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Abstract

Josephson traveling wave parametric amplifiers (JTWPAs) are widely used in su-
perconducting qubit and microwave quantum optics experiments. Compared with
cavity-based Josephson parametric amplifiers (JPAs), JTWPAs have ∼10dB higher
dynamic range and an order of magnitude higher bandwidth, exhibiting >20dB gain
over several gigahertz of instantaneous bandwidth. The broad bandwidth and high
dynamic range of JTWPAs allow for simultaneous readout of more than 20 frequency-
multiplexed qubits. With these amplifiers, qubit readout fidelities above 99% have
been achieved; however, current JTWPA have a full readout chain quantum efficiency
of ∼50% which is well below that of an ideal parametric amplifier. This thesis stud-
ies the effect of higher order modes on the quantum efficiency, identifies mitigation
strategies, and proposes new designs of JTWPAs with improved quantum efficiency
that can potentially increase qubit readout speed and fidelity.
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Chapter 1

Introduction

Quantum computing, a new computing paradigm, utilizes the phenomena of super-

position and entanglement to perform computation. The recent invention of powerful

quantum algorithms [59, 23, 17] has spurred significant development and investment

in quantum computing, which has the potential to expand what is considered com-

putable. Moreover, quantum computers are well suited for simulating other quantum

systems which can advance fields such as pharmaceutical science, materials science,

and particle physics [70, 40].

Quantum computers can be implemented with many different physical systems

[32, 44, 52, 8], among which superconducting quantum circuits are considered one of

the leading platforms [46]. The quantum electrodynamics of superconducting quan-

tum circuits is termed circuit quantum electrodynamics (cQED) [6]. In superconduct-

ing quantum computing, qubits are typically made from Josephson junctions, which

are nonlinear electric elements formed by a thin dielectric layer between by two su-

perconductor leads [30]. The strong nonlinearity of Josephson junctions makes it

possible to construct artificial atoms whose transition between the lowest two energy

levels can be distinguished and controlled separately from the others. The cQED

platform is promising for a number of reasons including fast control and readout.

The readily achievable strong coupling between photons and superconducting qubits

currently allows hundreds to thousands of readout and gate operations before the

qubits decohere. In addition, modern nanofabrication and integrated circuits tech-
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niques enable the scalable fabrication of large-scale quantum circuits with hundreds

of superconducting qubits on a single chip.

Regardless of the platform, the ability to perform qubit state readout with high

fidelity at a fast rate is essential for any quantum information processing tasks. In

circuit QED, a qubit state is typically determined from the state-dependent dispersive

phase shift of a readout resonator coupled to the qubit [58, 6, 33]. A weak microwave

probe tone is reflected off of the readout resonator and the qubit state information is

encoded in its phase. The weak microwave tone needs to be amplified in a series of

stages before detection and digitization by room temperature electronics. The signal-

to-noise ratio (SNR) of the detected signal at the final stage is mostly determined

by the first amplifier in the amplifier chain [14]. The SNR directly affects how well

and how quickly different qubit states can be differentiated from each other. This

necessitates the use of an ultra-low noise amplifier at the front end of the chain. To

date, near quantum-limited amplifiers in the microwave frequency range are all based

on the principle of nonlinear parametric amplification [69, 13, 65, 20, 47, 38, 66]. In

a parametric amplifier, the weak signal of interest interacts with one or more strong

and coherent pump tones at different frequencies through a three- or four-wave mixing

process. Because the amplification process is parametric, the associated noise can be

quantum-limited if the system is lossless and no other interactions are present [25, 14].

Josephson parametric amplifiers (JPAs) with near quantum-limited noise perfor-

mance have been used for superconducting qubit readout since as early as 2011 [1].

JPAs are essentially nonlinear parametric oscillators in which the intermodulation be-

tween pump and signals is enhanced by a cavity [65, 20]. JPAs can typically achieve

>20dB gain over a 3dB bandwidth of several MHz, subject to the gain-bandwidth

product imposed by the existence of the cavity. Although operating at near quantum-

limited noise and therefore suitable for single qubit readout, JPAs unfortunately have

relatively small dynamic range and thus a slow response time due to the resonant

interactions in the cavity. Although JPAs with widely tunable frequency range [11]

or bandwidth as large as 640 MHz [56] have been realized to overcome the limitation

of the narrow instantaneous bandwidth, they are still not suitable for larger-scale
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quantum circuits because in a typical experiment large subsets of the qubits must

be measured simultaneously which requires both a bandwidth and a high dynamic

range. A large quantum computer using JPAs for readout would require order of one

amplifier and readout line per qubit.

Josephson traveling wave parametric amplifiers (JTWPAs)[47, 38, 66] have been

widely used in superconducting quantum experiments [24, 64, 43, 27, 15] since their

first demonstration in 2015. In contrast to JPAs which use a cavity to enhance the

interaction time, JTWPAs adopt a traveling wave architecture such that the inter-

action between the weak signal and strong pump is enhanced by an extended inter-

action length, typically on the order of a thousand junctions or tens of wavelengths

[38]. Avoiding resonant interactions, albeit with an increased device footprint, brings

several advantages to the JTWPAs. While still operating at near quantum-limited

noise performance, JTWPAs have >20 dB gain over an instantaneous bandwidth of

several gigahertz, which is orders of magnitude larger than that of a typical JPA.

Moreover, JTWPAs have ∼10 dB higher dynamic range than a typical JPA. The

broad instantaneous bandwidth and high dynamic range of JTWPAs allow for si-

multaneously readout of more than 20 frequency-multiplexed qubits, making it more

scalable for future larger-scale quantum circuits. In addition, JTWPAs have a much

shorter response time and are better suited for fast quantum feedback experiments.

Experiments using a JTWPA as the front-end amplifier have achieved >97% average

readout fidelity of five frequency multiplexed qubits in 250 ns [27], limited predomi-

nantly by qubit lifetime and measurement induced mixing.

The intrinsic quantum efficiency of a typical JTWPA is 75% [38], taking into ac-

count the distributed loss contribution of 90%. This means there is an unaccounted

inefficiency of about 83% in amplifier operation, which is much lower than that of

an ideal parametric amplifier. To improve the speed and reliability of quantum cir-

cuits and algorithms, one has to optimize the efficiency of every single component

in the measurement chain especially the JTWPA as it is the front end amplifier and

thus has the largest influence on the measurement SNR. Due to the fabrication com-

plexity and high uniformity requirement, most JTWPAs to date are fabricated in a
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specialized, tri-layer niobium process with non-negligible dielectric loss [61]. Alterna-

tively, JTWPAs can be fabricated in an atomic-layer-deposition alumina process [50]

which nevertheless has a comparable dielectric loss. The inefficiency resulted from

distributed loss, which is not a fundamental limitation, is anticipated to be largely

mitigated by shifting to a higher quality fabrication process (i.e. a typical qubit pro-

cess) in the future. However, the origin of the additional efficiency reduction is still

not well understood and the lack of understanding the development of mitigation

strategies.

1.1 Thesis Overview

This thesis is centered around the quantum efficiency of Josephson traveling wave

parametric amplifiers (JTWPAs). The first major goal of this thesis is to understand

the origin of the unknown reduction in the intrinsic quantum efficiency of a typical

JTWPA and develop a model. The second major goal is to develop schemes to miti-

gate the identified issues and propose a new JTWPA design with improved quantum

efficiency.

In chapter 2, we will review the cQED formulation with a focus on the topics

most relevant to the later discussion of JTWPAs. I will describe the constitutive

relations of the Josephson junctions, describe a typical measurement set up of a

typical quantum experiment, and give a high-level explanation of where the JTWPAs

fit into the picture.

In chapter 3, we will review both the classical and quantum theory of a stan-

dard JTWPA and derive the nonlinear wave equations and the circuit Hamiltonian.

We then present simplified two-mode equations of motion and discuss the major ap-

proximations made in this derivation. Recognizing these approximations will help us

understand the amplifier non-idealities seen in experiments that are not captured by

the simplified two-mode model.

In chapter 4, we will first discuss and evaluate the validity of each of the aforemen-

tioned approximations for a typical JTWPA [38]. We will then present a generalized,
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multi-mode model that incorporates several of these non-idealities including higher

harmonics of the pump, higher order sidebands, and the invalidity of the slowly

varying envelope approximation (SVEA). We then apply this model to calculate the

system dynamics and compare it with the two-mode result.

In chapter 5, we will use the generalized model developed in chapter 4 to calcu-

late the noise figure and the adjusted quantum efficiency of a typical JTWPA and

discuss its agreement with the experimental extracted value in [38]. Finally, we dis-

cuss potential fixes to the identified issues and propose a new JTWPA design with

potentially much improved quantum efficiency.

1.2 Summary of Key Results

In his thesis, we developed a generalized multi-mode model to capture the dynamics of

JTWPAs in the presence of many-mode processes and non-ideal pump conditions. We

then applied this model to analyze the quantum efficiency of a typical JTWPA and

uncover the cause of the previously unaccounted for quantum efficiency reduction:

higher order sidebands of the signal. We then showed that we can suppress the

generation of higher pump harmonics by introducing a photonic bandgap near the

frequency of the third harmonics of the pump. We further suppress the coupling to

higher order sidebands by decreasing the cut-off frequency of the transmission line.

Finally we integrated the discussed dispersion engineering techniques and proposed a

realistic new JTWPA design. we showed that the new JTWPA design has comparable

gain bandwidth but is projected to have improved intrinsic quantum efficiency.
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Chapter 2

Circuit Quantum Electrodynamics

2.1 Josephson Junctions

In this section, we introduce the physics of Josephson Junctions by first providing an

overview of the motivations behind using superconductors for quantum applications.

We then describe the constitutive relations of Josephson junctions and show that

they are equivalent to a purely-reactive nonlinear inductor in a circuit model. We

finally present the Hamiltonian description of a Josephson junction. The treatment

on the constitutive relations of Josephson junctions in this section follows closely the

procedure used in [18] and [35].

2.1.1 Brief Remarks on Superconductivity

Superconductivity was first experimentally discovered in mercury in 1911 [31] by

the Dutch physicist Heike Kamerlingh Onnes, but it was nearly 50 years later in

1957 that the first detailed microscopic theory [5] which can explain the phenomena

properly was proposed by John Bardeen, Leon N. Cooper, and Robert Schrieffer.

Their microscopic theory is named BCS theory, and it has won them the Nobel

Prize in physics in 1972. Following the microscopic theory in 1962, Brian Josephson

made the theoretical prediction that a form of supercurrent can flow indefinitely long

without voltage applied and can flow through a thin insulating layer between two
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pieces of superconductors. This phenomenon, named the Josephson effect, was later

experimentally observed and checked by Philip Anderson and John Rowell[3]. For

this work, Brian Josephson won the Nobel Prize in Physics in 1973.

The Josephson effect, in essence a macroscopic phenomenon, is at the heart of the

development in superconducting circuits and qubits. It turns out that the full-scale

microscopic theory is not necessary to describe the behaviors of the collective macro-

scopic degrees of freedom in quantum circuits [37]. The theory of superconductivity

is so rich that it is nearly impossible to cover and discuss all the essential information.

Instead of going into the very details of the theory, we will present some brief remarks

[18, 35] that will give readers a qualitative understanding of why superconductivity

is essential to quantum circuits and circuit QED.

Dissipation and the resulting energy loss are detrimental to quantum coherence

and should be avoided whenever possible. The main reason why superconductors are

used in circuit QED is that they have zero resistance and can propagate electrons

as Cooper pairs [16] across the chip in a dissipationless fashion. This means loss of

information from dissipation is avoided and information can be preserved for a much

longer time. Because superconductivity usually occurs at very low temperature, the

kT thermal noise is significantly reduced to a level much less than the transition

energy between the two quantum states of interest(i.e. of a qubit). Furthermore,

at such low temperatures, the thermal noise energy (at thermal equilibrium) is also

much smaller than the energy gap between the superconducting ground state and

the dissipative normal conduction state, making quantum circuits greatly resistant

to thermal noise. The low temperature can be obtained by the use of dilution re-

frigerator and electromagnetic shielding. In summary, the ultra-low dissipation and

ultra-low operating temperature makes superconducting circuit a favorable platform

for quantum computing due to its minimum energy loss and less sensitivity to thermal

fluctuations.
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2.1.2 Constitutive Relations

Under low temperatures and low voltages, Josephson junctions behave as a pure

nonlinear-inductor in parallel with the native parallel-plate capacitor formed by the

two superconductor films sandwiching an insulating layer in between. Before we

describe the constitutive relations of a Josephson junction, let us start by defining

branch flux and the gauge-invariant phase difference. Branch flux is an generalization

[18] to the definition of the magnetic flux, as the magnetic flux is only defined for a

loop. The branch flux and the branch current of an electric element are given by

Φ(𝑡) =

∫︁ 𝑡

−∞
𝑉 (𝑡1) 𝑑𝑡1 (2.1)

𝑄(𝑡) =

∫︁ 𝑡

−∞
𝐼 (𝑡1) 𝑑𝑡1 (2.2)

In the above definitions, the circuit is treated to be at rest at time 𝑡→ −∞ with no

current or voltage, and all other static fields through in the inductors are regarded

as being turned on adiabatically from 𝑡 → −∞ to their values at 𝑡 = 0. Using this

definition, we can define the inductance of any electric element, even without coils,

to be

𝐿 =
Φ(𝑡)

𝐼(𝑡)
. (2.3)

From the macroscopic quantum model, the tunneling across the thin insulating

layer between the two superconducting islands of a Josephson junction can be modeled

by the evanescent overlap of the two superconducting many-electron wave-functions

inside the "forbidden" insulating region in the semiclassical limit [35]. The cou-

pled differential equations derived from Schrodinger equations then leads to the DC

Josephson current relation, one of the two constitutive relations of Josephson junc-

tions:

𝐼(𝑡) = 𝐼0 sin

[︂
2𝜋Φ(𝑡)

Φ0

]︂
= 𝐼0 sin 𝛿, (2.4)

in which Φ0 ≡= ℎ/(2𝑒) is the superconducting flux quantum constant and 𝛿 ≡

2𝜋Φ(𝑡)/Φ0 is defined as the gauge-invariant phase difference across the junction. In
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the current relation, the periodic flux dependence of the current can be interpreted

as being caused by the discreteness of Cooper pair tunneling through the junction.

The junction parameter 𝐼0 is called the critical current of the junction, and it scales

with the junction area and the inverse of junction thickness. The other constitutive

relation, the voltage relation of the Josephson junction, is shown to be [60]

𝑉 (𝑡) =
Φ0

2𝜋

d𝛿

d𝑡
= 𝜙0

d𝛿

d𝑡
, (2.5)

in which the commonly used constant reduced flux quantum 𝜙0 = Φ0/(2𝜋) = ℎ̄/(2𝑒)

is introduced to simplify the relation. The two constitute relations altogether de-

scribes the dynamics of a Josephson junction and will be utilized in the next part to

demonstrate its nonlinear inductance.

2.1.3 Nonlinear Inductance

From the constitutive relations (2.4) and (2.5), we can solve for the expression of the

inductance:

𝐿𝐽 = 𝑉 (𝑡)/

(︂
d𝐼(𝑡)

d𝑡

)︂
=

(︂
𝜙0

d𝛿

d𝑡

)︂
/

(︂
𝐼0 cos (𝛿)

d𝛿

d𝑡

)︂
=

𝜙0

𝐼0 cos (𝛿)
=

𝐿𝐽0

cos (𝛿)
, (2.6)

in which 𝐿𝐽0 ≡ 𝜙0/𝐼0 is defined as the Josephson effective inductance. Combined with

the current relation (2.4), it can be seen that the inductance of a Josephson junction

is a nonlinear function of the phase (short for the gauge-invariant phase difference),

and hence the current flowing through it. The current-dependent inductance of the

Josephson junctions is the heart of superconducting qubits and Josephson-junction-

based superconducting parametric amplifiers, as it will become clear in chapter 3.

This nonlinear inductive behavior is the manifestation of the inertia of Cooper pairs

tunneling across the insulator, which is also known as the kinetic inductance. The

other useful parameter of the Josephson junctions is the Josephson energy, the time-
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independent portion of the energy stored in a junction, as

𝐸(𝑡) =

∫︁ 𝑡

−∞
𝐼 (𝑡1)𝑉 (𝑡1) 𝑑𝑡1 =

∫︁ 𝑡

−∞
(𝐼0 sin 𝛿)

(︂
𝜙0

d𝛿

d𝑡

)︂
𝑑𝑡1

= 𝐼0𝜙0(1− cos (𝛿)) = 𝐸𝐽(1− cos (𝛿)) (2.7)

⇒ 𝐸𝐽 = 𝐼0𝜙0. (2.8)

Using (2.7) in the RCSJ model of the Josephson junction [60], the potential energy

is then 𝑈 = 𝐸𝐽(1 − (𝐼/𝐼0)𝛿 − cos 𝛿), having the shape of a tilted washboard with a

corrugation of 2𝐸𝐽 , as illustrated in Figure 2-1.

- 1.0 - 0.5 0.0 0.5 1.0

- 2

0

2

4

δ / (2π)

E 
/ E

J

I = 0.4 I0

Figure 2-1: Tilted washboard potential of the current-biased Josephson junction

with 𝐼 = 0.4𝐼0. There are can exist bound states at 𝛿 = 𝑛𝜋.

One observation from the current and inductance relations of the Josephson junc-

tions is that there is a one-to-one correspondence between the critical current 𝐼0 and

the effective junction inductance 𝐿𝐽0. Because the critical current is determined by

the physical geometry of the junction, its value is fixed once the device is fabricated.

One way to make a tunable Josephson element is to split a junction into two, usually

identical, junctions in parallel. The combination of two parallel Josephson junctions

is often called a "split Josephson junction" or a SQUID, short for superconducting

quantum interference device. It can be shown that the SQUID is equivalent to a
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single junction having a tunable critical current. The current relation of a SQUID is

𝐼 = 2𝐼0 cos [𝜋 (𝑛− Φ𝑒𝑥𝑡/Φ0)] sin 𝛿𝜙, (2.9)

in which 𝛿𝜑 is defined as the offset phase between the two parallel junctions, and Φ𝑒𝑥𝑡 is

the externally applied magnetic flux. We can see that in this case the effective critical

current is now 2𝐼0 cos [𝜋 (𝑛− Φ𝑒𝑥𝑡/Φ0)], which depends on the externally magnetic

flux. This is useful, because we can tune the characteristics of the junction "in situ",

i.e. during an experiment or measurement.

Another simple way to break the one-to-one correspondence between the critical

current and the effective Josephson inductance is to have several Josephson junctions

connected in series. For instance, it can be easily shown that the N identical Josephson

junctions in series altogether can be treated as one junction having a modified effective

Josephson inductance

𝐿𝐽0 = 𝑁𝜑0𝐼0. (2.10)

2.1.4 Hamiltonian of a Quantum Isolated Josephson Junction

If a Josephson junction is left unconnected from all other elements, it then forms

a nonlinear LC resonator. To describe the quantum version of the hamiltonian, we

replace the branch flux and branch current by their operators:

Φ→ Φ̂ (2.11)

𝑄→ 𝑄̂ (2.12)

[Φ̂, 𝑄̂] = 𝑖ℎ̄. (2.13)

The 𝑄̂ and Φ̂ can be though of the canonical momentum and coordinate, as can be seen

from (2.13). In the special case of Josephson junctions, we further define 𝑁̂ ≡ 𝑄̂/(2𝑒)

to be the number operator representing the number of cooper pairs tunneled through

the junction, and 𝜃 ≡ Φ̂/𝜙0 to be the phase operator. The commutation relation of
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the charge and phase is then [︁
𝜃, 𝑁̂

]︁
= 𝑖. (2.14)

In the charge basis, we have [18]

𝑁̂ =
∑︁
𝑁

𝑁 |𝑁⟩⟨𝑁 | (2.15)

cos 𝜃 =
1

2

∑︁
𝑁

(|𝑁⟩⟨𝑁 + 1|+ |𝑁+⟩⟨𝑁 |), (2.16)

and in the phase basis, we have

𝑁̂ = |𝜃⟩ 𝜕
𝑖𝜕
⟨𝜃|. (2.17)

Note that the operator 𝑁̂ has only integer eigenvalues, whereas the phase 𝜃 corre-

sponds to a point on a 2𝜋 unit circle. By including the effect of the residual offset

charge 𝑄𝑟 on the capacitor (can be the pre-existed charge on the junction capacitor)

and discarding the constant term 𝐸𝐽 , we can write the Hamiltonian of a Josephson

Junction as

𝐻 =
(𝑄̂−𝑄𝑟)2

2𝐶𝐽

+ 𝐸𝐽(1− cos 𝜃)

∼ (2𝑒𝑁̂ −𝑄𝑟)2

2𝐶𝐽

− 𝐸𝐽 cos 𝜃 (discard 𝐸𝐽)

=
(2𝑒)2

2𝐶𝐽

(𝑁̂ −𝑄𝑟/(2𝑒))2 − 𝐸𝐽 cos 𝜃

= 𝐸𝐶 (𝑁 −𝑄𝑟/2𝑒)2 − 𝐸𝐽 cos 𝜃, (2.18)

in which we define 𝐸𝐶 ≡ (2𝑒)2/2𝐶𝐽 to be the Coulomb charge energy of one Cooper

pair. It should be noted that in many references, the charge energy is defined as the

Coulomb charge energy of a single electron. The corresponding Hamiltonian in their

alternative convention then has an extra factor of four in front of the first term.
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Chapter 3

Theory of Josephson Traveling Wave

Parametric Amplifiers

3.1 Nonlinear Wave Equation

The derivation of the JTWPA nonlinear wave equation in this section closely follows

the procedures of [47] and [48] with slight modifications. Interested readers should be

directed to the aforementioned references for further details. The periodically-inserted

phase matching resonators are essential for phase matching the degenerate-pump

parametric amplification process [47] and will be discussed further in 3.4. However,

because these resonators are only weakly coupled to the transmission line and do not

affect much the behavior of the system at frequencies outside of the narrow resonance

linewidth near the pump tone, it is a fairly good approximation to model the signal

dynamics by analyzing the original, resonator-free transmission line and add in the

effect of the periodic resonators in the phase mismatch calculation as a perturbation.

Figure 3-1 illustrates the unit cell of the nonlinear transmission line with the pres-

ence of the weakly coupled resonators (which we will ignore for now). The Lagrangian

of the system, with constant terms omitted, can be written as
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C0/2C0/2
I0, CJ

Cr Lr

Cc

(C0-Cc)/2C0/2
I0, CJ

(C0-Cc)/2 Cg/2
I0, CJ

C0/2C0/2
I0, CJ... ...

pump

signal

idler

             pump

signal Unit Cell Phase Matching
Resonators

Figure 3-1: The circuit schematic of a resonantly phase matched JTWPA with sym-
metric unit cell design. Ground capacitors adjacent to the phase matching resonator
cell are reduced by half of the coupling capacitance 𝐶𝑐/2 each to maintain the same
total ground capacitance.

𝐿 =
𝑁∑︁
𝑛

[︃
𝐸𝐽 cos

(︂
𝜑𝑛+1 − 𝜑𝑛

𝜑0

)︂
+

𝐶𝐽

2

(︂
𝑑𝜑𝑛+1

𝑑𝑡
− 𝑑𝜑𝑛

𝑑𝑡

)︂2

+
𝐶0

2

(︂
𝑑𝜑𝑛

𝑑𝑡

)︂2
]︃
, (3.1)

in which 𝜑𝑛 is the node flux at the nth cell, 𝜑0 = Φ0/(2𝜋) is the reduced flux

quantum, 𝑎 is the length of one unit cell, 𝐶0 is the ground capacitance in each unit

cell, and 𝐸𝐽 = 𝜑0𝐼0 is the Josephson energy, 𝐼0 is the junction critical current, 𝐶𝐽

is the junction capacitance, and 𝑁 is the total number of unit cells. Because the

length scale of one unit cell is much smaller than the wavelength of interest, we take

the continuum limit of 𝑎→ 0 and rewrite the above Lagrangian as a spatial integral

𝐿 =
∫︀ 𝑁𝑎

0
ℒ𝑑𝑥 of the Lagrangian density ℒ [45]

ℒ =
𝐸𝐽

𝑎
cos

(︂
𝑎

𝜑0

𝜕𝜑

𝜕𝑥

)︂
+

𝐶𝐽𝑎

2

(︂
𝜕2𝜑

𝜕𝑡𝜕𝑥

)︂2

+
𝐶0

2𝑎

(︂
𝜕𝜑

𝜕𝑡

)︂2

. (3.2)

The Euler-Lagrange equation of (3.2) is in the form

𝜕ℒ
𝜕𝜑

=
𝑑

𝑑𝑥

(︂
𝜕ℒ

𝜕(𝜕𝜑/𝜕𝑥)

)︂
+

𝑑

𝑑𝑡

(︂
𝜕ℒ

𝜕(𝜕𝜑/𝜕𝑡)

)︂
− 𝑑2

𝑑𝑥𝑑𝑡

(︂
𝜕ℒ

𝜕(𝜕2𝜑/𝜕𝑥𝜕𝑡)

)︂
. (3.3)

Substituting (3.2) into (3.3), we arrive at the exact nonlinear wave equation [48]
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𝑎𝐸𝐽

𝜑2
0

cos

(︂
𝑎

𝜑0

𝜕𝜑

𝜕𝑥

)︂
𝜕2𝜑

𝜕𝑥2
− 𝐶0

𝑎

𝜕2𝜑

𝜕𝑡2
+ 𝐶𝐽𝑎

𝜕4𝜑

𝜕𝑡2𝜕𝑥2
= 0. (3.4)

Notice that if we taylor expand the cosine term in the exact nonlinear wave equa-

tion (3.4) to the first nonlinear order, we will obtain the identical wave equation in

[47] and [67, 68]:

𝐶0
𝜕2𝜑

𝜕𝑡2
− 𝑎2𝐸𝐽

𝜑2
0

𝜕2𝜑

𝜕𝑥2
− 𝐶𝐽𝑎

2 𝜕4𝜑

𝜕𝑥2𝜕𝑡2
+

𝑎4𝐸𝐽

2𝜑4
0

𝜕2𝜑

𝜕𝑥2

(︂
𝜕𝜑

𝜕𝑥

)︂2

= 0. (3.5)

The remainder of this thesis will follow the convention in [48] and work in normal-

ized units. We define the dimensionless node flux, angular frequency, wave vector,

position, and time to be

𝜑 =
𝜑

𝜑0

, 𝜔̃ =
2𝜔

𝜔𝑐

, 𝑘 = 𝑘 · 𝑎, 𝑥̃ =
𝑥

𝑎
, and 𝑡 =

𝑡

𝜏𝑐
=

𝜔𝑐

2
𝑡 (3.6)

respectively, in which 𝜔𝑐 = (2/𝜑0)
√︀
𝐸𝐽/𝐶0 = 2/

√
𝐿𝐽𝐶0 is the cut-off frequency of

the nominal dispersionless transmission line (𝐶𝐽 = 0). Finally, define the normalized

dispersion parameter 𝛽 = 𝐶𝐽/𝐶0 and drop the tildes for convenience, we arrive at the

normalized nonlinear wave equation

𝜑𝑥𝑥 − 𝜑tt + 𝛽𝜑xxtt =
1

2
𝜑xx𝜑

2
𝑥, (3.7)

in which we adopt the short-hand notations for the partial derivatives 𝜑𝑥𝑖
=

𝜕𝜑/𝜕𝑥𝑖 , 𝜑𝑥𝑖𝑥𝑗
= 𝜕2𝜑/𝜕𝑥𝑖𝜕𝑥𝑗 , and so forth. The terms on the left-hand side of

(3.7) are all linear with respect to 𝜑 and hence characterize the dispersion of the

transmission line, whereas the nonlinear term on the right-hand side is in cubic order

of 𝜑 and mediates four-wave mixing processes.

3.2 Hamiltonian

For completeness, we present here the quantum treatment of JTWPA following the

derivation in [22] with modifications. We will first expand the nonlinear term to
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fourth order, and then convert the Lagrangian density ℒ in (3.2) to normalized units:

𝐿 =

∫︁ 𝑁𝑎

0

ℒ𝑑𝑥 =

∫︁ 𝑁

0

ℒ * 𝑎𝑑𝑥̃ =

∫︁ 𝑁

0

ℒ̃𝑑𝑥̃, (dropping tildes from now on) (3.8)

ℒ̃ ≈ 𝐸𝐽

(︃
−1

2

(︂
𝑎

𝜑0

𝜑𝑥

)︂2

+
1

24

(︂
𝑎

𝜑0

𝜑𝑥

)︂4
)︃

+
𝐶𝐽𝑎

2
𝜑2
𝑥𝑡 +

𝐶0

2𝑎
𝜑2
𝑡

= 𝐸𝐽

(︂
−1

2
𝜑2
𝑥̃ +

1

24
𝜑4
𝑥̃

)︂
+

𝐶𝐽𝑎

2

𝜑2
0

𝑎2𝐿𝐽𝐶0

𝜑2
𝑥̃𝑡 +

𝐶0

2𝑎

𝜑2
0

𝐿𝐽𝐶0

𝜑2
𝑡 (3.9)

=
𝐸𝐽

2

(︂
−𝜑2

𝑥 +
1

12
𝜑4
𝑥 + 𝛽𝜑2

𝑥𝑡 + 𝜑2
𝑡

)︂
= ℒ. (3.10)

Again, we dropped all the tildes from (3.9) to (3.10) for notation convenience.

Using 𝜑(𝑥, 𝑡) as the canonical momentum, we can express the canonical momentum

𝜋(𝑥, 𝑡) as

𝜋(𝑥, 𝑡) =
𝛿ℒ
𝛿𝜑𝑡

=
𝜕ℒ
𝜕𝜑𝑡

− 𝜕

𝜕𝑥

𝜕ℒ
𝜕𝜑𝑥𝑡

= 𝐸𝐽(𝜑𝑡 − 𝛽𝜑𝑥𝑥𝑡). (3.11)

Using integration by parts and dropping the produced constant boundary terms,

we arrive at the Hamiltonian

𝐻 =

∫︁ 𝑁

0

𝑑𝑥ℋ =

∫︁ 𝑁

0

𝑑𝑥(𝜋𝜑𝑡 − ℒ) =
𝐸𝐽

2

∫︁ 𝑁

0

𝑑𝑥

(︂
𝜑2
𝑡 + 𝜑2

𝑥 + 𝛽𝜑2
𝑥𝑡 −

1

12
𝜑4
𝑥

)︂
. (3.12)

Before we quantize the Hamiltonian, we introduce the normalized Hamiltonian

density 𝐻̃0 and 𝐻̃1 to be

ℋ̃0 = 𝜑2
𝑡 + 𝜑2

𝑥 + 𝛽𝜑2
𝑥𝑡, and ℋ̃1 = − 1

12
𝜑4
𝑥 (3.13)

respectively, and they satisfy the relation ℋ = (𝐸𝐽/(2))ℋ̃ = (𝐸𝐽/(2))(ℋ̃0 + ℋ̃1).

The physical interpretation of ℋ̃1 and ℋ̃2 is straightforward: they are the linear and

nonlinear Hamiltonian density of the JTWPA that are normalized to photon numbers.

We are now ready to quantize the Hamiltonian with the above definitions. Treating

the nonlinear term as perturbation, we will use express the whole Hamiltonian in the

normal basis of ℋ̃0 [22]. The fields 𝜑(𝑥, 𝑡), 𝜋(𝑥, 𝑡) are promoted to operators 𝜑(𝑥, 𝑡),

𝜋̂(𝑥, 𝑡) respectively, and the canonical operators obey the commutation relation
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[︁
𝜑(𝑥, 𝑡), 𝜋̂(𝑥′, 𝑡)

]︁
= 𝑖ℎ̄𝛿(𝑥− 𝑥′). (3.14)

With the definitions of 𝑍0 =
√
𝐿𝐽𝐶0, 𝑘(𝜔) = 𝜔/

√︀
1− 𝛽𝜔2 = 𝑛(𝜔)𝜔, and 𝐸𝐽 =

ℎ̄𝜔𝐽 , the operator (normalized) 𝜑(𝑥, 𝑡) can be expressed as [57]

𝜑(𝑥, 𝑡) =
1

𝜑0

∫︁ ∞

0

1√
2𝜋

𝑑
(︁
𝜔
𝜔𝑐

2

)︁√︃ ℎ̄𝑍0 * 𝑛(𝜔)

2𝜔𝜔𝑐/2
𝑒−𝑗𝑘𝑥𝑎̂𝜔𝑒

𝑗𝜔𝑡 + 𝐻.𝑐. (3.15)

=

∫︁ ∞

0

𝑑𝜔

√︃
𝑛(𝜔)𝜔2

𝑐

16𝜋𝜔𝜔𝐽

𝑎̂𝜔𝑒
𝑗(𝜔𝑡−𝑘𝑥) + 𝐻.𝑐., (3.16)

in which 𝐻.𝑐. standards for the Hermitian conjugate of the preceding term, and the

annihilation operator 𝑎̂𝜔 satisfies the standard commutation relation

[︁
𝑎̂𝜔, 𝑎̂

†
𝜔′

]︁
= 𝑖𝛿(𝜔, 𝜔′). (3.17)

Similarly, the operator 𝜋̂(𝑥, 𝑡), from (3.16) and (3.11), can be written in terms of

creation and annihilation operators as

𝜋̂(𝑥, 𝑡) =
(︀
(𝑗𝜔𝐸𝐽)(1− 𝛽𝑘2)

)︀ ∫︁ ∞

0

𝑑𝜔

√︃
𝑛(𝜔)𝜔2

𝑐

16𝜋𝜔𝜔𝐽

𝑎̂𝜔𝑒
𝑗(𝜔𝑡−𝑘𝑥) + 𝐻.𝑐. (3.18)

= 𝑗𝐸𝐽

∫︁ ∞

0

𝑑𝜔 𝑛(𝜔)2

√︃
𝑛(𝜔)𝜔𝜔2

𝑐

16𝜋𝜔𝐽

𝑎̂𝜔𝑒
𝑗(𝜔𝑡−𝑘𝑥) + 𝐻.𝑐.. (3.19)

Following the derivations in [22], the physical Hamiltonian 𝐻0 = (𝐸𝐽/2)
∫︀ 𝑁

0
𝑑𝑥𝐻0

becomes (after dropping the constant zero point energy terms)

𝐻0 =

∫︁ ∞

0

𝑑𝜔ℎ̄𝜔𝑎̂†𝜔𝑎̂𝜔. (3.20)

Notice that in (3.20) (only) we used back the physical 𝜔 for clarity. Finally. tHe

nonlinear Hamiltonian 𝐻1 = (𝐸𝐽/2)
∫︀ 𝑁

0
𝑑𝑥𝐻̃1 can be expressed in the normal basis

using (3.16) and (3.19). Note that the integral in frequency in (3.20) is only strictly

valid in the continuum limit of 𝑎 ⇒ 0. When 𝑎 has a finite size (and 𝑁 becomes

finite), the propagation modes therefore do not span the entire continuous frequency
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spectrum [22, 57].

3.3 Equations of Motion

The equations of motion for the classical and quantum field operator can be derived

from the nonlinear wave equation (3.7) and the Heisenberg equations of motion re-

spectively, and the resulting evolution for both the classical and quantum operators

are shown to be the same [42]. The quantum nature of the system is manifested in

the non-zero commutation relation of the operators and results in additional quan-

tum noise. We will therefore use the classical nonlinear wave equation to derive the

evolution dynamics of the amplifier and apply the treatment of [42] to account for

the quantum noise in the end.

The traveling wave ansatz commonly used in JTWPA analyses [47] is

𝜑(𝑥, 𝑡) =
1

2

(︀
𝐴𝑝(𝑥)𝑒𝑖(𝑘𝑝𝑥+𝜔𝑝𝑡) + 𝐴𝑠(𝑥)𝑒𝑖(𝑘𝑠𝑥+𝜔𝑠𝑡) + 𝐴𝑖(𝑥)𝑒𝑖(𝑘𝑖𝑥+𝜔𝑖𝑡)

)︀
+ 𝑐.𝑐., (3.21)

in which 𝐴𝑚, 𝑘𝑚, 𝜔𝑚 are the frequency, wave vector, and flux amplitude of wave

𝑚 respectively, with 𝑚 ∈ {𝑝, 𝑠, 𝑖} representing the pump, signal, and idler. 𝑐.𝑐.

represents the complex conjugate of its immediate preceding term [10, 2]. One can

then substitute the ansatz (3.21) into the nonlinear wave equation (3.7) and solve

for the evolution of the degenerate-pump parametric amplification process 2𝜔𝑝 →

𝜔𝑠 + 𝜔𝑖. Instead of going into the details of the mathematical manipulations and

simplifications, we will highlight the important approximations made in the standard

derivation and present the final, simplified coupled mode equations. Nonetheless,

the descriptions of these noted approximations will still shed lights on the high level

procedures of the detailed derivation. The main approximations are as follows:

1. For each wave component, only the terms oscillating at the same frequency

from the wave equation are kept in its evolution equation, and the effects of the

other fast oscillating (or off-resonant) terms are neglected. This approximation
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is equivalent to standard the rotating wave approximation (RWA) in quantum

optics and atomic physics.

2. For wave components whose frequencies are much lower than the cut-off fre-

quency of the transmission line, its dispersion relation can be well approximated

by the linear portion of (3.7) (the nonlinear term on the right-hand side is omit-

ted in solving linear dispersion). This is often recognized as the continuum-limit

approximation in sold state physics.

3. The pump tone is a strong, coherent state whose dynamics are negligibly affected

by the introduction of the weak signal and idlers. Therefore, the intensity of the

pump tone is assumed to remain constant and classical in the entire process.

This is termed the stiff-pump approximation [20].

4. The field envelopes 𝐴𝑚 are assumed to be slowly varying. More specifically,
𝜕2𝐴𝑗

𝜕𝑥2 ≪ 𝑘𝑗
𝜕𝐴𝑗

𝜕𝑥
and 𝜕2𝐴𝑗

𝜕𝑥2 ≪ 𝑘𝑗
𝜕𝐴𝑗

𝜕𝑥
, and these higher order derivatives are ne-

glected in the evolution equations. This is commonly referred to as the slowly

varying envelope approximation (SVEA) in the context of nonlinear optics

[10, 2].

The validities of the aforementioned approximations will be carefully evaluated

and in some cases relaxed throughout this thesis. Finally, the simplified equations

of motion for the degenerate-pump parametric amplification process in the rotating

frame (𝐴𝑠𝑟(𝑥) = 𝐴𝑠(𝑥)𝑒−𝑗𝛼𝑠𝑥, 𝐴𝑖𝑟(𝑥) = 𝐴𝑖(𝑥)𝑒−𝑗𝛼𝑖𝑥) are

d𝐴𝑠𝑟(𝑥)

d𝑥
= 𝑗𝜅𝑠𝐴

*
𝑖𝑟(𝑥)𝑒𝑗Δ𝑘𝑥, and

d𝐴*
𝑖𝑟(𝑥)

d𝑥
= −𝑗𝜅𝑖𝐴𝑠𝑟(𝑥)𝑒−𝑗Δ𝑘𝑥.

(3.22)
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The symbols introduced in (3.22) are defined as follows:

𝛼𝑠 =
𝑘3
𝑠𝑘

2
𝑝|𝐴𝑝(𝑥)|2

8𝜔2
𝑠

, 𝛼𝑖 =
𝑘3
𝑖 𝑘

2
𝑝|𝐴𝑝(𝑥)|2

8𝜔2
𝑖

, 𝛼𝑝 =
𝑘3
𝑝𝑘

2
𝑝|𝐴𝑝(𝑥)|2

16𝜔2
𝑝

(3.23)

∆𝑘𝑙 = 2𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖, ∆𝑘𝑛𝑙 = 2𝛼𝑝 − 𝛼𝑠 − 𝛼𝑖, ∆𝑘 = ∆𝑘𝑙 + ∆𝑘𝑛𝑙, (3.24)

𝜅𝑠 =
𝑘𝑠𝑘𝑖𝑘

2
𝑝(𝑘𝑖 + ∆𝑘𝑙)|𝐴𝑝(𝑥)|2

16𝜔2
𝑠

, 𝜅𝑖 =
𝑘𝑠𝑘𝑖𝑘

2
𝑝(𝑘𝑠 + ∆𝑘𝑙)|𝐴𝑝(𝑥)|2

16𝜔2
𝑖

. (3.25)

Each of the above definitions has a clear physical interpretation. 𝛼𝑠 and 𝛼𝑖 are the

pump-induced cross-phase modulation (XPM) terms that signal and idler experience

respectively, and 𝛼𝑝 is the self-phase modulation (SPM) the classical pump experi-

ences itself. ∆𝑘𝑙 is the net linear phase mismatch originated from dispersion, ∆𝑘𝑛𝑙 is

the net nonlinear phase modulation resulted from the Kerr effect, and ∆𝑘 is the total

effective phase mismatch accounting for both the linear and nonlinear contributions.

Finally, 𝜅𝑠 and 𝜅𝑖 are the corresponding coupling strength of the signal and idler flux.

3.4 Phase Matching

The phase matching condition, signifying momentum conservation, is crucial to the

overall performance of a nonlinear parametric amplifier of any kind. Whereas a

properly phase matched parametric amplifier exhibits exponential gain with respect

to its device length, a poorly phased matched amplifier could only achieve gain in

quadratic order and has a much shorter coherence length [10]. For this reason, TWPAs

based on Josephson junctions preceding the resonantly phased matched JTWPA [47,

38] have not demonstrated sufficient gain to replace existing semiconductor amplifier

technology.

Without any deliberate phase matching scheme, the four-wave parametric ampli-

fication process for a typical Josephson transmission line with normal dispersion is

poorly phase mismatched. This is because for a degenerate-pump four-wave para-

metric amplifier, the intrinsic linear phase mismatch ∆𝑘𝑙 from normal dispersion and

the nonlinear phase mismatch ∆𝑘𝑛𝑙 from the Josephson junction nonlinearity are of
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the same sign (negative), and hence they altogether makes phase matching condition

even worse. Moreover, it is usually desirable to use a high pump power to improve

the parametric gain because the coupling strength is proportional to the input pump

power. However, an increased input pump power also results in a larger nonlinear

phase mismatch which reduces the gain. The trade-off between the coupling strength

and the phase mismatch ultimately limits the maximal gain achievable in a non-phase

matched amplifier.

The weakly coupled resonators are introduced in [47, 38] to phase match the para-

metric amplification process. As previously mentioned, these weakly coupled phase

matching resonators introduce a weak resonance near the pump frequency. When

properly placed, this dispersion feature would result in a small increase in the pump

wave vector which in turn compensates for the negative phase mismatch in the unper-

turbed case. Figure 3-2 illustrates the effect of the periodically coupled resonators on

the phase matching condition. In the frequency range of interest (5-8 GHz), although

the intrinsic linear mismatch on an unperturbed transmission line is small, the overall

phase mismatch is dominated by the non-negligible nonlinear mismatch. The nonlin-

ear phase mismatch is usually significant at a typical pump power level and therefore

impedes exponential gain. In the resonant phase matching (RPM) scheme, the wave

vector of the pump is noticeably increased from its unperturbed value, whereas those

of the signal and idler are minimally affected. Overall the linear phase mismatch

increases and is enough to cancel out the negative nonlinear mismatch caused by the

pump. Experimentally one can adjust the pump power and slightly tune the pump

frequency near the resonance to find the optimal configuration in situ.

Although the RPM JTWPAs have become mainstream in superconducting quan-

tum experiments and is the main object of discussion in this thesis, it is worth men-

tioning that amplifiers using alternative phase matching schemes such as periodic

loading [28] and photonic bandgap [50] have also been explored and demonstrated.

Regardless of the specific implementation, these phase matching schemes all rely on

the high-level idea of increasing the intrinsic linear mismatch by dispersion engineer-

ing to compensate for the always-on nonlinear mismatch.
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Figure 3-2: Pictorial illustration of the phase matching condition on an unperturbed

transmission line (a) and a transmission line with weakly coupled resonators (b). The

dispersion relation of the unperturbed transmission line is colored in gray in both (a)

and (b), and the dispersion relation of the RPM transmission line is colored in green

in (b). The wave vectors and nonlinear modulations of the signal, idler, and pump are

colored in blue, orange, and red respectively. The solid and dashed arrows represent

the linear and nonlinear components of the effective wave vectors respectively. The

perfect phase matching condition is obtained in (b) for the RPM scheme as the tips of

all the wave components fall onto the same line (dashed and in purple in this figure).

3.5 Performance

Figure 3-3 shows the simulated gain and phase mismatch spectrum of a resonantly

phase-matched JTWPA and a non-matched JTWPA at pump frequency 𝜔𝑝/(2𝜋) =

5.97GHz and pump current 𝐼𝑝 = 0.5𝐼0 [47]. The resonantly phase-matched design is

shown to have much higher gain and broader bandwidth than the non-matched one

because of the better phase matching condition.

Here, we summarize the experimental results of the demonstration of a resonantly

phase-matched JTWPA in [38]. Figure 3-4 (a) shows the measured and fitted signal

gain and phase-mismatch as a function of pump power at 6.584 GHz. The phase

mismatch ∆𝑘 is shown for a pump at 7.157 GHz (solid green, "RPM") and at 6.5

GHz (solid purple, "detuned"). The theoretically predicted values for both the ∆𝑘
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Figure 3-3: Gain and phase mismatch of the resonantly phase-matched JTWPA
(purple) and the non-matched JTWPA (black dashed) as a function of signal fre-
quency with 𝜔𝑝/(2𝜋) = 5.97𝐺𝐻𝑧 and I𝑝 = 0.5I0. Figure reproduced from [47].

and gain agrees well with the measured values, except at higher pump current where

the measured gain slumps. A plausible cause of this drop of gain at high pump current

is the drop in pump transmission for pump currents near the junction critical current

[38]. Figure 3-4 (b) shows the measured gain bandwidth profile of the fabricated

device at a high pump current 𝐼𝑝 = 0.91𝐼0 at 7.157 GHz. This represents the most

general-purpose operating configuration, with 20 dB gain with a bandwidth of over 3

GHz. The small ripples in the measured gain are likely caused by imperfect impedance

matching between the JTWPA and 50 Ω connectors.
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Figure 3-4: (a) Measured (solid) and predicted (dashed) phase mismatch and gain
versus pump power at signal frequency 6.584 GHz. (b) Measured (solid) and fitted
(dashed) gain profile of the JTWPA at a strong pump at frequency 7.157GHz and a
current level 𝐼𝑝 = 0.91𝐼0. Figure reproduced from [38].
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The overall system noise was extracted to be 9.01±0.23𝐾 and 602±15𝑚𝐾 when

the pump of the JTWPA was put to off and on respectively [38]. This corresponded

to a quantum efficiency of 𝜂 = 0.48 ± 0.016. With the insertion loss between the

cavity and JTWPA (𝜂𝐿 = 0.69), distributed loss in the JTWPA (𝜂𝐷 = 0.9), and the

finite gain of the JTWPA relative to the high electron mobility transistor amplifier

(HEMT) (𝜂𝐻 = 0.93), the intrinsic quantum efficiency of the JTWPA was calculated

to be 0.75 including the unaccounted quantum efficiency reduction.

In summary, in past experiments, JTWPAs have achieved a gain larger than 20

dB over a 3 GHz-bandwidth. The saturation power at 1 dB compression point is

measured to be -99 dBm. The overall system noise when the pump of the JTWPA

was 602± 15𝑚𝐾, corresponding to a near-quantum-limited noise performance. The

overall system quantum efficiency was 0.49 and the intrinsic quantum efficiency of the

JTWPA was extracted to be 0.75. Understanding this imperfect quantum efficiency

by moving beyond the model described in this chapter is the topic of the next chapter.
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Chapter 4

Multi-Mode Dynamics of JTWPAs

4.1 Introduction

JTPWAs have become the workhorse amplifier for a wide variety of microwave super-

conducting quantum experiments [24, 64, 43, 27, 15] since its demonstration in 2015

[47, 38]. In particular, their increasing popularity in superconducting quantum com-

puting is due to their high dynamic range (∼100dBm), GHz simultaneous bandwidth,

and near quantum limited noise performance, which altogether allow for simultaneous

readout for more than 20 qubits. The quantum efficiency of the readout chain is an

important metric as it directly affects the speed and fidelity of qubit readout. The in-

trinsic quantum efficiency of a typical JTWPA is experimentally extracted to be 75%

[38], taking into account the distributed loss contribution of 90%. This means there

is an unaccounted inefficiency of about 83% in amplifier operation. The two-mode

coupled mode theory model presented in section 3.3, despite its success in design-

ing JTWPAs, describes an ideal two-mode parametric amplifier and hence does not

yield any insight into the quantum efficiency of an actual device. In this chapter, we

will discuss the non-idealities of JTWPAs in more details, present a multi-mode cou-

pled mode theory model, and finally use this model to reproduce the experimentally

observed quantum efficiency.
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4.2 Third Harmonic Generation of the Pump

As previously mentioned, the stiff-pump approximation is used to derive the simpli-

fied two-mode model (3.22). Specifically, the amplitude of the pump is assumed to

be constant across the entire device if the dielectric loss is neglected. While it is

true that the influence of the signal dynamics on the pump is negligible below the

gain compression point, the pump is nevertheless never constant in practice. Besides

the desired parametric amplification process, the nonlinearity of the Josephson junc-

tions will also simultaneously mediate all other four-wave mixing processes possible,

including third-harmonic generation (THG) from the pump [4].

If the THG process of the pump is not extremely phase mismatched, the amount

of pump power transferred to the third harmonics will be non-trivial, and the pump

power will consequently be spatially modulated. In fact, THG of the pump has

already been shown to cause a number of issues in TWPAs, including gain reduction,

dynamic range reduction, and the introduction of other harmonics [28, 66, 19]. To

more accurately predict the gain and subsequently the quantum efficiency of the

JTWPA, we propose to incorporate the effect of the THG as an amplitude modulation

of the pump. However, we will still use the stiff-pump approximation in the sense

that the dynamics of the pump is only affected by the THG but not by the signal and

idlers. This can be simply justified by the fact that we can always choose to work

with a weaker input signal at the expense of a weaker claim on the dynamic range.

To analyze the dynamics of the THG of the pump, we use instead the traveling

wave ansatz

𝜑(𝑥, 𝑡) = 𝐴𝑝1(𝑥)𝑒𝑗(𝜔𝑝𝑡+𝑘𝑝1𝑥) + 𝐴𝑝2(𝑥)𝑒𝑗(3𝜔𝑝𝑡+𝑘𝑝2𝑥) + 𝑐.𝑐., (4.1)

in which we use the subscript index 𝑚 = 1, 2 to denote the pump and its third

harmonics respectively for notational convenience. 𝐴𝑝𝑚, 𝑘𝑝𝑚, 𝜔𝑝𝑚 are the normalized

complex flux amplitude, linear wave vector, and angular frequency of the wave 𝑚

respectively. In particular, we have 𝜔𝑝2 = 3𝜔𝑝1 in this notation, and pump 1 is the

same as the original pump defined in section 3.3. Substituting (4.1) into (3.7) and
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applying SVEA, we arrive at the equations of motion as

𝐴′
𝑝1(𝑥) = 𝑗𝛼̃𝑝1(𝑥)𝐴𝑝1(𝑥) + 𝑗𝑒𝑗Δ𝑘𝑙,THG𝑥𝜅𝑝1𝐴

*
𝑝1(𝑥)2𝐴𝑝2(𝑥)

𝐴′
𝑝2(𝑥) = 𝑗𝛼̃𝑝2(𝑥)𝐴𝑝2(𝑥) + 𝑗𝑒−𝑗Δ𝑘𝑙,THG𝑥𝜅𝑝2𝐴𝑝1(𝑥)3,

(4.2)

in which ∆𝑘𝑙,THG, ˜𝛼𝑝𝑚, and 𝜅𝑝𝑚 defined similarly as

∆𝑘𝑙,THG = (𝑘𝑝2 − 3𝑘𝑝1), (4.3)

𝛼̃𝑝1(𝑥) =
𝑘3
𝑝1

16𝜔2
𝑝1

(︀
𝑘2
𝑝1|𝐴𝑝1(𝑥)|2 + 2𝑘2

𝑝2|𝐴𝑝2(𝑥)|2
)︀
, (4.4)

𝛼𝑝2(𝑥) =
𝑘3
𝑝1

16𝜔2
𝑝1

(︀
2𝑘2

𝑝1|𝐴𝑝1(𝑥)|2 + 𝑘2
𝑝2|𝐴𝑝2(𝑥)|2

)︀
. (4.5)

∆𝑘𝑙,THG is the linear phase mismatch at position 𝑥, and 𝛼̃𝑝1(𝑥), 𝛼̃𝑝2(𝑥) can be

understood as the instantaneous phase modulation terms of the pump and its third

harmonics respectively.

The equations of motion (4.2) can be solved either analytically in terms of elliptical

integrals of the first kind [53] or numerically using modern differential solvers. With

the experimentally extracted parameters of [38], we numerically solve for the THG

dynamics and plot the power and normalized current of the two wave components in

figure 4-1.
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Figure 4-1: Dynamics of the pump (blue) and its third harmonic (orange) in (a) power

and (b) normalized current with an initial input pump current of 𝐼𝑝(0) = 0.91𝐼0. The

currents of the pump and its third harmonic in (b) are normalized to the critical

current of the Josephson junctions.

Figure 4-1 clearly shows that the spatial modulation of the pump power from

THG is far from trivial: the power of the third harmonics becomes only 6dBm

lower than that of the pump at periodic peaks. Several consequences arise from

the THG dynamics of the pump. First, both the phase mismatch and the coupling

strength of the parametric amplification becomes spatially varying due to their pump

power dependence. Because the gain dependence on phase mismatch and coupling

strength is exponential, one has to incorporate the spatial modulation into the model

to predict the gain accurately. Second, the spatial modulation of the pump power

itself also introduces an addition phase mismatch originated from the periodicity of

the modulation. This additional phase mismatch therefore needs to be accounted

in the model as well, because it affects the overall effective phase mismatch of the

parametric amplification everywhere across the device. Third, the generated third

harmonics can also help mediate the same parametric amplification through the down-

conversion process 𝛾𝜔𝑝2 → 𝛾𝜔𝑝1 +𝛾𝜔𝑠 +𝛾𝜔𝑖
, in which 𝛾𝜔𝑚 denotes a photon at frequency

𝜔𝑚. Depending on the relative phase between the third harmonics of the pump,

the third harmonics will either boost or suppress the parametric amplification. To

properly include the contribution of the third harmonics to the signal dynamics, we

will model the third harmonic as an effective second pump, as already hinted by our
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use of subscript 𝑝2 in notation. Finally, the inclusion of third harmonics requires a

change in the pump current, which will be discussed further next.

4.3 Pump Current Normalization

Compared to the linearized signal parametric amplification process, the THG process

of the pump is purely nonlinear and the pump evolution is very sensitive to the

initial condition. The normalized pump current used in [38] is determined to be

𝐼𝑝1𝑛(𝑥 = 0) = 𝐼𝑝1(0)/𝐼0 = 0.91. This number is extracted as the ratio 𝑟𝑛 of the

pump power used during device operation and the critical pump power at which the

Josephson junctions start to exit the superconducting state. This method will produce

a reasonable approximation of the true normalized pump current if the pump stays

constant across the entire device. However, its deduced value will deviate rapidly

from the actual value when the power at the third harmonics becomes significant.

Indeed, if the initial normalized pump current is truly 0.91, we see from figure 4-

1 that the total normalized current would become as large as max(|𝐼𝑝𝑛,tot(𝑥)|) =

max(|𝐼𝑝1𝑛(𝑥) + 𝐼𝑝2𝑛(𝑥)|) ≈ 1.174, which far exceeds the critical current threshold.

Clearly an initial pump current of 0.91𝐼0 is unphysical when we take into account the

third harmonics. The total current fluctuates even when the total power is conserved

because the characteristic impedance at the frequencies of the pump and the third

harmonic are different. Consequently, the initial input pump current needs to be

properly normalized to closely approximate the pump evolution.

Here we propose a simple, iterative method of approximating the actual initial

pump current. Neglecting momentarily the constraint that the total normalized cur-

rent going through a Josephson junction has to be less than unity, we first set the

initial lower and upper bound of the normalize pump current to be 0 and 1 respectively

and pick a reasonable initial guess in between to start with. Using the current initial

condition for the pump, we can numerically solve (4.2), extract the peak total current

within the device, and then compare it with the threshold 1. If the difference between

simulated peak normalized current and unity is less than the desired tolerance, we
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declare 𝑟𝑛 of the present trial value to be the desired initial condition. Otherwise, we

update the upper/lower bound of the range to be the present trial value if the peak

normalized total current is less/larger than unity. We then choose the middle value

of the updated range as the new initial condition and numerically compute the max-

imum normalized total current again. We keep repeating the bisection process until

a satisfactory approximation is found. Using this procedure, we calculate the proper

initial pump current 𝐼𝑝1𝑛(0) to be around 0.78 · 0.91 ≈ 0.71. As will be shown later,

this adjusted pump initial condition will yield both a more realistic gain dynamics

and a quantum efficiency closer to the experimentally determined value.

It is important to note, however, that the value calculated by the aforementioned

iterative method on (4.2) is still not exact but a reasonable enough approximation

of the true pump condition. One shortcoming of the simple model (4.2) is that it

does not capture the effects from the other harmonics of the pump. For instance,

𝛾9𝜔𝑝 ← 3𝛾3𝜔𝑝 can be in turn generated from the third harmonic through THG, and

𝛾5𝜔𝑝 ← 2𝛾3𝜔𝑝−𝛾𝜔𝑝 can be generated from the scattering of one pump photon and two

third harmonic photons. Because the phase mismatch of processes involving higher

frequency component(s) is even larger, and the coupling strength of any four-wave

mixing scales with the intensity of the interacting waves, these additional nonlinear

processes are fortunately much weaker than the primary THG of the pump. Conse-

quently, the two-mode model of (4.2) can approximate the pump dynamics to a very

good extent. Nevertheless, if an initial condition with better precision is desired, one

can use the harmonic balance method [49] to obtain a better estimation using modern

microwave simulation softwares such as LTspice [21] and Microwave Office [62].

In addition, the dielectric loss of the transmission line also slightly increases the

critical input pump current at which the breakdown of superconductivity happens

precisely. Intuitively, when both the pump and the third harmonics get attenuated

as they propagate down the device, the total normalized current will peak at a value

lower than that of its lossless counterpart. This means more initial pump current is

required to reach the critical current at the presence of loss. One can utilize the beam

splitter loss model [13] to incorporate small propagation loss by introducing decay
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terms into the lossless coupled mode equations (4.2):

𝐴′
𝑝1(𝑥) +

𝑘𝑝1𝑖
2

𝐴𝑝1𝑟(𝑥) = 𝑗𝛼̃𝑝1(𝑥)𝐴𝑝1(𝑥) + 𝑗𝑒𝑗Δ𝑘𝑙,THG𝑥𝜅𝑝1𝐴
*
𝑝1(𝑥)2𝐴𝑝2(𝑥)

𝐴′
𝑝2(𝑥) +

𝑘𝑝2𝑖
2

𝐴𝑝2𝑟(𝑥) = 𝑗𝛼̃𝑝2(𝑥)𝐴𝑝2(𝑥) + 𝑗𝑒−𝑗Δ𝑘𝑙,THG𝑥𝜅𝑝2𝐴𝑝1(𝑥)3,

(4.6)

in which 𝑘𝑝1𝑖 and 𝑘𝑝2𝑖 are the imaginary components of the wave vectors intro-

duced to model the dielectric loss. Indeed, using the loss tangents of 0.027 and 0.034

for the (high power) pump and its third harmonic respectively [38], we obtain a

∼ 0.01 increase in the normalized critical input pump current, equivalent to < 2%

of the original estimate. Although the correction to the pump initial condition from

propagation loss is small, (4.6) serves as an important tool for modeling the pump

attenuation effect due to dielectric loss[38]. Figure 4-2 compares the pump dynam-

ics with and without attenuation as a function of position 𝑥 with normalized initial

pump current 𝐼𝑝1𝑛 = 0.78 · 0.91 = 0.71 and loss tangent tan(𝛿) = 0.027 [38]. It is

clear from figure 4-2 that the third harmonic is still non-negligible at the presence

with attenuation.
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Figure 4-2: Dynamics of the pump (blue) and its third harmonic (orange) in (a)

power and (b) normalized current with an initial input pump current of 𝐼𝑝(0) =

0.78 · 0.91𝐼0 = 0.71𝐼0. Solid and dashed lines represent the wave evolution with and

without material loss respectively. The currents of the pump and its third harmonic

plotted in (b) are normalized to the critical current of the Josephson junctions.
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Finally, another source of uncertainty in the pump initial condition comes from the

confounding effect of THG on characterizing the dielectric loss at high pump power.

This is because the two level system (TLS) loss become saturated at high power and

is shown to differ much from its low-power value [38], and so the dielectric loss of

the pump is characterized at high pump power and unavoidably subject to stronger

nonlinear processes. To obtain a more accurate loss tangent value, one can either

fabricate and characterize a linear test structure on the same mask for material loss,

or measure the actual nonlinear device at various pump power and optimize both the

loss tangent and the initial pump power together to best fit the loss measurement set.

4.4 Quantum Many-Mode Processes

Similar to the generation of other pump harmonics, a full chain of signal and idler

sidebands exist and are generated through different four-wave mixing processes. For

instance, signal and idler too can generate their respective third harmonics through

3𝛾𝜔𝑚 → 𝛾𝜔𝑚 , and higher order signal and idlers can be generated through the cascaded

frequency conversion processes 𝛾𝜔𝑚 + 2𝛾𝜔𝑝 → 𝛾𝜔𝑚+2𝜔𝑝 . In this thesis, we will refer

to all the signal sidebands as idlers and assign each an index to differentiate them

from each other. The main idler is chosen to have index 1. With the same argument

presented in section 4.3 and that the typical input signal power is several orders

of magnitude weaker than the input pump power, only processes involving exactly

two pump photons are significant to the overall system dynamics and worth careful

considerations. Figure 4-3 illustrates a selection of the signal sidebands that are

generated through two-pump-photon processes. Treating the third harmonic of the

pump as an effective second pump, we can categorize all the nonlinear processes into

two main categories: parametric amplification and frequency conversion (or Bragg

scattering).

The parametric amplification processes include both degenerate and non-degenerate

pump processes. Degenerate pump parametric amplification processes include the

main process 2𝛾𝜔𝑝1 → 𝛾𝜔𝑠 + 𝛾𝜔𝑖1
and the third harmonic assisted process 2𝛾𝜔𝑝2 →
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Figure 4-3: Graphical illustration of the many mode processes through degenerate or
non-degenerate pump four-wave mixing. The main parametric amplification process
of interest is indicated by the solid, orange-to-blue gradient arrow. Dashed arrows
represent degenerate and non-degenerate pump parametric amplification processes.
Dashed-dotted arrows represent frequency conversion or bragg scattering processes.
Here, the cascaded frequency conversion processes of the main signal and idler (𝜔𝑖1)
are represented by 𝜔𝑠 → 𝜔𝑖2 and 𝜔𝑖 → 𝜔𝑖3 respectively.

𝛾𝜔𝑖1
+𝛾𝜔𝑖5

. Non-degenerate parametric amplification processes include the generation

of 𝜔𝑖3 and 𝜔𝑖5 through 𝛾𝜔𝑝1 +𝛾𝜔𝑝2 → 𝛾𝜔𝑠 +𝛾𝜔𝑖3
and 𝛾𝜔𝑝1 +𝛾𝜔𝑝2 → 𝛾𝜔𝑖4

+𝛾𝜔𝑖5
respectively.

The frequency conversion/Bragg scattering processes include the generation of

higher order signal and idler through 𝛾𝜔𝑠 + 2𝛾𝜔𝑝1 → 𝛾𝜔𝑖2
and 𝛾𝜔𝑖1

+ 2𝛾𝜔𝑝1 → 𝛾𝜔𝑖3

respectively. They are dubbed the cascaded frequency conversion processes because

they can again frequency up-convert the generated sidebands into even higher fre-

quency images in the same fashion. For instance, 𝜔𝑖5 can be generated from the

signal through two frequency conversions 𝛾𝜔𝑠 → 𝛾𝜔𝑖2
→ 𝛾𝜔𝑖5

in series, each mediated

by a pair of degenerate pump photons. Moreover, frequency conversion processes also

include processes involving the scattering of two non-degenerate pump photons. For

instance, a 𝜔𝑖2 photon can also be generated via 𝛾𝜔𝑠 + 𝛾𝜔𝑝2 → 𝛾𝜔𝑖2
+ 𝛾𝜔𝑝1 .

One can directly observe from figure 4-3 that the same wave component can be gen-

erated from potentially multiple different paths. As an example, we already show that

an idler photon at 𝜔𝑖4 can be generated through either degenerate-pump parametric

amplification, non-degenerate pump parametric amplification, or cascaded frequency

conversion. This is non-coincidental because the second pump we consider here is the

third harmonics of the first pump. Moreover, different idlers can interact with each
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other through various two pump photon nonlinear processes. Depending on the phase

matching conditions, these sideband interactions can strongly entangle a selection or

all the idlers with each other. Accordingly, one cannot decouple the whole system

into pairwise two-mode processes and will need to use the many-mode formalism to

accurately describe the dynamics [42].

In the next section, we will develop a formal, generalized model that incorporates

both the non-idealities of the pump and the many-mode dynamics.

4.5 Generalized Equations of Motions

Before deriving the generalized equations of motion for the system, let us first make a

few definitions on the pump and its third harmonics. We show in section 4.2 that the

pump evolution can be numerically solved using (4.2) or (4.6) to include the pump

depletion effect. Without loss of generality, we can rewrite 𝐴𝑝1(𝑥) and 𝐴𝑝2(𝑥) in the

rotating frame form as

𝐴𝑝1(𝑥) = 𝐴𝑝1𝑟(𝑥)𝑒−𝑗
∫︀ 𝑥
0 𝛼𝑝1(𝑥′)𝑑𝑥′

,

𝐴𝑝2(𝑥) = 𝐴𝑝2𝑟(𝑥)𝑒−𝑗
∫︀ 𝑥
0 𝛼𝑝2(𝑥′)𝑑𝑥′

,
(4.7)

in which 𝐴𝑝1𝑟(𝑥), 𝐴𝑝2𝑟(𝑥) are defined to be the real, signed amplitudes of the

pump and its harmonics respectively. 𝛼𝑝1(𝑥), 𝛼𝑝2(𝑥) encode the phase information of

the pumps and bear the physical meanings of the instantaneous phase modulations

at position 𝑥. We use instead the integral of 𝛼𝑝1(𝑥) and 𝛼𝑝2(𝑥) in the definition of the

rotating frames here, as these nonlinear phase modulations terms are now spatially

dependent. Notice that 𝐴𝑝1𝑟(𝑥), 𝐴𝑝2𝑟(𝑥) are holomorphic whereas 𝛼𝑝1(𝑥), and 𝛼𝑝2(𝑥)

are continuous under the definition of (4.7).

To model the many-mode processes, we will use the traveling wave ansatz

𝜑(𝑥, 𝑡) = 𝐴𝑝1(𝑥)𝑒𝑗(𝜔𝑝𝑡+𝑘𝑝1𝑥) + 𝐴𝑝2(𝑥)𝑒𝑗(𝜔2𝑝𝑡+𝑘𝑝2𝑥) (4.8)

+ 𝐴𝑠(𝑥)𝑒𝑖(𝑘𝑠𝑥+𝜔𝑠𝑡) +
𝑁∑︁

𝑚=1

𝐴𝑖,𝑚(𝑥)𝑒𝑖(𝑘𝑖𝑚𝑥+𝜔𝑖𝑚𝑡) + 𝑐.𝑐., (4.9)
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in which 𝐴𝑖,𝑚(𝑥) represent the flux amplitude of the 𝑚-th idler included in the analysis

with frequency 𝜔𝑖𝑚 and wave vector 𝑘𝑖𝑚. For clarity, the main idler of the desired

parametric amplification process 2𝛾𝜔𝑝1 → 𝛾𝜔𝑠 + 𝛾𝜔𝑖1
is chosen to have index 1. Notice

that the 𝑁 idlers included in the ansatz are all reachable from the signal through

two-pump photon processes, so that we can still apply the generalized stiff-pump

approximation and linearize the equations of motions later.

The choice of the actual number of sidebands 𝑁 depends on the linear dispersion

of the transmission line. As a rule of thumb, 𝑁 should scale with the cut-off frequency

𝜔𝑐 of the transmission line. The intuition is that as the cut-off frequency increases, the

group velocity dispersion (GVD) of the transmission decreases at the same frequency

range, thereby making the phase mismatch conditions of processes involving higher

frequency components become more favorable. Therefore one has to include more

higher frequency sidebands to properly account for their contributions to the overall

dynamics. We can express each frequency 𝜔𝑖𝑚 in the basis of 𝜔𝑠, 𝜔𝑝1, and 𝜔𝑝2 as

𝜔𝑖𝑚 = 𝑐1,𝑚𝜔𝑠 + 𝑐
(𝑙)
2,𝑚𝜔𝑝1 + 𝑐

(𝑙)
3,𝑚𝜔𝑝2, with (4.10)

𝑐1,𝑚 ∈ {−1, 1}, 𝑐
(𝑙)
2,𝑚, 𝑐

(𝑙)
3,𝑚 ∈ [−2, 2], and (4.11)⃒⃒⃒

𝑐
(𝑙)
2,𝑚

⃒⃒⃒
+
⃒⃒⃒
𝑐
(𝑙)
3,𝑚

⃒⃒⃒
= 2. (4.12)

The coefficient 𝑐
(𝑙)
𝑢,𝑚 denotes the coefficient of the basis wave component 𝑢 ∈

{1, 2, 3} of idler 𝑚 ∈ [1, 𝑁 ] in its 𝑙-th decomposition form. the superscript (𝑙) of

the pump coefficients is necessary because an idler can have more than one decompo-

sition forms, as the pump basis here is not minimal (basis components are not linearly

independent). As an example, the main idler 𝜔𝑖1 can be decomposed as

𝜔𝑖1 = 𝑐1,1𝜔𝑠 + 𝑐
(1)
2,1𝜔𝑝1 + 𝑐

(1)
3,1𝜔𝑝2 = −1 · 𝜔𝑠 + 2 · 𝜔𝑝1 + 0 · 𝜔𝑝2, or (4.13)

𝜔𝑖1 = 𝑐1,1𝜔𝑠 + 𝑐
(2)
2,1𝜔𝑝1 + 𝑐

(2)
3,1𝜔𝑝2 = −1 · 𝜔𝑠 − 1 · 𝜔𝑝1 + 1 · 𝜔𝑝2. (4.14)

With (4.10), the position-dependent linear and total phase mismatch of the process
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𝑐1,𝑚𝛾𝜔𝑠 + 𝑐
(𝑙)
2,𝑚𝛾𝜔𝑝1 + 𝑐

(𝑙)
3,𝑚𝛾𝜔𝑝2 → 𝑐

(𝑙)
𝑢,𝑚𝛾𝜔𝑖𝑚

can be defined as

∆𝑘
(𝑙)
𝑙,(𝑠,𝑚)(𝑥) = 𝑐1,𝑚

(︁
𝑘𝑖𝑚 − 𝑐1,𝑚𝑘𝑠 − 𝑐

(𝑙)
2,𝑚𝑘𝑝1 − 𝑐

(𝑙)
3,𝑚𝑘𝑝2

)︁
(4.15)

= −𝑘𝑠 + 𝑔1,𝑚𝑘𝑖𝑚 + 𝑔
(𝑙)
2,𝑚𝑘𝑝1 + 𝑔

(𝑙)
3,𝑚𝑘𝑝2, and (4.16)

∆𝑘
(𝑙)
(𝑠,𝑚)(𝑥) = (𝑘𝑠 + 𝛼𝑠) + 𝑔1,𝑚(𝑘𝑖𝑚 + 𝛼𝑖𝑚) + 𝑔

(𝑙)
2,𝑚(𝑘𝑝1 + 𝛼𝑝1) + 𝑔

(𝑙)
3,𝑚(𝑘𝑝2 + 𝛼𝑝2),

(4.17)

in which we drop the explicit dependence on position x of 𝛼𝑠(𝑥), 𝛼𝑝1(𝑥), 𝛼𝑝2(𝑥),

and 𝛼𝑖𝑚(𝑥). The coefficients 𝑔
(𝑙)
𝑢,𝑚 are defined by (4.15) and (4.16). The overall sign

coefficient 𝑐1,𝑚 in the expressions of ∆𝑘
(𝑙)
𝑙,(𝑠,𝑚)(𝑥) and ∆𝑘

(𝑙)
(𝑠,𝑚)(𝑥) makes sure that the

overall coefficient of 𝑘𝑠 is always negative to match with the convention in [47]. An-

other functionality of the coefficient 𝑐1,𝑚 is to manifest the type of the corresponding

process. Specifically, a process is parametric amplification when 𝑐1,𝑚 = −1 and fre-

quency conversion if 𝑐1,𝑚 = 1. It turns out that the specific category of nonlinear

process have implications on the added quantum noise [25], and the details will be

discussed later in section 5.2. Moreover, (4.16) implies

𝜔𝑠 = 𝑔1,𝑚𝜔𝑖𝑚 + 𝑔
(𝑙)
2,𝑚𝜔𝑝1 + 𝑔

(𝑙)
3,𝑚𝜔𝑝2. (4.18)

Because the signal, the pump, and its third harmonics span all the 𝑁 idlers in

frequency, we can also deduce from the decompositions whether a direct interaction

between an arbitrary pair of idlers is possible via a two pump photon process. From

(4.10), the linear and the total phase mismatch of a potential sideband interaction
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between the 𝑚-th and the 𝑚′-th idlers can be written as

∆𝑘
(𝑙𝑚,𝑙𝑚′ )
𝑙,(𝑚,𝑚′) = 𝑐1,𝑚

(︁
∆𝑘

(𝑙𝑚′ )
𝑙,(𝑠,𝑚′) −∆𝑘

(𝑙𝑚)
𝑙,(𝑠,𝑚)

)︁
(4.19)

= 𝑐1,𝑚

(︁
−𝑐1,𝑚𝑘𝑖𝑚 + 𝑐1,𝑚′𝑘𝑖𝑚′ + (𝑐

(𝑙𝑚′ )
2,𝑚′ − 𝑐

(𝑙𝑚)
2,𝑚 )𝑘𝑝1 + (𝑐

(𝑙𝑚′ )
3,𝑚′ − 𝑐

(𝑙𝑚)
3,𝑚 )𝑘𝑝2

)︁
= −𝑘𝑖𝑚 + 𝑐1,𝑚

(︁
𝑐1,𝑚′𝑘𝑖𝑚′ + (𝑐

(𝑙𝑚′ )
2,𝑚′ − 𝑐

(𝑙𝑚)
2,𝑚 )𝑘𝑝1 + (𝑐

(𝑙𝑚′ )
3,𝑚′ − 𝑐

(𝑙𝑚)
3,𝑚 )𝑘𝑝2

)︁
(4.20)

= −𝑘𝑖𝑚 + 𝑔1,(𝑚,𝑚′)𝑘𝑖𝑚′ + 𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)𝑘𝑝1 + 𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)𝑘𝑝2, 𝑎𝑛𝑑 (4.21)

∆𝑘
(𝑙𝑚,𝑙𝑚′ )
(𝑚,𝑚′) (𝑥) = 𝑐1,𝑚

(︁
∆𝑘

(𝑙𝑚′ )
(𝑠,𝑚′)(𝑥)−∆𝑘

(𝑙𝑚)
(𝑠,𝑚)(𝑥)

)︁
(4.22)

= −(𝑘𝑖𝑚 + 𝛼𝑖𝑚(𝑥)) + 𝑔1,(𝑚,𝑚′)(𝑘𝑖𝑚′ + 𝛼𝑖𝑚′(𝑥))

+ 𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)(𝑘𝑝1 + 𝛼𝑝1(𝑥)) + 𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)(𝑘𝑝2 + 𝛼𝑝2(𝑥)), (4.23)

in which the effective sideband coefficients 𝑔1,(𝑚,𝑚′), 𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′), and 𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′) defined

from (4.20) to (4.21) satisfy a similar relation

𝜔𝑖𝑚 = 𝑔1,(𝑚,𝑚′)𝜔𝑖𝑚′ + 𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)𝜔𝑝1 + 𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)𝜔𝑝2. (4.24)

(4.21) shows that a direct, two-pump-photon mediated interaction between the

𝑚-th and the 𝑚′-th idlers is possible if and only if

⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)

⃒⃒⃒
+
⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)

⃒⃒⃒
=
⃒⃒⃒
𝑐
(𝑙𝑚′ )
2,𝑚′ − 𝑐

(𝑙𝑚)
2,𝑚

⃒⃒⃒
+
⃒⃒⃒
𝑐
(𝑙𝑚′ )
3,𝑚′ − 𝑐

(𝑙𝑚)
3,𝑚

⃒⃒⃒
= 2 (4.25)

for some 𝑙𝑚 and 𝑙𝑚′ . In addition, (4.22) suggests

𝑐1,𝑚∆𝑘
(𝑙𝑚,𝑙𝑚′ )
𝑙,(𝑚,𝑚′) + 𝑐1,𝑚′∆𝑘

(𝑙𝑚′ ,𝑙𝑚)

𝑙,(𝑚′,𝑚) = 0 and

𝑐1,𝑚∆𝑘
(𝑙𝑚,𝑙𝑚′ )
(𝑚,𝑚′) (𝑥) + 𝑐1,𝑚′∆𝑘

(𝑙𝑚′ ,𝑙𝑚)

(𝑚′,𝑚) (𝑥) = 0.
(4.26)

Using the generalized stiff-pump approximation, we decouple the dynamics of the

two pumps from the signal and its sidebands. Substituting the full ansatz (4.9) into

the nonlinear wave equation (3.7) and assembling terms oscillating at the same fre-

quencies together, we obtain a system of 𝑁 + 1 second order nonlinear differential

equations for the signal and its sidebands. After we utilize the pump solution from
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(4.2) or (4.6), the system of the 𝑁 + 1 nonlinear differential equations becomes lin-

earized. To highlight the underlying physics, we transform the flux amplitudes of the

signal and idlers in (4.9) into the rotating frame

𝐴𝑠(𝑥) = 𝑒𝑗
∫︀ 𝑥
0 𝛼𝑠(𝑥′)𝑑𝑥′

𝐴𝑠𝑟(𝑥), (4.27)

𝐴𝑖𝑟(𝑥) = 𝑒𝑗
∫︀ 𝑥
0 𝛼𝑖𝑚(𝑥′)𝑑𝑥′

𝐴𝑖𝑟,𝑚(𝑥), with (4.28)

𝛼𝑠(𝑥) =
𝑘3
𝑠(𝑘2

𝑝1|𝐴𝑝1(𝑥)|2 + 𝑘2
𝑝2|𝐴𝑝2(𝑥)|2)

8𝜔2
𝑠

, and (4.29)

𝛼𝑖𝑚(𝑥) =
𝑘3
𝑖𝑚(𝑘2

𝑝1|𝐴𝑝1(𝑥)|2 + 𝑘2
𝑝2|𝐴𝑝2(𝑥)|2)

8𝜔2
𝑖𝑚

. (4.30)

Finally, with the continuum approximation, SVEA, and the definitions in (4.7),

(4.10), (4.17), and(4.23), we arrive at the many-mode equations of motion

d

d𝑥
𝐴𝑠𝑟(𝑥) = −𝑗

∑︁
{𝑛: 𝑐1,𝑛=−1}

(︃∑︁
𝑙𝑛

𝑟(𝑙𝑛)𝑛 𝜅(𝑙𝑛)
𝑠,𝑛 𝑒

𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙)
(𝑠,𝑛)

(𝑥′)𝑑𝑥′

)︃
𝐴*

𝑖𝑟,𝑛(𝑥)

+ 𝑗
∑︁

{𝑚: 𝑐1,𝑚=1}

(︃∑︁
𝑙𝑚

𝑟(𝑙𝑚)
𝑚 𝜅(𝑙𝑚)

𝑠,𝑚 𝑒𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙)
(𝑠,𝑚)

(𝑥′)𝑑𝑥′

)︃
𝐴𝑖𝑟,𝑚(𝑥), (4.31)

d

d𝑥
𝐴*

𝑖𝑟,𝑛(𝑥) = 𝑗

(︃∑︁
𝑙𝑛

𝑟(𝑙𝑛)𝑛 𝜅(𝑙𝑛)
𝑛,𝑠 𝑒

−𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙)
(𝑠,𝑛)

(𝑥)𝑑𝑥

)︃
𝐴𝑠𝑟(𝑥)

− 𝑗
∑︁

{𝑛′: 𝑐1,𝑛′=−1 & 𝑛′ ̸=𝑛}

⎛⎝∑︁
𝑙𝑛

∑︁
𝑙𝑛′

𝑟
(𝑙𝑛,𝑙𝑛′ )
(𝑛,𝑛′) 𝜅

(𝑙𝑛,𝑙𝑛′ )
𝑛,𝑛′ 𝑒

−𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙𝑛,𝑙𝑛′ )
𝑛,𝑛′ (𝑥′)𝑑𝑥′

⎞⎠𝐴*
𝑖𝑟,𝑛′(𝑥)

+ 𝑗
∑︁

{𝑚′: 𝑐1,𝑚′=1}

⎛⎝∑︁
𝑙𝑛

∑︁
𝑙𝑚′

𝑟
(𝑙𝑛,𝑙𝑚′ )
(𝑛,𝑚′) 𝜅

(𝑙𝑛,𝑙𝑚′ )
𝑛,𝑚′ 𝑒

−𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙𝑛,𝑙𝑚′ )
𝑛,𝑚′ (𝑥′)𝑑𝑥′

⎞⎠𝐴𝑖𝑟,𝑚′(𝑥),

(4.32)

and
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d

d𝑥
𝐴𝑖𝑟,𝑚(𝑥) = 𝑗

(︃∑︁
𝑙𝑚

𝑟(𝑙𝑚)
𝑚 𝜅(𝑙𝑚)

𝑚,𝑠 𝑒
−𝑗

∫︀ 𝑥
0 Δ𝑘

(𝑙)
(𝑠,𝑚)

(𝑥)𝑑𝑥

)︃
𝐴𝑠𝑟(𝑥)

+ 𝑗
∑︁

{𝑚′: 𝑐1,𝑚′=1 & 𝑚′ ̸=𝑚}

⎛⎝∑︁
𝑙𝑚

∑︁
𝑙𝑚′

𝑟
(𝑙𝑚,𝑙𝑚′ )
(𝑚,𝑚′) 𝜅

(𝑙𝑚,𝑙𝑚′ )
𝑚,𝑚′ 𝑒

𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙𝑚,𝑙𝑚′ )
𝑚,𝑚′ (𝑥′)𝑑𝑥′

⎞⎠𝐴𝑖𝑟,𝑚′(𝑥)

− 𝑗
∑︁

{𝑛′: 𝑐1,𝑛′=−1}

⎛⎝∑︁
𝑙𝑚

∑︁
𝑙𝑛′

𝑟
(𝑙𝑚,𝑙𝑛′ )
(𝑚,𝑛′) 𝜅

(𝑙𝑚,𝑙𝑛′ )
𝑚,𝑛′ 𝑒

𝑗
∫︀ 𝑥
0 Δ𝑘

(𝑙𝑚,𝑙𝑛′ )
𝑚,𝑛′ (𝑥′)𝑑𝑥′

⎞⎠𝐴*
𝑖𝑟,𝑛′(𝑥)

(4.33)

for {𝑛 ∈ [1, 𝑁 ] : 𝑐1,𝑛 = −1} and {𝑚 ∈ [1, 𝑁 ] : 𝑐1,𝑚 = 1}.

The additional symbols introduced in (4.31)-(4.33) are defined as follows:

𝑟𝑙𝑚𝑚 = (𝑗)

(︁
𝑐
(𝑙𝑚)
2,𝑚 +𝑐

(𝑙𝑚)
3,𝑚

)︁
, 𝑟

(𝑙𝑚,𝑙𝑚′ )
(𝑚,𝑚′) = (𝑗)

(︂
𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)+𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)

)︂
(4.34)

𝜅(𝑙𝑚)
𝑠,𝑚 =

𝑘𝑠𝑘𝑖𝑚𝑘

⃒⃒⃒
𝑔
(𝑙𝑚)
2,𝑚

⃒⃒⃒
𝑝1 𝑘

⃒⃒⃒
𝑔
(𝑙𝑚)
3,𝑚

⃒⃒⃒
𝑝2

8𝜔2
𝑠

(︁
𝑘𝑠 + ∆𝑘

(𝑙𝑚)
𝑙,(𝑠,𝑚)(𝑥)

)︁
· 𝐶𝑝

(︁
(𝐴𝑝1𝑟(𝑥), 𝑔

(𝑙𝑚)
2,𝑚

)︁
· 𝐶𝑝

(︁
(𝐴𝑝2𝑟(𝑥), 𝑔

(𝑙𝑚)
3,𝑚

)︁
, (4.35)

𝜅(𝑙𝑚)
𝑚,𝑠 =

𝑘𝑠𝑘𝑖𝑚𝑘

⃒⃒⃒
𝑔
(𝑙𝑚)
2,𝑚

⃒⃒⃒
𝑝1 𝑘

⃒⃒⃒
𝑔
(𝑙𝑚)
3,𝑚

⃒⃒⃒
𝑝2

8𝜔2
𝑖𝑚

(︁
𝑘𝑖𝑚 − 𝑔

(𝑙𝑚)
1,𝑚 ∆𝑘

(𝑙𝑚)
𝑙,(𝑠,𝑚)(𝑥)

)︁
· 𝐶𝑝

(︁
(𝐴𝑝1𝑟(𝑥), 𝑔

(𝑙𝑚)
2,𝑚

)︁
· 𝐶𝑝

(︁
(𝐴𝑝2𝑟(𝑥), 𝑔

(𝑙𝑚)
3,𝑚

)︁
, (4.36)

𝜅
(𝑙𝑚,𝑙𝑚′ )
𝑚,𝑚′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑘𝑖𝑚𝑘𝑖𝑚′𝑘

⃒⃒⃒⃒
⃒𝑔(𝑙𝑚,𝑙𝑚′ )

2,(𝑚,𝑚′)

⃒⃒⃒⃒
⃒

𝑝1 𝑘

⃒⃒⃒⃒
⃒𝑔(𝑙𝑚,𝑙𝑚′ )

3,(𝑚,𝑚′)

⃒⃒⃒⃒
⃒

𝑝2

8𝜔2
𝑖𝑚

(︁
𝑘𝑖𝑚 + ∆𝑘

(𝑙𝑚,𝑙𝑚′ )
𝑙,(𝑚,𝑚′)(𝑥)

)︁ ⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)

⃒⃒⃒
+
⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)

⃒⃒⃒
= 2

· 𝐶𝑝

(︁
(𝐴𝑝1𝑟(𝑥), 𝑔

(𝑙𝑚,𝑙𝑚′ )
2,𝑚,𝑚′)

)︁
· 𝐶𝑝

(︁
(𝐴𝑝2𝑟(𝑥), 𝑔

(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)

)︁
,

0,
⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)

⃒⃒⃒
+
⃒⃒⃒
𝑔
(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)

⃒⃒⃒
̸= 2

(4.37)

𝐶𝑝 (𝐴(𝑥), 𝑔) =

⎧⎪⎨⎪⎩(𝐴(𝑥))|𝑔| , 𝑔 > 0

(𝐴*(𝑥))|𝑔| , 𝑔 < 0

(4.38)

𝑟𝑙𝑚𝑚 and 𝑟
(𝑙𝑚,𝑙𝑚′ )
(𝑚,𝑚′) are simply sign coefficients that have values of -1 or 1. Their values
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are determined by the specific structure of the corresponding nonlinear process. 𝜅(𝑙𝑚)
𝑚,𝑠

and 𝜅
(𝑙𝑚)
𝑠,𝑚 are the coupling coefficients that couple a signal photon to a 𝑚-th idler

photon through the process 𝑐1,𝑚𝛾𝜔𝑠 + 𝑐
(𝑙𝑚)
2,𝑚 𝛾𝜔𝑝1 + 𝑐

(𝑙𝑚)
3,𝑚 𝛾𝜔𝑝2 → 𝛾𝜔𝑖𝑚

and vice versa.

𝜅
(𝑙𝑚,𝑙𝑚′ )
𝑚,𝑚′ is the coupling coefficient that couples a 𝑚′-th idler to a 𝑚-th idler through

the process 𝑔1,(𝑚,𝑚′)𝛾𝜔𝑖𝑚′ + 𝑔
(𝑙𝑚,𝑙𝑚′ )
2,(𝑚,𝑚′)𝛾𝜔𝑘𝑝1

+ 𝑔
(𝑙𝑚,𝑙𝑚′ )
3,(𝑚,𝑚′)𝛾𝜔𝑘𝑝2

→ 𝛾𝜔𝑖𝑚
. It is non-zero only

when the condition of (4.25) is satisfied, which simply means that there has to exist

such a direct two-pump-photon process to couple these two idlers.

The right hand side of (4.31) divides the 𝑁 idlers into two categories: each idler

𝑛 in the first set 𝑆1 = {𝑛 ∈ [1, 𝑁 ] : 𝑐1,𝑛 = −1} interacts with the signal through

a parametric amplification process, whereas each idler 𝑚 in the second set 𝑆2 =

{𝑚 ∈ [1, 𝑁 ] : 𝑐1,𝑚 = 1} interacts with the signal through a frequency conversion

process. Similarly, the division of idlers done on the right hand sides of (4.32) and

(4.33) shows that the two set of idlers 𝑆1 and 𝑆2 are both invariant with respect to

frequency conversion transformations. An idler 𝑛 in 𝑆1 can interact with an idler 𝑚 in

𝑆2 only through a parametric amplification process, provided that such a two-pump

photon process exists.

The generalized multi-mode equations of motion (4.31)-(4.33) are the main result

of this section. This general model allows for an arbitrary number of signal sidebands

to be included. The generalized model will exactly reduce to the standard two-mode

model in (3.22) if we set 𝑁 = 1, use the same constant pump condition, and let

the only sideband to be the main idler of the desired signal parametric amplification

process. Even though we utilized the continuum limit approximation in deriving

the final results, our generalized model will still approximate the dynamics well even

when relatively high frequency sidebands are included. This can be understood from

the same argument in section 5.2 that the continuum limit approximation can be

alternatively understood as a perturbative expansion around the corresponding linear

transmission line. Consequently, the continuum limit approximation should still be

valid as long as the nonlinear interactions at high frequency sidebands are sufficiently

weak due to either a weak nonlinearity or a huge phase mismatch.

The generalized model presented here includes the effect from both the original
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pump and its third harmonics. This is because the THG captures the overall pump

dynamics quite well in the specific device [38] we are analyzing. However, the model

can be easily extended to adopt arbitrary pump conditions by adding additional wave

components into the pump basis, as long as overall the pump components altogether

solve the original nonlinear wave equation (3.7). As an example, if the sixth harmonics

of the pump turns out to be non-negligible for another device design, one will use

instead the decomposition

𝜔𝑖𝑚 = 𝑐1,𝑚𝜔𝑠 + 𝑐
(𝑙)
2,𝑚𝜔𝑝1 + 𝑐

(𝑙)
3,𝑚𝜔𝑝2 + 𝑐

(𝑙)
4,𝑚𝜔𝑝3 (4.39)

to replace (4.10), with 𝜔𝑝3 representing the sixth harmonics. In addition, the

generalized model considers only the lowest fourth-order nonlinearity. This is valid

as long as the sixth-order nonlinearity term, the next lowest order in the expansion,

is sufficiently smaller. Indeed, using typical circuit parameters and an initial pump

current 𝐼𝑝𝑛 = 0.78 · 0.91 = 0.71, we see that

⃒⃒⃒⃒
𝐸𝐽𝜑

4
𝑥𝜑𝑥𝑥/4!

−𝐸𝐽𝜑2
𝑥𝜑𝑥𝑥/2!

⃒⃒⃒⃒
=

⃒⃒⃒⃒
𝜑2
𝑥

12

⃒⃒⃒⃒
∼
⃒⃒⃒⃒
𝑘2
𝑝𝐴

2
𝑝(0)

12

⃒⃒⃒⃒
∼ 0.04≪ 1, (4.40)

which means the contributions from the next lowest order nonlinearity is negligible

and justifies the use of the lowest order nonlinearity only. In the next section, we will

calculate the gain dynamics of the system calculated by the generalized multi-mode

model and compare the results with that calculated by the standard two-mode model.

4.6 Signal Dynamics with Many-Mode Interactions

We will now systematically make changes to the model and evaluate the outcome at

each step to better understand the effects of each of the non-idealities. We will use a

5.983 GHz signal as used in [38] for illustration, but tune the pump frequency slightly

near the resonance feature to optimally phase match the desired parametric ampli-

fication process. A similar tuning procedure is performed during the experimental

characterization of JTWPAs. In the remainder of the this section, we will consider
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the pump attenuation effect by using the pump condition shown in figure 4-2, but

still assume the signal and all the sidebands to be lossless in order to separate the

effects of the multiple modes from the quantum efficiency degredation due to atten-

uation. Although the distributed attenuation introduces additional quantum noise

and reduces the quantum efficiency, the total attenuation is on the order of 2 dB in a

∼ 2000 unit cell device and has a minimal effect on the dynamics (other than scaling

down the overall gain).

We start by evaluating the effect of the pump current normalization on the signal

dynamics with only one sideband (main idler). Figure 4-4 plots the normalized power

gain of the signal and idler with the raw (dashed) and re-normalized (solid) initial

pump current condition as a function of position 𝑥. Without the new normalization in

the initial pump current, the computed gain at the end of the device is on the order

of 60dB, an unrealistic value that is far from the experimentally measured values.

With the new initial pump current normalization, the signal gain at the end of the

device comes down to ∼ 35dB, which is much closer to the measured lossless values

(∼ 25dB) but still an order of magnitude higher. For the remainder of this section,

we will assume the use of the re-normalized initial pump current value 𝐼𝑝𝑛 = 0.71𝐼0

unless specified otherwise.
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ωi1= 2ωp1- ωs with Ip1n(0) = 0.71

Figure 4-4: Normalized power gain of the signal and idler as a function of position
𝑥. Dashed lines represent the gain dynamics with an initial input pump current
of 𝐼𝑝(0) = 0.91𝐼0, whereas the solid lines represent the gain dynamic with the re-
normalized initial input pump current of 𝐼𝑝(0) = 0.78 · 0.91𝐼0 = 0.71𝐼0.
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Next, we valuate the effect of the third harmonics on the signal dynamics still with

only one sideband (main idler). Figure 4-5 plots the normalized power gain of the

signal and idler with two different pump conditions. The solid lines represent the gain

dynamics under the influence of the THG pump modulation, whereas the dashed lines

represent those under the original pump only. We observe that the calculated gain

values of the signal and idler under the two different pump conditions start off very

similarly and then diverges from each other with different slopes (in the dB scale).

Near the end of the device the calculated gain under different pump conditions differ

by each other by ∼ 12dB when the signal gain in the single pump case is at the

level of 20dB. This drastic difference in the calculated gain level is due to two major

effects. First, the average pump power decreases because of the THG, and therefore

the effective coupling strength of the parametric amplification is smaller than the

THG-free case. Second, the effective phase mismatch of the parametric amplification

under different pump conditions are different. The THG modulation of the pump

results in an additional phase mismatch term whose magnitude is proportional to the

periodicity of the elliptical function in the analytical solution of the third harmonic

generation. Because the phase mismatch in the single pump case is fitted to be close

to zero, the parametric amplification process with pump THG becomes poorly phase

mismatch. Moreover, we see a modulation in the relative magnitudes of the signal

and idler gain, which is also an effect of the pump modulation. Figure 4-5 confirms

that the effect from the THG of the pump is non-negligible and affects the choice of

both design parameters and operating points.

We now evaluate the effect of additional sidebands on the signal gain dynamics

using only the original pump. The sidebands are sorted by frequency in increasing

order. For instance, 𝜔𝑖2 = 2𝜔𝑝1 + 𝜔𝑠, 𝜔𝑖3 = 4𝜔𝑝1 − 𝜔𝑠, 𝜔𝑖4 = 4𝜔𝑝1 + 𝜔𝑠, and so forth.

Figure 4-6(a) plots the signal gain as a function of position 𝑥 with various number of

sidebands 𝑁 included. We clearly see that the introduction of additional sidebands

drastically change the signal evolution, and the signal behaviors starts to converge

from 𝑁 = 5. The reason for the signal gain to decrease with the number of sidebands

included is that the additional sidebands not only consume power from the signal
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ωs  using ωp1 only
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Figure 4-5: Normalized power gain of the signal and idler as a function of position 𝑥.
Dashed lines represent the gain dynamics with the effect of the original pump only,
whereas the solid lines represent the gain dynamic with the effects of THG.

and idlers but also introduce effective modulations and therefore additional phase

mismatch to the main parametric amplification process of the signal. Notice that

here we did not consider the THG dynamics, and again the original phase mismatch

of the simplified two-mode parametric amplification process is fitted to be very close

to zero. Consequently, One should not be surprised that the gain of the signal at

𝑁 = 7 in figure 4-6(b) drops to a level even significantly below the experimentally

measured value at this stage.
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Figure 4-6: (a) Signal power gain as a function of position 𝑥 with varying number
of sidebands 𝑁 included in the model. (b) Gain dynamics of the signal and the
sidebands at 𝑁 = 7.

Finally, we put everything together by applying the generalized model (4.31)-

(4.33) at 𝑁 = 7 with the THG pump condition. Figure 4-7 shows the full gain
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dynamics and the gain spectrum computed by our generalized model. The signal

gain at the end of the device is computed to be 22.8dB, which is comparable to the

experimentally measured value (∼ 25dB). As a comparison, the standard model using

a re-normalized pump initial condition predicts ∼ 35dB gain at the end of the device.

It is important to note that the particular computed gain value of our generalized

model presented here was not fitted or optimized: all we have done to get this value

are simply taking the experimentally extracted circuit parameters of [38] and using

instead the re-normalized initial pump condition for numerical calculation. This sug-

gests that our generalized model is able to reproduce the experiment results fairly

closely, and this agreement is neither a coincidence nor an overfit. Another impor-

tant observation from figure 4-7 is that the idlers 𝜔𝑖2 = 2𝜔𝑝1 +𝜔𝑠 and 𝜔𝑖3 = 4𝜔𝑝1−𝜔𝑠

that are next lowest in frequencies are strongly coupled to the principal signal and

idlers, which not only divert power from the signal but also introduces additional fluc-

tuations [42]. In fact, we will show in section 5.2 next that these strongly interacting

sidebands are the most responsible for the added noise and reduction in quantum

efficiency of the JTWPA.

4 6 8 10 12
0

5

10

15

20

25

ω s /2π (GHz )

G
(d

B
)

0 500 1000 1500 2000
- 60

- 40

- 20

0

20

x (unit cells )

Po
w

er
 G

ai
n

(d
B

)

ωs

ωi2 = 2ωp1 + ωs

ωi3 = 4ωp1 - ωs

ωi5 = 6ωp1 - ωs

ωi6 = 6ωp1 + ωs

ωi7 = 8ωp1 - ωs

ωi1 = 2ωp1 - ωs

ωi4 = 4ωp1 + ωs

(a) (b)

Figure 4-7: (a) Gain dynamics of the signal and its sidebands as a function of position
𝑥 and (b) signal gain as a function of signal frequency computed by the generalized
multi-mode equations of motions (4.31)-(4.33) at 𝑁 = 7.

One might note that the computed signal gain by the generalized model, albeit

neglecting signal attenuation, is still lower than the measured value. Other factors

such as imperfect impedance matching between the JTWPA and the 50Ω cables

should further decrease the measured gain, which ultimately should always be several

dBs lower than the theoretical prediction. This means that our computed gain is
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still about 6 − 7dB lower than the true theoretical value. One explanation to the

underestimation of signal gain is that the initial pump current we used is only a crude

estimate and has not been formally optimized. While this explanation is plausible,

it turns out that there is another subtle cause to the underestimation in gain: the

SVEA. In the next section, we will further discuss the ramifications of applying SVEA

in JTPWA analyses.

4.7 Beyond the Slowly Varying Envelope Approxi-

mation

The SVEA has been widely used in the field of nonlinear optics and is often valid in

most of the applications. Only in very rare cases such as the modeling of the self-

focusing, sub- or few-optical-cycle ultra-short pulses do SVEA start to break down

[55, 54, 36]. The commonly used form of SVEA presented in section 3.3 can be un-

derstood in time domain as the condition that the envelope of a traveling wave pulse

varies very slowly during one optical cycle. The corresponding frequency-domain in-

terpretation is that the spectral linewidth of the traveling wave is much narrower

than the center/carrier frequency. For this reason, SVEA is therefore also sometimes

referred as the "narrow-band approximation". Alternatively, SVEA dictates that the

field varies slowly and cannot be reasonably amplified within a wavelength, and the in-

teraction time is much larger than an optical cycle [7]. These conditions are in general

well satisfied in optical parametric amplifiers (OPAs) operating at telecommunication

wavelengths because the typical fiber nonlinearity is sufficiently small.

For Josephson junction based microwave nonlinear devices, the junction nonlin-

earity is orders of magnitude larger than that of a typical nonlinear optical fiber and

can therefore result in ultra-strong nonlinear couplings. As a comparison, the non-

linear coefficient of a typical high nonlinearity fiber (HNLF) is 𝛾HNLF = 𝑔HNLFP−1 =

11.4 W−1 · km−1 ≈ 1.767 · 10−9W−1𝜆−1
0 for 𝜆0 = 1550nm [63]. The resulting gain per

wavelength of the HNLF is then 𝑔HNLF = 3.53 · 10−6𝜆−1
0 when operating at a high
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pump power of P = 2kW. For the RPM JTWPA considered in [38], a 6GHz signal is

amplified by > 20dB in 2000 unit cells at a pump power of -67dBm. Hence, its nonlin-

ear coefficient and gain per wavelength can be estimated to be 𝛾JJ ∼ 6.75·108 𝑊−1𝜆−1
0

and 𝑔JJ ∼ 0.135𝜆−1
0 respectively. We see that the nonlinearity of a Josephson Junc-

tion is in excess of four orders of magnitude larger than that of the HNLF. Moreover,

the signal is "sensibly" amplified by ∼ 1.05 times in 92 unit cells or one wavelength.

These facts altogether imply that the SVEA becomes marginally valid in JTWPA

analyses and therefore motivate us to carefully evaluate its effect on the system dy-

namics. One straightforward way to validate SVEA is to solve the full nonlinear wave

equation without approximation and compare the numerical results to those with

SVEA applied.

To isolate out the sole effect of SVEA on the parametric amplification, let us

take a few steps back and start by investigating on the simplest problem as possible:

a perfect-two mode parametric amplification process mediate by a constant pump

(without attenuation). Figure 4-7 plots the parametric power gain of the signal and

idler solved using different degrees of approximations. When the parametric gain

predicted by the analytical formula (with SVEA applied everywhere, case (1)) is at

20dB, we observe a 1.2dB increase in signal gain when we lift the SVEA on the signal

and idler (while still applying SVEA to the pump, case (2)). The signal gain is then

further increased by another ∼ 3.5dB after we relax the SVEA on the pump as well

(case (3)). This reveals that applying SVEA on either the signal or the pump will

lead to an underestimation in the signal gain.

Furthermore, figure 4-7 also provides insights into the differences in the effect

of SVEA when applied to different wave components. Specifically, the amount of

underestimation resulted from applying the SVEA to the pump is noticeably larger

than that resulted from instead applying the SVEA to the signal and idler. By

comparing the gain dynamics in case (1) and (2) (both use SVEA on the pump),

we see that the signal gain values calculated with and without SVEA on the signal

and idler closely follow each other at first and then only start to appreciably deviate

from each other after the signal has been significantly amplified. In other words,
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the effect of SVEA on the signal and idler only becomes significant at high signal

gain levels near the end of the device. In contrast, the signal gain values computed

with and without SVEA on the pump in case (2) and (3) respectively (neither uses

SVEA on the signal and idler) are notably different from the very beginning, and the

asymptotic slope of the signal gain without using SVEA on the pump in case (3) is

noticeably larger than that in case (2) when the SVEA on the pump is instead used.

This is because the pump power is at a significantly high level from the start, and

the non-negligible higher order derivatives of the pump act effectively as additional

polarization sources driving the desired parametric amplification process throughout

the device. This explains why the effect of SVEA on the pump is more significant

than the effect of SVEA on the signal and idler, although the latter is also non-trivial

in the JTWPA.
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Figure 4-8: Parametric gain of the signal and idler normalized to initial signal power
computed using different degrees of SVEA in an ideal two-mode parametric amplifi-
cation process with a constant pump current 𝐼𝑝 = 0.71𝐼0. Dashed lines represent the
analytical signal and idler gain when the SVEA is applied to all the wave components.
The nude and light pink solid lines represent the signal and idler gain when SVEA
is lifted for the signal and idler but still applied to the pump. The purple and dark
blue solid lines represent the signal and idler gain when SVEA is not used at all.

Finally, we relax the SVEA on the multi-mode equations of motion completely

and numerically compute the system dynamics. Figure TODO plots the power gain

of the JTWPA as a function of position 𝑥 in (a) and as a function of signal frequency
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in (b) using otherwise the same setup as in figure 4-7 except without applying SVEA.

The computed signal gain at the end of the device is 42dB, which is significantly

higher than the SVEA value.
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Figure 4-9: Multi-mode dynamics of the system without using SVEA. the parameters
used here are exactly the same as those used in figure 4-7. (a) Non-SVEA gain
dynamics of the signal and its sidebands as a function of position 𝑥. (b) Non-SVEA
signal gain as a function of signal frequency computed by the generalized multi-mode
equations of motions (4.31)-(4.33) at 𝑁 = 7.

4.8 Summary

In this chapter, we revisited and evaluated each of major approximations and assump-

tions made in deriving the standard two-mode model of the JTWPA in section 3.3.

We found out that the THG dynamics of the pump significantly affects the signal

gain through a reduction in the average coupling strength and the introduction of

an additional phase mismatch from modulation. Furthermore, we showed that initial

pump current needs to be adjusted accordingly to make sure the total current of the

pump and its third harmonics does not exceed the critical current. We then presented

the generalized multi-mode model to account for the effects of the sidebands and con-

firmed through numerical calculation that the inclusion of sidebands does alter the

system dynamics significantly. Combined with all the aforementioned corrections, our

generalized multi-model is able to predict a much more realistic signal gain. Finally,

we showed that applying SVEA on either the signal or the pump would result in an

underestimation of the parametric gain of the JTWPAs, as the junction nonlinearity
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is strong enough to make the SVEA become only marginally stable.

The standard two-mode model (3.22), albeit simple and instructive, hides away

many of the non-idealities of a JTWPA. The generalized multi-mode model we de-

veloped in this chapter lies the ground work for the quantum efficiency analysis. It

allows for the inclusion of arbitrary number of sidebands and captures the effect of

sideband interactions to the many-mode dynamics. In the next chapter, we will apply

our generalized model to deduce the JTWPA quantum efficiency.
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Chapter 5

Quantum Efficiency of JTWPAs

This chapter is divided into three major parts. In the first part, we will briefly review

several figures of merits relevant to the noise performance and efficiency of linear,

phase-preserving (or phase-insensitive) amplifiers. In the second part, we will utilized

the generalized multi-mode formalism developed in the last chapter to analyze the

quantum efficiency of a typical JTWPA [38]. We aim at unraveling the cause of the

unaccounted reduction in the quantum efficiency and identifying the main limiting

factors. In the third part, we will contrive potential fixes to the issues identified from

the first part and propose a realistic new design of a JTWPA with much improved

quantum efficiency.

5.1 Introduction

The signal-to-noise ratio (SNR), the definition of which is self-explanatory from the

name, is one of the most commonly used figure of merit for both classical and quantum

amplifiers. It characterizes how well the signal level and the noise floor are separated

from each other. For a linear amplifier operating in the single photon regime (⟨𝑛̂⟩ =

⟨𝑎̂†𝑎̂⟩ ∼ 1), the SNR can be written as

SNR =
⟨𝑛̂⟩2

⟨𝛿𝑛̂2⟩
, (5.1)
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in which ⟨𝛿𝑛̂2⟩ = ⟨𝑛̂2⟩− ⟨𝑛̂2⟩ is the photon number uncertainty. The noise figure 𝐹 is

defined as the ratio of the input SNR to the output SNR in decibel scale, although

this terminology is frequently used interchangeably to the linear-scale definition noise

factor. For consistency, We will use the same vocabulary as those used in [25, 42] and

refer to the noise figure 𝐹 as the linear SNR ratio. More specifically,

𝐹 =
SNR𝑖

SNR𝑜

, (5.2)

in which the subscripts 𝑖 and 𝑜 denotes the amplifier input and output respectively.

We will use 𝑁𝐹 to denote the noise figure in the decibel scale instead. The quantum

efficiency has several alternative definitions. For a classical amplifier, the quantum

efficiency is commonly defined as the ratio of the input noise to the output noise. In

the quantum regime, the quantum efficiency is defined similarly as [12]

𝜂 =
1/2

1/2 + 𝐴
, (5.3)

in which 𝐴 is the Cave’s added photon number. We see that the classical quantum

efficiency can be reduced to the quantum version when the input noise approaches the

fundamental limit of 1 / 2 of a photon in the limit of zero temperature [26, 25, 12]. It

worth pointing out that an alternative definition 𝜂 = 2𝜂 of quantum efficiency [9] is

also commonly used for parametric amplifiers in literature. This is motivated by the

fact the quantum efficiency of a perfect two-mode parametric amplifier approaches

50% using the definition of 𝜂 at high gain. The alternative definition 𝜂 therefore

signifies the relative performance of an parametric amplifier to the theoretical limit. In

fact, the definition of 𝜂 can also be interpreted as the fraction of the total information

that is collected. In this interpretation, 𝜂 emphasizes that no information is really

lost but rather "beam-split" into the other mode of a perfect two-mode parametric

amplifier [39]. The aforementioned quantum efficiencies values of the JTWPAs are

defined in 𝜂. To avoid confusion, we will also use 𝜂 and refer to it as the adjusted

quantum efficiency in our analysis to allow for direction comparisons.
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5.2 Quantum Efficiency of the RPM JTWPAs

In this section we will analyze the quantum efficiency of the JTWPAs using the

theoretical framework developed in [42]. As already mentioned in Chapter 3, the

quantum version of the equations of motion for a multi-mode system are the same as

those derived using the classical Lagrangian formulation with the classical amplitudes

substituted by the quantum field operators. The quantum effects arise from the non-

commuting relations of the field operators [42]. We now promote our generalized

equations of motion equations (4.31) to (4.33) into the quantum version using the

substitution rules

𝜑(𝑥)→ 𝜑(𝑥), 𝐴𝑚(𝑥)→ 𝑑𝑚𝑎̂𝑚(𝑥), and 𝐴*
𝑛(𝑥)→ 𝑑𝑛𝑎̂

†
𝑛(𝑥), (5.4)

in which 𝑑𝑚 =
√︁

𝑛(𝜔)𝜔2
𝑐

16𝜋𝜔𝜔𝐽
(see (3.16)) are the constant normalization factors such

that the number operator 𝑎̂†𝑚(𝑥)𝑎̂𝑚(𝑥) is normalized in the unit of photon flux. By

now the physical significance of sidebands in different categories should become self-

evident: sidebands coupled with the signal through parametric amplification processes

introduce additional quantum contributions to the variance of the signal output be-

cause their operators (𝑎̂†𝑚) do not commute with the signal operator 𝑎̂𝑠.

Because we only considered two-pump-photon processes and treated the pumps

classically (stiff-pump approximation), The governing system of equations is a linear,

"time" (position) variant first-order autonomous system whose solution is uniquely

determined by the initial condition. Notice that this is still true for the full equa-

tions of motion without using SVEA, even though they are second-order differential

equations. We can therefore write its solution in the standard transfer function form

[𝑎̂𝑠(𝑥), 𝑎̂(†)𝑚 (𝑥), ...]𝑇 = 𝐵(𝑥) = 𝑀(𝑥, 𝑥0)𝐴(𝑥0), (5.5)

in which the (𝑁 + 1)× 1 column vector 𝐵(𝑥) describes the field operators at position

𝑥, and 𝑀(𝑥, 𝑥0) is the (𝑁 + 1)× (𝑁 + 1) position-variant transfer matrix that relates

the fields at position 𝑥 and 𝑥0 and satisfies 𝑀(𝑥, 𝑥) = 𝐼(𝑁+1).
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One convenient way to solve the transfer matrix 𝑀(𝑥, 𝑥0) of creation and annihi-

lation operators at x is to instead solve for the transfer matrix 𝑀̃(𝑥, 𝑥0) in the flux

operator basis

Φ(𝑥) =

⎡⎢⎢⎢⎣
𝜑𝑠(𝑥)

...

𝜑
(*)
𝑁 (𝑥)]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑑0

. . .

𝑑𝑁

⎤⎥⎥⎥⎦𝐵(𝑥) = 𝑆 ·𝐵(𝑥), (5.6)

in which the (N+1)×1 vector Φ(𝑥) describes the flux operators of signal and side-

bands, and S described the constant transformation matrix that transforms the cre-

ation and annihilation operators to the flux operators. For each position 𝑥 (device

length), we numerically solve the differential system with respect to the flux operators

𝑁 + 1 times, each time using an initial vector that is linearly independent with the

rest of the initial conditions. This allows us to extract 𝑀̃(𝑥, 𝑥0) that satisfies the

relation

Φ(𝑥) = 𝑀̃(𝑥, 𝑥0)Φ(𝑥0). (5.7)

Finally, because 𝑆 is a diagonal matrix and therefore invertible, we get the desired

transfer matrix by applying the similarity transformation

𝑀(𝑥, 𝑥0) = 𝑆−1𝑀̃(𝑥, 𝑥0)𝑆. (5.8)

Following the procedures outlined in section 7 of [42], we can write the signal noise

figure 𝐹 of the multi-mode systems in the limit of ⟨𝑛̂𝑎,𝑠⟩2 ≫ 1 as

𝐹𝑖 ≈ 1 +
∑︁
𝑘 ̸=𝑖

|𝜇𝑖𝑘|2 / |𝜇𝑖𝑖|2 =
∑︁
𝑘

|𝜇𝑖𝑘|2 / |𝜇𝑖𝑖|2 , (5.9)

in which 𝜇𝑚𝑛 denotes the matrix element of 𝑀(𝑥, 𝑥0) on the 𝑚-th row and 𝑛-th

column, 𝑖 is the index of signal in the field vectors (1 in our case).

To correctly predict the quantum efficiency of the JTWPA at 20 dB level of gain,

we tune the pump frequency near the phase-matching resonance slightly to recover

the same level gain for both the constant and modulated pump conditions. Figure 5-1
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plots the signal gain, noise figure, and adjusted quantum efficiency at 𝜔𝑠/(2𝜋)−5.9833

GHz. different initial pump currents. The pump is biased at 𝜔𝑝1 = 7.135GHz. With

an insertion loss of ∼ 1.6dB, the effective signal gain translates to about 21.6 + 1.6 ≈

23dB in our lossless model (for the signal and idlers). This corresponds to a initial

pump current around 𝐼𝑝 = 0.64𝐼0 as indicated by the gray dashed line. We see

that indeed the quantum efficiency predicted by using a constant (orange) and THG

modulated pump (blue) are different from each other even at the same gain level.

At 𝐼𝑝 = 0.64𝐼0, the quantum efficiency is predicted to be around 82% and 72%

when using a constant and a THG modulated pump condition respectively. The

quantum efficiency of the device when the third harmonics of the pump is present

is lower than that when the third harmonics is not agrees with our discussion in

chapter 4. Our model using either of the pump condition matches relatively well with

the experimentally extracted intrinsic quantum efficiency value 85%± 10%, with the

uncertainty attributed to possible systematic errors in characterization [38]. We see

that the quantum efficiency can drift either higher or lower as we vary the pump

current around.

Another interesting observation on figure 5-1 (a) is that the signal gain calculated

with the THG modulated pump condition does not increase monotonically with in-

creasing pump current. Rather, the predicted gain in the THG modulated pump case

oscillates around an equilibrium slope, in this case very close to that in the constant

pump case. This resembles the experimentally observed behavior in figure 3-4 (a), in

which the signal gain slumps with increasing pump current near 𝐼𝑝 = 0.8𝐼0 (without

using our modification). To make things more interesting, the quantum efficiency

at the slightly lower signal gain near 𝐼𝑝 = 0.91𝐼0 is actually higher than that at the

gain peak. This behavior is also observed in our model, in which the quantum effi-

ciency predicted using the THG modulated pump condition monotonically increases

at pump current larger than 0.64 while the signal oscillates. This suggests that the

third harmonics might be a possible cause to such observed behaviors.

In Figure 5-2 we plot the adjusted quantum efficiency and the noise figure as a

function of position in panel (a) and (b) respectively at signal frequency 5.9833 GHz.
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Figure 5-1: The (a) signal gain, (b) noise figure, and (c) adjusted quantum efficiency
of the RPM JTWPA as a function of pump current. The pump is biased at 7.135
GHz to recover similar level of gain for the two different pump conditions. Dashed
line denotes the pump current 𝐼𝑝 = 0.64𝐼0 at which the signal gain is close to 23 dB
(experimental value without insertion loss). SVEA was not used in generating the
figures here.

The pump current and the pump frequency used in (a) and (b) are the same as that

indicated by the gray dashed inline in figure 5-1 (𝜔𝑝1 = 7.135 GHz, 𝐼𝑝 = 0.64𝐼𝑛).In

panel (b) we plot the noise figure (light purple) and the quantum efficiency (cyan)

predicted by the THG modulated pump condition as a function of signal frequency.

We see that the range of the quantum efficiency spans from as low as 50% (immediate

outside the resonance linewidth) to as high as > 95% in the spectral range of interest.

The result here is again in reasonable agreement with the experiments. In fact that

the quantum efficiency can vary

For completeness, we discuss here the other factors that could contribute the

additional quantum noise but was not accounted for. As already hinted on earlier,

our model assumes the signal and all the interacting sidebands to be lossless, although

we did incorporate the dielectric loss for the pump and its third harmonics to more

accurately model the system dynamics. The reason is that the formalism [42] we

use to calculate the quantum noise and subsequently the quantum efficiency are only

valid when the system of equations are linear and conserves energy. Therefore the
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Figure 5-2: (a) The adjusted quantum efficiency and (b)the signal noise figure in the
constant pump (blue) and the THG modulated pump (orange) case as a function
of position 𝑥 at signal frequency 𝜔𝑠/(2𝜋) = 5.9833 GHz. (c) The noise figure (light
purple) and the adjusted signal quantum efficiency (cyan) as a function of signal
frequency. The pump frequency is 7.135 GHz with initial current 𝐼𝑝 = 0.64𝐼0 for all
three subfigures. The shaded area represent the narrow linewidth of the dispersion
feature introduced by the phase matching resonators. The quantum efficiency was
not plotted in the shaded region because the signal has very small to no gain in the
immediate vicinity of the resonance and that the adjusted quantum efficiency is only
well defined in high gain regime. SVEA was not used in solving the multi-mode
equations of motion.

non-trivial insertion loss for the signal and idlers (∼ 1.6𝑑𝐵) will introduce additional

quantum noise according to the dissipation-fluctuation theorem. [13] and [29] have

used the beam splitter model to incorporate propagation losses for a two-mode system,

but a model applicable to multi-model dynamics has still not been developed. Another

motivation for not treating loss in the most stringent way possible is that it would

not yield any new insights even when a more accurate results is obtained, as the

relation between dissipation and fluctuation is long understood. We are instead more

interested in the other non-ideal dynamics that could be potentially ameliorated or

even eliminated once when they are understood.

Moreover, we did not account for nonlinear processes that are nonlinear with

respect to the signal or the sidebands, although being a very good approximation.

Furthermore, as can be indicated in the computed quantum efficiency results, treating

the pump dynamics using a single THG process is likely in sufficient. In fact, the

third harmonic population likely have been overestimated and consequently resulting
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in a slightly underestimated quantum efficiency. For instance, all the high harmonics

can in fact form snoidal waves [48] that the mere pair of the pump and its third

harmonics do no approximate well on their own. However, the treatment of including

in the effect of third harmonics is still valuable for understanding the system dynamics.

In many cases the prediction from using a THG modulated pump condition can give

reasonable estimates on the lower bound of the quantum efficiency. The information

that an excess population of the third harmonics can not only decrease dynamic range

but also degrade quantum efficiency is already valuable to future quantum-limited

amplifier designs on its own.

Finally, when the typical pump power used to operate the JTWPA is high enough,

the effects of next higher order nonlinearity (sixth) also start to to grow and becomes

non-trival (see Chapter 4). In summary, our generalized multi-mode model is able

to explain and estimate the experimentally extract quantum efficiency to a fairly

good extent, despite not incorporating every possible non-idealities. We have also

identified the major cause to the quantum efficiency reduction in JTWPA to be the

lowest frequency signal and idlers sidebands. Lastly, we showed that SVEA is in

some cases not strictly accurate in JTWPA anlaysis because of the incredible strong

nonlinearity of the Josephson junctions. We believe the multi-mode theory developed

in this thesis could serve as a valuable tool for designing future generations JTWPAs.

5.3 Design of a High Quantum Efficiency JTWPA

In the last section, we have identified the limiting factors of the device quantum

efficiency to be the first few lowest frequency sidebands in frequency using the gen-

eralized multi-mode model. With this knowledge in mind, we will discuss dispersion

techniques to ameliorate those issues and propose a new JTWPA design with a po-

tentially much improved quantum efficiency. Finally, we will apply our generalized

multi-mode model to validate and predict the performance of the new design and

discuss the impacts of our dispersion techniques to the other figure of merits dynamic

range and bandwidth.
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5.3.1 Dispersion Engineering

We see from figure 4-9 that the idlers 𝜔𝑖2 = 2𝜔𝑝1 + 𝜔𝑠 and 𝜔𝑖3 = 4𝜔𝑝1 − 𝜔𝑠 diverts

a significant amount of power from the signal and idler of the principle parametric

amplification process. To suppress the coupling of these sidebands to the signal in a

broadband fashion, we can engineer the dispersion of the transmission line to exac-

erbate the phase mismatch of the corresponding nonlinear processes. Recall that the

effective phase mismatch of any fourth-order nonlinear process can be divided into the

linear and nonlinear contributions ∆𝑘 = ∆𝑘𝑙 + ∆𝑘𝑛𝑙. Because transmission lines are

commonly designed to have normal dispersion (i.e. with a positive GVD), the linear

phase mismatch ∆𝑘𝑙 for all the cascaded frequency conversion and degenerate-pump

parametric amplification processes in consideration are always negative in our choice

of convention (see section 3.4). Furthermore, ∆𝑘𝑛𝑙 of these processes are also usually

negative at normal pump power levels due to the particular sign of the junction non-

linearity. These conditions altogether necessitate the use of additional dispersion fea-

tures to phase match the principal non-degenerated parametric amplification process,

as previously illustrated in Figure 3-2. In the RPM technique, the desired parametric

amplification is phase matched by the weak resonance feature introduced near the

pump. Because the phase velocities at frequencies farther away from the pump are

minimally affected by the weak resonance, we have the freedom of separately engi-

neering the dispersion of higher frequency idlers without significantly affecting the

phase matching condition of the desired amplification process.

We propose to suppress the aforementioned undesirable sideband processes by

reducing the cut-off frequency of the transmission line. Depending on the specific

target value, one can do so by simply adjusting the circuit design parameters (i.e.,

reducing the junction critical current or increasing the ground capacitance) or by

using junction arrays for a even more drastic reduction [41]. As the cutoff-frequency

decreases, the linear phase mismatch at the same frequency range will increase due

to a larger GVD. We claim that its effect on the higher frequency sidebands are more

acute than those on the lowest frequency signal and idler. Consider the same circuit
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design in figure 3-1 but without the weakly coupled phase matching resonators for

now, the wave vector of the transmission line with a discrete unit cell size can be

solved using ABCD matrix [51] and have the analytical form of [71]

𝑘𝑎(𝜔) = 2 arcsin

(︃
𝜔

2
√︀

1− 𝛽𝜔2

)︃
. (5.10)

Recall that equation (5.10) is written in the normalized units, so that the depen-

dence of the wave vector on the cut-off frequency 𝜔𝑐 is implicitly embedded in the

normalized frequency terms 𝜔. It turns out that the true cut-off frequency 𝜔𝑡 of this

finite unit cell size transmission line is

𝜔𝑡 =
1√

1 + 4𝛽
, (5.11)

at which the wave vector reaches 𝜋 and forms a standing wave. For 𝜔 ∈ [0, 𝜔𝑡] with

the condition of 𝛽 > 0, the group velocity dispersion 𝜕2𝑘/𝜕𝜔2 of the dispersion re-

lation (5.10) can be shown to be always positive. In other words, the wave vector

increases much more rapidly at higher frequencies. This justifies our claim that it

is possible to significantly ruin the phase mismatch of processes involving higher fre-

quency idlers through cutoff-frequency engineering and at the same time minimally

affect the desired process that is at a much lower frequency. These two requirements

have conflicting objectives and therefore altogether set up a upper and lower bound

for the appropriate cut-off frequency. Figure 5-3 illustrates how fast the phase mis-

match of three major sideband processes scales compared to that of the principle

parametric amplification process ∆𝑘1 as cut-off frequency 𝜔𝑐 decreases at a typical

signal frequency 𝜔𝑠 = 5GHz. The value of the phase mismatch ratio |∆𝑘𝑚/∆𝑘1|

signifies how much larger in absolute magnitude the phase mismatch of the selected

sideband processes are than the main amplification process, whereas the slope of the

ratio |∆𝑘𝑚/∆𝑘1| represents how fast these phase mismatch terms grow compared

to that of the principle process. We see that the slope of all three processes are

non-negative as 𝜔𝑐 decreases initially, which means that we can indeed merit from
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decreasing the cut-off frequency, although we do start see a diminishing return near

very low (∼ 40GHz) cut-off frequencies.
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Figure 5-3: Phase mismatch ratios |∆𝑘𝑚/∆𝑘1| of prominent sideband processes as a

function of decreasing cut-off frequency. ∆𝑘1 (dashed) is the total phase mismatch

of the principle parametric process. The remaining sideband processes (solid) are

described in the legend.

Additionally, we would also like to address the issue of of the THG process of

the pump, as we already saw in chapter 4 that the third harmonics of the pump can

assist sideband interactions and negatively affect the quantum efficiency. We propose

to create a stop band centered at the third harmonics of the pump by periodically

modulate the impedance of the unit cells, similar to what was done in [28] and [50].

It is worth noting that in both of these works the principal photonic bandgap was

opened up at the vicinity of the pump frequency, because their main objective is

to utilize the dispersion at the band edge to achieve phase matching. In [28] an

additional photonic bandgap was engineered near the third harmonics of the pump to

increase the dynamic range and avoid a shock wave front [34], because the the high

kinetic-inductance TiN coplanar waveguide is extremely linear (i.e. a very high cut-off

frequency). In our case, we don’t use the photonic bandgap for phase matching but

for suppressing the third harmonics of the pump. Therefore, because we only place a

photonic bandgap centered at the third harmonics of the pump, the dispersion at the
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signal frequency range far away from the gap is minimally impacted. An additional

benefit of having a photonic bandgap there is that it also helps further suppress the

most problematic frequency conversion process 𝛾𝜔𝑠 + 2𝛾𝜔𝑝1 → 𝛾𝜔𝑖2, if the sideband

𝜔𝑖2 is also within or near the edge of the bandgap. This motivates us to make the

gap width large by increasing the modulation depth. However, a larger modulation

depth would result in would at the same decrease the maximum pump current, as

the pump current has to be smaller than the minimum junction critical current in

the modulated unit cells. Figure 5-4 plots the engineered dispersion of the proposed

JTWPA design. The dispersion feature near 7 GHz is similarly introduced by period

weakly coupled ground resonators, and a wide, ∼ 2.74 GHz bandgap centered at

21.71 GHz is created by a 15% modulation with a period of 6 unit cells. The cut-off

frequency of this transmission line is chosen at ∼ 46 GHz to both suppress sideband

process and properly place the photonic bandgap. The circuit parameters used to

generate figure 5-4 is listed in table 5.1.
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Figure 5-4: Engineered dispersion of the proposed high quantum efficiency JTWPA
design. The real and imaginary component of the full engineered dispersion is plotted
in solid blue and pink. The engineered dispersion has a weak resonance feature at
𝜔𝑟/(2𝜋) = 7.17 GHz for phase matching. A ∼ 2.74 GHz photonic bandgap is opened
at the third harmonics of the pump. The dispersion of an unmodulated transmission
line described by (5.10) is plotted in dashed green, and the dispersion of a transmission
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GHz and is labeled by the red arrow in the inset.
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I0 C0 CJ PMR Period Cut off Frequency (𝜔𝑐)
2.10 𝜇A 51.9 fF 76.8 fF 3 45.6 GHz

Cr Lr Cc Modulation Depth (𝛿) Modulation Period
5.42 pF 0.09 pH 20 fF 15% 6 cells

Table 5.1: Circuit parameters for the proposed high quantum efficiency JTWPA
design.

5.3.2 Predicted Gain Performance and Quantum Efficiency

table 5.1 summarizes one set of practical circuit parameters for the new JTWPA de-

sign that figure 5-5 corresponds to. In here, Panel (a) and (b) shows much cleaner

gain dynamics as the lowest frequency sidebands 𝜔𝑖2 and 𝜔𝑖4 are strongly suppressed

(> 10𝑑𝐵 differential). Panel (c) shows the gain, noise figure, and quantum efficiency

spectrum of the new design, We see that for both pump conditions the quantum effi-

ciency values are close to unity within a broad frequency range (5.8 to 8.8 GHz). The

two spurious features near 5.8 GHz and 8.8 GHz are caused by one of the sidebands

getting trapped/escaped from the photonic bandgap near the third harmonics of the

pump.
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5.3.3 Dynamic Range and Bandwidth Scaling

By forming a wide photonic bandgap centered around the third harmonics of the

pump, we are able to significantly suppress the third harmonics of the pump and the

adjacent idlers 𝜔𝑖2 = 2𝜔𝑝1 +𝜔𝑠 and 𝜔𝑖3 = 4𝜔𝑝1−𝜔𝑠. Following the same argument as

in Section 4.3 and [28], the absence of a non-trivial pump third harmonics increases

the maximum allowed initial pump current to be used. Moreover, the suppression of

the idlers 𝜔𝑖2 and 𝜔𝑖2 minimizes energy from being diverted from the principal signal

and idler, thereby requiring less pump energy to achieve the same level of gain. These

observations altogether project the dynamic range of our new JTWPA design to be

at least on the same order as the existing ones.

Because the photonic bandgap is centered on the third harmonics and has minimal

impact on dispersion at frequencies reasonably far apart, its effect on the signal gain

bandwidth should be insignificant. However, the periodic modulation of the junctions

decrease the smallest critical current, thereby reducing the dynamic range. However,

the use of a lower cut-off frequency in linear design does concurrently increase the

group velocity dispersion in the signal frequency range. In other words, the phase

mismatch diverges away from the optimal frequency faster than it does on a "more

linear" transmission line with a higher cutoff-frequency. We can estimate how the

gain bandwidth scales with a reduced cutoff-frequency. The analytical expression

(5.10) provides an excellent approximation to the full dispersion at the frequency

range of interest. For a given pump condition, denote 𝜔𝑠0 to be the frequency at

which the main parametric amplification process is perfectly matched with ∆𝑘0 ≈ 0.

Assuming the changes in the total nonlinear phase mismatch from frequency detuning

is minimal, we can taylor expand the phase mismatch ∆𝑘 of a detuned signal frequency

𝜔𝑠 = 𝜔𝑠0 + 𝜖 around the optimal point to get

∆𝑘(𝜖) ≈ ∆𝑘0 +
𝜕𝑘

𝜕𝜔
|𝜔0(𝜔𝑠 − 𝜔𝑠0) +

1

2

𝜕2𝑘

𝜕𝜔2
|𝜔0(𝜔𝑠 − 𝜔𝑠0)

2

≈ ∆𝑘0 −
1

4
𝜔0(1 + 12𝛽)𝜖2

≈ −1

4
𝜔0(1 + 12𝛽)𝜖2. (5.12)
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Notice that the (5.12) is written in the normalized unit, and we are only interested

in the fixed frequency range in absolute units. To see the overall dependence on the

cut-off frequency 𝜔𝑐, we restore (5.12) into the absolute unit as

∆𝑘(𝜖) ≈ −1

4
𝜔̃0(1 + 12𝛽)𝜖2

= −1

4

𝜔0

𝜔𝑐

(︂
1 + 3

𝜔2
𝑐

𝜔2
𝑝

)︂(︂
𝜖

𝜔𝑐

)︂2

≈ −1

4

𝜔0

𝜔𝑐

(︂
3
𝜔2
𝑐

𝜔2
𝑝

)︂(︂
𝜖

𝜔𝑐

)︂2

=

(︂
−3

4
𝜔0

)︂
𝜖2

𝜔𝑐

. (5.13)

We explicitly write the tildes on the first line of (5.13) to differentiate the normal-

ized units to the absolute units in the final result. We dropped 1 from the (1 + 12𝛽)

term because 12𝛽 ≤ 9 > 1 in the parameter of interest. Finally, we use equation (5.13)

to evaluate the two pertinent criteria

∆𝑘𝑚𝑎𝑥𝐿 = 𝜋 ⇒ 𝜖𝑚𝑎𝑥 ∝
√
𝜔𝑐 and (5.14)

∆𝑘𝑚𝑎𝑥 ∼ 𝜅𝑠 ∝
𝑘4

𝜔̃2
⇒ 𝜖𝑚𝑎𝑥 ∝ 1/

√
𝜔𝑐. (5.15)

equation (5.14) and (5.15) highlight the explicit dependence of signal gain band-

width to the cut-off frequency 𝜔𝑐. The first condition illustrates the how the coherence

length scales with the cut-off frequency, and the second condition focuses on the rel-

ative magnitude of the coupling strength to the phase mismatch. It is clear that as

we decrease the cutoff-frequency, the condition on coherence length is the dominant

constraint which scales the signal gain bandwidth with the square root of the cut-off

frequency. As a result, there is a trade-off between the quantum efficiency and the

signal gain bandwidth through the adjustment of the cut-off frequency. Fortunately,

the sideband population is much affected by the cut-off frequency in an exponential

fashion(through phase mismatch). The 3dB bandwidth of our new design is approx-

imately
√︀
𝜔𝑐,new/𝜔𝑐,old ≈ 0.72 that of the existing design, which is still well in excess
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of the typical bandwidth needed for current quantum experiments. In addition, with

the suppression of higher order sidebands, our new design is predicted to achieve a

higher peak gain. This means the the total gain bandwidth using the criterion of

> 20𝑑𝐵 gain should be compensated correspondingly with an increased overall gain.
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Chapter 6

Conclusion and Outlook

In this thesis, we developed a multi-mode model for the dynamics in JTWPAs which

illustrates how higher order modes reduce the quantum efficiency. We proposed a new

JTWPA design with both a reduced cut-off frequency and a photonic bandgap at the

pump third harmonics to suppress sideband couplings and the pump THG process

which improved the quantum efficiency. In future experimental work, we will fabricate

and test such a device. In future theory work, we will investigate the assumption that

the introduction of the photonic bandgap will effectively screen out the sidebands that

fall into it. This is not entirely obvious in the nonlinear dynamics. We modeled the

system dynamics in the continuum limit and treating each modulated unit cell to

effectively have the same dispersion. However, the local structure of each unit cell

does not prevent the generation of a wave inside the bandgap of the effective medium

and it is unclear whether it will form a localized standing wave in the transmission

line where a defect presents. In conclusion, we have studied the quantum efficiency

of Josephson traveling wave parametric amplifiers, identified processes which reduce

the quantum efficiency, and proposed new devices which have significantly higher

quantum efficiency.
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