
Market Design Opportunities for an Evolving Power
System

by

Ian Michael Schneider
Submitted to the Institute for Data, Systems, and Society
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Social and Engineering Systems

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Institute for Data, Systems, and Society

December 5, 2019
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Professor Munther A. Dahleh
Director, Institute for Data, Systems, and Society

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dr. Mardavij Roozbehani
Principal Research Scientist, Laboratory for Information & Decision Systems

Thesis Supervisor
Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Professor Paul Joskow
Professor Emeritus, Department of Economics

Doctoral Committee
Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Professor Ali Jadbabaie
Associate Director, Institute for Data, Systems, and Society



2



Market Design Opportunities for an Evolving Power System

by

Ian Michael Schneider

Submitted to the Institute for Data, Systems, and Society
on December 5, 2019, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Social and Engineering Systems

Abstract

The rapid growth of renewable energy is transforming the electric power sector. Wind and
solar energy are non-dispatchable: their energy output is uncertain and variable from hour-
to-hour. New challenges arise in electricity markets with a large share of uncertain and
variable renewable energy. We investigate some of these challenges and identify economic
opportunities and policy changes to mitigate them.

We study electricity markets by focusing on the preferences and strategic behavior of
three different groups: producers, consumers, and load-serving entities. First, we develop
a game-theoretic model to investigate energy producer strategy in electricity markets with
high levels of uncertain renewable energy. We show that increased geographic dispersion of
renewable generators can reduce market power and increase social welfare. We also demon-
strate that high-quality public forecasting of energy production can increase welfare. Second,
we model and explain the effects of retail electricity competition on producer market power
and forward contracting. We show that increased retail competition could decrease forward
contracting and increase electricity prices; this is a downside to the general trend of increased
access to retail electricity competition. Finally, we propose new methods for improving de-
mand response programs. A demand response program operator commonly sets customer
baseline thresholds to determine compensation for individual customers. The optimal way
to do this remains an open question. We create a new model that casts the demand re-
sponse program as a sequential decision problem; this formulation highlights the importance
of learning about individual customers over time. We develop associated algorithms using
tools from online learning, and we show that they outperform the current state of practice.
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Chapter 1

Introduction

The electric power system is rapidly changing due to the growth of variable renewable gen-
eration from wind and solar energy. In the United States, wind and solar energy accounted
for 6.5% and 2.2% of total electricity production in 2018, respectively (EIA, 2019b); this
represents a five-fold increase from 2009. The growth trend is expected to continue: across
a range of policy and macroeconomic scenarios, the U.S. Electricity Information Adminis-
tration (EIA) projects that renewable generation will grow by 50-115% through 2035 (EIA,
2019a). Electricity generation is also increasingly distributed. Small-scale distributed solar,
including rooftop solar, accounted for 25% of net new power capacity in 2018 (EIA, 2019b).

The rapid growth of renewable electricity is driven by public policy, economics, and
consumer preference. Tax credits provide federal support for renewable energy, and sev-
eral states have policies mandating the growth of renewable electricity generation. Wind
and solar technology costs continue to fall, and results from the EIA (2019c) suggest that
wind and solar energy are cost-competitive with natural gas generation and other fossil fuel
technologies. U.S. registered voters broadly support renewable energy policy and growth:
85% of registered voters support requiring electric utilities to use 100% renewable energy by
2050 (Leiserowitz et al., 2018). Policy-makers and voters recognize that increased renewable
energy generation can help reduce greenhouse gas emissions and reduce the extent of climate
change.

Wind and solar energy sources are uncertain and variable: this poses technical chal-
lenges for reliable operation of the electricity grid. The uncertainty of wind and solar energy
implies that it is impossible to perfectly predict how much energy supply will be available at
a particular time. Furthermore, the energy output from a wind farm or solar array is time-
and location-dependent; it changes over the course of a day. These features of variable re-
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newable energy, i.e. wind and solar energy, are critical because the stability of the electricity
grid requires a consistent balance of energy injections and withdrawals. Variable renewable
energy can increase the need for reserves—generators whose output can be quickly adjusted
to account for forecast errors or rapid changes in energy supply or demand (Inman et al.,
2013; Bird et al., 2013). Variable renewable energy can also pose challenges to efforts to
manage voltage and grid stability (Kroposki et al., 2017). Researchers and electricity mar-
ket operators are exploring ways to improve renewable energy forecasting, manage energy
assets, balance supply and demand, and maintain frequency and voltage stability in electric-
ity grids with large shares of renewable energy (see, e.g., Meyn et al. (2018); Papavasiliou
and Oren (2013); Foley et al. (2012)).

The variability and uncertainty of renewable energy also poses economic challenges for
the electricity industry. Even though renewable electricity has low cost per unit of electricity
produced, it could be expensive to reliably deliver electricity from a system with a large
fraction of variable renewable energy (Green and Vasilakos, 2010). The uncertainty of wind
and solar energy production is an important cost-driver in markets with a high penetration
of renewable resources (Bouffard and Galiana, 2008; Makarov et al., 2009). Given that
wind and solar resources are variable, it can be expensive to ensure that sufficient energy is
available during periods of low renewable energy production. In order to achieve extremely
low emissions in the power system at low-cost, it will be important to reduce the costs of
energy storage technologies, to utilize more flexibility from energy consumers, or to increase
the flexibility of controllable low-carbon technologies like nuclear generators (De Sisternes
et al., 2016; Arbabzadeh et al., 2019). The variability and uncertainty of renewable energy
might change the way that producers attempt to exercise market power (i.e. raise prices) in
wholesale electricity markets; this could challenge efforts to mitigate market power and to
operate efficient markets for coordinating energy resources. Evidence suggests that variable
renewable energy can increase price volatility in electric power markets (Rintamäki et al.,
2017). This could make it more challenging to finance new generation investments and it
could increase the importance of long-term energy contracts.

Solar and wind technologies are creating benefits today, generating energy, decreasing
emissions, and satisfying consumer preferences. However, we will require new innovations,
regulations, and market designs in order to fully realize the long-term benefits of these tech-
nologies. Tools from optimization, game theory, and statistics are invaluable for designing,
operating, and researching modern electricity systems. Researchers have used these tools to
explain and develop power system theory and practice. New research can help update the

12



ways we manage and regulate the power system to prepare for the growth of renewable en-
ergy, and to enable that future at low cost. In this thesis, we tackle three research questions
associated with market power and demand participation in a rapidly changing electricity
sector. We use analytical tools from statistics, economics, and operations research to study
technology and policy opportunities that could help enable a future with reliable, low-cost,
and low-carbon electricity. With this research, we try to understand how the independent
preferences of consumers and producers can be elicited and coordinated to reduce the cost
of a reliable low-carbon power system.

In Chapter 2, we model game-theoretic issues associated with market power and the
value of forecast information in systems with stochastic renewable energy. Research on mar-
ket power traditionally did not focus on generator uncertainty (Joskow et al., 1988; Cardell
et al., 1997) because traditional fossil-fuel generators do not have significant resource uncer-
tainty. Improved forecasting capabilities can reduce the uncertainty associated with renew-
able electricity (Wang et al., 2011; Pinson, 2013), but it becomes important to incentivize
accurate and high-quality forecasts in order to minimize power system uncertainty. Market
power continues to impact power system regulation, but it takes on new features in markets
with high penetration of variable renewable resources. This chapter uses tools from game
theory to model and study market power in electricity systems with a large share of stochas-
tic renewable energy, illuminating two key conclusions. First, the level of correlation between
energy production in different locations has a major impact on the ability of energy produc-
ers to exercise market power and raise prices. Second, information sharing, or high-quality
forecasting from market operators, can help reduce market power. These results highlight
policy challenges and partial solutions for market power mitigation.

Renewable energy growth will impact, and will be impacted by, forward contracts for
energy and financing mechanisms for electricity generating technologies. Forward contracts
are agreements to buy and sell assets—in this case, electricity—at a specified future point in
time. In Chapter 3, we seek to understand how efforts to introduce retail competition in the
electricity sector will impact forward contracting. Forward contracts are an important en-
abler of new investment in the power sector. The importance of forward contracts will grow
as the variance of electricity prices increases, which is an expected outcome of wind and solar
growth (Wozabal et al., 2016). Forward contracts can also help reduce market power (Allaz
and Vila, 1993). In addition to the renewable energy growth trend, the electricity indus-
try is undergoing deregulation of the electricity retail sector. Supported by changing state
laws, individual consumers and municipalities are increasingly able to choose their electricity
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supplier, or load-serving entity. The term load-serving entity (LSE) encompasses regulated
utilities and competitive retail electricity suppliers. Chapter 3 provides an economic analysis
that highlights an important interaction between these trends: smaller LSEs, in less con-
centrated markets, may be less likely to engage in forward contracting. This suggests that
additional steps might need to be taken to ensure adequate forward contracting in systems
with high renewable energy shares and retail competition.

In Chapter 4, we study issues associated with contracting for incentive-based demand
response programs. Growing recognition of the potential benefits of demand response, and
the increasing availability of advanced metering and digitally-connected devices, has led to
a surge of interest in demand response programs, where participants are paid to reduce
or shift demand when doing so reduces power system costs (Chao, 2010a; Faruqui et al.,
2017). Time-varying prices for electricity could improve the efficiency of end-use consump-
tion decisions, but for various reasons cost-reflective dynamic prices are not commonly of-
fered for residential and small commercial customers. Demand response programs provide
a popular alternative because they incentivize demand reductions but do not penalize over-
consumption. However, these features also pose significant challenges to program design. We
model the demand response program as a sequential decision problem; an LSE can iteratively
improve demand response parameters based on observed customer characteristics. We show
that online learning methods could reduce the cost of existing demand response programs
and increase customer satisfaction. The proposed design could potentially allow LSEs to
offer incentive-based demand response programs by default to all customers. Ultimately,
improved demand response programs can help to increase demand flexibility and reduce the
costs of efficiently operating a low-carbon power system.

This thesis research exists at the intersection of engineering and economics in power
systems. It is part of a growing wave of research that seeks to understand how market
interactions influence opportunities for improving power system flexibility and managing
variable renewable energy. It treats producers and consumers1 of electricity as independent,
non-cooperative entities. In this research, we try to understand where existing markets might
fail, and where new market designs can be developed or adopted, in the service of a more
cost-effective, reliable, and low-carbon power system.

The research in this thesis builds on a large body of literature using tools from op-
timization, game theory, and statistics to develop methods for accommodating variable re-

1In the scope of different research questions, a “consumer” could be an end-user of electricity, an aggre-
gator or utility managing electricity consumption on behalf of a large number of end-users, or an algorithm
determining consumption on behalf of an aggregator or end-user.
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newable energy. We focus on results that are informative and practicable. For example,
existing research frequently uses multi-agent optimization models or optimization models
with equilibrium constraints. Our focus is to use more heavily stylized models to elucidate
fundamental interactions, so the results are informative about key drivers and trade-offs.
Existing research in power systems often develops entirely new modes of interaction between
power system agents. These results help inspire new options or possibilities, but we prefer
to focus on results that could lead to practical improvements in existing systems.

1.1 Summary of Individual Chapters

The following chapters address distinct research challenges, but they share important com-
monalities in terms of their research focus and theoretical tools. In each chapter, we focus on
market design opportunities with the ultimate goal of enabling low-cost, low-carbon power
systems. Chapter 2 focuses on energy producers and uses tools from game theory. Chapter 3
describes research that directly implicates both producers and LSEs; it also uses tools from
game theory. Chapter 4 focuses on LSEs and consumers; it uses tools from online learning
and incorporates elements of strategic behavior. Optimization, uncertainty, and coordinated
decision-making are important features of each of the individual chapters.

1.1.1 Strategy and Market Power in Renewable Electricity Systems

Market interactions are a key component of many modern power systems, but the growth of
variable renewable energy could pose new challenges for electricity markets. Approximately
70% of U.S. electricity is transacted through wholesale electricity markets. In three large
markets,2 wind and solar energy already account for a quarter of energy production. One
primary goal of electricity markets is to coordinate short-term operating decisions with prices,
so that the distributed and independent decisions of energy suppliers and consumers will
result in an outcome where energy demand is satisfied at least-cost. However, multiple
issues compound this challenge: energy storage is expensive, so supply and demand need to
approximately match instantaneously; electricity transmission can constrain power flows; the
grid operator must procure services to guarantee reliability; and demand is highly inelastic
(barely impacted by price) in the short-term. These issues contribute to an additional
complication: market power. Market participants, including generators, diversified energy

2The three markets mentioned here are ERCOT, which serves most of Texas, CAISO, which serves most
of California, and the Southwest Power Pool (SPP), which serves portions of 14 mid-western states.
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companies, and energy traders, try to increase electricity prices above competitive levels in
order to increase their revenue. Due to the special features of electricity markets, they are
often well-positioned to succeed.

Existing research explains how particular features of electricity markets impact strate-
gic behavior, and electricity system operators have practical steps for mitigating market
power. Electricity system features like transmission constraints (Cardell et al., 1997), fi-
nancial transmission rights (Joskow and Tirole, 2000), and market price caps (Joskow and
Tirole, 2007) all impact producer market power. System operators have multiple strategies
to monitor market power and mitigate its impacts (Pinczynski and Kasperowicz, 2016).

Chapter 2 extends the literature by focusing on producer strategy and market power
in systems with high levels of stochastic renewable energy. New energy technologies will
impact market power, and they could complicate enforcement efforts to mitigate market
power. For example, a regulator might have lower ability to mitigate market power if it
has imperfect information regarding production availability of a wind farm (i.e. the amount
of energy a wind farm could produce at a particular time) or regarding opportunity costs
for a grid-connected battery. Chapter 2 helps explain new drivers of strategic behavior and
market power in systems with uncertain production levels due to renewable energy.

In Chapter 2, we model producer decisions in electricity systems with high levels of
renewable energy. We use a Cournot model: producers choose a quantity of energy to
sell in order to maximize revenue, and their output is constrained by their variable energy
availability (e.g., due to changing wind speeds). The model features uncertain availability
and asymmetric information; producers do not know how much energy their competitors
will be able to produce at a particular time. We use tools from game theory to derive
the Bayesian-Nash equilibrium of producer offering strategies when energy availability is
uncertain, focusing in particular on the importance of information regarding competitors’
production availability.

This chapter provides several contributions that can aid our understanding of producer
strategy and market power in systems with high levels of renewable energy. One core con-
tribution of this chapter is to show how the level of correlation between different firms’ wind
resources impacts strategy and market outcomes. The main insight of the analysis is that
increasing heterogeneity in resource availability improves social welfare, as a function of its
effects both on improving diversification and on reducing withholding by firms. This insight
is robust for common assumptions regarding electricity demand. We present the analysis for
a simplified single-period electricity market with wind energy, and then we extend the results
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to markets with traditional fossil-fuel generation and multiple wind producers. In addition,
we analyze the effect of wind resource heterogeneity on opportunities for collusion. Finally,
we analyze the impacts of improving public information and weather forecasting; enhanced
public forecasting increases welfare, but it is not always in the best interests of strategic
producers. This result provides an additional contribution. It extends existing literature
on information sharing in Cournot games, which focuses on stochastic production costs, by
considering information sharing when producers have stochastic production constraints.

Practical extensions arise naturally from the results. Greater dispersion of renew-
able resources is especially valuable when producers have market power, which implies that
policy-makers should consider the effects of energy policy on investment location decisions.
In addition, high-quality public forecasting can improve efficiency and welfare outcomes in
systems with uncertain energy availability and market power. As a result, markets could ben-
efit from high-quality public forecasting or real-time monitoring of wind and solar resources;
system operators should consider improving their existing forecast capabilities.

1.1.2 Forward Contracts in Electricity Markets with Concentrated

Demand

In Chapter 3, we study how changing features of the retail side of the electricity market
impact forward contracting for electricity. Forward contracts are an agreement between two
parties to buy and sell an asset at a particular point in time. In the electricity sector, forward
contracts can help mitigate price risk for energy suppliers and consumers, and they can help
support investment in new generation assets. Forward contracts, including power purchase
agreements (PPAs) can provide or enable financing for renewable energy investments (Miller
et al., 2018).3 Forward contracts could be especially important if energy price volatility
increases alongside variable renewable energy supply. Forward contracts for electricity can
also help reduce market power and increase producer output (Allaz and Vila, 1993), for
example in electricity spot markets. Forward contracts are an important tool for investment
and risk-management in electricity systems with high levels of renewable energy.

Chapter 3 models an adjacent change in the electricity sector—the increase of retail
choice—to understand its impacts on forward contracting. Consumer electricity markets are
open to retail electricity competition in many locations, including 17 states. Retail competi-
tion has potential benefits for consumers, including lower prices and increased opportunities

3On a shorter time-scale, the day-ahead energy market also provides a type of forward contract for the
purchase and sale of energy.
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to support renewable energy. In states like Massachusetts and California, communities have
the option to collectively choose an energy supplier to serve their residents (Faulkner, 2010);
as of 2018, over 150 towns and cities in Massachusetts had chosen this approach (Fuller and
Berwick, 2018). In 2017, over 13.7 million households participated in retail choice programs,
double the number from a decade prior (EIA, 2018). The main contribution of this chapter
is to show how retail changes could impact forward contracting and producer market power
in the electricity sector.

In Chapter 3, we develop a simple model to show how LSEs will engage in forward
contracting in order to minimize their overall costs of serving electricity to their retail cus-
tomers.4 In this model, one of the benefits of forward contracting is that it helps reduce
market power, thus reducing spot market prices. The main contribution of this chapter is
to show how positive externalities for forward contract procurement can arise: the benefits
of forward contracting to reduce market power lead to positive externalities because they
are shared by all LSEs, not just those who engage in the forward contract. As such, the
total forward contracting level and total welfare decrease in the number of LSEs serving
the consumer market. We show this dependency using comparative statics of the market
equilibrium, based on the number of retail electricity suppliers. This insight suggests new
areas for additional research, for instance to study empirical evidence of the described effects
or to explore relevant policy interventions. Policies that incentivize or require forward con-
tracting might be a useful tool for reducing market power in electricity systems with retail
competition.

1.1.3 Incentive-Based Demand Response

In Chapter 4, we examine new ideas for enabling flexibility in electric power systems through
demand response. Demand response is a tool whereby consumers are paid to reduce their
energy consumption in times of need, for instance, when energy prices are high or renewable
energy supply is low. Demand response will be especially valuable in systems with high
levels of renewable energy generation (Roos and Bolkesjø, 2018).

Increased demand-side participation in electricity markets could improve social welfare
while reducing the cost of integrating renewable energy. The marginal cost of electricity can
fluctuate by two orders of magnitude. Dynamic pricing of electricity, in line with temporal

4In practice, there are other reasons that a LSE might engage in forward contracts, including risk reduc-
tion. We ignore those issues to focus on the relationship between forward contracting and market power.
In the context of this chapter, we can think of retail competition as impacting the residual level of forward
contracting, after accounting for other factors that drive forward contract procurement.
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changes in the marginal cost of electricity production, can reduce distortions and improve
economic efficiency (Borenstein and Holland, 2005; Joskow and Wolfram, 2012). However,
dynamic (or ‘real-time’) prices are not a wide-spread option for residential and small com-
mercial customers. Only 0.2% of U.S. residential customers are offered real-time prices (EIA,
2018). Inertia, consumer preferences, transaction costs (Schneider and Sunstein, 2017), and
consumer protection concerns (Burger et al., 2020) might limit the practical usefulness of
a real-time electricity price. One alternative mechanism is to pay customers for demand
reductions when the marginal cost of energy is high. These mechanisms are called ‘demand
response’ programs.

Incentive-based demand response programs have sizable participation in the United
States, but their design implies fundamental challenges. Incentive-based demand response
programs, alternatively called ‘behavioral demand response,’ have 2.8 million participants in
the U.S. (Surampudy et al., 2019). Peak-time rebate programs also have sizable participation;
this Chapter 4’s model encompasses both types of program. These programs are useful
because they do not require any special technology on the part of customers, and they do
not require direct control by an electric utility. They are popular, in part, because they have
no financial downside for customers. However, demand response program operators face
substantial challenges: they need to decide how to incentivize customers’ reductions, but
they cannot perfectly measure reductions because they have imperfect information about
what the customer would have consumed in the absence of the demand response incentive.
LSEs that operate demand response programs typically determine a baseline threshold for
each customer in each program hour; they only pay customers for reductions below the
baseline threshold. If this threshold is too high, program operators pay more for the demand
response program; if it is too low, they risk customer dissatisfaction or defection. Despite
challenges, demand response remains a practical and popular tool for LSEs and regulators.

In Chapter 4, we study demand response procurement in the electricity sector. Con-
sumers have the option to buy electricity at a fixed retail rate, which leads to inefficiently
high demand when the marginal cost of producing electricity exceeds the retail rate. An
LSE can develop a demand response program to reduce consumption. Typically, the LSE
has imperfect information, and the LSE can only incentivize customers; it cannot charge
them more than the regulated retail rate. The combination of (weakly) positive incentives
and private information makes it challenging to determine the optimal demand response
incentive. Typical practice is to set the baseline threshold as an estimate of the customer’s
counter-factual consumption, and to pay customers based on the difference between their
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final consumption and that baseline threshold. We consider two customer demand models
and investigate natural objective functions for the LSE. From this starting point, it is clear
that the baseline should not necessarily be an estimate of the customer’s counterfactual con-
sumption. We utilize tools from online learning to explore customer-specific cost functions
and iteratively choose better demand response baseline thresholds.

Chapter 4 describes several key contributions that could help enable more effective
incentive-based demand response programs. First, we develop natural models of consumer
behavior and objectives for demand response programs. We argue that the demand response
baseline threshold should not necessarily be an estimate of a customer’s counter-factual
demand. In order to maximize the LSE’s objectives, the baseline threshold will take into
account a customer’s propensity for demand reductions and the uncertainty (variance) in
the LSE’s estimate of the customer’s counter-factual demand. Second, we show how tools
from online learning can be used for the sequential decision problem of choosing customer
baseline thresholds. We develop two separate customer models and show how differences
in customer responsiveness might impact the design of the sequential decision algorithm for
choosing the demand response baseline parameter. We use numerical examples to showcase
the potential benefits of these improvements over current practice.
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Chapter 2

Selling Wind: Strategic Behavior in

Electricity Markets with Substantial

Renewable Energy Generation

This work was performed in collaboration with Asu Ozdaglar and Ali Kakhbod.

2.1 Introduction

The market share and total production of renewable electricity is growing rapidly. In 2018,
wind energy was responsible for 6.5% of U.S. electricity generation, nearly doubling its market
share and total production from five years prior. Renewable electricity is a critical component
of global efforts to reduce carbon dioxide emissions, and its cost is rapidly declining.

Prominent sources of renewable electricity - wind and solar energy - have stochastic
resource availability: it is not possible to perfectly predict the quantity of wind or solar
power available at any given point in time. The associated spatial and temporal variability
of renewable energy resources has a significant impact on their value to society (Joskow,
2006; Hirth, 2013; Hirth et al., 2016). Furthermore, since wind production reduces local
prices due to the merit order effect, highly correlated local wind energy availability reduces
the average value of wind energy produced (Woo et al., 2011; Ketterer, 2014).

Existing literature focuses on strategic behavior in electricity markets without sub-
stantial amounts of renewable energy. Research on market power in the electricity sector
(Joskow et al., 1988) provided important insight for electricity system deregulation. Elec-
tricity system market power research does not traditionally focus on stochasticity because
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fossil-fuel generators do not have significant resource uncertainty. Instead, it focuses on other
key features of the electricity sector that impact market power, like transmission constraints
(Cardell et al., 1997), financial transmission rights (Joskow and Tirole, 2000), and market
price caps (Joskow and Tirole, 2007). Acemoglu et al. (2017) establish that diverse ownership
portfolios of renewable and thermal generation by strategic firms may be welfare reducing,
because they can reduce (or even neutralize) the merit order effect. Butner (2018) provides
empirical evidence of these effects. Since we model an extreme case of competition with only
wind producers, our firms strategically withhold wind energy. In practice, when firms own
diverse generation portfolios, they will prefer to withhold output from resources with high
marginal costs (Acemoglu et al., 2017). Our model explains how information about produc-
tion availability influences strategy; it can be combined with the existing literature to help
explain producer strategy in systems with diverse ownership portfolios and stochastic, cor-
related, production constraints for renewable energy. Our model also helps show how public
information sharing can improve welfare in systems with strategic behavior and stochastic
renewable energy production.

We are interested in how a particular characteristic of renewable energy resources–the
stochastic dependence of resource availability across firms–impacts strategic behavior, market
power, and welfare. The link between stochastic heterogeneity1 of resource availability and
welfare is an important area for research because various policies impact the investment
strategies of wind producers and therefore the stochastic characteristics of the wind energy
portfolio in a given region (Kök et al., 2016; Schneider and Roozbehani, 2017b). Common
subsidy forms for renewable energy, like the production tax credit (PTC) and state-level
renewable portfolio standards (RPS), impact renewable energy investments (Fischer, 2010).

Figure 2-1 shows probability distributions for two different wind farms in the Midwest
United States, conditioned on the output of a third wind farm 𝑖 in the same region. The
nature of stochastic dependence is very different for each pair of wind farms. Wind farm
𝑖’s output is highly correlated with the output of the wind farm displayed on the right, and
essentially uncorrelated with the output of the wind farm displayed on the left.2

1Stochastic heterogeneity refers to the level of stochastic dependence. Throughout the main body of the
chapter, we use a term “dispersion” to succinctly refer to the extent of stochastic dependence. In the linear
case, high (low) stochastic dependence is equivalent to highly correlated (uncorrelated) stochastic resource
availability across different producers.

2For the purposes of this graph, we use measured production as a proxy for resource availability. Here
and throughout the chapter we stylize resource availability as discrete, i.e. the resource availability at 𝑖
𝑤𝑖 = 𝐿 or 𝑤𝑖 = 𝐻. Since real world availability is continuous, for this figure, we say that 𝑤𝑖 = 𝐿 when the
wind availability is less than 3% of its maximum availability (bottom 27% of periods) and 𝑤𝑖 = 𝐻 when the
wind availability is greater than 67% of its maximum availability (top 20% of periods).
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Clearly, policy changes can impact investment strategies for renewable energy and the
characteristics of system-wide resource uncertainty. This begs the questions: Is it important
to encourage policies that increase the heterogeneity of stochastic resources? Will investment
in wind energy naturally lead to the level of resource heterogeneity that maximizes social
welfare? Just as policy makers seek to limit market concentration in certain industries,
they might support policies to increase stochastic heterogeneity of renewable resources in
the electric power industry. These efforts have growing import because existing strategies
for market power monitoring in electricity markets will be challenged by an influx of renew-
able generation. Regulators have imperfect information regarding resource availability and
risk preferences for firms that own stochastic generation. Regulators also have imperfect
information regarding opportunity costs for storage facilities that are proposed to mitigate
the variability of renewable resources.3
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Figure 2-1: Prior and conditional empirical distributions for resource availability from two
wind farms in Midwest U.S., based on hourly energy production from 2014 through 2016.

We study strategic firms participating in a Bayesian Game, where firms have private
information regarding their realized energy availability, or “state.” This energy availability
is equivalent to a production constraint, because it limits the extent of production by the
firm in any given period. Since the resource availability of wind energy is uncertain, from an
individual firm’s perspective its competitors’ production constraints are stochastic. However,
the resource availability of wind energy has a high degree of stochastic dependence; firms
can gain important information about their competitors’ production constraints from the
realization of their own resource availability. As such, the extent of stochastic dependence
regarding firms’ resource availability becomes an important factor that impacts strategic
behavior, market power, and welfare. For clarity, we focus on wind energy, but the insights

3Additionally, Munoz et al. (2018) discuss challenges associated with auditing the opportunity costs of
traditional generators in markets with physical inflexibilities and non-convex costs. These issues have growing
import in systems with high levels of renewable energy.
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can be extended directly to solar energy or any other resource with stochastic availability
and negligible marginal costs. Since solar and wind resources are not highly correlated, a
market with a mix of solar and wind generation probably has greater stochastic heterogeneity
than a market with only wind energy and no solar energy. Similarly, a market with a mix
of onshore and offshore wind resources probably has greater stochastic heterogeneity than a
market with only onshore or offshore wind resources.

We model producer competition as an incomplete information Cournot game with
correlated types, where the type refers to the stochastic resource availability (production
constraint) that is private information for each individual producer. The base model uses a
Cournot duopoly market. We utilize a parameter 𝑑 to represent the level of heterogeneity
amongst wind producers; throughout, we refer to 𝑑 as the level of dispersion. Intuitively,
we can think of dispersion as being similar to geographic distance; research has shown that
correlation in wind availability across pairs of wind producers is generally decreasing in
geographic distance (Sinden, 2007). This is a useful intuition but not a general rule; distance
is only one feature among many (e.g. geography, climate, turbine orientation) that could
impact the level of stochastic heterogeneity across wind farms.

The results provide clear insight to explain how stochastic resource heterogeneity can
impact welfare in imperfect electricity markets. Increasing heterogeneity in wind resource
availability is beneficial for two distinct reasons: it increases the diversification of resources,
and it also reduces strategic withholding because it changes the information that a producer’s
own energy availability provides about the likely energy availability of the other firms in
the market. The results of our model imply that imperfect competition in energy markets
can affect investment in renewable energy, resulting in a system with sub-optimal levels of
resource heterogeneity.4

Next, we investigate the effects of public sharing of high-quality weather forecasts,
using the limiting case where the true realized energy availability of firms is monitored and
shared. Information sharing through improved forecasting is socially beneficial, but it does
not always improve producer profits. As such, it will not necessarily be undertaken by
producers acting in their own best interest.

This result is conceptually similar to the information sharing literature; we show that
it is upheld in our model where production constraints (not costs) are stochastic and corre-

4Other features of electricity markets might also reduce heterogeneity of wind resources or distance
between wind producers, including the presence of existing transmission, variance in state-level renewable
policies, and quantity-based subsidies. However, we focus specifically on market failures due to imperfect
competition.
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lated across wind farms. Since producers have stochastic availability, high quality weather
forecasting can be undertaken publicly in order to maximize social welfare.

Finally, the model is utilized to examine the effects of heterogeneity on collusion and
on policies to prevent collusion. If they do not face potential penalties for collusion, firms
with stochastic availability will always choose to collude because they benefit from sharing
information and from sharing monopolistic profits. Increasing heterogeneity of wind pro-
duction has a range of impacts on collusion, impacting its value to producers, the costs of
collusion on social welfare, and the level of enforcement required to prevent collusion.

These results provide a framework for evaluating policies that impact investment and
information-provision in imperfectly competitive markets where firms have stochastic pro-
duction constraints, like electricity markets with a high penetration of renewable resources.
The results can help us understand how policies that impact the dispersion of renewable
energy resources, and thus the characteristics of stochastic energy availability, ultimately
impact welfare in imperfectly competitive electricity markets.

2.1.1 Literature Review

Literature on wind diversification has focused on the impacts of resource heterogeneity on
average electricity prices and the cost of wind integration. Increased heterogeneity of wind
resources has at least three impacts on economic surplus and the cost of electricity:

1. Balancing costs for managing wind production. This impact is well-studied in the
literature and not covered in the model in this chapter.

2. The average benefit of wind production and the average price earned for electricity
produced from wind energy. This is discussed in some existing literature, but we provide
a new formal model that provides insights on its impact on welfare.

3. Strategic curtailment by wind and traditional power producers. This impact has not
been proposed in previous literature. This chapter formalizes the concept and explains
its impact on welfare.

First, increased wind heterogeneity decreases balancing costs because it reduces hour-
to-hour fluctuations in total wind energy production and because it reduces net uncertainty
of availability in a given hour. This impact is well-studied in existing literature. Fertig et al.
(2012) show that increasing diversification reduces the average hourly fluctuation in total
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power output and increases the equivalent firm power production.5

These short-term time-dependent impacts are not covered specifically in our model,
which ignores the complexities associated with sequential market clearings.6 As such, our
model ignores issues associated with integrated control management systems and technical
issues associated with the management of power systems with high levels of renewable re-
sources. However, the benefits of increased heterogeneity likely have a net positive impact
on welfare due to a reduction of balancing costs, so they do not change the general direction
of the main welfare results.7

Second, increasing heterogeneity increases the average benefit of wind production. In-
creasing levels of wind generation have been shown to reduce prices in Germany and in West
Texas (Ketterer, 2014; Woo et al., 2011). In general, wind has declining marginal benefits
because of the convexity of the electricity supply curve from traditional generators, which
serve as strategic substitutes for wind energy. We model this effect by assuming that utility
obtained from consuming wind energy is concave. Our model mirrors the basic empirical
result; when more wind is produced, in a single period or on average, lower prices result.
While existing research focuses on the price impacts of additional wind penetration, the
stylized model described herein allows us to extend the results by focusing specifically on
the impacts of heterogeneity on welfare.

Finally, the third impact of higher wind heterogeneity is its effect on the ability of wind
generators to strategically withhold their energy production, when these generators have
market power but some uncertainty regarding their competitors’ production constraints.8 To
our knowledge, this chapter represents the first time that this effect of resource heterogeneity
has been proposed and analyzed.

5There are a range of additional costs for managing and controlling grid systems with a high level of
variable renewable energy resources (Camacho et al., 2011). Additional research focuses on reducing the
costs of wind integration, for instance by improving models for unit commitment in the face of supply and
demand uncertainty (Papavasiliou and Oren, 2013; Cerisola et al., 2009; Khazaei et al., 2017).

6Prices in sequential markets are also impacted by market power, which helps explain why prices in
sequential markets sometimes diverge (Ito and Reguant, 2016).

7Other research focuses on how complementary technologies impact wind integration by studying the
effects of energy storage on wind energy commitments (Kim and Powell, 2011) and transmission planning
(Qi et al., 2015) in markets with wind.

8The simplest way that wind producers could withhold their energy production is by changing the blade
angle of wind turbines to decrease their energy production below the maximum available energy. This is
the context we consider in this paper, and we refer to this as ‘curtailment’ of wind energy. It implies that
available energy is essentially wasted in an effort to increase market prices. The introduction of energy
storage devices, coupled with wind farms, could allow operators to withhold energy output in a particular
time period by charging a co-located battery; this energy could be sold to the grid in a future period. Thus,
the growth of large-scale energy storage on the electricity grid could increase opportunities for short-term
withholding of energy production.
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This chapter uses a Cournot model to analyze the effects of dispersion on bidding
behavior and welfare in a market with stochastic energy availability and private information.
The Cournot assumption provides a simple model of imperfect competition, which is an
important feature of markets with renewable generation: as firms operate more wind and
solar generation, it will become increasingly difficult to prevent the exercise of market power,
due to the uncertainty in underlying resource availability. The Cournot model is a useful
simplification of the electricity market. In practice, firms submit a supply function that
specifies how much energy they are willing to offer at any given price.9

We model strategic firms participating in a Cournot-Nash game with incomplete infor-
mation, which is a specific form of a Bayesian game.10,11 There is a substantial economics
literature on Cournot-Nash games. Szidarovszky and Yakowitz (1977) and Gaudet and
Salant (1991) provide useful constructive results on the existence and uniqueness of equi-
libria in Cournot-Nash games with complete information. Novshek (1985) proves that a
Cournot equilibrium exists whenever the marginal revenue for any particular firm declines
in the total output of the other firms.

Regarding Cournot-Nash games with incomplete information, Einy et al. (2010) survey
the literature and explain the conditions for equilibria existence and uniqueness. Nearly
all of this literature treat firms’ objective functions as stochastic; we focus on the case
where production constraints are stochastic. Richter (2013) also study the topic of Cournot
games with stochastic production constraints and incomplete information, but they focus on
firms that are stochastically independent. Stochastic dependence of the firms’ production
constraints has major impacts on the results, including the value of information sharing.
Our research does not focus on conditions for existence; reasonable assumptions for the
electricity sector (including the possibility of negative prices) generally lead to the existence
of equilibria. Instead, we focus on developing new results to link the extent of stochastic
dependence to strategic behavior and welfare in the equilibria.

Another rich research area discusses information sharing in Bayesian games; this re-

9The Cournot setup is considered a good approximation to real-world electricity markets (Hogan, 1997;
Oren, 1997; Borenstein et al., 1999; Willems et al., 2009). There are other ways to model producer offers
in electricity markets, including supply function offers (Anderson and Philpott, 2002; Holmberg, 2007).
Wolfram (1998) and Hortacsu and Puller (2008) offer empirical analyses of strategic bidding in multi-unit
electricity auctions. Willems et al. (2009) and Ventosa et al. (2005) discuss the comparative benefits of
Cournot models versus the full supply function model.

10See Fudenberg and Tirole (1991), chapter 6, for excellent overview of games with incomplete information.
11This framework implies that players have full knowledge of the joint distribution governing players’

uncertain parameters. This assumption is contested in some models, but it is a fairly natural assumption to
make in the electricity sector, where resource availability is largely based on weather, with publicly available
weather information and public data on past production.
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search is particularly applicable to our Section 2.7. Clarke (1983) studies information sharing
in a Cournot game and concludes that firms only have an incentive to share information if
they can cooperate on a strategy once information is shared. Vives (1984) discusses in-
formation sharing in Cournot and Bertrand games, where players receive imperfect (and
correlated) signals about the intercept of the demand function. Sakai (1985), Gal-Or (1986),
and Shapiro (1986) study information sharing in the case of private cost functions. Unlike
the previous literature, we do not assume that the demand function is linear. In these papers,
information sharing between firms does not impact average production and average price;
in our model, information sharing does impact average production and average price. Einy
et al. (2003) study the value of public information in a Cournot duopoly, with more general
forms of demand and cost uncertainty. Unlike the aforementioned research, our model has
stochastic production constraints. This could be equivalently modeled as a stochastic cost
function with infinite costs for quantities above the constraint, but the existing research
focuses on affine cost functions, so existing results can not be directly extended to analyze
our model. Richter (2013) considers the case of information sharing with stochastic and
independent production constraints. Our results are conceptually similar, but in a model
where production constraints are not necessarily independent.

The main idea of our research is to formalize game-theoretic equilibria where produc-
ers have stochastic and dependent production constraints, in order to examine the effects
of correlation in resource availability on the resulting equilibria. We consider the case of
multiple wind producers offering their energy into markets, when their maximum avail-
ability is stochastic and correlated amongst producers. Existing research studies energy
market equilibria in other ways. For instance, Hobbs and Pang (2007) examine the effects
of joint constraints and non-smooth demand functions. Downward et al. (2010) and Yao
et al. (2008) study Cournot equilibria in markets with transmission constraints. de Arce
et al. (2016) study the effects of Cournot competition on the efficacy of renewable energy
incentives. Schneider and Roozbehani (2017a) study strategy and competition in two-stage
day-ahead and real-time electricity markets. Gilotte and Finon (2006) and Pineau et al.
(2011) study investment in energy markets with Cournot competition. Most similar to our
work, Fabra and Llobet (aper) model competition among firms with stochastic production
constraints. In their model, firms submit a price, quantity pair; demand is price-inelastic.
Our firms compete only with quantities, and we focus on the comparative statics of firm het-
erogeneity. Compared to the aforementioned literature, we abstract many important notions
of real-world electricity systems in order to clearly focus on our question of interest, which
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is not addressed in the existing literature: how does heterogeneity in stochastic renewable
energy availability impact market power and social welfare?

Section 2.2 introduces the benchmark duopoly model, and Section 2.3 describes the
features of the Cournot equilibrium. Section 2.4 describes the impacts of wind heterogene-
ity on the diversification of wind energy and on strategic curtailment by wind producers.
These impacts drive many of the main results presented herein. Sections 2.5 and 2.6 de-
scribe the effects of heterogeneity on social welfare, price, and profits in the duopoly model.
Section 2.7 describes how the level of heterogeneity impacts the likelihood that firms will
choose to publicly share information, and shows that public information sharing is always
socially beneficial. Section 2.8 examines the effect of heterogeneity on collusion and on the
cost of efforts to prevent collusion. Sections 2.9 and 2.10 extend the results to the case
of an oligopoly market with multiple wind generators and with both wind and traditional
generators, respectively.

2.2 Benchmark Model

Consider two wind energy producers engaged in imperfect competition, operating two locally
separate wind farms to generate energy. For each producer 𝑖, the maximum available wind
energy, 𝑤𝑖, is stochastic and might be either 𝐻 (high) or 𝐿 (low), with 𝐻 > 𝐿 and with
probability Pr{𝑤𝑖 = 𝐻} = 𝛽 = 1 − Pr{𝑤𝑖 = 𝐿} > 0, 𝑖 ∈ {1, 2}. When 𝑤𝑖 = 𝐻 (𝑤𝑖 = 𝐿),
we say that producer 𝑖 is in the high (low) state. Let 𝑑 ∈ [0, 1] be the dispersion between
the two wind producers, where the maximum dispersion is normalized to 1. The parameter
𝑑 captures the extent of heterogeneity in terms of wind energy availability for these wind
producers. When 𝑑 is small, wind energy availability is highly correlated amongst wind
producers. When one wind producer in the high state, the other wind producer is likely
to be in the high state as well (similarly for the low state). However, when 𝑑 is high
these locations become highly heterogeneous in terms of wind availability, so that extent of
wind energy available to one producer does not reveal much information about the other
wind producer’s availability. In the case of high heterogeneity, the extent of wind energy
availability is nearly or (when 𝑑 = 1) fully independent across wind producers.

This section models the joint probability distribution of the available wind energy in
a simple parameterized form. Precisely, for 𝑖, 𝑗 ∈ {1, 2}, the conditional probability of high
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wind availability is given by (2.1).

Pr{𝑤𝑖 = 𝐻|𝑤𝑗 = 𝐻} =
𝛽

𝛽 + 𝑑(1− 𝛽)

Pr{𝑤𝑖 = 𝐻|𝑤𝑗 = 𝐿} =
𝑑𝛽

𝛽 + 𝑑(1− 𝛽)

(2.1)

When the wind producers are “far” from each other, 𝑑 = 1, we are in the limiting
case of independent production; Pr{𝑤𝑖 = 𝐻|𝑤𝑗 = 𝐻} = Pr{𝑤𝑖 = 𝐻} = 𝛽 and Pr{𝑤𝑖 =

𝐻|𝑤𝑗 = 𝐿} = 𝛽. On the other hand, when they are locally “close”, 𝑑 = 0, we are in the
full information case and Pr{𝑤𝑖 = 𝐻|𝑤𝑗 = 𝐻} = 1.12 Section 2.9 extends the results for
arbitrary joint probability distributions for wind availability from multiple producers.
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Figure 2-2: The conditional probability distributions from (2.1) for 𝑑 ∈ (0, 1), for different
values of the prior 𝛽. For each graph, the solid line represents Pr{𝐻|𝐻} and the dashed line
represents Pr{𝐻|𝐿}.

Note that the extent of the difference between the high and low states corresponds to
the extent of the variance in wind availability for each individual producer. For instance,
if we fix the value of 𝐻 (e.g. as the capacity value of the wind producer), then variance of
wind energy availability Var(𝑤𝑖) is monotonically decreasing in 𝐿.

Let 𝑞𝑖 denote the amount of wind energy generated by producer 𝑖 ∈ {1, 2}. We assume
the inverse demand 𝑃 : R → R as a function of total supply 𝑄 = 𝑞1 + 𝑞2 is concave and
downward sloping, i.e., 𝑃 ′(𝑄) < 0, 𝑃 ′′(𝑄) ≤ 0 for all 𝑄. The marginal cost of production
via wind energy is negligible. Our model simplifies the electricity market model by focusing
on a single real-time market with inverse demand 𝑃 (𝑄).13 We ignore the impacts of short-
and long-term forward markets, e.g. day-ahead markets and capacity markets. While these

12In this context, we can think of 𝛽 as a forecast of the energy availability for each firm, using public
information or information with negligible cost. When a firm realizes its own (private) energy availability,
this new information changes its forecast of the energy available to its competitors, as shown in (2.1).

13𝑃 (𝑄) can be thought of directly as inverse demand, or as the net inverse demand arising from price-
inelastic demand and a competitive fringe.
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markets are undoubtedly important, we focus on the real-time spot market because planned
real-time bidding behavior ultimately informs strategy in forward markets.14

The producers compete in Cournot fashion. According to its private information

about its maximum available wind, 𝑤𝑖 ∈ {𝐻,𝐿}, producer 𝑖 chooses 𝑞𝑖(𝑤𝑖) maximizing the
expected value of its profit 𝜋𝑖, conditional on its realization of 𝑤𝑖:

E𝑤𝑗
[𝜋𝑖|𝑤𝑖] = E [𝑞𝑖 𝑃 (𝑞𝑖(𝑤𝑖) + 𝑞𝑗(𝑤𝑗)) |𝑤𝑖] ,

s.t. 𝑞𝑖(𝑤𝑖) ∈ [0, 𝑤𝑖]
(2.2)

2.3 Equilibrium

To focus on the case where wind producers produce at full capacity in the low state (i.e.
no curtailment when 𝑤𝑖 = 𝐿), and to avoid equilibria where wind producers produce at full
capacity in both states we adopt the following assumption:

Assumption 1. Let 𝑃 (·) be the inverse demand. Then 𝑃 (2𝐿) + 𝐿𝑃 ′(2𝐿) > 0 and 𝑃 (𝐻) +

𝐻𝑃 ′(𝐻) < 0.

This assumption allows us to focus on equilibria where producers exercise strategic
withholding in one state but not in the other. This represents the case of interest where the
stochastic nature of the wind resource has important impacts on the equilibrium strategy.
Under the above assumption the equilibrium is characterized as follows.

Proposition 1. Let 𝑃 ′ < 0, 𝑃 ′′ ≤ 0. Then, there exists a unique symmetric Bayesian Nash
Equilibrium (BNE) such that

𝑞𝑖(𝑤𝑖) = 𝑞(𝑤𝑖) = min{𝑤𝑖, 𝜑} 𝑤𝑖 ∈ {𝐿,𝐻}, 𝑖 ∈ 1, 2 (2.3)

where 𝜑 > 𝐿 is the unique root of the following equation

Pr{𝐿|𝐻}
[︀
𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝜑 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)

]︀
= 0. (2.4)

The proposition establishes the symmetric Bayesian Nash Equilibrium (BNE) for the
benchmark model.15 In this equilibrium, firms produce 𝐿 in the low state and 𝜑 < 𝐻 when

14While we refer to 𝑤𝑖 as the wind energy availability for firm 𝑖, readers can also think of 𝑤𝑖 as the realized
error, the difference between energy availability in real-time and the day-ahead offer or prior forecast.

15Instead of 𝑃 ′′ ≤ 0, weaker assumptions of the form 𝑃 ′(𝑄) + 𝑄𝑃 ′′(𝑄) ≤ 0, 𝑄 ∈ [2𝐿, 2𝐻] would also be
sufficient to guarantee the existence of the equilibrium; see Gaudet and Salant (1991). They would also be
sufficient for Lemma 1 and the subsequent results in the main body of the chapter. We use the concavity
assumption for simplicity in this chapter.
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they are in the high state. The proof for this proposition is provided in the chapter appendix,
Section 2.12; throughout the chapter, all omitted proofs are in Section 2.12. The intuition
is that in the symmetric equilibria producers curtail based on the expected value of the
first order condition, given the uncertain state of their competitor and their competitor’s
equivalent strategy.

Example (Linear inverse demand): To clarify understanding regarding Assumption
1, consider the case of linear inverse demand, i.e. 𝑃 (𝑄) = 𝑠−𝑄, where 𝑄 denotes the sum of
the firms’ production 𝑄 = 𝑞1 + 𝑞2. Suppose there is no capacity constraint; then there exists
a unique symmetric equilibrium 𝑞𝐶 (the Cournot level) in which the optimal production is

𝑞1 = 𝑞2 = 𝑞𝐶 ≡
𝑠

3
< 𝑞𝑀 ≡

𝑠

2
, (2.5)

where 𝑞𝑀 is the corresponding Monopoly level.16 Thus, with linear inverse demand, As-
sumption 1 simply says that 𝐿 is lower than the Cournot level and 𝐻 is higher than the
monopoly level, i.e.

𝐿 < 𝑞𝐶 < 𝑞𝑀 < 𝐻. (2.6)

If the first part of Assumption 1 is violated, wind producers always produce at the Cournot
level 𝑞𝐶 ; the stochastic nature of the wind resource has no impact on the equilibrium strat-
egy. If the second part of the assumption is violated, then wind producers would curtail
in any situation, even absent a competitor. Moreover, with linear inverse demand, under
Assumption 1, the equilibrium can be explicitly characterized as follows.

Corollary 1. Let the inverse demand be linear, i.e. 𝑃 (𝑞1 + 𝑞2) = 𝑠 − 𝑞1 − 𝑞2. Then, there
exists a unique symmetric pure-strategy Bayesian Nash equilibrium such that

𝑞𝑖(𝑤𝑖) = 𝑞(𝑤𝑖) = min {𝑤𝑖, 𝜑} , 𝑤𝑖 ∈ {𝐿,𝐻}, 𝑖 = 1, 2, (2.7)

where 𝜑 ≡ 𝑠𝛽+(𝑠−𝐿)(1−𝛽)𝑑
3𝛽+2(1−𝛽)𝑑

.

The subsequent sections introduce key effects that drive the impacts of 𝑑 on the equilibrium
and its resulting impacts on welfare, price, and profits.

16Note that 𝑞𝐶 is the optimal strategy when 𝜋𝑖 = 𝑞𝑖(𝑠− 𝑞1− 𝑞2) and 𝑞𝑀 is the optimal monopoly quantity
maximizing 𝜋 = 𝑞(𝑠− 𝑞).

32



2.4 Strategic Curtailment and Diversification

This section explains useful Lemmas to help illustrate the two major impacts of dispersion
𝑑 in the strategic setting. Recall that 𝜑 = 𝑞(𝐻) is the production when a firm is in the
high state. When a firm is in the low state it produces 𝐿. Unless otherwise specified,
all of the following results hold for concave and downward inverse demand functions (i.e.
𝑃 ′ < 0, 𝑃 ′′ ≤ 0) satisfying Assumption 1.

Lemma 1. As 𝑑 increases, production in the high state increases, i.e. 𝜕𝜑
𝜕𝑑

> 0.

The intuition derives from the fact that the outputs of the wind producers are strategic
substitutes because 𝑃 ′ < 0, 𝑃 ′′ ≤ 0. Therefore, the best reply for firm 𝑖 is decreasing in firm
𝑗’s production, and firm 𝑖’s best response is a decreasing function of E[𝑞𝑗|𝑤𝑖 = 𝐻]. When
𝑑 increases, the possibility that the wind producers are in different states increases. Thus,
the probability that firm 𝑗 is in the low state increases, given that firm 𝑖 is in the high state,
and E[𝑞𝑗|𝑤𝑖 = 𝐻] decreases, increasing 𝜑 which is firm 𝑖’s optimal production when it is in
the high state.

Lemma 2. As 𝑑 increases, the expected value of total production increases: 𝜕E𝑤1,𝑤2 (𝑄)

𝜕𝑑
> 0.

The a priori expected value of firm 𝑖’s production is E𝑤1,𝑤2(𝑞1) = 𝛽𝜑 + (1− 𝛽)𝐿, and
the expected value of total production is just the sum of each firm’s expected production:
E𝑤1,𝑤2(𝑄) = E𝑤1,𝑤2(𝑞1) + E𝑤1,𝑤2(𝑞2) = 2𝛽𝜑 + 2(1− 𝛽)𝐿. Only 𝜑 on the right-hand side is a
function of 𝑑; the parameter 𝑑 has no effect on the prior probability 𝛽 of being in the high
state. Then 𝜕

𝜕𝜑
E𝑤1,𝑤2(𝑄) = 2𝛽 𝜕𝜑

𝜕𝑑
, with 𝛽 > 0, 𝜕𝜑

𝜕𝑑
> 0 (from Lemma 1), which concludes the

proof.

Introducing Strategic Curtailment (SC) and Wind Diversification (WD). These
two features describe the effects of 𝑑 on, respectively, high state output 𝜑 and on the joint
probability distribution of the resource availability amongst all producers. The main effects
of 𝑑, for instance on welfare, are driven by its impacts on strategic curtailment and wind
diversification.

∙ Strategic Curtailment (SC): When 𝑑 increases it impacts the information available
to the wind producers as strategic decision makers. As a result, as 𝑑 grows, the pro-
duction of firm 𝑖 when they are in the high state increases (Lemma 1). Equivalently,
this increases the expected value of production (Lemma 2), and decreases the level of
strategic curtailment, the difference between the expected value of availability and
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the expected value of production, i.e. E[𝑤𝑖−𝑞𝑖]. Thus when 𝑑 grows the level of strate-
gic curtailment decreases because increasing 𝑑 reduces firm’s strategic withholding
of available production in the high state.

∙ Wind Diversification (WD): When 𝑑 grows the probability of being in different
states increases. Consequently, with increasing 𝑑 firms produce different quantities with
a higher probability, improving diversification of the total portfolio of wind producer
assets and reducing the variance of the total availability of wind energy Var(𝑤1 +

𝑤2). When utility is (weakly) concave, diversification of wind assets (weakly) increases
welfare.

In our results, we frequently assess the impact of diversification on various functions (e.g. the
welfare function). Here we define a measure of that impact in order to convey the chapter’s
results more succinctly. Let 𝑓 : 𝑅2 → 𝑅. The impact of diversification on 𝑓 (denoted by
𝑊𝐷𝑓 ) is given by the following expression,

𝑊𝐷𝑓 ≡ 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥)− 𝑓(𝑥, 𝑥)− 𝑓(𝑦, 𝑦) (2.8)

where 𝑦 > 𝑥 > 0. If 𝑓 is linear, i.e. ∃ 𝑎, 𝑏, 𝑐 ∈ 𝑅 such that 𝑓(𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 + 𝑐,
then 𝑊𝐷𝑓 = 0. Furthermore, if 𝑓 is a concave function of the sum of its arguments, i.e. if
𝑓(𝑥, 𝑦) = 𝑔(𝑥+𝑦) for some 𝑔 : 𝑅→ 𝑅 where 𝑔′′ < 0 then 𝑊𝐷𝑓 = 2𝑔(𝑥+𝑦)−𝑔(2𝑥)−𝑔(2𝑦) > 0.

Many of the results presented here are due to the interplay between the effects of
𝑑 on strategic curtailment and diversification as introduced above. In general, increasing
𝑑 improves social welfare through its effects on both diversification and strategic curtail-
ment. However, because increasing 𝑑 decreases strategic curtailment, it can sometimes re-
duce profits for wind producers. This suggests that the level of heterogeneity sought by
profit-maximizing investors can be lower than the welfare-maximizing level.

2.5 Social welfare vs. Dispersion

Since the marginal cost of energy production from wind is negligible, welfare (i.e. firms’
surplus plus consumers’ surplus) is equivalent to the consumers’ net utility of consumption.
Let 𝑈(𝑄) be the consumer utility, where 𝑈(0) = 0 and ∀𝑄, 𝑈 ′(𝑄) > 0, 𝑈 ′′(𝑄) ≤ 0. Note that
𝑈 ′(𝑄) defines the inverse demand 𝑃 (𝑄). The consumer surplus is given by 𝐶𝑆 = 𝑈(𝑄)−𝑄𝑝,
and welfare is 𝑊 = 𝜋1 + 𝜋2 + 𝐶𝑆 = 𝑈(𝑄).

Proposition 2. The expected value of welfare increases in dispersion 𝑑.
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The expected value of welfare is given by E𝑤1,𝑤2 [𝑊 ] = E𝑤1,𝑤2 [𝑈(𝑞1 + 𝑞2)]. By the
product rule of differentiation, the total impact of 𝑑 on welfare is exactly the sum of its
impacts on E[𝑊 ] through strategic curtailment and wind diversification. Increasing 𝑑 in-
creases the expected value of welfare because it decreases strategic curtailment and increases
diversification, which both increase 𝑈 .

Increasing 𝑑 reduces strategic curtailment: it increases 𝜑, as shown in Lemma 1. This
increases 𝑞𝑖 whenever 𝑤𝑖 = 𝐻, which also increases 𝑈(𝑄) because 𝑈 ′ > 0. Increasing 𝑑 also
increases wind diversification: it increases the probability that wind producers are in different
states. This increases the probability that 𝑄 takes on its middle value, and decreases the
probability that it takes on an extreme value. Since 𝑈 is concave, the impact of diversification
on 𝑈 is weakly positive, i.e. 𝑊𝐷𝑈 ≥ 0, as shown above. Figure 1 illustrates these effects.
This intuition becomes clear with the following proof.

Proof. Since 𝑊 = 𝑈(𝑞1 + 𝑞2), the expected value of social welfare is given by:

E𝑤1,𝑤2 [𝑊 ] = Pr{𝐿,𝐻}𝑈(𝐿 + 𝜑) + Pr{𝐿,𝐿}𝑈(2𝐿) + Pr{𝐻,𝐻}𝑈(2𝜑) + Pr{𝐿,𝐻}𝑈(𝐿 + 𝜑).

(2.9)

In addition, define 𝜕 Pr{𝐿,𝐻}
𝜕𝑑

≡ 𝜁. By taking the derivatives of the probability values
with respect to 𝑑, we have that −𝜕 Pr{𝐿,𝐿}

𝜕𝑑
= −𝜕 Pr{𝐻,𝐻}

𝜕𝑑
= 𝜕 Pr{𝐿,𝐻}

𝜕𝑑
≡ 𝜁 > 0 (the calculation

is provided in Section 2.12, equation (2.38)). That is, when 𝑑 increases the probably of being
in different states increases. So,

𝜕

𝜕𝑑
E𝑤1,𝑤2 [𝑊 ] = 𝜁⏟ ⏞ 

>0

(2𝑈(𝐿 + 𝜑)− 𝑈(2𝐿)− 𝑈(2𝜑))⏟  ⏞  
=𝑊𝐷𝑈≥0, by concavity of 𝑈⏟  ⏞  
wind diversification

+ 2
𝜕𝜑

𝜕𝑑⏟ ⏞ 
>0, reduction of

strategic curtailment

⎛⎝Pr{𝐿,𝐻}𝑃 (𝐿 + 𝜑) + Pr{𝐻,𝐻}𝑃 (2𝜑)⏟  ⏞  
>0

⎞⎠ .

(2.10)

Concavity of 𝑈 implies that 𝑊𝐷𝑈 = 2𝑈(𝐿+𝜑)−𝑈(2𝐿)−𝑈(2𝜑) ≥ 0. Thus, wind diversifica-
tion has a (weakly) positive impact on welfare. In addition, by increasing 𝑑, the production
in the high state increases; 𝜕𝜑

𝜕𝑑
> 0 by Lemma 1. Therefore, the reduction of strategic curtail-

ment (due to increasing 𝑑) has a positive impact on welfare. Overall, increasing dispersion
increases the expected value of social welfare. Figure 2-3 shows these effects.
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Figure 2-3: Wind diversification increases 𝑈 and information effects decrease strategic cur-
tailment which also increases 𝑈 .

2.6 Price and Profit vs. Dispersion

How does extent of heterogeneity/dispersion affect average price and profit? We show the
effect in general is ambiguous, i.e. profit is not necessarily a weakly increasing function of
𝑑 nor a weakly decreasing function of 𝑑, regardless of the system conditions and exogenous
parameters. This occurs because the impacts of diversification and of changing levels of
strategic curtailment on average price and profit are not aligned. To understand this, we
analyze how average price responds to changes in dispersion. Figure 2.6 shows these effects.

Proposition 3. The general impact of dispersion 𝑑 on the expected value of price is ambiguous.
In the case of linear inverse demand, increasing 𝑑 decreases the expected value of the price.

Proof. Let 𝑃 ′′ < 0. Since

E𝑤1,𝑤2 [𝑃 (𝑞1(𝑤1)+𝑞2(𝑤2))] = 2 Pr{𝐿,𝐻}𝑃 (𝐿+𝜑)+Pr{𝐿,𝐿}𝑃 (2𝐿)+Pr{𝐻,𝐻}𝑃 (2𝜑), (2.11)

thus

𝜕

𝜕𝑑
E𝑤1,𝑤2 [𝑃 ] = 𝜁⏟ ⏞ 

>0

(2𝑃 (𝐿 + 𝜑)− 𝑃 (2𝐿)− 𝑃 (2𝜑))⏟  ⏞  
𝑊𝐷𝑃>0, by strict concavity of 𝑃⏟  ⏞  

wind diversification

+ 2
𝜕𝜑

𝜕𝑑⏟ ⏞ 
>0, reduction of

strategic curtailment

⎛⎝Pr{𝐿,𝐻}𝑃 ′(𝐿 + 𝜑) + Pr{𝐻,𝐻}𝑃 ′(2𝜑)⏟  ⏞  
<0, 𝑃 is downward

⎞⎠ .

(2.12)
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Figure 2-4: Interplay between the effects of wind diversification and strategic curtailment on
average price. Wind diversification increases the average price when 𝑃 ′′ < 0 and is inactive
when 𝑃 ′′ = 0. The impacts of increasing 𝑑 on strategic curtailment always decrease the
average price.

Higher dispersion reduces strategic curtailment, which decreases the average price because
inverse demand is downward, i.e. 𝑃 ′ < 0. However, diversification increases the average
price because of concavity in inverse demand, i.e. 𝑊𝐷𝑃 = 2𝑃 (𝐿+ 𝜑)−𝑃 (2𝐿)−𝑃 (2𝜑) > 0.
The net effect is ambiguous.

Note that when inverse demand is linear, i.e. 𝑃 ′′ = 0, then 𝑊𝐷𝑃 = 2𝑃 (𝐿 + 𝜑) −
𝑃 (2𝐿) − 𝑃 (2𝜑) = 0. Thus, the effect of diversification is completely inactive. As a result,
because of the impacts of 𝑑 on strategic curtailment, the expected value of the market price
decreases in 𝑑 in the case of a linear inverse demand.

Like the average price, the impact of increasing dispersion on profit is in general
ambiguous. When 𝑑 increases, it increases 𝜑. This decreases profit under the outcome
where 𝑤1 = 𝑤2 = 𝐻 because 2𝜑 is greater than the monopoly output. However, increas-
ing 𝑑 increases the probability that the two producers have different resource availability,
Pr{𝑤1 ̸= 𝑤2}, which increases the expected value of profit because diversification has a pos-
itive effect on profit. We can again characterize the effect of 𝑑 on profit completely through
its effects on strategic curtailment and diversification. The overall impact of dispersion on
profit is ambiguous, as shown in the following Example.

Example 1. Let 𝑃 ′ < 0, 𝑃 ′′ < 0. As 𝑑 increases, the expected value of producer profit
increases due to diversification and decreases due to reduced strategic curtailment. Thus, in
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general, the impact of heterogeneity on profit is ambiguous.
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Figure 2-5: Wind diversification (heterogeneity) increases profit if 𝐿 is sufficiently small, and
it decreases profit if 𝐿 is sufficiently large. The y-axis is the derivative of profit with respect
to 𝑑, evaluated over the range of 𝑑 ∈ (0, 1] (x-axis). Plot parameters: 𝑠 = 3, 𝛽 = 1

2
, for the

dashed line 𝐿 = 0.6 and for the solid line 𝐿 = 0.8.

In general, increasing dispersion 𝑑 can increase or decrease the expected value of profit.
However, in the case of linear inverse demand, we can obtain sharp insights based on the
absolute value of the low state energy availability 𝐿. This is because the extent of 𝐿 affects
the strength of diversification and changing strategic curtailment levels on profit in opposite
directions. As such, for sufficiently high 𝐿, increasing heterogeneity 𝑑 reduces profits. See
Figure 2-5. The following Proposition summarizes:

Proposition 4. Let 𝑃 (𝑞1 + 𝑞2) = 𝑠− 𝑞1− 𝑞2, then there exists two thresholds 𝐿1 and 𝐿2, with
𝐿1 = 2𝑠

9
< 𝐿2 = 2𝑠

8
, such that

(i) When 𝐿 < 𝐿1 the impact of diversification dominates the strategic curtailment effects,
thus 𝜕

𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] > 0. Consequently, it is beneficial for firms to place their wind farms

far from each other, i.e.

arg max
𝑑∈[0,1]

E𝑤1,𝑤2 [𝜋𝑖] = 1. (2.13)

(ii) When 𝐿 > 𝐿2, strategic curtailment dominates diversification, thus 𝜕
𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] < 0.

Consequently, it is beneficial for firms to place their plants close to each other, i.e.

arg max
𝑑∈[0,1]

E𝑤1,𝑤2 [𝜋𝑖] = 0. (2.14)
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When 𝐿 is sufficiently high, Proposition 4 shows that the expected value of profit for
each producer is decreasing in 𝑑. In this case, investors prefer lower 𝑑 even though higher
𝑑 improves overall welfare, as shown in Proposition 2. This suggests that profit and welfare
motives may sometimes be misaligned, since dispersion uniformly improves social welfare
but may not improve profit. For example, a regulator may propose policies to increase 𝑑 by
encouraging investment far from existing sites, but firms might find more value in investing
close to existing sites.

The next two Sections study how dispersion impacts information sharing and collusion
in the duopoly model of wind competition. Section 2.9 extends the original model to the
case of multiple wind generators. Section 2.10 extends the original model to an economy
where two wind generators compete with traditional generation.

2.7 Public Forecasting: Who Benefits?

This section focuses on the benefits of public sharing of information under the assump-
tion that wind producers do not collude. It investigates the benefits of publicly providing
high-quality short-term weather forecasts or real-time wind speeds for all wind-generating
locations. It suggests that public forecasting always improves welfare, but it does not always
benefit producers. This suggests that producers will not provide public forecasting, but that
policy makers should consider funding forecasting efforts to improve the quality of public
information.

The results in this section show that information sharing always improves social welfare.
However, we also show that when 𝐿 is sufficiently large (as a function of dispersion 𝑑), wind
producers do not choose to share information. The limit on 𝐿 is increasing as a function
of dispersion 𝑑. The results suggest that policies to implement public weather forecasting
can improve welfare, because profit-maximizing producers will not always share weather
information even though doing so always improves social welfare.

In order to understand the effects of information sharing on social welfare and producer
profit, we compare the baseline model (see Section 2.2), where wind availability is private
information, to the case where wind energy producers ex-ante commit17 to share their
private information about their available energy, given that the extent of wind producer
heterogeneity is 𝑑 ∈ (0, 1]. We assume inverse demand is linear, i.e. 𝑃 (𝑞1, 𝑞2) = 1− 𝑞1 − 𝑞2.

17We assume wind producers are committed and there is no room for adverse selection. For instance, there
could be automatic equipment for weather monitoring that shares information publicly.
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Under this assumption, the net welfare obtained by consuming 𝑄 = 𝑞1 + 𝑞2 units of energy
is 𝑈(𝑄) =

∫︀ 𝑄

0
𝑃 (𝑞)𝑑𝑞 =

∫︀ 𝑄

0
(1− 𝑞)𝑑𝑞 = 𝑄− 1

2
𝑄2.

Is sharing information between wind producers socially beneficial? Information
sharing has both positive and negative effects on welfare. It helps prevent producers in the
high state from inefficiently withholding their output when the other producer is in the low
state, but it also introduces additional costs to welfare due to the reduction in welfare when
producers producer at the Cournot output when they are both in the high state. In general,
however, these impacts are in favor of the benefits of sharing information, as the following
proposition summarizes.

Proposition 5. Sharing information between wind producers is socially ex-ante beneficial.

Throughout this section, we let 𝐾 denote the equilibrium outcomes when wind pro-
ducer share private information (or that information is made public), and we let 𝐾𝑐 denote
equilibrium outcomes when producers compete without sharing information, as in Section
2.3.

To understand this result, consider the following. Let 𝑊 = 𝜋1 + 𝜋2 + 𝐶𝑆 = 𝑈(𝑄)

denote welfare. Then, consider the expected value of the welfare benefits of information
sharing, as follows

E𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] = Pr{𝐿,𝐻}𝑊𝐿,𝐻(𝐾,𝐾𝑐) + Pr{𝐻,𝐿}𝑊𝐻,𝐿(𝐾,𝐾𝑐)

+ Pr{𝐿,𝐿}𝑊𝐿,𝐿(𝐾,𝐾𝑐) + Pr{𝐻,𝐻}𝑊𝐻,𝐻(𝐾,𝐾𝑐)
(2.15)

where the benefit to social welfare of sharing information between wind producers at state
{𝑤1, 𝑤2} ∈ {𝐻,𝐿}2 is

𝑊𝑤1,𝑤2(𝐾,𝐾𝑐) ≡ 𝑊𝐾
𝑤1,𝑤2

−𝑊𝐾𝑐

𝑤1,𝑤2
= 𝑄𝐾

𝑤1,𝑤2
− 1

2

(︀
𝑄𝐾

𝑤1,𝑤2

)︀2 − (︂𝑄𝐾𝑐

𝑤1,𝑤2
− 1

2

(︀
𝑄𝐾𝑐

𝑤1,𝑤2

)︀2)︂
,

(2.16)

where 𝑄𝐾
𝑤1,𝑤2

− 1
2

(︀
𝑄𝐾

𝑤1,𝑤2

)︀2 is the social welfare at state {𝑤1, 𝑤2} when wind producers share
their private information. Similarly, 𝑄𝐾𝑐

𝑤1,𝑤2
− 1

2

(︀
𝑄𝐾𝑐

𝑤1,𝑤2

)︀2 denotes the social welfare when
wind producers compete without sharing information.

Equation (2.16) highlights the fact that information sharing has mixed effects on social
welfare in different states. In particular, it increases total output quantity (and welfare) when
only one producer is in the high state, but it decreases output quantity and social welfare
when both producers are in the high state. However, since total production is relatively lower
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(and therefore 𝑈 ′(𝑄)) is relatively higher, when the producers are in opposite states, the net
expected value of information sharing is in favor of the benefits gained when producers are
in opposite states.

As 𝑑 increases, the benefits in the {𝐻,𝐿} and {𝐿,𝐻} states weakens and the costs
incurred in the {𝐻,𝐻} state increase, but the probability of being in the same state also
decreases, so the proportional impact of the costs in state {𝐻,𝐻} declines. Overall, infor-
mation sharing improves social welfare for any 𝛽, 𝑑 when Assumption 1 is satisfied.

Next, we consider the benefits of information sharing for producers’ profits and show
that in general they are not always aligned with the benefits for social welfare.

Is sharing information beneficial for wind producers? While sharing information
always improves social welfare, it is not always beneficial for wind producers. We show the
answer depends on the extent of wind energy at the low state, which directly affects the
variance in the aggregate output. When wind in the low state is sufficiently small, sharing
information is extremely beneficial for a generator that is in its high state. As a result,
ex-ante wind producers prefer to share information when 𝐿 is sufficiently small.

Proposition 6. There exists a threshold 𝐿*(𝑑, 𝛽) that is increasing in 𝑑 and decreasing in the
prior 𝛽 so that sharing information is ex-ante beneficial for wind energy producers if only if
𝐿 < 𝐿*(𝑑, 𝛽).

Let 𝐷(𝐾,𝐾𝑐) represent the change in profits due to information sharing. The result
aims to characterize the sign of (2.17), which represents the expected value of the benefits
of information sharing for producer profits.

E𝑤1,𝑤2 [𝐷(𝐾,𝐾𝑐)] = Pr{𝐿,𝐻}𝐷𝐿,𝐻(𝐾,𝐾𝑐) + Pr{𝐻,𝐿}𝐷𝐻,𝐿(𝐾,𝐾𝑐)

+ Pr{𝐿,𝐿}𝐷𝐿,𝐿(𝐾,𝐾𝑐) + Pr{𝐻,𝐻}𝐷𝐻,𝐻(𝐾,𝐾𝑐) (2.17)

The benefit of sharing information at state {𝑤1, 𝑤2} ∈ {𝐻,𝐿}2 is

𝐷𝑤1,𝑤2(𝐾,𝐾𝑐) = 𝜋𝐾
1𝑤1,𝑤2

+ 𝜋𝐾
2𝑤1,𝑤2

− 𝜋𝐾𝑐

1𝑤1,𝑤2
− 𝜋𝐾𝑐

2𝑤1,𝑤2
, (2.18)

where 𝜋𝐾
𝑖𝑤1,𝑤2

denotes 𝑖’s profit, 𝑖 ∈ {1, 2}, at state {𝑤1, 𝑤2} when firms share their private
information and 𝜋𝐾𝑐

𝑖𝑤1,𝑤2
denotes 𝑖’s profit when firms compete with no information sharing.

To understand the effects, first consider the benefits of information sharing in the
{𝐻,𝐻} and {𝐿,𝐿} states. In the {𝐻,𝐻} state sharing information is always beneficial
because of improved coordination. In the {𝐿,𝐿} state the benefit of sharing information is
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Figure 2-6: The information-sharing threshold 𝐿*(𝑑, 𝛽) is increasing in the dispersion 𝑑 and
decreasing in the prior 𝛽.

always zero because both firms produce at the low level regardless of information sharing.

Now, suppose wind producer (WP) 1 is in the low state and WP 2 is in the high state.
With information sharing, WP 2 achieves a best response to 𝑤1 = 𝐿 and produces more
energy compared to the case in which they do not share information. This benefits WP 2,
because they achieve a best response based on improved information, but it hurts WP 1
because the price is reduced since WP 2 increases its output quantity. These effects favor
information sharing when 𝐿 is relatively lower. Low 𝐿 improves the value of information
sharing to WP 2 (because its overall adjustment is larger). Furthermore, low 𝐿 decreases
the cost of information sharing to WP 1, because the price effect impacts a lower quantity
of production since 𝐿 is small.

Overall, considering all the cases together implies that the expected benefit of sharing
information is controlled by a threshold on the amount of wind energy in the low state.
Therefore, sharing information is ex-ante beneficial for producers when wind energy at the
low state is sufficiently small; there is a threshold 𝐿*(𝑑, 𝛽), where sharing information is ex-
ante beneficial for wind energy producers if only if 𝐿 < 𝐿*(𝑑, 𝛽). This suggests that when the
variance of wind availability for individual generators is high, wind producers tend to benefit
individually from information sharing; when the variance of their energy availability is low,
information sharing reduces profits even though it improves social welfare. Furthermore,
by increasing heterogeneity (i.e. the dispersion between the wind producers) this threshold
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increases, which incentivizes more wind energy producers to share their information. Figure
2-6 shows the impact of 𝑑 and 𝛽 on the threshold 𝐿*(𝑑, 𝛽).

2.8 Collusion, Prevention, and Dispersion

This section investigates potential collusion between wind producers and studies the effect
of increased heterogeneity on the presence of collusion. It focuses on linear inverse demand
for simplicity, and shows that collusion is always possible (incentive compatible) among
wind producers when there are no penalties for collusion. This is a straightforward result,
given our modeling assumptions.18 The section also examines the case where firms may face
random penalties for engaging in collusion, so the threat of sanctions poses a random cost
on the decision to collude. The level of dispersion 𝑑 impacts the size of the penalty required
to prevent collusion, but in a non-monotonic way.

Consider two wind producers that are willing to collude in order to increase profits.
They set up a contract to produce at the monopoly level when possible and share profits
depending on their stated availability. The true availability of wind is private information,
so a wind producer in the high state can lie about their state and produce the amount of
wind appropriate for a producer in the low state.19

Let 𝜋𝑀 be the combined monopoly profits and 𝜋𝐿 be the profits when both producers
are in the low state. Since 𝐻 > 𝑞𝑀 , the producers can jointly achieve monopoly profits
whenever at least one producer is in the high state. In the case of linear inverse demand,
where 𝑃 (𝑞1, 𝑞2) = 𝑠− 𝑞1 − 𝑞2, the optimal output for a monopoly producer is 𝑞𝑀 = 𝑠

2
.

𝜋𝑀 = 𝑃 (𝑞𝑀)𝑞𝑀 =
𝑠2

4
𝜋𝐿 = 𝑃 (𝐿,𝐿)𝐿 = (𝑠− 2𝐿)𝐿 (2.19)

There is an exogenous cost to collusion 𝛾 ≥ 0, to explain a situation where the govern-
ment tries to identify and penalize collusion. We can think of 𝛾 as being the government’s
penalty for a firm engaged in collusion, times the probability of detection. The government
might undertake various efforts to identify collusion, for instance by reviewing price trends,
measuring the difference between wind forecasts and outputs, or monitoring information

18The quantity constraints imposed by the stochastic wind availability prevent the wind producers from
deviating from the collusive output by increasing their production.

19We assume the the contract is enforceable with regards to production quantities, which are publicly
verifiable. Therefore, if the producer announces that they are in the 𝐻 (or 𝐿) state, then in any equilibrium
they will produce the agreed upon amount for a producer in that state, regardless of their true state. However,
it is not possible for a firm to verify the true state of their competitor (which is private information); out of
equilibrium, a producer could choose to lie about its production constraint.
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exchange between competing firms.

Colluding firms jointly produce at the monopoly level when at least one of them is in
the high state. If the producers are both in the high state, they each receive 𝜋𝑀

2
. If the

producers are both in the low state, they each produce 𝐿 and receive 𝜋𝐿. Additionally, the
firms set up a transfer scheme where firms that are in the high state pay 𝑡𝜋𝑀 to firms that
are in the low state.20

Collusion is possible whenever there exists a monetary transfer 𝑡𝜋𝑀 satisfying the
incentive compatibility (IC) constraint, which implies that high state producers will not lie
and pretend they are in the low state, and which satisfies the individual rationality (IR)
constraints, which implies that firms will know ex-ante that they would like to participate
regardless of their unknown state. The incentive compatibility constraint is

Pr{𝐻|𝐻}𝜋𝑀

2
+ Pr{𝐿|𝐻}(𝜋𝑀 − 𝑡𝜋𝑀) ≥ Pr{𝐻|𝐻}𝑡𝜋𝑀 + Pr{𝐿|𝐻}𝜋𝐿. (2.20)

The IC constraint says that the expected value of the profit for a colluding producer 𝑖 in the
high state is greater than the expected value of the profit they would receive if they lied and
declared that they were in the low state. The individual rationality constraints for high and
low state producers are, respectively,

Pr{𝐻|𝐻}𝜋𝑀

2
+Pr{𝐿|𝐻}(𝜋𝑀−𝑡𝜋𝑀)−𝛾 ≥ Pr{𝐻|𝐻}𝜑(𝑠−2𝜑)+Pr{𝐿|𝐻}𝜑(𝑠−𝐿−𝜑) (2.21)

Pr{𝐻|𝐿}𝑡𝜋𝑀 + Pr{𝐿|𝐿}𝜋𝐿 − 𝛾 ≥ Pr{𝐻|𝐿}𝐿(𝑠− 𝜑− 𝐿) + Pr{𝐿|𝐿}𝜋𝐿. (2.22)

As before, the conditional probability Pr{𝐻|𝐿} refers to Pr{𝑤𝑗 = 𝐻|𝑤𝑖 = 𝐿} (this is the
same for other combinations of the states 𝐻 and 𝐿). Equation (2.21) explains that a producer
in the high state would prefer to collude than to participate in the strategic equilibrium from
Section 2.3. Equation (2.22) explains that a producer in the low state would prefer to collude
than to participate in the strategic equilibrium from Section 2.3. Both of these constraints
must hold; otherwise, a firm would not participate ex-ante because they would recognize
that they would terminate the collusion agreement if they were in one state, revealing their
availability to their competitor and reducing their profit.

Proposition 7. If there is no cost to collusion, i.e. 𝛾 = 0, then there is always an available
transfer satisfying the IC and IR constraints. That is, when 𝛾 = 0, ∃𝑡 ∈ R that satisfies

20The transfer fraction 𝑡 represents the fraction of monopoly profits given to the low state firm; since
arbitrary 𝑡 ∈ R, and 𝜋𝑀 > 0, any real number is a feasible transfer; the total transfer is written as a product
of 𝑡 and 𝜋𝑀 (as opposed to a single parameter) because it simplifies the exposition.
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Figure 2-7: The impact of dispersion on various features of collusion. (a) shows the impact
of dispersion on the value of collusion to producers. (b) shows the impact of dispersion on
the costs of collusion in terms of a reduction of social welfare.

(2.20), (2.21), and (2.22). Therefore, when 𝛾 = 0, producers can always increase profits by
colluding.

The intuition is that a transfer is always possible when 𝛾 = 0 because the sum of profits
from the generators strictly improves when they collude and when one producer is in the
high state, so the benefit to producers in the high state is larger than the cost to producers
in the low state, and thus there is a feasible transfer that allows collusion to be beneficial
for producers ex-ante. Next, we examine the effect of 𝑑 on various features of collusion.
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Figure 2-8: The impact of dispersion on the level of enforcement required to prevent collusion.
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How does dispersion 𝑑 impact collusion?

In general, we find that dispersion 𝑑 does not have generalizable impacts on collusion
in our model. Dispersion does not have monotonic impacts on the value of collusion to
producers. It also does not monotonically impact the change in welfare due to collusion by
producers. Figure 2-7 summarizes these two effects.

We can also estimate the impact of 𝑑 on policies intended to prevent collusion. Let 𝛾

represent the minimum 𝛾 such that (2.20), (2.21), and (2.22) imply a contradiction. Variable
𝛾 represents the minimum expected value of a collusion penalty such that enforcement is
sufficient to prevent collusion; if 𝛾 is very high, this implies that collusion must have a high
probability of being punished and/or that the punishment must be very severe in order to
prevent collusion. We find that dispersion does not have monotonic impacts on 𝛾. Figure
2-8 displays this effect.

2.9 Multiple Wind Generators with a Generic Joint Dis-

tribution of Wind Availability

This section shows that the main results of the chapter extend to markets with multiple
wind generators. We demonstrate a parsimonious way to extend the notion of dispersion
𝑑 to markets with an arbitrary number of wind producers, and we show that high state
output and welfare are still increasing in 𝑑 due to its effects on strategic curtailment and
diversification.

Consider a market with 𝑁 + 1 wind generators, each with prior probability P(𝑤𝑖 =

𝐻) = 𝛽, separated by dispersion 𝑑. Here, 𝑑 gives a proxy for the level of correlation among
the states of different producers, where as before high 𝑑 implies that the stochastic resource
availabilities of different producers are more independent. We define the state of producer 𝑖
as 𝑠𝑖 = 1{𝑤𝑖=𝐻}. Let 𝑆−𝑖 =

∑︀
𝑗 ̸=𝑖 𝑠𝑗, the number of producers besides producer 𝑖 that are in

the high state. Let 𝑆 =
∑︀

𝑖 𝑠𝑖, the total number of producers in the high state.

Consider the random vector s𝑑 for 𝑑 ∈ (0, 1] and assume 𝛽 > 0. The probability
distribution of s𝑑 is the joint probability distribution Pr{𝑠1, 𝑠2, ..., 𝑠𝑁+1; 𝑑}. Each of 𝑠𝑖 are
random variables, as are the sums, and therefore both

Pr{𝑆 = 𝑗; 𝑑} 𝑗 ∈ {0, ..., 𝑁 + 1} (2.23)

Pr{𝑆−𝑖 = 𝑘|𝑤𝑖 = 𝐻; 𝑑} 𝑘 ∈ {0, ..., 𝑁} 𝑖 ∈ {1, ...., 𝑁 + 1} (2.24)

46



are well defined. Moving forward, we use 𝑆𝑑 and 𝑆𝑑
−𝑖 as the random variables of the sum

of states generated by distributions parameterized by dispersion 𝑑. We assume that distri-
butions are symmetric; ∀𝑖, 𝑗, the probability law for 𝑆𝑑

−𝑖 is equal to the probability law for
𝑆𝑑
−𝑗.

As before, we assume that 𝐿 is sufficiently small such that producers never curtail in
the low state, i.e. 𝑃 ((𝑁 + 1)𝐿) + 𝐿𝑃 ′((𝑁 + 1)𝐿) > 0. This is equivalent to the first part of
Assumption 1 in the duopoly case. The first order optimality condition for 𝜑 is given by

E𝑆−𝑖
[𝑃 (𝜑 + 𝑆−𝑖𝜑 + (𝑁 − 𝑆−𝑖)𝐿) + 𝜑𝑃 ′(𝜑 + 𝑆−𝑖𝜑 + (𝑁 − 𝑆−𝑖)𝐿)|𝑤𝑖 = 𝐻] = 0, (2.25)

where the expectation is evaluated using the conditional probability distribution in (2.24).
We assume there exists some 𝑣 < 𝐻 that solves (2.25) when 𝜑 = 𝑣. This corresponds to the
second part of Assumption 1 for the oligopoly case, but it is a weaker requirement. It simply
ensures that the equilibrium is of interest; otherwise, 𝑞𝑖(𝑤𝑖) = 𝑤𝑖 and players always produce
their full energy availability. Under these assumptions, there is a unique root 𝜑 that solves
(2.25), with 𝐿 < 𝜑 < 𝐻, and the unique symmetric BNE is given by 𝑞𝑖(𝑤𝑖) = min{𝑤𝑖, 𝜑}.
We adopt these assumptions for the remainder of this section, and let 𝜑 refer to the unique
root of (2.25).

Next we characterize two sufficient conditions on the effect of the parameter 𝑑 on the
joint and conditional distributions.21 These conditions allow for the extension of our results
on strategic curtailment and welfare to any arbitrary inverse demand curve with 𝑃 ′ < 0,
𝑃 ′′ ≤ 0 in a market with 𝑁 + 1 producers.

Assumption 2. For all 𝑑′ > 𝑑, for each 𝑖, conditional on 𝑤𝑖 = 𝐻, 𝑆𝑑
−𝑖 ⪰𝐹𝑂𝑆𝐷 𝑆𝑑′

−𝑖 That is, ∀𝑖,
∀𝑗 ∈ {0, ..., 𝑁}

Pr{𝑆−𝑖 > 𝑗|𝑤𝑖 = 𝐻; 𝑑} ≥ Pr{𝑆−𝑖 > 𝑗|𝑤𝑖 = 𝐻; 𝑑′}. (2.26)

Assumption 3. For all 𝑑′ > 𝑑, 𝑆𝑑′ ⪰𝑆𝑂𝑆𝐷 𝑆𝑑 That is, ∀𝑚,

𝑚∑︁
𝑗=0

(︀
Pr{𝑆 > 𝑗; 𝑑′} − Pr{𝑆 > 𝑗; 𝑑}

)︀
≥ 0. (2.27)

From the perspective of a single producer 𝑖 in the high state, Assumption 2 requires
that more competitors are likely to be in the high states when dispersion 𝑑 is lower. The
idea is that when dispersion 𝑑 is small, producer 𝑖 being in the high state provides a stronger

21The conditions are based on first- and second-order stochastic dominance, see Shaked and Shanthikumar
(2007).
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signal that competitors are also more likely to be in the high state.

Assumption 3 says that when 𝑑 is higher, the sum of wind availability has at least as
high a mean and less weight in the tails of its distribution. When 𝑑 is high, the resource
availabilities of different producers are nearly independent. When 𝑑 is low, there is high
correlation between producers. Both Assumptions 2 and 3 are satisfied by the duopoly
model in Section 2.2.22

Proposition 8. For general 𝑁 ≥ 1, given Assumption 2, the output of producers in the high
state 𝜑 is (weakly) increasing in 𝑑. Therefore, as in the duopoly case, increasing 𝑑 (weakly)
decreases strategic curtailment.

The left hand side of the first order condition (2.25) is in general decreasing in the
output of other producers. The intuition is that the expected value of the output of other
producers, with 𝜑 fixed, is decreasing in 𝑑, from the perspective of a producer whose output
is high. Therefore, higher 𝑑 increases the left hand side of (2.25). Lower 𝜑 also increases the
left hand side. Thus, as 𝑑 increases, a lower 𝜑 cannot possibly solve the first order condition
because both higher 𝑑 and lower 𝜑 increase the left hand side of (2.25).

Proposition 9. For general 𝑁 ≥ 1, given Assumptions 2, 3, and 𝑃 (𝜑1(𝑁 + 1)) ≥ 0,23 the
expected value of welfare Es𝑑 [𝑊 ] is increasing in 𝑑.

Consider 𝑑′ > 𝑑. We aim to show that Es𝑑′ [𝑊 ] > Es𝑑 [𝑊 ]. Let 𝜑𝑑 refer to the equilibrium
curtailment level as described by (2.25), for the random availability vector s𝑑 indexed by 𝑑.
Consider a given realization of the resource availability for each producer, and let 𝑆 = 𝑠,
for some 𝑠 ∈ Z with 0 ≤ 𝑠 ≤ 𝑁 + 1. We can describe welfare as a function 𝑊 (𝑠, 𝜑). The
full proof in Section 2.12 explains that under the first-order conditions of the equilibrium
described by (2.25), 𝑊 is concave and increasing in 𝑠. Welfare 𝑊 is also increasing in 𝜑.

The distributions of 𝑆 satisfy Assumption 3, so the distribution with higher 𝑑 has
total wind availability 𝑆 that second-order stochastically dominates the original distribution.
The definition of second-order stochastic dominance implies that the dominating random
variable leads to higher expected value for increasing concave functions. Therefore, holding

22Consider the duopoly model in Section 2.2, but with general probability distributions Pr{𝑤𝑖 = 𝐻|𝑤𝑗 =
𝐻} ≡ 𝑓(𝑑, 𝛽) and Pr{𝑤𝑖 = 𝐻|𝑤𝑗 = 𝐿} ≡ 𝑔(𝑑, 𝛽). In Section 2.2, specific functional forms are provided
in (2.1) for 𝑓(𝑑, 𝛽) and 𝑔(𝑑, 𝛽) in order to motivate the exposition. For generic conditional probabilities in
the duopoly model, Assumption 2 establishes that 𝑓(𝑑, 𝛽) is weakly decreasing in 𝑑. Assumptions 2 and 3
together establish that 𝑔(𝑑, 𝛽) is weakly increasing in 𝑑.

23The variable 𝜑1 represents the high state production when 𝑑 = 1. This assumption implies that equi-
librium prices will not become negative. In practice, we see negative prices arise in markets with high
penetrations of wind resources, but this is due to the presence of subsidies, and non-convexities associated
with traditional generation, not a result of producer strategy in the face of uncertainty.
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𝜑 constant, higher 𝑑 increases the expected value of welfare: Es𝑑′ [𝑊 (·, 𝜑𝑑′)] > Es𝑑 [𝑊 (·, 𝜑𝑑′)].
Furthermore, using Assumption 2, Proposition 8 shows that 𝜑 is increasing in 𝑑. Since 𝑊 is
increasing in 𝜑, Es𝑑 [𝑊 (·, 𝜑𝑑′)] > Es𝑑 [𝑊 (·, 𝜑𝑑)]; together, the two inequalities establish that
𝑊 is increasing in 𝑑.

2.10 Competition with Traditional Generation

This section considers Cournot competition between two wind producers and a traditional
generator. The traditional generator models fossil fuel generators, and also some renew-
able energy facilities, like biomass generators. These traditional generators are controllable;
unlike wind and solar facilities, their production is not constrained by stochastic resource
availability.

In this model, the wind producers with dispersion 𝑑 and availability 𝛽 have identical
characteristics to those described in Section 2.2. The traditional producer can output any
quantity 𝑥 ∈ R+ with constant marginal cost 𝑐 ≥ 0; it has no information regarding the
availability of the wind generators.

This section extends the existing results on the impact of 𝑑 on welfare. As before,
welfare is increasing in 𝑑. The models used in this section and Section 2.9 could be used
to analyze markets with multiple wind producers and multiple traditional generators, but
the analysis in this section is sufficient to highlight the main insights. The behavior of
the thermal generator is straightforward because the traditional producer’s output decreases
when the wind farm’s output increases.

Let
¯
𝑥 ≥ 0 be the solution to E[𝑃 (𝑤1, 𝑤2,

¯
𝑥) +

¯
𝑥𝑃 ′(𝑤1, 𝑤2,

¯
𝑥)] = 𝑐. This value rep-

resents the lower bound for the total energy production by the traditional generator in an
equilibrium. The existence of the equilibrium for the market with two wind producers and
a traditional producer requires the following assumption:

Assumption 4. Let 𝑃 (·) be inverse demand and 𝑐 be the marginal cost of traditional gen-
eration. Assume 𝑐 < 𝑃 (2𝐻), which guarantees that the traditional generator produces a
positive quantity. Assume 𝑃 (3𝐿) + 𝐿𝑃 ′(3𝐿) > 0 and 𝑃 (𝐻 + 𝐿 +

¯
𝑥) + 𝐻𝑃 ′(𝐻 + 𝐿 +

¯
𝑥) < 0.

Assumption 4 extends Assumption 1 to the case of three players with a traditional
generator. It guarantees that we have a solution of interest, so we avoid explaining the cases
whereby 𝐿 is sufficiently high that wind producers might always curtail, where 𝐻 is too low
so that wind producers might never curtail, or where 𝑐 is sufficiently high that the traditional
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producer will never produce.24

Proposition 10. The Cournot equilibrium for generic inverse demand 𝑃 (·), with 𝑃 ′ < 0,
𝑃 ′′ < 0 satisfies the following first order conditions, where (2.28) is the first order condition
for wind producers and (2.29) is the first order condition for the traditional producer.

Pr{𝐿|𝐻}(𝑃 (𝐿+𝜑+𝑥) +𝜑𝑃 ′(𝐿+𝜑+𝑥)) + Pr{𝐻|𝐻}(𝑃 (2𝜑+𝑥) +𝜑𝑃 ′(2𝜑+𝑥)) = 0 (2.28)

Pr{𝐿,𝐿}(𝑃 (2𝐿 + 𝑥) + 𝑥𝑃 ′(2𝐿 + 𝑥)) + 2 Pr{𝐿,𝐻}(𝑃 (𝐿 + 𝜑 + 𝑥) + 𝑥𝑃 ′(𝐿 + 𝜑 + 𝑥))

+ Pr{𝐻,𝐻}(𝑃 (2𝜑 + 𝑥) + 𝑥𝑃 ′(2𝜑 + 𝑥))− 𝑐′(𝑥) = 0 (2.29)

The result follows exactly from Proposition 1 with the addition of the traditional gen-
erator whose output satisfies the first order condition described in (2.29). Equation (2.28)
describes the equilibrium high state output 𝜑 for wind producers to maximize their profit,
contingent on the equilibrium behavior of the other wind producer and the traditional gen-
erator. Equation (2.29) describes the equilibrium output 𝑥 of the traditional generator, with
𝑐′(𝑥) = 𝑐 in our example.

Example 2. Consider a market with linear inverse demand, 𝑃 (𝑞1, 𝑞2, 𝑞3) = 𝑠 − 𝑞1 − 𝑞2 − 𝑞3.
Then the unique high state output of the wind generators 𝜑 and the production output of
the traditional generator 𝑥 are given by:

𝜑 =
1
2
(𝑠 + 𝑐)(𝛽 + 𝑑(1− 𝛽)) + 𝐿𝛽(1− 𝛽)(1− 𝑑)

3𝛽 + 2𝑑(1− 𝛽)− 𝛽2 − 𝛽𝑑(1− 𝛽)
(2.30)

𝑥 =
1

2
(𝑠− 𝑐)− 𝜑𝛽 − 𝐿(1− 𝛽). (2.31)

The Example is explained in Section 2.12. It is obtained by solving the first-order conditions
(2.28) and (2.29) in terms of 𝜑 and 𝑥 in the case of linear inverse demand.

Next we consider the impact of heterogeneity on strategic curtailment by wind produc-
ers 𝜕𝜑

𝜕𝑑
and quantity withholding by the traditional producer 𝜕𝑥

𝜕𝑑
in the case of linear inverse

demand. We can take the derivative of 𝜑 with respect to 𝑑, using the form of the equation
in (2.30).

𝜕𝜑

𝜕𝑑
=

(𝑠 + 𝑐− 4𝐿)𝛽(1− 𝛽)

2(3𝛽 + 2𝑑(1− 𝛽)− 𝛽2 − 𝛽𝑑(1− 𝛽))2
(2.32)

24The assumption establishes an upper limit on 𝑐. When 𝑐 is lower, the output of the traditional generator
increases because they have lower marginal costs of production.
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Under our assumptions, this is always positive. Equation (2.32) is always positive when
𝑠+ 𝑐−4𝐿 > 0, which is always satisfied by Assumption 4. Therefore, the output of the wind
generators is increasing in 𝑑, 𝜕𝜑

𝜕𝑑
> 0, as in the original market.

Then, taking the derivative of 𝑥 using the first order condition in (2.31), 𝜕𝑥
𝜕𝑑

= −𝛽 𝜕𝜑
𝜕𝑑

<

0. Therefore, the output of the traditional generator is decreasing in 𝑑, so the traditional
generator withholds more when the wind generators have less information about the other
wind producer’s state.
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Figure 2-9: This chart shows that the traditional firm’s output 𝑥 decreases in the diversifi-
cation 𝑑, but the average output (and the high state production 𝜑) of the wind generators
is increasing in 𝑑. Plot parameters: 𝑠 = 3, 𝛽 = 1

2
, 𝐿 = 0.1 and 𝑐 = 1.

Next, we consider the effects of heterogeneity on welfare. Increasing dispersion 𝑑 im-
proves welfare in the market that includes a traditional generator.

Proposition 11. In the three player market with two wind producers and a traditional pro-
ducer, and a linear inverse demand 𝑃 (𝑞1, 𝑞2, 𝑞3) = 𝑠 − 𝑞1 − 𝑞2 − 𝑞3, the expected value of
welfare is increasing in dispersion 𝑑.

In this model, as before, increasing 𝑑 still reduces the strategic curtailment of wind
producers 𝜕𝜑

𝜕𝑑
> 0, and improves wind diversification. However, when a fossil fuel generator

has market power, the fossil fuel generator responds by withholding more of their own output
due to strategic substitutability with E[𝑞1 + 𝑞2], which increases; thus 𝜕𝑥

𝜕𝑑
< 0. With a linear

inverse demand, the FOCs (2.28) and (2.29) imply that the sum of the welfare impacts, due
to the changes in the equilibrium values of 𝜑 and 𝑥, is 0. Thus, increasing 𝑑 only impacts
the expected value of welfare through the change in wind diversification, which positively
impacts welfare.

Finally, we show that in a market with traditional generation and linear inverse demand,
𝑑 decreases the expected value of price. This result extends earlier results to the case
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of a market with traditional generators and highlights the potential benefits of increased
heterogeneity for reducing market prices.

Proposition 12. The expected value of the market price, given by E𝑤1,𝑤2 [𝑃 (𝑞1(𝑤1)+ 𝑞2(𝑤2)+

𝑥)], satisfies 𝜕E𝑤1,𝑤2 [𝑃 ]

𝜕𝑑
= −𝛽 𝜕𝜑

𝜕𝑑
< 0.

The expected value of total energy production is increasing in 𝑑. Its derivative with
respect to 𝑑 is given by 2 Pr{𝐻}𝜕𝜑

𝜕𝑑
+ 𝜕𝑥

𝜕𝑑
= (2𝛽 − 𝛽)𝜕𝜑

𝜕𝑑
> 0, where the equality is because

𝜕𝑥
𝜕𝑑

= 𝛽 𝜕𝜑
𝜕𝑑

, as explained in the Example 2 above. Under linear inverse demand, the expected
value of the market price is decreasing in 𝑑.

Since the production by the traditional generator is uniformly decreasing in 𝑑, increased
dispersion reduces profits for the traditional generator. On the other hand, the effects of 𝑑
on wind producer profits are ambiguous, as was the case in the original model.

2.11 Conclusion

This research links the heterogeneity in wind producer availability to social welfare in elec-
tricity markets with strategic behavior. It introduces the idea that the level of correlation
in wind farm energy availability impacts strategic behavior. It shows that increasing hetero-
geneity decreases the strategic incentive of individual wind producers and increases welfare.
This impact could become increasingly important as renewable energy penetration grows,
especially because of the difficulties associated with monitoring market power when resource
availability is not deterministic.

The results show that increasing heterogeneity is generally beneficial because of its
positive impacts on increasing diversification and on decreasing strategic curtailment. Some
existing policies and subsidy models for wind energy, like state-level renewable portfolio
standards, have been shown to impact the optimal investment locations for new projects;
these effects should be further reviewed in light of these results. The research also highlights
the benefits of publicly sharing high-quality real-time weather information, even when it is
not in the best interest of producers. As such, policy makers should consider the potential
benefits of improved public forecasting and publicly sharing real-time energy output data,
understanding that welfare-improving policies may be opposed by electricity generators.
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2.12 Proofs Omitted from the Main Text

Proof of Proposition 1. Since 𝑃 ′ < 0, 𝑃 ′′ ≤ 0, firm 𝑖’s profit 𝜋𝑖(𝑞𝑖, 𝑞𝑗) = 𝑞𝑖𝑃 (𝑞𝑖, 𝑞𝑗) is
concave in 𝑞𝑖 regardless of the production 𝑞𝑗 by its competitor. Let firm 𝑖 be in the high
state, i.e. 𝑤𝑖 = 𝐻. By Assumption 1, 𝑃 (𝐻) + 𝐻𝑃 ′(𝐻) < 0. Furthermore, 𝑃 (𝑥) + 𝑥𝑃 ′(𝑥)

is decreasing in 𝑥. Therefore, the resource availability in the high state does not bind, i.e.
𝑞𝑖(𝐻) = 𝜑 ≤ 𝐻. The optimal output 𝑞𝑖(𝐻) = 𝜑 belongs to arg max𝑞𝑖∈R E𝑤𝑗

[𝜋𝑖|𝑤𝑖 = 𝐻].
Due to concavity of 𝜋𝑖(𝑞𝑖, 𝑞𝑗) in 𝑞𝑖, the first order optimality condition (the necessary and
sufficient condition for optimality) implies that 𝜑 should satisfy the following

Pr{𝐿|𝐻}
[︀
𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝜑 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)

]︀
= 0, (2.33)

given firm 𝑗 strategy is 𝑞𝑗(𝑤𝑗) = min{𝑤𝑗, 𝜑}. Next, with the following Claims we show 𝜑

indeed satisfies (2.33) and verify that 𝑞(𝐿) = 𝐿. Subsequently, we prove the symmetric
equilibrium is unique.

Claim 1 There exists a unique 𝜑 satisfying (2.33). Moreover, 𝐿 < 𝜑 < 𝐻.

Proof Let us define 𝑓(𝑥) ≡ Pr{𝐿|𝐻}
[︀
𝑃 (𝐿+𝑥)+𝑥𝑃 ′(𝐿+𝑥)

]︀
+Pr{𝐻|𝐻}

[︀
𝑃 (2𝑥)+𝑥𝑃 ′(2𝑥)

]︀
.

The derivative 𝑓 ′(𝑥) < 0 because 𝑃 ′ < 0, 𝑃 ′′ ≤ 0, 𝑥 ≥ 0. Moreover, 𝑓(𝐿) > 0, from
Assumption 1. Furthermore,

𝑓(𝐻) = Pr{𝐿|𝐻}
[︀
𝑃 (𝐿 + 𝐻) + 𝐻𝑃 ′(𝐻 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
𝑃 (2𝐻) + 𝐻𝑃 ′(2𝐻)

]︀
< (𝑃 (𝐻) + 𝐻𝑃 ′(𝐻))[Pr{𝐻|𝐻}+ Pr{𝐿|𝐻}] < 0

where the first inequality follows since 𝑃 (𝑥 + 𝑦) + 𝑥𝑃 ′(𝑥 + 𝑦) is decreasing in 𝑦, and the
second inequality follows by Assumption 1. Since 𝑓(𝐿) > 0, 𝑓(𝐻) < 0, and 𝑓 ′(𝑥) < 0 thus
there exists a unique 𝜑 for which 𝑓(𝜑) = 0, with 𝐿 < 𝜑 < 𝐻.

Claim 2 When 𝑤𝑖 = 𝐿 then 𝑞𝑖(𝐿) = 𝐿, given that firm 𝑗’s strategy is 𝑞𝑗(𝑤𝑗) = min{𝑤𝑗, 𝜑}.
Proof Let 𝑔(𝑥) ≡ Pr{𝐻|𝐿}𝑥𝑃 (𝜑 + 𝑥) + Pr{𝐿|𝐿}𝑥𝑃 (𝐿 + 𝑥). We aim to show that 𝑥 = 𝐿

maximizes 𝑔(𝑥) when 𝑥 ∈ [0, 𝐿]; this follows in a straightforward way from the necessary
Karush–Kuhn–Tucker (KKT) condition for 𝑥:

Pr{𝐻|𝐿}
[︀
𝑃 (𝑥 + 𝜑) + 𝑥𝑃 ′(𝑥 + 𝜑)

]︀
+ Pr{𝐿|𝐿}

[︀
𝑃 (𝑥 + 𝐿) + 𝑥𝑃 ′(𝑥 + 𝐿)

]︀
= 𝜇𝐿 − 𝜇0 (2.34)

with 𝜇𝐿 ≥ 0, 𝜇0 ≥ 0, 𝜇𝐿(𝑥 − 𝐿) = 0, 𝜇0𝑥 = 0, and 𝑥 ∈ [0, 𝐿]. The constants 𝜇𝐿 and 𝜇0

are the KKT multipliers associated with 𝑥 ≤ 𝐿 and 𝑥 ≥ 0. Since 𝑃 (𝑥 + 𝑦) + 𝑥𝑃 ′(𝑥 + 𝑦) is
decreasing in 𝑦, 𝑓(𝜑) = 0 implies that 𝑃 (𝐿+ 𝜑) + 𝜑𝑃 ′(𝐿+ 𝜑) > 0, and since also 𝑥 ≤ 𝐿 < 𝜑
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and 𝑃 ′ < 0, 𝑃 (𝑥+𝜑)+𝑥𝑃 ′(𝑥+𝜑) > 0. Then again, since 𝐿 < 𝜑, 𝑃 (𝑥+𝐿)+𝑥𝑃 ′(𝑥+𝐿) > 0.
Therefore, the left-hand side of (2.34) is strictly positive, which implies that 𝜇𝐿 > 0 and
therefore that 𝑥 = 𝐿.

Claim 3 The equilibrium described in Proposition 1 is the unique symmetric equilibria.

Proof The poof follows by contradiction. Suppose, by contrary, firm 𝑗 produces 𝑞𝑗(𝐿) = �̃�,
where �̃� < 𝐿. We show firm 𝑖 has incentive to deviate by producing more than �̃� in the low
state. Suppose 𝑞𝑗(𝐻) = 𝑞𝑖(𝐻) = 𝜑; thus, 𝜑 (according to first order optimality condition)
solves the following:

Pr{𝐿|𝐻}
[︀
𝑃 (�̃� + 𝜑) + 𝜑𝑃 ′(𝜑 + �̃�)

]︀
+ Pr{𝐻|𝐻}

[︀
𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)

]︀
= 0. (2.35)

By following the arguments from Claim 1, there is a unique 𝜑, where �̃� < 𝜑 < 𝐻, satisfying
(2.35). Now, let 𝑤𝑖 = 𝐿. Then, evaluating firm 𝑖’s marginal expected profit when 𝑤𝑖 = 𝐿

and 𝑞𝑖(𝐿) = �̃�, given firm 𝑗’s strategy, implies

𝜕

𝜕𝑞𝑖
E𝑤𝑗

[𝜋𝑖(𝑞𝑖, 𝑞𝑗)|𝑤𝑖 = 𝐿]|𝑞𝑖=�̃� = Pr{𝐻|𝐿}
[︀
𝑃 (𝜑 + �̃�) + �̃�𝑃 ′(𝜑 + �̃�)

]︀
+ Pr{𝐿|𝐿}

[︀
𝑃 (2�̃�) + �̃�𝑃 ′(2�̃�)

]︀
> 0, (2.36)

where the last inequality is due to the following. By Assumption 1, 𝑃 (2𝐿) + 𝐿𝑃 ′(2𝐿) > 0.
Also �̃� < 𝐿 (by the above assumption) and 𝑃 (2𝑥) + 𝑥𝑃 ′(2𝑥) is decreasing in 𝑥 ≥ 0. Thus
𝑃 (2�̃�) + �̃�𝑃 ′(2�̃�) > 𝑃 (2𝐿) + 𝐿𝑃 ′(2𝐿) > 0. In addition, since 𝑃 ′ < 0, and 𝜑 > �̃�, thus
𝑃 (𝜑 + �̃�) + �̃�𝑃 ′(𝜑 + �̃�) > 𝑃 (𝜑 + �̃�) + 𝜑𝑃 ′(𝜑 + �̃�) > 0. The inequality (2.36) establishes
a contradiction, because firm 𝑖 has incentive to deviate, and produce more than �̃� when
𝑤𝑖 = 𝐿. This completes the proof.

Proof of Corollary 1. Let 𝑞𝑖(𝑤𝑖) = min{𝑤𝑖, 𝜑}. Consider 𝑖 = 1. The objective is to find
𝜑. Thus, writing the first order optimality condition implies that 𝜑 satisfies the following
equality

𝜑 =
𝑠− E𝑤2 [𝑞2|𝑤1 = 𝐻]

2

=
𝑠− [𝐿Pr{𝐿|𝐻}+ 𝜑Pr{𝐻|𝐻}]

2

=
𝑠− [𝐿(1− 𝛽

𝛽+𝑑(1−𝛽)
) + 𝜑( 𝛽

𝛽+𝑑(1−𝛽)
)]

2
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where Pr{𝐿|𝐻} = Pr{𝑤2 = 𝐿|𝑤1 = 𝐻} = (1−𝛽)𝑑
𝛽+𝑑(1−𝛽)

and Pr{𝐻|𝐻} = Pr{𝑤2 = 𝐻|𝑤1 = 𝐻} =
𝛽

𝛽+𝑑(1−𝛽)
. The above equality gives 𝜑 ≡ 𝑠𝛽+(𝑠−𝐿)(1−𝛽)𝑑

3𝛽+2(1−𝛽)𝑑
, completing the proof.

Proof of Lemma 1. As shown in Proposition 1, production in the high state, i.e. 𝜑, solves

Pr{𝐿|𝐻}
[︀
𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝜑 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)

]︀
= 0. (2.37)

Furthermore, according to (2.1), since Pr{𝐿|𝐻} = 𝑑(1−𝛽)
𝛽+𝑑(1−𝛽)

and Pr{𝐻|𝐻} = 𝛽
𝛽+𝑑(1−𝛽)

thus

𝜕

𝜕𝑑
Pr{𝐿|𝐻} =

𝛽(1− 𝛽)

(𝛽 + 𝑑(1− 𝛽))2
> 0

𝜕

𝜕𝑑
Pr{𝐻|𝐻} =

−𝛽(1− 𝛽)

(𝛽 + 𝑑(1− 𝛽))2
< 0.

Now, taking a derivative from (2.37) with respect to 𝑑 and taking into account that 𝜕
𝜕𝑑

Pr{𝐻|𝐻} =

− 𝜕
𝜕𝑑

Pr{𝐿|𝐻} < 0 gives

0 =
𝜕 Pr{𝐿|𝐻}

𝜕𝑑
[𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝜑 + 𝐿)] + Pr{𝐿|𝐻}

[︂
2
𝜕𝜑

𝜕𝑑
𝑃 ′(𝐿 + 𝜑) + 𝜑

𝜕𝜑

𝜕𝑑
𝑃 ′′(𝜑 + 𝐿)

]︂
+ Pr{𝐻|𝐻}

[︂
3
𝜕𝜑

𝜕𝑑
𝑃 ′(2𝜑) + 2𝜑

𝜕𝜑

𝜕𝑑
𝑃 ′′(2𝜑)

]︂
+

𝜕 Pr{𝐻|𝐻}
𝜕𝑑

[𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)]

=
𝜕𝜑

𝜕𝑑

{︀
Pr{𝐿|𝐻}

[︀
2𝑃 ′(𝐿 + 𝜑) + 𝜑𝑃 ′′(𝜑 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
3𝑃 ′(2𝜑) + 2𝜑𝑃 ′′(2𝜑)

]︀}︀
+

𝜕 Pr{𝐿|𝐻}
𝜕𝑑

[𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝐿 + 𝜑)− 𝑃 (2𝜑)− 𝜑𝑃 ′(2𝜑)].

Therefore,

𝜕𝜑

𝜕𝑑
= −

𝜕 Pr{𝐿|𝐻}
𝜕𝑑

[𝑃 (𝐿 + 𝜑) + 𝜑𝑃 ′(𝐿 + 𝜑)− 𝑃 (2𝜑)− 𝜑𝑃 ′(2𝜑)]

Pr{𝐿|𝐻}
[︀
2𝑃 ′(𝐿 + 𝜑) + 𝜑𝑃 ′′(𝜑 + 𝐿)

]︀
+ Pr{𝐻|𝐻}

[︀
3𝑃 ′(2𝜑) + 2𝜑𝑃 ′′(2𝜑)

]︀
> 0,

where the inequality follows because: (i) 𝜕 Pr{𝐿|𝐻}
𝜕𝑑

> 0, (ii) 𝑃 ′ < 0, 𝑃 ′′ ≤ 0, implying the
denominator is negative, (iii) 𝑃 ′ < 0, 𝑃 ′′ ≤ 0 and 𝐿 < 𝜑, implying that 𝑃 (𝐿 + 𝜑) >

𝑃 (2𝜑), 𝑃 ′(𝐿 + 𝜑) ≥ 𝑃 ′(2𝜑).

Proof of Example 1. From (2.1), with prior probability Pr{𝐻} = 𝛽, we have

−𝜕 Pr{𝐿,𝐿}
𝜕𝑑

= −𝜕 Pr{𝐻,𝐻}
𝜕𝑑

=
𝜕 Pr{𝐿,𝐻}

𝜕𝑑
≡ 𝜁 =

𝛽2(1− 𝛽)

(𝛽 + 𝑑(1− 𝛽))2
> 0. (2.38)
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The derivatives of the respective outcome probabilities are labeled as 𝜁 and −𝜁 accord-
ing to (2.38). By definition 𝜋𝑖 = 𝑞𝑖𝑃 (𝑞1 + 𝑞2). Therefore E𝑤1,𝑤2 [𝜋𝑖] = Pr{𝐿,𝐻}[𝐿𝑃 (𝐿+𝜑) +

𝜑𝑃 (𝐿 + 𝜑)] + Pr{𝐻,𝐻}𝜑𝑃 (2𝜑) + Pr{𝐿,𝐿}𝐿𝑃 (2𝐿). Taking the derivative of average profit
with respect to 𝑑 implies

𝜕

𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] = 𝜁⏟ ⏞ 

>0

[︀
𝐿𝑃 (𝐿 + 𝜑) + 𝜑𝑃 (𝐿 + 𝜑)− 𝐿𝑃 (2𝐿)− 𝜑𝑃 (2𝜑)

]︀⏟  ⏞  
≡𝑊𝐷𝜋 , wind diversification

+
𝜕𝜑

𝜕𝑑⏟ ⏞ 
>0

{︂
Pr{𝐿,𝐻}[𝐿𝑃 ′(𝜑 + 𝐿) + 𝑃 ′(𝜑 + 𝐿)𝜑] + Pr{𝐻,𝐻}[2𝑃 ′(2𝜑)𝜑]⏟  ⏞  

≡𝑇2, effects of 𝑑 on price through its impact on strategic curtailment

}︂

+
𝜕𝜑

𝜕𝑑⏟ ⏞ 
>0

{︂
Pr{𝐿,𝐻}[𝑃 (𝜑 + 𝐿)] + Pr{𝐻,𝐻}[𝑃 (2𝜑)]⏟  ⏞  

≡𝑇3 the value of additional production due to reduced strategic curtailment

}︂
.

𝑊𝐷𝜋 represents the effects of wind diversification, which is positive because

𝑊𝐷𝜋 = 𝐿[𝑃 (𝐿 + 𝜑)− 𝑃 (2𝐿)] + 𝜑[𝑃 (𝐿 + 𝜑)− 𝑃 (2𝜑)]

> 𝐿
[︀
2𝑃 (𝐿 + 𝜑)− 𝑃 (2𝐿)− 𝑃 (2𝜑)

]︀
≥ 0

where the first inequality follows because 𝜑 > 𝐿 and 𝑃 (𝐿 + 𝜑)− 𝑃 (2𝜑) > 0 and the second
inequality follows because of concavity in 𝑃 , i.e. 𝑃 ′′ ≤ 0. Thus, profit increases due to
increased diversification. Note that unlike the effect of diversification on average price,
which is inactive when 𝑃 ′′ = 0, diversification improves profit even when the inverse demand
curve is linear.

Furthermore, the impacts of 𝑑 on strategic curtailment has two effects on profit, because
reducing strategic curtailment lowers the average price but also increases the aggregate quan-
tity; these impacts are labeled as 𝑇2 and 𝑇3, respectively. Since inverse demand is downward,
i.e. 𝑃 ′ < 0, the impact of increasing 𝑑 on markup through its effects on strategic curtailment
is negative, i.e. 𝑇2 < 0. The impact of reducing strategic curtailment on quantity is, expect-
edly, positive, i.e. 𝜕𝜑

𝜕𝑑
> 0 and 𝑇3 > 0, because higher 𝑑 results in lower information and less

extensive strategic curtailment. However, the overall impact of 𝑑, through its impacts on
strategic curtailment, is to reduce price. This is because its effect on average price is greater
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than its effect on average quantity; i.e. 𝑇2 + 𝑇3 < 0 because

𝑇2 + 𝑇3 = Pr{𝐻,𝐿}
[︀
𝑃 (𝜑 + 𝐿) + (𝐿 + 𝜑)𝑃 ′(𝜑 + 𝐿)

]︀
+ Pr{𝐻,𝐻}

[︀
𝑃 (2𝜑) + 2𝜑𝑃 ′(2𝜑)

]︀
= Pr{𝐻,𝐿}

[︀
𝑃 (𝜑 + 𝐿) + 𝜑𝑃 ′(𝜑 + 𝐿)

]︀
+ Pr{𝐻,𝐻}

[︀
𝑃 (2𝜑) + 𝜑𝑃 ′(2𝜑)

]︀
+ Pr{𝐻,𝐿}𝐿𝑃 ′(𝜑 + 𝐿) + Pr{𝐻,𝐻}𝜑𝑃 ′(2𝜑)

= Pr{𝐻,𝐿}𝐿𝑃 ′(𝜑 + 𝐿) + Pr{𝐻,𝐻}𝜑𝑃 ′(2𝜑) (2.39)

< 0 (2.40)

where (2.39) follows from the first order condition (2.33), and (2.40) follows because inverse
demand is downward, i.e. 𝑃 ′ < 0. Therefore, the effects of 𝑑 on diversification increase
profits, and the effects of 𝑑 on strategic curtailment decrease profits. The overall impact
of heterogeneity is ambiguous. Figure 2-5 provides examples showing that profit can be
increasing or decreasing in 𝑑.

Proof of Proposition 4. By definition 𝜋𝑖(𝑤1, 𝑤2) = 𝑞𝑖(𝑤𝑖)(𝑠−𝑞1(𝑤1)−𝑞2(𝑤2)) where 𝑞𝑖(𝑤𝑖)

is explicitly given by Corollary 1, for 𝑤𝑖 ∈ {𝐿,𝐻} and 𝑖 ∈ {1, 2}. The expected value of
profit for producer 𝑖 is given by (2.41).

𝐸𝑤1,𝑤2 [𝜋𝑖] = Pr{𝐿,𝐻}[𝜋𝑖(𝐿,𝐻) + 𝜋𝑖(𝐻,𝐿)] + Pr{𝐻,𝐻}𝜋𝑖(𝐻,𝐻) + Pr{𝐿,𝐿}𝜋𝑖(𝐿,𝐿)

(2.41)

As before, from (2.1), Pr{𝐿,𝐿} = (1 − 𝑑𝛽
𝛽+𝑑(1−𝛽)

)(1 − 𝛽), Pr{𝐿,𝐻} = (1 − 𝛽) 𝑑𝛽
𝛽+𝑑(1−𝛽)

, and
Pr{𝐻,𝐻} = 𝛽 𝛽

𝛽+𝑑(1−𝛽)
. In addition,

𝜋𝑖(𝐿,𝐻) = 𝐿(𝑠− 𝐿− 𝜑) (2.42)

𝜋𝑖(𝐻,𝐿) = 𝜑(𝑠− 𝐿− 𝜑) (2.43)

𝜋𝑖(𝐿,𝐿) = 𝐿(𝑠− 2𝐿) (2.44)

𝜋𝑖(𝐻,𝐻) = 𝜑(𝑠− 2𝜑) (2.45)

where, as shown in Corollary 1, 𝜑 = 𝑠𝛽+(𝑠−𝐿)(1−𝛽)𝑑
3𝛽+2(1−𝛽)𝑑

. By plugging (2.42)-(2.45) into (2.41),
the total (ex-ante) wind producers’ surplus becomes

E𝑤1,𝑤2 [𝜋𝑖] =
𝛽

4
+ 𝐿(1− 2𝛽) + 𝐿2(

15

4
𝛽 − 2)− 𝛽2(𝑠− 3𝐿)(𝑠− 4𝐿)

2(3𝛽 + 2𝑑(1− 𝛽))
+

𝛽3(𝑠− 3𝐿)2

4(3𝛽 + 2𝑑(1− 𝛽))2
.

(2.46)
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Next, we characterize how 𝑑 affects profits. The derivative of (2.46) with respect to 𝑑 is

𝜕

𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] =

−𝛽3(𝑠− 3𝐿)2(1− 𝛽)

(3𝛽 + 2𝑑(1− 𝛽))3
+

𝛽2(1− 𝛽)(𝑠− 3𝐿)(𝑠− 4𝐿)

(3𝛽 + 2𝑑(1− 𝛽))2

=
𝛽2(1− 𝛽)(𝑠− 3𝐿)

(3𝛽 + 2𝑑(1− 𝛽))2

[︂
−𝛽(𝑠− 3𝐿)

3𝛽 + 2𝑑(1− 𝛽)
+ 𝑠− 4𝐿

]︂
=

𝛽2(1− 𝛽)(𝑠− 3𝐿)

(3𝛽 + 2𝑑(1− 𝛽))3⏟  ⏞  
>0

[𝛽(2𝑠− 9𝐿) + 𝑑(1− 𝛽)(2𝑠− 8𝐿)] . (2.47)

From the last equality we obtain: If 𝐿 < 2𝑠
9
≡ 𝐿1, then 2𝑠− 9𝐿 > 0 and 2𝑠− 8𝐿 > 0; thus,

𝜕
𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] > 0 and, consequently, arg max𝑑∈[0,1] E𝑤1,𝑤2 [𝜋𝑖] = 1. If 𝐿 > 2𝑠

8
≡ 𝐿2 then 2𝑠 −

8𝐿 < 0 and 2𝑠− 9𝐿 < 0; thus 𝜕
𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] < 0 and, consequently, arg max𝑑∈[0,1] E𝑤1,𝑤2 [𝜋𝑖] =

0.

In sum, (2.47) implies that if 𝐿 < 𝐿1 then 𝜕
𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] > 0 and thus max𝑑∈[0,1] E𝑤1,𝑤2 [𝜋𝑖]

happens at 𝑑 = 1. Similarly, if 𝐿 > 𝐿2 then 𝜕
𝜕𝑑
E𝑤1,𝑤2 [𝜋𝑖] < 0 and thus max𝑑∈[0,1] E𝑤1,𝑤2 [𝜋𝑖]

occurs at 𝑑 = 0. For the sake of completeness, we further note that arg max𝑑∈[0,1] E𝑤1,𝑤2 [𝜋𝑖] ∈
{0, 1} for any 𝐿 < 𝑠

3
.25

Proof of Proposition 5. Let 𝐵𝑅𝑖(𝜁) = 1−𝜁
2

denote 𝑖’s best reply when 𝑞𝑗 = 𝜁. We aim
to characterize the expected value of information sharing, which is given by

E𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] = Pr{𝐿,𝐻}𝑊𝐿,𝐻(𝐾,𝐾𝑐) + Pr{𝐻,𝐿}𝑊𝐻,𝐿(𝐾,𝐾𝑐)

+ Pr{𝐿,𝐿}𝑊𝐿,𝐿(𝐾,𝐾𝑐) + Pr{𝐻,𝐻}𝑊𝐻,𝐻(𝐾,𝐾𝑐), (2.48)

where (according to (2.1)), Pr{𝐿,𝐿} = (1 − 𝛽)(1 − 𝑑𝛽
𝛽+𝑑(1−𝛽)

), Pr{𝐻,𝐿} = Pr{𝐿,𝐻} =

(1− 𝛽) 𝑑𝛽
𝛽+𝑑(1−𝛽)

, and Pr{𝐻,𝐻} = 𝛽 𝛽
𝛽+𝑑(1−𝛽)

.

The benefit of cooperation/sharing information at state {𝑤1, 𝑤2} ∈ {𝐻,𝐿}2, denoted
by 𝑊𝑤1,𝑤2(𝐾,𝐾𝑐), is given by (2.16), and 𝑄𝐾

𝑤1,𝑤2
denotes total output at state (𝑤1, 𝑤2) when

firms cooperate and share their private information. Similarly, 𝑄𝐾𝑐

𝑤1,𝑤2
denotes total output

when firms compete with no shared information. We consider four separate cases as follows:

Case 1: {𝐿,𝐻}. In this case WP 1 is in the low state and WP 2 is in the high state.
Information sharing increases total output because WP 2 can produce more energy, knowing
for certain that WP 1 can only produce 𝐿 units rather than E𝑤1 [𝑞1|𝑤2 = 𝐻] = 𝐿Pr{𝐿|𝐻}+

25This is because any interior 𝑑 ∈ (0, 1) such that 𝜕
𝜕𝑑E𝑤1,𝑤2

[𝜋𝑖] = 0 implies that 𝜕
𝜕𝑑E𝑤1,𝑤2

[𝜋𝑖]
⃒⃒
𝑑>𝑑

> 0.
Thus any 𝑑 ∈ {0, 1} for any 𝑑 that maximizes profits.
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𝜑Pr{𝐻|𝐻} > 𝐿. Therefore,

𝑄𝐾
𝐿,𝐻 = 𝐿 + 𝐵𝑅2(𝐿) = 𝐿 +

1− 𝐿

2
=

1 + 𝐿

2

whereas 𝑄𝐾𝑐

𝐿,𝐻 = 𝐿 + 𝜑.

Case 2: {𝐻,𝐿} This case by symmetry is identical to Case 1.

Case 3: {𝐻,𝐻} In this case, information sharing reduces total output because the pro-
ducers learn that the opposing producers have the ability to produce at the Cournot level,
since information sharing eliminates the possibility that the other producer is in the low
state (which causes them to overproduce, given that the other producer is in the high
state). Under information sharing, both producer produce at the Cournot level. There-
fore, 𝑄𝐾

𝐿,𝐻 = 2𝑞𝐶 = 2
3
. In the absence of information sharing 𝑄𝐾𝑐

𝐿,𝐻 = 2𝜑.

Case 4: {𝐿,𝐿} In this case WP 1 and WP 2 are both in the low state. Thus there is no
difference between cooperation and competition since both produce at the 𝐿 level, meaning
that 𝑊𝐿,𝐿(𝐾,𝐾𝑐) = 0.

Plugging these results into (2.48) and (2.16), we have that

E𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] =
𝑑𝛽(1− 𝛽)

𝛽 + 𝑑(1− 𝛽)

(︂
2

1 + 𝐿

2
−
(︂

1 + 𝐿

2

)︂2

− 2 (𝐿 + 𝜑) + (𝐿 + 𝜑)2
)︂

+
𝛽2

𝛽 + 𝑑(1− 𝛽)

(︂
2

3
− 1

2

(︂
2

3

)︂2

− 2𝜑 +
1

2
(2𝜑)2

)︂
.

By rearranging the above equation, we have that

E𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] = Γ(𝛽, 𝑑, 𝐿)

(︂
39𝛽 + 28𝑑(1− 𝛽)− 60𝐿𝑑(1− 𝛽)− 81𝛽𝐿

)︂
. (2.49)

The common factor

Γ(𝛽, 𝑑, 𝐿) =
𝛽2𝑑(1− 3𝐿)(1− 𝛽)

36 (𝛽 + 𝑑(1− 𝛽)) (3𝛽 + 2𝑑(1− 𝛽))2

is positive because 𝐿 < 1/3 (equivalently, 𝐿 < 𝑠/3 for general 𝑠) by Assumption 1, (1−𝛽) ∈
(0, 1). Similarly, since 𝐿 < 1/3, the additive terms of (2.49)

39𝛽 + 28𝑑(1− 𝛽)− 60𝐿𝑑(1− 𝛽)− 81𝛽𝐿 > 39𝛽 + 28𝑑(1− 𝛽)− 20𝑑(1− 𝛽)− 27𝛽

= 12𝛽 + 8𝑑(1− 𝛽) > 0.
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The social welfare benefit of information sharing E𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] is the product of two
positive terms, and therefore 𝐸𝑤1,𝑤2 [𝑊 (𝐾,𝐾𝑐)] > 0.

Proof of Proposition 6. Let 𝐵𝑅𝑖(𝜁) = 1−𝜁
2

denote 𝑖’s best reply when 𝑞𝑗 = 𝜁. We aim
to characterize the following

E𝑤1,𝑤2 [𝐷(𝐾,𝐾𝑐)] = Pr{𝐿,𝐻}𝐷𝐿,𝐻(𝐾,𝐾𝑐) + Pr{𝐻,𝐿}𝐷𝐻,𝐿(𝐾,𝐾𝑐)

+ Pr{𝐿,𝐿}𝐷𝐿,𝐿(𝐾,𝐾𝑐) + Pr{𝐻,𝐻}𝐷𝐻,𝐻(𝐾,𝐾𝑐)

where the benefit of cooperation/sharing information at state {𝑤1, 𝑤2} ∈ {𝐻,𝐿}2 is

𝐷𝑤1,𝑤2(𝐾,𝐾𝑐) = 𝜋𝐾
1𝑤1,𝑤2

+ 𝜋𝐾
2𝑤1,𝑤2

− 𝜋𝐾𝑐

1𝑤1,𝑤2
− 𝜋𝐾𝑐

2𝑤1,𝑤2

and 𝜋𝐾
𝑖𝑤1,𝑤2

denotes 𝑖’s profit at state (𝑤1, 𝑤2) when firms cooperate and share their private
information. Similarly, 𝜋𝐾𝑐

𝑖𝑤1,𝑤2
denotes 𝑖’s profit when firms compete with no information

sharing (no cooperation). We consider four possible cases separately as follows.

Case 1: {𝐿,𝐻}. In this case WP 1 is in the low state and WP 2 is in the high state.
Thus, information sharing is highly beneficial for WP 2 (and detrimental for WP 1). This
is due to the fact that producer 2 will strategically overproduce and thus price goes down,
hurting producer 1.

This overproduction is beneficial for producer 2, even though it results in a decrease in
the equilibrium price. In this case, cooperation is beneficial for WP 2 and detrimental for
WP 1, compared to competition with no information sharing. It is intuitive and important
to note that the extra benefit to WP 2 from information sharing is particularly high when
𝐿 is small. More precisely,

𝜋𝐾
1𝐿,𝐻

= 𝐿[1− (𝐿 + 𝐵𝑅2(𝐿))]

𝜋𝐾
2𝐿,𝐻

= 𝐵𝑅2(𝐿)[1− (𝐿 + 𝐵𝑅2(𝐿))],

where 𝐵𝑅2(𝐿) = 1−𝐿
2

. With no cooperation, each WP supplies according to the original
equilibrium. Thus,

𝜋𝐾𝑐

1𝐿,𝐻
= 𝐿[1− (𝐿 + 𝜑)]

𝜋𝐾𝑐

2𝐿,𝐻
= 𝜑[1− (𝐿 + 𝜑)]
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with 𝜑 = 𝛽+(1−𝐿)(1−𝛽)𝑑
3𝛽+2(1−𝛽)𝑑

by Corollary 1. With algebra we can show

𝐷𝐻,𝐿(𝐾,𝐾𝑐) = 𝜋𝐾
1𝐻,𝐿

+ 𝜋𝐾
2𝐻,𝐿
− 𝜋𝐾𝑐

1𝐻,𝐿
− 𝜋𝐾𝑐

2𝐻,𝐿

=

(︂
𝛽(1− 3𝐿)

2(2𝑑(1− 𝛽)− 3𝛽)

)︂2

− 𝐿

(︂
𝛽(1− 3𝐿)

2(2𝑑(1− 𝛽)− 3𝛽)

)︂
.

Case 2: {𝐻,𝐿} This case by symmetry is similar to Case 1. Thus,

𝐷𝐻,𝐿(𝐾,𝐾𝑐) = 𝜋𝐾
1𝐻,𝐿

+ 𝜋𝐾
2𝐻,𝐿
− 𝜋𝐾𝑐

1𝐻,𝐿
− 𝜋𝐾𝑐

2𝐻,𝐿

=

(︂
𝛽(1− 3𝐿)

2(2𝑑(1− 𝛽)− 3𝛽)

)︂2

− 𝐿

(︂
𝛽(1− 3𝐿)

2(2𝑑(1− 𝛽)− 3𝛽)

)︂
.

Case 3: {𝐻,𝐻} In this case WP 1 and WP 2 are both in the high state. Thus, cooperation
is highly beneficial for both of them because by reducing uncertainty they both optimally
coordinate and produce at the corresponding Cournot level, i.e. 𝑞𝐶 = 1

3
. Thus the profit

with information sharing is characterized as follows:

𝜋𝐾
1𝐻,𝐻

= 𝜋𝐾
2𝐻,𝐻

= 𝑞𝐶 [1− 2𝑞𝐶 ]

With no cooperation each WP best replies to her belief; thus,

𝜋𝐾𝑐

1𝐻,𝐻
= 𝜋𝐾𝑐

1𝐻,𝐻
= 𝜑[1− 2𝜑]

where (as specified above) 𝜑 = 𝛽+(1−𝐿)(1−𝛽)𝑑
3𝛽+2(1−𝛽)𝑑

. Using algebra, we can show

𝐷𝐻,𝐻(𝐾,𝐾𝑐) = 𝜋𝐾
1𝐻,𝐻

+ 𝜋𝐾
2𝐻,𝐻
− 𝜋𝐾𝑐

1𝐻,𝐻
− 𝜋𝐾𝑐

2𝐻,𝐿

= 2𝑞𝐶 [1− 2𝑞𝐶 ]− 2𝜑[1− 2𝜑]

≥ 0.

The function 𝑓(𝑥) = 𝑥(1 − 2𝑥) is concave in 𝑥 and is maximized at 𝑥 = 1
4
. The last

inequality follows because 𝜑 > 𝑞𝐶 = 1
3

(because of the overproduction of each WP producing
𝜑 in this state due to uncertainty and mis-coordination), and thus 𝑓(𝑞𝐶) > 𝑓(𝜑), because
𝜑 > 𝑞𝐶 = 1

3
> 1

4
.

Case 4: {𝐿,𝐿} In this case WP 1 and WP 2 are both in the Low state. Thus there is no
difference between cooperation and competition since both produce at the 𝐿 level, meaning
that 𝐷𝐿,𝐿(𝐾,𝐾𝑐) = 0.
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Plugging the results of the above cases into (2.17) implies that

E𝑤1,𝑤2 [𝐷(𝐾,𝐾𝑐)] =
𝛽2𝑑(1− 3𝐿)(1− 𝛽)

(3𝛽 + 2𝑑(1− 𝛽))2(𝛽 + 𝑑(1− 𝛽))

[︀
21𝛽 + 16𝑑(1− 𝛽)− 𝐿(81𝛽 + 60𝑑(1− 𝛽))

]︀
.

As a result there exists a unique 𝐿*(𝑑, 𝛽) such that E𝑤1,𝑤2 [𝐷(𝐾,𝐾𝑐)] > 0 if and only if

𝐿 < 𝐿*(𝑑, 𝛽) =
21𝛽 + 16𝑑(1− 𝛽)

81𝛽 + 60𝑑(1− 𝛽)
.

In the above expression, note that 𝐿*(𝑑, 𝛽) < 1
3
.

Proof of Proposition 7. We seek to prove that there always exists a suitable 𝑡 that satisfies
(2.20), (2.21), and (2.22) when 𝛾 = 0. Let 𝛾 = 0 by assumption. Rearranging the IC
condition gives

𝑡 ≤ 1

2
Pr{𝐻|𝐻}+ Pr{𝐿|𝐻}(1− 𝜋𝐿

𝜋𝑀

). (2.50)

Rearranging the IR-H condition provides another upper bound on 𝑡:

𝑡 ≤ 1 +
𝛽

2𝑑(1− 𝛽)
− 𝛽

𝑑(1− 𝛽)

𝜑(𝑠− 2𝜑)

𝜋𝑀

− 𝜑(𝑠− 𝜑− 𝐿)

𝜋𝑀

− 𝛾

Pr{𝐿|𝐻}𝜋𝑀

. (2.51)

Rearranging the IR-L condition provides a lower bound for 𝑡:

𝑡 ≥ 𝐿(𝑠− 𝜑− 𝐿)

𝜋𝑀

+
𝛾

Pr{𝐻|𝐿}𝜋𝑀

. (2.52)

The proof follows by showing that the lower bound for 𝑡, the right-hand side (RHS) of (2.52)
is always less than or equal to the upper bounds for 𝑡 from the RHS of (2.50) and (2.51)
when 𝛾 = 0. Thus, there is always a nonempty feasible subset of R from which a transfer 𝑡

can be selected that satisfies the criteria for collusion.

First, with 𝛾 = 0, the RHS of (2.52) is less than the RHS of (2.50). The RHS of (2.52),

𝐿(𝑠− 𝜑− 𝐿)

𝜋𝑀

<
𝐿(𝑠− 2𝐿)

𝜋𝑀

≤ 1/2,

where the first inequality is due to 𝜑 > 𝐿 and the second is because 𝐿(𝑠− 2𝐿) is maximized
at 𝑠2

8
when 𝐿 = 𝑠/4, and because 𝜋𝑀 = 𝑠2

4
. Furthermore, from the RHS of (2.50),

1

2
Pr{𝐻|𝐻}+ Pr{𝐿|𝐻}(1− 𝜋𝐿

𝜋𝑀

) ≥ 1

2
Pr{𝐻|𝐻}+ Pr{𝐿|𝐻}(1− 4

8
) = 1/2
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where the inequality is because 𝜋𝐿 ≤ 𝑠2

8
and the equality is because the expression is a

weighted probabilistic sum of two values equal to 1/2. Therefore, the lower bound on 𝑡,
(2.52) is at most 1

2
, and one upper bound on 𝑡, (2.50), is at least 1

2
.

Now, it remains to be shown that the RHS of (2.51) (the other upper bound on 𝑡) is at
least as great as the RHS of (2.52). Equivalently, their difference 𝑇 is greater than or equal
to zero:

𝑇 = 1 +
𝛽

2𝑑(1− 𝛽)
− 𝛽

𝑑(1− 𝛽)

𝜑(𝑠− 2𝜑)

𝜋𝑀

− 𝜑(𝑠− 𝜑− 𝐿)

𝜋𝑀

− 𝐿(𝑠− 𝜑− 𝐿)

𝜋𝑀

=
𝛽

𝑑(1− 𝛽)
(
1

2
− 𝜑(𝑠− 2𝜑)

𝜋𝑀

) +
𝜋𝑀 − (𝜑 + 𝐿)(𝑠− 𝜑− 𝐿)

𝜋𝑀

≥ 0.

The second line is a rearrangement of the first. The first term in the second line is positive
because 𝜋𝑀 = max𝜑 2𝜑(𝑠− 2𝜑) by the definition of monopoly profits; therefore, 𝜑(𝑠−2𝜑)

𝜋𝑀
≤ 1

2
.

The second term is positive since 𝜋𝑀 = max𝜑,𝐿(𝜑+𝐿)(𝑠− 𝜑−𝐿), again by the definition of
Monopoly profits. Therefore, none of the aforementioned constraints contradict, and there
always exists some 𝑡 that allows the producers to collude.

Proof of Proposition 8. Let 𝜑𝑑 be the equilibrium high state production that for each
𝑖 ∈ {1, ..., 𝑁 + 1} satisfies

E𝑆𝑑
−𝑖

[𝑃 (𝜑𝑑 + 𝑆𝑑
−𝑖𝜑

𝑑 + (𝑁 − 𝑆𝑑
−𝑖)𝐿) + 𝜑𝑑𝑃 ′(𝜑𝑑 + 𝑆𝑑

−𝑖𝜑
𝑑 + (𝑁 − 𝑆𝑑

−𝑖)𝐿)|𝑤𝑖 = 𝐻] = 0. (2.53)

The left hand side of (2.53) is decreasing in 𝜑𝑑. Its derivative with respect to 𝜑𝑑 is

E𝑆𝑑
−𝑖

[(2+𝑆𝑑
−𝑖)𝑃

′(𝜑𝑑+𝑆𝑑
−𝑖𝜑

𝑑+(𝑁−𝑆𝑑
−𝑖)𝐿)+𝜑𝑑𝑃 ′′(𝜑𝑑+𝑆𝑑

−𝑖𝜑
𝑑+(𝑁−𝑆𝑑

−𝑖)𝐿)|𝑤𝑖 = 𝐻] < 0 (2.54)

which follows because 2 + 𝑆𝑑
−𝑖 > 0, 𝜑𝑑 > 0, 𝑃 ′ < 0, and 𝑃 ′′ ≤ 0.

Now, consider 𝑑′ > 𝑑 and assume towards a contradiction that 𝜑𝑑′ < 𝜑𝑑, where 𝜑𝑑 and
𝜑𝑑′ satisfy the first order condition in (2.53), with the expectations taken according to their
respective random variables 𝑆𝑑

−𝑖 and 𝑆𝑑′
−𝑖:

0 = E𝑆𝑑
−𝑖

[𝑃 (𝜑𝑑 + 𝑆𝑑
−𝑖𝜑

𝑑 + (𝑁 − 𝑆𝑑
−𝑖)𝐿) + 𝜑𝑑𝑃 ′(𝜑𝑑 + 𝑆𝑑

−𝑖𝜑
𝑑 + (𝑁 − 𝑆𝑑

−𝑖)𝐿)|𝑤𝑖 = 𝐻]

< E𝑆𝑑
−𝑖

[𝑃 (𝜑𝑑′ + 𝑆𝑑
−𝑖𝜑

𝑑′ + (𝑁 − 𝑆𝑑
−𝑖)𝐿) + 𝜑𝑑′𝑃 ′(𝜑𝑑′ + 𝑆𝑑

−𝑖𝜑
𝑑′ + (𝑁 − 𝑆𝑑

−𝑖)𝐿)|𝑤𝑖 = 𝐻]

≤ E𝑆𝑑′
−𝑖

[𝑃 (𝜑𝑑′ + 𝑆𝑑′

−𝑖𝜑
𝑑′ + (𝑁 − 𝑆𝑑′

−𝑖)𝐿) + 𝜑𝑑′𝑃 ′(𝜑𝑑′ + 𝑆𝑑′

−𝑖𝜑
𝑑′ + (𝑁 − 𝑆𝑑′

−𝑖)𝐿)|𝑤𝑖 = 𝐻].

The first inequality is due to (2.54), with 𝜑𝑑′ < 𝜑𝑑. The second inequality is due to Assump-
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tion 2 with 𝐹 (𝑥) = 𝑃 (𝜑𝑑′ +𝑥𝜑𝑑′ + (𝑁 −𝑥)𝐿) +𝜑𝑑′𝑃 ′(𝜑𝑑′ +𝑥𝜑𝑑′ + (𝑁 −𝑥)𝐿) decreasing in 𝑥.
But the result implies that 𝜑𝑑′ does not satisfy the first order condition of the equilibrium,
so we have a contradiction. Therefore, 𝜑𝑑 is (weakly) increasing in 𝑑.

Proof of Proposition 9. By definition, 𝑊 = 𝑈(𝑄) where 𝑄 =
∑︀𝑁+1

𝑖=1 𝑞𝑖. Note that
𝑈 ′(𝑄) = 𝑃 (𝑄) ≥ 0 for any equilibrium 𝑄, and 𝑃 ′ < 0, 𝜑 > 0. Furthermore, note that
we can write 𝑄 as a function of 𝑑 given any realization of availability, 𝑄(𝑑) =

∑︀
𝑖 𝑠𝑖(𝜑

𝑑 −
𝐿) + (𝑁 + 1)𝐿 = (𝜑𝑑 − 𝐿)𝑆 + (𝑁 + 1)𝐿, which is increasing and linear in 𝑆. This implies
that the expectation E[𝑊 ], which is taken over the random states of all of the producers, is
fully defined by the probability distribution of 𝑆. Let s be the random vector of states of
each of the producers, i.e. s = [𝑠1, 𝑠2, ...𝑠𝑁+1]. Then for all 𝑖, 𝑠𝑖, with 𝑆 =

∑︀
𝑖 𝑠𝑖, we have

that Es[𝑊 (𝑄(𝑑))] = E𝑆[𝑊 (𝑄(𝑑))]. Then for 𝑑′ > 𝑑:

Es𝑑′ [𝑊 ]− Es𝑑 [𝑊 ] = E𝑆𝑑′ [𝑊 (𝑄(𝑑′))]− E𝑆𝑑 [𝑊 (𝑄(𝑑))]

=
𝑁+1∑︁
𝑘=1

𝑈(𝑄(𝑑′)) Pr{𝑆𝑑′ = 𝑘} −
𝑁+1∑︁
𝑘=1

𝑈(𝑄(𝑑)) Pr{𝑆𝑑 = 𝑘}

≥
𝑁+1∑︁
𝑘=1

𝑈(𝑄(𝑑))(Pr{𝑆𝑑′ = 𝑘} − Pr{𝑆𝑑 = 𝑘})

= Es𝑑′ [𝑈(𝑄(𝑑))]− Es𝑑 [𝑈(𝑄(𝑑))] ≥ 0.

The first line is because 𝑆 provides equivalent information for the expectation as explained
above. The second line is an expansion of the expectations for the discrete random variables,
and the third line is because of Proposition 8 with 𝑄(𝑑) increasing in 𝑑 and 𝑈(𝑄) increasing
in 𝑄. The fourth line rewrites the third as a difference of expectations, which is non-negative
by the definition of second-order stochastic dominance with 𝑈 increasing and concave in 𝑆.
𝑈 is increasing and concave; 𝑄(𝑆) = (𝜑− 𝐿)𝑆 + (𝑁 + 1)𝐿 is linear and increasing in 𝑆.

Proof of Example 2. For the linear inverse demand, conditions (2.28) and (2.29) are rep-
resented by (2.55) and (2.56).

Pr{𝐿|𝐻}(𝑠− 𝐿− 2𝜑− 𝑥) + Pr{𝐻|𝐻}(𝑠− 3𝜑− 𝑥) = 0 (2.55)

Pr{𝐿,𝐿}(𝑠−2𝐿−2𝑥)+2 Pr{𝐿,𝐻}(𝑠−𝐿−𝜑−2𝑥)+Pr{𝐻,𝐻}(𝑠−2𝜑−2𝑥)−𝑐 = 0 (2.56)

Under linear inverse demand, (2.55) is the first order condition for the wind generators, and
(2.56) is the first order condition for the traditional generator with constant marginal cost
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𝑐. Equation (2.55) allows us to write the expression for 𝜑 in equilibrium, analogous to the
result from Corollary 1 but including the effect of 𝑥.

𝜑 =
(𝑠− 𝑥)𝛽 + (𝑠− 𝑥− 𝐿)𝑑(1− 𝛽)

3𝛽 + 2𝑑(1− 𝛽)
=

𝑠𝛽 + (𝑠− 𝐿)𝑑(1− 𝛽)− 𝑥(𝛽 + 𝑑(1− 𝛽))

3𝛽 + 2𝑑(1− 𝛽)
(2.57)

We can rearrange the generator’s first order condition (2.56) to obtain equation (2.31). By
the assumption, with 𝜑 < 𝐻, the traditional generator chooses to participate in the market,
i.e. (2.31) is solved by some 𝑥 ≥ 0. Combining equations (2.57) and (2.31), we have the
result in (2.30). The uniqueness of the symmetric26 equilibrium is clear from the fact that
the result for 𝜑 in (2.30) does not depend on 𝑥.

Proof of Proposition 11. Average output is given by

E[𝑞1(𝑤1) + 𝑞2(𝑤2) + 𝑥] = 2 Pr{𝐿,𝐻}(𝐿 + 𝜑 + 𝑥) + Pr{𝐿,𝐿}(2𝐿 + 𝑥) + Pr{𝐻,𝐻}(2𝜑 + 𝑥)

= 𝑥 + 2𝛽𝜑 + 2(1− 𝛽)𝐿.

Taking the derivative with respect to 𝑑, we have that

𝜕E[𝑞1(𝑤1) + 𝑞2(𝑤2) + 𝑥]

𝜕𝑑
= 𝛽

𝜕𝜑

𝜕𝑑
> 0,

due to the linearity of expectation and because 𝜕E[𝑞𝑖(𝑤𝑖)]
𝜕𝑑

= 𝛽 𝜕𝜑
𝜕𝑑

, for 𝑖 ∈ {1, 2}, and 𝜕𝑥
𝜕𝑑

=

−𝛽 𝜕𝜑
𝜕𝑑

. Now, average welfare is given by

E𝑤1,𝑤2 [𝑊 ] = 2 Pr{𝐿,𝐻}𝑈(𝐿 + 𝜑 + 𝑥) + Pr{𝐿,𝐿}𝑈(2𝐿 + 𝑥) + Pr{𝐻,𝐻}𝑈(2𝜑 + 𝑥)− 𝑐(𝑥).

Taking the derivative with respect to 𝑑,

𝜕E𝑤1,𝑤2 [𝑊 ]

𝜕𝑑
= 𝜁(2𝑈(𝐿 + 𝜑 + 𝑥)− 𝑈(2𝐿 + 𝑥)− 𝑈(2𝜑 + 𝑥)) +

𝜕𝑥

𝜕𝑑
Pr{𝐿,𝐿}𝑃 (2𝐿 + 𝑥)

+ 2(
𝜕𝜑

𝜕𝑑
+

𝜕𝑥

𝜕𝑑
) Pr{𝐿,𝐻}𝑃 (𝐿 + 𝜑 + 𝑥) + (2

𝜕𝜑

𝜕𝑑
+

𝜕𝑥

𝜕𝑑
) Pr{𝐻,𝐻}𝑃 (2𝜑 + 𝑥)− 𝑐

𝜕𝑥

𝜕𝑑

= Γ + 2
𝜕𝜑

𝜕𝑑
Pr{𝐿,𝐻}𝑃 (𝐿 + 𝜑 + 𝑥) + 2

𝜕𝜑

𝜕𝑑
Pr{𝐻,𝐻}𝑃 (2𝜑 + 𝑥) +

𝜕𝑥

𝜕𝑑
𝑥

= Γ + 𝛽
𝜕𝜑

𝜕𝑑
(2𝜑− 𝑥) ≥ Γ ≥ 0.

The second and third lines replace the first term with Γ = 𝜁(2𝑈(𝐿 + 𝜑 + 𝑥)− 𝑈(2𝐿 +

26The equilibrium is symmetric in the sense that the wind producers have identical strategies; the tradi-
tional producer has a different objective and a different strategy from the wind producers.
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𝑥) − 𝑈(2𝜑 + 𝑥)) to concatenate the expression; Γ is the impact of wind diversification on
welfare, and it is weakly positive due to the concavity of 𝑈 , as explained in Proposition 2.
The second equality uses the first order condition from (2.56). The third equality uses the
conditional probabilities Pr{𝐿,𝐻} = Pr{𝐿|𝐻}𝛽 and Pr{𝐻,𝐻} = Pr{𝐻|𝐻}𝛽, along with
the first order condition from (2.55). The expression 2𝜑 − 𝑥 is minimized when 𝑐 = 0 and
when 𝑑 = 0. Therefore, by using (2.30) and (2.31), with 𝑐, 𝑑 = 0, we confirm that 2𝜑−𝑥 ≥ 0.
This fact and Γ ≥ 0 establish the inequalities in the final line and complete the proof.

Proof of Proposition 12. Average price can be expressed as

E𝑤1,𝑤2 [𝑃 ] = 2 Pr{𝐿,𝐻}𝑃 (𝐿 + 𝜑 + 𝑥) + Pr{𝐿,𝐿}𝑃 (2𝐿 + 𝑥) + Pr{𝐻,𝐻}𝑃 (2𝜑 + 𝑥).

Taking the derivative with respect to 𝑑 gives:

𝜕E𝑤1,𝑤2 [𝑃 ]

𝜕𝑑
= 𝜁(2𝑃 (𝐿 + 𝜑 + 𝑥)− 𝑃 (2𝐿 + 𝑥)− 𝑃 (2𝜑 + 𝑥))− 2

𝜕𝜑

𝜕𝑑
(Pr{𝐿,𝐻}+ Pr{𝐻,𝐻})− 𝜕𝑥

𝜕𝑑

= 𝜁0− 2𝛽
𝜕𝜑

𝜕𝑑
+ 𝛽

𝜕𝜑

𝜕𝑑
= −𝛽𝜕𝜑

𝜕𝑑
.

This is due to the fact that 𝑃 (𝑥) represents linear inverse demand, so the first term sums
to 0 and so ∀𝑥 𝑃 ′(𝑥) = −1, and also due to the fact that Pr{𝐿,𝐻} + Pr{𝐻,𝐻} = 𝛽. This
completes the proof. As in the two-producer case, for a linear inverse demand curve, average
price is monotonically decreasing in 𝑑.
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Chapter 3

Forward Contracting in Electricity

Markets with Retail Deregulation

This work was performed in collaboration with Audun Botterud and Mardavij Roozbehani.

3.1 Introduction

Capacity markets for electricity provide a regulated market setting through which generating
units are compensated for their contribution to power system reliability, the ability of the
power system to meet peak demand. In many regulated markets, for instance in the U.S.,
the independent system operator (ISO) sets a demand curve for capacity for the region
and charges load-serving entities (LSEs) based on their contribution to the peak system
load. As such, the capacity market essentially serves as a market for a specific type of
long-term contract that consumers are required to purchase. The type of forward contract
varies, but can be modeled similarly as a type of capacity certificate or reliability option, as
demonstrated by an analytical comparison of forward contract types (Léautier, 2016).

While capacity markets have diverse forms and requirements, compelled participation
of demand is a key feature shared in many markets: customers, or LSEs acting on their
behalf, are required to engage in a specified level of contracting by paying for the forward
capacity quantity that has been determined in an auction process based on the ISO’s demand
curve.

The main rationale for capacity markets is to help generators achieve revenue sufficiency
in a market with price caps, which are used to mitigate generator market power. However,
capacity markets also provide many of the benefits of financial forward contracts, including
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risk reduction. Changing energy markets and increased penetration of variable renewable
resources have strained capacity markets or led to apparent capacity shortages or excesses in
some markets. This has driven increased focus on the benefits and costs of capacity markets
(Bushnell et al., 2017), as well as additional efforts to define the market failures that capacity
markets should and can seek to address (Cramton et al., 2013).

Some researchers have advocated for scaling back capacity markets, arguing that social
welfare would be better served by direct efforts to reduce market power (Léautier, 2016).
Others suggest that a combination of low price caps and higher capacity payments can actu-
ally increase market concentration (Elberg and Kranz, 2014). Hogan (2005) has advocated
for market design without capacity markets, and ERCOT has implemented an energy-only
market design. In existing capacity market designs, administrators determine the capacity
value of renewable energy; this leads to inefficiencies because regulators, not the market,
determine the value of new renewable energy projects. As the penetration of renewable
resources increases, the design of capacity markets will become increasingly important for
economic efficiency in the power sector.

Many of the benefits of forward contracting in a capacity market can clearly be achieved
by optional financial forward contracts in an energy-only market design. For instance, finan-
cial forward contracts can help reduce risks associated with price uncertainty and counter-
party risk, and they can ease financing of lumpy generation investments. Forward contract-
ing among market participants can still be expected to be an important component of an
energy-only market design (Hogan, 2005). Most of the benefits of forward contracting are
not coupled with market failure problems that would compel mandatory participation in
forward contracts or capacity markets; instead, we should expect LSEs to rationally select
the appropriate level of forward contracts, taking into account the benefits they provide.

However, while research suggests that one significant benefit of forward contracting is
its ability to help reduce generator spot market power, this work argues that spillover effects,
or positive externalities, related to forward contracting and producer market power might
limit the extent of discretionary forward contracting and reduce social welfare. This effect is
not necessarily limited to electricity markets, but this research focuses in particular on the
characteristics of forward and spot markets for electricity.

A rich literature suggests that forward contracting can reduce market power in electric-
ity spot markets. Allaz and Vila (1993) provided analytical evidence that forward contracting
can impel producers to offer higher quantities in real-time markets. Wolak (2000) provides
empirical evidence in support of this conclusion, using data from the Australian market to
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show that forward hedging can reduce generator market power.

In a two-stage model with reliability options, a specific form of forward contract, Léau-
tier (2016) also shows that producers that have sold forward contracts have less ability to
exercise market power in spot markets. Chao and Wilson (2004), Cramton and Stoft (2008),
and Ausubel and Cramton (2010) argue that one of the major benefits of capacity markets
using reliability options is their ability to help reduce generator market power. Some research
has questioned the impact of forward contracting on market power, for instance, when firms
in a duopoly compete in prices instead of quantities (Mahenc and Salanié, 2004) or when
firms are capacity constrained (Dappe, 2008). Harvey and Hogan (2000) question whether
the model by Allaz and Vila (1993) is a useful model for the California Electricity market.

Despite uncertainty regarding the extent to which forward contracting mitigates market
power, Allaz and Vila (1993) present a useful model for understanding the ways in which
this impact occurs. The research in this chapter takes those effects as given in order to
study how demand side market concentration (i.e. the number of LSEs) impacts the extent
of forward contracting and market power.

The main contribution of this research is to show how competition amongst load-serving
entities (as buyers in the forward contract market) impacts social welfare in electricity mar-
kets. It is the first research, to our knowledge, that studies spillover effects of forward con-
tract purchase: forward contract purchases that reduce market power benefit all consumers,
not just those represented by the individual LSE making the forward contract purchasing
decision.

This research extends the literature by focusing specifically on how demand-side char-
acteristics impact forward contracting. It is relevant because policy choices dictate the
characteristics of the demand-side of the market. Following electricity restructuring, many
states allow consumers to choose their energy supplier in a competitive marketplace.1 In
some U.S. states, municipalities also have the option to choose an energy supplier for their
residents. In 2017, over 13.7 million U.S. customers participated in retail choice programs
(EIA, 2018); we say that these customers are using competitive or retail energy suppliers,
and the remaining customers are using a default supplier. In this chapter, competitive en-
ergy suppliers and default suppliers (usually regulated utilities) are collectively referred to
as LSEs.

1Some potential benefits including lower energy prices for consumers, increased product offerings (e.g.
energy supply with a high percentage of renewable energy), and innovative business models that compensate
consumers for demand flexibility. However, the extent of consumer benefits is uncertain, and critics have
also noted several downsides associated with competitive energy suppliers.
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The model is based on two-stage procurement of energy, first through forward contracts
and then in real-time. As in the model by Allaz and Vila (1993), producers have market
power in the second stage. This research presents new contributions regarding the effects of
firm concentration on the demand-side. In our research, LSEs try to maximize welfare on
behalf of their consumers; in a departure from previous research, the LSEs have demand-side
market power. This is an important modeling choice because it reflects real-world electricity
markets, where oligopolistic energy suppliers compete for profits and customers.

The focus on demand-side competition leads to new modeling and analytical challenges.
We model demand-side market power in forward contracting by allowing LSEs to set their
level of forward contracting. We find the equilibrium market conditions, including total
energy consumption, total forward contracting, energy price, and social welfare. We use
comparative statics to examine how demand-side competition impacts these equilibrium
conditions.

This research shows that spillover benefits associated with forward contracting serve
to decrease the total forward contracting level and social welfare. In markets with several
sufficiently large LSEs, welfare is decreasing in the number of LSEs. The research posits
that positive externalities associated with forward contract procurement, under certain as-
sumptions, provide a rational for requiring consumer participation in forward contracting or
capacity markets, or for internalizing the public benefits of forward contracting.

3.2 Model

We present an electricity market model that is significantly simplified for ease of tractability
and clarity, but which retains the core features of demand uncertainty, competition among
producers, and the presence of multiple retail electricity suppliers. The producer side of
the model is similar to (Allaz and Vila, 1993), but we allow producers to have generic
valuations of forward contracts and then determine the level of forward contracting preferred
by consumers in equilibrium.

Consider a model where producers 𝑖 ∈ {1, 2, ..., 𝑁} sequentially offer 𝑞𝑖 units of energy
in a forward contract and then sell 𝑥𝑖 total units of energy in a given hour. Throughout the
chapter, we consider 𝑞𝑖 as the quantity of energy offered in each hour, so that all variables
are equivalently in units of energy (kWh or MWh).

For simplicity, we ignore the distinction between short-term markets, like day-ahead
and real-time markets, and we make the simplifying assumption that the real-time wholesale
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price is given by the linear inverse demand function 𝑃 (𝑋) = 𝑡 − 𝑏𝑋, where 𝑋 is the total
supply or demand, 𝑋 =

∑︀
𝑖∈𝑁 𝑥𝑖, and with 𝑏 ∈ R+. The consumers’ utility from consuming

𝑋 units at demand level 𝑡 is 𝑉 (𝑋, 𝑡) =
∫︀ 𝑋

0
(𝑡− 𝑏𝑧)𝑑𝑧.

The parameter 𝑡 represents the realization of a random variable 𝑇 ; it corresponds to
total net energy demand in a given period, based on the difference between the maximum
energy demand and the realized renewable energy availability. Specifically, 𝑡

𝑏
is the maximum

net energy demand, the energy demand at a price of 0 minus the renewable energy supply.
This model allows for the analysis of regions with large renewable energy supply, if renewable
supply exceeds max demand, then 𝑡

𝑏
< 0 or some renewable energy is curtailed and 𝑡

𝑏
= 0 in

the particular period under consideration.

Renewable energy generators are assumed to bid competitively at zero marginal cost,
providing all available energy in every period with a positive price. The parameter 𝑏 ∈ R is
fixed and 𝑇 is varied as a random variable, and realized in real-time. In practice, the inverse
demand curve need not be linear, and its slope could vary with demand in addition to its
intercept. In the forward contracting stage, uncertainty can be modeled by the cumulative
distribution function 𝐹 (𝑡) and the associated density function 𝑓(𝑡). Assume that 𝑇 has finite
support on [

¯
𝑡, 𝑡] with

¯
𝑡, 𝑡 ∈ R. The expectations over 𝑇 are all taken with respect to future

demand over a generic time-period, so they only affect the forecast for the distribution 𝐹 (𝑡).
Since 𝐹 (𝑡) is exogenous to the results, and considered fixed at the start of the contracting
period, the length of the forward contract period is entirely generic; it does not impact the
model and associated results described herein.

In our model, generators have a linear cost 𝑐𝑖 for production of electricity in each hour;
in practice, their production can include nonlinearities, for instance due to startup costs.
Let 𝑠𝑖 = 𝑥𝑖 − 𝑞𝑖 represent producer 𝑖’s net output sold in real-time. Let 𝑝𝑊 = 𝑃 (𝑥) be
the wholesale spot market price for electricity in a given hour with production 𝑥. Then the
profit for producer 𝑖 in a given hour, who has previously sold 𝑞𝑖 units of a forward contract
at price 𝑝𝐹 , is given by

𝜋𝑊
𝑖 = 𝑝𝑊 𝑠𝑖 + 𝑝𝐹 𝑞𝑖 − 𝑐𝑖(𝑠𝑖 + 𝑞𝑖). (3.1)

Based on the impact of forward contracts on their profits, and also on additional features
like their own risk preferences, generators have a generic price that they demand per unit
of forward contract sold. This price, for instance, could represent a small or a substantial
discount from the average real-time price, or it could be higher than the real-time price in
the case of much more risk-aversion for demand than for generators.

Furthermore, the model features LSEs 𝑗 ∈ {1, 2, ...,𝑀} that procure forward contracts
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Figure 3-1: Relationships and key variables in the forward contracting energy market model

and spot-market electricity in order to maximize the welfare of consumers. Specifically, each
LSE chooses a forward contract quantity 𝑞𝑗 in order to maximize the expected welfare for
its fraction of consumers. Each LSE services 𝛼𝑗 ∈ (0, 1] fraction of consumers; we assume
that the demand fractions are constant in time, so if the total consumption is 𝑍(𝑡) in a
specific period with 𝑇 = 𝑡, then the consumption by LSE 𝑗 is 𝛼𝑗𝑍(𝑡). This is a reasonable
assumption when the demand of consumers across retailers does not vary significantly.

Figure 3-1 depicts the model described in this section. 𝑁 producers sell energy to 𝑀

load serving entities, through both forward contracts and the spot market. Each producer
𝑖 ∈ {1, 2, ..., 𝑁} sells 𝑞𝑖 units in the forward market and 𝑥𝑖 total units of energy. In the first
stage, with imperfect information about future demand, each LSE 𝑗 ∈ {1, 2, ...,𝑀} procures

𝑞𝑗 units of forward contracts. The sum of forward contracts is balanced, i.e.
𝑁∑︀
𝑖=1

𝑞𝑖 =
𝑀∑︀
𝑗=1

𝑞𝑗.

In the second stage, ‘real-time,’ the demand parameter is realized and producers have the
opportunity to sell more energy in a spot market with Cournot competition. Each LSE’s
total quantity demanded is based on the demand parameter and the quantities offered in the
spot market {𝑥1 − 𝑞1, 𝑥2 − 𝑞2, ..., 𝑥𝑁 − 𝑞𝑁} by strategic producers; the equilibrium levels for
the spot market quantities are described in the subsequent Section 3.3.

3.3 Equilibrium Spot Market Output by Producers

In this section, we find the symmetric Nash equilibrium strategy for producers in the spot
market who have already sold a fixed level of forward contracts, in the case of linear inverse
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demand.

Proposition 1. The symmetric Nash equilibrium spot market output for all producers 𝑖 ∈
{1, 2, ..., 𝑁} market with prior forward commitments (𝑞1, 𝑞2, ..., 𝑞𝑁) is given by:

𝑠𝑖 =
𝑡− 𝑏𝑄 + 𝐶

𝑏(𝑁 + 1)
− 𝑐𝑖

𝑏
(3.2)

where 𝑄 =
∑︀𝑁

𝑖=1 𝑞𝑖 and 𝐶 =
∑︀𝑁

𝑖=1 𝑐𝑖.

Proof. Each producer seeks to maximize (3.1). Let 𝑆 =
∑︀𝑁

𝑖=1 𝑠𝑖. The spot price 𝑝𝑊 =

𝑃 (𝑆 +𝑄). In the case of linear inverse demand, the first order condition of (3.1) is given by:

𝑏𝑠𝑖 = 𝑡− 𝑏𝑆 − 𝑏𝑄− 𝑐𝑖. (3.3)

Summing over all 𝑖, this condition requires that

𝑆 =
𝑁𝑡− 𝑏𝑁𝑄− 𝐶

𝑏(𝑁 + 1)
. (3.4)

By substituting this result into the original condition, and combing terms, we have (3.2).
Note that the second derivative of profit with respect to net output 𝑠𝑖

𝜕2𝜋𝑊
𝑖

𝜕𝑠2𝑖
= −2𝑏 < 0. (3.5)

Therefore, the solution to each individual producer’s optimization problem is unique. The
equilibrium in (3.2) is also unique; note that 𝑠𝑖 is not impacted by the decision 𝑠𝑗 for any
𝑗 ̸= 𝑖.

In the case where generators each have equivalent marginal costs, i.e. (𝑐1, 𝑐2, ...𝑐𝑁) =

(𝑐, 𝑐, ..., 𝑐), then (3.2) simplifies to

𝑠𝑖 =
𝑡− 𝑏𝑄− 𝑐

𝑏(𝑁 + 1)
. (3.6)

Going forward, we focus on generators with equal marginal costs.
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3.4 Equilibrium Forward Contracting by Multiple Con-

sumers

Now we consider the equilibrium forward contracting level by multiple entities representing
consumers of electricity. Each LSE 𝑗 ∈ {1, 2, ...,𝑀} chooses a forward contract level to
maximize their consumer surplus,

𝜋𝐹
𝑗 = E𝑇 [𝛼𝑗𝑉 (𝑋,𝑇 )− (𝛼𝑗𝑋 − 𝑞𝑗)𝑝𝑊 (𝑇 )− 𝑞𝑗𝑝𝐹 ] (3.7)

=

∫︁
¯
𝑡

𝑡

(︂∫︁ 𝑋

0

𝛼𝑗(𝑡− 𝑏𝑧)𝑑𝑧 − (𝛼𝑗𝑋 − 𝑞𝑗)(𝑡− 𝑏𝑋)− 𝑞𝑗𝑝𝐹

)︂
𝑓(𝑡)𝑑(𝑡) (3.8)

which is 𝛼𝑗𝑉 (𝑋, 𝑡) the consumers’ utility of energy consumption at demand level 𝑡 for the
LSEs fraction of customers 𝛼𝑗, minus the LSEs real-time demand times the real-time price,
minus the LSEs chosen level of forward contracts times the forward contract price. Note
that the output / consumption level 𝑋 = 𝑆 +𝑄, where 𝑆 is set by the Cournot competition
amongst producers in real-time according to (3.2), and is itself is a function of 𝑡. Furthermore,
we assume that 𝑞𝑗 ≥ 0 and focus on cases where LSEs each procure a positive amount of
forward contracts in equilibrium.

Proposition 2. Assume that each firm 𝑗 ∈𝑀 procures an unconstrained quantity of forward
contracts, i.e. 𝑞𝑗 > 0. Then, the equilibrium forward contract level for the sum of forward
contracts from 𝑀 LSEs is

𝑄 =
E[𝑇 ]

𝑏
+

(𝑀𝑁(𝑁 + 1)−𝑁)𝑐−𝑀(𝑁 + 1)2𝑝𝐹
𝑏(𝑀𝑁 + 𝑀 + 𝑁)

. (3.9)

Proof. Each LSE simultaneously chooses the forward contract amount 𝑞𝑗 to maximize their
consumer surplus in (3.8). The individual first order conditions satisfy

𝜕𝜋𝐹
𝑗

𝜕𝑞𝑗
=

𝜕

𝜕𝑞𝑗
E𝑇 [

𝛼𝑗

2
𝑏𝑋2 + 𝑞𝑗(𝑝𝑊 − 𝑝𝐹 )] (3.10)

= E𝑇 [
𝜕

𝜕𝑞𝑗
(
𝛼𝑗

2
𝑏𝑋2 + 𝑞𝑗(𝑝𝑊 − 𝑝𝐹 ))] (3.11)

= E𝑇 [𝛼𝑗𝑏𝑋
𝜕𝑋

𝜕𝑞𝑗
+ 𝑝𝑊 − 𝑝𝐹 + 𝑞𝑗

𝜕𝑝𝑊
𝜕𝑞𝑗

] = 0. (3.12)

The first line is due to (3.8), the second line is because we can move the integral inside the
expectation because 𝑡 and its functions are bounded, and the third line is a computation of
the derivative.
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Next, we solve explicitly for 𝑆, 𝑝𝑊 , and their respective derivatives for any 𝑡 in the
support of 𝑇 . Real-time production / consumption 𝑋 is given by the sum of (3.6) over all
𝑁 plus the total forward contract quantity, i.e.,

𝑋 = 𝑆 + 𝑄 =
𝑁(𝑡− 𝑏𝑄− 𝑐)

𝑏(𝑁 + 1)
+ 𝑄 =

𝑁𝑡 + 𝑏𝑄−𝑁𝑐

𝑏(𝑁 + 1)
(3.13)

where 𝑆 is given by (3.6). Therefore, 𝜕𝑋
𝜕𝑞𝑗

= 1
𝑁+1

. Given 𝑋, we can find 𝑝𝑊 , which is given
by

𝑝𝑊 = 𝑡− 𝑏𝑋 =
𝑡− 𝑏𝑄 + 𝑁𝑐

𝑁 + 1
. (3.14)

Therefore, 𝜕𝑝𝑊
𝜕𝑞𝑗

= −𝑏
𝑁+1

. Subbing this into (3.12), and noting that the expectation is now
linear in 𝑡, we have that

0 = 𝛼𝑗
𝑁E[𝑇 ] + 𝑏𝑄−𝑁𝑐

(𝑁 + 1)2
+

E[𝑇 ]− 𝑏𝑄 + 𝑁𝑐

𝑁 + 1
− 𝑝𝐹 + 𝑞𝑗

−𝑏
𝑁 + 1

. (3.15)

Summing the above over 𝑗, and multiplying each term by (𝑁 + 1)2 gives

0 = 𝑁E[𝑇 ] + 𝑏𝑄−𝑁𝑐 + (𝑁 + 1)(𝑀E[𝑇 ]−𝑀𝑏𝑄 + 𝑀𝑁𝑐−𝑀(𝑁 + 1)𝑝𝐹 − 𝑏𝑄). (3.16)

Rearranging terms,

𝑏(𝑀(𝑁 + 1) + 𝑁)𝑄 = (𝑀(𝑁 + 1) + 𝑁)E[𝑇 ] + (𝑀𝑁(𝑁 + 1)−𝑁)𝑐−𝑀(𝑁 + 1)2𝑝𝐹 . (3.17)

The final result (3.9) is due to a simple rearranging of the above.

Remark 1. The first order condition for individual producers, (3.12), allows for additional in-
sight into the minimum population fraction requirement for participators in the 𝑀 producer
equilibrium. The optimal equilibrium quantity 𝑞𝑗 > 0 iff

E
[︂
𝛼𝑗𝑋 +

𝑁 + 1

𝑏
(𝑝𝑊 − 𝑝𝐹 )

]︂
= E

[︂
𝛼𝑗𝑋 +

𝑁 + 1

𝑏
(𝑇 − 𝑏𝑋 − 𝑝𝐹 )

]︂
> 0. (3.18)

This is equivalent to the requirement that

𝛼𝑗 > (𝑁 + 1)E
[︂
1 +

𝑝𝐹 − 𝑇

𝑏𝑋

]︂
. (3.19)

The market price equation 𝑝𝑊 = 𝑡−𝑏𝑋 and Assumption 5 imply that E
[︀

1
𝑏𝑋

]︀
> 1

E[𝑇 ]−𝑐
. This,
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and the fact that expected maximum willingness to pay E[𝑇 ] is greater that 𝑝𝐹 provide a
sufficient condition for 𝛼𝑗,

𝛼𝑗 > (𝑁 + 1)
𝑝𝐹 − 𝑐

E[𝑇 ]− 𝑐
. (3.20)

If 𝑁 is very high this will be hard to satisfy because the benefits of forward contracts for
reducing market power are proportionally smaller. Similarly, if 𝑝𝐹 >> 𝑐 this will be hard to
satisfy because forward contracts will be expensive for consumers.

In general, however, markets that fulfill or approximately fulfill this condition represent
typical (not extreme) examples. For instance, if there are 5 producers, the forward contract
price is 20% higher than the cost of electricity, and the maximum peak willingness to pay
is 10 times the marginal cost of electricity, then each LSE with at least 1

9
of the population

would procure a positive quantity of forward contracts. Our model focuses on the example
where each LSE is sufficiently large; e.g., with up to 9 LSEs each representing at least 1

9
of

the total customers.

3.5 Demand Competition and Forward Contracting

This section presents two simple result that represents the key ideas of the chapter. The
equilibrium level of forward contracting is decreasing in 𝑀 , suggesting that a competitive
group of LSEs would, in equilibrium, purchase a lower total level of forward contracts than
a single buyer. Furthermore, due to this decreasing level of forward contracting, welfare is
also decreasing in 𝑀 .

The proofs makes use of a single additional assumption requiring that prices support
market participation for suppliers with cost 𝑐.

Assumption 5. Profitable Market: The market supports positive profits for suppliers with
marginal cost 𝑐, i.e. either E𝑝𝑊 > 𝑐 or 𝑝𝐹 > 𝑐.

Either the average real-time price or the price of forward contracts must exceed the
producers’ marginal costs of production. If this assumption was not true we would either be
witnessing a perfectly competitive market or we would expect to see suppliers exit the mar-
kets. However, we know that suppliers are engaged in oligopolistic competition. Therefore,
we expect to see some (potentially very small) supplier profits and this assumption follows
naturally from the basic problem assumptions. Note that using the results (3.6) and (3.9)
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we can make the assumption E[𝑝𝑊 ] > 𝑐 explicit in terms of the problem parameters.

E𝑝𝑊 − 𝑐 = E
[︂
𝑡− 𝑏𝑄− 𝑐

𝑁 + 1

]︂
=

𝑀(𝑁 + 1)𝑝𝐹 −𝑀(𝑁 + 1)𝑐

𝑀𝑁 + 𝑀 + 𝑁
> 0, (3.21)

which is clearly true iff 𝑝𝐹 > 𝑐. Therefore, the two statements are equivalent and the
Assumption 5 is equivalent to the requirement that 𝑝𝐹 > 𝑐.

Proposition 3. Given a market that satisfies Assumption 5, the sum of forward contracts
procured by demand entities 𝑄 is decreasing in 𝑀 , 𝜕𝑄

𝜕𝑀
< 0.

Proof. We simply compute the derivative of the expression for the equilibrium level of forward
contracting

𝜕𝑄

𝜕𝑀
=

(𝑁(𝑁 + 1)𝑐− (𝑁 + 1)2𝑝𝐹 )𝑏(𝑀𝑁 + 𝑀 + 𝑁)

𝑏2(𝑀𝑁 + 𝑀 + 𝑁)2
−

(𝑁 + 1)𝑏((𝑀𝑁(𝑁 + 1)−𝑁)𝑐−𝑀(𝑁 + 1)2𝑝𝐹 )

𝑏2(𝑀𝑁 + 𝑀 + 𝑁)2
. (3.22)

By simplifying the expression, it is clear that

𝜕𝑄

𝜕𝑀
=

𝑁(𝑁 + 1)2(𝑐− 𝑝𝐹 )

𝑏(𝑀𝑁 + 𝑀 + 𝑁)2
< 0 (3.23)

where the inequality is due to Assumption 5, 𝑝𝐹 > 𝑐.

3.5.1 Forward Contracting and Social Welfare

Now consider the effects of the forward contracting level and demand competition on welfare.
Expected welfare E𝑇Π is given by

E[Π] = E[𝑉 (𝑋,𝑇 )− (𝑋 −𝑄)𝑝𝑊 (𝑡)−𝑄𝑝𝐹 + (𝑋 −𝑄)𝑝𝑊 (𝑇 ) + 𝑄𝑝𝐹 −𝑋𝑐] (3.24)

= E[

∫︁ 𝑋

0

(𝑇 − 𝑏𝑧)𝑑𝑧 −𝑋𝑐] = E[𝑇𝑋 − 𝑏

2
𝑋2 −𝑋𝑐] (3.25)

which is the sum of the expected value of consumption for consumers with expectation taken
over demand 𝑇 minus the expected cost of energy at production level 𝑋, which is itself a
function of 𝑇 , again taken over demand 𝑇 . The middle terms in the first line represent the
transfers from consumers to producers for real-time energy and forward contracts, respec-
tively; in terms of expected social welfare, these net to zero. Next we show that the expected
welfare is decreasing in the number of LSEs.
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Proposition 4. Under the competitive market Assumption 5, 𝜕EΠ
𝜕𝑀

< 0.

Proof. The derivative of equilibrium social welfare with respect to 𝑄, is given by:

𝜕EΠ

𝜕𝑄
= E[

𝜕

𝜕𝑋
(𝑡𝑋 − 𝑏

2
𝑋2 −𝑋𝑐)

𝜕𝑋

𝜕𝑄
]

=
1

𝑁 + 1
E[𝑡− 𝑏𝑋 − 𝑐]

=
1

𝑁 + 1
(E[𝑝𝑊 ]− 𝑐) > 0

(3.26)

where the first line is due to the boundedness of the terms in the expected value, the second
line is a computation of the derivative, and the final line is due to the definition of 𝑝𝑊 and
Assumption 5, since the equivalence of the two statements in the assumptions requires that
each is true. Therefore,

𝜕EΠ

𝜕𝑀
=

𝜕EΠ

𝜕𝑄

𝜕𝑄

𝜕𝑀
< 0. (3.27)

The first term of the product is positive due to (3.26) and the second is negative, due to
Proposition 3. This completes the proof.

Note that this proof is not intended to show generically that welfare is decreasing in
the level of competition amongst LSEs. Competition amongst LSEs could provide many
additional benefits to consumers through, for instance, better sorting into preferred product
types and more competitive prices. However, the proof implies that due specifically to its
effect on reducing the equilibrium forward contract level 𝑄, which subsequently reduces total
electricity production, increasing the number of LSEs serves to reduce average welfare.

3.6 Consumer Market Power: A Mitigating Effect

This section generalizes the results to the case when the price for forward contracts increases
in the number of forward contracts procured. In this case, consumers have market power
in the forward market because their consumption impacts the price of forward contracts.
The results show that the presence of consumer market power reduces the total number of
contracts purchased. This is especially true when the number of LSEs is small and producer
quantity choices have a big effect on price.

When consumer purchases in the forward market impact price, then increasing the
number of LSEs serves to increase the quantity of forward contracts by reducing the ability
of individual producers to exercise buyer market power. This mitigates the effects of positive
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externalities described above, acting on the total quantity of forward contracts in the opposite
direction.

When the impact of forward contract procurement on price is not too high, or if the
forward contract price is very high, the effect of positive externalities dominates and welfare
decreases in the number of producers. If forward contract quantities have a big effect on the
forward contract price, then the market power effects dominate and welfare increases in the
number of producers.

We define the derivative of the forward contract price with respect to the quantity
procured 𝑝′𝐹 (𝑄) = 0. Next, we generalize the results from Section 3.4 to account for the
case where ∃𝑄R+ s.t. 𝑝′𝐹 (𝑄) > 0. We assume that the price curve is weakly convex, i.e.
𝑝′′𝐹 (𝑄) ≥ 0.

Proposition 5. The equilibrium level of forward contracting 𝑄 in the case of a generic demand
curve is given by:

𝑄 =
(𝑀𝑁 + 𝑀 + 𝑁)E[𝑇 ] + (𝑀𝑁(𝑁 + 1)−𝑁)𝑐−𝑀(𝑁 + 1)2𝑝𝐹

𝑏(𝑀𝑁 + 𝑀 + 𝑁) + (𝑁 + 1)2𝑝′𝐹 (𝑄)
. (3.28)

The proof follows from (3.4) but with the additional term since 𝑝′𝐹 (𝑄) is possibly
nonzero. Note that 𝑝′𝐹 (𝑄) > 0 at optimal 𝑄 necessarily implies that the forward contract
price sensitivity reduces total forward contracting levels, since it increases the (positive) value
of the denominator. Specifically, let �̃� refer to the equilibrium forward contracting level for
𝑀 producers as described in Section 3.4. Then 𝑄 < �̃�. When consumers’ forward contract
consumption levels have a proportionally bigger impact on the price of forward contracts,
the consumers reduce their total procurement of forward contracts in equilibrium.

Next, consider the effects on the number of LSEs 𝑀 on the forward contract quantity
and on welfare.

Proposition 6. The effect of the number of LSEs on the total equilibrium forward contract
quantity 𝜕Π

𝜕𝑀
is ambiguous. For the forward contract quantity to increase in 𝑀 , i.e. 𝜕Π

𝜕𝑀
> 0,

it is necessary that 𝑝′𝐹 (𝑄) is sufficiently large for some 𝑄.

Proof. By differentiating (3.28), observe that

𝑄(𝑏(𝑁 + 1) + (𝑁 + 1)2𝑝′′𝐹 (𝑄)
𝜕𝑄

𝜕𝑀
) + (𝑏(𝑀𝑁 + 𝑀 + 𝑁) + (𝑁 + 1)2𝑝′𝐹 (𝑄))

𝜕𝑄

𝜕𝑀

= (𝑁 + 1)E[𝑇 ] + 𝑁(𝑁 + 1)𝑐− (𝑁 + 1)2𝑝𝐹 (𝑄)−𝑀(𝑁 + 1)2𝑝′𝐹 (𝑄)
𝜕𝑄

𝜕𝑀
. (3.29)
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Rearranging the above shows that

𝜕𝑄

𝜕𝑀
= 𝑁 + 1

E[𝑇 ] + 𝑁𝑐− (𝑁 + 1)𝑝𝐹 (𝑄)−𝑄𝑏

𝑏(𝑀𝑁 + 𝑀 + 𝑁) + (𝑁 + 1)2𝑝′𝐹 (𝑄) + (𝑁 + 1)2𝑝′′𝐹 (𝑄) + 𝑀(𝑁 + 1)2𝑝′𝐹 (𝑄)
.

(3.30)

The results in Section 3.5.1 still hold exactly in the case described in this Section,
because they do not depend on the forward price or the equilibrium result for 𝑄. Therefore,
𝜕Π
𝜕𝑀

> 0 ⇐⇒ 𝜕𝑄
𝜕𝑀

> 0.

The denominator in (3.30) is positive because each term is positive. Therefore, 𝜕Π
𝜕𝑀

> 0

iff the numerator is greater than zero. Taking into account the result in (3.28) for 𝑄, the
numerator is equivalent to

(𝑁 + 1)2𝑝′𝐹 (𝑄)(E[𝑇 ] + 𝑁𝑐− (𝑁 + 1)𝑝𝐹 (𝑄)) + 𝑏𝑁(𝑁 + 1)(𝑐− 𝑝𝐹 (𝑄))

𝑏(𝑀𝑁 + 𝑀 + 𝑁) + (𝑁 + 1)𝑝′𝐹 (𝑄)
. (3.31)

Again, the denominator is positive, so the sign is dependent on the numerator. By rearrang-
ing the numerator, observe that the requirement that the numerator is greater than zero is
equivalent to

(𝑁 + 1)𝑝′𝐹 (𝑄)(E[𝑇 ] + 𝑁𝑐− (𝑁 + 1)𝑝𝐹 (𝑄)) > 𝑏𝑁(𝑝𝐹 (𝑄)− 𝑐). (3.32)

The sign of the left hand side is ambiguous. This implies two necessary conditions. First,
𝑝𝐹 (𝑄) < E[𝑇 ]+𝑁𝑐

𝑁+1
, i.e. the forward price is not too high. Second,

𝑝′𝐹 (𝑄) >
𝑏𝑁(𝑝𝐹 (𝑄)− 𝑐)

(𝑁 + 1)(E[𝑇 ] + 𝑁𝑐− (𝑁 + 1)𝑝𝐹 (𝑄))
. (3.33)

Therefore, if the forward price is not too high, but its derivative with respect to 𝑄 is fairly
high, then the output 𝑄 and welfare Π can be locally increasing in 𝑀 . In the case where
the price influence of individual purchasing decisions is high, the influence of increasing 𝑀

has a larger impact on reducing buyer market power (and therefore increasing the quantity
of forward contracts) than it does on increasing the effects of positive externalities (which
decreases the quantity of forward contracts).

These results explain how the price-effects of forward contracting decisions can impact
the equilibrium quantity of forward contracts purchased. Buyer market power introduces a
mitigating effect versus previous results. Specifically, if buyer market power is sufficiently
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Figure 3-2: The effect on the number of LSEs, 𝑀 , on forward contracting, energy consump-
tion, and spot market prices, over a range of forward contract prices.

high, then increasing the number of LSEs may have a net positive effect on welfare because
the equilibrium quantity effects due to a reduction of market power by purchasers of forward
contracts outweighs the quantity effects due to the positive externalities of such contracts.

3.7 Case Study

This section presents a simple case study of the results. It helps illustrate the results of
the analysis and the sensitivity of forward contracting and spot prices to the number of
generators, the number of producers, and to the forward contract price and price slope. For
the computations in this study, we use 𝑏 = 0.055, based on the average of the low and high
values for real-time price sensitivity found by Lijesen (2007). The parameter 𝑇 was fixed at
𝑇 = 1900; it was chosen so that net consumption at the reference case was approximately
equal to average net consumption in an hour in the ERCOT system, 34 GWh. This average
hourly consumption was calculated as 349 TWh, the total ERCOT demand in 2016, minus
54 TWh, the total ERCOT renewable energy production in 2016, divided by 8760 hours
per year. For the reference case the marginal cost of energy production is 50 $/MWh, the
forward contracting price is 75 $/MWh, there are 𝑁 = 3 producers, and the number of LSEs
varies from one to ten, but these are varied in the sensitivity analyses.

In Figures 3-2 and 3-3, the forward contract has a fixed price; the results are based
on the analysis from Sections 3.2-3.5. In each of the examples, the quantity of forward
contracts and the total amount of energy purchased are decreasing in the number of LSEs,
as predicted by the analysis. As was shown previously, welfare also decreases in 𝑀 because
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Figure 3-3: The effect of the number of LSEs on forward contracting, energy consumption,
and spot market prices, as the number of producers, 𝑁 , is varied.

its derivative with respect to 𝑀 has the same sign as 𝜕𝑄
𝜕𝑀

. Furthermore, the average spot
price for electricity is increasing in the number of LSEs.

In Figure 3-2, the forward contract price varies from $65 to $95 / MWh. As the forward
contracting price increases, the total amount of forward contracting decreases and the average
spot price increases. The effect of the number of LSEs on total contract procurement is
especially pronounced when the forward contract price is much higher than the marginal
cost of electricity.

In Figure 3-3, the number of producers varies from 𝑁 = 1 to 𝑁 = 10. The number
of producers has a major effect on the extent of forward contracting, because LSEs contract
at much higher levels when the number of producers is low in order to mitigate the higher
levels of producer market power. The effect of 𝑁 on total production and average spot price
is less pronounced. As expected, increasing the level of producer competition decreases the
average spot price.

Finally, Figure 3-4 models the case where the price of forward contracts increases in
the quantity of forward contracts procured, and varies the extent of this effect. This figure
mirrors the analysis of Section 3.6. Increasing the supply curve slope also increases the
average forward contract cost, which adds a second order effect to the changes depicted in
the figure. To compensate for this, we adjusted the intercept of the forward price inverse
supply curve such that the average forward contract price for each slope, taken over the
range of the number of LSEs, is 124 $ / MWh. As shown in Figure 3-4, when the slope
of the forward contract inverse supply curve is sufficiently high, contract quantity, total
production, and welfare no longer decrease in the number of LSEs. In these cases, the effects
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Figure 3-4: The effect on the number of LSEs on forward contracting, energy consumption,
and spot market prices, over a range of slopes for the forward contract price supply curve.

of reducing buyer market power in the forward contracts market dominate, and increasing
the number of LSEs reduces their ability to withhold forward contract purchases to keep the
price low. Furthermore, when the inverse supply curve slope is sufficiently high, the average
spot market price is also decreasing in the number of LSEs, as they procure a higher level
of forward contracts.

3.8 Conclusion

Forward contracting can help reduce market power and supply withholding by producers.
However, due to the positive externalities of LSE engagement in forward contracts, whereby
the benefits of forward contracting and increased real-time supply are shared by all con-
sumers, the level of forward contracting decreases in the number of load-serving entities.
Therefore, in a competitive marketplace with many load-serving entities, each of whom
pursue their own forward contracts, the level of forward contracts is below the level that
maximizes social welfare. This implies that regulation may be required, for instance through
mandated forward contracting or participation in capacity markets, in order to achieve the
optimal level of forward contracting. This argument provides more compelling support for
mandated forward contracting for electricity than the oft-repeated statement that forward
contracting can help reduce market power, which itself does not imply a coordination prob-
lem nor compel regulation that is intended to increase the total level of forward contracting.

This work is based on a number of simplifying assumptions. Future work can extend
this model for more generic inverse demand curves for real-time electricity and especially for
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forward contracts. It could also consider the risk preferences of the producers and LSEs in
order to more accurately model the difference between forward and real-time prices and to
examine the influence of risk-preferences on the features described here. Furthermore, future
work could attempt to compare the effects discussed here to the risk-reduction benefits of
forward contracting, or to estimate the level of the impact described in a real-world market.
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Chapter 4

Learning Better Baselines for Electricity

Demand Response

4.1 Introduction

Demand response programs create value for electricity systems by reducing or shifting elec-
tricity demand during specific time periods. The cost of delivering electricity varies sub-
stantially from hour to hour; in some systems, over 20% of energy costs are driven by just
2% of peak hours. As such, targeted demand reductions during particular time periods can
provide substantial value. Demand response (DR) can improve power system reliability and
reduce costs for network and capacity investments (Siano, 2014). Demand response can pro-
vide rapid response for ancillary services, it can help shift demand to lower priced hours for
economic benefit, and it can help reduce peak demand to decrease the need for new planned
investments (O’Connell et al., 2014; Lee et al., 2013).

Experts anticipate that the value of demand response will continue to grow as renewable
energy penetration increases. Major renewable energy sources like wind and solar energy are
intermittent and uncertain; these attributes can increase temporal volatility of the marginal
cost of electricity and they can increase the value of flexible demand. As penetration of
renewable resources grows, demand response could provide increasing benefits to mitigate
the variability of renewable resources (O’Connell et al., 2014; Nolan and O’Malley, 2015).

Existing demand response markets are substantial. Shariatzadeh et al. (2015) describes
the state of demand response opportunities in U.S. wholesale markets. In the U.S., about
23 GW of demand response were enrolled in U.S. wholesale markets as of 2017 (Surampudy
et al., 2019). Participants in the Surampudy et al. (2019) Utility Survey reported over 20
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GW of utility demand response; over 2.7 million customers are engaged in the types of DR
programs that are the core focus of this work.

There are two overarching paradigms that define the market for demand response
programs. In the first, demand response provides direct value to load-serving entities (LSEs),
including regulated utilities or competitive retail electricity suppliers, that have a regulatory
or contractual requirement to buy energy on behalf of end-use customers. In this context,
demand response is used by load-serving entities like utilities and retail electric companies to
reduce their costs associated with serving reliable electricity. The LSE can engage demand
response by asking energy consumers to reduce their consumption at specific times. A DR
program can help the LSE avoid high-priced energy purchases or transmission tariffs that
stem from wholesale market participation, or it can mitigate or defer the need for investment
in new distribution system components that would otherwise be required to serve growing
demand. Throughout this chapter, we use the term LSE to refer to the organization that
sells energy to end-use customers. This can be a regulated utility or a competitive retail
electricity supplier. The described approach might align most naturally with the incentives
of a competitive retail electricity supplier, who must honor an existing contract with an end-
use customer; a retail electricity supplier in this position could directly reduce their costs
by reducing energy consumption during high price periods. In our formulation, demand
response is a type of principal-agent problem: the LSE is the principal and the end-use
customer is the agent.

In an alternative market for demand response, aggregators offer demand response ser-
vices directly into wholesale electricity markets, with aggregators serving as the middleman
between wholesale market operators (ISOs / RTOs) and consumers with demand flexibil-
ity. The end-use customer in these programs is typically a large commercial or industrial
consumer. In this work, we focus on the paradigm of an LSE that is creating a demand re-
sponse program for residential and small commercial customers. The analysis could also help
wholesale market-facing DR aggregators improve their contracting with end-use consumers.

Demand response programs are also differentiated by the attributes of customer en-
gagement in the programs. The work in this chapter focuses on a subset of those programs
that include baseline measurements to determine compensation for demand reductions. De-
mand response programs are often categorized as incentive-based programs or price-based
programs (Deng et al., 2015). Incentive-based programs include direct load control, inter-
ruptible/curtailable load programs, demand bidding and buyback, and emergency demand
reductions. Price-based programs include critical peak-pricing and real-time pricing. (Deng
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et al., 2015). Vardakas et al. (2015) provide an overview for the different types of demand
response programs and optimization algorithms for implementing demand response.

This chapter focuses on a subset of demand response programs that share the following
features: a customer-specific baseline is calculated, customers have voluntary load reductions,
and utilities have no direct load control (e.g. of thermostats or electric vehicles).1 These
programs share a fundamental challenge: they seek to offer compensation for beneficial
participation, but they do not penalize customers for high consumption. Furthermore, the
LSE cannot perfectly calculate a customer’s reduction because they do not precisely know
the customer’s counterfactual consumption. These programs are frequently called ‘incentive-
based demand response programs’ or ‘behavioral demand response.’ The Utility Survey by
Surampudy et al. (2019) shows that over 2.8 million customers in the United States are
engaged in these demand response programs. Our framework also directly encompasses one
type of price-based program, commonly called a peak-time rebate, where customers have a
certain tariff for electricity consumption, but also can earn a rebate during peak hours when
they reduce their demand below an established baseline. For simplicity in this research,
we refer to the combination of incentive-based programs and peak-time rebate programs
as incentive-based demand response. Hogan (2010) refers to the same class of programs as
imputed demand response programs, because the baseline consumption must be imputed.
The aforementioned programs are the focus of this research.

From the perspective of economic efficiency, incentive-based demand response is not
first-best. In the power system, the efficient energy price at a given time is the short run
marginal cost of delivering power to a particular location at that time, adjusted for losses,
congestion, and the potential for scarcity (Rivier and Pérez-Arriaga, 1993) (Hogan, 2013).
One solution is to directly charge customers this time-varying short-run marginal cost; this is
often called the ’real-time price.’ Joskow and Wolfram (2012) explain progress and challenges
for dynamically pricing electricity.

Given consumer preferences, risk-aversion and transaction costs, certain customers will
not prefer to pay the real-time price of electricity. Even if a real-time price is first-best, there
are multiple challenges that limit its use, especially for residential and small commercial cus-
tomers. From an economic perspective, transaction costs and costs of acquiring information

1Direct load control programs are also very popular in the academic literature and in practice; cumula-
tively, direct load control programs had over 6 million enrolled customers in 2018 (Surampudy et al., 2019).
The programs that we focus on provide a valuable complement to direct load control programs for customers
who do not have direct control capabilities or who do not wish to provide those capabilities to their LSE.
The results in this chapter are aimed at incentive-based programs but could be useful for decision-making
and contract-design in some direct load control programs.
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might limit the benefits of a real-time price (Schneider and Sunstein, 2017). Regulators have
not been keen to impose real-time prices on consumers by default. Less than 0.2% of U.S.
residential customers currently pay a real-time price for electricity. Time-varying electricity
prices can also increase electricity bills for certain customers or increase month-to-month
bill volatility; these impacts can be especially harmful for low- and fixed-income customers
(Burger et al., 2019, 2020).

When real-time dynamic prices are not an option, or when they are only a partial
solution, incentive-based demand response is a potential second-best option for improving
economic efficiency. Incentive-based demand response programs can provide the optimal
marginal incentive for demand reductions without placing any price risk on consumers. When
dynamic rates are employed, they tend to imperfectly track the marginal cost of delivered
energy. Common time-varying tariffs, like time-of-use (TOU) prices or critical-peak prices
(CPP), can be supplemented by a well-designed demand response program to improve eco-
nomic efficiency. Due to economic and regulatory challenges associated with real-time prices,
demand response programs are very common in practice. Based on a survey covering about
80% of the U.S. (Surampudy et al., 2019), approximately one in ten residential consumers
participates in some form of demand response program. In 2018, utilities spent over $300
million in customer incentives for residential demand response programs, and approximately
$235 million administering residential demand response programs (EIA, 2018).

Time-varying prices are most effective when they are provided as the default rate, but
for various reasons they are typically offered on an opt-in basis. The default rates defines
the electricity price structure that residential and small consumers will face if they make
no active decisions about their electricity supply; if you have not changed your electricity
supplier or opted-in to a time-varying price plan, you are most likely paying the default rate.
Demand response programs are also typically offered on an opt-in basis, where consumers
have the option to participate in the program but are not automatically enrolled. Incentive-
based DR could potentially be offered on a default basis, because it does not require a digital
connection for direct load control. Cappers et al. (2016) show, using a randomized control
trial in Sacramento, that a default time-of-use rate decreases consumption during peak hours.
This experience suggests that DR-by-default could also help reduce overall consumption
during peak hours. However, as we will show, the high cost of current programs might limit
the practicality of this approach. Our methodology helps to solve this problem by reducing
incentive payments for low-performing DR customers.

The first contribution of this chapter is to describe customer response models and ob-
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jective functions for utilities developing incentive-based demand response programs. The
second contribution is to present an argument that underlies the overall approach of this
chapter: reasonable objective functions for the LSE imply that the baseline threshold for
demand response should not necessarily be an estimate of the counter-factual consumption.
Then, we present two online learning algorithms that can help manage the sequential deci-
sion problem of choosing customer baselines in incentive-based DR programs. We provide
numerical data to showcase their value, explaining how they achieve better performance than
current practice.

Section 4.2 provides a review of the literature on demand response. Section 4.3 ex-
plains the basic model of customer demand and the demand response incentive. Section
4.4 investigates a customer model where customers do not alter their behavior based on
the chosen baseline threshold; it explains the LSE’s objective under this customer model.
Section 4.4.2 develops an online learning approach, based on the Upper Confidence Bound
(UCB) algorithm, that can be used to choose demand response baselines and customer par-
ticipants. Section 4.5 provides an alternative model, where customers observe and respond
directly to the baseline threshold; Section 4.5.2 provides an online learning approach to se-
quentially choose customer baselines under this model of customer behavior. Section 4.6
provides numerical examples, and Section 4.7 concludes.

4.2 Literature Review

Researchers and industry practitioners use the term ’demand response’ to refer to a wide
variety of programs that derive value by managing or shifting electricity demand during
specific time periods. Vardakas et al. (2015) and Deng et al. (2015) provide an overview of
demand response program categories. Section 4.1 explained that we focus on a subset of
demand response programs, often called incentive-based demand response programs, that
share two common features: (1) they offer users an incentive for reducing energy demand
during specific time periods, and (2) they do not charge or financially penalize consumers
for non-performance.

Incentive-based demand response programs for small consumers face a fundamental
problem: they seek to provide a weakly-positive (≥ 0) incentive to participating customers,
but they have imperfect information regarding customer demand and preferences. Retail
electricity tariffs allow customers to buy any quantity of energy at the retail rate, so programs
would face significant moral hazard if customers could buy any quantity of energy and
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Figure 4-1: Example of demand response incentive function

offer it as demand response. The practical solution is generally to compute a customer-
specific baseline that estimates what the customer would have consumed in the absence of the
demand response offering. This baseline serves as a threshold in a piecewise demand response
program; customers can be paid for demand response to the extent that their consumption
is below the imputed baseline (see Figure 4-1). According to (Chao, 2010a), “the customer
baseline is the estimated level of “normal” or counterfactual consumption during the time
period against which demand reductions are measured and payments are determined... The
customer baseline is conjectural (i.e., it is not directly observable and is generally estimated
from data that represent past customer behavior using statistical estimation methods).” The
estimation of customer baselines for determining compensation provides a workable model
that is widely used in practice.

Baseline uncertainty is a core and ongoing challenge associated with incentive-based
demand response programs; one strain of existing literature attempts to quantify the costs
of existing uncertainty. Issues associated with imputed baselines have major impacts on the
efficiency and value of demand response programs. Chao (2010a) highlights several prob-
lems with demand response using administratively-determined customer baselines: baseline
manipulation, inefficient price formation, and generation relocation and load shifting behind
the meter. Baseline manipulation can occur because of moral hazard or adverse selection.
Customers might seek to impact their baseline estimates, or they could selectively partic-
ipate when their baseline estimate is high, reducing the overall efficiency of the program.
Additionally, uncertainty in baseline measurement can impact the overall evaluation of the
benefits of a demand response program (O’Connell et al., 2014; Nolan and O’Malley, 2015).
Addy et al. (2013) explain how the effect of baseline modeling choices can have a significant
impact on the performance analysis of a demand response program. They detail the sen-
sitivity of baseline estimates to various modeling choices. Chao (2010b) provides a simple
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economic example that highlights the inefficiency of demand response programs that pay the
full locational marginal price (LMP) for reductions in demand.

There are two prominent streams of literature that seek to address the baseline prob-
lem. The first focuses on methods to improve baseline estimation. The second focuses on
alternatives to existing demand response programs that avoid baseline estimation problems,
which can be especially pernicious in the case of adversarial actors. Separately, an additional
group of literature highlights problems associated with economic incentives for demand re-
sponse, even in the absence of baseline uncertainty.2 A fourth group of literature focuses on
demand response with direct load-control, for instance of customer thermostats. Besides the
academic interest, these programs are effective in practice and provide a valuable comple-
ment to the incentive-based DR programs described here; incentive-based DR is most useful
in the absence of direct control capabilities. This literature review focuses primarily on the
the first two groups of literature described in this paragraph, which offer different approaches
to improving incentive-based DR.

Since baseline estimation is a core component of demand response programs, extensive
efforts seek to estimate and reduce associated prediction errors. Standard industry practice
is highly variable but often simple. The North American Energy Standards Board (NAESB)
has defined five types of baseline methodologies, appropriate for different types of demand
response (Rossetto, 2018). These include baseline type-1, which is essentially the estimated
counterfactual consumption. Mohajeryami et al. (2016) explains several different methods for
calculating customer baselines (CBLs) and argues that CBL calculations are more challenging
for residential consumers than for industrial consumers. Park et al. (2015) describe a method
to improve estimates of CBLs and display the benefits of their methodology in terms of a
reduction of mean squared error. Nexant Inc. (2017) convened a Baseline Accuracy Working
Group to investigate topics related to the use of alternative baseline methods and the use of
control groups for estimating DR. Todd et al. (2019) estimate the extent to which spillover
effects bias baseline measurements. Wijaya et al. (2014) estimate the effects of baseline
estimation error and prediction bias on the profits of different stakeholders in DR programs.

Given the issues associated with imputed demand response, research has provided al-
ternative methods for contracting for demand response. Chao (2011) describes and contrasts
contractual and imputed approaches to determining CBLs. He suggests three contract types

2Early wholesale demand response programs often paid customers the full LMP for reductions in demand
(Ruff, 2002), but this is inefficient in the case of imputed demand response programs because customers are
essentially double-paid to reduce demand: they receive the LMP for demand reductions, and they also save
at the retail rate by not consuming energy (Ruff, 2002) (Hogan, 2010).
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that engage demand while avoiding problems with existing DR. Contracted demand response
programs are a very promising option for engaging demand response. They avoid many of
the inefficiencies associated with imputed demand response. However, the types of programs
described in Chao (2011) relax a key constraint that characterizes most incentive-based DR
programs: the programs in the paper by Chao (2011) can penalize or increase costs for some
customers. We focus on demand response programs without additional contracts, where
participating consumers are compensated for demand reductions but can never be charged
a positive amount by the demand response program.

Additional literature provides alternative methods for managing demand response, but
compared to the bulk of this literature I prefer to focus on more incremental approaches for
improving existing demand response methods. Meir et al. (2017) describe a VCG mechanism
for guaranteeing a minimum level of demand reduction from individual users when baselines
are known. Zhong et al. (2013) research a method whereby customers are offered rebates to
reduce their demand, and the offer is updated if an insufficient amount of demand responds.
Khezeli and Bitar (2017) investigate a risk-sensitive demand response mechanism when the
underlying demand curve for electricity is assumed to be affine and subject to unobservable
random shocks. Li et al. (2015) consider demand response markets where consumers submit
supply functions for reducing demand to meet available supply and compare competitive
to oligopolistic equilibria. The aforementioned research provides helpful context and new
directions for demand response, but it does not explicitly study the principal’s baseline
decision problem in incentive-based DR programs.

Mohsenian-Rad et al. (2010) study a group of users who schedule energy consumption
to minimize system cost, and they employ a VCG-like mechanism to coordinate energy
consumption. While this method could incentivize more honest baseline reporting, it could
lead to new inefficiencies because consumers share the total costs associated with system
consumption, rather than paying their own marginal costs of consumption. Muthirayan
et al. (2019) provide a method for incentive-compatible baseline reporting. However, they
allow the demand response program to levy a penalty on users; we focus on programs that
are constrained to only offer (weakly) positive incentives to participating users. The method
described by Muthirayan et al. (2019) also increases consumption in customers who are
not called for DR service, diminishing the total demand reduction during peak periods.
Dobakhshari and Gupta (2018) consider the joint problems of adverse selection and moral
hazard in demand response incentive based programs. They consider a specific form for the
inventive contract, which features a payment for the reported demand reduction and for
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profit sharing, and they find the optimal parameters for that specific contract structure.

We apply well-known results from online learning to the baseline decision problem.
Other work utilizes online learning to study demand response, but only our work focuses
on how online learning can help determine the baseline parameter for demand response
contracting. Kalathil and Rajagopal (2015) consider a method of online learning for demand
response, where the aggregator can learn about customer responsiveness over the course of
their participation in the program, accounting for the fact that customer responses diminish
if they are frequently asked to participate. Wang et al. (2014) utilize online learning to pick
the “best” loads to deploy in each time-step; they do not focus on contracting or paying these
loads. In Section 4.4.2, we are also interested in choosing a subset of loads to deploy, but
our decision is motivated by economic incentives. Other research utilizes tools from online
learning to understand electricity demand management, but it is not particularly applicable
to research on incentive-based demand response programs (e.g. (Bahrami et al., 2017)).

Our research focuses on the challenge of contracting for demand response and of choos-
ing optimal customer baselines. We use online methods to simultaneously learn the cost
function for the baseline decision problem and to exploit existing information by choosing
high-value baselines and requesting participation from high-value customers. To our knowl-
edge, this is the first research effort that uses tools from online learning to explicitly help
with baseline setting and contracting for incentive-based demand response.

4.3 Basic Model

In this section we present the basic notation regarding customer demand and the demand
response incentive. Then, we motivate the work by explaining the current practice for the
decision problem of choosing a customer baseline for the demand response incentive. Next,
we present two distinct formulations for explaining how customers react to a demand response
incentive. These formulations lead to the crux of the argument that underlies the work in
this chapter: in each formulation, the cost function associated with the baseline decision
variable 𝛽 is asymmetric, and heavily influenced by each customer’s propensity for demand
reductions.

In the first formulation, a customer’s random utility function determines their response
to a demand response incentive; the demand response baseline or threshold does not imme-
diately impact their consumption. However, the DR program operator (the LSE) ultimately
bears some cost if they set the baseline threshold too low, for example due to customer dissat-
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isfaction. In the second formulation, the chosen demand response baseline interacts directly
with the customer’s random utility function, which determines the customer’s response in
each demand response period.

In the subsequent sections, we investigate the demand response decision problem for
each of these formulations. We formulate the demand response program as an online opti-
mization problem where the LSE learns about its customers over time and iteratively chooses
new demand response baselines.

4.3.1 Customer Model and Demand Response Incentive

Consider a customer 𝑖 with a fixed utility function associated with the consumption of
electricity at a particular time 𝑡, i.e. for 𝑖, 𝑡, 𝑈𝑖𝑡 : R+ → R+. Customer 𝑖 receives 𝑈𝑖𝑡(𝑞)

units of utility from consuming 𝑞 units of electricity in time period 𝑡. There is a fixed retail
cost 𝑅 > 0 for purchasing electricity. Therefore, the objective function for customer 𝑖 in
period 𝑡 is 𝑈𝑖𝑡(𝑞) − 𝑞𝑅. Assume in the base-case that the customer is welfare maximizing,
with full knowledge of the retail rate 𝑅. Furthermore, assume that 𝑈 is twice-differentiable,
with 𝑈 ′(𝑞) > 0, 𝑈 ′′(𝑞) ≤ 0 for any 𝑞 ∈ R+. Let 𝑄𝑖𝑡(𝑝) = (𝜕𝑈𝑖𝑡

𝜕𝑞
)−1(𝑝) be the demand function,

where 𝑝 ∈ R+ is the price per unit of electricity. In the base-case, customer 𝑖 consumes
𝑑𝑖𝑡 = 𝑄𝑖𝑡(𝑅) units of electricity in time period 𝑡.

Throughout this chapter we consider a simple approach to demand response (DR),
where demand response is offered as a non-negative incentive alongside an existing electricity
rate. In our model, as is typical in practice, the DR incentive function 𝑓𝑖𝑡 : R+ → R+

determines the payment to customers who are participating in the demand response program,
as a function of 𝑞. The demand response incentive 𝑓𝑖𝑡(𝑞) is non-negative because the demand
response program can only provide an incentive, not a penalty. This is a typical feature of
demand response programs. In particular, we consider a piecewise linear demand response
incentive

𝑓𝑖𝑡(𝑞) = 𝛼𝑡(𝛽𝑖𝑡 − 𝑞)+ (4.1)

Throughout this chapter, (𝑥)+ = max{𝑥, 0}. In the demand response program, 𝛼𝑡 is the
payment per unit of reductions in period 𝑡, and 𝛽𝑖𝑡 is the customer-specific, “baseline”, or the
threshold below which customer 𝑖 is paid for demand response reductions. Generally, 𝛼𝑡 is
chosen at the outset of the program, or chosen in each period from a limited set of pricing
options. We focus mainly on the baseline 𝛽𝑖𝑡, generally treating 𝛼𝑡 as constant or fixed in
advance.
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From the perspective of the LSE or demand-response program operator, customer 𝑖’s
utility function is unknown. The convention in practice is to choose the baseline 𝛽𝑖𝑡 as an
estimate of the counterfactual consumption E[𝑑𝑖𝑡], where the principal has imperfect infor-
mation regarding customer 𝑖’s utility function and (therefore) counterfactual consumption in
period 𝑡. Under this paradigm, the problem of choosing 𝛽𝑖𝑡 is an estimation problem; E[𝑑𝑖𝑡]

is the estimand. In practice, demand response programs will use simple heuristics to create
estimators for E[𝑑𝑖𝑡], e.g. consumption during four of the last five business days, at the same
hour of day as the current demand response period.

In reality, the cost of baseline errors—the cost when the baseline threshold is not equal
to the counter-factual consumption—may not be symmetric, which implies that current prac-
tice may be suboptimal. A reasonable cost function of errors, e.g. of the form 𝑔(𝛽𝑖𝑡 − 𝑑𝑖𝑡),
may not be symmetric, and it may be heavily influenced by other features of the customers’
utility functions, which can be learned over time. Goldberg and Agnew (2013) and Rossetto
(2018) describe the potential costs of biased baseline estimates in terms of customer satisfac-
tion. Private interviews with utilities suggest that utilities recognize customer satisfaction
benefits from upwardly biasing baselines; this could be achieved, for instance, by creating a
biased estimator s.t. E[𝛽𝑖𝑡 − 𝑑𝑖𝑡] > 0. There are no current efforts that use first principles
or customer data to determine the appropriate size of that bias, which may differ across
customers. We attempt a more thorough treatment that explicitly recognizes the trade-offs
implied by asymmetric costs and how they might vary across different customers. We argue
that the choice of 𝛽𝑖𝑡 is ultimately a decision problem that seeks to maximize welfare or to
achieve some combination of objectives for the principal and the agents.

In the following sub-sections, we present two different formulations for considering
how customers respond to demand response incentives 𝑓𝑖𝑡(𝑞). These different formulations
might be appropriate for different types of customers or customer-device pairs; an individual
receiving a text message about demand response will respond differently than an electric
vehicle charger that might receive a digital signal about a demand response event with
full information regarding the demand response incentive. Despite their differences, the
formulations provide complementary arguments that in general utilities should find 𝛽𝑖𝑡 that
optimizes some objective function, not simply choose 𝛽𝑖𝑡 as an estimate of E[𝑑𝑖𝑡], and they
provide new intuition for optimizing 𝛽𝑖𝑡 to improve demand response programs.

Section 4.4 covers the case where customer demand response is not explicitly impacted
by the demand response baseline 𝛽𝑖𝑡 that is chosen by the principal. This mirrors the typical
assumptions in practice, where 𝛽𝑖𝑡 is selected as an estimate of counter-factual consumption.
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Section 4.5 covers the case where the specific baseline threshold may 𝛽𝑖𝑡 influence the level of
customer demand response; this follows naturally from the utility-maximization framework,
but it assumes that the customer has access to information about 𝛽𝑖𝑡 in real-time.

4.4 Online Learning for Demand Response

This section shows how an LSE can learn about the optimal customer baseline in a setting
where the baseline does not directly impact customer participation. Section 4.4.1 presents
the customer model. Section 4.4.2 presents a natural objective function for an LSE operating
under this model of customer behavior. We present an online learning model for iterative
decision making by the LSE; the baseline is chosen in each period based on all available
information, but the LSE faces exploration trade-offs in deciding what customers to include
in the demand response program.

4.4.1 Baseline Agnostic Response Model

Customers in residential-style demand response programs are unlikely to track the particular
details of their baseline incentive. This formulation assumes that customers respond directly
to 𝛼𝑡, the maximum marginal benefit of reductions under the baseline incentive, without di-
rectly accounting for 𝛽𝑖𝑡. Therefore, in the ‘baseline agnostic’ response framework, customer
demand is given by:

𝑞𝑖𝑡 =

⎧⎨⎩𝑄𝑖𝑡(𝑅 + 𝛼𝑡) if 𝑝𝑖𝑡 = 1

𝑄𝑖𝑡(𝑅) otherwise
(4.2)

The variable 𝑝𝑖𝑡 is an indicator that equals one when the customer is asked to participate
in a demand response program in period 𝑡. In the base case, the customer responds to the
marginal price 𝑅. In demand response periods, the customer responds to the marginal price
𝑅 + 𝛼𝑡. In a specific period, customer 𝑖’s response 𝑟𝑖𝑡 = 𝑄𝑖𝑡(𝑅) − 𝑄𝑖𝑡(𝑅 + 𝛼𝑡). With that
notation, we have an alternative form for (4.2)

𝑞𝑖𝑡 =

⎧⎨⎩𝑑𝑖𝑡 − 𝑟𝑖𝑡 if 𝑝𝑖𝑡 = 1

𝑑𝑖𝑡 otherwise
(4.3)

Generally, 𝛼𝑡 > 0, which, along with the monotonicity of 𝑄𝑖𝑡(𝑝), implies that 𝑟𝑖𝑡 > 0.
Under this framework, when the principal sets 𝛽𝑖𝑡 too low, there is no indirect cost in terms
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of reduced reductions. Therefore, in Section 4.4.2, we incorporate these costs directly into
the principal’s objective function. Our idea is that customers respond to demand response
programs in the short-run even if they are not paid for their participation (because they
don’t have knowledge of the fact that 𝛽 is too low), but that low 𝛽 will ultimately drive
costs for the LSE in the form of dissatisfaction or customer churn. In Section 4.4.2, we
examine a candidate objective function for an LSE operating under this customer response
model and present an algorithm to sequentially set 𝛽𝑖𝑡 over time.

4.4.2 LSE Objective and Online Learning Procedure

Consider a particular customer engaged in a demand response program that is offered by
the LSE. For convenience in this section, we begin by focusing on a single customer 𝑖, whose
response is defined according to Section 4.4.1, and drop the subscript 𝑖 from the notation. In
a particular hour 𝑡 ∈ {1, 2, ...𝑇} the customer has a baseline demand 𝑑𝑡, where 𝑑1, 𝑑2, ..., 𝑑𝑇

are iid and distributed according to a known probability distribution represented by the
cumulative distribution function (CDF) 𝐹 (𝑥) = P(𝑑 ≤ 𝑥)3. Furthermore, the customer
has a potential demand response 𝑟𝑡, where 𝑟1, 𝑟2, ..., 𝑟𝑇 are iid with unknown probability
distribution. The observed demand is 𝑞𝑡 = 𝑑𝑡−𝑝𝑡𝑟𝑡, where 𝑝𝑡 ∈ {0, 1} is an indicator variable
indicating whether the customer has been asked to participate in the demand response event
in a particular hour. For simplicity, fix 𝛼𝑡 = 𝛼 for every period 𝑡.

To enhance intuition, imagine that these demand parameters 𝑑𝑡 and 𝑟𝑡 are generated
by an underlying utility function that is randomly selected from a class of suitable utility
functions; the specific utility function in a particular period is unknown to the principal.
The underlying uncertainty in the customer utility function in each period 𝑡 generates the
randomness in the demand parameters 𝑑𝑡 and 𝑟𝑡; 𝑑𝑡 and 𝑟𝑡 are not necessarily independent.

We consider the problem of choosing customer participation 𝑝𝑡 and customer baseline 𝛽𝑡

in each period 𝑡 in order to maximize the expected value of a stochastic objective function.
For simplicity, assume that the value of demand response is equal in every period under
consideration; in practice, it would vary from period to period; this is a natural extension of
these results.

We employ a simple, but generally non-convex objective function 𝑔(𝛽, 𝑑, 𝑟) that de-
scribes the costs associated with choosing some baseline 𝛽 when faced with customer demand

3In practice, customer demand would vary over hours of the day and months of the year. For example,
demand will be higher for many customers, on average, during the afternoon hours than the middle of
the night. We assume that these effects are negligible, or that they have already been accounted for. For
example, 𝑑𝑡 could be residuals after performing a multi-variate time series forecast

97



parameters 𝑑 and 𝑟.4 The function 𝑔(𝛽, 𝑑, 𝑟) : R3
+ → R combines the following objectives:

1. The benefit from the demand response reduction 𝑟.

2. The cost associated with under-compensating customers for demand response reduc-
tions, i.e. based on the difference 𝑟 − (𝛽 − 𝑞)+.

3. The cost associated with overpaying customers, i.e. based on (𝛽 − 𝑑)+.

The following is an example of one such objective function with 𝜇, 𝜆 > 0:

𝑔(𝛽, 𝑑, 𝑟) = 𝜆𝑟 − 𝜇(𝑟 − (𝛽 − (𝑑− 𝑟))+)− (𝜇 + 𝛼)(𝛽 − 𝑑)+. (4.4)

The first term 𝜆𝑟 is the benefit associated with the demand response action. The second term
𝜇(𝑟−(𝛽−(𝑑−𝑟))+) is the dissatisfaction cost associated with underpaying the customer. Once
the baseline threshold is fixed, the LSE pays customers based on the calculated reduction
(𝛽 − (𝑑 − 𝑟))+; if the customer reduces 𝑟 units, then the customer incurs a cost based on
the difference between their actual reduction 𝑟 and the calculation reduction; this cost, in
our formulation, is passed on to the LSE, for instance due to customer dissatisfaction. The
final term is the cost of overpaying a customer, i.e. from offering more than their actual
baseline consumption 𝑑. The leading parameter is 𝜇 + 𝛼 so that 𝜕𝑔

𝜕𝛽
|𝛽>𝑑 = 𝛼; if the demand

response incentive is 𝛼(𝛽− 𝑞)+, then if 𝛽 is too high the marginal cost to the LSE is 𝛼. The
parameters 𝜆 and 𝜇 measure the benefit of demand reductions and the cost of underpaying
customers, respectively. We utilize the function (4.4) throughout this section.

We seek to minimize the expected value of regret, where average regret after 𝑇 periods
is defined as:

𝑅𝑇 =
1

𝑇

𝑇∑︁
𝑡=1

E𝑑,𝑟[𝑝
*𝑔(𝛽*, 𝑑, 𝑟)]− 𝑝𝑡𝑔(𝛽𝑡, 𝑑𝑡, 𝑟𝑡). (4.5)

At each period 𝑡, we choose 𝛽𝑡 and 𝑝𝑡 with knowledge of past consumption 𝑑𝜏 and 𝑟𝜏

for 𝜏 ∈ {1, ...𝑡− 1}. The optimal values of 𝛽* and 𝑝* represent the optimal responses if the
probability law for random variables 𝑑 and 𝑟 is known:

𝛽*, 𝑝* = arg max
𝛽,𝑝

E𝑑,𝑟[𝑝𝑔(𝛽, 𝑑, 𝑟)]. (4.6)

4Non-convexity implies that it could be challenging to minimize 𝑔(𝛽, 𝑑, 𝑟), or E[𝑔(𝛽, 𝑑, 𝑟)]. However, the
minimization problem is one-dimensional, and in practice 𝛽 belongs to a discrete set for some level of decimal
precision, so here we ignore the additional challenges posed by non-convexity. In practice, E[𝑔(𝛽, 𝑑, 𝑟)] will
often be quasi-convex, further simplifying the optimization problem.
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From the perspective of a principal trying to minimize regret, a priori we only know the
probability law for the random baseline 𝑑, and not the random response 𝑟.5 We need to
deploy 𝑝𝑡 = 1 a sufficient number of times to learn about the distribution of 𝑟 and to decide
how best to set the baseline parameter 𝛽. Over time, we gain confidence regarding the value
of that customer; if the maximum value looks to be less than 0, we can stop asking the
customer to participate by more frequently setting 𝑝𝑡 = 0.6

For any 𝛽, let 𝑓(𝛽) = E𝑑,𝑟[𝑔(𝛽, 𝑑, 𝑟)]. At time 𝑡, consider a sequence of observations
of 𝑞 = 𝑑 − 𝑟 in periods where 𝑝𝑡 = 1, i.e. {𝑑1, ...𝑑𝑛𝑡} and {𝑞1, ...𝑞𝑛𝑡}, where 𝑛𝑡 =

∑︀𝑡
𝑗=1 𝑝𝑡.

Furthermore, let 𝑡𝑛 be the minimum 𝑡 s.t. 𝑛𝑡 ≥ 𝑛; i.e 𝑡𝑛 is the time period corresponding to
the nth observation. Note that 𝑡𝑛𝑡 = 𝑡. For any 𝛽, let

𝑓𝑡(𝛽) =
1

𝑡

𝜏=𝑡∑︁
𝜏=1

𝜆(E𝑑− 𝑞𝜏 )− 𝜇(E𝑑− 𝑞𝜏 − (𝛽 − 𝑞𝜏 )+)− (𝜇 + 𝛼)E(𝛽 − 𝑑)+. (4.7)

Note that E𝑑 and E(𝛽 − 𝑑)+ are known (for any 𝛽), since the distribution of 𝑑 is assumed
to be known. Furthermore, note that for any 𝛽, 𝑡, 𝑓𝑡(𝛽) depends only on the available data
{𝑞𝑖}𝑖=𝑡

𝑖=1 (i.e. it doesn’t require knowledge of 𝑑𝑡 or 𝑟𝑡). Finally, note that E𝑑,𝑟[𝑓𝑡(𝛽)] = 𝑓(𝛽),
by the linearity of expectation and the definition of 𝑞𝑡. Therefore, by using the data {𝑞𝜏}𝜏=𝑡

𝜏=1,
we can learn about E𝑑,𝑟[𝑓𝑡(𝛽)] towards optimizing 𝑓(𝛽).7 The proposed algorithm follows:
choose

𝛽𝑡 = 𝛽*
𝑡 ≡ arg max

𝛽
𝑓𝑡(𝛽) 𝑝𝑡 =

⎧⎨⎩1 if 𝑉𝑡 + 𝑤
√︁

ln 𝑡
𝑛𝑡
≥ 0

0 otherwise
(4.8)

where 𝑉𝑡 = max𝛽 𝑓𝑡(𝛽) so 𝑓𝑡(𝛽
*
𝑡 ) = 𝑉𝑡. Similarly, let 𝛽* be some maximizer of 𝑓(𝛽). Let

𝑤 ∈ R be the width of the bounded interval [𝑎, 𝑏] that strictly bounds 𝑓(𝛽), for any 𝛽. The
bounds here are guaranteed because a customer has a maximum level of power demand,
determined by their connection to the grid; this maximum power demand implies a bound
on the set of feasible estimates for 𝛽 and the support of 𝑑 and 𝑟. Collectively, this implies
that 𝑔(𝛽, 𝑑, 𝑟) is bounded. Since 𝑓𝑡(𝛽) is the average of 𝑛𝑡 samples drawn from a distribution

5Demand response periods are infrequent, so we have an order of magnitude more samples of 𝑑 than 𝑟.
This suggests that we can have a fairly accurate probability representation of 𝑑 in comparison to 𝑟.

6What does it mean for a customer to have negative value? Typically, it means that the LSE spends
more money incentivizing reductions than they earn from the customer’s demand response participation;
this could happen, for instance, if E[𝑟] is very low and/or if the variance of 𝑑 is very high.

7Note that it would be comparatively difficult to directly learn the distribution or density of 𝑟; this is
a distribution or density deconvolution problem (see Gaffey (1959); Carroll and Hall (1988); Fan (1991);
Meister (2009); Dattner et al. (2011)).
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with mean 𝑓(𝛽), then for all 𝛽, by the Chernoff-Hoeffding bound, ∀𝛿 ≥ 0

P
(︀
|𝑓𝑡(𝛽)− 𝑓(𝛽)| ≥ 𝛿

)︀
≤ 2 exp(−2𝑛𝑡𝛿

2

𝑤2
). (4.9)

Now, let 𝛿 = 𝑤
√︁

ln 𝑡
𝑛𝑡

. Then, the Chernoff-Hoeffding bound (4.9) tells us that for each value
of 𝛽 and each time 𝑡:

P

(︃
|𝑓𝑡(𝛽)− 𝑓(𝛽)| < 𝑤

√︂
ln 𝑡

𝑛𝑡

)︃
≥ 1− 2

𝑡2
. (4.10)

By applying the Hoeffding bound (4.10) at 𝛽*,

P

(︃
𝑓𝑡(𝛽

*) + 𝑤

√︂
ln 𝑡

𝑛𝑡

> 𝑓(𝛽*)

)︃
≥ 1− 2

𝑡2
. (4.11)

This following theorem shows that the algorithm (4.8) guarantees that the expected value
of the average regret (4.5) converges to 0. This result follows from the literature on Upper-
Confidence Bound algorithms in multi-armed bandit problems (Auer et al., 2002; Agrawal,
2018).

Theorem 1. If 𝛽𝑡 and 𝑝𝑡 are selected according to (4.8), the expected value of the average
regret converges to 0, i.e. lim

𝑇→∞
E[𝑅𝑇 ] = 0.

Proof. We separately consider the case of a customer with positive value 𝑓(𝛽*) > 0 and with
(weakly) negative value 𝑓(𝛽*) ≤ 0. First, consider a customer with positive value, 𝑓(𝛽*) > 0.
For this customer, the expected value of regret is

E [𝑇𝑅𝑇 ] = E

[︃
𝑇∑︁
𝑡=1

(1− 𝑝𝑡)𝑓(𝛽*) +
𝑇∑︁
𝑡=1

𝑝𝑡(𝑓(𝛽*)− 𝑓(𝛽*
𝑡 ))

]︃
. (4.12)

First we calculate the regret from not selecting a customer that has positive value
𝑓(𝛽*) > 0. By the definition of 𝛽*

𝑡 , 𝑓𝑡(𝛽*
𝑡 ) ≥ 𝑓𝑡(𝛽

*). Therefore, considering (4.11) and the
definition of 𝑝𝑡 in (4.8), this implies that for customers with 𝑓(𝛽*) > 0, P(𝑝𝑡 = 1) ≥ 1− 2

𝑡2
.

Expanding the first term in (4.12):

E

[︃
𝑇∑︁
𝑡=1

(1− 𝑝𝑡)𝑓(𝛽*)

]︃
=

𝑇∑︁
𝑡=1

P(𝑝𝑡 = 0)𝑓(𝛽*) ≤
𝑇∑︁
𝑡=1

2

𝑡2
𝑓(𝛽*) ≤ 𝜋2

3
𝑓(𝛽*). (4.13)

Next, we investigate the regret from choosing the wrong customer baseline, the second term
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in (4.12). By applying (4.9) with 𝛿 = 𝑤
√︁

ln𝑛𝑡

𝑛𝑡
,

P

(︃
|𝑓𝑡(𝛽)− 𝑓(𝛽)| < 𝑤

√︂
ln𝑛𝑡

𝑛𝑡

)︃
≥ 1− 2

𝑛2
𝑡

. (4.14)

This holds true at any 𝛽. Therefore, define events 𝐴 and 𝐵 as

𝐴 = {𝑓𝑡(𝛽*) + 𝑤

√︂
ln𝑛𝑡

𝑛𝑡

> 𝑓(𝛽*)} 𝐵 = {𝑓(𝛽*
𝑡 ) + 𝑤

√︂
ln𝑛𝑡

𝑛𝑡

> 𝑓𝑡(𝛽
*
𝑡 )}. (4.15)

From (4.14), we know that P(𝐴) ≥ 1− 2
𝑛2
𝑡

and P(𝐵) ≥ 1− 2
𝑛2
𝑡
. Now P(𝐴∩𝐵) = 1−P(𝐴∪𝐵) ≥

1−P(𝐴)−P(𝐵) ≥ 1− 4
𝑛2
𝑡

by the nature of complements and the union bound. Furthermore,
by the definition of 𝛽*

𝑡 , 𝑓𝑡(𝛽*
𝑡 ) ≥ 𝑓𝑡(𝛽

*). Therefore, with probability at least 1− 4
𝑛2
𝑡
,

𝑓(𝛽*)− 𝑓(𝛽*
𝑡 ) < 2𝑤

√︂
ln𝑛𝑡

𝑛𝑡

. (4.16)

Now, investigating the upper-bound on the right-hand term in (4.12), and incorporating
(4.16),

E

[︃
𝑇∑︁
𝑡=1

𝑝𝑡(𝑓(𝛽*)− 𝑓(𝛽*
𝑡 ))

]︃
= E

[︃
𝑛𝑇∑︁
𝑛=1

(𝑓(𝛽*)− 𝑓(𝛽*
𝑡𝑛))

]︃

≤ E

[︃
𝑛𝑇∑︁
𝑛=1

4

𝑛2
𝑤 + 2𝑤

√︂
ln𝑛

𝑛

]︃

≤ 2𝑤𝜋2

3
+ E

[︃
𝑛𝑇∑︁
𝑛=1

2𝑤

√︂
ln𝑛𝑇

𝑛

]︃

≤ 2𝑤𝜋2

3
+ E

[︃∫︁ 𝑛𝑇

𝑛=0

2𝑤

√︂
ln𝑛𝑇

𝑛
𝑑𝑛

]︃

=
2𝑤𝜋2

3
+ 2𝑤E

[︁
2
√︀

𝑛𝑇 ln𝑛𝑇

]︁
≤ 2𝑤𝜋2

3
+ 4𝑤

√
𝑇 ln𝑇 .

(4.17)

The first equality rewrites the expression in terms of periods where 𝑝𝑡 = 1. The first in-
equality expands the initial expression by noting that it is upper-bounded by the case where
𝑓(𝛽*) − 𝑓(𝛽*

𝑡 ) = 2𝑤
√︁

ln𝑛𝑡

𝑛𝑡
with probability 1 − 4

𝑛2
𝑡

and the case where 𝑓(𝛽*) − 𝑓(𝛽*
𝑡 ) ≤

sup 𝑓(𝛽*) − 𝑓(𝛽*
𝑡 ) = 𝑤 with probability 4

𝑛2
𝑡
. The second inequality upper-bounds the first

summation and uses the inequality ln(𝑛) ≤ ln(𝑛𝑇 ) for 𝑛 ≤ 𝑛𝑇 to simplify the right-hand
term. The fourth line upper-bounds the summation by a Riemann integral, since 2𝑤

√︁
ln𝑛𝑇

𝑛
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is decreasing in 𝑛. The fifth line evaluates that integral. Note that the expectation is carried
through because 𝑛𝑡 is a random variable. The final inequality upper-bounds the expected
value because with probability 1, 𝑛𝑇 ≤ 𝑇 .

Therefore, adding the final terms in (4.13) and (4.17), E[𝑇𝑅𝑇 ] = 𝑂(
√
𝑇 ln𝑇 ), for

customers with 𝑓(𝛽*) > 0.

Next, consider a customer without positive value, 𝑓(𝛽*) ≤ 0.8 For this customer, the
expected value of regret is

E [𝑇𝑅𝑇 ] = −E

[︃
𝑇∑︁
𝑡=1

𝑝𝑡𝑓(𝛽*
𝑡 )

]︃
. (4.18)

From (4.10), with probability at least 1− 2
𝑡2

,

𝑓𝑡(𝛽
*
𝑡 ) < 𝑓(𝛽*

𝑡 ) + 𝑤

√︂
ln 𝑡

𝑛𝑡

. (4.19)

When 𝑛𝑡 ≥ 4𝑤2 ln 𝑡
𝑓(𝛽*)2

, this implies that with probability at least 1− 2
𝑡2

𝑓𝑡(𝛽
*
𝑡 ) < 𝑓(𝛽*

𝑡 ) +
|𝑓(𝛽*)|

2
. (4.20)

The inequality follows from the lower bound on 𝑛𝑡 and the fact that 𝑤
√︁

ln 𝑡
𝑛𝑡

is decreasing in

𝑛𝑡. Therefore, when 𝑛𝑡 ≥ 4𝑤2 ln 𝑡
𝑓(𝛽*)2

, with probability at least 1− 2
𝑡2

,

𝑓𝑡(𝛽
*
𝑡 ) + 𝑤

√︂
ln 𝑡

𝑛𝑡

< 𝑓(𝛽*
𝑡 ) +

|𝑓(𝛽*)|
2

+ 𝑤

√︂
ln 𝑡

𝑛𝑡

≤ 𝑓(𝛽*
𝑡 ) + |𝑓(𝛽*)|

≤ 𝑓(𝛽*) + |𝑓(𝛽*)| = 0.

(4.21)

The first inequality follows directly from (4.20), and the second inequality uses the same
mechanism as (4.20) to bound 𝑤

√︁
ln 𝑡
𝑛𝑡

, given the lower bound on 𝑛𝑡. The third inequality
comes from the definition of 𝛽* as the maximizer of 𝑓(𝑥). The final equality is because
𝑓(𝛽*) ≤ 0. Altogether, (4.21) implies that

P
(︂
𝑝𝑡+1 = 1|𝑛𝑡 ≥

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂
≤ 2

𝑡2
. (4.22)

8Imagine a customer with very low average response E[𝑟] or with significant variability in baseline con-
sumption 𝑑.
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Therefore,

E[𝑛𝑇 ] = 1 + E

[︃
𝑇∑︁
𝑡=1

1(𝑝𝑡+1 = 1)

]︃

= E

[︃
𝑇∑︁
𝑡=1

1

(︂
𝑝𝑡+1 = 1, 𝑛𝑡 <

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂
+

𝑇∑︁
𝑡=1

1

(︂
𝑝𝑡+1 = 1, 𝑛𝑡 ≥

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂]︃

≤ 4𝑤2 ln𝑇

𝑓(𝛽*)2
+

𝑇∑︁
𝑡=1

P
(︂
𝑝𝑡+1 = 1, 𝑛𝑡 ≥

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂

=
4𝑤2 ln𝑇

𝑓(𝛽*)2
+

𝑇∑︁
𝑡=1

P
(︂
𝑝𝑡+1 = 1|𝑛𝑡 ≥

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂
P
(︂
𝑛𝑡 ≥

4𝑤2 ln 𝑡

𝑓(𝛽*)2

)︂

≤ 4𝑤2 ln𝑇

𝑓(𝛽*)2
+

𝑇∑︁
𝑡=1

2

𝑡2
=

4𝑤2 ln𝑇

𝑓(𝛽*)2
+

𝜋2

3
.

(4.23)

The first equality uses the law of total probability. The first inequality utilizes the upper-
bound on 𝑛𝑡 in the first term of the sum. The second equality rewrites the joint probability
using the conditional probability chain rule. The second inequality utilizes (4.22) and P(𝐴) ≤
1 for any event 𝐴. The final equality evaluates the summation. Now the expected value of
regret

E [𝑇𝑅𝑇 ] = E

[︃
−

𝑇∑︁
𝑡=1

𝑝𝑡𝑓(𝛽*
𝑡 )

]︃
≤ E

[︃
𝑇∑︁
𝑡=1

𝑝𝑡𝑤

]︃
≤ 𝑤E𝑛𝑇 ≤

4𝑤3 ln𝑇

𝑓(𝛽*)2
+

𝑤𝜋2

3
= 𝑂(ln𝑇 ). (4.24)

Therefore, for any customer, with 𝑓(𝛽*) > 0 or 𝑓(𝛽*) ≤ 0, E[𝑇𝑅𝑇 ] = 𝑂(
√
𝑇 ln𝑇 ). The

expected value of average regret converges to 0: lim
𝑇→∞

E[𝑅𝑇 ] = 0.

Note that one outcome of this learning procedure is often that 𝛽𝑡 < E𝑑, especially for
small 𝑡. We could tweak the algorithm to bias 𝛽𝑡 upwards when 𝑡 is small, to ensure that we
don’t underpay customers when he haven’t yet seen significant evidence of E𝑟 > 0.

One potential concern of this algorithmic approach is that the regret bounds focus on
the growth of regret; regret could be very high (due to a large leading constant) for small
𝑇 . In Section 4.6 we provide numerical examples of the performance of the algorithm. The
algorithm performs better than the existing approach even for very small 𝑇 (i.e. 𝑇 = 10).
This can be explained in part by the fact that the algorithm uses 𝑝𝑡 to explore customers,
but it doesn’t need to vary 𝛽𝑡 to explore rewards because the available information provides
a noisy version of the entire cost function (i.e. for any 𝛽) in each round.
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One shortcoming of this approach is that it ignores the possibility that 𝑟𝑡 is impacted
in real-time by our choices of 𝛽1, 𝛽2, ..., 𝛽𝑡. Section 4.5 develops a customer model with those
characteristics and investigates online learning for demand response baselines in that setting.

4.5 Online Learning for DR with Responsive Customers

The previous model assumed that the demand response baseline threshold for customer 𝑖 in
period 𝑡, 𝛽𝑖𝑡, did not directly impact a customer’s level of demand response 𝑟𝑡. This section
considers a utility-maximizing customer who is faced with a demand response incentive of
the form described in (4.1). Under this model, with full information, it is clear that 𝛽𝑖𝑡 can
impact 𝑞𝑖𝑡. Section 4.5.1 explains the model, and Section 4.5.2 describes an online learning
algorithm that can be leveraged to set baselines under the aforementioned model of customer
behavior.

4.5.1 Full Information Response Model

In this framework, customers have full knowledge of the demand response incentive 𝑓𝑖𝑡(𝑞),
and they only reduce their demand when 𝛽𝑖𝑡 is sufficiently high. Given the demand response
incentive, and perfect information on the part of the customer, then customer 𝑖’s objective
function in period 𝑡 is

𝑈𝑖𝑡(𝑞)− 𝑞𝑅 + 𝑓𝑖𝑡(𝑞). (4.25)

The customer chooses 𝑞𝑖𝑡 = arg max𝑞 𝑈𝑖𝑡(𝑞) − 𝑞𝑅 + 𝑓𝑖𝑡(𝑞). As before, the “baseline”
𝑑𝑖𝑡 is the customer’s counterfactual consumption, i.e. what they would have consumed in
the absence of the demand response program. The customer’s maximization problem is
non-convex, because it is the sum of 𝑈𝑖𝑡(𝑞) (concave) and 𝑓𝑖𝑡(𝑞) (convex). As before, let
𝑓𝑖𝑡(𝑞) = 𝛼𝑡(𝛽𝑖𝑡 − 𝑞)+. The solution to the customer’s non-convex maximization problem is
given by:

𝑞𝑖𝑡 =

⎧⎨⎩𝑑𝑖𝑡 − 𝑟𝑖𝑡 if 𝑈𝑖𝑡(𝑑𝑖𝑡 − 𝑟𝑖𝑡) + 𝑓𝑖𝑡(𝑑𝑖𝑡 − 𝑟𝑖𝑡) ≥ 𝑈𝑖𝑡(𝑑𝑖𝑡) + 𝑓𝑖𝑡(𝑑𝑖𝑡)

𝑑𝑖𝑡 otherwise
(4.26)

where, as before, 𝑟𝑖𝑡 = 𝑄𝑖𝑡(𝑅) − 𝑄𝑖𝑡(𝑅 + 𝛼𝑡). The value 𝑑𝑖𝑡 − 𝑟𝑖𝑡 is the optimal response
to the part of the incentive function where 𝑓𝑖𝑡(𝑞) > 0, while the value 𝑑𝑖𝑡 is the optimal
response (i.e. no response) along the part of the incentive function where 𝑓𝑖𝑡(𝑞) = 0. The
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discontinuity is due to the non-convexity of the customer’s decision problem, which arises
from the fact that 𝑈𝑖𝑡(𝑞) is concave but 𝑓(𝑞) is convex.

The customer response model (4.26) implies the existence of a specific threshold such
that the customer only reduces their demand 𝑞𝑖𝑡 if 𝛽𝑖𝑡 is above the threshold. Let ℎ𝑖𝑡 be that
threshold; from (4.26), 𝑑𝑖𝑡 − 𝑟𝑖𝑡 < ℎ𝑖𝑡 < 𝑑𝑖𝑡. With this notation,

𝑞𝑖𝑡(𝛽) = 𝑑𝑖𝑡 − 𝑟𝑖𝑡1{ℎ𝑖𝑡≤𝛽}. (4.27)

Note that ∀𝛽′ ≥ 𝛽, with probability 1, 𝑞𝑖𝑡(𝛽′) ≤ 𝑞𝑖𝑡(𝛽).

4.5.2 Learning Baselines with Responsive Customers

In this section we consider the case where customers adjust their demand using full informa-
tion of the demand response incentive and baseline. As explained in Section 4.5.1, under this
paradigm customers reduce their demand if and only if the baseline threshold is sufficiently
high. This section considers that type of customer behavior and develops online tools for
setting customer baselines under this model of behavior. The online learning algorithms and
bounds in this section come from (Kleinberg, 2005) and Auer et al. (1995).

This approach has several benefits: it is robust to non-stationarity of underlying de-
mand parameters, it does not require a separate estimate of the counter-factual consumption,
and it incurs sub-linear regret even when the customer is ‘adversarial.’ We consider the case
where behavior in each round is determined by an ‘adversary,’ a customer who can choose
their utility function in each period, not necessarily drawn from a stochastic model. Under
this approach, the expected value of average regret converges to 0, where average regret
compares actual performance to the optimal baseline that would be chosen in hindsight.
Due to this ‘adversarial’ framework, this approach is suitable for non-stationary models of
customer behavior.

The downside of this approach is that it learns slowly about customer behavior. It
might not be practical for demand response programs with less than 50 events per year.
However, typically one might expect that ‘responsive’ customers have digitally connected
devices. Compared to an individual, these devices are more likely to account for the baseline
parameter 𝛽 in determining their response. The devices are also better suited to demand
response programs with frequent events. This design might be suitable for programs with
frequent demand response periods and digitally connected devices.

Under this paradigm, it is natural to assign some benefit for demand response reduc-
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tions, which will be proportional to the actual size of the reduction. On the other hand, there
is a cost associated with providing demand response payments to customers. The following
function describes a natural objective function for the LSE:

𝑔(𝛽, 𝑑, 𝑟, ℎ) = 𝜆𝑟1ℎ≤𝛽 − 𝛼(𝛽 − 𝑞)+ (4.28)

where 𝑞 is determined by 𝑑, 𝑟, ℎ, and 𝛽, as described in (4.27). The LSE earns value propor-
tional to 𝜆 for demand response reductions, and it bears costs due to the demand response
transfer 𝛼(𝛽 − 𝑞)+.

Note that the LSE cannot directly observe 𝑔(𝛽, 𝑑𝑡, 𝑟𝑡, ℎ𝑡) in any period 𝑡 because they
only observe 𝑞𝑡, not directly 𝑑𝑡, 𝑟𝑡, or ℎ𝑡. Let 𝛽𝑀 be the maximum baseline threshold
for the customer under consideration. For each 𝑡 ∈ {1, 2, ..., 𝑇} we have a cost function
𝑓𝑡 : [0, 𝛽𝑀 ]→ 𝑆, as follows:

𝑓𝑡(𝛽) = 𝜆𝑞𝑡 + 𝛼 (𝛽 − 𝑞𝑡)
+ . (4.29)

Note that 𝑓𝑡(𝛽) = 𝜆𝑑𝑡−𝑔(𝛽, 𝑑𝑡, 𝑟𝑡, ℎ𝑡), and 𝑑𝑡 is unaffected by 𝛽. Therefore, arg min𝛽 𝑓𝑡(𝛽) =

arg max𝛽 𝑔(𝛽, 𝑑𝑡, 𝑟𝑡, ℎ𝑡) and arg min𝛽

∑︀𝑇
𝑡=1 𝑓𝑡(𝛽) = arg max𝛽

∑︀𝑇
𝑡=1 𝑔(𝛽, 𝑑𝑡, 𝑟𝑡, ℎ𝑡). Further-

more, note that the compactness of the domain [0, 𝛽𝑀 ] and of the support of 𝑞𝑡 implies
that 𝑆 is compact. Assume 𝑆 is nonempty. Then 𝑆0 = min𝑆 and 𝑆1 = max𝑆 exist. Let
𝑤 = 𝑆1 − 𝑆0.

Next, we present an algorithm that chooses 𝛽1, 𝛽2, ..., 𝛽𝑇 in order to bound the expected
value of average regret, where average regret is

𝑅𝑇 =
1

𝑇

𝑇∑︁
𝑡=1

(𝑔 (𝛽*, 𝑑𝑡, 𝑟𝑡, ℎ𝑡)− 𝑔 (𝛽𝑡, 𝑑𝑡, 𝑟𝑡, ℎ𝑡)) =
1

𝑇

𝑇∑︁
𝑡=1

(𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
*)) . (4.30)

The optimal-in-hindsight parameter 𝛽* = arg max𝛽

∑︀𝑇
𝑡=1 𝑔 (𝛽, 𝑑𝑡, 𝑟𝑡, ℎ𝑡). Note that we are

interested in the expected value of the average regret because the algorithm could make
random choices of 𝛽𝑡. Our proposed algorithm follows from Kleinberg (2005):

The phrase MAB refers to the appropriate multi-armed bandit algorithm with a finite
number of arms. An appropriate algorithm for MAB in this case is EXP3 from the paper
by Auer et al. (1995). The function Γ : 𝑆 → [0, 1] is a normalizing function for 𝑓𝑡, i.e.
Γ(𝑥) = 1

𝑤
(𝑆1 − 𝑥).

Theorem 2. Under Algorithm 1, E [𝑇𝑅𝑇 ] = 𝑂(𝑇 2/3 log1/3 𝑇 ). The expected value of average
regret converges to 0, i.e. lim

𝑇→∞
E[𝑅𝑇 ] = 0.
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Algorithm 1 DR1
1: 𝑛← 1
2: while 𝑛 ≤ 𝑇 do

3: 𝐾 ←
(︁

𝑛
log𝑛

)︁1/3
4: Initialize MAB with strategy set {𝛽𝑀/𝐾, 2𝛽𝑀/𝐾, ..., 𝛽𝑀}
5: for 𝑡 = 𝑛, 𝑛 + 1, ...,min(2𝑛− 1, 𝑇 ) do
6: Get strategy 𝛽𝑡 from MAB
7: Play 𝛽𝑡 and discover 𝑓𝑡(𝛽𝑡)
8: Feed Γ(𝑓𝑡(𝛽𝑡)) back to MAB
9: end for

10: 𝑛← 2𝑛
11: end while

Proof. The proof follows from Kleinberg (2005). In our case, the functions 𝑓1, ..., 𝑓𝑇 are
not uniformly locally Lipschitz due to the discontinuity of 𝑓𝑡(𝛽) near 𝛽 = ℎ𝑡 (due to the
discontinuity of 𝑞𝑡(𝛽)). However, as we will explain, this is addressed by the special form of
𝑓𝑡. The functions 𝑓1, ..., 𝑓𝑇 also do not necessarily take values in [0, 1], but they are bounded
as described above. It suffices to show that the regret in the inner (for) loop of Algorithm 1
is 𝑂(𝑛2/3 log1/3 𝑛). This is because

⌊log2 𝑇 ⌋∑︁
𝑟=0

(2𝑟)2/3 log1/3(2𝑟) ≤
⌊log2 𝑇 ⌋∑︁
𝑟=0

(2𝑟)2/3 log1/3(𝑇 ) ≤ 𝑇 2/3 − 1

22/3 − 1
log1/3(𝑇 ) ≤ 2𝑇 2/3 log1/3(𝑇 ).

(4.31)
The first expression sums the regret for each iteration of the outer loop, where 𝑛 = 2𝑟 in
the 𝑟th iteration. The first inequality is because 2𝑟 ≤ 𝑇 . The second inequality computes
the geometric sum with constant ratio, and the final inequality simplifies the expression.
Therefore, if the inner loop is 𝑂(𝑛2/3 log1/3 𝑛) then the outer loop is 𝑂(𝑇 2/3 log1/3 𝑇 ).

Next, consider a single iteration of the inner loop with 𝑛 fixed and 𝐾 defined as in

Algorithm 1, i.e. 𝐾 =
(︁

𝑛
log𝑛

)︁1/3
. Then, 𝐾 points partition the domain [0, 𝛽𝑀 ]. Let 𝛽′ be

the smallest element in {𝛽𝑀/𝐾, 2𝛽𝑀/𝐾, ..., 𝛽𝑀} s.t. 𝛽′ ≥ 𝛽*. Then

E

[︃
𝑛∑︁

𝑡=1

𝑓𝑡(𝛽
′)− 𝑓𝑡(𝛽

*)

]︃
≤ 𝛼

𝑛𝛽𝑀

𝐾
= 𝑂(𝑛2/3 log1/3(𝑛)). (4.32)

This is due to the fact that for any 𝑡, 𝛽′ ≥ 𝛽, 𝑞𝑡(𝛽′) ≤ 𝑞𝑡(𝛽) from the form of 𝑞𝑡 as explained
in (4.27). Therefore, 𝑓𝑡(𝛽′)− 𝑓𝑡(𝛽

*) ≤ 𝛼|𝛽′ − 𝛽*| ≤ 𝛼𝛽𝑀

𝐾
. The equality is due to the form of

𝐾, described above.
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Then, the next step is to show that E [
∑︀𝑛

𝑡=1 𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
′)] = 𝑂(𝑛2/3 log1/3(𝑛)). Let

𝛽*
𝑛 be the optimal arm in the inner loop that begins with 𝑡 = 𝑛. Then

E

[︃
𝑛∑︁

𝑡=1

𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
′)

]︃
≤ E

[︃
𝑛∑︁

𝑡=1

𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
*
𝑛)

]︃
= 𝑂(

√︀
𝑛𝐾 log𝐾).

(4.33)

The inequality says that the regret of 𝛽𝑡 versus 𝛽′ is no higher than the regret of 𝛽𝑡

versus 𝛽*
𝑛. This follows from the definition of 𝛽*

𝑛. The equality follows from the results by
Auer et al. (1995), where the MAB function is selected as the EXP1 algorithm from their
paper. Compared to their result, cumulative regret is multiplied by the constant 𝑤 here, but
this constant does not affect the limiting behavior.

Due to our definition of 𝐾, E [
∑︀𝑛

𝑡=1 𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
′)] = 𝑂(𝑛2/3 log1/3(𝑛)) and therefore

E [
∑︀𝑛

𝑡=1 𝑓𝑡(𝛽𝑡)− 𝑓𝑡(𝛽
*)] = 𝑂(𝑛2/3 log1/3(𝑛)).

Including the previous argument about the sum of the geometric series of inner loops,
the expected value of cumulative regret E [𝑇𝑅𝑇 ] = 𝑂(𝑇 2/3 log1/3(𝑇 )). Therefore, the ex-
pected value of average regret converges to 0: lim

𝑇→∞
E[𝑅𝑇 ] = 0.

4.6 Case Studies and Examples

This section shows how the learning algorithms presented in Sections 4.4.2 and 4.5.2 can
improve demand response program trade-offs on simulated customers.

First, consider a group of 𝑁 = 2000 customers participating in multiple demand re-
sponse periods. For all customers and time periods, ∀𝑖, 𝑡, 𝑑𝑖𝑡 ∼ 𝑁(10, 1.52). Customer
response 𝑟𝑖𝑡 ∼ 𝐵𝑖𝑍, where 𝑍 ∼ 𝑁(2, 0.52), and 𝐵𝑖 ∼ Ber(𝑝𝑖) where for each 𝑖, 𝑝𝑖 is one draw
of the uniform random variable on [0, 1].

Figure 4-2 highlights the fact that a decision-based framework can improve the terms of
a trade-off between multiple outcomes of interest in a demand response program. The x-axis
describes the average price paid per unit of demand-response reduction ($ / kWh), where 𝛼𝑡

is normalized to 1 in all periods. The y-axis describes the average shortfall versus the actual
DR for consumers; this explains the extent to which consumers are underpaid relative to their
actual reductions in certain periods. There is a fundamental trade-off between minimizing
each of these individual attributes. Even with a fairly limited number of demand response
periods (𝑇 = 10 periods) we learn enough about the customer to improve versus the base
case, where the baseline threshold is an estimate of the mean or a uniformly biased estimate
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(a) 10 DR periods (b) 50 DR periods

Figure 4-2: Trade-offs for demand response procurement.

of the mean. With perfect information, the optimal point that could be achieved is (1, 0).

The dot near (1.35, 26) in Figures 4-2a and 4-2b displays the outcome that would
be achieved by setting 𝛽𝑖𝑡 = E𝑑𝑖𝑡 for all customers in all time periods; this represents the
base-case. The dot-dashed line shows how various trade-offs could be achieved by uniformly
biasing the baseline estimate for all customers. The dashed line shows the optimal outcome
that could be achieved in hindsight; the range of the line refers to multiple outcomes with
𝜆 and 𝜇 in different proportions (𝜆 = 1 and 𝜇 ranges from 0.9 to 5). The solid line shows
the outcome that can be achieved using the online learning framework in Section 4.4.2, with
𝑇 = 10 periods in Figure 4-2a. As 𝑇 grows, the solid line converges to the dashed line;
see Figure 4-2b. Even with just 10 demand response periods to learn about customers, our
approach drives a 10% improvement in the outcome variables of interest.

These benefits are even more pronounced in a demand response program where most
customers do not respond to demand response signals. This example helps explain the case
where demand response is offered by default, or where demand elasticities vary significantly
from customer to customer. In this example, assume that all variables are generated the
same way as in Figure 4-2 except for 𝑝𝑖. In this example, 10% of customers have a 𝑝𝑖 = 0.8;
these customers respond to a demand response event 80% of the time. Assume the other 90%
of customers never respond to a DR event; for these customers 𝑝𝑖 = 0. Figure 4-3 shows the
trade-offs achieved by our algorithm in this type of setting and compares it to the base-case
where the baseline threshold is calculated as an estimate of counterfactual consumption.

Next, consider a numerical example corresponding to Section 4.5. The online learning
procedure in Section 4.5 directly tries to maximize demand response reductions and to min-
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(a) 10 DR periods (b) 50 DR periods

Figure 4-3: Trade-offs for demand response procurement, with low customer response rates.

imize costs; these objectives are not aligned, so there is a natural trade-off between each of
the objectives.

Consider a group of 𝑁 = 1000 customers participating in a demand response program.
As before, for all customers, in all time periods, ∀𝑖, 𝑡, 𝑑𝑖𝑡 ∼ 𝑁(10, 1.52). Customer response
𝑟𝑖𝑡 ∼ 𝐵𝑖𝑍, where 𝑍 ∼ 𝑁(2, 0.52), and 𝐵𝑖 ∼ Ber(𝑝𝑖).

Figure 4-4 shows the average cumulative cost per unit of reduction, when 𝛼𝑡 is normal-
ized to 1 in all periods, as learning occurs in sequential DR periods. The x-axis is the total
number of DR periods. The y-axis represents the average cumulative cost per unit of DR
reduction. In a particular period, this value is the total price paid in the demand response
program, divided by the total extent of demand response reductions (in kWh). Figure 4-4a
represents the uniform case; for each 𝑖, 𝑝𝑖 is one draw of the uniform random variable on
[0, 1]. Figure 4-4b represents the low-participation case; 𝑝𝑖 = 0.8 for 10% of customers, and
𝑝𝑖 = 0 for the remaining customers. In both cases, the online-learning program quickly learns
to reduce costs per unit of DR reduction, versus the base case where 𝛽𝑖𝑡 = E𝑑𝑖𝑡 (represented
by the dot-dashed line).

This amount of learning required to surpass the base case is higher than in the examples
for the model and algorithm from Section 4.4; the number of periods required for effective
learning still seems practical given that this model is most appropriate for highly-responsive
customers, like customers with automated devices. These types of customers are better
equipped to respond to 40+ demand response periods in a year.

Note that the long-run improvement of the online learning framework for the demand
response program is guaranteed by the upper-bounds on regret in Section 4.5.2. However,
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(a) Random participation levels (b) Low participation

Figure 4-4: Demand response learning with responsive customers.

the practical behavior of the program for a small, finite number of DR periods is strongly
dependent on the initialization. For these examples, we assumed that 𝛽𝑖𝑡 ∈ [7.5, 10.5] and
tested the case where 𝜆 = 1.5. A wider range for permissible 𝛽𝑖𝑡 has a high cost in terms
of regret in the short-term, because the online learning algorithm needs to spend a signif-
icant number of demand response periods exploring low-value parameters. Therefore, it is
practically important to carefully initialize the possible range for 𝛽𝑖𝑡, taking into account
historical programs and expected performance. This issue would be an interesting area for
future work.

Note that here and in Section 4.6 we fixed 𝛼𝑡 = 1 for all 𝑡 for simplicity. This is higher
than a typical DR incentive; a reasonable range for a demand response incentive is 0.3− 0.6

$/kWh above the retail rate, so the actual cost per unit of reduction would be about half of
the normalized values reported in the Figures in these sections, assuming the same levels of
reduction.

4.7 Conclusion

This chapter investigates the sequential decision problem of choosing customer baselines in
incentive-based demand response programs. We considered two different models of customer
demand and of LSE’s objective functions for demand response programs. In a reasonable
objective function, the LSE will incorporate (1) the cost of incentivizing customers, (2)
customer satisfaction, and (3) the total level of demand reductions. These objectives are
often in conflict.
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Under these customer and LSE models, it is clear that the optimal demand response
baseline is not necessarily an estimate of the customer’s counterfactual demand, which is
the typical practice. We show how an LSE can use tools from online learning to sequen-
tially set customer baseline thresholds, offering customers a linear payment for demand
response reductions below the chosen threshold. This allows them to optimize the demand
response program to suit their particular objectives, overcoming uncertainty about customer
counter-factual consumption and demand reduction and even lack of knowledge regarding
the underlying distributions of those customer-specific variables. In simple examples, we
validate our approach and show that it can outperform current practice.

112



Chapter 5

Conclusion and Future Work

The growth of variable renewable energy will continue to challenge and inspire change in
the electricity sector. In this thesis, we investigate challenges that could test energy market
design as renewable energy generation continues to grow. Using tools from optimization,
decision sciences, probability, and statistics, we study problems related to market power,
forward contracting, and demand-side participation in future electricity markets.

In the first chapter, we investigate producer strategy and market power in energy
markets with high levels of stochastic renewable energy. We model the market equilibrium
as a Bayesian Nash Equilibrium; the features of the equilibrium are heavily influenced by
the probabilistic relationship between the energy outputs of renewable resources. We show
how correlation between random energy availability can impact market power and welfare,
and we consider the value of public information sharing of high-quality forecasts.

In the second chapter, we model the impact of forward contracting on market power in
electricity spot markets. We investigate incentives for forward contracting and their down-
stream impacts on producer market power. We show that changes in the retail side of the
electricity sector—specifically a reduction in concentration, or an increase in the number of
LSEs serving end-use consumers—can reduce forward contracting. In many states, including
Massachusetts and California, retail electricity choice and municipal aggregation are increas-
ing competition in the retail electricity sector. The results in this chapter suggest that these
impacts could reduce incentives for forward contracting. Forward contracting is an impor-
tant tool for financing investment in renewable energy, and it helps reduce market power
in short-term electricity markets. Therefore, this chapter highlights a potential downside of
increased retail competition.

In the third chapter, we study the iterative decision process for choosing customer
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baseline thresholds in incentive-based demand response programs. Incentive-based demand
response programs can help reduce electricity demand from residential and small commercial
customers during time periods when the cost of delivered electricity is high. These programs
are popular because they provide no downside risk to customers: they pay customers for
reductions, but do not increase prices for consumption. Despite its practical popularity,
this model creates challenges for designing an effective compensation mechanism. We show
how tools from online learning can be used to iteratively choose baseline thresholds for
customers, offering them a demand response incentive with a linear reward for consumption
below the baseline threshold. This approach learns and utilizes customer-specific information
in order to most effectively allocate program funds to reduce electricity demand. In simple
examples, this methodology outperforms the current practice, where the baseline threshold
is an estimate of the customer’s counter-factual consumption.

There are exciting opportunities for research in optimization, economics, statistics, and
control theory to improve electricity markets and grid operations in order to enable a low-
cost, low-carbon grid. Given the scope of potential research activities, we consider here just
a few interesting possibilities for new research extending or validating the specific ideas in
this thesis.

In order to aid our understanding of market power in future electricity systems, research
efforts could test new modeling frameworks and consider practical questions of market power
monitoring in high-renewable energy systems. Theoretical research on producer strategy and
market power could directly model joint ownership of fossil-fuel and renewable technologies,
focusing on the impacts of uncertainty and resource heterogeneity under that scenario. Addi-
tional theoretical work could consider the impact of forward markets and forward contracts,
including day-ahead markets and long-term contracts. Future work should focus on prac-
tical questions for market power monitoring in electricity systems where the regulator has
imperfect information regarding energy availability from renewable generators.

In addition, further research could focus on strategic behavior of energy storage assets
and the ability of energy storage operators to manipulate market prices. Existing research
focuses on the energy arbitrage capabilities of storage or its potential value for ancillary
services. When energy storage is co-located with renewable energy assets, it could enhance
the ability of producers to exercise market power; if a strategic wind producer withholds
energy in a particular time period, this energy could potentially be used to charge an energy
storage device and sold at a later period, instead of wasted at zero value. Research could
investigate the impacts of low-cost storage on market power. The dynamic optimization
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problem of operating storage for energy arbitrage is very interesting; the potential for strate-
gic behavior adds new complexity and research interest. Finally, research could also focus on
practical questions for market power monitoring when regulators have imperfect information
regarding opportunity costs for storage.

Research efforts could continue to investigate the link between retail electricity com-
petition and forward contracting in electricity markets. Researchers could develop a more
detailed model that incorporates multiple incentives for forward contracting, including price-
risk reduction. It would also be valuable to gain better understanding of current forward
contracting behavior by energy suppliers, corporate customers, and financial intermediaries.
An empirical analysis could estimate the magnitude of the potential impacts described in
Chapter 3. Besides the issues raised in this thesis, a related concern is that increased retail
competition could drive free-loading for reliability and resource adequacy products: small
retailers might not engage in forward contracts because grid operators can not preferentially
shut-off their customers during shortage periods or reliability events. Future research could
investigate the impacts of increased retail competition on forward contracting by focusing
on these market failures.

Well-designed incentives can improve the responsiveness of demand to changing grid
conditions and reduce the cost of supplying reliable, low-carbon electricity. Researchers could
extend our results by improving the methods and by considering enhancements that improve
the rate of learning. Tools from machine learning, especially reinforcement learning, could
be utilized to choose baseline thresholds during sequential demand response events. Our
approach has zero average regret in the limit; other approaches could have better practical
results even if they do not have provable bounds. Our method learns about customers
individually, but clustering methods could be useful to the extent that many customers have
similar usage patterns and behaviors. Research could use clustering methods to identify
similar customers and learn simultaneously about average parameters for a group of similar
customers. In each demand response period, we could learn more quickly about customer
groups proportional to the size of each cluster. New research can tackle additional challenges
related to incentive-based demand response. Researchers could consider the joint problem
of setting the baseline threshold (our focus) and also setting the demand-response incentive,
which could vary from hour to hour in some DR programs. Our approach helps mitigate
adverse selection, by reducing payments to low-performing or low-value customers. New
research could seek to extend the literature on the problem of moral hazard in DR programs,
which could be especially pertinent in programs with larger numbers of automated devices.
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Finally, research should continue to focus on alternative methods for demand response,
including direct load-control, and on understanding and mitigating barriers to cost-reflective
pricing.
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