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Abstract
Many critical infrastructures, such as transportation and electric en-

ergy networks, and health care, are now becoming highly integrated with
information and communication technology, in order to be more efficient
and reliable. These cyber-physical systems (CPS) now face an increasing
threat of cyber-attacks. Intelligent attackers can leverage their knowl-
edge of the system, disruption, and disclosure resources to critically dam-
age the system while remaining undiscovered. In this dissertation, we
develop a defense strategy, with the ability to uncover malicious and in-
telligent attacks and enable resilient operation of cyber-physical systems.
Specifically, we apply this defense strategy to power systems, described
by linear frequency dynamics around the nominal operating point. Our
methodology is based on the notion of data aggregation as a tool for ex-
tracting internal information about the system that may be unknown to
the attacker. As the first step to resilience and security, we propose sev-
eral methods for active attack detection in cyber-physical systems. In one
approach we design a clustering-based moving-target active detection al-
gorithm and evaluate it against stealthy attacks on the 5-bus and 24-bus
power grids. Next, we consider an approach based on Interaction Vari-
ables (IntVar), as another intuitive way to extract internal information
in power grids. We evaluate the effectiveness of this approach on Auto-
matic Generation Control (AGC), a vital control mechanism in today’s
power grid. After an attack has been detected, mitigation procedures
must be put in place to allow continued reliable operation or graceful
degradation of the power grid. To that end, we develop a resilient state
estimation algorithm, that provides the system operator with situational
awareness in the presence of wide-spread coordinated cyber-attacks when
many system measurements may become unavailable.

Thesis Supervisor: Marija Ilić
Title: Senior Research Scientist, Lincoln Lab and IDSS
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Chapter 1

Introduction

1.1 Thesis Motivation

Cyber-physical systems (CPS) use advanced computation, sensing, commu-
nication and control technologies to efficiently operate a physical process.
CPS is the underlying structure of many critical infrastructures, such as the
electric power grid, transportation systems, gas and water networks. Re-
silient and reliable operation of these critical infrastructures is an important
task, as new challenges arise [1–4].

CPS leverage advanced computation capability to efficiently operate the
physical process so that certain objectives are reached. For example, in
electric power grids, the system frequency needs to be maintained at nominal
frequency (60 Hz in the U.S., 50 Hz in Europe and some other parts of
the world) at all times, while keeping the operating cost as low as possible.
Alternatively, safe navigation of a self-driving car or an Unmanned Aerial
Vehicle (UAV) is an important objective in transportation systems.

To achieve these objectives, relevant data needs to be gathered from the
physical process. Combined with the model of the physical system, acquired
data allows for the current state of the system to be inferred. As the sens-
ing technology is advancing, and the cost of implementation decreasing, the
number of sensors deployed to monitor physical processes is on the rise.

Using the relevant data gathered from the physical system, the physi-
cal system can be controlled in order to reach desired performance objec-
tives. Today, microcontrollers and programmable logic controllers (PLCs)
are widely used in industry to implement advanced control logic and algo-
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rithms at the component or subsystem level. These devices are able to quickly
process incoming data and compute control signals in an automated fashion.

Finally, a sophisticated communication infrastructure is used by CPS to
transfer the sensor and control signals. Commonly, a Supervisory Control and
Data Acquisition (SCADA) is used to manage the system in a hierarchical
manner. It allows the system operator to remotely operate the system in
the higher supervisory layer. In the lower layer, local devices, such as PLCs
and Remote Terminal Units (RTUs) receive the commands from SCADA
and directly interface with physical actuators (e.g. valves, motors, switches,
etc.).

Unfortunately, there have been a number of successful attacks on cyber-
physical systems [5–8] in the recent years. The motivation for these at-
tacks can range from economic reasons [9] to purely malicious, terrorist ones.
One well-known malicious attack was launched in the Ukrainian power grid
in 2015 [7], where three distribution utilities were affected, and more than
200000 customers were without electricity for an extended period of time.
Investigation revealed that this attack was launched via phishing emails de-
livering the BlackEnergy3 malware, which was eventually activated by an
employee. The attack targeted the SCADA network via field devices with
malicious firmware, allowing an attacker to remotely open the substation
breakers. First stage of the attack was harvesting credentials to access the
industrial control system (ICS) network. Then a telephone system was used
to generate denial-of-service (DoS) attack, denying access to customers at-
tempting to report the outages. The restoration efforts and mitigation pro-
cedures were further delayed by erasing master boot records on workstations
via a modified KillDisk firmware attack. Another, more recent attack was
the cyber incident that disrupted grid operation in the western US in March
of 2019, via a DoS attack [8].

These events have led to the increase in awareness of the problem of
securing critical infrastructure. Unfortunately, the opportunities for the at-
tackers to manipulate these systems are still abundant. The control systems
behind these critical infrastructures have long been protected by physically
isolating the local control and communication networks from insecure global
networks such as the Internet. However, parts of CPS are becoming increas-
ingly exposed to the public via smart devices with Internet and other wireless
connectivity. Some of examples of this are devices and applications that are
already wide-spread and present in many homes and businesses: vehicle con-
trol through phone apps, devices such as smart meters, Nest, and Google

12



Home, that allow remote control of large appliances connected to the power
grid.

An attacker can also take advantage of the many weaknesses of the com-
munication network that already provides access to both sensing and control.
One that is common in large scale systems with many heterogeneous com-
ponents is outdated and improperly setup firewalls and malware protection.
Another weakness is caused by attackers first targeting and hijacking trusted
VPN (Virtual Private Network) or stealing valid employee credentials to gain
access to SCADA communication. Another vulnerability is in the connected
devices themselves. For example, in power grids, due to the sheer scale of
the system, it is practically impossible to physically protect each component.
Consequently, many substations, as well as (smart) meters and other sensors
(PMUs) are left unattended and unguarded. An infected USB (as in Stuxnet
attack [5]) can introduce malware to a field component, or be used to in-
stall a backdoor, which can later be used to manipulate the CPS. Similarly,
malware in form of email attachments can be used to gain access to the cor-
porate network, as in the Ukraine attack [7]. Finally, a disgruntled employee
or malicious insider may lend or provide access rights to another entity, or
even conduct the attack from the inside.

Given the abundant ”means, motive and opportunity”, it is imperative to
design CPS in a way that incorporates fundamental security principles of con-
fidentiality, integrity and availability, also referred to as the CIA triad [10].
All aspects of the CIA triad must be satisfied in order for the system security
to be considered comprehensive and complete. Confidentiality means that
data, resources and other sensitive information are protected from unautho-
rized access. Eavesdropping is an example of cyber-attacks that only target
confidentiality, and is commonly a part of more complex attacks that can
be designed if the other resources are utilized. Integrity refers to protect-
ing the data from unauthorized changes, so that it is reliable and correct.
For example, False Data Injection (FDI) attacks, including replay attacks
utilized in Stuxnet, can be used to manipulate data integrity in order to
cause disruption in the system. Availability means that authorized users
have access to the systems and the resources they need. Denial-of-service,
communication jamming and spoofing are attack examples that target data
availability. Although data availability attacks are straightforward to detect,
they may cause disruption in system operation, as the system cannot be
controlled and operated reliably when feedback data and measurements are
unavailable. Since cyber-attacks that target availability of data are easily
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recognizable, the attack detection methods proposed in this thesis will fo-
cus mainly on integrity attacks, namely False Data Injections (FDI). On the
other hand, both data availability and integrity attacks will be considered in
our analysis of resilient system operation.

FDI attacks affect the system by modifying control or measurement sig-
nals. The attacker can gain access to these signals in one of two ways.
They can infiltrate the communication network, and then intercept real data
packets while forwarding their own modified packets to the operator or the
process. Alternatively, they can directly affect the sensors by manipulat-
ing their environment. Manipulated sensor signals will in turn cause wrong
control signal computation, which can cause damage in the physical system.
Same damaging effects can be caused by manipulating the control signal
directly. Manipulating the control signal directly requires access to the com-
munication between the local controller and the actuator. In the example
of the power grid, this communication usually takes place within a secure
facility, as generators are the main controllable components. It is also usu-
ally encrypted, and therefore regarded as less vulnerable when compared to
the communication between the sensor and the operator. If integrity attacks
are also stealthy, they may not be uncovered for an extended period of time,
allowing the attacker great freedom to manipulate the system. This kind of
attack was utilized both in Stuxnet (as a replay attack) and in the Ukraine
incident. Thus, we focus on stealthy FDI attacks on sensor signals in the
remainder of this thesis.

The danger multiplies when the attackers are resourceful, have detailed
knowledge of the system, and can therefore launch highly effective and de-
ceptive attacks. It has been well-established that passive detection theory
is ineffective against stealthy attacks that closely mimic normal system be-
havior. Replay attacks [11] and zero-dynamics [12] attacks are examples of
how an adversary can exploit knowledge of the system to launch attacks that
can evade detection. Under these circumstances, the defender can assume an
active role in cyber-security of the system, and exploit additional degrees of
freedom that are unavailable to the attacker. The defender can design the
control and detection strategy and utilize sensors in a way that altogether
prevents the attacker from devising a stealthy attack. Thus, in this thesis, we
propose intelligent system designs that prohibit the attacker from designing
stealthy attack sequences.
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1.2 Thesis Contributions

In this thesis, we argue that the defender must exploit additional degrees of
freedom in system design in order to defend against stealthy cyber-attacks.
For this purpose, we propose an aggregation framework that allows for the
intelligent design of detection strategies that behave like a moving target.
Utilizing the knowledge of the aggregate behavior of different parts of the
system, and the ability to manipulate how aggregation is performed, the
defender can actively change the detection strategy over time, continuously
challenging the attacker. Further, knowledge of the aggregate system behav-
ior can extend situational awareness of the operator during a wide-spread
attack, when potentially large number of sensors may be affected. The ag-
gregate system variables can then be used to replace unavailable or untrusted
sensor readings. Using the aggregation framework, this thesis focuses on sev-
eral challenges in power system operation posed by the actions of malicious
intruders.

Attack detection

Attack detection is an essential first step to securing the electric power grid.
Present methods rely on a fixed defense strategy, which, once discovered by
the attacker, will no longer be effective. Hence, active and dynamic detection
methods are needed to combat highly intelligent and invasive attacks.

Resilient SE

After an attack is detected, mitigation and self-healing procedures need to
be initiated. However, until the intruder has been physically removed from
the system, the system operator will have limited knowledge of the system’s
state and conditions, as many sensors may be unavailable. In that situation,
critical processes that provide situational awareness, such as state estimation,
need to be enhanced to provide resilience.

1.3 Thesis outline

This thesis will address each of the above issues, from theoretical perspective
and through numerical simulations. We further introduce the problem of
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cyber-security in electric power systems in Chapter 2, where we describe
the today’s hierarchical control and its vulnerabilities, or attack surfaces for
malicious intruders. In Chapter 3, we introduce the notion of extracting
internal structure of the system through aggregation, to be leveraged for
defensive purposes. Two aggregation methods are evaluated for the purpose
of cyber-physical security. In Chapters 4 and 5, we propose two cyber-attack
detection methods, based on aggregate behavior of the system. We address
situational awareness and propose an algorithm that ensures resilient system
operation in Chapter 6.
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Chapter 2

The Vulnerability of Today’s
Hierarchical Power System
Control

Current industry practice in power system stabilization and regulation is
based on hierarchical frequency control. Figure 2.1 illustrates the control
layers in today’s power system operation with regard to different timescales.
Nominal operating frequency, 60 Hz in the US, is maintained when supply
(power generation) and demand (power consumption) are perfectly balanced.
Thus, the system frequency is required to be at nominal value in real time,
to ensure the supply and demand are balanced, and ensure system stability
as well as quality of service.

Figure 2.1: Timescales in different layer’s of hierarchical control in power
systems

During normal system operation, when all equipment is working as ex-
pected, the changes in the system are driven entirely by load dynamics.
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Typical load curves exhibit variations at several different rates, ranging from
very fast random variations (order of seconds), to hourly, daily, weekly and
seasonal patterns. Based on historical load data, these hourly, daily, weekly,
seasonal trends of the demand can be predicted ahead of time [13]. Figure 2.2
depicts a typical daily load curve1, where the actual load is shown in blue,
and load forecast in red. In the tertiary control level, generation is scheduled
a day ahead of time to satisfy the forecast, predictable part of the total load
demand. The challenge in frequency regulation arises from the unpredictable
variations in demand, that occur at the timescale of minutes and seconds.
Secondary and primary control layers are tasked with satisfying this unpre-
dictable part of the demand in real time, represented by the deviation of
demand from the forecast value, in order to maintain nominal frequency at
all times.

Figure 2.2: Forecast vs. actual load over 24h period [14]

Primary control in power systems is entirely decentralized, and its main
purpose is to stabilize generator frequency and voltage dynamics. Each gen-
erator has a speed-governor controller, which stabilizes local frequency dy-
namics, and a field excitation controller, also known as Automatic Voltage
Regulator (AVR), which stabilizes voltage dynamics. Since these controllers

1data taken from NY-ISO [14]
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Figure 2.3: Deviation of load from forecast value [14]

are local and decentralized, they are tuned using an oversimplified model, a
Thevenin equivalent [15,16], to represent the rest of the system. This tuning
method ignores the dynamic interactions between different system compo-
nents. In today’s primary power system control, frequency is controlled via
proportional output control, which may result in a static tracking error [17].
The output of interest is the deviation of local frequency from the nomi-
nal value of 60 Hz. However, there is no guarantee that the interconnected
system will be stable when all the generators’ controllers are tuned in this
manner. Similarly, each AVR used for local voltage regulation is tuned under
the assumption that the rest of the system is static. Thus, as in frequency
regulation, there is no guarantee that the interconnected system voltage dy-
namics will be stable. It is important to note that there is a big disparity
between literature, where many methods that provide stability guarantees
have been proposed [18, 19], and industry practice. In the current industry
implementation, this fast stabilization by primary-level controllers is assumed
to be fully effective, even with the drawbacks of the current controller tuning
procedures.

According to current industry standards, such as A1, A2, Control Per-
formance Standard (CPS)-1, and CPS-2 [20,21], frequency is required to be
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regulated at a slower rate and at the control area (CA) level. A control area
usually encompasses a part of the grid owned by a single utility. Once the
local generator frequency is stabilized by the primary controllers, Automatic
Generation Control (AGC) is implemented at the control area level. AGC is
intended for regulating the area frequency to the nominal 60 Hz. As such,
it effectively compensates the slower deviations of supply from the required
demand [22–24].

AGC performs frequency regulation by correcting the error in tracking the
nominal frequency via proportional-integral (PI) control, after the frequency
has been stabilized by primary control. The power imbalance in the area,
caused by change in load or deviation of tie-line flows from scheduled values
manifests itself through deviation in local frequency. Local measurements
are used to compute Area Control Error (ACE), which is used to quantify
this power imbalance. In a multi-area power system, each area is equipped
with it’s own AGC, responsible for maintaining the scheduled exchange with
other areas, as well as supplying its own load. Thus, AGC can be viewed
as centralized control at the area level, and decentralized control from the
interconnected system level, as there is no coordination in control between
areas.

In this thesis, we focus on primary and secondary control layers, that work
together to satisfy the unpredictable changes in demand. In this setting, the
predictable portion of the load is assumed to be supplied through economic
dispatch when the day-ahead market is cleared (tertiary control). Then the
unpredictable variations in load can be viewed as relatively small deviations
around the forecast load, as seen in Figure 2.3 (for the daily demand shown
in Figure 2.2). Secondary control, AGC, then computes set-points for the
generators’ primary controllers that will cancel these deviations. The over-
all power system hierarchical control scheme is depicted in Figure 2.4 This
setting lends itself to using a linearized model of the system.

Large amounts of heterogeneous data are also becoming increasingly avail-
able from sources such as smart meters, distributed generation, transmission
sensors, and smart home energy management systems (Nest, Google Home,
etc.) in addition to the commonly used Supervisory Control and Data Ac-
quisition (SCADA) measurements. This allows the critical system states to
be monitored dynamically, with more precision and accuracy than ever be-
fore. The Phasor Measurement Unit (PMU) and Wide Area Measurement
Systems (WAMS) are examples that have attracted attention from both aca-
demic and industry communities. Although there are a lot of sources of data
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Figure 2.4: Illustration of hierarchical control in today’s power systems

in distribution systems, and sophisticated sensors in the field, these data are
frequently not used as they are not trusted. Instead, the industry relies on
simple controllers that don’t require a lot of data, which is a big disparity
with the academic state-of-the-art. In this thesis, we consider the existing
control architecture, but utilize the additional available data to ensure cyber-
security of the grid.

While uncommon in power system stability analysis, modeling load dy-
namics is critical in cyber-security applications. That is especially the case
for stealthy FDI attacks, when the attacker is attempting to inject malicious
signals that resemble those of normal system operation. A false signal in-
dicating that the system load is changing would prompt the generation to
change accordingly. This wrong control signal can, in turn, cause serious
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consequences in the power grid, such as component disconnection or even
cascading blackouts. Modeling that accurately captures load behavior is
key to discerning true system response to load changes from the attacker’s
input. This has now become possible due to novel advanced sensing technolo-
gies, and their large scale deployment, enabling identification of such models.
Thus, a structure-preserving model is derived to capture the behavior of loads
and the system’s response to that behavior.

The rest of this chapter is outlined as follows. In Section 2.1 we outline
some of the vulnerabilities of today’s power systems. Section 2.2 reviews
dynamical models of relevant power system components. In particular, the
model of the Generator-Turbine-Governor (G-T-G) set, commonly used in
frequency stability analysis, the structure-preserving load model, as well as
today’s AGC control system model. Section 2.2.6 summarizes the entire
chapter.

2.1 Vulnerability of today’s power systems

Industrial control systems (ICS) are used to control and monitor the various
parts of the grid, and may or may not be connected to the Internet. ICS that
are not connected to the Internet, still rely on local area networks (LANs) or
similar systems in order to control and monitor the process. Additionally, a
large amount of electronic equipment, switches and circuit breakers are used
to regulate different parts of the grid.

One example of ICS in power systems is SCADA, used to control ge-
ographically dispersed components, often spread out over large distances.
Since its implementation in the 1970s, SCADA operation has been upgraded
by connecting many of the older, legacy systems to the Internet, to improve
the overall system efficiency and make it more intelligent. However, many
of these legacy systems were not designed with security in mind, introduc-
ing new potential access points for a cyber-attack. One example is intrusion
through data reporting routes, or malware injections via a thumb drive, like
the Stuxnet worm [5]. More modern, ”Smart Grid” components are designed
using microprocessor and other hardware devices with advanced computing
and networking capabilities. As such, they may be susceptible to manipula-
tion over a network or the Internet [25].

ICS, including SCADA systems, have been designed to be efficient, rather
than secure. The implemented control mechanisms have critical timing re-
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quirements, rigid performance specifications, and specific task priorities. They
also have limited computing resources and communication bandwidth. This
constrains use of existing IT cyber-security protocols, such as encryption and
certificate authentication.

Each control area is usually managed by a single utility, with a SCADA
at its control center (CC), performing centralized monitoring and control
over long distance communication lines. Based on measurements received
from remote terminal units (RTU), supervisory controls can be sent to field
devices. Field devices perform actions such as opening and closing break-
ers, collecting measurements from sensors, and monitoring their behavior for
alarm conditions [26]. An RTU is usually located at a substation or power
plant, collecting data from the field devices. These field devices usually com-
municate with the RTU through encrypted, short-distance communication
network. Substation RTUs collect measurement from entire neighborhoods
or industrial complexes, and are usually somewhat physically secure, but
impossible to actively monitor due to their number. The data collected by
the RTU is then forwarded to the CC through long-distance, usually unen-
crypted, communication network. In this thesis, we focus on the unencrypted
long-distance communication between RTUs and CC, and model loads at the
substation level. The model of the aggregate substation level load is presented
in the following section.

On the other hand, generator’s primary controllers, governor and field
excitation control, are local to the secure facility housing the generator itself.
These facilities are not only physically secure, but actively monitored and
guarded. Thus, we consider the local sensing and monitoring needed for
primary control to be more secure, and leave the study of cyber-security of
these systems to be addressed in future work.

2.2 Power system modeling

In this section we introduce the component and interconnected system models
needed for analysis and cyber-security tool design. Let nG be the number
of generators and nL number of loads in the system, and denote the set of
generator buses by G, and the set of load buses by L.
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2.2.1 Linearized model of the cyber-physical system

The dynamics of the power system are modeled using nonlinear differential
equations:

ẋ(t) = f(x), x(t0) = x0 (2.1)

where x is a vector of states, f(·) is a vector of nonlinear differential equations
and x0 is the state at time t0, also called the initial condition. To perform
the analysis needed for cyber-security tool design, this model is linearized
around a given operating point [22,27]. Recall the Taylor series expansion of
the function f(·) about x0:

f(x) ≈ f(x0) +
∂f(x0)

∂x
(x− x0) +H.O.T. (2.2)

where x = ∆x+ x0. Then, ∆x is the small deviation around the equilibrium
x0, and state of the linearized system:

∆ẋ =
∂f(x0)

∂x
∆x, ∆x(t0) = x0 (2.3)

The fraction ∂f(x0)
∂x

is commonly referred to as the Jacobian. Finally, the
standard state space model of the linearized system is given by:

∆ẋ = A∆x, ∆x(t0) = x0 (2.4)

where A = ∂f(x0)
∂x

is the system matrix. This commonly used approach to
analysis is usually carried out by viewing the system as a whole. As such,
the matrix A represents the closed loop system matrix, assuming the control
has already been designed and tuned properly. Similarly, in this thesis, we
consider cyber-physical security problems of systems for which appropriate
control systems for stabilization and regulation already exist. Thus, the
system is assumed to be stable (semistable) in absence of cyber-attacks. In
other words, the matrix A is assumed to be negative semi-definite. The
structure of the system matrix A will be discussed in the following sections.

2.2.2 Generator model with primary control

In this section we review the widely used Governor-Turbine-Generator (G-
T-G) model. Dynamics of the mechanical subsystem of a generator are de-
scribed by the swing equation:

Jω̇G +DωG = PT − PG + eTa (2.5)
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where ωG is the generator bus frequency, PG the net real power injected into
the network. Parameters J , D are generator’s inertia and damping, and eT
is a parameter of the turbine.

Given the frequency set-point ωref from the secondary control layer, the
speed-governor controls the generator frequency. Its states PT and a de-
note the mechanical power of the generator and the turbine valve position,
respectively. The governor dynamics are given by:

TuṖT = −PT +Kta (2.6)

Tgȧ = −ra− (ωG − ωref ) (2.7)

The governor’s and turbine’s time constants are denoted by Tu and Tg while
Kt and r are control gains.

2.2.3 Structure-preserving load model

In order to capture the behavior of interest, we adopt the structure-preserving
load model [28, 29], briefly reviewed below. This thesis is focused on the
transmission level system, considering aggregate loads at the substation level
(everything below the substation is considered as one aggregate load). An-
other benefit of modeling loads as dynamic is that the sparsity of the overall
system is preserved, as it is no longer needed to remove algebraic equations
via Kron reduction, or a similar procedure. As seen in equations (2.8), the
load dynamics in this model are driven by the mismatch between the elec-
trical power delivered through the network (PL) and the actual power (L)
consumed by the load:

Jω̇L +DωL = PL − L (2.8)

where J and D are equivalent moment of inertia and damping coefficient of
the aggregate load.

2.2.4 Interconnected system model

In order to derive the interconnected system, we treat the net real power
injection Pi at each bus i as a coupling state variable. The vector of net real
power injections at each bus P is composed of generator and load net real
power injections:

P =

[
PG

−PL

]
(2.9)
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where PG := [Pi]i∈G and PL := [Pi]i∈L. For a lossless system, the dynamics
of P can be obtained from the power flow equation:

Pi =
∑
j∈N

|Yij||Vi||Vj| sin(θi − θj) (2.10)

where N is a set of all buses connected to bus i through a transmission line
of admittance Yij, and Vi is the voltage of bus i. To obtain the linearized DC
power flow, certain assumptions are made:

• Transmission line resistance R is assumed to be negligible (R� X)

• Voltage angle differences are assumed to be small, i.e. sin θ = θ, cos θ = 1

• Voltage profile assumed flat, i.e. bus voltage magnitudes are set to 1
p.u.

Then, the DC power flow equations can be expressed in matrix form as:

P = Ybusθ (2.11)

The matrix Ybus, also called admittance matrix, is defined for a transmission
network topology characterized by its incidence matrix M as:

Ybus = MBMT (2.12)

where B = diag{Bij}, and Bij is the susceptanse of the transmission line
connecting buses i and j. Matrix Ybus can be partitioned as:

Ybus =

[
YGG YGL

YLG YLL

]
Differentiating the equation (2.11) we obtain:[

ṖG

−ṖL

]
= Ybus

[
ωG

ωL

]
(2.13)

Finally, the linearized closed-loop model of power system with primary
control can be described in standard state space form by combining equations
(2.5), (2.7), (2.8) and (2.13), with the state vector x := [ωG, ωL, PG, PL, PT , a]T ,
as:

ẋ = Ax+Bu+Gd (2.14)
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In this model, the control input from the secondary control layer is denoted
with u = [ωref

i ]i∈G, and the disturbances with d = [Li]i∈L. The system ma-
trices are given by:

A :=


−J−1

G DG 0 −J−1
G 0 J−1

G J−1
G eT

0 −J−1
L DL 0 J−1

L 0 0
YGG YGL 0 0 0 0
−YLG −YLL 0 0 0 0

0 0 0 0 −T−1
u T−1

u Kt

−T−1
g 0 0 0 0 −T−1

g r


B :=

[
0(3nG+2nL)×nG

T−1
g

]
G :=

 0nG×nL

−J−1
L

0(3nG+nL)×nL


where:

JG := diag({Ji}i∈G) Kt := diag({Kt,i}i∈G)
JL := diag({Ji}i∈L) Tg := diag({Tg,i}i∈G)
DG := diag({Di}i∈G) Tu := diag({Tu,i}i∈G)
DL := diag({Di}i∈L) r := diag({ri}i∈G)
eT := diag({eT,i}i∈G)

It should be noted that the system matrix A is quite sparse, which sig-
nificantly reduces computation complexity, as it allows use of many fast
computation algorithms, e.g. matrix multiplication, inversion, solving the
Lyapunov and Sylvester equations, etc. Additionally, the model in (2.14) is
structure-preserving and suitable for cyber-security tool design.

2.2.5 Secondary control layer - AGC

The control objective of each area’s Automatic Generation Control (AGC)
is to closely regulate the area frequency (to 60 Hz, in the U.S.), by main-
taining scheduled power exchange with other areas, and supplying its own
local loads. Today’s AGC is designed with the assumption that the power
system is in a quasi-static state, where the system’s response remains close
to the operating point. This assumption is used to derive the relation of the
generator frequency ωG to the generator’s electrical power output PG. This
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relationship is derived by setting the derivatives in equations (2.5) and (2.7)
to zero, resulting in:

ωG = −σPG + (1− σD)ωref (2.15)

where σ is called the speed droop, and the equation (2.15) is referred to as
the droop characteristic of the G-T-G set. Figure 2.5 depicts an example of
the droop characteristic, and how a change in the generator power output P
creates the need for updating the frequency reference ωref .

Figure 2.5: Illustration of the droop characteristic, and the effect of the
increase in real power on frequency, and the resulting set-point change.

The speed droop σ is defined as:

σ =
r

rD +Kt + eT
(2.16)

Under this quasi-static assumption, the entire control area is reduced to an
equivalent single machine, whose speed-droop is equal to the sum of speed
droops of all generators in the area. Further, this results in frequencies of all
buses within the area to be assumed uniform, i.e. ωk = ωk

G,1 = · · · = ωk
G,nG

,
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for an area k with nG generators. The equivalent total droop of the area k
is used to calculate the so-called area frequency bias:

βk =
∑

i∈Areak

1

σi
(2.17)

This simplified representation of the area is used to derive the input to the
AGC, Area Control Error (ACE), which represents the net power imbalance
in the area:

ACEk = (F − F sched) +
βk

2π
(ωk − 60Hz) (2.18)

where F is the actual measured net tie-line power flow into the area, F sched

is the scheduled tie-line power exchange, and ωk is the representative area
frequency. Practically, frequency is measured at only one location, usually at
the control center location, and used to compute the ACE signal. Therefore,
ACE represents the net power imbalance caused by both external (inadver-
tent power exchange with other areas) and internal disturbances (local fre-
quency deviation). Today’s AGC is implemented as a simple PI controller,
with an objective to drive ACE to zero, or, in other words, drive the power
imbalance in the area to zero. The resulting control signal is the set-point ad-
justment for the governor controller of each generator participating in AGC.

2.2.6 Summary

In this chapter, we introduce today’s hierarchical power systems control and
the aspects of it that make it vulnerable to cyber-attacks. In particular,
we focus our attention on secondary and primary control layers, where feed-
back control systems are implemented, as they are particularly vulnerable to
cyber-attacks. Further, we review relevant dynamical models of power sys-
tem components: the model of the Generator-Turbine-Governor (G-T-G) set,
commonly used in frequency stability analysis, and the structure-preserving
load model. We then derive the model of the interconnected physical sys-
tem with primary control, and introduce today’s secondary control scheme
- the AGC control system. This model of the physical power system, as
well as its primary and secondary control layers, enables further analysis and
development of cyber-security methods developed in the following sections.
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Chapter 3

Background on Aggregation
Methods for Cyber-physical
Security

With knowledge of the system topology, equipment and network parameters,
control schemes and gains, a malicious intruder can design a stealthy attack
that mimics normal system operation, but could cause devastating conse-
quences. To combat an attacker with such extensive insight into the system,
methods that take advantage of other, hidden, properties of the system need
to be designed and implemented in order to ensure security of cyber-physical
systems. Additionally, if this property is dynamic it allows the defender
to construct a moving-target detection mechanism, altogether preventing an
attacker from designing stealthy attacks.

Model order reduction methods used in power systems applications are
predominantly based on decomposition. Decomposition refers to splitting
the system into subsystems of lower dimensionality, and analyzing them in-
dependently. The separate solutions or conclusions made about the subsys-
tems are then combined in some way to provide a solution or conclusion
about the overall system. Decomposition methods used in power systems
can be broadly classified into two categories: temporal and spatial decompo-
sition. Most commonly used temporal decomposition method in power sys-
tems, namely Singular Perturbation Analysis (SPA) [32, 33], resulted from
natural time scale separation. Power system dynamics encompass a wide
variety of responses, ranging from very fast electrical phenomena evolving in
microseconds to slower mechanical dynamics evolving over seconds or even
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minutes. Similarly, Modal Analysis (MA) [34] is used frequently to focus
the analysis on modes of interest for the specific problem. For example, in
transient stability analysis the faster modes are of interest, and slow ones can
be assumed constant and disregarded from dynamical system. On the other
hand, spatial decomposition usually entails dividing the power system into
smaller geographical areas, and analyzing each subsystem independently, as
if it was disconnected from the rest of the system. In general, the selec-
tion of the particular decomposition approach is highly dependent on the
application.

For general linear systems, various model reduction methods have been
thoroughly explored. Many of them can be classified as projection methods,
and are equivalent to simple truncation in an appropriate basis of parts of
the model treated as insignificant. Projection methods differ in the way
that projection matrices are chosen, and some commonly used ones include
Singular Value Decomposition (SVD) and Balanced Truncation (BT) [35,36],
Moment Matching (MM) and Krylov methods [35,37], etc.

There are several disadvantages to using decomposition and projection
based model order reduction methods in cyber-security applications. First,
in many instances, a priori error bounds are not known or cannot be com-
puted. This is especially troubling for methods with high computational
complexity, since the reduction procedure must be tuned by trial and error,
possibly over many iterations. Second, and most evident in some temporal
decomposition and projection methods, is that the physical meaning of sub-
system state variables is lost. The projection matrices used in these methods
are typically dense and not structured, resulting in loss of the sparse inter-
connection structure in power systems. In cyber-security applications, it is
important to preserve sparsity through the reduction, so that the particular
corrupted measurements in the original space can be related to those in the
reduced space.

Conversely, methods for model order reduction through aggregation bring
important benefits in cyber-security applications. Most importantly, the level
of detail in modeling can be preserved through approximation. Even though
the power systems are considered to be highly heterogeneous, they are also
composed of many instances of the same component, such as generators,
transformers, solar PVs etc. Therefore, a wide variety of dynamics can still
be present in the reduced model when all the similar components are grouped
and represented by an aggregate component. Secondly, sparsity of the system
can be preserved through reduction. Sparsity of the reduced system is also a
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benefit from a computational viewpoint: we will take advantage of this prop-
erty in cyber-attack detection, when the ability to perform fast analysis and
computation will be of great importance to the feasibility of implementation.

Several aggregation methods have been developed for use in power system
analysis. A well-known concept in power systems is coherency [38,39], which
describes groups generators with similar dynamic response to a set of prede-
termined faults. Each coherent group of generators is then replaced by a large
equivalent machine. This approach is commonly used for transient stability
simulations, however, it is dependent on system conditions and time con-
suming to compute. Synchrony [40], or slow-coherency, is a similar concept,
where generators are grouped with respect to a subset of modes, also called
chords. In both coherency and syncrony-based approaches the less relevant
parts of the system are replaced by static circuits. Further, both methods are
designed specifically for generator equivalencing and do not consider other
system components.

In this chapter, we review the technical background needed for develop-
ment of security methods for cyber-physical systems proposed in the rest of
this thesis. To that end, we propose an aggregation framework that can be
used to extract this internal structure, and review two aggregation methods
existing in the literature. In Section 3.1 we review the concept of Interac-
tion Variables (IntVar), which represent aggregate behavior of control areas
in power systems. In Section 3.2 we introduce a modified version of the
clustering-based aggregation algorithm, which preserves sparsity of the sys-
tem and is computationally efficient. In this approach, the outputs of the
system are grouped based on the similarity of their responses to external dis-
turbances. We also provide an interpretation and examples of the clustering-
based aggregation in a 5-bus power system. Finally, Section 3.3 summarizes
the chapter.

3.1 Control area aggregation via Interaction

Variables

An important property of power system dynamics is its structural singularity,
associated with the real power dynamics. Owing to this property, it can be
shown that there exists a combination of states that stays constant when a
control area is isolated and the reference signal is unchanged. This combina-
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tion of states is termed Interaction Variable (IntVar), and is a fundamental
concept behind inter-area dynamics in power systems.

Definition. [22] Let the dynamics of control area i be described by a linear
standard state space model:

ẋi(t) = Aixi(t) +Biui(t) + di(t) + F i(t) (3.1)

An interaction variable of control area i is defined as any linear combination
of local states zi = T ixi, T i 6= 0, such that

żi(t) ≡ 0 (3.2)

in the absence of control signal changes (ui(t) = 0), disturbances in the area
(di(t) = 0), and interactions with other areas (F i = 0).

In this definition, the tie-line flows F between areas are considered an ex-
ternal input. Further, this definition indicates that any dynamics of IntVars
are caused only by interactions with other areas and updates in the control
signals. Also, IntVars are a function of local variables only, allowing a de-
coupled system representation. Physically, the IntVars represent the stored
net energy imbalance in each control area, and inform the system operator
about the amount of frequency control service needed in each control area.
To derive the matrix T i in the definition, we first combine equation (3.1)
with z = T ix:

żi = T iAixi + T iBiui + T idi + T iF i (3.3)

Under the conditions stated in the definition, ui(t) = 0, di(t) = 0, F i = 0,
this simply gives:

żi = T iAixi (3.4)

Thus, the matrix T i can be obtained from:

T iAi = 0 (3.5)

and corresponds to the left eigenvector corresponding to the zero eigenvalue
of Ai. In power systems, the system matrix Ai of any area i has inherent
structural singularity, as a direct consequence of the power conservation law,
so T i will always exist. More specifically, the interaction variable of a loss-
less system can always be defined as a linear combination of net real power
injections of the components in the area [22], i.e.

T i = [0 0 . . . tip], t
i
p ∈ R1×n (3.6)
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Figure 3.1: Illustration of aggregation via IntVar in a two-area system

and therefore
zi = tipP

i (3.7)

where P i is a vector of net real power injections at each bus in area i. A
slightly more involved method for deriving T i when grid losses are included
can be found in the same reference.

By definition, interaction variables are defined for disconnected regions, so
they are local variables associated with each area. Therefore, they represent
aggregate behavior of an area when it is interconnected with the rest of the
system. Figure 3.1 illustrates the aggregation of a two-area system using
IntVar.

3.2 Clustering-based aggregation

In this section, we introduce a modified version of the aggregation method
proposed in [41], for clustering measurements according to their dynamic
response to the external input/disturbance d(t) in the linear closed-loop sys-
tem:

Σ :

{
ẋ(t) = Ax(t) +Gd(t)

y(t) = Cx(t)
(3.8)

We begin by introducing the definition of a cluster.
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Figure 3.2: Illustration of clustering-based aggregation

Definition. Let L = {1, . . . , l} be the set of measurement indices, and
K = {1, . . . , K} the set of cluster indices. Then, clusters Ik (depicted in
Figure 3.2), k ∈ K, are defined as disjoint subsets of L, that cover all the
elements in L, i.e.

⋃
k∈K Ik = L.

With this definition in mind, we aim to partition the set L into clusters
Ik such that

pjgi(s) = pigj(s), ∀i, j ∈ Ik (3.9)

where gi is the i-th element of the input-output transfer matrix g(s):

g(s) = C(sIn −A)−1G (3.10)

of the system in (3.8). The measurements i and j belonging to the same
cluster k will have a proportional, or in some cases identical, response to
the input d(t). In that sense, the proportionality of transfer functions gi
and gj can also be expressed as proportionality to some scalar function ḡ
corresponding to cluster k. Therefore, we can define a condition for cluster
formation in a compact way as follows.

Definition. A set of measurements {yi} should form a cluster Ik if there
exists a scalar function ḡ(s) such that:

(enIk)Tg(s) = pTk ḡ(s) (3.11)
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This definition provides intuition on the meaning of clustering in our
application, but is not practical for designing a procedure that would form
such clusters. For that reason, we derive an equivalent condition for cluster
formation that is more practical to check, based on this definition of similarity
and the notion of reachability.

Reachability Gramian of a semistable system

To that end, we first derive the reachability Gramian of a semistable system
(3.8). The reachability Gramian is defined as

Wc =

∫ ∞
0

eAtGGT eA
T tdt (3.12)

When A is Hurwitz, the above integral converges, and Wc can also be found
as a solution of the Lyapunov equation:

AWc +WcAT +GGT = 0 (3.13)

However, in power systems, the system matrix A has an inherent struc-
tural singularity, as a direct consequence of power conservation law. Due
to semistability of the system matrix A, the integral in (3.12) may not con-
verge. To compute the reachability Gramian of a semistable system, we first
consider the decomposition of A where 0 = λ1 > λ2 ≥ · · · ≥ λn

A = UΛU−1 = [umax Ū ]

[
0

Λ̄

]vTmax

V̄ T


where umax and vmax are the right and left eigenvectors corresponding to the
largest eigenvalue λ1 = 0, and Λ̄ is diagonal and Hurwitz. Let the stable
subspace of Σ, (Ā, G) given by:

Ā = V
TAU (3.14)

G = V
T
G (3.15)

Then, the reachability Gramian of the stable subspace is the solution of

Ā W c +W cĀT +GG
T

= 0 (3.16)
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Substituting Ā and G into (3.12) yields

W c =

∫ ∞
0

eĀtGG
T
eĀ

T tdt

=

∫ ∞
0

V
T
eAtŪV

T
GGTV ŪT eA

T tV dt

= V
T
WcV

and
Wc = VW cV

T
(3.17)

is the reachability Gramian of the semistable system Σ and contains infor-
mation on the degree of reachability of states with respect to the input d(t).
In the following theorem we show that the condition in (3.11) is equivalent
to linear dependence of rows of a matrix Φ.

Theorem. Consider the reachability Gramian Wc in (3.17) of the semistable
system Σ in (3.8). Furthermore, let the Cholesky factorization of Wc be given
by Wc = WLW

T
L , and Φ = CWL. Then, the condition in (3.11) is equivalent

to
(enIk)TΦ = pTk φ̄ (3.18)

where φ̄ ∈ R1×n is a constant vector.

Proof. In order for (3.11) to hold, for each i, j ∈ Ik it must hold that

pj‖gi(s)‖H2 = pi‖gj(s)‖H2 .

Similarly, (3.18) is equivalent to

pj‖Φi‖ = pi‖Φj‖

where Φi is the ith row of the matrix Φ. The H2-norm of a linear system
can be computed as the L2-norm of its impulse response h(t):

‖g(s)‖2
H2

= ‖h(t)‖2
2 = tr

{
C

∫ ∞
0

eAtGGT eA
T tdtCT

}
Plugging in (3.17), we have

‖h(t)‖2
2 = tr

{
CV

[∫ ∞
0

eĀtGG
T
eĀ

T tdt

]
V

T
CT

}
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For ‖h(t)‖2
2 to be finite, the integral above must be finite. Since Ā and G are

the stable subspace of Σ, we have

lim
t→∞

eĀt = 0

and ‖h(t)‖2
2 is finite and equal to:

‖g(s)‖2
H2

= ‖h(t)‖2
2 = tr{CWcC

T} = tr{CWLW
T
LC

T} =

= ‖CWL‖F = ‖Φ‖F (3.19)

where ‖ · ‖F is a vector norm applied to each row of Φ. Hence, (3.11) is
equivalent to (3.18).

However, in real systems, the identity in (3.11) is almost never the case.
Therefore, we will relax the strict equality, and require

‖pjgi(s)− pigj(s)‖H2 ≤ ε, ∀i, j ∈ Ik (3.20)

to hold for each cluster. Equivalently, we can check for linear dependence
between rows of matrix Φ:

‖pjΦi − piΦj‖ ≤ θ ∀i, j ∈ Ik (3.21)

where θ > 0 and Φi is the i-th row of Φ. Here, θ is a parameter that allows
us to control the coarseness of clustering. In other words, it allows us to
find outputs that have a ”similar”, instead of equal, response, which relaxes
the condition (3.11). The smaller θ is, more accurate the clustering will be,
but the clusters may contain very few measurements, which is not desirable
for attack detection purposes. On the other hand, if θ is too large, the
aggregation error will be high, which may obscure stealthy attacks so that
they remain undetected. This trade-off should be considered when choosing
a particular value for θ depending on the particular application.

Finally, we can introduce the measurement clustering algorithm defined
above. Assume k clusters have already been formed. First, we choose an
index i that hasn’t already been assigned to any cluster, and add it to cluster
k+ 1. Then, we choose another index j that is not yet assigned to a cluster,
and check condition (3.21) for i and j. If the condition is satisfied, we add j
to cluster k + 1. We repeat this process until all measurements are assigned
to a cluster. This procedure is summarized in the algorithm below.
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Algorithm 1 Clustering algorithm

Initialize cluster index k = 0, and cluster set K = ∅
repeat

Choose measurement index i ∈ L that hasn’t been
assigned to a cluster yet, and add it to cluster Ik+1

Set k ← k + 1, K← {K, k}
Find all j ∈ L that haven’t been assigned to a cluster

yet and that satisfy (3.21) and add them
to Ik+1 ← {Ik+1, j}

until all measurements are assigned to a cluster, i.e.
⋃

k∈K Ik = L

3.2.1 Interpretation and examples of clustering-based
aggregation in power systems

It should be noted that the nature of power systems highly influences the
clustering procedure. In other words, measurements of states tend to group
according to type: generator net real power injection PG,i and mechanical
power output PT,i measurements tend to be in the same group, while load
net real power injections PL,i group together, and so do the frequencies ωi.
This is illustrated on the 5-bus test system [42]. Figure 3.3 depicts the
one-line diagram and the graph representation of the full system.

Also, component and network parameters have an influence on cluster
boundaries. Two generators with the same inertia, damping and controller
gains will naturally have very similar dynamic response. Also, frequencies
of components connected by a line with a large susceptance (i.e. small
impedance), tend to have similar magnitude of oscillation. Examples of how
the clusters change depending on line parameters are depicted in Figures 3.4
and 3.5.

3.3 Summary

In this chapter, we review the technical background needed for development
of security methods for cyber-physical systems proposed in the rest of this
thesis. We argue that methods that take advantage of internal structure of
the system need to be designed and implemented in order to ensure security
of cyber-physical systems. In this chapter, we propose an aggregation frame-
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Figure 3.3: One-line diagram (left) and graph representation (right) of the
5-bus system

work that can be used to extract this internal structure. To that end, we
review two aggregation methods existing in the literature. First, we intro-
duce the notion of Interaction Variables, that represent aggregate imbalance
in a control area. Then, we introduce a modified version of the clustering-
based aggregation algorithm. Using this approach, outputs of the system are
grouped according to their response to an exogenous disturbance. Finally, we
provide an interpretation and examples of the clustering-based aggregation
in a 5-bus power system.
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Figure 3.4: One-line di-
agram of the 5-bus sys-
tem with line parame-
ters (top), graph repre-
sentation of the full sys-
tem (middle), graph rep-
resentation of the clus-
tered system (bottom).
States of generators 1
and 2 are clustered due
to the weak line connec-
tion to bus 3.
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Figure 3.5: One-line di-
agram of the 5-bus sys-
tem with line parame-
ters (top), graph repre-
sentation of the full sys-
tem (middle), graph rep-
resentation of the clus-
tered system (bottom).
States of generators 2
and 3 are clustered due
to the weak line connec-
tion to bus 1.
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Chapter 4

Moving-target Active Attack
Detection: a Clustering-based
Approach

The first step to responding to an attack is detection. The threat of stealthy
attacks motivates the study of active detection schemes, where the defender
modifies parts of the system to discover adversarial behavior. For instance,
under certain scenarios, an attack is stealthy only if a defender uses par-
ticular control and detection policies. In this case, a defender can actively
detect an adversary by changing their strategy. In this chapter, we adopt a
moving-target approach to active detection. We show that using a constantly
changing detection policy allows detection of stealthy attacks. As a basis of
our proposed moving-target detection filter, we use the concept of output
clustering introduced in Chapter 3. Clustering of the outputs gives the de-
fender an upper hand, by providing additional information on the system,
unknown to the attacker.

We review the state-of-the-art of cyber-attack detection in Section 4.1.
The system and attack models are introduced in Sections 4.2 and 4.3, re-
spectively. Our proposed moving-target approach is derived in Section 4.4,
and tested on the 5-bus test system in Section 4.5, and the IEEE RTS 24-bus
system in Section 4.6. Finally, the chapter is concluded in Section 4.7. The
results in this chapter are partially based on [43].
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4.1 State-of-the-Art on attack detection in

cyber-physical systems

The literature on this topic is constantly growing, but securing power systems
against cyber-attacks is still an open problem [44], [45], [46]. The complex
and highly distributed nature of the electric power system, as well as diversity
of its components and control designs needed to operate it, make cyber-
physical security a challenging problem.

A malicious intruder can have detailed knowledge of the system model and
parameters, including any defense strategies, and can therefore launch highly
effective and deceptive attacks. Stealthy attacks [9], replay attacks [11], and
zero-dynamics attacks [12] are all examples of how an adversary can exploit
knowledge of the system to launch attacks that will not be detected by the
existing systems in power system control centers. Specifically, state estima-
tion (SE) in power systems is supported by a static failure detector, called
Bad Data Detection (BDD). Static attack detectors do not consider system
dynamics, but only the outputs of the system, which they check for consis-
tency at every time step [47, 48]. Limitations of these techniques have been
often underlined, especially by a knowledgeable attacker [49–51]. It is im-
portant to mention, however, that static estimation and detection algorithms
have been in use in power systems for many years for practical reasons. For
one, there were fewer and less frequent measurements available in the past,
due to low bandwidth for communication between the field devices and the
control center. Another consequence of that is that a sufficiently detailed
model of the system’s dynamics was hard to obtain and tune. With the
recent technological improvements in communication networks, the advent
of advanced sensors (e.g. PMUs), and model identification techniques [52],
these limitations can be overcome.

Dynamic detection has been approached via heuristics and expert sys-
tems [53]. Reliability and accuracy when dealing with unforeseen system
anomalies, as well as the absence of analytical performance guarantees, are
some of the shortcomings of these methods. A different approach, based
on comparing a discrete-time state transition map to a series of past mea-
surements via Kalman filtering, can be found in [54] and references therein.
Typically, these transition maps are based on heuristic models valid only
around a specific operating point. However, such models poorly describe the
complex dynamics of the power system and suffers from drawbacks similar
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to those of expert systems methods. In [55] a graph-theoretic framework is
proposed to evaluate the impact of cyber-attacks on the smart grid.

Other recent approaches to dynamic detection consider continuous-time
power system models and apply dynamic techniques [56, 57]. While [57]
adopts an oversimplified model neglecting the network and load models, the
references [49, 56, 58] use a more accurate network descriptor model. Ref-
erences [59], [60], [61] all provide dynamic attack detection algorithms for
various particular settings. However, [49] also shows that no dynamic de-
tector can counter stealthy attacks, as these attacks alter the output of the
system in a way that could also be a result of normal system behavior. For
that reason, another class of detectors has been introduced, namely active
attack detectors. In contrast to passive detectors, active detectors perturb
the system either through topology changes, or by injecting random signals
into the network, in order to expose stealthy attacks.

One recent approach to active defense introduces an additional random
signal, or ”watermark”, to the control signal as a form of authentication [62],
[63], [11]. In normal operation, this watermark should also be present in
the measurement signal, so it’s absence suggests that the system has been
tampered with. This is a good defense strategy, especially against replay
attacks, but it is not effective in the case the attacker has extensive knowl-
edge of the system model and the watermark. Another approach is to reveal
the stealthy attacks by modifying the system’s structure. Specifically, new
measurements can be added incrementally to reveal stealthy zero-dynamics
attacks [64]. Even though this strategy effectively increases the robustness
of the system, it is only successful for attacks that are constructed off-line,
and once they are launched, the adversary can’t gain new information about
the changes in the structure of the system. Coding sensor outputs [65], [66]
is an economical way of detecting stealthy FDI attacks when the attacker
knows the system model without the coding scheme. However, similarly to
the previous approaches, this strategy fails when the attacker has extensive
knowledge of the system. In [67] the authors posture that the attacker with-
out previous knowledge can first identify the system model by observing the
control and measurement signals. Then they provide a control design method
which renders the system unidentifiable, but with a performance trade-off.
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4.2 System description

We consider a cyber-physical system, where the physical layer of the system
can be described by a set of linear dynamic equations:

ẋ(t) = Ax(t) +Bu(t) +Gd(t) (4.1)

where the states of system are denoted x ∈ Rn, the disturbance is d ∈ Rm,
and the control signal is u ∈ Rp. In the cyber layer, a large network of field
sensors is deployed to monitor the operation of the system in (4.1):

y(t) = Cx(t) (4.2)

The collected measurements are then used to compute the control signal
for the actuators. Depending on the purpose, a control algorithm can be
implemented as either using output or state feedback. In output feedback
control measurements are directly used to compute the control signal, i.e.

u(t) = f(y(t)) (4.3)

where f() is a linear function.
On the other hand, in state feedback control applications, a current state

of the system first needs to be estimated. In that case, a state estimator such
as an observer or Kalman filter is used to infer the current state x̂(t) from
the received measurements y(t). Then, the estimate x̂(t) is used to compute
the control signal:

u(t) = f(x̂(t)) (4.4)

where f() is a linear function.
For the purposes of cyber-security, we assume that the control algorithm

and state estimator, if used, are designed appropriately, so that the closed-
loop system is stable and regulated to achieve desired performance objectives.
Thus, we can describe the stable closed-loop system as:

Σ :

{
ẋ(t) = Ax(t) +Gd(t)

y(t) = Cx(t)
(4.5)

where A is a stable closed-loop system matrix.
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Figure 4.1: Block diagram of attacked system in (4.8). The attacker injects
signal ya into measurements y in order to manipulate the system.

4.3 Attack model

In case of False Data Injection (FDI) attacks, an attacker is assumed to be
able to modify the measurement signal y(t) arbitrarily, by injecting a the
signal ya(t):

ỹ(t) = y(t) + ya(t) (4.6)

As a consequence, the controller will receive and base its decisions on the
corrupted measurement signal ỹ(t):

ũ(t) = f(ỹ) = f(y(t) + ya(t)) (4.7)

Since f is a linear function, the control signal can then be decomposed as
ũ(t) = u(t) + ua(t), where u(t) = f(y(t)) and ua(t) = f(ya(t)). Thus, the
closed-loop attacked system can be described using:

Σa :

{
ẋ(t) = Ax(t) +Bua(t) +Gd(t)

ỹ(t) = Cx(t) + ya(t)
(4.8)

where A is the closed-loop system matrix. Figure 4.1 depicts the block
diagram of the attacked system.
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Figure 4.2: Attack space for cyber-physical systems [68]

Attacker’s knowledge and resources

Many well-known attack schemes can be categorized based on the resources
available to the attacker as depicted in Figure [68]. Knowledge of the system
model is arguably the most important component of the attack model since
it can be used to construct complex and stealthy attacks with significant im-
pacts on the physical system. Disclosure resources refer to components such
as communication channel that can be accessed during the attack and enable
the adversary to violate data confidentiality by gathering sensitive informa-
tion about the system. The disclosure attack, or eavesdropping, cannot inflict
damage to the physical system, but can be used to construct more complex
attacks to affect the system. On the other hand, disruption resources violate
the integrity of data, and can be used by the adversary to manipulate the
system operation.

In this thesis, we consider the family of stealthy attacks, also called covert
attacks, which are designed to replicate normal system behavior, and will not
be detected via existing static detection schemes (BDD in power systems).

Definition. For the attacked linear system in (4.8), the attack ya is called

48



stealthy if and only if ỹ(x1, 0, t) = ỹ(x2, ya, t) for some initial conditions
x1, x2 ∈ Rn and for t ≥ t0.

Further, we assume the adversary has the following knowledge and re-
sources:

• The attacker has access to the real time sensor measurements, and
knows the true sensor outputs y(t).

• The attacker has the ability to compromise integrity of the real time
sensor measurements. Specifically, they can replace the true signal y(t)
with the arbitrary signal ỹ(t).

• The attacker has knowledge of the system matrices A,B,C,G, and can
construct stealthy attacks.

• The attacker can gain knowledge of the current defense policy, and how
it is generated. However, the attacker does not know when the policy
has changed.

Attack detection problem

If there is no attack on the system, ya will be a zero vector. Otherwise, ya 6= 0.
Thus, for a system defined as above, a cyber-attack on measurements can be
detected using the residual:

r = ỹ − y (4.9)

when the residual r is nonzero. In a more general case, where process and
measurement noise is considered, a threshold ε can be used to adjust for
effects of noise:

r = |ỹ − y| > ε (4.10)

However, the true measurements y are not known in presence of FDI
attacks. In the rest of this chapter, we present a moving-target active attack
detection filter. We use aggregation as a tool to uncover an internal structure
in the vector y. If the same structure is not present in the vector ỹ, we can
infer that one or more measurements have been corrupted by the attacker.
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4.4 Active clustering-based detection filter

In this section, we will introduce a cyber-attack detection algorithm that
employs the output clustering outlined in Algorithm X. Two properties of this
clustering method are key in our cyber-attack detection filter design. Firstly,
we know that, once clustering is performed on the system in normal operating
conditions, the outputs within the clusters will be approximately proportional
to each other at all times t. That enables us to perform quick consistency
checks to ensure the safety and reliability of the system. Secondly, the result
of clustering will change over time as operating conditions change, which
means our proposed detection filter will behave as a moving-target.

In the analysis in Chapter 3, we have shown that clusters can be formed
such that measurements i, j within the cluster Ik are approximately propor-
tional, i.e. aiyi(t) ≈ ajyj(t) ≈ · · · ≈ z(k)(t). This relation of measurements
within the same cluster can also be written as:

ŷ(k)(t) =
[
p

(k)
1 . . . p

(k)
|Ik|

]T
z(k)(t) (4.11a)

such that ‖y(k)(t)− ŷ(k)(t)‖ ≤ θ, θ ≥ 0 (4.11b)

where pi = a−1
i for all i ∈ Ik, and y(k) is a subset of measurements y belonging

to cluster Ik, y(k) = (enIk)Ty, and all its elements are approximately propor-

tional to a single scalar variable z(k). Parameter θ is a design parameter,
which will be discussed in later sections.

Specifically, we use the knowledge of the fact that incoming measurements
ỹ(k)(t) = y(k)(t) + y

(k)
a (t) belonging to cluster k also have the property in

(4.11a) only if y
(k)
a ≡ 0. Therefore, we define the set of residuals ri,j(t) that

exploit this property as:

ri,j(t) = ||pj ỹi(t)− piỹj(t)||, ∀i, j ∈ Ik (4.12)

The residuals ri,j defined above will have a value larger than some threshold
ε only in presence of cyber-attacks.

Finally, we show that the original system outputs y = Cx can be approx-
imated by ŷ = ΠT z, where z = Πy = ΠCx. The clustering matrix Π ∈ RK×n

is defined as:
Π := Diag{p1, p2, . . . , pK}E ∈ RK×n (4.13)

where E is a permutation matrix defined as E = [enI1 , . . . , e
n
IK ]T . The input-

output transfer matrix associated with ŷ can then be defined as

ĝ(s) = ΠTΠ (sIn −A)−1G (4.14)
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The following theorem establishes that ŷ is a good approximation of y, and
that it can be used in our cyber-attack detection methodology.

Theorem. Consider a semistable linear system in (4.5). Consider also a
clustering-based approximation ŷ obtained using the aggregation matrix Π.
Then, the error system of the approximation ge(s) = g(s) − ĝ(s) is asymp-
totically stable.

Proof. By definition (4.13), Π is a unitary matrix, i.e. ΠΠT = IK , and ΠTΠ
is an orthogonal projection onto colspace(ΠT ). Note also that, by definition,
vmax ∈ colspace(ΠT ). We then define Π̄ as an orthogonal complement of Π,
such that [ΠT Π̄T ]T is unitary, and I −ΠTΠ = Π̄T Π̄. Consider now the error
system ge = g − ĝ of the approximation:

ge(s) = C(sI −A)−1G− ΠTΠC(sI −A)−1G =

= (In − ΠTΠ)C(sI −A)−1G = Π̄T Π̄g(s)
(4.15)

Then ΠTΠvmax = vmax, or equivalently

Π̄vmax = 0.

This implies that there is pole-zero cancellation in Π̄g(s) associated with the
zero eigenvalue. Therefore, all poles of Π̄g(s) have negative real parts, and
the error system ge is asymptotically stable.

Now, we introduce the moving-target detection algorithm based on dy-
namic clustering of system outputs. Firstly, the moving-target nature of
our proposed method stems from the natural fluctuations occurring in power
systems. As the underlying power system model is nonlinear, the system ma-
trices A and G are only valid around a certain operating point x0, and we will
denote them with A(x0) and G(x0). As a result, cluster boundaries have to
be recomputed approximately every one hour, for the current operating con-
ditions x0. In this method, additional computations are traded for increased
difficulty of compromising the integrity of the system for the attacker. In
other words, even if we assume the attacker has complete knowledge of the
system and the detection strategy at one point in time, that knowledge will
eventually become unusable to construct stealthy attacks, as our detection
strategy is dynamic.

Once the new operating point is received from the Control Center, the
linearized system matrices and clusters need to be recomputed. Then, at
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every time step of the control processes, the incoming measurements must
be verified using residuals of the clustering-based detection filter given in
(4.12) before the control action is computed and performed.The proposed
cyber-attack detection algorithm, based on dynamic clustering, is outlined
in Algorithm 2.

Algorithm 2 Clustering-based Cyber-attack Detection Method

repeat
Get new operating conditions x0

Compute matrices A(x0), G(x0), and find cluster
sets Ik according to Algorithm 1

for every time-step of the control process do
for all measurements yi, i ∈ Ik do

if condition in (4.12) is satisfied then
→ cyber-attack detected

end if
end for

end for
until new operating conditions x0 are received
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4.5 Numerical example on the 5-bus system

In this section, we present the effectiveness of the proposed detection algo-
rithm on the 5-bus test system [42], shown in Figure 4.3. This system has
three synchronous generators, on buses 1, 2 and 4, and two loads, on buses
3 and 5. In this example, we consider a simulation study of the system’s
response to load variation at bus 3. First, output clustering of frequency and
real power injection measurements is performed, and given in Table 4.1.

Clustered states

Cluster 1 PG1
, PG2

, PL1

Cluster 2 PG3
, PL2

Cluster 3 ωG1
, ωG2

, ωL1

Cluster 4 ωG3
, ωL2

Table 4.1: Result of clustering; 5-bus system example.

Figures 4.4 and 4.5 depict the response of the system to this load variation
(solid lines), as well as the cluster variable for both clusters (dotted lines).

Figure 4.3: 5-bus test system [42]
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Figure 4.4: Frequency response to the load variation (solid lines: cluster 1 -
red, cluster 2 - blue), and cluster variables (dotted lines)

Figure 4.5: real power response to the load variation (solid lines: cluster 1 -
red, cluster 2 - blue), and cluster variables (dotted lines)
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4.6 Numerical example on the 24-bus system

The IEEE RTS 24-bus system [69], depicted in Figure 4.6, consists of 10
generators, equipped with governor control, and 14 loads.

Figure 4.6: IEEE RTS 24-bus system [69]

For this system, we will first consider two scenarios with different loading
conditions, to demonstrate the detection algorithm as well as the moving-
target defense strategy:

• Scenario 1 - the system is at high loading condition. From t = 0 to 20
s, the loading is nominal. At time t = 20 s, load at bus 3 increases by
0.5 p.u., and at time t = 200 loading returns to nominal value.

• Scenario 2 - the system is at low loading condition. From t = 0 to 20
s, the loading is nominal. At time t = 20 s, load at bus 3 increases by
0.5 p.u., and at time t = 200 loading returns to nominal value.
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We use these two scenarios to demonstrate the clustering method introduced
in Chapter 3, and how cluster boundaries change with the operating condi-
tions. This is demonstrated in Table 4.2, where the net real power injection
of generator 8, PG8 , and its mechanical power output PT8 are clustered with
respective states of generators 3 and 10 under Scenario 1, and generators 4
and 5 under Scenario 2.

Clustered states

Scenario 1 PG3
, PG8

, PG10
, PT3

, PT8
, PT10

Scenario 2 PG4
, PG5

, PG8
, PT4

, PT5
, PT8

Table 4.2: PG8 and PT8 belong to different clusters as operating conditions
change

Additionally, for the same θ = 5e−3, the clustering procedure resulted in
21 clusters under Scenario 1, and 23 under Scenario 2.

In Figure 4.7 we show the dynamic response of one of the clusters under
Scenario 1. In this particular case we can also see the effect of the coarseness
parameter θ: for higher detection accuracy, we can decrease θ in which case
the cluster in Figure 4.7 would split into two. Appropriate attack analysis
and parameter tuning is necessary in general case, but we use reasonable
values in a common attack scenario to demonstrate our method.
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Figure 4.7: Dynamic response of measurements in one of the clusters under
Scenario 1

4.6.1 Implementation of the attack detection method-
ology and result analysis

Scaling attack

We first consider Scenario 3 to demonstrate attack-detection capabilities of
our proposed method on an optimal scaling attack defined in [70]:

• Scenario 3: the system is at high loading condition. From t = 0 to 20
s, the loading is nominal. At time t = 20 s, load at bus 3 increases
by 0.5 p.u., and at time t = 200 loading returns to nominal value; at
time t = 125 s, a sequence of 6 scaling attacks are launched on the
measurement PG,8, each lasting 5 seconds, with total duration of the
attack Ta = 55 s

where a scaling attack can be represented in terms of system in (4.8) as
ỹ = y + ya, where ya = k · y. We use scaling coefficient k = 0.1, which
corresponds to a 10 % increase in value of PG,8 at the time of the attack.
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In Figure 4.8 a) we consider the noiseless scenario, and compare the at-
tacked measurement PG,8 (middle plot) with other measurements belonging
to the same cluster (top plot), to obtain the residual in the bottom plot,
which only crosses the chosen detection threshold for each of the attacks. In
Figure 4.8 b) we consider the same attack scenario in presence of noise. Note
that false positive alarms become very likely in this case, using the appropri-
ate threshold designed for the deterministic scenario. If the noise parameters
are known, additional statistical methods (e.g. hypothesis testing, etc.) may
be employed to distinguish between noise and signal. In Figures 4.9 a) (no
measurement noise) and 4.9 b) (with measurement noise) we show cluster
measurements (top) and residuals (bottom) in absence of cyber-attacks. In
noiseless scenario, the residual does not cross the detection threshold even
when system conditions change, i.e. when there is a load disturbance in the
system. In presence of noise, false positives are possible, and additional sta-
tistical methods can be employed to improve the performance of the attack
detection filter.

58



(a) Top: Other clus-
ter measurements;
Middle: Measure-
ment of PG,8 under
a scaling attack;
Bottom: detection
residual (blue) and
threshold (red)

(b) Top: Other clus-
ter measurements
(noisy); Middle:
Measurement of
PG,8 (noisy) under
a scaling attack;
Bottom: detection
residual (noisy) and
threshold (red)

Figure 4.8: Group of measurements belonging to one of the clusters under
Scenario 3, under scaling attack in a) noiseless and b) noisy setting.
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(a) Top: Mea-
surements in
one of the
clusters under
Scenario 3,
in absence of
cyber-attacks;
Bottom: resid-
ual in absence
of cyber-attacks

(b) Top: Noisy
measurements
in one of the
clusters under
Scenario 3,
in absence of
cyber-attacks;
Bottom: noisy
residual in
absence of
cyber-attacks

Figure 4.9: Group of measurements belonging to one of the clusters under
Scenario 3, in absence of cyber-attacks, in a) noiseless and b) noisy setting.
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Stealthy replay attack

In Scenario 4 we consider a stealthy replay attack to further demonstrate
detection capabilities of our proposed method:

• Scenario 3: the system is at high loading condition. From t = 0 to 20
s, the loading is nominal. At time t = 20 s, load at bus 3 increases
by 0.5 p.u., and at time t = 200 loading returns to nominal value. A
stealthy replay attack is launched on measurement PG,8: a recorded
measurement from Scenario 2 (low loading condition) is used.

Figure 4.10 depicts all measurements from one of the clusters, among
which one is under a stealthy replay attack (PG,8). In the noiseless scenario,
shown in Figure 4.11 a), we compare the attacked measurement PG,8 (middle
plot) with other measurements belonging to the same cluster (top plot), to
obtain the residual in the bottom plot, which only crosses the chosen detec-
tion threshold during the attack. In Figure 4.11 b) we consider the same
attack scenario in presence of noise. Note that false positive alarms become
very likely in this case, using the appropriate threshold designed for the
deterministic scenario. If the noise parameters are known, additional statis-
tical methods (e.g. hypothesis testing, etc.) may be employed to distinguish
between noise and signal.

Figure 4.10: Dynamic response of measurements in one of the clusters under
Scenario 4; Measurement PG,8 is attacked
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(a) Top: Other
cluster measure-
ments; Middle:
Measurement
of PG,8 under a
stealthy replay
attack; Bottom:
detection resid-
ual (blue) and
threshold (red)

(b) Top: Other
cluster measure-
ments (noisy);
Middle: Mea-
surement of
PG,8 (noisy)
under a stealthy
replay attack;
Bottom: detec-
tion residual
(noisy) and
threshold (red)

Figure 4.11: Group of measurements belonging to one of the clusters under
Scenario 3, under scaling attack in a) noiseless and b) noisy setting.
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4.7 Summary

Motivated by the threat of stealthy attacks, in this chapter we study an active
detection scheme, where the defender modifies parts of the system to discover
adversarial behavior. In particular, we adopt a moving-target approach, and
show that using a constantly changing detection policy allows detection of
stealthy attacks. As a basis of our proposed moving-target detection filter,
we use the concept of output clustering introduced in Chapter 3. Clustering
of the outputs gives the defender an upper hand, by providing additional
information on the system, unknown to the attacker. The performance of
our proposed moving-target approach is tested against stealthy attacks on
the 5-bus test system and the IEEE RTS 24-bus system.
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Chapter 5

Interaction Variable-based
Attack Detection in Power
Systems

In the previous chapter we demonstrated the effectiveness of the clustering-
based moving-target approach in detecting a class of stealthy FDI attacks.
The main mechanism of detection is the use of knowledge of the internal
structure of the system that the defender can exploit to design the moving-
target detection policy. The attacker may have the same knowledge, but does
not know when the detection policy is changing. In this chapter, we make the
observation that there is another intuitive way to find the internal structure
in power systems that can be used for detection of stealthy attacks. In this
chapter, we will specifically examine the AGC system, and its aggregation
using the Interaction Variables [22].

The rest of this chapter is outlined as follows. The system and attack
models are introduced in Sections 5.1 and 5.2, respectively. Our proposed
IntVar-based detection and localization methods are derived in Section 5.3
and 5.4, respectively. The effectiveness of the detection method is demon-
strated on the 5-bus test system in Section 5.5. Finally, the chapter is con-
cluded in Section 5.6. The results in this chapter are largely based on [71].
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5.1 System description

As in Chapter 4, we consider a cyber-physical system, where the physical
layer of the system can be described by a set of linear dynamic equations.
We also assume that the control algorithm and state estimator, if used, are
designed appropriately, so that the closed-loop system is stable and regu-
lated to achieve desired performance objectives. Thus, the stable closed-loop
system is described with:

Σ :

{
ẋ(t) = Ax(t) +Gd(t)

y(t) = Cx(t)
(5.1)

where A is a stable closed-loop system matrix.

5.2 Attack model

Similarly to prior chapters, we consider False Data Injection (FDI) attacks,
where an attacker is able to modify the measurement signal y(t) arbitrarily,
by injecting a the signal ya(t):

ỹ(t) = y(t) + ya(t) (5.2)

As a consequence, the closed-loop attacked system can be described using:

Σa :

{
ẋ(t) = Ax(t) +Bua(t) +Gd(t)

ỹ(t) = Cx(t) + ya(t)
(5.3)

where A is the closed-loop system matrix.

Attacker’s knowledge and resources

In this chapter, we also consider stealthy, i.e. covert, attacks. To launch
this kind of attack, the attacker must have knowledge of the system model,
as well as disclosure and disruption resources. The depiction of the attack
space utilizing these resources can be found in Figure 4.2.

We assume the adversary is attempting an attack on the AGC system,
and has the following knowledge and resources:
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Figure 5.1: Block diagram of attacked AGC system. The attacker manipu-
lates the measurements of the tie-line flows and local frequency in order to
compromise the system.

• The attacker has access to the real time sensor measurements utilized in
AGC, the tie-line flows and local frequency, and knows the true sensor
outputs y(t).

• The attacker has the ability to compromise integrity of the real time
sensor measurements utilized in AGC. Specifically, they can replace the
true signal y(t) with the arbitrary signal ỹ(t).

• The attacker has knowledge of the system matrices A,B,C,G, and can
construct stealthy attacks.

Figure 5.1 depicts the block diagram of the attacked system.

Attack detection problem

As in Chapter 4, we formulate the problem of attack detection for a system
defined as above, via a residual test:

r = |ỹ − y| > ε (5.4)

However, the true measurements y are not known in presence of FDI at-
tacks. In the rest of this chapter, we present a detection filter for attacks on
the AGC system. We use the concept of interaction variables, in order to
derive an alternative control signal computation based on reliable measure-
ments. If the two methods of control signal computation produce different
results, a presence of a cyber-attack in the system can be inferred, and the
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attack can be localized, i.e. attributed to the affected sensor. Further, the
alternative control signal computation can be utilized to continue reliably
operating the system in presence of the attack.

5.3 IntVar-based detection filter

The Interaction Variable-based detection filter described in this section was
designed to detect cyber-attacks on Automatic Generation Control (AGC).
AGC is one of the most critical parts of the operation in today’s power
systems. Its main function is to automatically control power generation in
response to slow, hard-to-predict control area imbalances. Each control area
has its own AGC system, with the task of regulating local area frequency to
nominal value (60 Hz in USA), and the exchange of power with the neigh-
boring areas to the values agreed upon during economic dispatch. The net
power imbalance is represented as the Area Control Error (ACE). ACE is cal-
culated every 2-4 sec in today’s operation, and is used to change set-points
of generator governors participating in AGC. In order to detect attacks on
AGC in power systems, we take advantage of the fact that, in quasi-static op-
eration, the IntVar, much the same as ACE, represents net power imbalance.
As such, the two should be equivalent at the rate AGC is implemented.

Following the problem formulation and notation introduced above, for
a power system equipped with AGC, the disturbance d will represent the
deviation of load from forecast value.

Traditionally, ACE is computed from measurements yi = [ωi F i]T as a
linear combination of frequency deviation from the nominal system frequency
(60 Hz in USA) and net tie-line flow deviation from scheduled flows:

ACEk = f(yk) = ∆F k +
βk

2π
∆ωk (5.5)

where ∆ωk = ωk − 60Hz and ∆F k = F k − F k
sched represent deviations from

scheduled values, and βk is a frequency bias of area k. In today’s AGC,
frequency is measured at one location, usually at the location of the Control
Center, as it is assumed to be uniform throughout the area.

However, the condition in (5.4) cannot be directly checked to detect cyber-
attacks on AGC, as the true measurements y are unknown. Thus, we reformu-
late the problem as follows. Instead of computing ACE using measurements
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y, which might be corrupted by the attacker, we use an alternative set of
measurements ȳ so that:

ACEk = f(yk) ≡ g(ȳk) (5.6)

To find this alternative set of measurements ȳ, we use the definition of In-
teraction variables given in Chapter 3. More specifically, we extend that
definition with the fact that the interaction variable of a lossless system can
always be defined as a linear combination of net real power injections of the
components in the area [22]:

T i = [0 0 . . . tip], t
i
p ∈ R1×n (5.7)

and therefore
zk = tipP

i, ∀i ∈ Ak (5.8)

Thus, we can choose ȳk to be net power injections at every bus P i, i ∈ Ak

and an alternative frequency measurement ω̄k 6= ωk in area k:

ȳk =

[
P i

ω̄k

]
∈ R(n+1), ∀i ∈ Ak (5.9)

and the alternative computation of ACE:

ACE
k

= g(ȳk) = zk − βk

2π
ω̄k (5.10)

Finally, we can rewrite the residual r from (5.4) as

r = |ACEk − ACEk| (5.11)

and use it to detect cyber-attacks on AGC when r > ε.

5.4 Localization of FDI attacks in AGC

Once an attack is detected using the equation (5.11), it would be desirable
to know where the attack originated, so that appropriate mitigation proce-
dures can be set in motion. Two possible ways to launch an FDI attack on
AGC are either falsifying the frequency measurement at the control center
location or the tie-line flow measurements. Therefore, a method is needed
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to discern between these two possibilities.In normal operation, the collected
measurements have to satisfy the power conservation law at every bus. For
a lossless system we considered in the rest of this paper, we can write a
following equation for each bus j that has a tie-line incident to it:

Pj + ITPjk + Fj = 0 (5.12)

Here we denote with I the incidence matrix of the area, with Pjk power flows
to bus j from buses k in the same area, and with Fj the power flow of the tie-
line connected to bus j. Since the measurements of Pj and Fj are available
to us, and Pjks are functions of them, the equation (5.12) will be violated in
case of a FDI attack on tie-line flow measurements. To accommodate for the
losses in the system, another threshold can be introduced, and residuals

rj = |Pj + ITPjk + Fj| (5.13)

can be defined. Then, we can propose a way to discern between the two possi-
ble types of attacks, and, in case a tie-line flow measurement is compromised,
localize the attack to a specific tie-line flow measurement i:

Consider the control system in (5.3) for which an FDI attack is detected
using equation (5.11). Then, the following is true:

• If the residual rj at bus j satisfies:

rj > ε1 (5.14)

for some threshold ε1, then the measurement of tie-line flow on the
tie-line incident to bus j is under attack.

• If none of the residuals rj satisfy the above condition, then the mea-
surement of local frequency is under attack.

5.5 Numerical examples on the 5-bus system

In this section, we present the effectiveness of our proposed method on a
numerical example on the 5-bus system [42], depicted in Fig 4.3. In this
system, buses 1-3 are generator buses, and 4-5 are load buses. The model
of the interconnected system was derived as in Section 2. As can be seen in
Fig 5.2, the system is divided in two areas, each equipped with its own AGC
system, where Area I contains buses 1, 2 and 4, and Area II contains buses
3 and 5.
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Figure 5.2: Illustration of cyber and physical layers of today’s AGC on the
5-bus system

5.5.1 Realistic data generation

In order to generate realistic attack scenarios on AGC, we first simulate
the system without any attacks and with real load consumption data used
at the load buses. That way, realistic ACE patterns are inserted into the
5-bus test AGC system. We use real time actual load measurements and
the load forecast data from two areas in NY-ISO [14]. Since our system
model is linear, we use load deviation as inputs to our system, generated by
subtracting the forecast values from actual load values. Finally, the load is
scaled down to fit the parameters of our small example grid, and injected
into the load buses 4 and 5. We simulate the AGC system, driven by these
disturbances - deviations in loads, and generate realistic measurements of
frequency, tie-line flows, as well as a realistic ACE signal, to which various
FDI attacks can be added easily.
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5.5.2 Attacked data generation

We demonstrate the efficacy of our proposed method on three different FDI
attacks: random attack, ramp attack and scale attack, proposed in [72] and
used in [59,73], among others. Random attack aims to add a random positive
value ya(t) = rand(a, b) in the range with [a, b] to y(t) during the attack
period Ta:

ỹ(t) =

{
y(t), ∀t /∈ Ta
y(t) + rand(a, b), ∀t ∈ Ta

(5.15)

Ramp attack modifies measurements gradually by adding ya(t) = λr ∗ t with
ramping parameter λr in the attack period:

ỹ(t) =

{
y(t), ∀t /∈ Ta
y(t) + λr ∗ t, ∀t ∈ Ta

(5.16)

and scale attack modifies measurements with ya(t) = λs ∗ y(t) by scaling up
or down with parameter λs:

ỹ(t) =

{
y(t), ∀t /∈ Ta
y(t) + λs ∗ y(t), ∀t ∈ Ta

(5.17)

Since no real attacked data is available, attacked data is generated manually
by injecting the three types of attacks into tie-line flow measurements, and
calculating the ACE signals as in (5.6) based on the attacked measurements.

The FDI attacks are injected to tie-line measurements periodically and
every injection lasts for 10 AGC cycles. Three different levels of attacks
are generated for each attack type: high-level, medium-level and low-level.
High-level attacks refer to large changes on measurements and vice versa. In
our generated attack data, on average, a high-level FDI attack changes the
ACE value by 2.5%. A medium-level and low-level attack changes the ACE
value by 2.0% and 1.5%, respectively.

5.5.3 Performance of the proposed method

In Figure 5.3 we demonstrate the performance of the proposed method in
the presence of ramp, scale and random FDI attacks. For the IntVar-based
calculation of ACEI for Area I, the measurements of real power injections on
buses 1, 2, and 4 were used, as well as local frequency of generator on bus
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2. The detection threshold (red line in Figure X) was chosen based on the
parameters of the system, and the same value was used for all three scenarios.
For the appropriate choice of threshold, the proposed method of detection is
able to detect all attacks with amplitude larger than the chosen threshold. In
general, the threshold should be chosen such that physical system dynamics
do not trigger false alarms.

5.6 Summary

As introduced in previous chapters, the main mechanism used for detection
stealthy cyber-attacks is the use of knowledge of the internal structure of the
system that the defender can exploit to design the moving-target detection
policy. In this chapter, we make the observation that there is another intu-
itive way to find the internal structure in power systems that can be used for
detection of stealthy attacks. We examine the AGC system, and its aggrega-
tion using the Interaction Variables, then develop interaction variable-based
detection and localization methods for cyber-attacks on AGC. Finally, we
demonstrated the effectiveness of the proposed detection method on the 5-
bus test system.
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Figure 5.3: Detection results for various attacks: same threshold (red line)
used for all three scenarios, all attacks detected. Top: low ramp attack,
Middle: medium scale attack, Bottom: high random attack.
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Chapter 6

Resilient State Estimation

”The term ”resilience” means the ability to prepare for and adapt
to changing conditions and withstand and recover rapidly from
disruptions. Resilience includes the ability to withstand and re-
cover from deliberate attacks, accidents, or naturally occurring
threats or incidents.” [76]

Reliable and continued operation of cyber-physical systems requires an
accurate state estimate. Today, the reliability of the power grid is largely de-
pendent on employment of redundant components and communication links
that make it possible to continue operation during equipment failures and
faults that occur naturally [77]. However, such an approach is not adequate
in presence of malicious cyber-attackers.

Until recently, IT security tools and lack of connectivity of power control
networks to external networks, such as the Internet, were considered suffi-
cient, i.e. ”protection through isolation”. However, recent successful intru-
sions via malware, and the increasing connectivity of power grid operational
networks to the corporate networks, call for more advanced protection.

The integrity of data, from acquisition to transmission and processing,
may be low for several reasons, such as equipment misconfiguration, compo-
nent or communication link failure, or malicious attacks. In fault detection
and identification [78] the objective is to detect if one or more of the com-
ponents of a system has failed. Traditionally, this is done by comparing the
incoming measurements with an expected value of the measurement inferred
using an analytical model of the system. This difference signal, also called
a residual signal, is then analyzed in order to determine whether a fault has
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occurred. For example, Bad Data Detector (BDD) is a commonly used filter
that detects outliers in power system measurements and excludes them from
SE. However, recent research [9] has shown that coordinated FDI attacks may
be able to bypass BDD, and negatively impact power system applications,
such as economic dispatch (ED) and real-time markets [79,80]. Additionally,
in case of any wide-spread attack, naive or intelligent, many measurements
may be unavailable or untrusted. In that case, it may not be possible to
compute an estimate of the system’s state, causing the Energy Management
System (EMS) to be suspended.

In the rest of this chapter, we propose a clustering-based method for Re-
silient SE, that can provide meaningful information on the state of the system
in presence of wide-spread coordinated cyber-attacks, leading to improved
situational awareness and the ability to mitigate and respond to malicious
attacks. While the focus of this work is on wide-spread FDI attacks, our
approach is agnostic to the specific form of the attack. We provide the nec-
essary background and state-of-the-art on RSE in Section 6.1. Section 6.2
contains the description of the studied system and mathematical formula-
tion of the problem of Resilient SE. In Section 6.3, we present the Resilient
State Estimation method based on output clustering, and demonstrate its
efficiency through a numerical example on the IEEE RTS 24-bus power sys-
tem in Section 6.4. Finally, in Section 6.5 we give some concluding remarks.
The results in this chapter are largely based on [81].

6.1 State-of-the-art on resilient state estima-

tion

The problem of state estimation (SE) in presence of cyber-attacks on system
measurements has attracted a lot of attention, since a state estimate is cru-
cial to continued operation of the critical infrastructures. In power grids, the
inability to produce a state estimate would cause the Energy Management
System (EMS) to be suspended, and the operator would have to switch to
manual control. The problem of state estimation in an adversarial environ-
ment has been studied for many other applications, such as target tracking
with compromised sensors, and radar tracking and detection in the presence
of jamming attacks.

The impacts of cyber-attacks on power grids have been studied in [50].
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Here, the authors leveraged the knowledge of the power system configura-
tion to introduce arbitrary bias to the system without being detected, and
studied the effects of the bias on SE. In [79], the impact of malicious attacks
on real-time electricity market and the locational marginal price was inves-
tigated. Therein, it has been shown that an attacker can make a profit by
manipulating the measurements.

There has also been much development in study of optimal attack vectors
for SE. In [82], the authors studied the interplay of the power system control
center, first developing an optimal attack strategy of the attacker, and then
designing a detector for such attack for the defender. A novel attack strategy,
the data framing attack, has been proposed in [83]. Here, the authors exploit
the BDD by ”framing” meters that are providing correct data as sources of
bad data in order to exclude them from SE, and ultimately disable it by
making the system unobservable.

The resilient SE problem has also been formulated as robust SE, both with
noiseless [60,61] and noisy measurements [84–86]. In [87], the authors propose
a fusion framework that leverages the intrusion detection from the cyber-
layer, to exclude the compromised measurements from SE, thus producing
a reliable estimate. However, these methods are fundamentally limited by
the observability condition. In other words, in the scenario of a wide-spread
coordinated attack, when many measurements may become unavailable, the
system will become unobservable, and it will be impossible to produce a state
estimate.

6.2 Problem of resilient state estimation

The objective of this chapter is to ensure reliable operation of the power
grid, by enabling the Control Center to compute a resilient state estimate in
presence of wide-spread coordinated cyber-attacks on system measurements.
The structure-preserving dynamic model of the power system, presented in
Chapter 2, is used to model the physical system, and is used in its gen-
eral linear system form to present our proposed approach in the rest of this
chapter.
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Figure 6.1: Block diagram of the attacked power system. The signal ya is
injected into outputs y to manipulate the system.

6.2.1 Physical system description

Figure 6.1 depicts the block diagram representation of the system we con-
sider. As in previous chapters, we assume the closed-loop dynamics of the
physical system are of the form:

ẋ(t) = Ax(t) + d(t) (6.1)

where the states of system are denoted x ∈ Rn, d(t) denotes a disturbance
signal, and the control signal issued by the Control Center (CC) is ũ ∈ Rp.

A large network of field sensors is deployed to monitor the operation of
the power system in (6.1). A malicious attacker can negatively impact the
system by manipulating the measurements, which is represented with the
added signal ya(t) in Figure 6.1:

ỹ(t) = y(t) + (emA )Tya(t) (6.2)

y(t) = Cx(t) (6.3)

where ỹ ∈ Rm are measurements received by the CC, and ya ∈ Ra are
a attack signals injected by an attacker. Thus, a potentially manipulated
measurement signal ỹ reaches the CC. The CC then processes the received
measurements and computes the (potentially incorrect) control signal ũ to
the power system actuators. Finally, the attacked system can be rewritten
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in closed-loop as:

Σa :

{
ẋ(t) = Ax(t) + Bya(t) + d(t)

ỹ(t) = Cx(t) + (emA )Tya(t)
(6.4)

where A = A+BKC is the closed-loop system matrix, and B = BK.

6.2.2 State estimation in power systems

State estimation is the core of the on-line analysis functions that constitute
EMS. It acts like a filter between the raw measurements received from the
system and the application functions that require an accurate and reliable
estimate of the current operating state of the system. Besides providing an
estimate of the state, SE in power systems typically performs several other
important functions, such as topology processing, observability analysis, bad
data processing and parameter and structural error processing. In this the-
sis, however, we will focus only on the problem of computing the current
estimate of the system’s operating state. Various methods for computing a
state estimate have been proposed in the literature. Here, we briefly review
Weighted Least Squares (WLS) estimation, commonly used in power system
applications, as well as Luenberger observer and Kalman filter, well known
and frequently used in general control system applications.

Weighted Least Squares (WLS) estimation

Static state estimation refers to the procedure of obtaining the current state
of a system at a given point in time, based on a static relationship between
the received measurements y and the system’s state x:

y = h(x) + e (6.5)

where e is the vector of measurement errors. In general, h(·) can be a non-
linear function. However, as the problem considered in this thesis is linear,
we make the assumption that the function h can be written as h(x) = Cx
and

y = Cx+ e (6.6)

State estimation procedure makes use of a set of redundant measurements in
order to filter out errors and noise and find an optimal estimate. Measure-
ment error and noise are typically assumed to be zero-mean and independent.
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The WLS estimator will minimize the following objective function:

J(x) =
m∑
i=1

(yi − hi(x))2/Cov(ei)

= [y − h(x)]TCov(ei)
−1[y − h(x)]

(6.7)

At the minimum, the optimality conditions of the form ∂J(x)
∂x

= 0 will have
to be satisfied. WLS State Estimation involves the iterative solution of this
equation, starting from an initial guess of the state vector.

Kalman filter

In control theory, the Kalman filter, also known as linear quadratic estimation
(LQE), is an algorithm that uses a sequence of measurements observed over
time, contaminated by statistical noise and other inaccuracies, to compute an
estimate of the system’s current state. The algorithm consists of two steps.
In the prediction step, the Kalman filter computes an estimate of the current
state, along with the embedded uncertainties. In the next time-step, once the
next set of measurements is observed, this estimate is updated recursively
using a weighted average, with a higher weight assigned to estimates with
higher certainty.

The Kalman filter model assumes that the true state xk at time k evolves
according to discrete time dynamics:

xk = Fkxk−1 +Bkuk + wk (6.8)

where Fk is the state transition matrix and wk is the process noise, assumed
to be drawn from a zero mean normal distribution. At time k, a measurement
yk of the true state xk is made according to:

yk = Ckxk + vk (6.9)

The Kalman filter is most often conceptualized as two distinct phases: pre-
diction and update phase. The prediction phase uses the state estimate from
the previous time-step to compute an estimate of the state at the current
time-step. This estimate is also known as the a priori state estimate since it
does not include the current observation information. In the update phase,
the a priori prediction is refined using the current observation, to produce
the a posteriori state estimate. Typically, the two phases alternate.
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Luenberger observer

Arguably the most well known method of state estimation in linear control
systems is the Luenberger observer. The observer model of the physical
system is typically supported by additional terms to ensure that the observer
model’s state converges to that of the plant. In particular, the output of
the observer ŷ may be subtracted from the output of the plant y and then
multiplied by a gain matrix L. To compute the state estimate x̂(t) of the
system in (6.1) from the received measurements, we define the observer:

˙̂x(t) = Ax̂(t) + L(ŷ(t)− y(t))

= (A− LC)x̂(t) + Ly(t)

ŷ(t) = Cx̂(t)

(6.10)

The matrix L is chosen such that the error e = x − x̂ between the observer
and plant models asymptotically converges to zero. The error dynamics and
residual for the system with observer in (6.10) can be written as:

ė(t) = (A− LC)e(t) (6.11)

r(t) = y(t)− ŷ(t) (6.12)

An observer of this form will successfully estimate the state of the system
only in the noiseless case. When measurement noise is considered, i.e.:

y(t) = Cx(t) + v(t) (6.13)

certain assumptions have to be made on the noise, in order to reach a correct
state estimate. If the noise is assumed to be white (zero-mean, statistically
independent), the observer can be designed so that the residual converges to
zero in expectation, i.e. E[r(t)] = 0.

6.2.3 Resilient SE - problem formulation

Note that the three examples of state estimation described above, have the
measurement equation in common (equations(6.6),(6.9) and (6.10)). In the
rest of this chapter, we propose a resilient SE method that is meant to support
the existing state estimation algorithm, and isn’t dependent on its particular
choice.

Using the observer example, in order to generate a state estimate x̂, used
for control purposes, it is necessary and sufficient for the pair (A, C) to be
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observable. This condition holds during normal operation of power systems,
even in presence of sensor failures, due to redundancy in measurements. In
other words, when such an equipment failure occurs, the affected measure-
ment is simply removed from state estimation, and the state estimate x̂ is
computed from the remaining available measurements. A similar procedure
can be applied in the event of a cyber-attack. Assuming that attack detection
and localization schemes are in place (such as the ones proposed in Chap-
ters 4 and 5, and literature references therein), both in cyber and physical
layers, the attacked measurements can be removed from state estimation.
This implies that emA is known, and that the measurement matrix C can be
decomposed as:

C =

[
C1

CA

]
π (6.14)

where C1 ∈ R(m−a)×n corresponds to trusted measurements, CA ∈ Ra×n to
the attacked measurements, and π is a permutation matrix. Without loss of
generality, we assume that measurements are already ordered in this fashion,
i.e. π = I. A state estimate can then be produced if and only if (A, C1) is
still observable. However, during severe coordinated cyber-attacks, too many
measurements may be compromised. Thus, it will not be possible to produce
a state estimate.

In this chapter, we address the problem of providing a state estimate in
the situation of wide-spread coordinated cyber-attacks. We do so by con-
structing a matrix CA, such that, with an augmented matrix

C =

[
C1

CA

]
(6.15)

the pair (A, C) is observable, and a state estimate can be computed using
the augmented set of measurements

ȳ = Cx (6.16)

Using this definition, the error dynamics and residual for the system in
(6.10) using augmented measurements (6.16) can be written as:

ė(t) = (A− LC)x̂(t)− (A− LC)x(t)− d(t) (6.17)

r(t) = ŷ(t)− ȳ(t) (6.18)
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(a) (b)

Figure 6.2: a) Example of cluster boundaries; x̂2 is used instead of x2
I2 to

produce a state estimate (similarly for other clusters). b) Example of cluster
boundaries for a larger attack; parameter θ is used to ensure each cluster
contains at least one trusted measurement.

The following sections will address the construction of matrix C based on
clustering of the system outputs. The aim is to first aggregate measurements
with similar dynamic responses into clusters, where the aggregate behavior
of each cluster is a close approximation of the measurements within it. Then,
instead of each of the attacked measurements, the aggregate behavior of the
cluster it belongs to can be used as a surrogate during the state estimation
process (depicted in Figure 6.2a). As the clustering-based aggregation is an
approximation procedure, the resulting state estimate will be less accurate
than if all the measurements were available, but it is an important trade-off
that must be made in order to retain a necessary level of situational awareness
during severe cyber incidents. Therefore, this method is not intended to
replace the currently used state estimation methods, but to supplement it
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during critical events.

6.3 Clustering-based resilient state estimation

In this section, we introduce the clustering procedure on the system Σ, and
the construction of matrix CA based on this clustering.

6.3.1 Measurement clustering procedure

Consider the system Σ in normal operation, in absence of cyber-attacks
(ya(t) ≡ 0):

Σ :

{
ẋ(t) = Ax(t) + d(t)

y(t) = Cx(t)
(6.19)

To quantify the behavior of measurement signals, and the aforementioned
similarity between them, we first define clusters Ik as disjoint subsets of L,
where L = {1, . . . , l} is the set of measurement indices. More specifically,
clusters are subsets of measurements that have a similar trajectories in time
domain. Measurements i, j belonging to the cluster Ik are approximately
proportional aiyi(t) ≈ ajyj(t) ≈ · · · ≈ z(k)(t), where ai, aj, . . . are constant
coefficients. We aim to estimate the full system state based on the combi-
nation of received trusted measurements and the hidden system structure
contained in the clustered representation of the system. With this intuition
in mind, we aim to partition the set L into clusters Ik such that

pjgi(s) = pigj(s), ∀i, j ∈ Ik (6.20)

where gi is the i-th element of g(s) = C(sIn−A)−1, a transfer matrix of the
system in (6.19). We can rewrite the condition for cluster formation more
compactly as

(enIk)Tg(s) = pTk ḡ(s) (6.21)

where ḡ(s) is a scalar function. This definition provides intuition on the
meaning of clustering in our application, but is not practical for designing
a procedure that would form such clusters, which would require performing
similarity checks on functions. To get around this problem, we will derive a
matrix-based condition equivalent to (6.21), based on the notion of observ-
ability. To that end, we first derive the observability Gramian of a semistable
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system (6.19). The observability Gramian is defined as [17]

Wo =

∫ ∞
0

eA
T tCTCeAtdt (6.22)

When A is Hurwitz, the above integral converges, and Wo can also be found
as a solution of the Lyapunov equation ATWo+WoA+CTC = 0. However, in
power systems, the system matrix A has an inherent structural singularity,
as a direct consequence of power conservation law. Due to semistability
of the system matrix A, the integral in (6.22) may not converge. Thus,
we consider the decomposition of A = UΛV −1, where U = [umax Ū ] and
V = [vmax V̄ ]T , and umax and vmax are the right and left eigenvectors

corresponding to the largest eigenvalue (λ1 = 0). Let Ā = V
TAU and C =

CU , defined as the stable subspace of Σ. Then, the observability Gramian
of the semistable system is

Wo = U W oU
T

(6.23)

where W o is the observability Gramian associated with the stable subspace
(Ā, C) of Σ. In the following theorem we find the condition equivalent to
(6.21) using the observability Gramian Wo of the semistable system Σ.

Theorem. Consider the observability Gramian Wo in (6.23) of the semistable
system Σ in (6.19). Furthermore, let the Cholesky factorization of Wo be
given by Wo = WLW

T
L , and Φ = WL. Then, the condition in (6.21) is equiv-

alent to
(enIk)TΦ = pTk φ̄ (6.24)

where φ̄ ∈ R1×n is a constant vector.

Proof. In order for (6.21) to hold, for each i, j ∈ Ik it must hold that pj‖gi(s)‖H2 =
pi‖gj(s)‖H2 . Similarly, (6.24) is equivalent to pj‖Φi‖ = pi‖Φj‖, where Φi is
the ith row of the matrix Φ. TheH2-norm of a linear system can be computed
as the L2-norm of its impulse response h(t).

‖g(s)‖2
H2

= ‖h(t)‖2
2 = tr

{
U

[∫ ∞
0

eĀ
T tC

T
CeĀtdt

]
U

T
}

For ‖h(t)‖2
2 to be finite, the integral above must be finite. Since Ā and C are

the stable subspace of Σ, we have lim
t→∞

eĀt = 0. Therefore, ‖h(t)‖2
2 is finite
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and equal to:

‖g(s)‖2
H2

= ‖h(t)‖2
2 = tr{Wo} = tr{WLW

T
L } =

= ‖WL‖F = ‖Φ‖F

where ‖ · ‖F is a vector norm applied to each row of Φ. Hence, (6.21) is
equivalent to (6.24).

However, in real systems, the identity in (6.21) is almost never the case.
Therefore, we relax the strict equality, and require

‖pjgi(s)− pigj(s)‖H2 ≤ ε, ∀i, j ∈ Ik (6.25)

to hold for each cluster. Equivalently, we can check for linear dependence
between rows of matrix Φ:

‖pjΦi − piΦj‖ ≤ θ ∀i, j ∈ Ik (6.26)

where θ > 0 and Φi is the i-th row of Φ. Here, θ is a parameter that allows
us to control the coarseness of clustering. In other words, it allows us to
find outputs that have a ”similar”, instead of equal, response, which relaxes
the condition (6.21). However, the choice of θ is not trivial, as it introduces
a trade-off between accuracy of the approximation and size of clusters. In
general, θ should be chosen as a smallest value for which each cluster contains
at least one trusted measurement (as depicted in Figure 6.2b).

6.3.2 Construction of matrix CA

After the clusters have been defined, we can construct the matrix CA that
will be used to augment the set of available trusted measurements so that
the system is observable. Then, the system operator can be provided with
situational awareness using the resilient state estimate. In the analysis
in previous section, we have shown that clusters can be formed such that
measurements i, j within the cluster Ik are approximately proportional, i.e.
aiyi(t) ≈ ajyj(t) ≈ · · · ≈ z(k)(t). Then, we derived a matrix-based condition
to find such clusters. Next, we show that the state estimate can be pro-
duced using the augmented matrix C, by choosing CA = (emA )TΠTΠC. The
clustering matrix Π ∈ RK×n is defined as:

Π := Diag{p1, p2, . . . , pK}E ∈ RK×n (6.27)
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where E is a permutation matrix and pk are clustering coefficients. The
residual r = ŷ − ȳ defined in (6.18) will converge to 0 if the error sys-
tem gŷ − gȳ also converges to 0. The transfer matrix associated with ŷ is
gŷ(s) = gy(s) = C(sI − A)−1, and the transfer matrix associated with ȳ is
gȳ(s) = ΠTΠC (sIn −A)−1. The following theorem establishes the conver-
gence of the error system.

Theorem. Consider a semistable linear system in (6.19) and the augmented
set of measurements ȳ in (6.16). Then, the error system ge(s) = gŷ(s)−gȳ(s)
is asymptotically stable, and state x can be estimated using measurements ȳ.

Proof. By definition, Π is a unitary matrix. Also, by definition, vmax ∈
colspace(ΠT ). Let Π̄ be an orthogonal complement of Π. Therefore, I −
ΠTΠ = Π̄T Π̄. Consider now the error system ge:

ge(s) = C(sI −A)−1 − ΠTΠC(sI −A)−1 =

= (In − ΠTΠ)C(sI −A)−1 = Π̄T Π̄g(s)
(6.28)

We have ΠTΠvmax = vmax, or equivalently Π̄vmax = 0. This implies that
there is pole-zero cancellation in Π̄g(s) associated with the zero eigenvalue.
Therefore, all poles of Π̄g(s) have negative real parts, and the error system
ge is asymptotically stable.

6.4 Test system and illustrative scenarios

The IEEE RTS 24-bus system [69] consists of 10 generators, equipped with
governor control, and 14 loads. The interconnected system model, given in
(2.14), where the dimension of x is 68. In Figure 6.3, we analyze the system
in the following scenario. From t = 0 to 20 s, the loading is nominal. At time
t = 20 s, load at bus 3 increases by 0.1 p.u., and at time t = 200 loading
returns to nominal value.

Under this scenario, we plot the trajectories of measurements (solid lines)
within two clusters, one containing frequency, and one containing power mea-
surements. In Figures 6.3a and 6.3b, we plot in dotted line the cluster vari-
able, i.e. the surrogate to be used in place of any measurement within the
cluster in case of a cyber-attack. In both cases, the cluster variable resembles
a centroid of the measurements within it, and can be used for resilient state
estimation.
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Figures 6.3a and 6.3b present the scenario where measurements were clus-
tered into 21 clusters, which resulted in approximation error of ∼ 7%. This
choice allows for larger clusters, containing more than one measurement,
while maintaining accuracy of approximation and, therefore, suitable for our
proposed resilient state estimation method.

6.5 Summary

Reliable and continued operation of cyber-physical systems requires an accu-
rate state estimate. Today, the reliability of the power grid is largely depen-
dent on employment of redundant components and communication links that
make it possible to continue operation during equipment failures and faults
that occur naturally. However, such an approach is not adequate in presence
of malicious cyber-attackers. In this chapter, we propose a clustering-based
method for Resilient SE, that can provide meaningful information on the
state of the system in presence of wide-spread coordinated cyber-attacks,
leading to improved situational awareness and the ability to mitigate and
respond to malicious attacks. While the focus of this work is on wide-spread
FDI attacks, our approach is agnostic to the specific form of the attack. We
demonstrate the efficiency of our proposed algorithms through a numerical
example on the IEEE RTS 24-bus power system.
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(a) Cluster of frequency measurements

(b) Cluster of power measurements

Figure 6.3: Two examples of clusters in the IEEE RTS 24-bus system. In (a)
and (b), solid lines are real measurements, red dotted line is the approximated
cluster measurement to be used as surrogate in case of a cyber-attack.
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Chapter 7

Summary and Future Work

In this dissertation, we proposed a set of algorithms that enable resilient op-
eration of power systems in presence of intelligent and resourceful attackers.
Our methodology is based on the notion of data aggregation as a tool for
extracting internal information about the system that may be unknown to
the attacker. We argue that the defender must exploit additional degrees of
freedom in system design in order to defend against stealthy cyber-attacks.
Utilizing the knowledge of the aggregate behavior of different parts of the
system, and the ability to manipulate how aggregation is performed, the
defender can actively change the detection strategy over time, continuously
challenging the attacker. Further, knowledge of the aggregate system behav-
ior can extend situational awareness of the operator during a wide-spread
attack, when potentially large number of sensors may be affected. The ag-
gregate system variables can then be used to replace unavailable or untrusted
sensor readings. Using the aggregation framework, this thesis focuses on sev-
eral challenges in power system operation posed by the actions of malicious
intruders.

As the first step to resilience and security, we proposed several methods
for active attack detection in cyber-physical systems. In the development of
these approaches, we were motivated by the fact that passive detectors are
not able distinguish between normal and corrupted outputs. Consequently,
the defender needs to utilize available degrees of freedom to design resilient
systems and controllers, in order to be able to detect otherwise stealthy
attacks. We proposed several mechanisms to achieve active detection: a
clustering-based and interaction variable (IntVar)-based detection method.

In the first approach, we adopted a moving-target principle, and show
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that using a constantly changing detection policy allows detection of stealthy
attacks. As a basis of our proposed moving-target detection filter, we use the
concept of output clustering. Clustering of the outputs gives the defender an
upper hand, by providing additional information on the system, unknown to
the attacker. The performance of our proposed moving-target approach is
tested against stealthy attacks on the 5-bus test system and the IEEE RTS
24-bus system.

In the IntVar-based approach, we made the observation that there is an-
other intuitive way to find the internal structure in power systems that can be
used for detection of stealthy attacks. In particular, we examine the AGC sys-
tem, and its aggregation using the Interaction Variables, then develop inter-
action variable-based detection and localization methods for cyber-attacks on
AGC. We demonstrated the effectiveness of the proposed detection method
on the 5-bus test system.

After an attack has been detected, mitigation and self-healing procedures
need to be initiated. However, until the intruder has been physically removed
from the system, the system operator will have limited knowledge of the sys-
tem’s state and conditions, as many sensors may be unavailable. In that
situation, critical processes that provide situational awareness, such as state
estimation, need to be enhanced to provide resilience. Reliable and contin-
ued operation of cyber-physical systems requires an accurate state estimate.
Today, the reliability of the power grid is largely dependent on employment
of redundant components and communication links that make it possible to
continue operation during equipment failures and faults that occur naturally.
However, such an approach is not adequate in presence of malicious cyber-
attackers. In this thesis, we proposed a clustering-based method for Resilient
SE, that can provide meaningful information on the state of the system in
presence of wide-spread coordinated cyber-attacks, leading to improved situa-
tional awareness and the ability to mitigate and respond to malicious attacks.
While the focus of this work is on wide-spread FDI attacks, our approach is
agnostic to the specific form of the attack. We demonstrated the efficiency
of our proposed algorithms through a numerical example on the IEEE RTS
24-bus power system.

90



7.1 Future work

There are several research directions extending from the material presented
in this dissertation that could be explored in the future:

Impacts of cyber-attacks on power system stability

The impacts of cyber-attacks on electric power systems have not been well
studied on realistic large-scale power systems. Demonstrating that such at-
tacks can cause disruptions in grid operation, and analysis of its impact
is needed. This can inform security operators whether a particular attack
should be a concern, identify those most harmful forms of cyber-attacks, and
provide insight on how to effectively mitigate cyber-attacks.

Detection accuracy improvement through statistical anal-
ysis

In this thesis, we consider a deterministic description of the system, in ab-
sence of measurement and process noise. However, application of our pro-
posed detection methods on noisy systems may result in an increased rate
of false positives. Further, an appropriate choice of the detection threshold
may be difficult in presence of severe noise. In the future, any knowledge of
the statistical properties of the process or measurement noise can be used to
improve the false positive rate. For example, hypothesis testing can be used
in conjunction with our proposed methods to distinguish between the noisy
signal and the cyber-attack.

Incorporation of data-driven methods

In this thesis, we base the design of our cyber-security methods on the knowl-
edge of the system model. However, certain assumptions have to be made in
order to obtain any model. In reality some assumptions may not hold, ren-
dering the system model invalid. Given that, it is difficult, if not impossible,
to guarantee performance of any model-based approach in the full range of
system conditions. In future work, data-driven methods can be used to en-
hance the performance of our proposed model-based methods. For example,
any unmodeled physical dynamics can be modeled with a statistical model,
which could be learned from data. One possible difficulty in adopting this
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hybrid approach in power systems may be availability of real system data.
However, it is a viable option for other cyber-physical systems, such as self-
driving cars and robotic systems, where all of the system data is available to
the designer.
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Appendix A

Model data for the 5-bus system

For the 5-bus system, generator parameters are listed in Table A.1,and the
transmission line parameters are listed in Table A.2. System matrices A and
G for the system model in (4.5) are given below. For the load at bus 4, actual
load and load forecast are shown in Figure A.1, and load deviation around
the forecast in Figure A.2. Similarly, for the load at bus 5, actual load and
load forecast are shown in Figure A.3, and load deviation around the forecast
in Figure A.4.

Gen # Bus # J D eT Tu Kt r Tg
1 1 10 5 1696 .2 10744 19 .25
2 2 8 4 1696 .2 10744 19 .25
3 3 5 4 1696 .2 10744 19 .25

Table A.1: Generator parameters of the 5-bus test system

From To
Bus # Bus # B

1 2 10
1 4 10
2 4 10
3 5 10
2 3 0.5
4 5 0.5

Table A.2: Transmission line parameters for the 5-bus test system
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Appendix B

Model data for the 24-bus system

For the 24-bus system, generator parameters are listed in Table A.3. The
transmission line parameters are listed in Table A.4.

Gen # Bus # J D eT Tu Kt r Tg
1 1 10.92 11 1696 0.2 10744 19 0.25
2 2 5.34 11 1696 0.2 10744 19 0.25
3 7 10.92 11 1696 0.2 10744 19 0.25
4 13 12.99 11 1696 0.2 10744 19 0.25
5 15 24.72 11 1696 0.2 10744 19 0.25
6 16 6.61 11 1696 0.2 10744 19 0.25
7 18 5 11 1696 0.2 10744 19 0.25
8 21 47.1 10 1696 0.2 10744 19 0.25
9 22 47.1 10 1696 0.2 10744 19 0.25
10 23 3.71 10 1696 0.2 10744 19 0.25

Table A.3: Generator parameters of the 24-bus test system
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Figure A.1: Forecast vs. actual load at bus 4 over 24h period

Figure A.2: Deviation of load at bus 4 from forecast value
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Figure A.3: Forecast vs. actual load at bus 5 over 24h period

Figure A.4: Deviation of load at bus 5 from forecast value
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From To From To
Bus # Bus # B Bus # Bus # B

1 2 71.94 12 13 21.01
1 3 4.73 12 23 10.35
1 5 11.83 13 23 11.56
2 4 7.89 14 16 25.71
2 6 5.21 15 16 57.80
3 9 8.40 15 21 20.41
3 24 11.92 15 21 20.41
4 9 9.64 15 24 19.27
5 10 11.33 16 17 38.61
6 10 16.53 16 19 43.29
7 8 16.29 17 18 69.44
8 9 6.06 17 22 9.50
8 10 6.06 18 21 38.61
9 11 11.92 18 21 38.61
9 12 11.92 19 20 25.25
10 11 11.92 19 20 25.25
10 12 11.92 20 23 46.30
11 13 21.01 20 23 46.30
11 14 23.92 21 22 14.75

Table A.4: Transmission line parameters for the 24-bus test system
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by padé approximation via the lanczos process. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 14(5):639–
649, 1995.

[38] Petar V Kokotovic, Bozidar Avramovic, Joe H Chow, and James R
Winkelman. Coherency based decomposition and aggregation. Auto-
matica, 18(1):47–56, 1982.

[39] MA Pai and RP Adgaonkar. Identification of coherent generators using
weighted eigenvectors. In IEEE Transactions on Power Apparatus and
Systems, volume 98, pages 1140–1140, 1979.

[40] Ganesh N Ramaswamy, Luis Rouco, Ollivier Fillatre, George C Vergh-
ese, Patrick Panciatici, Bernard C Lesieutre, and David Peltier. Syn-
chronic modal equivalencing (sme) for structure-preserving dynamic
equivalents. IEEE Transactions on Power Systems, 11(1):19–29, 1996.

102



[41] Takayuki Ishizaki, Kenji Kashima, Antoine Girard, Jun ichi Imura, Luo-
nan Chen, and Kazuyuki Aihara. Clustered model reduction of positive
directed networks. Automatica, 59:238 – 247, 2015.

[42] Xiaojun Zhang Liu. Structural modeling and hierarchical control of large-
scale electric power systems. PhD thesis, MIT, 1994.

[43] Ana Jevtic and Marija Ilic. A dynamic strategy for cyber-attack de-
tection in large-scale power systems via output clustering. American
Control Conference, 2020.

[44] Richard J. Campbell. Cybersecurity issues for the bulk power system.
Technical report, Congressional Research Service Report, 2015.

[45] Yilin Mo, Tiffany Hyun-Jin Kim, Kenneth Brancik, Dona Dickinson,
Heejo Lee, Adrian Perrig, and Bruno Sinopoli. Cyber–physical security
of a smart grid infrastructure. Proceedings of the IEEE, 100(1):195–209,
2012.

[46] Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A Frincke.
Smart-grid security issues. IEEE Security & Privacy, 8(1):81–85, 2010.

[47] O. Kosut, Liyan Jia, R. J. Thomas, and Lang Tong. Limiting false
data attacks on power system state estimation. In 2010 44th Annual
Conference on Information Sciences and Systems (CISS), pages 1–6,
2010.

[48] Yao Liu, Peng Ning, and Michael K. Reiter. False data injection at-
tacks against state estimation in electric power grids. In Proceedings of
the 16th ACM Conference on Computer and Communications Security,
pages 21–32, New York, NY, USA, 2009. ACM.

[49] Fabio Pasqualetti, Florian Dörfler, and Francesco Bullo. Attack detec-
tion and identification in cyber-physical systems. IEEE transactions on
automatic control, 58(11):2715–2729, 2013.

[50] Yao Liu, Peng Ning, and Michael K Reiter. False data injection attacks
against state estimation in electric power grids. ACM Transactions on
Information and System Security (TISSEC), 14(1):1–33, 2011.

103
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