problem: the complete

replacement of simple tasks with specific and targeted algorithms. This includes, for

example, classifying the contents of an image, translating speech to text, identifying

tumors, and predicting short-term stock price movements [103, 4, 29, 69]. In many

cases, the desired outcome is performing such a highly-targeted task at super-human

scale, speed, or accuracy levels.

1.2 An Opportunity To Scale Science

There exists another area of artificial intelligence research, wherein algorithms are de-

signed to support humans dynamically with tasks. Such approaches, which combine

the scale and speed of artificial intelligence algorithms with human-level intuition,

interpretation, and prioritization, have led to innovations in fields like Human Com-

puter Interaction (HCI), visualization, and music [37]. However, for a variety of

reasons, the application of these approaches socially-critical problems like resource

allocation, has not yet been deeply explored–despite the enormous benefits that even

slight improvements in efficiency could bring.

The potential implied by the application of such intelligence-augmenting algo-

rithms in the scientific ecosystem is extraordinary. In the mid-17th century, the

breadth of scientific communications was captured largely by personal letters between

a small population of researchers; it was not until 1665 that the world’s first scientific

journal, Philosophical Transactions of the Royal Society, was established. Since then,

the universe of scientific communication has grown enormously–accompanied by an
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explosion of academic journals, research institutions, and new fields of study. As

the scope of science and technology continues to grow–with high-quality interactions

now taking place not only in academic journals, but via online platforms and “pre-

print” servers–the ability of any individual, or group of individuals, to understand

the nuances, drivers, and potentially promising areas of research of even a single field

continues to decline. In a world of rapidly expanding information, and yet limited re-

sources, the decisions of what to study, who to study with, and what research to fund

become increasingly difficult. This dynamic has led to increasing evidence that we, as

a world population, are getting collectively less scientific impact for each incremental

hour (or dollar) deployed [49, 16]

Thus, we may stand on the precipice of potentially another paradigm-change in

scientific society; that is, will the increasing breadth of scientific knowledge inevitable

dilute our ability to generate new scientific breakthroughs, resulting in a continually

decreasing scientific return-on-investment (ROI)—or will we be able to optimize our

scientific and technological processes by leveraging this wealth of information, con-

tinually refining and re-allocating our resources to generate increasing amounts of

breakthrough insights and transformative technologies?

1.3 Thesis Structure

It is the goal of this thesis to explore this question—and to propose new insights

and technologies that, collectively, constitute a step towards a future where artificial

intelligence algorithms are used not to replace humans, but to augment our effective

intelligence, enabling us to chart a path towards greater insights, more technological

breakthroughs, and higher scientific efficiency.

I describe herein the creation of new machine learning-based methods to gen-

erate new scientific insights from biophysical simulation data (Chapter 2), artificial

intelligence-based improvements to the academic publishing system (Chapter 3), in-

stitutional barriers to data-driven approaches in science and their potential solutions

(Chapter 3), and a new framework that, by learning from scientific history, is able to
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identify with high-fidelity new technologies likely to be highly-impactful in the future

(Chapter 5). I also design tools to demonstrate how such intelligence-augmenting al-

gorithms could be utilized (Chapter 6), and conclude by discussing the myriad avenues

through which the technology described herein could be deployed in the future—with

a focus on the philanthropic and for-profit funding of science and technology research

and commercialization (Chapter 7).
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Out there – thus I will; so doing

trust myself now and my grip.

Open lies the sea, its blueing

swallows my Genoese ship.

All things now are new and beaming,

space and time their noon degree –:

Only your eye, monstrous, gleaming

stares at me, infinity!

Toward New Seas

2
Learning on Biomolecular Dynamics to

Optimize Enzyme Catalysis

The work in this chapter is adapted with permission from the manuscript Machine

Learning Identifies Chemical Characteristics that Promote Enzyme Catalysis

written by Brian M. Bonk, James W. Weis, and Bruce Tidor and published in the

Journal of the American Chemical Society (JACS) on February 14, 2019.

B.M.B., J.W.W., and B.T. conceived of the overall project and developed the

approach and plan. B.M.B. performed the simulations, generated the data sets, led

the data analysis, and wrote the initial manuscript draft. J.W.W. explored methods

for feature selection and implemented the method used here. B.M.B., J.W.W., and

B.T. contributed to the analysis of the data and developed the final manuscript.
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2.1 Abstract

Despite tremendous progress in understanding and engineering enzymes, knowledge

of how enzyme structures and their dynamics induce observed catalytic properties

is incomplete, and capabilities to engineer enzymes fall far short of industrial needs.

Here we investigate the structural and dynamic drivers of enzyme catalysis for the

rate-limiting step of the industrially important enzyme ketol-acid reductoisomerase

(KARI) and identify a portion of the conformational space of the bound enzyme–substrate

complex that, when populated, leads to large increases in reactivity. We apply compu-

tational statistical mechanical methods that implement transition interface sampling

to simulate the kinetics of the reaction and combine this with machine learning tech-

niques from artificial intelligence to select features relevant to reactivity and to build

predictive models for reactive trajectories. We find that conformational descriptors

alone, without the need for dynamic ones, are sufficient to predict reactivity with

greater than 85% accuracy (90% AUC). Key descriptors distinguishing reactive from

almost-reactive trajectories quantify substrate conformation, substrate bond polariza-

tion, and metal coordination geometry and suggest their role in promoting substrate

reactivity. Moreover, trajectories constrained to visit a portion of the reactant well,

separated from the rest by a simple hyperplane defined by ten conformational pa-

rameters, show increases in computed reactivity by many orders of magnitude. This

study provides evidence for the existence of reactivity promoting regions within the

conformational space of the enzyme–substrate complex and develops methodology

for identifying and validating these particularly reactive regions of phase space. We

suggest that identification of reactivity promoting regions and re-engineering enzymes

to preferentially populate them, may lead to significant rate enhancements.

2.2 Introduction

Enzymes are remarkable catalysts that produce substantial rate enhancements, often

accompanied by high substrate and product selectivity. They are increasingly impor-
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tant for industrial-scale applications, because of the chemistry they can accomplish

sustainably in mild, aqueous conditions. Despite substantial progress made, more is

still required along two principal avenues in order to advance enzyme engineering to

meet industrial needs. We need a better understanding of the drivers of reactivity

promoted by enzymes, some of which have been hypothesized to be dynamic[9, 95, 61]

rather than structural, along with a richer set of tools to probe and manipulate the

active-site catalytic environment.

Current approaches include directed evolution[89, 53, 81], catalytic antibodies[67,

84, 71] and computational enzyme design [64, 7], the latter two of which focus on

tight-binding of transition states. While these approaches have produced tremendous

successes, they have not yet become general-purpose tools. The need for directed

evolution to improve designs obtained by other methods, and our inability to fully

understand the improvements accumulated through evolution, suggest that our un-

derstanding may be incomplete, perhaps in some fundamental way, and may require

us to incorporate other factors beyond transition-state binding and transition-state

stabilization (relative to the bound or unbound ground state).

Here we investigate two fundamental questions of enzyme function motivated by

the larger goal of enzyme engineering; note that our focus is on the enzyme–substrate

complex without specific reference to the transition state. First, can we gain insight

into the nature of the drivers of chemical reactivity, and to what extent are these

drivers apparent in the behavior of the bound enzyme–substrate complex, well before

the transition state? And second, based on previous work of ourselves and others

[101, 58, 96, 124, 110] can we identify regions of the conformational space of the

enzyme–substrate complex that are inherently more reactive than others? These

questions are addressed using a new approach that combines machine learning with

path sampling, applied to the rate-limiting step for the industrially important enzyme

ketol-acid reductoisomerase (KARI).

There are a number of approaches for studying enzyme reactivity that do not

focus on the transition state per se, although it may enter implicitly. These include

the literature investigating near-attack conformations, which has suggested that low-
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ering the energetic barrier to facilitate selective formation of subsets of ground-state

conformations that lie on the path to the transition state, can be just as important

as lowering the energetic barrier to the transition state itself [96, 66, 23, 22] and

the computational path sampling methods [33, 111], which are statistical mechanical

techniques for directly computing the rate of a chemical reaction without reliance

on transition-state theory or knowledge of either the transition state or a valid reac-

tion coordinate connecting the reactant well with the product well on the free energy

surface.

Here we use transition interface sampling [111] (TIS), for its computational ef-

ficiency. TIS uses Monte Carlo sampling to construct an ensemble of trajectories

that start in the reactant well and pass through an interface on the way toward

the product well. Appropriate statistical methods exist to compute the progressive

probability that a trajectory starting in the reactant well will reach each interface,

a rapidly diminishing cumulative probability, and to convert the probability into a

reaction rate, corresponding to the specific activity, 𝑘𝑐𝑎𝑡, for enzymes. While a valid

reaction coordinate is not a requirement, the method uses an order parameter that

cleanly distinguishes reactant from product to track progress between the two wells

[111]. (The placement of interfaces is shown schematically in Figure A-1A and their

progression in Figure S1, with 𝜆 representing the order parameter.)

The model system for this study, KARI, is a natural enzyme required for branched-

chain amino-acid synthesis, found broadly across plant and microbial species[35]. It

carries out two reactions in sequence, first an isomerization, which is generally rate

limiting, consisting of an alkyl migration and then a faster reduction carried out by

a nucleotide cofactor. It also has an important role in industrial processes for the

production of isobutanol, and, due to its role as the rate-limiting step, improvements

in its specific activity would improve processes for large-scale isobutanol production

[26]. Our studies have focused on the homodimeric enzyme from Spinacia oleracea,

due largely to the availability of appropriate crystal structures, and we have studied

the industrially relevant, rate-limiting reaction step involving isomerization of (2S)-

acetolactate (AL) to (2R)-2,3-dihyroxy-3-isovalerate through methyl migration [26,
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10, 102] (Figure 2-1B).

The natural spinach enzyme exhibits a strong preference for NADPH as a co-

factor and has two divalent magnesium cations bound at the active-site, in intimate

contact with substrate[15], which are each hexacoordinate with oxygen atoms from

the substrate, active-site water molecules, and residues Asp315, Glu319, and Glu496

(Figure 2-1C). Note that the C5 represents the methyl group that migrates from C4

to C7.

The current study is based on previous work we carried out on KARI, which

identified a “pump-and-push” mechanism for the rate-limiting isomerization reaction,

whereby the local environment vibrationally excites the breaking C4–C5 bond and the

side chain of Glu319 helps direct and potentially stabilize the migrating methyl group

towards its destination, bound to C7 12. Moreover, the work suggested that some

portions of the conformational and motional space of the bound enzyme–substrate

complex (the reactant well) led to trajectories that have a greater probability of

reacting than those that do not pass through or spend as much time in those same

portions of the reactant well. The term “more reactive” portions of the reactant well

is used to represent this idea.

Here we carried out TIS simulations of wild-type spinach KARI and performed

comparative analysis on two sets of ensembles of trajectories–one set that reacted and

another set that approached the barrier but did not react (termed “almost-reactive”).

We tabulated data on 68 different geometric measurements (Table B.2 and Figure 2-

4) in the active site that represent elements of the local conformation in the form of

distances between pairs of atoms, planar angles across triplets of atoms, and dihedral

angles across quadruplets of atoms. The set was selected based on mechanistic hy-

potheses of others and ourselves, and includes internal metrics within the substrate;

measures of the position and orientation of substrate relative to the environment,

particularly for groups that might stabilize the bound substrate or transition state;

and measures of conformation of the environment.

Machine learning techniques were applied to identify subsets of this feature list and

build predictive models that accurately distinguished reactive from almost-reactive
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trajectories, based only on data tabulated from before trajectories departed the re-

actant well. We reasoned that these reduced feature sets and models might indicate

key features sufficient to drive reactivity. We analyzed these features in the context

of the reactive and almost-reactive trajectories to understand in more detail these

drivers and to gain insight into mechanism. We found that key descriptors capable of

identifying reactive conformations included those that quantify substrate conforma-

tion, substrate bond polarization, and metal coordination geometry and suggest their

role in promoting substrate reactivity. To test the notion that these descriptors are

sufficient and that they define inherently reactive portions of the reactant well, we

compared the computed specific activity of the wild-type enzyme when trajectories

were constrained to visit these regions with those that were not. We found that ten

features alone were sufficient to describe a portion of the reactant well that led to

very large rate increases, demonstrating it as a highly reactive portion of the well.

2.3 Methods

2.3.1 Structure Preparation

The crystal structure of Spinacia oleracea KARI was obtained from the Protein Data

Bank[13, 12] with the accession code 1YVE [15] and prepared as described previously

by Silver[101]. Only the chain A monomer was used for all simulations in order to

improve computational efficiency, justified by the significant separation between the

active sites of the two monomers [15] (Figure 2-5).

A model of the substrate-bound enzyme was then constructed by running an in

vacuo QM ground-state minimization of the substrate, two magnesium centers, five

magnesium-coordinating water molecules, and the side chains of three surrounding

active-site residues, Asp315, Glu319, and Glu496. Glu496 was protonated, consis-

tent with previous studies indicating its importance in stabilizing the transition and

product state by forming a hydrogen bond with the substrate O8 [90]. The GAUS-

SIAN03 computer program [43] was used to perform in vacuo QM calculations at the
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rhf/3-21g* level of theory[88, 87].

2.3.2 Simulation Methodology

CHARMM version 41 [21, 20] compiled with the SQUANTUM option was used to

perform all molecular dynamics simulations. The QM portion of the energy function

was calculated with the AM1 semi-empirical quantum mechanical force field [34]; the

MM portion of the energy function was computed using the CHARMM36 all-atom

force field [57]. Additional AM1 parameters were used for the magnesium ions 38. The

following atoms made up the QM region: substrate (acetolactate), both magnesium

centers, five magnesium-coordinating active site water molecules, the side chains of

Asp315, Glu319, and Glu496, and the nicotinamide group of NADPH (Figure 2-

1C). The Generalized Hybrid Orbital method 39 was used to treat the QM/MM

boundary atoms. The substrate O6 was deprotonated and the coordinating Glu496

was protonated, paralleling previous QM/MM studies of KARI [90].

2.3.3 Seed Trajectory Generation

The initial reactive trajectories used to bootstrap the TIS simulations were found by

computing a potential of mean force (PMF) along the order parameter 𝜆, defined

as the difference of the distance between the substrate breaking bond (C4–C5) and

the forming bond (C5–C7), in units of ångstroms. This PMF was computed using

umbrella sampling and the weighted histogram analysis method [65]. The umbrella

sampling was performed in CHARMM41 using the RXNCOR module with windows

0.05-Å in width and harmonic constraints of 300 kcal/(mol·Å). Candidate seed trajec-

tories were then generated by integrating forward and backward for 2,000 fs without

constraints starting from a randomly chosen frame from the umbrella sampling win-

dow ensembles centered at 𝜆 values of –0.05, 0.00, and +0.05. Trajectories were

selected as successful seed trajectories if they connected the reactant basin (𝜆 < ˘1)

and product basin (𝜆 > +1).
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2.3.4 Training Data Set Generation And Time Point Selection

Three randomly-selected connecting seed trajectories from the collection described

above were used as starting trajectories for the generation of a larger ensemble of

reactive and almost-reactive trajectories. Each seed was used to generate 9 reactive

ensembles and 9 almost-reactive ensembles of 20,000 trajectories each. The combined

data set contained 461,422 almost-reactive and 618,578 reactive trajectories. When

the almost-reactive process produced a reactive trajectory, it was removed from that

set and added to the reactive data set. To ensure a balanced number of reactive

and almost-reactive trajectories in each training and testing data set, the reactive

trajectories were randomly sampled without replacement to produce a set of 461,422

reactive trajectories.

For the reactive ensembles, the product interface was defined as 𝜆𝑅 = +1.00, and

for the almost-reactive ensembles, the product interface was defined as 𝜆𝐴𝑅 = ˘0.20

(Figure 2-1A). The TIS methodology was applied in parallel to produce statistical me-

chanical ensembles containing reactive and to almost-reactive trajectories that could

be compared to one another. In both ensembles, the reactant interface was defined as

𝜆 = ˘1.00. To collect time points early in the reactant basin for analysis, integration

was not stopped once a trajectory reached the reactant and product interface (and

had been accepted into the Markov chain), but continued forward and backward for

a total of 200 fs in each direction.

To ensure that candidate features (see below) were computed at analogous time

points between reactive and almost-reactive trajectory ensembles, in a post-processing

step, all almost-reactive and reactive trajectories from all 27 pairs of ensembles were

time-shifted such that the 0-fs time point corresponded to the bottom of the last

“trough” in 𝜆 (when plotted vs. time) before the prospective alkyl migration event, a

geometric feature that all the collected trajectories shared (Figure 2-1D). This trough

was found by first finding the point in the trajectory closest to the transition region

at 𝜆 = 0, then scanning along the trajectory backward from this point until the first

change in sign of the derivative of 𝜆 with respect to time was found with a value of 𝜆
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less than 0 (i.e., was located in the reactant basin). All other time points were defined

relative to this first trough at time 0. Cartesian coordinate frames of atomic positions

were collected in 5-fs increments from the 0-fs time point, going backward to –150 fs

and forward to +35 fs from the t=0-fs point, for a total of 38 total time points. This

collection of sub-sampled time points was used for all subsequent analysis.

2.3.5 Feature Computation

At each of the 38 time points between –150 and +35 fs, the set of 68 structural features

in Table B.2 were computed for each of the trajectories in each of the 27 reactive and

27 almost-reactive ensembles. The 68 features are illustrated structurally in Figure 2-

4A (distances), Figure 2-4B (angles), and Figure 2-4C (dihedrals). These data were

pooled across ensembles to produce one combined reactive and one combined almost-

reactive data set at each of the 38 time points, which were used in machine learning

and subsequent analysis described below and stored as a row in a data matrix. For

model training, the data matrix at each time point was randomly sampled without

replacement to produce 5 equal partitions containing 73,827 trajectories each, and

for model testing, the remaining trajectories were randomly sampled to produce five

equal partitions containing 18,456 trajectories each.

2.3.6 Machine Learning

For feature regularization and discovery, LASSO[106] was used with the lassoglm

implementation in MATLAB. In order to select a given number of features with

LASSO, the regularization parameter 𝜆 was adjusted until a specific number 𝑚 (1, 5,

10, 15, 20, 25, or 30) of non-zero coefficients 𝛽𝑗 remained (using a tolerance of 10˘4).

These 𝑚 LASSO-selected predictor features with non-zero coefficients were then fit

using the fitglm function in MATLAB to a logistic classifier. After fitting predictor

coefficients, the area under the curve of the receiver operating characteristic (AUC)

was computed for each logistic classifier using the perfcurve function in MATLAB.
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2.3.7 Cluster Assignment

Reactive clusters were assigned by 𝑘-means clustering, with the kmeans function in

MATLAB using 𝑘 = 5 applied to the matrix of consensus feature Z-scores weighted

by their corresponding logistic coefficient 𝛽𝑗 for all correctly classified reactive tra-

jectories. The number of clusters (5) was chosen based on a hierarchical clustering

analysis also performed in MATLAB (data not shown). The Euclidian distance of the

consensus feature set from each almost-reactive trajectory to each of the five 𝑘-means

centers was computed, and each almost-reactive trajectory was then assigned to the

cluster with the shortest Euclidian distance to its respective centroid.

2.3.8 Rate Constant Computations

For the TIS flux factor calculations, a total of 10 independent 1-nanosecond molecular

dynamics simulations were performed starting from reactant structures derived from

each of 6 randomly selected seed trajectories generated as described above. The 𝜆𝐴

interface was set equal to the 𝜆1 interface at 𝜆 = ˘0.8. For the control flux factor

computations (Figure A-1A), the effective positive flux was computed as the number

of times the trajectory crossed the 𝜆𝐴 = ˘0.8 interface, having come from the region

below the interface, divided by the total amount of time spent below the 𝜆𝐴 interface.

For the constrained test flux factor computations (Figure A-1C), the top 10 LASSO-

selected features at the 𝑡 = 0 time point were written out during the dynamics run,

and the effective positive flux was computed as the number of times the trajectory

crossed the 𝜆1 = ˘0.8 interface, having come from the region A’, where region A’

refers to all points in phase space which lie at the last trough (i.e., the first point at

which 𝑑𝜆
𝑑𝑡

= 0 and 𝑑2𝜆
𝑑𝑡2

> 0) before crossing 𝜆𝐴 = ˘0.8, having first crossed 𝜆0 = ˘1,

and for which the logistic classifier with coefficients and features listed in Table 2.2S2

evaluated to true.

For the probability factor calculations, a total of 29 𝑃 (𝜆𝑖+1 | 𝜆𝑖) interface en-

sembles from each of the six seed trajectories were computed, with the 𝜆𝑖 interfaces

spaced between 𝜆 = ˘0.8 and 𝜆 = 0. The placement of these interfaces relative to the
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PMF surface used to generate initial seed is shown in Figure S4. For each interface

ensemble, a total of 5000 shooting moves was attempted. In each 𝜆𝑖 ensemble, candi-

date trajectories were generated using full shooting moves and accepted if they both

crossed the 𝜆𝐴 = ˘0.8 interface and crossed the 𝜆 = 𝜆𝑖 interface having first come

from crossing interface 𝜆𝐴. For the unconstrained control ensembles (Figure A-1B),

no further acceptance rules were applied.

2.4 Results

2.4.1 Machine Learning

Data sets consisting of 27 ensembles each of reactive and almost-reactive trajectories

generated using a combined QM/MM TIS approach, were analyzed with machine

learning to identify features with the ability to distinguish reactive from almost-

reactive trajectories. At each of 38 time points between –150 and +35 fs (5-fs spacing

and shown in Figure 2-1D), the 68 features listed in Table B.2 and illustrated struc-

turally in Figure 2-4 were computed for both sets of reactive and almost-reactive

ensembles. To assess individual feature performance, AUC (area under the curve of

the receiver operating characteristic) was computed for all single features at the 0-fs

time point (Figure 2-4A). The single feature with the maximum AUC performance

was the distance between Glu319 O𝜖1 and substrate C5 (AUC of 0.73). Only two

features (distance Glu319/Oe1–AC6/C5 and distance AC6/C4–AC6/C5) produced

models with individual AUCs above 0.70, and 18 features produced models with

AUCs above 0.60.

To find highly predictive groups of features, LASSO[106] was applied iteratively

with different penalty strengths to identify an ordered set of features for each trajec-

tory time point, optimized to distinguish reactive from almost-reactive conformations

(see Section 2.3). That is, for each time point a collection of separate classifiers was

built, trained, and tested, enabling comparisons of the useful sets of features across

time points as well as the performance benefits for increased numbers of features at
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each time point. Figure 2-2B shows the machine learning results for four classifier

performance statistics (AUC, accuracy, sensitivity, and specificity) computed from

each model constructed from data at each time point. Results for models constructed

with optimized sets of 1, 5, 10, 15, and 20 features selected by LASSO are shown. The

results show progressively improved performance as the number of features was in-

creased, with not insignificant performance with just one feature (generally 0.65–0.75

AUC) that rose to excellent performance with 10, 15, and 20 features (generally

0.85–0.95 AUC). Note that the performance of the LASSO-selected 1-feature models,

being the “best” feature for each time point, was significantly better than the average

AUC of all possible 1-feature models shown in Figure2-2A, which was 57.18%. The

similarity in performance between 15- and 20-feature models suggests near conver-

gence with this number of features. The models developed were well balanced between

false positives and false negatives as judged by similar values for the sensitivity and

specificity metrics of individual classifiers, as well as the AUC values. Models per-

formed similarly (for the same number of features) for time points between –150 and

+20 fs, and then became substantially better (approaching an AUC of 1.00) for time

points after +20 fs, which corresponds to times when the reactive and almost-reactive

trajectories began to separate based on the order parameter 𝜆 (Figure 2-1D).

To assess the effect of LASSO-optimized feature selection for use in machine learn-

ing models, a control was carried out in which a classifier was trained similarly but

using feature sets randomly chosen from the original 68 features. That is, each control

classifier was optimally trained for the best performance possible with the random

(and not optimized) features it was assigned. Analogous performance statistics for

these control classifiers are shown in Figure 2-2C. The results showed improved per-

formance with additional features randomly selected from a chemically plausible set,

together with large error bars, which is consistent with the notion that at any given

time point some features or combinations of features were much better able than oth-

ers to create predictive models, and the performance of models depended greatly on

the features making up that model. Models with any given number of features per-

formed much better on average when those features were selected by LASSO based
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on predictive ability than when selected randomly, demonstrating the value of the

LASSO-selected features in distinguishing reactive from almost-reactive trajectories;

for example, many of the one-feature models with LASSO-selected features had AUCs

of about 0.70, whereas the random models had average AUCs of 0.57. The random

models showed improved average performance after 𝑡 = +20 fs, consistent with the

notion that many features report on the fact that the reaction had largely begun by

that time.

2.4.2 Analysis Of Consensus Feature Set Predictive Through-

out Pre-Launch Time Window

The union of the complete 20-feature sets predictive at all 31 time points between

–150 and 0 fs is depicted in Figure 2-2E. Features are listed in decreasing order of

frequency of appearance, and the colored bars indicate the time points for which each

feature appears as one of the 20 LASSO-selected features. (The time range –150

to 0 fs will be called the “pre-launch time window” for shorthand, as the 0-fs time

point represents the last compression before the ultimate expansion of the putative

breaking bond.) The results show that 17 of the features were used throughout at

least half the window, 31 features were used at 10 or more time points, nearly all of

the original features were used at least once (54 from the collection of 68), and 8 were

used at five or fewer time points. The results suggest a commonality amongst the

geometric descriptors that were broadly predictive across the pre-launch window. The

names and feature types of the top 30 consistently predictive, consensus features are

presented in Table B.1 along with the number of occurrences in the top 20 LASSO-

selected sets within the pre-launch window. Figure 2-2D shows the classification

performance of models trained using the top 1, 5, 10, 15, 20, 25, and 30 consensus

features across the 31 time points between –150 and 0 fs. With the 30 consensus

features, classification performance was nearly equivalent to or better throughout the

pre-launch window (approximately 0.90 AUC) than the performance obtained from

20 LASSO-selected features optimized for each of the individual time points. That
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is, 30 shared features performed as well as 20 custom features across the range, which

is strong evidence that the fundamental determinants of re activity are relatively

consistent across the pre-launch window. Because the classifiers were each trained

separately at each time point to produce models with different learned coefficients,

these fundamental determinants of reactivity can (and do) play different roles at

different times.

A structural representation of the set of 30 predictive consensus features is shown

in Figure 2-7A (17 distances) and Figure 2-7B (12 planar angles and 1 dihedral

angle). Half of the features (15) represent interactions between the substrate and its

environment (nearby water molecules, the two magnesium ions, and the side chain of

Glu319), 7 represent intra-substrate conformational metrics, 7 represent water–metal

interactions, 1 represents an intra-co-factor orientation, and 2 represent other intra-

environment interactions. A full third of the features (10) represent distances or angles

describing the relationship of a single atom, the substrate hydroxyl oxygen (O6), to

its environment–the coordinating magnesium ions and water molecules interacting

with the metal ions. The largest number of intermolecular features involving any

other substrate atom is 2, for both a substrate carboxylate oxygen (O3) and the

substrate carbonyl oxygen (O8), whose carbon receives the migrating methyl group.

Only one intermolecular interaction involves the migrating methyl itself. We note

two additional characteristics of the feature set: (1) the substrate intramolecular

features involve the geometry local to the C4–C7 covalent bond, which is parallel to

the path of the migrating methyl group, and (2) 8 of the 10 intermolecular angle

features describe the orientation of groups coordinating the metal ions–either their

ligated water molecules or oxygen atoms of the substrate. We acknowledge that

the composition of the initial 68 features had some effect on the composition of the

selected features; nevertheless, the resulting consensus feature set suggests important

roles for substrate conformation, substrate bond polarization, and metal coordination

in the reaction mechanism.

Average reactive and almost-reactive time traces for the consensus feature set are

presented in Figure 2-3A. The closely overlapping distributions of most features in
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Figure 2-3A suggest the need for multiple features in combination to make usefully

accurate predictions. 2D and 3D histograms of reactive and almost-reactive trajecto-

ries for feature pairs and triplets (data not shown) show somewhat greater separation

than that seen in Figure 2-3A, but still considerable overlap between reactive and

almost-reactive distributions at individual time points, consistent with the relatively

poor classification performance of models with fewer than 10 features.

2.4.3 Variations Distinguish Multiple Reactive Channels

We examined the question of whether the reaction proceeded along multiple channels.

Clustering was used to organize the correctly predicted reactive and almost-reactive

trajectories into related sets, and the magnitude of the differences between the sets

was examined, allowing a more fine-grained analysis of the determinants of reactivity

as identified by the machine learning. Specifically, all correctly predicted reactive

trajectories were clustered based on the 0-fs time point using the 30 consensus fea-

tures, each weighted by its 𝛽𝑗 value (we refer to this as the feature weight, which is

listed in Table B.3 for the -150,-100,-50 and 0 time points; see Section 2.3; results

for five clusters are shown in Figure 2-3B). The results show at least five different

modes of reacting, with each cluster distinguished by which features contribute most

and least to the classifier outcome. In Figure 2-3B, the thirty columns represent the

contribution from each of the 30 consensus features and the rows each represent one

trajectory. Figure 2-3B shows that at the 0-fs time point, roughly half of the 30

features contribute very little to the decision as indicated by white bands in each

cluster. Further confirmation is seen by the observation that features that appear as

white bands usually do not occur in the top 20 LASSO selected set at this time point

(see Figure 2-2E; distance AC6/O6–MG6/M16 and distance MG6/O19–MG6/M17

are exceptions and rank 15 and 18, respectively, in the top 20 LASSO selected set).

Grouping the weighted features into reactive clusters and corresponding almost-

reactive clusters allows the subtle differences that define reactivity for each of these

subgroups to be more closely examined. To this end, the mean feature contribu-

tion for each almost-reactive cluster in Figure 2-3C was subtracted from each of the

44



weighted features from the corresponding cluster of reactive trajectories from Fig-

ure 2-3B to obtain a mapping of how each feature in each reactive trajectory differs

from its mean in the corresponding almost-reactive cluster (Figure 2-3D); the results

show several common features that distinguish correctly predicted reactive from cor-

rectly predicted almost-reactive clusters. For example, across all five clusters shown

in Figure 2-3D, the darkest red bands appear for distances AC6/C5–AC6/C4 and

MG6/M16–AC6/O3 (features 10 and 27, respectively), indicating that these features

are critical in driving the reactive/almost-reactive decision. However, there are other

cluster-specific differences; for example, the distance AC6/O8–Glu496/H𝜖2 (feature

6) is responsible for distinguishing reactive from nearly-reactive more for cluster 3

than for any of the others, on average.

Distributions of feature values with the strongest contributions to differences in

reactivity amongst the clusters (i.e., the darkest bands in Figure 2-3D), are shown, per

cluster, in Figure 2-3E. Although there is often considerable overlap in the individual

feature distributions between each reactive and almost-reactive cluster, the set of 5

features alone, when re-trained on each cluster alone, achieved AUCs of 1.00, 1.00,

0.94, 0.91 and 1.00, in classifying trajectories from clusters 1 though 5, respectively,

as reactive or almost-reactive. These very high scores suggest that the more general

classifiers presented earlier somehow carry out the dual tasks of determining which

reaction channel the trajectory is headed toward, as well as whether the trajectory

will successfully react through that channel. The high AUCs for the second task

above suggest that determining which channel is being approached may be the harder

portion of the two, although this effect is convolved with the fact that these clusters are

composed of trajectories that were correctly classified previously. When all (including

incorrectly classified) data points are used, the intracluster AUCs using the same set of

features are 0.92, 0.93, 0.80, 0.88 and 1.00 respectively, supporting the interpretation

that predicting reactivity within a cluster is easier than in the absence of knowledge

of the cluster for most of the clusters.

Figure 2-3E shows that across all five clusters, some general trends exist for the

five features and their relative distribution between reactive and almost-reactive tra-
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jectories. The strongest observation is that in almost every instance, each significant

feature has a much narrower distribution in the reactive than the almost-reactive

set of trajectories. This is consistent with the notion that there are many ways of

not reacting, but fewer modalities for successfully traversing the reaction barrier.

Across most of the five clusters, in general, reactivity is associated with a shorter

AC6/C5–AC6/C4 bond length (column 2; feature 9; clusters 1, 2, 4, and 5), a longer

AC6/C1–AC6/C4 bond length (column 4; feature 25; clusters 2, 3, and 5), a longer

Glu319/O𝜖1–AC6/C5 distance (column 1; feature 1; clusters 1, 2, 4, and 5), and a

shorter MG6/M16–AC6/O3 distance (column 5; feature 27; clusters 1, 2, and 5).

The value of the MG6/H29–MG6/O18–MG6/M17 angle (column 3; feature 20) is

associated with reactivity for small values in cluster 1 but large values in cluster

5. Nevertheless, the absolute values associated with reactivity for some of the fea-

tures varies greatly between clusters (column 3 for clusters 1 and 5, and column 5

for clusters 1 and 2, for example). Taken together, these results reinforce the notion

that a common set of fundamental reaction-promoting mechanisms are deployed in

somewhat different combinations in the different clusters.

An illustration and further discussion of representative structures corresponding

to the feature histograms in Figure 2-3E can be found in Figure 2-8. In summary, a

comparison of these histograms and representative structures shows that features dis-

tinguishing reactive from almost-reactive trajectories include internal conformational

degrees of freedom of the substrate, which may provide distortion toward the transi-

tion state and ground-state destabilization; subtle changes to polar interactions of the

two magnesium ions with the substrate and with their ligating water molecules and

side chains, which could have important effects in polarizing the substrate toward re-

activity; and interactions of the side chain of Glu319 with the migrating methyl group,

which could be important for steric, kinetic, and electronic reasons. It is anticipated

that more detailed molecular orbital analyses will contribute to an understanding of

how these structural differences are responsible for changes in relative reactivity.
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2.4.4 Predictive Features Direct Reactivity

Machine learning was used to develop predictive models capable of distinguishing

reactive from nearly reactive trajectories. Predictions of reactivity were successful,

even when applied to trajectories not used in training the models, further supporting

the notion that model features represent characteristics of reactivity. We reasoned

that these characteristics could be useful not only to predict reactivity, but also to

direct it. That is, if the features identify characteristics that are largely sufficient for

reactivity, rather than just indicative of it, then trajectories constrained to possess

reactive characteristics should show markedly increased reactivity. We tested that

notion, described below, and our findings confirm the directive power of the machine

learning features and their associated models.

The LASSO-selected, ten-feature model at the 0-fs time point was used, with

testing performance AUC of 89.03% and accuracy of 81.57%. Model features and

the corresponding logistic-regression coefficients are listed in Table 2.2. Eight of the

ten features occur in the 30-feature consensus set, with the exceptions being distance

AC6/C4–AC6/O6 and distance AC6/O8–MG6/M17. The ten-feature model achieves

very good predictive performance and is composed of many of the consensus features

found to be important at other time points.

The logistic regression models used here effectively create a dividing surface in the

reactant well (the hyperplane defined by the 𝛽𝑗 coefficients; see Section 2.3), and make

successful predictions of reactivity based on whether the trajectory is in the “reactive

portion” of the well at the appropriate time. We modified the statistical mechanical

TIS sampling procedure used here to compute reaction rates, so that we could require

all trajectories to be on the reactive side of the hyperplane encoded in the ten-feature

model (Table 2-4) during a rate calculation (see Section 2.3). Calculations of the

reaction rate were performed with (“test”) and without (“control”) this constraint

applied only at the 0-fs time point from five different starting seeds (three were

used previously to train the model, and two were new). The expectation was that

the test simulations would show greater reactivity (larger computed 𝑘𝑐𝑎𝑡) than the
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Table 2.1: Computed rate constants, probability factors and flux factors for each seed
studied.

Seed Experiment Mean P Mean Flux
(1/fs)

Mean Rate
Constant

(1/s)

Test/Control
Fold Increase

1 Control 6.7x10-23 1.0 x10-03 6.7 x10-11 8.7 x10+191 Test 1.4 x10-08 4.2 x1002 5.8 x10+09
2 Control 1.2 x10-22 9.0 x10-04 1.1 x10-10 1.3 x10+172 Test 1.1 x10-10 1.2 x1002 1.4 x10+07
3 Control 2.7 x10-22 1.0 x10-03 2.7 x10-10 1.2 x10+183 Test 3.5x10-09 9.6 x10+01 3.4 x10+08
4 Control 1.6 x10-22 7.0 x10-04 1.1 x10-10 7.8 x10+174 Test 1.0 x10-09 8.7 x10+01 8.7 x10+07
5 Control 3.2 x10-21 1.3 x10-03 4.2 x10-09 2.0 x10+165 Test 3.0 x10-10 2.7 x10+02 8.2 x10+07

controls, as the test simulations satisfied the reactivity conditions in every trajectory

(by constraint), whereas on average only 8.03% of control trajectories satisfied them

through ordinary sampling.

The observed relative differences in rate constants in all five sets of simulations

was consistent with this expectation and quite large, on the order of 1016 to 1019,

depending on the initial seed trajectory (Table 2.1). The computed rate is a product of

a factor representing the rate of reactant starting toward the barrier and a probability

factor representing the cumulative likelihood of progress toward and over the barrier.

Here the rate enhancement was driven by both factors, but with a significantly larger

effect from the probability factor and with contributions across much of the approach

to the barrier, which suggests that greater reactivity was due to increased productivity

at multiple stages of the reaction, including those after leaving the reactant well.

Contributions to the probability factor were further examined. Figure A-2A shows

the cumulative logarithm of the probability factor as a function of reaction progress

for test (red) and control (blue) simulations (essentially the probability that a trajec-

tory that started toward the barrier will reach this value of 𝜆). Figure A-2B shows

the individual multiplicative contribution to the probability factor at each progress

window (essentially the probability that a trajectory that made it through the pre-

48



vious window will continue through this window). The test simulations show much

smaller decreases in reaction probability (Figure A-2A) and much larger contribu-

tions to reactivity (Figure A-2B) than the control simulations earlier in the reaction

(below 𝜆 = ˘0.4) but show similar behavior beyond that point (between 𝜆 = ˘0.4 and

0.0). These data indicate a strong reactivity advantage of the constrained simulations

(which was applied at the 0-fs time point, corresponding to a 𝜆 value of approximately

–0.9 and well before the barrier) across the whole region from 𝜆 = ˘0.9 through –0.4

but not past this point, noting that by 𝜆 = ˘0.2 the reaction has essentially already

occurred. This is consistent with a picture in which the constraint achieved its large

gains in reactivity not by giving those simulations a local, near-term boost in reaction

progress, but by directing them into channels that retained a continuous reactivity

advantage.

2.5 Discussion

In this work, we find that features evident in the enzyme–substrate complex before it

departs the reactant well are highly predictive of reactivity through the identification

of relatively subtle conformational effects. These structural characteristics include

internal substrate conformation, interactions of substrate with its environment, and

details of the electronic environment of the two magnesium ions that coordinate the

substrate. A consensus set of 30 features are predictive across the pre-launch window,

although the detailed roles of some descriptors change across the window.

Interestingly, velocities are not needed to reliably distinguish reactive from non-

reactive trajectories. This does not mean that velocities cannot also be useful or im-

portant, but only that conformations alone are sufficient. In fact, in preliminary work

leading up to this study, we saw that velocities alone, without direct conformational

measures, were also sufficient to distinguish reactive from almost-reactive trajecto-

ries. The top 20 velocity descriptors at the 0-fs time point are listed in Table B.4,

together with their individual predictive performance. Five of these velocities are for

atoms involved in the consensus geometry feature set, and thus may be indicating the
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same or similar drivers of reactivity. Furthermore, Figure A-3 compares the AUCs of

the top 5, 10, 15, and 20 LASSO-selected features from (a) the set consisting of the

68 structural descriptors only (b) the velocity magnitudes of the 341 atoms within

within 5 ångstroms of the migrating methyl, and c) the combined structural-velocity

set of (a) and (b), showing that the combined set performs better than the structural

or velocity set alone, but only by a very small margin. Together, Table B.4 and Fig-

ure A-3 suggest an effective overlap of information, in that different descriptors can be

equally useful in understanding and predicting reactivity, perhaps through the same

or similar explanations. The involvement of some of the same atoms, although possi-

bly the result of there being a small reactive center, suggests that different classes of

descriptors may be indicating the same fundamental chemical effects. Although the

analysis in the current work appears static, relying on conformations evident at fixed

points in time, this may implicitly contain dynamic information. For example, the

0-fs time point corresponds to the maximum compression of the breaking bond before

the trajectory launches toward the activation barrier, and so a shorter bond distance,

indicating greater potential energy stored in the bond, may signify greater kinetic

energy available to surmount the barrier (and, indeed, the velocity of one atom in

this bond, C4, was the second most predictive velocity feature).

We acknowledge that a more thorough description may be necessary to truly

understand reactivity than to predict it. Whenever any fitting procedure is performed

(as in this study), there is a danger of overfitting, but a number of lines of evidence

suggest that overfitting is not responsible for the conclusions here. These include

the vast overabundance of data points relative to number of parameters included

in the fitting procedure, with data samples on the order of 500,000 reactive and

almost-reactive samples each used to fit 31 parameters; the use of cross-validation,

in which reported results are for testing data that is explicitly excluded from the

fitting procedure (that used only training data); and the observation that the highly

predictive features are also controlling, i.e. enforcing them enhances reactivity, even

for ensembles seeded from trajectories not included in the training/testing data set.

This study presents evidence that there are multiple channels of reactivity, some
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of which are more productive than others. The existence of multiple reactive channels

suggests that there are identifiably different reaction sub-pathways. Results further

suggest that within each channel there could be more ways of not reacting than re-

acting, consistent with the notion that there are many conditions that must be met in

order to produce a reactive trajectory, and failing to achieve any of multiple combina-

tions of those features can be detrimental to reactivity. This study also highlights the

important role that early active-site conformational effects play in driving chemical

catalysis, an idea that underlies existing theories of the importance of early confor-

mational effects such as electrostatic preorganization [115, 61] and enzyme-stabilized

“near-attack conformations” in certain catalytic systems [7, 66]. That machine learn-

ing methods were able to identify early conformations predictive of reactivity lends

additional support to the preorganization and near-attack conformation hypotheses

of enzymatic activity, although further research would be necessary to determine

whether electrostatic preorganization or stabilization of near-attack conformations is

a primary driver of catalysis in the KARI isomerization reaction studied.

Although this study was purely computational, the results are supported by data

available from the literature. A number of KARI mutants made characterized exper-

imentally 44. In the closest correspondence with the present work, mutations have

been made in the E. coli KARI variant (which exhibits 100% conservation of the 8

polar active site residues with the S. oleracea variant studied here), finding that mu-

tations in positions corresponding to Asp315, Glu319, and Glu496 all reduce specific

activity against 2-acetolactate by more than 200-fold 44. The relationship between

these experimental results and our computational features is striking–two of the three

instances of a debilitating mutation correspond to a residue involved in a feature in

the top 30 consensus feature set. For example, Glu319 is involved in the top ranked

feature, the Glu319/O𝜖1 − −𝐴𝐶6/𝐶5 distance, and Glu496 is involved in the 6th

ranked feature, the Glu496/H𝜖2–AC6/O8 distance. Asp315 was not included in the

features included for training and so could not appear in our consensus set.

In this work we also showed that that path-sampling techniques combined with

QM/MM simulations can be used to generate valuable data sets that allow the ques-
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tion of reactivity to be phrased as a binary classification problem well suited for

machine learning. We believe this represents both an exciting and promising appli-

cation, but also a productive strategy for elucidating subtle yet meaningful drivers

of catalysis in enzymatic systems. While this work utilized features selected through

human intuition and a linear classification model (LASSO), the application of unsu-

pervised learning techniques to identify perhaps better features combined with non-

linear classification models represents an opportunity to understand further the early

events that lead to enzymatic catalysis. Although this work utilized TIS to generate

only two types of data sets, reactive and almost-reactive, TIS can also be used to

generate many more types of data (for example, to generate sets of trajectories that

reach progressively higher points along the barrier). Applying machine learning to

trajectory outcomes representing more than two states of reactivity can potentially

yield new insights as to precisely when and how reactive and non-reactive trajec-

tories diverge. Although this study identified features indicative of reactivity, an

understanding of how those structural and potentially electronic effects cooperate to

facilitate the reaction is not obvious from structures alone. It is possible that more

detailed quantum chemical analysis, perhaps with a focus on orbital behaviors, will

lend more insight.

A difference between this work and prior studies of near-attack conformations

is that we have defined reactivity at time points relative to the temporal progress

of the prospective catalytic event rather than purely configurational states [96, 66,

58]. Although the sampling constraints during the TIS simulations were enforced

at specific time points relative to the progress of the prospective catalytic event,

e.g. the “last trough” that we have defined as the 0-fs time point in the reaction,

future work is needed to test how critical the time point is on the effectiveness of

the constraint in leading to more reactive trajectories. Initial results (unpublished)

for sets of constrained TIS simulations in which a classifier was learned that was

predictive of reactivity across the entire pre-launch window, suggests that reactive

trajectories spend significantly more time in the reactive sub-region of the reactant

well than almost-reactive trajectories. This result implies that constraints broadly
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applied across multiple early time points may be just as effective, if not more effective

at enhancing reactivity than constraints applied at one specific time point.

The features identified are more than indicators that the reaction will likely occur;

they are control levers that can guide and enhance reactivity. Our studies demonstrate

that enforcing these indicators of reactivity leads to dramatic computed rate enhance-

ments, largely by increasing the probability of trajectories reaching the product state.

This enormous enhancement directly suggests an approach to re-engineering enzymes

for enhanced specific activity. The results of this study suggest that the identifica-

tion of mutants whose predominant effect is to selectively populate regimes identified

as promoting reactivity for a set of geometric features could be a useful method of

enhancing activity, by causing the enzyme-substrate complex to spend more time in

highly-reactive conformations. Such mutations could be especially useful if they have

minimal effects elsewhere on the reactive energy surface. For example, the first fea-

ture in Table 2.2 indicates that longer distances between Glu319/O𝜖1 and substrate

C5 lead to enhanced reactivity, and so identifying mutations that enlarge or pull back

the pocket in which Glu319 sits could be useful. Likewise, the second feature indicates

that shorter distances between magnesium M16 and substrate O3 lead to enhanced

reactivity, and thus identifying mutations that alter the packing of the magnesium

ligands to place it closer to the substrate might also be useful. Indeed, in other ways,

several recent studies have attempted to leverage insights from path-sampling simu-

lations in order to design enzyme variants [126, 54], which represents a promising and

novel framework for biocatalyst design.
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Table 2.2: Top 10 LASSO selected features at 0-fs time point and coefficients 𝛽𝑗 used
to define reactive region A’ in constrained TIS simulations. Note that classification
was performed on the fly through the TIS Markov chain and thus features were not
normalized by Z-scores, so non-standardized coefficients 𝛽𝑗 are reported. The bias 𝛽0

used was -18.603.

𝑗 Feature 𝛽𝑗

1 Distance GLU‘319/O𝜖1,AC6/C5 2.1944
2 Distance MG6/M16,AC6/O3 -12.093
3 Distance AC6/C1,AC6/C4 13.447
4 Distance AC6/C4,AC6/O6 20.561
5 Angle NDP/C4N,NDP/N1N,NDP/C1NQ -2.8234
6 Distance AC6/O8,GLU‘496/H𝜖2 -3.4298
7 Distance AC6/C5,AC6/C4 -8.8403
8 Distance AC6/O8,MG6/M17 8.8193
9 Dihedral AC6/C5,AC6/C4,AC6/C7,AC6/C9 -3.7307
10 Distance MG6/H28,AC6/O6 -0.5615
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Figure 2-1: (A) Interface placements used to generate reactive and almost-reactive
trajectories, where 𝜆A denotes the reactant interface, 𝜆AR indicates the product
interface used to generate the almost-reactive trajectory ensembles and 𝜆R indicates
the product interface used to generate the reactive trajectory ensembles. (B) Reaction
catalyzed by KARI with states 2 and 3 indicating initial and final states used for
the specific rate-limiting step of the isomerization studied (C) Atoms and residues
included in QM region (non-polar hydrogens not shown) Note that the residue name
AC6 is used in this study to refer to the reactant state of the substrate shown in Figure
1C. The residue name NDP refers to the NADPH cofactor and the residue name MG6
refers to the five quantum mechanically-treated waters and two magnesium ions in
the active site. (D) Distribution of 𝜆 values for reactive (red) and almost-reactive
(blue) trajectories time-shifted such that last trough before prospective catalytic event
occurs at the 0 fs time point. Vertical lines indicate time points where features were
computed.
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Figure 2-2: (A) AUC performance for all 68 individual features at the o-fs time point.
Values of AUC shown represent the mean computed across 5 equal cross-validation
training and testing partitions. (B) AUC, accuracy, sensitivity, and specificity for
models with LASSO-selected features (C) AUC, accuracy, sensitivity, and specificity
are plotted for models with randomly-selected features. (D) AUC, accuracy, sensitiv-
ity, and specificity are plotted for models with 30 consensus features. Error bars in
(C) correspond to standard error of the mean across 100 randomly-selected feature
sets. (E) Top 20 features selected by LASSO at each time point. Features are colored
by feature type and sorted by the total number of occurrences in the top 20 between
-150 and 0 fs.
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Figure 2-3: (A) Average time traces of consensus features across -150 to +100 fs time
points with red indicating average reactive traces and blue indicating average almost-
reactive traces. Error bars indicate 2 standard errors of the mean at each time point.
Vertical black lines indicate time points at -150,-100,-50 and 0 fs where coefficients
listed in Table 2.2 were fit. (B) Z-scores for consensus features (listed in Table B.1 and
illustrated structurally in Figure 2-7) evaluated at the 0 fs time point and weighted
by their corresponding standardized logistic regression coefficient for all correctly
classified reactive trajectories in data set. Dark lines indicate cluster boundaries
assigned using 𝑘-means clustering with 𝑘 = 5. Within each cluster, features are
sorted by distance from the centroid of the respective cluster (closest to centroid
at top). (C) Z-scores for the consensus features evaluated at the 0 fs time point
and multiplied by their corresponding standardized logistic regression coefficient for
all correctly classified almost-reactive trajectories in data set. Dark lines indicate
cluster assignments, based on the closest centroid to the five centroids learned on the
reactive features shown in (B). (D) Z-scores differences between reactive features in
each cluster and the mean almost-reactive feature set of the corresponding almost-
reactive cluster. (E) Histograms of weighted feature weight differences across each
of the five reactive / almost-reactive cluster sets. The set of five features shown
was determined by computing the top three weighted feature differences by absolute
value for each cluster shown in Figure 2-3D, then taking the union of the resulting set.
Magenta corresponds to cluster 1, cyan corresponds to cluster 2, green corresponds
to cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster 5 and gray
corresponds to the corresponding almost-reactive cluster for the reactive cluster shown
in each histogram. Dots indicate representative structures (the reactive or almost-
reactive structures closest to the mean of the centroid for each respective cluster)
which are shown in Figure 2-8.

57



Figure 2-4: Structural representation of (A) distances computed, (B) angles com-
puted, and (C) dihedrals computed at each time point. Numbering of features corre-
sponds to that of Table S1. Coloring of features corresponds to the feature type with
red indicating substrate-environment interactions, orange indicating intra-substrate
conformations, blue indicating intra-cofactor conformations, green indicating water-
metal interactions and gold indicating other environment interactions.
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Figure 2-5: Illustration of both KARI homodimer subunits (PDB ID: 1YVE), with ac-
tive site residues Asp315, Glu319, Glu496, bound transition state analog N-hydroxy-
N-isopropyloxamate and NADPH cofactor shown as sticks to indicate active-site sep-
aration and to support the choice of using a single subunit in simulations.

Figure 2-6: Placement of interfaces used in TIS probability factor calculations su-
perimposed onto the potential of mean force surface used to generate initial seed
trajectories. Key interfaces 𝜆0 = −1, 𝜆𝐴 = −0.8 and 𝜆𝐵 = 1 are labeled.
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Figure 2-7: Structural representations of top 30 most consistently predictive (A) dis-
tances and (B) angles and dihedrals during the -150 to 0 fs time window. Labeling
of features corresponds to ranking in Table B.1. Coloring of features corresponds to
the feature type with red indicating substrate-environment interactions, orange in-
dicating intra-substrate conformations, blue indicating intra-cofactor conformations,
green indicating water-metal interactions and gold indicating other environment in-
teractions.
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Figure 2-8: Representative structures for the reactive cluster and corresponding
almost-reactive clusters described in Figure 2-3B-E. Feature numbering corresponds
to that of Table B.1. (A) Representative structures from all five reactive clusters.
Representative structures from (B) cluster 1, (C) cluster 2, (D) cluster 3, (E) cluster
4, (F) cluster (5) and their corresponding almost-reactive clusters, respectively. In all
panels, magenta corresponds to cluster 1, cyan corresponds to cluster 2, green cor-
responds to cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster
5 and gray corresponds to the corresponding almost-reactive cluster for the reactive
cluster shown in each histogram. In all panels, structures were aligned to minimize
the root mean square difference between the two magnesium centers.
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He is a man of intelligence, but to act sensibly,

intelligence is not enough.

Crime and Punishment

3
Integrating Artificial Intelligence

Methodologies into the Academic

Publishing Ecosystem

The work in this chapter is adapted with permission from the chapter Artificial

Intelligence in the Academic Publishing Ecosystem written by James W. Weis and

Amy Brand which has been accepted for publication by the Charleston Briefings.

J.W.W. and A.B. conceived of the project. J.W.W. conducted the relevant

literature review. J.W.W. and A.B. wrote the manuscript,
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3.1 Abstract

Technology underpins all aspects of today’s academic publishing ecosystem. But only

recently have AI-based platforms—systems that employ learning and other human-

like or rule-based behavior—begun to affect scholarly publishing. However, the vast

amounts of digital content and data output by the publishing ecosystem provide fertile

ground for the application of artificial intelligence (AI) and machine learning (ML)

methodologies to the production and consumption of research content. On the one

hand, data-driven algorithms can provide consumers of academic literature with more

efficient ways of identifying and—subsequently—assessing the value and relevance of

research content via smarter search, better disambiguation, and improved metrics.

On the other hand, academic publishers can use AI techniques to assist in intelligent

targeting and curation of research, such as post-publication impact measures, sen-

timent analysis, and improved methods of plagiarism detection and reproducibility

testing.

3.2 Introduction

Those of us who have chosen to devote our working lives to scholarly communica-

tion are driven by a desire to accelerate the path from research breakthrough to

application and societal benefit. Yet despite the huge advances in digital publish-

ing and research technologies of recent years, how academics produce and consume

peer-reviewed scholarship is unchanged from the print era in fundamental ways. A

key reason for this is the interdependence of publishing and career advancement in

academia, and the ways in which the customs of the latter stifle change in the former.

As a result, academic publishing practices have so far failed to take robust advantage

of today’s information technologies, let alone AI-based computational methods. But,

little by little, publishers and aggregators are embracing new metrics, new navigation

tools, and smarter approaches to content review and curation. In this chapter, we

survey AI-informed developments and opportunities in each of these areas of scholarly

63



publishing, taking care to distinguish true AI-driven approaches—systems that em-

ploy learning and other humanlike or rule-based behavior—from other computational

methods.

3.3 Smarter Metrics

Prior to the mid-17th century, scientific communication was comprised largely of per-

sonal letters between practitioners. Philosophical Transactions of the Royal Society,

established in 1665, is widely considered to be the world’s first scientific journal, un-

derpinning a step-function of ongoing refinements in scientific publishing that contin-

ues to the present. Peer and editorial review, as well as specialized journals, emerged

early on as filters that allowed the growing scientific community to extract meaningful

insights more easily from the increasingly broad and rapid pace of scientific research.

In this new paradigm, research impact was roughly quantified by publication out-

put and citation-based metrics [30]. For individual papers, the total number of cita-

tions was (and continues to be) the most frequently used quantification of importance.

For journals, Eugene Garfield proposed the Journal Impact Factor, a journal-level

measure of per-article citation rates, which became widely adopted [46, 47]. For

researchers, Hirsch’s h-index attempted to “quantify the cumulative impact and rel-

evance of an individual’s scientific research output” [56]. As the dimensions of the

scientific literature continued to grow, making personal digestion of all the literature

in any field near impossible, administrators began to rely on these metrics for as-

sessment of scientific impact–which, consequently, made them targets for researchers,

who need to demonstrate scientific impact to be hired or promoted.

The transition from print-based to web-based scientific correspondences has con-

tributed to further explosive growth in the breadth and scope of academic communi-

cation. This expansion includes not only web-replicates of traditional journal-based,

peer reviewed research articles, but also a variety of new media, including preprint

servers, blogs, and even social media conversations. As a consequence, traditional

citation-based impact metrics have become increasingly poor (and manipulated) prox-
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ies for actual academic impact [117, 42].

While the large amount of data produced by the modern research ecosystem may

diminish the value of the metrics in most widespread use today, it also provides

an exciting area for future innovation. Scientific communications contain valuable

information in the form of text, images, and data files, and are also are linked to one

other via citations and on social media. At the same time, publishing in web-native

formats and in open access journals (where the results are not locked behind a paywall,

and thus are freely available) is becoming increasingly standard. The combination of

these trends makes it possible to develop, track, and potentially even predict, new,

nuanced, and targeted metrics of scientific impact.

It is easy to imagine a near-future in which scientific impact is quantified by algo-

rithms that, rather than simply counting citations, traverse the full body of scientific

literature to extract more nuanced measures. Google’s PageRank algorithm, for ex-

ample, rose to dominance in part because it ranks web pages not by the simple count

of references, but by weighting each reference by the relative importance of the corre-

sponding webpage—references from highly-ranked websites, like trusted news outlets,

therefore score significantly higher than references from lesser-known pages, such as

personal blogs. Similar methods can be deployed on the scientific literature, and

would thus compute not only the number of citations, but also the contribution of

individual co-authors and the authority of each citing body. This kind of approach,

which has recently been shown to most other impact metrics in publication ranking

challenges, gives greater weight to citations that come from important or impactful

sources, calculated by the same algorithm in a recursive fashion [104, 76, 63, 121].

Similar computational methods could then be extended to calculate different di-

mensions of scientific impact, such as measures of novelty, collaboration, diversity, or

interdisciplinarity. Further, as discussed in the next section, the algorithms could be

adjusted based on an individual’s publication history or stated interests, to suggest

the literature, or collaborators, in a tunable way–even recommending the work of

highest relevance or optimizing for cross-field insights. In fact, such work is already

well underway. Network-based approaches have been used not only to quantify long-
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term scientific impact, but also to identify scientific “gems,” measure technological

innovation, and quantify the disruptiveness of new work [114, 45, 27]. These meth-

ods enable more nuanced, granular exploration of the scientific literature, and also

facilitate new types of research; for example, Wu, Wang, and Evans recently found

that there are observable differences in the types of innovations produced by large

and small teams, with larger teams tending to build on previous work, and smaller

teams more likely to develop disruptive ideas and technologies [119].

The new metrics resulting from the application of AI-based methods to the aca-

demic publishing ecosystem are transformative. By incorporating more data in the

construction of impact scores, and by defining impact in a more nuanced and multi-

faceted manner, we will be far more accurate in judging the relevance of research,

leading to more efficient hiring and promotion decisions, and thus a more merito-

cratic scientific ecosystem. Furthermore, the development of these methods will cat-

alyze new research in the science of scientific research and development, with broad

implications not only for academic career advancement, but also for scientific funding

and the optimization of scientific resource allocation more generally.

3.4 Smarter Search

The changing landscape of academic publishing, and especially the increasing scale

and speed of research output, has thrust search and information retrieval into a po-

sition of unique importance. Just as increasing scale and complexity in the nascent

World Wide Web led to a transition from the Yahoo! index-driven portal page, which

was organized around human-curated keywords, to the search-centric Google model,

which leveraged computational techniques to identify the most relevant results, so are

academic literature searchers increasingly relying on complex information retrieval al-

gorithms. These algorithms currently allow rapid keyword-based retrieval of academic

articles, ranked by different parameters. And future models will expand beyond key-

words to include smarter metrics and personalized algorithms. In the future, these

models could capture enough patterns from the history of scientific research and de-
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velopment to potentially even assist in the creation and assessment of more unique,

impactful, and testable scientific hypothesis [?].

Currently, many researchers rely on indexes like PubMed and Google Scholar to

find articles of interest. However, such methodologies are inexact, and keywords

alone are often insufficient to balance the sensitivity and specificity necessary for a

successful search[51]. Methods borrowed from branches of AI that deal with both

information retrieval and natural language processing (NLP) will allow more gran-

ular and customized searches. These algorithms could improve keyword search by,

for example, combining it with the searcher’s publications, academic co-authorship

network and social media connections, and previous search history to rank results in

a personalized manner [6, 60]. In combination, topic model-based approaches could

use similar papers, rather than keywords, as the inputs to search queries. Companies

like Yewno are already exploring the real-world implementation commercialization

of such approaches, which augments users ability to navigate search results by pro-

viding them with computationally-augmented search and filtering mechanisms—for

example, allowing search by concept or topic, rather than searching for specific words

[51, 36].

Another promising area is the incorporation of computational reasoning into the

search process. Future search engines could be designed to return publications most

likely to spur disruptive thinking or impactful collaborations, rather than the aca-

demic papers most similar to the input keywords. These search algorithms could

then be fine-tuned, for example by broadening or narrowing scope, by filtering out

content with specific attributes, or by incorporating work that researchers with similar

profiles have found valuable. Even more powerfully, computational parsing of natural

language present in scientific articles could be used to auto-construct ontologies of

scientific thought which, when used in combination with social networks, would iden-

tify the specific parts of research articles that support (or refute) specific queries, and

potentially even encourage exposure to alternative viewpoints, account for cultural

biases, or identify social dependencies in reasoning [38, 123].
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3.5 Smarter Curation

The move towards faster publication cycles and increasingly interdisciplinary research

puts strain on the time-tested model of academic peer review prior to publication. At

the same time, the growing adoption of preprint servers like arXiv and bioRxiv better

aligns with a post-publication peer review model, which many have argued results in

more efficient and less bias-prone curation [?]. While some fields, like mathematics

and physics, have relied on public discourse around research findings for some time,

other disciplines are finding themselves thrust into a form of online, crowdsourced peer

review spanning many sites and applications, from blog posts to Twitter conversations

[72].

AI-based methods can be used to help organize, structure, and extract value from

the many diverse conversations circulating online around academic research. They

can also help us make the best possible use of high-quality peer review, which should

be considered a sparse, valuable resource. For example, sentiment analysis, a method

from NLP that allows the positive or negative valence of a comment to be quantified,

could be used to extract more nuanced meaning from Tweets, blogs, and comments.

Then, prediction models that take the quantity and content of online conversations

into account could be used to determine when a preprint article has garnered sufficient

positive attention to merit peer review. Learning algorithms could even be used to

quantify the quality of reviews, so that the peer reviewers with the best “track record”

or history of correctly identifying positive or negative indicators in specific fields are

allocated to the papers in most need of their skills.

Finally, AI algorithms can also be deployed to increase reproducibility in science.

Existing NLP methods are increasingly being leveraged to compare texts for simi-

larities with proceeding work in an author-specific manner, and further research in

this vein is current and ongoing [23–25]. Machine vision algorithms, including Con-

volutional Neural Networks (CNNs), could be used to detect image and figure reuse

at broad scale [26], and network-based approaches could be leveraged in combina-

tion with large databases of retracted papers, such as Retraction Watch Database, to
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identify warning signs of irreproducibility [94].

3.6 Conclusion

Artificial intelligence and machine learning promise huge near-term advances in our

ability to intelligize and accelerate the academic research and communication process.

In this brief chapter, we have described a subset of these application domains in order

to illustrate this tremendous potential.
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You must be ready to burn yourself in your

own flame;

how could you rise anew if you have not first

become ashes?

Thus Spoke Zarathustra

4
New Strategies for Designing Knowledge

Infrastructure

The work in this chapter is adapted with permission from the manuscript The Case

for an Institutionally Owned Knowledge Infrastructure written by James W. Weis,

Amy Brand, and Joi Ito and published in Inside Higher Ed on January 7, 2020.

J.I. and A.B. conceived of the project. J.W.W. conducted the relevant literature

review. J.W.W., J.I., and A.B. wrote the manuscript.
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4.1 Abstract

Science and technology are propelled forward by the sharing of knowledge. Yet,

despite its critical importance in today’s innovation-driven economy, our knowledge

infrastructures have failed to scale with today’s rapid pace of research and discov-

ery. For example, academic journals, the dominant scientific knowledge dissemina-

tion platform, have not been able to take advantage of the linking, transparency,

dynamic communication, and decentralized authority and review enabled by the In-

ternet. Many other knowledge-driven sectors, from journalism to law, suffer from a

similar bottleneck—caused not by a lack of technological capacity, but by an inability

to design and implement efficient, open, and trustworthy mechanisms of information

dissemination. Fortunately, growing dissatisfaction with current knowledge sharing

infrastructures have led to a more nuanced understanding of the requisite features such

platforms must provide. These lessons can be leveraged by organizations around the

world to begin recapturing control, and increasing the utility, of the knowledge they

produce.

4.2 Introduction

When the World Wide Web emerged in the 1990’s, an era of robust scholarship

based on open sharing of scientific advancements appeared inevitable. The Inter-

net—initially a research network—promised a democratization of science, universal

access to the academic literature, and a new form of open publishing that supported

the discovery and re-use of knowledge artifacts on a global scale. Unfortunately, this

promise was never realized. Universities, researchers, and funding agencies failed to

organize and secure the investment necessary to build scalable knowledge infrastruc-

tures, and publishing corporations moved in to solidify their position as the purveyors

of knowledge.

In the subsequent decade, these publishers consolidated their hold. By controlling

the most prestigious journals, they were able to charge for access—extracting billions
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of dollars in subscription fees while barring much of the world from the academic

literature. Publishers like Elsevier (the science, technology, and medicine-focused

branch of the RELX Group conglomerate) have 36.7% profit margins—higher than

Apple, Google/Alphabet, or Microsoft [79, 93, 5, 3]. This structure has reached such

fantastic proportions that some of the world’s wealthiest academic institutions are no

longer able or willing to pay the subscription costs required [5]. Further, by controlling

many of the most prestigious journals, publishers are also able to position themselves

between the creation and consumption of research, and so wield enormous power over

peer review and metrics of scientific impact—and thus academic reputation, hirings,

promotions, career progressions, and ultimately, the direction of science itself.

However, there are signs that the bright future envisioned in the early days of the

Internet is still within reach. Increasing awareness of, and dissatisfaction with, the

many bottlenecks imposed by the commercial monopoly on research information is

fermenting interest in, and development of, new strategies for the development of the

future’s knowledge infrastructures. One of the most promising developments is the

shift towards infrastructures developed and supported by academic institutions—the

original creators of the information being shared—and aligned non-profit consortia

such as the Collaborative Knowledge Foundation and the Center for Open Science.

In this article, we first review three components of today’s knowledge infrastruc-

ture that we believe are in critical need of modernization. We then propose a new,

general model for the development, and scaling of academically-owned knowledge in-

frastructure with wide applicability. Finally, we present a partnership between the

MIT Media Lab and the MIT Press, which constitutes an instantiation of this model

and briefly review the projects this partnership has enabled.

4.3 Critical Features Of A Knowledge Ecosystem

We believe an institutionally-owned knowledge infrastructure should fully exploit the

technological capabilities of the web to accelerate discovery, research funding, and

the structuring and transmission of knowledge. By aligning academic incentives with
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socially beneficial outcomes, such a system could enrich the public while also ampli-

fying the technological and societal impact of investment in research and innovation.

The three areas in which we believe a shift to an academically-owned platforms would

yield the highest impact on investment are (1) truly open access to the academic liter-

ature, (2) meaningful article-level impact metrics and (3) a trustworthy and bias-free

system peer review platform.

4.3.1 Truly Open Access

The movement to a digital medium enabled a decomposition of the previously black-

box academic publication process into its component parts–including peer review,

copy editing, and design. The Open Access (OA) movement, which aims to make

scholarly literature freely available online, began as a response to this potential.

Initially focused on self-archiving, or “Green OA,” researchers began making their

results easily and freely accessible by uploading pre-publication manuscripts to uni-

versity based institutional repositories and services like arXiv.org. The repository

movement began gaining steam in earnest when Harvard established the first U.S.

self-archiving policy in 2008 [48, ?, 18]. Other research universities around the world

quickly followed, along with bioRxiv and other field-specific preprint servers [25, 14].

However, OA and institutional repositories never realized their potential to trans-

form research communication. Not only did investment fall short of the funds nec-

essary to support the development of scalable platforms, but commercial publishers

successfully circumvented the movement by revising licenses to block or delay self-

archiving, creating pay-to-publish or “Gold OA” journals, and launching analytics

and research workflow services. This clever divide-and-conquer strategy successfully

stymied collaboration on OA and academic infrastructure development.

One possible reaction to this subversion of the OA movement is to pressure pub-

lishers to lower fees. So far, such collective bargaining has been successfully blocked

through confidentiality agreements and other legal means [109, 107]. On the one

hand, there are signs that this is changing: Plan S, for example, is an OA-focused ini-

tiative supported by a coalition of roughly a dozen leading European research funders
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responsible for e17.6 billion (US$8.8 billion) of funding a year that was launched in

2018 and will go live in 2020 [39, 2, 19]. On the other hand, as long as the underlying

infrastructure, including the key journals, remain in the control of the publishers,

they can always simply extract fees elsewhere or monetize other parts of the research

pipeline. Making matters worse, the OA movement has been further undermined by

the emergence of predatory OA journals, which have little-to-no quality control or

peer review, and often target scholars from developing countries [73, 62, 120].

One route to lower publishing costs is the unbundling of publisher services, and

charges that they accurately reflect value-added work, while also compressing margins

to universally-accessible levels. In some ways, this solution could resemble the tran-

sition from online publishing to blogging. Before blogging platforms, large software

companies charged millions of dollars for Content Management Systems (CMSs),

which are still used in complicated professional settings. However, it turned out

that simple scripts, free and open source software, and open standards to interop-

erate between services allowed the creation of simple and extremely low-cost pub-

lishing platforms–leading to the emergence of “user generated content” and what has

now become social media. While academic publishing is much more complicated, a

refactoring and an overhaul of the software, protocols, processes and business un-

derlying academic publishing could revolutionize it both financially as well as struc-

turally—allowing sustainable, universal open access publishing without paywalls.

4.3.2 Meaningful Impact Metrics

Typically, researchers must publish impactful work to further their careers. While

research should ideally be judged on its individual merits, the current paradigm relies

heavily on the prestige of the journal in which the research was accepted as a heuris-

tic for importance. Because a handful of commercial entities control these “highly

impactful” journals, they are able to leverage the academic reputation systems in the

reinforcement of this journal-based status quo.

A consequence of this system is the often-referenced “Impact Factor” of a journal,

which is supposed to indicate the impact or quality of the research that journal accepts
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for publication. The impact factor of a journal in year y is the average number of

citations C per article A the journal received over the past two years:

𝐼𝐹𝑦 =

∑︀𝑦−1
𝑖=𝑦−2𝐶𝑖∑︀𝑦−1
𝑖=𝑦−2𝐴𝑖

The pervasive Impact Factor is known to not only be a poor proxy for research

quality, but also to be easily gamed by “citation cartels,” coercive self-citations, and

other well documented strategies [32, 41, 117, 42]. Despite this, Impact Factor has

a significant, and self-fulfilling, impact on the hiring and promotion of researchers.

The committee members making these decisions often evaluate a candidate based on

the prestige of the journal in which their research has been published. So, young

researchers on the tenure path are generally forced to prioritize publishing in journals

with high Impact Factors, faulty as the metric is. As a result, the corporate grip

on our knowledge infrastructure strengthens, and important work ends up behind

paywalls and largely inaccessible to anyone outside a major university or research

laboratory.

4.3.3 Trustworthy Peer Review

Peer review, wherein area experts evaluate new research, is a critical component of the

academic ecosystem–and one that is currently managed largely by publishers as part

of the process of accepting or rejecting a new finding for publication. Currently, most

articles are reviewed by an anonymous panel of peer reviewers, and some journals

require double-blind review in an attempt to combat bias.

This process is broken in many ways. For one thing, many papers are already

published on archive and preprint servers, so in the case of double-blind review it is

trivial for reviewers to find the authors of a paper on the Internet. This not only obvi-

ates double-blind review, but serves to reinforce tribal biases and affiliations. Further,

there is evidence that reviewers are not able to consistently and accurately judge the

quality of new ideas, and typically discount the value of novel ideas, as well as work

in their own fields. For example, while publishing in the top five economics journals
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is very important for tenure decisions in the same field, those journals tend to be

conservative and resistant to publishing novel ideas [17, 55]. Also, it is not clear that

reviewers are sufficiently incentivized to pay attention. While conducting peer review

was traditionally viewed as part of one’s academic obligations, busy researchers are

increasingly less willing to devote significant time to reviewing research for publishers

that benefit from their donated time. As an extreme example, in 2014, academic

publishers Springer and Institute of Electrical and Electronic Engineers (IEEE) had

to remove more than 120 computer-generated papers with meaningless content from

their subscription services [112].

Perhaps we can improve peer review, as with other aspects of publishing, by

taking inspiration from technological developments outside the traditional academic

publishing domain. In fact, emergent review via social media and blogs are already

a force in many scientific disciplines, with open, unsolicited reviews often appearing

within hours of publication. Efforts to capture, organize, and structure these diverse

sources of feedback, such as Faculty of 1000, are motivational, but have a limited

audience [72, 39]. Constructing schemas that provide academic credit to reviewers,

such as the CRediT taxonomy, is one promising way of incentivizing review and thus

scaling these alternative yet valuable sources of post-publication review [2, 19].

As a related example, the streaming music website thesixtyone (t61) encouraged

musicians to upload their compositions, and allowed listeners to distribute a limited

number of “hearts” to songs they liked [97]. Users that gave positive reviews to songs

that later became hits were awarded with more hearts–allowing the best judges to

have increasing weight in future assessments. Given the millions of active graduate

students, post-docs, and other regular consumers of academic literature, creating a

system that rewards people for looking for, finding, and betting some reputation on

unverified new works–similar to a sport scout or early-stage venture capitalist–seems

promising. Additional layers could then be added; for example, resources could be

added to incentivize reviews of traditionally overlooked research to combat biases in

the current system.

If we can indeed make the work of peer review more about looking for and reward-
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ing new and novel ideas, instead of a system that reinforces the tribal networks and

biases of academia, we can substantially improve the progress of scholarship while

making it more equitable and available to the world at large.

4.4 Towards New Knowledge Infrastructures

4.4.1 Institutional Incubation Of New Knowledge Platforms

Successful revamping of the current ecosystem, including not only the features dis-

cussed above but also the multitude of other components of an efficient knowledge

sharing pipeline, is likely not possible with a handful of highly profitable commercial

entities in control. For such a paradigm shift to occur, we believe universities need

to assert some ownership over the mechanisms for knowledge production sharing.

Such an effort presupposes expertise from both the production and communica-

tion perspectives, and could be achieved through partnerships between knowledge-

producing organizations, such as research laboratories, and mission-aligned information-

disseminating institutions, such as university publishing houses. These partnerships

can build on existing resources, brand recognition, trust, and networks of talent and

capital, to facilitate the incubation of new knowledge infrastructures and related

projects. Further, the new organizations formed by these partnerships can work

together to create inter-organizational consortia—via which information can be ex-

changed and the most successful incubated projects and frameworks can organically

grow. This model is both general and scalable, and could be deployed and replicated

at scale.

4.4.2 The Knowledge Futures Group

To make this vision a reality, the MIT Press and MIT Media Lab have recently

launched a collaboration called The Knowledge Futures Group (KFG) [118, 105].

The KFG is the first partnership between a pedigreed publisher and a world-class

research lab with a focus on developing and deploying next-generation technologies.
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By serving as an incubator for publication-related projects, the KFG aims to (1)

support projects that enrich the knowledge infrastructure, and (2) spark a movement

towards greater institutional investment in, and ownership of, that infrastructure.

For example, the KFG is developing a new, open source publishing platform called

PubPub, which uses a simple graphical format and supports both programmatic

illustrations and text as well as static PDFs. The goal of the PubPub project is to

create an author-driven alternative to academic journals that is tuned to the dynamic

nature of many of our modern experiments and discoveries. Also being developed with

the KFG is Underlay, a global, distributed method of linking and understanding public

knowledge, which will make the data and content hosted on PubPub available to other

platforms [91, 108]. These platforms can be used to experiment with transparent,

bias-adjusted peer review and to build on previous work in the implementation of

credit allocation frameworks [2, 19, 80].

Additionally, the KFG is supporting the development of new platforms for the

calculation and sharing of more rigorous, article- and researcher-level metrics of sci-

entific impact. By combining these metrics with machine learning, it is possible to

gain insight into the trends and features that lead to impactful ideas. These predic-

tions can also be used in the construction of quantitative, data-driven frameworks for

the allocation of resources to research projects in an impact-maximizing way–and we

are exploring opportunities to pilot these new funding mechanisms in the real world.

4.5 Conclusion

If we are to realize the transformative promise of the Web for science and scholar-

ship, the control of knowledge infrastructure needs to transition from a commercial

oligopoly to academically-owned and managed partnerships. For this to occur, it’s es-

sential that universities continue to assert greater control over systems for knowledge

representation, dissemination, and preservation. This will require not only building

new open source tools and protocols, but also collectively aiming to construct new

platforms for peer review, attribution, and impact tracking that actively reward new,
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novel, and high-quality ideas.

Through the construction of these academically-driven partnerships, we can lever-

age the continually growing ecosystem of open source tools to develop, test, and de-

ploy new, open, transparent, and cost-effective systems and processes that will help

researchers and organizations. This will enable a shift towards greater institutional

and public ownership of the platforms underlying the dissemination of knowledge–

and the recapturing of the territory lost to publishers and commercial technology

providers in the past decades.

What constitutes knowledge, the use of knowledge, and the funding of knowl-

edge is integrally intertwined with the future of our planet and our species, and it

must be actively protected from purely market-driven incentives and other corrupt-

ing forces. The transformation will require a movement involving a global network of

collaborators, and we hope to contribute to catalyzing it.
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So use all that is called Fortune. Most men

gamble with her, and gain all, and lose all, as

her wheel rolls. But do thou leave as unlawful

these winnings, and deal with Cause and Ef-

fect. . . In the Will work and acquire, and thou

hast chained the wheel of Chance, and shalt

sit hereafter out of fear from her rotations.

Self-Reliance

5
Learning on Knowledge Graph Dynamics

Provides Early Warning of Impactful

Research

The work in this chapter is adapted with permission from the manuscript Learning

on knowledge graph dynamics provides early warning of impactful research written

by James W. Weis and Joseph M. Jacobson and currently under review in Nature

Biotechnology.

J.W.W. and J.M.J. conceived the study. J.W.W. performed the data structuring,

algorithm design, and computational implementation. J.W.W. and J.M.J. drafted

the manuscript and figures. J.M.J. supported and supervised the project.
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5.1 Abstract

In a world of rapidly expanding science and limited resources, the identification of

promising scientific research is critically important—and forms the foundation for

much of the scientific enterprise, from grant funding to faculty hiring. Here, we

present DELPHI, a machine learning framework that provides an early-warning signal

for impactful new research by learning high-dimensional, time-based patterns from the

historical biotechnology publication network. DELPHI identifies high-impact publi-

cations with superior precision and recall than is possible using citations or other

recently described metrics—including identifying twice as many high-impact publica-

tions for relevant precisions than is possible using citations alone—and successfully

predicts seminal biotechnology innovations in a blind back-testing. We prospectively

identify a list of recent publications that we expect to be of high future impact,

and discuss the utilization of DELPHI in the machine-augmented design of scientific

funding portfolios—with the overarching goal of increasing the scientific return on

resources deployed.

5.2 Introduction

The efficient progression of the scientific enterprise depends largely on our collec-

tive ability to optimally allocate resources across a set of promising researchers and

projects. This process relies, in turn, on the identification of valuable potential re-

search contributions–both directly, via the direct distribution of government, philan-

thropic and for-profit capital, and indirectly, via hiring choices, promotion decisions,

and research publication. The proliferation of the digital scientific corpus, both in

terms of size and medium, is enabling the development of new, data-driven methods to

assist us in the optimization of project identification, funding, and commercialization–

with the ultimate goal of producing with a higher scientific return on the resources

deployed.

Currently, the scientific ecosystem relies heavily on citation-based metrics: cita-
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tion count, h-index, and Journal Impact Factor. However, as has been discussed

extensively in previous literature, these metrics are imperfect, inconsistent, and ma-

nipulatable measures of quality, and their utilization can lead to suboptimal decisions

in academic hiring, promotion, and funding[77, 86, 117, 98]. For-profit funding for

scientific entrepreneurs is analogously susceptible to biases[31, 50, 82]. In both cases,

the application of methods from artificial intelligence to the vast amount of data pro-

duced by the modern scientific enterprise could provide new, deeper signals of scientific

impact and innovation–allowing us to, in a machine-assisted manner, learn from the

history of science to proactively design improved research and funding strategies.

Such data-driven algorithms would digest the broad range of high-dimensional dig-

ital scientific information currently available to produce meaningful, lower-dimensional

signals that can then be combined with human expertise and intuition. Further, such

approaches could incorporate multiple objective functions, and thus be extensible

across a range of desired outcomes–for example, while granting agencies may want

to maximize scientific innovation in a field of interest, venture capitalists may prefer

to find a single innovation with maximum market value. In either case, given the

current reality of expanding science and limited resources, these learned algorithmic

signals could help us progress beyond simple citation-based measures of impact and

better guide attention, funding, and investment to the right places

Recent work has demonstrated the value of extracting valuable signals from knowl-

edge graphs. Adjusted graph centrality measures outperform citations-based mea-

sures in their ability to quantify the relative impact of scientific work, and net-

work science-based methods enable the quantification of innovation and technolog-

ical novelty[45, 74]. Recently, the application of these methods has enabled in-

sights into team design, scientific prize networks, and the dynamics of scientific

careers[119, 70, 11]. Similarly, earlier work has attempted to predict citation-based

metrics from academic publication history[1, 44, 116]. However, to-date there does not

exist a framework unifying these approaches with methods from artificial intelligence–

allowing us to learn from the past to improve our ability to identify and fund the most

impactful science and technology of the future.
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Here, we describe DELPHI (Dynamic Early-warning by Learning to Predict High

Impact), a framework that provides an early-warning signal for impactful new research

and technology by autonomously learning high-dimensional relationships between a

range of features calculated across time from the scientific literature. We proto-

type this framework and deduce its performance and scaling properties on time-series

graphs of biotechnology-related publications, including over 7.8 million individual

nodes, 201 million inter-edge relationships, and over 3.8 billion calculated metrics. We

demonstrate the performance of our framework across a range of scenarios, show the

correct identification of seminal biotechnologies via a blind retrospective study, and

exhibit it’s utility in proactively identifying important research. Finally, we conclude

by discussing the potential incorporation of DELPHI into the design of diversified,

impact-optimized scientific funding portfolios.

5.3 Results

5.3.1 Structuring And Computing On Knowledge Graph Dy-

namics

As the size of the scientific corpus continues to grow rapidly, the identification of

important research becomes an increasingly important problem. While the field of

bibliometrics has produced a plethora of ranking methodologies, more recent work

has shown that the integration of both network structure and temporal dynamics

are important in discovering work that produces lasting impact[113, 75]. To capture

the relationships between temporal patterns in both knowledge network structure

and content, we collected metadata for articles published in 42 of the top biotech-

nology journals (Table 5.1). We designed a heterogenous graph database schema

(Figure 5-1b) to allow for the aggregation of this information across multiple entity

types (including publications, authors, and journals) in a time-dependent manner,

and calculated a variety of metrics (Table 5.2) for each entity over time. To bet-

ter capture the diverse array of interactions underlying the production of impactful
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Figure 5-1: Collecting, structuring, computing on, and learning an early-
warning signal of scientific impact from dynamic knowledge graphs. a Mul-
tiple data types are collected, merged, and disambiguated. b The resulting datasets
are structured as a dynamic, heterogenous graph, wherein the temporal dynamics
and time-based structural changes of the graph are also encoded. c A diverse set of
metrics are calculated from, and stored in, the graph database in an iterative fashion.
d A machine learning pipeline is constructed to learn differential patterns in structure
between the calculated metrics over time by predicting the future impact of papers
using balanced datasets extracted from the graph database. This pipeline is then
optimized over a grid of possible parameters. The consequent DELPHI model can be
used to produce an early-warning of impactful research.

scientific research, we included not only simple citation metrics and other metrics sug-

gested as important by recent literature, but also learned in an unsupervised manner

a low-dimensional representation of the local graph structure surrounding each node

(Figure 5-1c)[116, 52]. We note that the inclusion of these metrics in our dataset

does not mean they are assumed to positively correlate with scientific impact (and as

such do not represent a reliance on reputation-based signals) because the DELPHI

model learns to use only those metrics that truly contain information about future

impact. Importantly, we used a time-rescaled measure of node centrality as our tar-
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geted impact metric due to its demonstrated state-of-the-art performance in ranking

milestone technologies, as well as it’s removal of age-bias, which allows for meaningful

comparisons across years[75, 121]. All metrics were calculated for all years between

1980 to 2019.
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and similar citation counts. The citation network topology shown contains both first-
order (directly citing) and second-order (papers that cite direct citations). Despite
the similar citation count, the extended citation community of the high-impact ar-
ticle is significantly larger. Similarly, the coauthorship network of the high-impact
publication, despite having the same number of authors, exhibits differential dy-
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Figure 5-3: DELPHI leverages temporal dynamics to identify high-impact research early and with state-of-the-
art performance characteristics. a By ingesting the dynamics of a broad range of metrics over time, DELPHI is able
to provide an early-warning signal of highly-impactful research as early as the year of publication–even when that research
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signal increasing in fidelity as more data is consumed over time.
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5.3.2 Learning On Biotechnology Knowledge Graph Dynam-

ics Provides an Early-Warning Signal for High Impact

Research

Scientific innovation is a highly complex process that evolves dynamically, and as such

we model it in a high-dimensional, time-structured manner. In contrast to previous

work, DELPHI operates across multiple data types, integrates both engineered met-

rics and automatically learned graph representations, and leverages valuable temporal

information, such as changes in network structure and related features over time, to

produce an early warning score for future scientific impact. Due to this graph-native

structure, DELPHI is also easily extensible to new data types.

We train our model using the metrics and learned representations for all publica-

tions in our biotechnology-focused database for a time-window that spans from the

year of publication to five-years post-publication (Figure 5-1d). Because we are inter-

ested in the subset of papers that have high influence on the biotechnology graph, we

label as highly-impactful those papers that are in the top 5% of time-rescaled node

centrality five-years post-publication (as these papers account for over 35% of total

aggregate impact in our dataset). We find that high-impact articles have distinct

time-based patterns of adoption that manifest in our heterogeneous knowledge graph

model, and that DELPHI is able to correctly identify research of future high-impact

as early as the year of publication (Figure 5-2a). DELPHI further significantly out-

performs similar models trained with only citation data or metrics used in recent

literature (Figure 5-2b). Interestingly, many of the correctly-identified high-impact

publications have low early-year citation count, and as such represent important re-

search “gems” that would not be found using standard citation-based metrics.

The strength of DELPHI’s early-warning signal increases with the amount of

time-series data utilized; for example, DELPHI correctly predicts which research will

be highly-impactful with 77% balanced accuracy with less than one-year of data, but

with 87% balanced accuracy using less than two-years of data (Figure 5-4a). While we

initially chose a 5% threshold for our definition of high-impact, we find that DELPHI
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is robust to this definition, and exhibits comparable performance across a full range

of tested thresholds (Figure 5-4a).

Figure 5-4: The DELPHI approach exhibits strong performance character-
istics across a range of definitions of high-impact and and model evalua-
tion criteria. a The DELPHI framework is based on a user-defined definition of
high-impact. However, the performance of the framework is robust to the specific
parameters of that definition. DELPHI models were constructed with a range of
threshold definitions between 5% and 25%, and evaluated across a range of criteria
to demonstrate this robustness. b Those papers in the top 5% of our impact metric,
time-rescaled node centrality, contain over 35% of total aggregate impact. As such,
the high-impact threshold of 5% was chosen for this study.

5.3.3 DELPHI Early-Warning Signal Correctly Identifies Sem-

inal Biotechnology Breakthroughs And Prospectively Flags

Interesting Research

To validate that DELPHI correctly classifies known breakthroughs, we collected a

list of seminal biotechnology innovations–including both technical breakthroughs and
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therapeutic modalities–along with their corresponding publications[83]. Retraining

our framework on a dataset with the target technology removed, we find that DELPHI

correctly identifies all technologies adequately represented in our database–usually

doing so within the same year as publication (Figure 5-5).

Next, we used DELPHI to predict the recently-published papers of likely future

importance. Using a re-trained model blinded to papers from 2018 onwards, we

calculated early-warning scores for those articles in our database published in 2019.

The results highlight the potential of DELPHI to autonomously highlight interesting

research in a variety of fields and areas of application (Table ??).

5.4 Discussion

In this paper we have described DELPHI, a system that, by using machine learning

to compute on large, heterogenous, time-structured network data, can produce a

quantitative early-warning score for high-impact scientific research in biotechnology

able to significantly outperform previous citation and handcrafted systems for impact

prediction. Although this manuscript represents an initial demonstration, we believe

that such a system offers some intriguing possibilities.

Across a diverse set of network types, from the physical network fabric of the in-

ternet to social networks (e.g. Facebook), the value of a network scales in proportion

to the number of connections (edges) between individual nodes of the network—

therefore those networks for which a linear expenditure on nodes generates a super-

linear number of edges have the potential to be both very quickly scaling and ex-

tremely valuable[78, 125]. We hypothesize that the same is true of the scientific

enterprise. Specifically, the value created by the ensemble of scientific research may

scale in proportion to the number of connections (edges) between projects—and,

therefore, research resources could be allocated so as to maximize the number of con-

nections (edges) within the scientific research graph (as opposed to optimizing the

number of citations). Although such beneficial allocations have hitherto been difficult

to implement, we can now begin to think about using DELPHI to aid in designing

90



funding strategies of this type–for example, by identifying identifying holes in the sci-

entific graph that could be filled with new research program opportunities designed

to optimize for connections of predicted high impact.

Another intriguing possibility is the quantitative diversification of research pro-

grams. Funding many research programs with similar scientific approaches, or com-

posed of teams that lack diversity, constitutes an approach which is often suboptimal

in the discovery phase of scientific endeavor. Borrowing from finance theory, we can

think about reducing this risk by using DELPHI to construct a diversified portfolio

that maximizes risk-adjusted scientific impact–that is, a group of research programs

that, collectively, have optimized risk-reward characteristics. In this new model of

grant allocation, the risk of a funding portfolio can be quantified empirically, such

as via the historical correlation between the corresponding researcher’s publication

records (Figure 4a). In this context, portfolio optimization strategies will automati-

cally identify diversified baskets of researchers (Figure 4b).

As motivation for the exploration of such computationally-assisted funding strate-

gies, consider the substantial capital deployed in support of scientific research annu-

ally, with the NIH alone, for example, allocating some $40B USD each year to biomed-

ical research. Despite a decline in the percentage of grant applications funded, as well

as evidence that grant study sessions are unable to meaningfully outperform random

selection in the identification of applications with high productivity, the primary

scientific funding mechanisms remain largely unchanged [40, 85]. This is further com-

plicated by the complexity of the modern scientific ecosystem, which contains more

high-dimensional interactions than we can reasonably expect to be processed fully

and in a bias-free manner without computational assistance. As an example, if we

choose to fund the top 5% of the papers in our dataset on the basis of the citation

count available two-years post-publication, we would have funded about 59% of high-

impact research, but with over a 41% false positive rate—whereas, using DELPHI,

we could have identified and funded over 81% of high-impact research with a false

positive rate of only 20%. We believe such methods, therefore, hold great promise for

improved aggregate productivity—including not only identifying the most promising

91



projects, but also more completely exploring the tail-ends of scientific research, where

revolutionary innovations can disproportionately occur.

While the results described herein are both exciting and tantalizing, we empha-

size that DELPHI represents only a first-step towards the real-world application of

machine-augmented analysis of the scientific literature. As such, DELPHI should be

understood as part of a broader scientific analysis toolkit, to be utilized in combina-

tion with human experience and intuition—augmenting, not replacing, human-level

understanding.

As with all machine learning-based systems, care must be taken to ensure these

methods reduce (and do not unintentionally aggravate) latent systemic biases, and

also do not provide opportunities for malicious actors to manipulate the system for

their own gain. By considering a broad range of features and only utilizing those

that hold real signal about future impact, we believe DELPHI holds the potential to

reduce bias by obviating reliance on simpler (and often reputation-related) metrics.

For the same reason, it is possible that DELPHI scores will be more difficult for

authors or journals to manipulate than, for example, simple citation counts (upon

which ℎ-Index and Journal Impact Factor are based). However, additional studies,

as well as careful human examination of anly calculations, are critical to more fully

understand these possibilities.

Future research should also focus on the definition of impact and innovation uti-

lized in the DELPHI objective function. As described above, we chose time-rescaled

node centrality due to its demonstrated best-in-class ability to identify milestone re-

search, as well as its removal of age-bias, which facilitates comparisons across the time

domain [121, 75]. However, as the decision of impact metric is of critical importance,

and also because DELPHI could naturally be extended to provide early-warning sig-

nals for other user-supplied metrics of interest (such as measures of scientific disrup-

tion), the properties and performance of various impact metrics should be explored

in detail[45].

While this study is focused on scientific impact that materializes within a five-year

post-publication window, there are longer-term scientific trends that are not captured
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by this temporal window—for example, the discovery of monoclonal antibodies oc-

curred in the mid-1970s, but do not accelerate as a field until the early 1990s. DEL-

PHI’s combination of time-series analysis and network-level metrics may contain the

expressivity necessary to capture and help understand these trends. Similarly, while

we aggregated metrics in this study by paper, author, and journal, similar methods

could be applied to the study of scientific ideas or concepts. As one possibility, the

application of existing Natural Language Processing methods could help aggregate

DELPHI scores by scientific concepts (e.g. “artificial organs”), or even different ap-

plications of the same concept (e.g. “artificial kidney” and ‘artificial liver”). Such

analyses may require significantly more data and computational resources, but could

help us differentiate between fashionable and truly revolutionary ideas—or uncover

promising but under-appreciated scientific “gems”.

Future research could also explore technical ways to improve the DELPHI frame-

work. As our interest in this study was the identification of the most promising 5%

of biotechnology research, we adopted a classification-based approach. However, the

DELPHI framework can also be used with regression-based methods, which may be

able to improve performance by extracting additional signals or better identifying

outliers. In addition, the direct application of graph-based machine learning methods

could be used to explore community-based feature development or eliminate the need

for data export from a graph-structured database.

Continual growth of the scientific corpus, as well as increasing importance of non-

traditional literature such as academic pre-prints, is expected. DELPHI, due to it’s

inherently heterogeneous design, is capable of incorporating additional data sources

in a straightforward manner, and the integration of commercialization data (such as

patents and startups) could provide insight intthe drivers of translational success.

Our discussed portfolio-theoretic approach could provide a mechanism via-which to

incorporate such diverse signals—and requires additional theoretical development,

analyses, and exploration to identify valuable quantifications of scientific risk. With

such further developments, DELPHI-like approaches could be used to improve the

modeling of financial returns for investors—potentially facilitating the deployment
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of more capital into scientific ventures or the creation of new classes of financial

products.

Given the critical acknowledgement and awareness of the diverse caveats and po-

tential stumbling blocks outlined above, and with the benefit of careful reflection

and methodical deployment, we believe the careful development and deployment AI-

assisted approaches such as DELPHI could unlock a wealth of existing but currently

untapped resources. By computationally digesting, at scale, the vast amount of in-

formation contained in the scientific enterprise, we may be able to allocate our col-

lectively limited resources in a more efficient, fair, and productive manner—and thus

increase our return on the resources we collectively deploy into science and technology.

5.5 Methods

5.5.1 Collection Of Dataset

Our database is constructed using metadata retrieved from the Lens Labs API, which

includes integrated and disambiguated data from PubMed, Crossref, Microsoft Aca-

demic, CORE, and PubMed Central. The retrieved data includes all publications

available, as well as their associated meta-data, including inter-paper citations, from

the 42 biotechnology-oriented journals outlined in Table 5.1. As of the retrieval date

(April, 2020), this constituted 3,078,897 unique publications, where uniqueness was

judged by the provided LensID field. As the rate of academic publishing prior to 1980

was substantially lower than in the following decades, resulting in a sparser network

and different dynamics, and the data after 2020 is not fully populated, we narrowed

the scope of our analysis to papers with viable metadata published between 1980 and

2019. This next filter resulted in 1,687,850 unique publications.

5.5.2 Construction Of Knowledge Graph

Using our filtered dataset, we construct a heterogeneous knowledge graph network.

In this network, papers are represented as nodes, and citations are represented as
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directed edges between paper nodes. Similarly, journals and years are represented as

nodes, with edges from each article representing the venue and year of publication,

respectively. Authors are also represented as nodes, and authorship is expressed as a

directed edge from an author to a paper. Additional entity-level metadata is stored

as properties in the corresponding node. To store time-series of calculated metrics

of interest for use in later training and evaluation of the machine learning model,

relationships are added from each entity to the year of the metric calculation.

5.5.3 Disambiguation Of Knowledge Graph

Because our knowledge graph is constructed from data retrieved from the Lens Labs,

it is already unified and heavily disambiguated, especially with respect to the pub-

lication entities and inter-publication citations. However, we apply a second-stage

disambiguation algorithm: For each node, if that node is an author, then we hash

that node using, separately and in each case if it is available, that author’s Microsoft

Academic ID and ORCID iD. Then, using this hashmap, identify and merge all author

nodes with overlapping IDs. We also ensure that there are no nonsensical citation

edges: for every edge, we ensure that the citing paper was published no earlier than

the year of publication of the cited paper. We also reviewed all journal nodes by

hand, to ensure that no duplicates existed.

5.5.4 Calculation Of Metrics

We use our constructed and disambiguated biotechnology knowledge graph to cal-

culate time-series of publication and author metrics, which we use as features in

our machine learning pipeline. While the DELPHI framework is easily extensible

to additional metrics, the specific metrics utilized in this study were collected from

commonly used metrics, as well as features used in the related work highlighted ear-

lier, and are outlined in Table 5.2. Specifically, the metrics fall into four primary

categories: (1) paper-level, metrics, (2) journal-level metrics, (3) author-level met-

rics, and (4) network-level metrics (all of which are described in more detail below).
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For each metric, we implemented a separate algorithm that uses the structure of our

knowledge graph to calculate the desired value in a computationally efficient manner.

Then, we calculated the full set of metrics for each paper, author, and journal in our

knowledge graph, for every year from the year of publication to 2019.

Paper-level: For each paper, for each year, we calculate the number of incoming

citations from all other papers in the dataset that were published prior to the

year under consideration. These calculations are then used to calculate a range

of other citation-based properties for each paper, e.g. the total number of

papers, total number of citations, the number of citations per year, etc.

Author-level: For each author, the previously calculated paper-level metrics were

aggregated to derive additional author-level metrics of interest. These include

the author’s ℎ-index (calculated, as with all metrics, using only the papers from

the dataset in question), years since publication of the first paper, total number

of papers, citation count, etc.

Journal-level: We then used both the paper- and author-level metrics to calculate

aggregated metrics for each journal. This was completed in a similar process

to the author-level metrics, and included metrics like the journal’s paper count

and maximum number of citations. Then, for each author, for each journal-level

metric, the maximum, mean, and minimum values for all journals that author

has published in were aggregated back to the author.

Network-level: Because of the complexity of the scientific community, the simple

citation- and literature-based metrics described may not be sufficiently expres-

sive to capture the diversity of structure and relationships in our knowledge

graph. Thus, we also learn, in an unsupervised manner, continuous feature rep-

resentations for each paper based on it’s local citation network structure using

the node2vec algorithm with settings for directed edges, and an 80-step random

walk, for each year the paper exists in the dataset [52].
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5.5.5 Machine Learning Pipeline

The metrics calculated above are used in the development of the machine learning

pipeline, which uses these inputs, to produce a quantitative early-warning signal.

First, the data is extracted from the network database, aggregated to a per-paper

level. For each paper, we calculate all of the metrics described above, for every paper

in our database with at least one citation, from the year of publication to the year that

is five years after the year of publication. Next, we remove all those papers for which

authorship information is missing, leaving 1,540,798 unique publications. Then, as

discussed in the main text, we follow recent literature in the leverage of network-

based metrics for scientific impact. Specifically, we define a paper as "high-impact"

if, five-years after publication, it has a time-rescaled PageRank score in the top 5%

of all scores for that year (although our approach is robust to this selection, as shown

in Figure 5-4). Given a specific number of years to track (ranging just the year of

publication, to all data up to five-years after the year of publication), we first separate

the data into training (75%) and test (25%) data sets. Because low-impact works are

significantly more frequent than high-impact works according to our definition, we ap-

ply synthetic minority over-sampling (SMOTE) to generate balanced training sets[?].

We then perform robust feature preprocessing to the calculated metrics, to allow our

values, which are measured at different scales, to be more directly comparable. Next,

given our prepared training data, we train a machine learning model, when we op-

timize by conducting cross-validation on the training data across a grid of possible

model parameters. While we have explored a variety of machine learning models, we

chose to use random forest classifiers in the current study because of computational

and memory efficiency, the potentially decreased risk of over fitting, the potential

reduction in prediction variance, and the ability to capture non-linear relationships

natively. Because the network-level features add significant dimensionality to the

model, we inspect whether their inclusion improves or degrades the model’s perfor-

mance, and choose the best-performing model. Finally, we evaluate the performance

of our model by comparing our impact predictions with the previously calculated true
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impact label on the held-out test data.

5.5.6 Retrospective Analysis Of Biotechnology Breakthroughs

A list of seminal technical breakthroughs and therapeutic modalities, along with

their corresponding papers, was collected from [83]. Then, we selected those tech-

nology/paper pairs that (a) were published in one of the 42 journals included in our

database, (b) were published between 1980 and 2014, to allow for a full five-years of

tracking, and (c) contained more than one citation for each of the first five-years post

publication from another paper in our dataset, to ensure sufficient representative sig-

nal to make a realistic prediction. We constructed alternative DELPHI models that

were blinded to the technology/papers under analysis. Then, for each technology, we

found the mean DELPHI early-warning score for each year between the year of pub-

lication up to five-years post-publication. We also analogously calculated DELPHI

early-warning signals for all articles in our test set published in the journal Nature

for the same years, for comparison.

5.5.7 Prospective Study Predicting Recent Publications Of

High Future Impact

To calculate the DELPHI early-warning signal for recently published papers, we

trained a DELPHI models on papers from 1980-2017. Then, we deployed these mod-

els on features calculated in 2018-2019 for papers published in 2018. The resulting

top-ranked 100 papers were sampled so as to identify non-repetitive trends, with the

results shown in Table ??.
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Table 5.1: The 42 life sciences journals from which research was identified and in-
cluded in the biotechnology-graph analysis

Angewandte Chemie The Lancet

Blood Nature Cell Biology

Cancer Cell Nature Chemical Biology

Cancer Discovery Nature Chemistry

Cancer Research Nature Medicine

Cell Nature Methods

Cell Host & Microbe Nature

Cell Metabolism Nature Biotechnology

Cell Stem Cell The New England Journal of Medicine

Cell Chemical Biology Neuron

The EMBO Journal Nature Genetics

Genes & Development Nature Immunology

Immunity Nature Neuroscience

Journal of Neurology Nature Structural & Molecular Biology

Journal of the American Chemical Society PLOS Biology

JAMA PLOS Genetics

Journal of Biological Chemistry PLOS Pathogens

Journal of Cell Biology Proceedings of the National Academy of Sciences

Journal of Clinical Investigation Science Signaling

Journal of Experimental Medicine Science Translational Medicine

Journal of Medicinal Chemistry Science
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Figure 5-5: DELPHI correctly identifies historical biotechnology break-
throughs in a blind back-testing. DELPHI Or were trained on datasets that
did not include the seminal papers corresponding to the technical breakthroughs or
therapeutic modalities indicated. These “blinded” DELPHI models rapidly and ac-
curately identified these pioneering papers as likely to be highly-impactful. For com-
parison, the average and 95% confidence interval for a sampling of articles from the
journal Nature, a group that is already considered enriched for impactful research, are
also shown for comparison. The early-warning signals for some of these technologies,
most notably Chromosome conformation capture (3C), is reduced because a large
number of their real-world citations come from articles that are not in our 42 journal
dataset, and as such these citations are not present in our graph database and thus
not available for consideration by DELPHI.
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Figure 4. Leverage of graph-based and machine learning metrics to explore the optimization of scientific funding 
decisions. A Calculating the correlation amongst researchers with interest in genome editing using historical, time-series 
publication records. Highly-correlated clusters identify groups of researchers with overlapping interests or publication records. 
B A Monte Carlo simulation of potential five-person funding decisions. Here, portfolios with researchers whose previous 
publication histories are highly correlated represent potentially higher-risk portfolios from a funding perspective, and 
researchers with established scientific contribution records have higher expected return. There is a trade-off between risk and 
return, with higher-risk portfolios also have higher expected returns. For any level of risk tolerance, there is an optimal portfolio 
that maximizes expected returns.

a

Figure 5-6: In a world of expanding science and limited resources, quantita-
tive approaches like DELPHI can be used to help guide research funding
allocations to maximize scientific return on investment. a Measures of risk
can be calculated using quantitative metrics. Shown here is a clustered correlation
matrix between researchers with demonstrated interest in genome editing. Clusters
identify groups of researchers with potentially related research interests, as judged
from the dynamics of their historical publication record. b An example Monte Carlo
simulation exploring the risk-reward tradeoff for various potential five-person grant
decisions. Here, portfolios with researchers whose previous publication histories are
highly-correlated represent potentially higher-risk portfolios from a funding perspec-
tive, and researchers with established scientific contribution records have higher ex-
pected return. There is a trade-off between risk and return, with higher-risk portfolios
also have higher expected returns.
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Table 5.2: Features used in machine learning-based early warning system. These features are extracted from the graph databases
in question, and their calculation constitute the first step of the DELPHI framework. Note that each feature is also paramaterized
by the year in question—that is, it is calculated, in all cases, for all relevant years.

Category Variable Description

Paper

Citations Per Paper Mean number of citations per paper for papers the author has published.

Delta Citations Per Paper Change in the mean number of citations per paper for the author over the preceding

two years.

Citations Per Year Average number of citations per year for papers the author has published.

Maximum Citations Maximum number of citations a paper has received out of all the papers the author

has currently published.

Rank Citations Per Year Rank of the author among all other authors in terms of mean citations per year.

Total Citations Number of citations author has received.

Delta Total Citations Change in the total number of citations for the author over the preceding two years.

Total Papers Total number of papers published by the author.

Delta Total Papers Change in the total number of papers over the proceeding two years.

Citations Citations collected in the current year.

Author

Adopters Number of unique citing authors in the current year.

Author Age Number of years since the year of publication of the author’s first paper

ℎ-Index Author’s ℎ-Index

Delta ℎ-Index Change in the author’s ℎ-index over the past two years.
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Recent Coauthors Number of coauthors the author has had in the current and immediately preceding

year.

Journal

Delta Mean Journal Citations Per Paper Two-year change in the mean number of citations per paper of the journals the author

has published in.

Mean Journal Citations Per Paper Mean number of citations per paper for the journals the author has published in.

Delta Mean Journal ℎ-Index Two-year change in the mean ℎ-index for the journals the author has published in.

Mean Journal ℎ-Index Mean ℎ-index for the journals the author has published in.

Mean Journal Maximum Citations Mean of the maximum number of citations any paper published in a journal has

received for each journal the author has published in.

Mean Journal Rank Citations Per Paper Rank of journal in which the author has published, as determined by the mean

number of citations per paper.

Mean Delta Journal Total Papers Change in the mean of the total number of papers published in journals the author

has published in.

Total Journals Total number of journals published in by the author.

Mean Journal Total Papers Mean of the total number of papers published in journals the author has published

in.

Network

Learned Network Embedding Unsupervised embedding of local network structure calculated via application of the

node2vec algorithm on the citation graph.

Time-Scaled Impact Time-balanced network centrality calculated using the full citation network.

Unweighted PageRank PageRank score of author, calculated on the unweighted coauthorship network.

Weighted PageRank PageRank score of author, calculated on the weighted coauthorship network.
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Table 5.3: A sampling of recent publications predicted to be of future high-impact by DELPHI. A DELPHI model was trained on a
restricted version of the biotechnology-focused dataset which only contained data from 2017 and earlier. Metrics were then extracted
for articles in our dataset published in 2018 for 2018 and 2019, and the new DELPHI model was used to rank the publications by
predicted probability of high-impact. Despite the fact that this analysis is limited to features extracted from the sub-graph of 42
journals, the identified publications including research topics spanning beyond biotechnology. Citation counts as of 2019 from within
our 42 journal dataset, as well as the full academic graph, are shown.

Title Journal
Dataset

Citations

Full-graph

Citations

A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in

vivo

Nature Biotechnology 24 212

A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion

to lithium oxide

Science 13 60

A living biobank of breast cancer organoids captures disease heterogeneity Cell 24 213

An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities Nature Biotechnology 11 88

An in vivo model of functional and vascularized human brain organoids Nature Biotechnology 18 155

Analysis of shared heritability in common disorders of the brain Science 20 329

Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest

neighbors

Nature Biotechnology 42 239

Table 5.3 continued on the following page
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Table 5.3 continued from the previous page

Title Journal
Dataset

Citations

Full-graph

Citations

Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour in-

filtrates.

Nature 26 140

Coactivator condensation at super-enhancers links phase separation and gene control Science 53 267

CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity Science 24 208

De novo DNA synthesis using polymerase-nucleotide conjugates. Nature Biotechnology 4 49

Deep learning algorithms for detection of critical findings in head CT scans: a retrospective

study

The Lancet 9 67

Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction

with Nearly 100% CO Selectivity and Remarkable Stability

JACS 19 133

Development of a synthetic live bacterial therapeutic for the human metabolic disease

phenylketonuria

Nature Biotechnology 10 53

Enhancing the potential of enantioselective organocatalysis with light Nature 55 97

Evolved Cas9 variants with broad PAM compatibility and high DNA specificity Nature 36 367

Table 5.3 continued on the following page
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Table 5.3 continued from the previous page

Title Journal
Dataset

Citations

Full-graph

Citations

Genetic identification of brain cell types underlying schizophrenia Nature genetics 16 108

Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma NEJM 24 251

Genomic correlates of response to immune checkpoint therapies in clear cell renal cell

carcinoma

Science 30 199

Global, regional, and national age-sex-specific mortality for 282 causes of death in 195

countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease

Study 2017

The Lancet 28 423

H3B-8800, an orally available small-molecule splicing modulator, induces lethality in

spliceosome-mutant cancers

Nature Medicine 18 93

Health Care Spending in the United States and Other High-Income Countries JAMA 29 347

Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown Cell 16 79

Hypothalamic Circuits for Predation and Evasion Neuron 15 48

Imaging dynamic and selective low-complexity domain interactions that control gene tran-

scription

Science 27 145

Table 5.3 continued on the following page
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Table 5.3 continued from the previous page

Title Journal
Dataset

Citations

Full-graph

Citations

Integrating single-cell transcriptomic data across different conditions, technologies, and

species

Nature Biotechnology 205 1040

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 Nature 34 179

Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 37 279

Miniaturized neural system for chronic, local intracerebral drug delivery Science Translational

Medicine

8 28

Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain Cell 29 168

mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by

Tuning Crowding.

Cell 11 49

NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting

Cancer Immune Control

Cell 21 177

Planning chemical syntheses with deep neural networks and symbolic AI Nature 22 274

Regulation of age-associated B cells by IRF5 in systemic autoimmunity Nature Immunology 5 24

Table 5.3 continued on the following page
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Table 5.3 continued from the previous page

Title Journal
Dataset

Citations

Full-graph

Citations

RNA velocity of single cells Nature 37 219

Semiconducting Polymer Nanoenzymes with Photothermic Activity for Enhanced Cancer

Therapy

Angewandte Chemie 16 82

Shared and distinct transcriptomic cell types across neocortical areas. Nature 26 180

Simultaneous lineage tracing and cell-type identification using CRISPR–Cas9-induced ge-

netic scars

Nature Biotechnology 21 103

Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain Nature Biotechnology 22 135

Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment Cell 42 204

Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney

disease

Science 18 175

STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adeno-

carcinoma

Cancer Discovery 14 133

The human transcription factors Cell 24 289

Table 5.3 continued on the following page
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Table 5.3 continued from the previous page

Title Journal
Dataset

Citations

Full-graph

Citations

The long tail of oncogenic drivers in prostate cancer Nature genetics 24 142

Thermal proximity coaggregation for system-wide profiling of protein complex dynamics

in cells

Science 7 29

Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sen-

sors

Science 21 127

Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field

experiment

Science 8 73109



It is not enough to know; we must also apply.

It is not enough to will; we must also do.

The Maxims and Reflections of Goeth

6
Machine-Augmented Scientific Exploration

and Collaboration

6.1 Introduction

It has been the work of the proceeding chapters, especially Chapter 5, to demonstrate

that extracting valuable signals via broad computational analysis of the scientific

ecosystem is not only possible, but imminently so. Further, I have demonstrated that

these signals can be utilized to the presumptive benefit of society–for example, via the

less-biased identification of promising research talent or projects, or the construction

of diversified funding portfolios. However, there exists another “activation barrier” in

the long series of hurdles that span from research identification to commercialization–

the development of used-focused tools to facilitate the real-world utilization of these
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learned signals.

In this Chapter, I take the first-steps towards applications that, effectively, ingest

the signals produced by our proposed learning-based systems, and collect, condense,

and present them in a user-friendly manner. While an innovation of a different sort

than those presented earlier in this thesis, the development of such tools is critical on

multiple levels: First, and most obviously, the influence of any innovation is limited

by the capacity of the end-user to leverage it. Second, the iterative-development of

these platforms, with the goal of augmenting their real-world utility, is only possible

via empirical studies.

As such, herein I describe two tools: Scaling Science Explore (Section 6.2), which

is designed to enable end-user analysis and navigation of the scientific landscape using

the metrics and analyses outlined in Chapter 5, and TitleGen (Section 6.3), which

is a first-step towards the utilization of scientific metadata in the construction of

promising scientific collaborations. In both cases, the development and especially the

features of the corresponding tool are explained and demonstrated, with avenues for

future development highlighted.

6.2 Scaling Science Explore

Chapter 5 describes the calculation, both via network theory and machine learning,

of a variety of metrics and signals of interest (See Table 5.2). One of the primary

underlying motivations for the development of this platform was that the consequent

signals, as well as the metrics calculated in the process, could be leveraged by the

scientific community (e.g. researchers, program managers, government entities, in-

vestors) to facilitate the optimized allocation of a limited amount of resources. How-

ever, as is obvious, not all members of these communities are data scientists–and of

those who are, their ability to explore large and nuanced datasets is naturally limited

by the correspondingly large computational resources required. As such, it is neces-

sary to explore the development of tools to make the utilization of our methods and

metrics–as well as the critical examination of them–easier. Scaling Science Explore
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was developed with this goal in mind.

Figure 6-1: Screenshot of the Scaling Science Explore application. The primary
features of interest: (A) a full-dataset search functionality, (B) filtering mechanisms,
(C) a ranking mechanism, (D) a link for dataset download, (E) a four-dimensional
visualization (three metrics and time) (D) a results list.
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6.2.1 Collection Of Data And Calculation Of Metrics

As Scaling Science Explore was designed to facilitate the analysis of the metrics

utilized in the study described in Chapter 5, the underlying data source is highly

similar. Specifically, Scaling Science Explore takes as input a large CSV file structured

in paper-level record format, with authors, institutional affiliations, and metrics of

interest included as distinct columns. This CSV is then processed into a JSON format

using an associated configuration file, which specifies the metrics to use, as well as

how to describe them in the front-end of the application. The consequent datafile is

then used for the on-the-fly display of the subset of research described by the user,

and the corresponding metrics indicated by the user are aggregated and displayed

across the time domain (Figure 6-1 and Figure A-5).

6.2.2 Application Features

The primary goal of Scaling Science Explore is to allow the (1) rapid identification

of subsets of research of interest, (2) rapidly calculate features of interest to the user

for that research subset, (3) display the relationships between these metrics, within

the subgroup selected, over time, and (4) allow the user to use the results to quickly

adjust the subgroup of interest.

Specifically, the features developed (which are enumerated in Figure 6-1 and de-

scribed in more detail in Figures A-5, A-4, and 6-2) are as follows:

Full-dataset search: Allows users to rapidly identify papers, authors, venues (jour-

nals) or institutions of interest via keyword search.

Filtering mechanisms: Via which users can identify targeted subgroups of re-

search of interest by selecting specific authors, venues, or institutions (See Fig-

ure A-4 for detail).

Ranking mechanism: Provides the ability to rank by all of the metrics calculated

(including standard metrics like citation count, ℎ-Index, as well as alternative
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metrics like the aggregated PageRank of the authors based on their coauthorship

network (Figure A-4).

Dataset download: Provides the ability to download the selected dataset to raw

CSV files for further analysis.

Four-dimensional visualization: A time-series scatter plot, wherein up to three

distinct metrics can be selected and their relationship for the work of interest

can be viewed over time (Figure A-5. This visualization can be fully customized

by the user, with the metric displayed on the x-axis, y-axis, or as the “size” of

the data point user-selected from a list of options. The relationships between

these can then be “played” on a per-year basis from the year of publication to

five-years after the year of publication.

Linked results list: Shows details about the publications selected via the search

and filtering mechanisms described above. These results have hyperlinks embed-

ded, which allows the user to quickly re-orient/update the visualization around

other areas of interest (Figure 6-2).

6.2.3 Discussion

I anticipate that Scaling Science Explore can provide a foundational visualization

platform, upon which more sophisticated visualizations can be developed. Further,

Scaling Science Explore was designed to be naturally extensible to additional data.

Thus, researchers can freely download the core functionality, update the data and

metrics utilized with their own new metrics or analyses of interest, and host the

visualization (either locally or globally) for visualization. To that end, I anticipate

continued development of Scaling Science Explore core functionality, including both

flexibility (to enable new visualizations) and speed (to enable the deployment on

larger data sources).
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Figure 6-2: Screenshot of the results list (Figure 6-1D). The top-ranked publications
are shown, in accordance with the user-supplied ranking methodology. For each
publication, when available, the venue (journal) and year of publication is shown.
Also shown are three key metrics, the abstract of the paper, affiliated keywords, and
the affiliations of the authors (not necessarily at the time of publication). Importantly,
clicking on the title links to the paper of interest, clicking on the venue re-filters to
publications from that journal, and clicking on any of the authors re-orients around
that authors publications.

6.3 TitleGen

In Chapter 5 I explored data-driven solutions to start answering questions like “What

should I work on?” and “What should I fund?”. In this section, I explore data-driven

approaches to the natural follow-on question: “With whom should I collaborate?”.

Currently, collaboration decisions are made largely on the basis of pre-existing

social connections or research publicity. For example, a researcher may launch a
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collaboration with someone in the same department, with someone identified at a

conference, or, perhaps more rarely, via “cold calling” on the basis of recently pub-

lished research. As such, there are network-based biases that causally affect the

structure of collaborations–which are important because the structure of these col-

laborations and corresponding networks is known to be important in downstream

scientific productivity [17, 99, 68, 28].

One can imagine designing tools that aid in the collaboration identification pro-

cess. By digesting historical publication and even collaboration information, along

with related measures of success, we could imagine building machine learning plat-

forms that aid in the generation of collaborations that are most-likely to generate

imapactful research. Alternatively, these same models could be used to optimize on

different objective functions; for example, one model could generate collaborations

to maximize general impact, while other models could maximize the probability of

generating a commercializable technology of future market high value. Interestingly,

we already have broad evidence that data-driven platforms can modulate human be-

havior from online social media networks and matchmaking applications. TitleGen

was developed as a first-step towards exploring these intriguing possibilities.

6.3.1 Data Collections And Model Construction

The area of focus was chosen to be biotechnology and related sub-disciplines. Thus,

publication data was collected from Microsoft Academic Graph [79] with related key-

word tags. This data was structured to form 𝒟, the data set comprised of the indi-

vidual publication pairs (𝑎, {𝑝𝑖}), where 𝑎 is an individual author, and {𝑝𝑖} is the set

publications by that author. I denote 𝒜 = {𝑎 ∈ 𝒟} is the set of unique authors in 𝒟

For each author, I then generate a corpus of titles, 𝑎𝑐, which I use to train a

character-based Markov process in the standard way. Specifically, I model each char-

acter in 𝑎𝑐 as a random variable, and learn the probabilities of transitioning between

distinct characters states empirically from 𝑎𝑐. It is then straightforward to gener-

ate synthetic titles for each author by conducting a random walk across the result-

ing Markov chain. I denote the set of such trained author-level Markov models as
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{𝑚𝑎 | 𝑎 ∈ 𝒜}

For any set of authors of interest queried, 𝒜𝑐 = {𝑎0, .., 𝑎𝑛} with associated weight-

ings 𝑤0, ..., 𝑤𝑛 where
∑︀

𝑖 𝑤𝑖 = 1, it is then possible to construct a new Markov model

𝑚𝒜𝑐 by joining the distinct elements of each corresponding model 𝑚𝑎 | 𝑎 ∈ 𝒜𝑐 with

new transition probability edges according to the corresponding weightings 𝑤𝑎. A

random walk, then, can be undertaken to traverse this joined model 𝑚𝒜𝑐 , resulting in

synthetically generated titles. These consequent sampled walks/titles represent one

manner of drawing from an course estimation of the joined empirical character-level

Markov process.

6.3.2 Application Features

This functionality was deployed for real-world experimentation and utilization via the

TitleGen application (Figure 6-3. Specifically, the TitleGen application includes the

following functionality:

Author search: Allows the rapid identification of authors using a keyword search

across name, institutional, and keyword fields. These authors can then be easily

added to 𝒜𝑐 for | 𝒜𝑐 |≤ 6 (See Figure 6-3 for detail).

Author weighting adjustment: The weighting 𝑤𝑖 for each author 𝑖 selected can

be adjusted graphically. The fact that these weightings are normalized such

that
∑︀

𝑖 𝑤𝑖 = 1 is made apparent via the visualization design.

Prompt Generation: Given 𝒜𝑐 and weightings 𝑤𝑖, ..., 𝑤𝑛, model 𝑚𝒜𝑐 is created

dynamically, and new prompts (sampled from 𝑚𝒜𝑐) are generated on-demand.

Author Removal: Authors can also be easily removed from 𝒜𝑐 graphically via the

author selection list underneath the weighting diagram.

6.3.3 Discussion

Importantly, and perhaps obviously given the inability of the described model to

capture more nuanced relationships between concepts, the goal of TitleGen is to
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generate ideas or prompts for discussion, upon which collaboration ideas may be

stimulated. Because 𝑚𝒜𝑐 samples from a historical dataset using only publication

titles, it is unlikely that the generated titles will be themselves innovative–but the

combination of prompts generated can spark collaboration.

Future development of TitleGen could focus on constructing more nuanced mod-

els that combine the historical publication record with related metric of impact and

disruption, such as those outlined in Chapter 5. Additionally, methods from NLP

could be deployed to extract more semantically meaningful concepts. Both of these

improvements could be used to generate collaborations that not only sample from

previous publications, but that generate titles or abstracts such that the future ex-

pected impact (or disruption) of the resulting publication is maximized. Further,

constraints (like geographic location, institutional affiliation, or language) could be

used to maximize the relevancy of the results, making them actually actionable.

Such a model could be deployed in combination with a new funding model, such as

that outlined in Section 5.4. This combined platform could learn from the historical

publication record to identify those collaborations (or “edges” between authors) that

would be most likely to generate innovations in specific areas of interest. Then,

funding could be deployed as a “carrot” to incentivize the coresponding researchers to

explore the joint project–closing the loop between publication, impact metrics, new

project identification, and research funding.
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Figure 6-3: A screenshot of the TitleGen application. TitleGen provides functionality
to (A) search the dataset for up to six unique authors, comprising the set 𝒜𝑐 (B)
adjust the weighting 𝑤𝑖 for each author 𝑖 selected, while maintaining the constraint∑︀

𝑖 𝑤𝑖 = 1, and (D) repeatedly sample from the dynamically created Markov model
𝑚𝒜𝑐 to generate potential collaboration-stimulating ideas.
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Figure 6-4: Screenshot demonstrating the usage of TitleGen. A set of three researchers
has been selected via search, and the distribution has been adjusted to non-default
weighting. The combined model 𝑚𝒜𝑐 clearly has learned from the publication history
of the associated researchers, as the generated title demonstrates.
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There always comes a time when one must

choose between contemplation and action.

This is called becoming. . .

Such wrenches are dreadful. But for a proud

heart there can be no compromise. There is

God or time, that cross or this sword. This

world has a higher meaning that transcends

its worries, or nothing is true but those wor-

ries. One must live with time and die with it,

or else elude it for a greater life. . .

I tell you, tomorrow you will be mobilized.

The Myth of Sisyphus 7
Looking Toward the Future

The explosion of scientific data, as well as other relevant, if not specifically scientific

data, is both a challenge and an opportunity: On one hand, the ability to parse the

information produced, even in a single field of interest, has become a Sisyphean task–

making human-based resource allocation decisions (e.g. choosing new faculty, which

faculty to promote, which papers to publish, which technologies to commercialize)

ever-more distant from optimal. On the other hand, the vast amount of scientific data

produced annually holds, as demonstrated both by recent literature[122, 24, 92] and

in this thesis, highly-valuable information that, if correctly parsed and interpreted,

could become actionable—helping us understand the context and evolution of science,

as well as the possibilities for future development, on a more vast and nuance scale

than ever before.

While the potential of the integration of data-driven technologies to our scientific
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and commercialization workflows is difficult to overstate, it is not currently a leading

focus for machine learning researchers. This is due at least in part to structural

bottlenecks and existing incentive misalignment in the publishing, discussed in detail

in Chapter 3, wherein the existing metrics used to evaluate impact and innovation–

despite widespread acknowledgement of their diverse failings [42, 117, 98, 121]–are

deeply entrenched into the academic and scientific ecosystems.

Augmenting the difficulty of this research is the related, but distinct, problem of

knowledge infrastructure ownership. As addressed in Chapter 4, the current scien-

tific knowledge infrastructure–despite being funded in large part via governmental

and philanthropic avenues–has been captured by institutions with incentives that,

for a variety of reasons (not the least of which is fiduciary duty), are often directly

mis-aligned with those of the scientific community and society generally. These infras-

tructures not only are required for the development of scientific literacy (which is, over

time, changing due to increasing adoption of a variety of Open Access approaches),

but especially for truly valuable and widespread research into the data produced by

the scientific ecosystem. For example, even if datasets are made openly available, the

critical linkages between these diverse data silos (e.g. articles and the corresponding

data from journals owned by different publishers, patents, funding agencies, clinical

trials, etc.) are kept proprietary. The release of the Microsoft Academic Graph[79]

and the development of Lens.org [59] are both indications of increasing acknowledge-

ment of this problem–although neither has yet reached sufficient scale (as measured

by the breadth of data captured and size of audience) or quality (as measured by the

identification of linkages and disambiguation of entities) to spur widespread adoption.

In this thesis, I have attempted to not only outline the innovation-styming is-

sues touched on in the previous two paragraphs (Chapters 3 and 4), but have also

demonstrated the potential of deploying methods from artificial intelligence to non-

standard domains. This includes molecular dynamics simulations of biomolecular

systems (Chapter 2), and more notably and directly relevant, scientific ecosystem

knowledge graphs (Chapter 3). In both cases, there were key structural and or-

ganizational hurdles–due to the lack of attention in this area, and/or the cross-
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incentives underlying the general field, collecting and structuring the data of interest

was a key concerns. For example, in Chapter 5, the underlying data–despite be-

ing generally available–needed to be retrieved, organized, and then structured into a

graph-structured database for the deployment of graph-traversal and network-analysis

methodologies. However, when these “activation barriers” were surmounted, the in-

sights derived were of exceptional interest, and of direct relevance to the areas of

interest. For example, by generating an early-warning signal for research of likely fu-

ture impact, I have enabled the downstream utilization of that signal by researchers,

research organizations, and funding agencies. Further, the quantitative nature of the

result forms the foundation upon-which additional innovations can be build–including

portfolio-theoretic platforms for optimizing scientific funding (Section 5.4).

Another crucial concern is that, once such large-scale platforms are built, they

will be re-captured by institutions in a repeat of the trends outlined in Chapter 4.

This is a failure-mode that has been demonstrated consistently throughout history–

and forms, in large part, the motivation for modern anti-trust legislation. On the

other hand, there exists another failure mode: If the underlying infrastructure is not

developed in an appropriate way, and appropriate usage licenses crafted, the engine

of capitalism will not be sufficiently harnessed to develop and deploy applications “on

top” of the crucial underlying knowledge. The standards underlying the Internet Pro-

tocol Suite (TCP/IP), most notably the Transmission Control Protocol (TSP) and

Internet Protocol (IP), along with the subsequent historically unique wave of tech-

nology and internet development, can serve as a motivating success case in alignment

with which future approaches and standards could be crafted.

Given this, there is a need to develop foundational knowledge infrastructure, upon

which the next-generation of machine-augmented scientific tools can be developed. As

a first step down this path, and especially to stimulate further large-scale develop-

ment, I have designed and launched the Scaling Science Explore and TitleGen tools.

Scaling Science Explore former provides a visualization front-end through which the

exploration of the scientific literature on the basis of more complex metrics is possible

(that is, not just on the bases of citations, ℎ-Index, and Journal Impact Factor). Fur-
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ther, Scaling Science Expore can be used by researchers to visualize or publicize their

own scientific metrics. TitleGen provides a first-step towards real-world, machine-

agumented stimulation of collaboration–using historical scientific data to train mod-

els that can proactively help us explore the deeply complex landscape of science in a

more efficient way.

These results hold intriguing implications for the future of scientific funding–both

for research and for technology commercialization. If, by building models of the

type described in this thesis, we are able to gain insight into the future impact of

a new technology, author, or idea–then it is natural for us to leverage this signal

when deciding what, or whom, to fund. Further, this “quantification” of the research

system could lead to new funding-related projects; for example, if the top research

innovations can be identified prospectively, why not create financial products that

dynamically allocate capital across the related researchers using the signals provided?

Further, why not dynamically adjust these funding models through the application

of reinforcement learning? Also interesting is the integration of commercialization-

related data into these models; if patterns indicitive not just of future scientific impact,

but of future commercial potential, can be identified, then can diversified, perhaps

collateralized, funding products be designed to channel for-profit capital into the

research ecosystem? Can such projects be structured so that not just the inventor of

the technology commercialized, but also the researchers upon whose innovation that

technology depended, are also compensated–and thus incentivized to continue more

basic research, even if it is several degrees removed from the final product that is

commercialized?

The application of such methods, especially if more “black box” machine learning

approaches are deployed, must be conducted carefully. The integration of large-scale

machine learning with human society in other domains is already well underway–

most notably through social media platforms. From these real-world experiences,

it is obvious that there is room for malicious actors to leverage such systems for

their own gain–and so the deployment of such systems must be conducted carefully,

incrementally, and in close collaboration with, and supervision by, humans. However,
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it is difficult to imagine a scenario in which we are able to effectively operate in a

world with both rapidly expanding scientific complexity and limited resources without

designing tools to help us–and the potential held by the usage of such tools, including

a possible paradigm change in the rate of scientific innovation, in our opinion, makes

the challenge worth the risk.
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Figure A-1: (A) Illustration of computation of the TIS flux factor. The red and gray
line represents a long molecular dynamics trajectory originating in region A. Portions
of the trajectory in red indicate the time points in region A used to normalize the flux
factor. Black dots represent effective crossings of the 𝜆𝐴 interface. (B) Illustration
of computation of a 𝑃 (𝜆𝑖+1 | 𝜆𝑖) ensemble. Each red and white line indicates an
attempted shooting move. Black dots indicate shooting points. Red lines indicate
accepted shooting moves, while white lines indicate rejected shooting moves. (C)
Illustration of procedure used to compute the constrained flux factor. The dark red
region indicates the reactive subregion A’ identified using machine learning. Portions
of the trajectory in red indicate the time point in either region A’ used to compute the
constrained flux factor. Black dots represent effective crossings of the 𝜆𝐴 interface.
(D) Illustration of a constrained 𝑃 (𝜆𝑖+1 | 𝜆𝑖) ensemble. The dark red region indicates
the reactive subregion A’ identified using machine learning.
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Figure A-2: (A) Cumulative log(𝑃 ) for increasing interface placement for each of the
5 seed trajectories tested. Red lines indicate trajectories sampled with the reactant
basin constrained to only include the region where the 10 feature classifier evaluated to
true. Blue lines indicate unconstrained control simulations. (B) Individual values of
𝑃 (𝜆𝑖+1 | 𝜆𝑖) for each 𝜆𝑖 ensemble computed. Error bars correspond to two standard
errors of the mean across three independent Markov chains at each 𝜆𝑖 ensemble.
Red bars indicate test simulations, while blue bars indicate unconstrained control
simulations.
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Figure A-3: Representative structures for the reactive cluster and corresponding
almost-reactive clusters described in Figure 2-3B-E. Feature numbering corresponds
to that of Table B.1. (A) Representative structures from all five reactive clusters.
Representative structures from (B) cluster 1, (C) cluster 2, (D) cluster 3, (E) cluster
4, (F) cluster (5) and their corresponding almost-reactive clusters, respectively. In all
panels, magenta corresponds to cluster 1, cyan corresponds to cluster 2, green cor-
responds to cluster 3, yellow corresponds to cluster 4, orange corresponds to cluster
5 and gray corresponds to the corresponding almost-reactive cluster for the reactive
cluster shown in each histogram. In all panels, structures were aligned to minimize
the root mean square difference between the two magnesium centers.
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Figure A-4: Four separate screenshots showing the filtering mechanisms/capabilities
of Scaling Science Explore, including (A) filtering by venue (journal), (B) by author,
(C) by institutional affiliation of the authors, or (D) by keyword-based search across
all of those options.
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Figure A-5: Detailed screenshot of Scaling Science Explore’s four-dimensional visual-
ization. Three dimensions are fully user-supplied (the x-axis, y-axis, and data point
size), and the fourth dimension includes the visualization of these three metrics across
time, on a per-year basis from the year of publication to five-years post-publication.
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Table B.1: Top 30 consensus features for the –150 to 0 fs time window. Feature rank
indicates ranking according to the number of occurrences in the 20 LASSO-selected
feature sets.

Rank Feature Name Feature Type Occ.

1 Dist GLU319/O𝜖1,AC6/C5 Substrate-environment 24
2 Dist MG6/H32,AC6/O6 Substrate-environment 23
3 Dist MG6/H26,AC6/O6 Substrate-environment 22
4 Ang MG6/H31,MG6/O19,MG6/M17 Water-metal 20
5 Dist MG6/H28,AC6/O6 Substrate-environment 19
6 Dist AC6/O8,GLU496/H𝜖2 Substrate-environment 19
7 Ang NDP/C4N,NDP/N1N,NDP/C1NQ Intra-cofactor 19
8 Dist MG6/H27,AC6/O6 Substrate-environment 18
9 Dist AC6/C5,AC6/C4 Intra-substrate 18
10 Ang MG6/M17,AC6/O6,MG6/M16 Substrate-environment 18
11 Dihe AC6/C5,AC6/C4,AC6/C7,AC6/C9 Intra-substrate 17
12 Ang AC6/O6,MG6/M16,AC6/O3 Substrate-environment 17
13 Dist MG6/O20,MG6/M17 Water-metal 17
14 Ang AC6/C1,AC6/C4,AC6/C7 Intra-substrate 16
15 Dist AC6/C7,AC6/C9 Intra-substrate 16
16 Ang AC6/O8,MG6/M17,AC6/O6 Substrate-environment 16
17 Ang GLN136/N𝜖2,GLN136/H𝜖22,NDP/O7N Other environment 16
18 Ang AC6/C5,AC6/C7,AC6/C9 Intra-substrate 15
19 Dist MG6/M17,AC6/O6 Substrate-environment 15
20 Ang MG6/H29,MG6/O18,MG6/M17 Water-metal 15
21 Dist GLN136/N𝜖2,NDP/O7N Other environment 15
22 Dist MG6/H31,AC6/O6 Substrate-environment 13
23 Dist AC6/C4,AC6/C7 Intra-substrate 13
24 Dist AC6/O6,MG6/M16 Substrate-environment 13
25 Dist AC6/C1,AC6/C4 Intra-substrate 12
26 Ang MG6/H32,MG6/O19,MG6/M17 Water-metal 12
27 Dist MG6/M16,AC6/O3 Substrate-environment 10
28 Dist MG6/O19,MG6/M17 Water-metal 10
29 Ang MG6/H23,MG6/O22,MG6/M16 Water-metal 10
30 Ang MG6/H25,MG6/O21,MG6/M16 Water-metal 10
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Table B.2: Feature names, feature indices and feature types computed at each time
point. Residue name AC6 refers to the substrate, residue name NDP refers to the
NADPH cofactor, and the residue name MG6 refers to the 5 active site waters and
two magnesium ions. Structural representations of features are shown in Figure 2-4.

.

Feature

Index
Feature Name Feature Type

1 Dist AC6/O2,NDP/N7N Substrate-environment

2 Dist AC6/O2,NDP/O7N Substrate-environment

3 Dist AC6/O3,MG6/H24 Substrate-environment

4 Dist AC6/O6,MG6/M16 Substrate-environment

5 Dist AC6/O8,GLU496/He2 Substrate-environment

6 Dist AC6/O8,MG6/M17 Substrate-environment

7 Dist GLU319/Oe1,AC6/C5 Substrate-environment

8 Dist MG6/H25,AC6/O6 Substrate-environment

9 Dist MG6/H26,AC6/O6 Substrate-environment

10 Dist MG6/H27,AC6/O6 Substrate-environment

11 Dist MG6/H28,AC6/O6 Substrate-environment

12 Dist MG6/H31,AC6/O6 Substrate-environment

13 Dist MG6/H32,AC6/O6 Substrate-environment

14 Dist MG6/M16,AC6/O3 Substrate-environment

15 Dist MG6/M17,AC6/O6 Substrate-environment

16 Dist NDP/H4N2,AC6/C4 Substrate-environment

17 Ang AC6/O6,MG6/M16,AC6/O3 Substrate-environment

18 Ang AC6/O8,MG6/M17,AC6/O6 Substrate-environment

19 Ang MG6/M17,AC6/O6,MG6/M16 Substrate-environment

20 Dist AC6/C1,AC6/C4 Intra-substrate

21 Dist AC6/C1,AC6/O2 Intra-substrate

22 Dist AC6/C1,AC6/O3 Intra-substrate

23 Dist AC6/C4,AC6/C7 Intra-substrate
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Table B.2 continued from previous page

Feature

Index
Feature Name Feature Type

24 Dist AC6/C4,AC6/O6 Intra-substrate

25 Dist AC6/C5,AC6/C4 Intra-substrate

26 Dist AC6/C5,AC6/C7 Intra-substrate

27 Dist AC6/C7,AC6/C9 Intra-substrate

28 Dist AC6/C7,AC6/O8 Intra-substrate

29 Ang AC6/C1,AC6/C4,AC6/C7 Intra-substrate

30 Ang AC6/C4,AC6/C7,AC6/C5 Intra-substrate

31 Ang AC6/C4,AC6/C7,AC6/C9 Intra-substrate

32 Ang AC6/C5,AC6/C4,AC6/C1 Intra-substrate

33 Ang AC6/C5,AC6/C7,AC6/C9 Intra-substrate

34 Dihe AC6/C1,AC6/C5,AC6/C7,AC6/C4 Intra-substrate

35 Dihe AC6/C5,AC6/C4,AC6/C7,AC6/C9 Intra-substrate

36 Dist NDP/H4N2,NDP/C4N Intra-cofactor

37 Dist NDP/N7N,NDP/O2N Intra-cofactor

38 Ang NDP/C4N,NDP/N1N,NDP/C1NQ Intra-cofactor

39 Ang NDP/C6N,NDP/C3N,NDP/C7N Intra-cofactor

40 Ang NDP/N7N,NDP/H72N,NDP/O2N Intra-cofactor

41 Dihe NDP/C2N,NDP/C3N,NDP/C7N,NDP/N7N Intra-cofactor

42 Dihe NDP/C2NQ,NDP/C1NQ,NDP/N1N,NDP/C6N Intra-cofactor

43 Dihe NDP/C4N,NDP/C3N,NDP/C7N,NDP/O7N Intra-cofactor

44 Dihe NDP/H1NQ,NDP/C1NQ,NDP/N1N,NDP/C2N Intra-cofactor

45 Dist MG6/O18,MG6/M17 Water-metal

46 Dist MG6/O19,MG6/M17 Water-metal

47 Dist MG6/O20,MG6/M17 Water-metal

48 Dist MG6/O21,MG6/M16 Water-metal

49 Dist MG6/O22,MG6/M16 Water-metal
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Table B.2 continued from previous page

Feature

Index
Feature Name Feature Type

50 Ang MG6/H23,MG6/O22,MG6/M16 Water-metal

51 Ang MG6/H24,MG6/O22,MG6/M16 Water-metal

52 Ang MG6/H25,MG6/O21,MG6/M16 Water-metal

53 Ang MG6/H26,MG6/O21,MG6/M16 Water-metal

54 Ang MG6/H27,MG6/O20,MG6/M17 Water-metal

55 Ang MG6/H28,MG6/O20,MG6/M17 Water-metal

56 Ang MG6/H29,MG6/O18,MG6/M17 Water-metal

57 Ang MG6/H30,MG6/O18,MG6/M17 Water-metal

58 Ang MG6/H31,MG6/O19,MG6/M17 Water-metal

59 Ang MG6/H32,MG6/O19,MG6/M17 Water-metal

60 Dist GLU496/Oe2,GLU496/He2 Other environment

61 Dist GLN136/Ne2,NDP/O7N Other environment

62 Dist MG6/H25,MG6/O21 Other environment

63 Dist MG6/H26,MG6/O21 Other environment

64 Dist MG6/H27,MG6/O20 Other environment

65 Dist MG6/H28,MG6/O20 Other environment

66 Dist MG6/H31,MG6/O19 Other environment

67 Dist MG6/H32,MG6/O19 Other environment

68 Ang GL136/Ne2,GLN136/He22,NDP/O7N Other environment
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Table B.3: Mean standardized logistic regression coefficients fit to classifier trained
using the top 30 most consistently predictive features between -150 and 0 fs (listed
in Table B.1 and illustrated structurally in Figure 2-7) at the -150, -100, -50 and 0 fs
time points relative to the last trough in the order parameter prior to the prospective
catalytic event. Coefficients shown represent the mean values across 5 cross-validation
partitions.

Standardized
Regression Coefficient

Time Before Last Trough

-150 fs -100 fs -50 fs 0 fs

𝛽0 -0.059 -0.195 -0.269 -0.094
𝛽1 -0.361 -0.527 0.354 0.470
𝛽2 -0.198 -0.569 -0.374 0.874
𝛽3 -0.303 -0.957 -0.497 -0.035
𝛽4 0.615 0.706 0.117 0.453
𝛽5 0.094 0.069 0.401 -0.477
𝛽6 -0.365 -0.265 -0.147 -0.613
𝛽7 0.273 -0.251 -0.423 -0.397
𝛽8 0.293 -0.428 -1.134 -0.356
𝛽9 0.068 0.446 0.533 -1.030
𝛽10 0.318 -1.060 -0.666 -0.025
𝛽11 -0.307 0.058 -1.379 -0.289
𝛽12 -0.723 0.414 0.179 -0.510
𝛽13 0.236 -0.129 0.610 0.050
𝛽14 -0.256 0.214 -0.348 -0.107
𝛽15 -0.132 -0.460 -0.227 0.269
𝛽16 -0.330 -0.237 1.049 0.106
𝛽17 0.065 0.302 0.137 0.039
𝛽18 0.193 -0.704 0.665 0.026
𝛽19 -0.426 0.252 -0.425 0.007
𝛽20 0.033 0.141 0.477 0.704
𝛽21 0.319 -0.327 -0.471 -0.013
𝛽22 -0.135 -0.630 -0.162 -1.100
𝛽23 0.790 0.281 -0.089 0.200
𝛽24 -0.048 -0.179 -0.127 -0.014
𝛽25 0.083 -0.047 -0.182 0.504
𝛽26 0.592 0.592 0.434 -0.244
𝛽27 0.142 0.093 0.241 -0.944
𝛽28 -0.208 0.477 0.437 -0.083
𝛽29 -0.148 -0.370 -0.327 -0.061
𝛽30 0.183 0.151 0.338 -0.174
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Table B.4: Top 20 atomic velocity magnitudes at the 0-fs time point ranked by
individual AUC. The feature set was comprised of the velocity magnitudes of the 341
atoms within 5 ångstroms of the migrating methyl, AC6/C5 (including all hydrogens).
Note that of these 341 velocities, only 17 exhibited individual AUCs greater than
0.60 at the “last trough” of the pre-launch window, and of these 17, 5 involved atoms
included in the “consensus set”.

Rank Atom Name AUC Involved in Consensus Feature Set?

1 AC6/O6 0.854 Yes
2 AC6/C4 0.738 Yes
3 Glu319/O𝜖1 0.6713 Yes
4 AC6/H12 0.6687 No
5 NDP/P2A 0.6435 No
6 NDP/H2A 0.6406 No
7 MET254/C 0.637 No
8 THR520/HN 0.6363 No
9 AC6/C7 0.6213 Yes
10 GLU319/C 0.6187 No
11 GLN136/CA 0.6154 No
12 NDP600/O3 0.6082 No
13 GL6319/O𝜖2 0.6077 No
14 GL6319/O 0.6034 No
15 GLU496/O𝜖2 0.6022 No
16 AC6/C1 0.6022 Yes
17 LYS252 /HG1 0.602 No
18 PRO251/O 0.5991 No
19 NDP600/H1NQ 0.5984 No
20 AC6/O8 0.5953 Yes
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