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ABSTRACT 

Spare parts demand forecasting is a key activity for asset intensive industries, but it is 
challenging due to the underlying demand characteristics. Demand is characterized by 
periods of zero demand arrivals; and the size of the order is variable with large, 
unexpected spikes. Schlumberger, an oil and gas service manufacturer, is facing the 
issue of low forecast accuracy for its spare parts, and has challenged the team to improve 
it. This research uses machine learning techniques to improve demand forecasting 
accuracy of spare parts for Schlumberger. The methodology of the research starts with 
classifying the parts into four classes namely: smooth; intermittent; erratic; and lumpy, 
Then, we apply recommended time series based on the literature for forecasting four 
classes. The time series forecast was then fed as features along with judgmental forecast 
and the demand parameters into two different machine learning algorithms, namely 
Classification and Regression Trees (CART) and Random Forests. Both models showed 
more than 75% improvement in accuracy over conventional demand forecasting methods 
when measured by Root Mean Squared Error. This improvement shows the potential 
benefit of adding human judgement as a parameter into machine learning algorithms 
when forecasting spare parts. 
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1 INTRODUCTION 

1.1 RESEARCH MOTIVATION 

Companies store spare parts to maintain their equipment. The unavailability of spare 

parts when needed may harm business continuity, particularly in asset intensive 

industries that rely heavily on asset availability, such as oil and gas and cement. Spare 

parts have several unique challenges. First, spare parts demand is often intermittent, with 

many periods having zero demand arrivals. In addition, demand sizes are often highly 

variable, or ‘erratic’. A large proportion of spare parts are accompanied by both 

intermittent and erratic demand, which makes the demand ‘lumpy’ (Boylan & Syntetos, 

2010).  Second, companies often store a large variety of spare parts families, which 

makes it hard to identify individual inventory policies for different spares (Guvenir & Erel, 

1998).   

In the case where actual demand is higher than forecasted demand, the company will 

experience stockouts which have an immediate short-term revenue loss, interrupted 

operations, and potentially customer loss (Suryapranata, 2003). Just as there are risks, 

in over-forecasting demand, there are risks in under-forecasting. If realized demand is 

less than the forecasted demand, the company will face excess inventory costs and 

obsolescence risk. In addition, it was estimated that spare parts annual cost is around 

2.5% of the purchase cost of assets with a useful life of up to 30 years (Gallagher, 

Mitchke, & Rogers, 2005). Therefore, a part purchased for $100, would have spare part 

spend of $75 over its lifetime which means spare part consumption represents 
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approximately 43% of its lifetime costs. Spare parts inventory management is a 

challenging task for many companies, but especially so in asset intensive industries.  

1.2 PROBLEM STATEMENT 

Schlumberger is the sponsoring company of this project. They compete in the oil and 

gas services industry, an asset intensive industry that requires high availability of parts 

with the right quantity, in the right place and at the right time. Schlumberger is facing the 

challenge of low spare parts demand forecasting accuracy. Currently, Schlumberger is 

using a bottoms-up approach where each region provides a forecast and then the 

corporate aggregates the individual forecasts from the regions around the globe. Every 

location uses a different forecasting methodology and demand forecasting is not 

standardized globally. Often, they use simple techniques such as a moving average 

forecasting model to forecast the demand of spare parts. Although these models are 

simple to interpret and implement, they do not provide the accuracy needed for optimal 

spare parts management, mainly because the large amount of zero demand periods 

distort the forecast (van Wingerden, Basten, Dekker, & Rustenburg, 2014).  

1.3 RESEARCH OBJECTIVE 

The objective of this project is to improve the forecasting accuracy of Schlumberger 

spare parts using machine learning techniques. The project also seeks to compare the 

forecasting accuracy of the machine learning algorithms with the current forecasting 

practices at Schlumberger. More accurate forecasting methods enables Schlumberger to 

be more effective at balancing supply and demand of spare parts. The project first starts 

by identifying the right features for forecasting the spare part. In contrast to other studies 
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that only include features pertinent to demand characteristics, this project introduces two 

new features: 1- human forecasting, which is the forecasted demand made by 

Schlumberger experts for every Schlumberger’s SKU and 2- time series forecasting, 

which is the demand forecast calculated using time series forecasting methods. We 

speculate that demand forecasting can be improved by combining these two demand 

forecasts. Once the features are built, we leverage them in Classification and Regression 

Tree and Random Forest models. 

Our hypothesis was that a more robust forecast methodology, such as ensemble 

learning, would be better able to predict spare parts demand at Schlumberger and 

improve the forecasting accuracy. This hypothesis was tested by comparing the accuracy 

as measured by root mean squared error (RMSE) of the different models. A survey of 

existing literature shows time series forecasts, machine learning, and ensemble methods 

have an improved forecasting accuracy for a variety of different companies across various 

industries. 
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2 LITERATURE REVIEW 

2.1  INTRODUCTION 

This section reviews different categories of forecasting methodologies used for spare 

parts. It begins by describing forecasting time series approaches which are traditionally 

used to forecast spare parts. Then we briefly review forecasting with human judgment. 

Both of these will be used as inputs to our machine learning and ensemble models which 

are surveyed next. Finally, we examine a suite of metrics for measuring spare parts 

forecasting accuracy. 

2.2  CONVENTIONAL FORECASTING METHODS  

Both the complexity and importance of forecasting spare parts demand have made 

many researchers focus on this interesting problem. Demand forecasting is an essential 

step in determining the right inventory policy for individual spare parts. Conventional 

spare parts forecasting methods are the methods that use a time series. time series based 

forecasting tools assume that future demand arrivals could be predicted from previous 

demand patterns (Hu et al., 2018). One important consideration is that forecasts are 

seldom accurate and that in this capstone we are more interested in forecasting ranges 

than the point forecasts. In this section we will cover the time series based forecasting 

methods of Simple Exponential Smoothing, Croston’s Method, and Syntetos Boylan 

Approximation that were introduced to predict the spare parts demand. 

According to Boylan & Syntetos (2010), improving forecasts for spare parts can be 

broken down into three main steps (see Figure 1): 
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1.     Pre-processing 

2.     Processing 

3.     Post-Processing. 

 
                 Figure 1: Forecasting Processes (Boylan & Syntetos, 2010) 
  

The pre-processing step is the segmentation of spare parts into collective 

homogeneous classes with the main purpose of proposing the right forecasting tool for 

every class. The post processing step, as proposed by researchers, is the process of 

judgmental adjustment of the demand forecast by humans (Boylan & Syntetos, 2010). 

This is an often-overlooked step in practice but it is as important as selecting the right 

forecasting method. To implement such time series based methods for spares at 

Schlumberger, the spare parts had to go through two main steps: forecasting-based 

spares classification (preprocessing) and demand forecasting (processing).  

2.2.1 FORECASTING BASED SPARES CLASSIFICATION 

Different spare parts are accompanied by different demand patterns, which means 

that different spare parts require different forecasting tools (Heinecke, Syntetos, & Wang, 

2013). This shows the need to segment spare parts based on the associated demand 

patterns. It is necessary to note that as the focus of this project is on spare part 

classification based on demand pattern, we exclude reviewing the classification for 

inventory control from the literature review. Readers can refer to Hu et al.’s 2018 review 
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of operations research as applied to spare parts for further discussions on these two 

concepts.   

Segmentation based on demand patterns is different from classifying spare parts for 

inventory control. Product classification for demand forecasting uses the underlying 

demand characteristics for categorization. whereas inventory control partitions based on 

criticality, annual dollar usage, and other criteria. The two classification schemes are 

independent of each other. As the sponsoring company is most concerned with improving 

forecasting, we will only consider forecasted based classification and exclude 

classification for inventory control from this project.   

Multiple spare parts classification schemes have been proposed by researchers. The 

first study in this line of research was carried out by Williams (1984), who introduced the 

notion of variance partitioning. Variance partitioning is the partitioning of the demand 

during lead time (DDLT) into its main parts and then classifying spare parts into “Smooth”, 

“Slow-moving” and “Erratic”. The study assumed that the demand arrives through a 

Poisson process and the cutoff values for classification are arbitrary. Johnston and Boylan 

(1996) bifurcated spares on the basis of how many forecast periods elapsed before 

demand is realized. Their empirically demonstrated threshold value was 1.25 for 

intermittent.  

Another widely used method for categorization of spare parts demand is based on 

cutoff values of Average Demand Interval (P) and Square of Coefficient of Variation 

(CV^2) of demand sizes (Syntetos & Boylan, 2001).  Figure 2 elucidates the proposed 

cut-off values for P and CV^2 as 1.32 and 0.49 respectively and classification of spare 

parts into four categories: “Smooth”, “Intermittent”, “Erratic” and “Lumpy”. Smooth 
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demand has relatively stable demand sizes and relatively stable occurrences of demand. 

For intermittent demand, the demand size is stable, but the amount of time between each 

order varies. Erratic demand has demand at regular intervals but the size of demand 

varies significantly with each instance. Lumpy demand is objectively the most challenging 

condition, where both the demand sizes and the demand intervals are highly variable. 

 
Figure 2: Cutoff Values of SKU Classes (Syntetos & Boylan, 2001) 

 

It is worth noting here that the cutoff values and the classes proposed are mainly used 

to select the forecasting model for each class. Although we have found other 

segmentation schemes in practice, such as the one introduced by Kostenko and 

Hyndman (2006), we have decided to use Syntetos’s classification as it was tested 

empirically by van Wingerden, Basten, Dekker, & Rustenburg (2014) and was shown to 

include the most important criteria for spare parts classification. 

2.2.2 SPARE PARTS DEMAND FORECASTING  

Processing is the step of applying the forecasting model to every spare part after it 

has been assigned a category in the preprocessing step. Classical forecasting tools such 

as simple exponential smoothing (SES) are shown to overestimate the demand of 
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intermittent items (Boylan & Syntetos, 2010). Simple exponential smoothing assigns a 

weight to the most current demand compared to the previous periods.  Other forecasting 

tools were proven to provide better estimates in the case of spare parts. Perhaps the 

most widely used method is Croston’s method (Hu et al., 2018). 

Croston’s method showed that SES might, sometimes, overestimate the intermittent 

items’ demand by two times what was really demanded. He proposed a new method, that 

was named after him, where he used different estimates for both the demand intervals 

and the demand sizes (Croston, 1972). This model was proved to be more robust than 

moving averages and SES in the case of intermittent demand patterns. Syntetos and 

Boylan (2001) showed that Croston’s method, although robust, is biased. To correct the 

bias, the authors introduced a correction in a method that is often referred to as Syntetos 

Boylan Approximation (SBA). 

Syntetos, Boylan, & Croston (2005) compared various forecasting methods that 

include Croston’s method and SBA on 3000 intermittent demand items from the 

automotive industry. After comparing the mean square errors of different forecasting tools 

on the various classes of spare parts, the authors suggested that Croston’s method 

should be used for “Smooth” demand items; items with low intermittency and low 

variability in demand sized, and suggested to use SBA for the other three classes. 

Zhou and Viswanathan (2011) examined applications of bootstrapping to spare part 

forecasting and found bootstrapping worked best on a simulated data set, but SBA 

outperformed it on an actual data set. This was validated by Synetetos, Babi, and Gardner 

(2015) who noted that SBA and Croston’s methods perform just as well as bootstrapping 

without the burden of computational complexity.  



14 
 

The previous forecasting tools are the most used methods in practice and were 

proven to be superior to moving average and SES (Gutierrez, Solis, & Mukhopadhyay, 

2008; Eaves and Kingsman, 2004; Synetetos, Babi, & Gardner, 2015). As SBA and 

Croston’s method have been designed and validated to overcome the challenges of 

intermittency and variability inherent within spare parts, they have been successful across 

a wide variety of industries. Although the industries studied were not oil and gas, the 

underlying demand characteristics of spare parts are the same. As such, it is reasonable 

to hypothesize they will most likely help the sponsoring company in its challenge of 

improving the current forecasting accuracy. 

2.3  HUMAN FORECASTS 

2.3.1 PURE HUMAN FORECASTING 

Whether implicit or explicit, human judgement has always played a role in forecasting. 

Implicitly, humans have to decide which forecasting methods to use. Explicitly, people 

can either rely solely on the results of a judgmental forecast, or they revise with results of 

the statistical forecast. Historically, judgmental forecasting has been the most common 

even more so the classical models (Cerullo 1975). Pure human forecasts can be 

classified as one manager’s opinion, executive opinion, and a sales force composite 

opinion. A Delphi Method can also be used to anonymously converge a group of experts 

though blind votes on the best forecast. Even through the 1990’s, the most popular 

method of forecasting in US corporations was judgmental forecasting because of the 

accuracy and challenge in getting data for the statistical methods (Sanders and Manrodt 

1994). In the current era of big data having access to data and computing power is no 

longer an issue. Indeed, this led to a decrease in the number of forecasters using 



15 
 

judgement alone, and an increase in the number of forecasters combining human 

judgment with analytical forecasts (Fildes and Goodwin 2007). 

2.3.2 HUMAN ADJUSTED FORECASTS 

 The combination of these methods has seen mixed results. In cases where 

analysts have more information than the statistical forecast, human intervention generally 

improves the accuracy. However, there is a danger in tinkering too much, which 

decreases the accuracy, because analysts either see patterns that are not there, or there 

are asymmetric costs for doing so (Goodwin, 1996). 

While no studies specifically have addressed spare parts, researchers have looked 

into parts that have the same underlying demand characteristics of being slow moving 

and intermittent. Syntetos, Nikolopoulos, Boylan, Fildes, & Goodwin (2009) found that 

negative adjustments aid in accuracy more than positive adjustments, but small positive 

changes to a zero forecast improve accuracy. Overall, human adjustments increase 

forecast accuracy in the study. Although limited in scope, these results show the promise 

of using human judgement in intermittent, erratic, and lumpy demand situations. However, 

instead of adjusting after the fact, we will use the human forecast as input, and the model 

will learn the human’s biases and hopefully correct for it in machine learning programs 

outlined in the next section. 

2.4 MACHINE LEARNING 

2.4.1 INTRODUCTION 

Machine learning comprises a set of algorithms that uses data and answers to 

understand decision rules for a particular problem instead of having decision rules 
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programmed directly (Roiger and Geatz, 2003). The algorithms learn from the data to 

improve performance. The past decade has witnessed an advancement in machine 

learning and artificial intelligence due an increase in both available data and computing 

power to learn from that data (Bertsimas, 2017). In their review of use cases of machine 

learning, Chui et. al (2018) refers to demand forecasting as a promising area where 

machine learning has outperformed traditional time series techniques by ten to twenty 

percent. Machine learning algorithms listed include CART, Random Forests, and Neural 

Networks. Finally, we examine ensemble methods which have multiple prediction models 

and that merge their results. 

2.4.2 CART 

Classification and Regression Trees (CART) also have an independent variable and 

several independent variables. If the model is predicting a categorical value such as yes 

or no, it is called a classification tree. If the model is predicting, as in the case of 

forecasting, a nominal value, it is a regression tree. Regression trees will be used for 

forecasting demand as demand is numeric. (Roiger and Geatz, 2003). 

CART determines which independent variable to split on and at which value the split 

occurs in such a way that minimizes range of variation within the independent variable 

most subject to a limit of the number cases in each bucket. Then the tree is pruned to 

only include splits that improve fit beyond a specified value. After splitting and pruning are 

complete, the average of the independent variable is calculated. To determine how this 

value was derived simply walk down each split of the tree (Bertsimas, 2017). 

CART offers many advantages such as making no assumptions about the data and 

offering clarity of decision rule model structure. However, decision trees can lack 
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robustness, as small differences in the training set selection may cause different trees 

and paths through a similar tree and as a result may not perform well on future data sets 

(Roigers and Geatz, 2003). In spite of these limitations, Shuemli, Bruce, Yahav, and 

Lichtendah (2018) state CART models have demonstrated good performance in a variety 

of settings. A South Korean study of military spare parts illustrates the potential viability 

of using CART for spare parts forecasting. Moon (2013) showed that CART was only 

beaten by a margin of 2.8% error improvement of the best method and was more easily 

explained to decision makers.  Consistent with this finding, a single classification and 

regression tree is not often by itself; instead it is used as a building block for more complex 

methods such as a random forest.  

2.4.3 RANDOM FOREST 

Random forests can be thought of as one of many extensions of the CART 

methodology. A random forest is composed of many different trees. To get different trees 

each time, replacement of the data and randomization is important. Random forests 

sample the data with replacement to generate unique subsets of training data for each 

tree. The splits of each tree are determined by a randomly selected set of the independent 

variables at the end, the random forest takes an average of all the different trees’ 

predictions.  

Random forests have seen mixed results when applied to the problem of forecasting. 

Vairagade, Logofatu, and Muharemi (2019) found random forests to have the strongest 

overall performance for forecasting demand for supermarket items. However, when 

random forests were applied to the forecasting of spare parts, the results appear less 

promising. Babajanivalashed, Babajanivalashedi, Baboli, Shahzad, & Tonadre (2018) 
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argued that random forests are outperformed by other machine learning algorithms in 

nearly all cases in a case study of airplane spare parts. Yet random forests have 

outperformed in other demand forecasting scenarios such as shoes (Kharfan & Chan, 

2018). In general, it appears that the research is divided on the efficacy of random forests. 

This may be due to the underlying structure or quantity of data itself. 

2.5  ENSEMBLE METHODS 

Ensemble methods comprise different prediction techniques and combine their 

predictions. This is different from hybrid methods which use different models to predict 

different parameters of the demand, for example, use neural networks to predict demand 

arrivals and use simple exponential smoothing to predict demand sizes.  However, 

ensemble learners combine different forecasts of the demand and predict the best 

forecasted output, for instance, combining human forecast with a time series forecast into 

a regression tree.  

Ensemble learning for forecasting uses this same principle. In an extensive review 

from 2018, Perera, Hurley, Fahimnia, and Reisi (2018) recommends using human 

judgement in a machine learning ensemble method as an exciting new direction to 

explore for forecasting. The Makridakis Competition (M-Competition) is hosted by 

Professor Spyros Makridakis, a renowned expert in the field of forecasting. This 

competition is considered by many to be the premier forecasting competition in the world. 

It intends to find what methods of forecasting are the most accurate. In the most recent 

M Competition, the M4, ensemble and hybrid methods with machine learning 

outperformed both machines learning and traditional methods (Gilliand 2020). There were 
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over 100,000 different time series in this competition. However, this data set does not 

include low volume and intermittent demand items. The researchers are excited to see 

how well an ensemble learning method with a human element will perform on real data. 

2.6 METRICS 

There is no common performance metric for evaluating spare forecasting 

improvement with different studies considering different success criteria (Hu et al., 2018). 

Nevertheless, certain accuracy metrics do not fit. Mean Absolute Percentage Error 

(MAPE) is a common way to measure the forecast accuracy of non-spare parts, the first 

step of calculating MAPE involves subtracting the actual demand from the forecasted 

demand and then dividing by the actual demand. Often the actual demand for spare parts 

is zero, and the calculation fails as dividing by zero is undefined. Kim and Kim (2016) 

propose Mean Arctangent Absolute Percentage Error (MAAPE) which overcomes the 

limitation of MAPE by measuring slope as angle instead of a ratio. While intellectually 

interestingly, MAAPE as a metric has not yet gained widespread acceptance among 

demand forecasting practitioners (Makridakis, Spiliotis, & Assimakopoulos, 2020).  

Other accuracy measures have practical concerns as well. Teunter and Duncan 

(2009) empirically demonstrate a forecast of all zeroes resulting in the best Mean 

Absolute Error and Mean Absolute Scaled Error. Such a forecast would be meaningless 

in application.  After discussions with the sponsoring company, we decided to use the 

root mean square error (RMSE). This was mainly because RMSE does not have any of 

the aforementioned inherent limitations and has a huge impact on inventory policies, 
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because it is taken as a proxy for the standard deviation of demand, which is a factor in 

calculating the safety stock. 

2.7 CONCLUSION 

We have reviewed the different methods proposed for forecasting spare parts. 

Conventional models such as Croston’s methods and SBA are widely accepted to 

perform better than moving average and SES models, particularly when used to forecast 

the demand of spare parts with lumpy demand patterns. In order to better define ‘perform 

better’, we looked at different metrics to measure improvements in forecasting for spare 

parts. 

Non-conventional methods such as machine learning models and ensemble learning 

models have all started to gain researchers’ attention in the past decade. All papers we 

reviewed have shown non-conventional methods have potential to show improvements 

over Croston’s and SBA models. 

In this project we will study the performance of both conventional and non-

conventional models on Schlumberger’s real data. Based on the results, we will be able 

to advise the company on which forecasting models to be used for the different classes 

of spare parts. According to our review of the literature, we are the first researchers to 

use an ensemble method of combining a human forecast with traditional time series 

methods into a machine learning algorithm. 
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3 DATA AND METHODOLOGY 

The following section expounds both the data and the methodology of the project. 

The Data subsection begins with a synopsis of the data extracts provided by 

Schlumberger. Each of the extracts needed to be cleaned and given structure to make it 

meaningful. We start with the demand-related extracts where we review the different 

demand data sources, challenges, and global aggregation steps. Next, we review the 

data cleaning for human forecasts. Here, we discuss details on how we mapped job count 

forecasts to individual spare parts. Finally, we summarize the different variables in the 

cleaned datasets which concludes the data subsection. 

After the data subsection concludes, we introduce how we used the data in the 

methodology subsection. In this section, we explicate the modeling steps of data 

preprocessing through demand classification and processing through time series 

forecasting. Then we combine time series forecasts and human forecasts into machine 

learning and ensemble learning algorithms. We conclude with a discussion of which 

metrics should be used to best compare our methods to each other and to the base case 

of time series forecasting. 

3.1 DATA OVERVIEW 

The data used in this study is the data related to the parts used by Schlumberger’s 

Drilling & Measurement (D&M) business unit in North America, Latin America and the 

Middle East over the period of the past 5 years. Schlumberger currently operates in 85 

countries and it works with every major international oil company, and directly for most of 

the petrostates – including Saudi Arabia, Libya, Russia and Turkmenistan. The 
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sponsoring company provided us with a sample of 30K spare parts from across the D&M 

network. 

The actual spare part demand process flow begins when a field technician orders a 

spare from the warehouse. Schlumberger records this transaction and calls it 

consumption. Consumption alone would understate demand. Consider the case where 

ten parts are stocked and ten are ordered, and the next day ten are ordered again. By 

itself, consumption would say aggregate demand is ten, but aggregate demand is actually 

twenty. Schlumberger tracks these instances and aggregates them in a backlog report. 

Finally, the field technicians can over order relative to what they actually use, and they 

return unneeded spares back to the warehouse. These are called returns. Forecasted 

spare part demand would be higher without accounting for these returns. We all agreed 

to express demand as: 

Monthly Demand = Monthly Consumption + Monthly Backlogs - Monthly Returns 

Equation 1: Components of Demand 

Where consumption is what the technicians consumed at the different sites, 

backlogs are the parts that were required but were not available in the warehouse 

and returns are spare parts that the technicians return after they are issued. 

This demand data was used to create a conventional time series forecast. In addition 

to the time series forecast, we used a proxy for Schlumberger’s human forecast. The 

human forecast data provided from the company was in terms of forecasted job counts. 

Job counts are the number of jobs forecasted over a given time horizon. Jobs correspond 

to a certain number of field hours that a part is in active use. This forecast was provided 

at a product family level, which is a group of similar equipment that spare parts support. 
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In order to match the forecasted job counts with the individual spare parts, the company 

provided a mapping file which matched the part family with its spares. 

During the project, we received 51 files from Schlumberger. Table 1 summarizes the 

number of files for every category: 

Category Number of files Total number of 
records 

Consumption and 
returns 

8 3.8M 

Backlog 35 700K 

Human forecast 7 2.3M 

Parts to Family 
mapping 

1 34K 

Table 1: Summary of the Data Received 

Throughout this research process, we use R as the main software for data analysis 

and for running machine learning models. 

3.1.1 DATA CLEANING FOR CONSUMPTION  

The data collected for demand required significant cleaning and manipulation before 

being ready for analysis. Consumption data came from different systems across North 

America, Latin America and the Middle East. Every computer system treated 

consumption in a different way; thus the files that we received were inconsistent and had 

different formats. This made it data cleaning and aggregation difficult and challenging. 

Some of the challenges are as the following: During the five year time horizon, the 

sponsoring company used two different versions of SAP, namely legacy SAP and  SAP 

ITT. Data from legacy SAP was from 2016 to 2019, and SAP ITT contained information 
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from 2019. There were many differences in the extracted formats that had to be 

manipulated. For instance, in some files consumption was positive and returns were 

negative, but in the others,  this was reversed.  The researchers had extracts of both files 

and performed cleaning and manipulation in R. 

Of special note was the consumption unit of the different materials. We observed 

different consumption units such as meter, piece, or kilogram used frequently across the 

dataset for the same item. Some were easy to fix like when there were instances of some 

consumption in inches, and others in meters. Others were thornier. Items could be 

measured in discrete units or could be measured in eaches. When these conflicts arose, 

we checked which one was most commonly used, and converted it to be the best of their 

ability using common sense. Finally, if they were unable to resolve together, the data was 

flagged and taken out of the analysis. This was important to get accurate results due to 

the sparseness of data.  

Some spare parts data had to be dropped from the analysis as they did not allow for 

time series forecasting or demand classification. For instance, we removed all parts that 

had less than two demand arrivals during the past 5 years. We did so because, for 

demand classification, we would need to calculate the average demand interval to 

determine the variability between demand arrivals. If there is only one demand arrival, we 

cannot calculate the gap as there would be no interval, only a point. Another challenge 

we encountered and worth mentioning here was the amount of data to be analyzed. 

Although it seemed trivial to have consumption data for 60 months, the original 

consumption data file contained data for only nonzero demand in daily buckets. As a 

result, we had to build a complete time series across all parts for all days over the past 5 
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years, once completed, the number of rows for the complete time series reached 134M 

rows from the initial 3.8M rows. 

3.1.2 DATA CLEANING FOR BACKLOGS AND RETURNS 

As to the backlog data, they were provided in an Excel format. The main challenge of 

the backlog report was that the number of backlogged parts for each month was not 

recorded. We noticed that instead the company uses the rolling backlog technique, which 

accounts for the accumulated backlogs over time. For example, if there was a backlog of 

two pieces in January, and the backlog was not still fulfilled in February, the backlog will 

show two in February’s report as well, but this would be a double count.  If the demand 

from January of two pieces was filled in February, but there was a new backlog in 

February, it would also show two pieces in backlog, but would not be double counted. To 

resolve this issue, the data was transformed so we could capture unique instances of 

each backlog. 

Other than consumption and return, the return data was more straightforward. The 

return data was recorded daily in the received data and we compiled the daily returns into 

monthly buckets within each file. in the original files, certain systems used positives to 

denote returns, and others used negatives. When we merged the files, we ensured all 

returns had the same polarity as different systems had different conventions.  

3.1.3 DATA CLEANING AND MANIPULATION FOR HUMAN FORECAST 

Humans are involved in the forecasting process at a high level in the sponsoring 

company. A planner will look ahead and forecast the material requirements within the 

planning horizon based on job counts. Job counts represent how many jobs a tool family 
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will be in active service over a given time. An actual job count is also calculated after the 

fact. 

Due to the unpredictable nature of the oil and gas market, the planner cannot use 

time series data as the past may not accurately model the future. The planner needs to 

consider many factors such as: number of open contracts; how many new customers are 

coming online; and the projected future prices. Given such complexity and such a large 

number of spares, human forecasting takes place at a less granular level. 

The main challenge was the sponsoring company provided the forecast for the tool 

family level instead of the specific spare part level. Spare parts are replacements parts 

for a specific tool. A group of similar tools is a tool family. We used a company provided 

mapping tool  which matched the spare to its tool family. In the instances when a part was 

shared across tool families, we consulted with the company and agreed to drop the parts. 

An additional consideration was that certain spares are not assigned to a tool family. 

These parts were assigned the aggregate plan for the category and noted as such in the 

analysis. 

In addition to the above, over time the way the parts are serviced has changed. In 

certain cases, spare parts can be bundled into a group called a kit, and the kit is assigned 

a part number. During the time horizon, certain parts moved into a kit and some out of a 

kit and into individual service. For these and others, the part numbers changed. The 

researchers used the mapping tool to guarantee the demand for the old part numbers 

were matched to the new part numbers thus ensuring appropriate continuity.  
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3.2 FINAL DATA AFTER CLEANING & AGGREGATION 

Table 2 and Table 3 explain the final datasets obtained after cleaning, manipulating 

and aggregating the data to be ready for modeling and analysis. 

Demand 

Column Explanation 

Month Demand month 

Year Demand year 

Material Spare part number 

Demand Aggregate global demand, 
including consumption, backlogs 

and returns 

Table 2: The summary of demand data set after cleaning 

 

Human Forecast 

Column Explanation 

Month Demand month 

Material Spare part number 

Tool Family Group of similar finished 
product 

Forecasted Job Count Aggregate global forecasted 
job counts for spare parts 

Table 3: The summary of human forecast data set after cleaning 
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3.3 METHODOLOGY 

In this section, we will discuss the methodology. The section is organized as follows: 

We begin by preprocessing the created time series, then we process using Syntetos 

Boylan Approximation which forecasts the demand. Next, we compile the human forecast. 

Finally, we combine each part’s category, time series forecast, and human forecast into 

various ensemble learners. The result of these models was compared to each other and 

to the basic time series model using Root Mean Square Errors. This flow is shown in 

Figure 3. 
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Figure 3: Overview of Methodology 

3.3.1 DEMAND BASED CLASSIFICATION & HISTORICAL PARAMETERS 

Different spare parts have different demand patterns. Logically, the forecast to 

approximate these demand patterns should be different as well. In order to define the 

best-fit time series forecasting method for each item, spare parts were segmented based 

on the Average Demand Interval (P) and the Coefficient of Variation (CV^2) with the cutoff 
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values proposed by Syntetos et al. (2005). Though a variety of different methods of cross-

cutting the data have been proposed, these cut-off values are the current standard in 

industry and academia (van Wingerden, Basten, Dekker, & Rustenburg, 2014). By the 

end of the preprocessing segmentation, every spare part was classified as either Smooth, 

Intermittent, Lumpy, or Erratic. The accompanied demand parameters, namely Average 

Demand Interval and Coefficient of Variation of demand size, were used later in the 

ensemble model as parameters of the historical demand. 

3.3.2 TIME SERIES FORECAST 

After classifying the different parts into the different classes in preprocessing, we 

processed the data with time series demand forecasting for the different classes. 

Croston’s method is the most common forecasting method for spare parts with 

intermittent demand, but Syntetos and Boylan (2001) have shown that the method is 

biased for nonsmoothed demand. This project used Syntetos and Boylan Approximation 

method (SBA), which corrected for the bias in Croston’s method. For items in the smooth 

class, the researchers used simple exponential smoothing. For items in the lumpy, erratic, 

and intermittent categories, we used SBA with the appropriate smoothing constants. The 

root mean square error of the forecast was used for estimation of the standard deviation 

of demand over lead time.  

3.3.3 HUMAN FORECAST 

 Forecasted job count data collected from the company which was mapped to the 

different spare parts in the data cleaning section acted as a proxy for the human forecast. 

We believed that a better human forecast would have been the aggregate forecast from 

all locations for all the parts under study; however, the company started aggregating part-



31 
 

based human forecasts one year before the project and the amount of the data was not 

enough to include in the machine learning algorithm. 

Job counts were used for human forecasts, but the challenge was that there were 

many forecasts snapshots for every month. This meant that every month, the planners 

revised their job counts forecast for the next year. After several discussions with the 

stakeholders, we agreed to utilize a 6-month look ahead forecast; that is for every month, 

we used the snapshot 6 months earlier. The 6-month look ahead window was justified 

that although forecasting for a shorter look ahead will be more accurate, the company’s 

policy was to use a 6-month look ahead forecast in order to use in its inventory control 

system. 

Due to limited data availability from the company, we received 24 monthly snapshots 

for the job counts, and given the 6-month look ahead agreement, we were left with only 

18 months of human forecast for every part. We believed that if more data had been 

provided, the machine learning algorithms would have performed better. 

3.3.4 COMPILE DATA AND DEFINE FEATURES  

In our ensemble models, the demand is the dependent variable that we are trying to 

predict and the following features (independent variables) were selected to train and test 

the model as demonstrated in Table 4: 
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Feature (Independent 
Variable) 

Description 

Time Series Forecast Forecast generated through traditional methods. For 
example, Simple Exponential Smoothing and SBA. 

Human Forecast Forecasted job counts provided by the company 

Spare Parts Class Class of spare parts based on the demand characteristics 

Average Demand Interval Average number of months between two demand arrivals 

Square of Coefficient of 
Variability of demand 
sizes 

Square of Coefficient of Variability of demand sizes for 
periods with realized demand 

Table 4: Compiled Features 

3.3.5 STANDARDIZATION 

Different spares had different unit of measures. For example, some parts are 

measured in pieces while others are measures in meters or inches. Also, spare parts 

consumption has wide range of demand points with many outliers in place. This problem 

might distort predictions in the machine learning algorithms. Before sampling and training 

the machine learning algorithms, we standardized the numerical features to have a mean 

of zero and a standard deviation of 1. 

3.3.6 STRATIFIED SAMPLING 

The final dataset was split and stratified on the demand instances into two data se 

1. training dataset: constitutes 80% of the data 
2. testing dataset: constitutes 20% of the data 

The reason for the split was to measure the model accuracy on unseen data. In our 

ensemble models, we used the training data set to train our model on the inherent 

complexities of the data and then measured its performance on the test data set. As such, 

we reported the RMSE and R-Squared values of the test data. RMSE measures the 

accuracy of the forecast. R-Squared measures how the well the model fits the data.  
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Typically, test data usually has a lower R-Squared or goodness of fit than the training 

data. Reporting the test data performance is more indicative of the model’s predictive 

value. 

3.3.7 SELECTION OF MACHINE LEARNING ALGORITHMS 

Two machine learning algorithms were used and compared to the base model in 

order to test our hypothesis. They two algorithms were: 

1. Classification and Regression Trees (CART) 
2. Random Forests 

3.3.8 CROSS VALIDATION FOR TUNING THE PARAMETERS 

Cross-validation is a way to tune parameters to arrive at a model with the best 

predictive power. Cross-validation builds a model for each value of a parameter, and then 

chooses the parameter value that yields the best out of sample accuracy. This ensured 

that the model learned correctly and the results were generalizable. 

In our models we used cross-validations with 10 folds to tune different parameters for 

CART and random forest models. For the CART model, we tuned the complexity 

parameter, and for random forests we tuned the number of trees in the forest as these 

values control the learning process for their respective algorithm. 

3.3.9 Comparisons and Results 

In order to achieve this aim, we had to define a single metric to compare different 

models. We compared the different models based on the RMSE, and the model with the 

lowest RMSE was recommended to the company. The main challenge in using RMSE 

was that RMSE was calculated for every part by itself. However, the company required 

the model to have one number to compare the different models, so we decided to use an 



34 
 

aggregate RMSE across all the parts as a proxy for the aggregate accuracy measure. 

We believed that as long the metric is homogeneous across all the models, any 

improvement from a model would have been reflected in the same metric. We 

acknowledge a forecast bias metric which calculates if there is any consistent difference 

between the forecast and the actual demand, would be valuable, but Schlumberger 

requested only an accuracy measure. 
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4 RESULTS AND ANALYSIS 

4.1  INTRODUCTION 

In this section, we present the parameters and results of the conventional methods 

as compared to the machine learning and ensemble methods. 

4.2 CONVENTIONAL METHODS RESULTS 

4.2.1 DEMAND BASED SPARE PARTS CLASSIFICATIONS 

The outputs in the figures below were the classification outputs from R. They show 

that most of the spares under study were either lumpy or intermittent. Figure 4 shows the 

classification counts in the classic Syntetos and Boylan matrix view, while Figure 5 depicts 

the same information in an easy to compare bar chart. 

 

Figure 4: SBA Classification Matrix View 
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Figure 5: SBA Classification Bar Chart View 

4.2.2 TIME SERIES FORECASTING 

Simple Exponential Smoothing and SBA methods were used to forecast the rolling 

demand for the parts under study and the RMSE for every part was reported. As there 

were 60 globally aggregate demand data points but only 18 data points for human 

forecasts, we split the data set up into 42 months (for training) and 18 months (for testing). 

Doing so made the demand and human forecasts points the same in terms of records. 

We then used 42 months to train different time series models before forecasting. The 

main purpose of the training was to identify the best in-sample smoothing parameter. 

Finally, we used the trained model to forecast the demand for every month ahead in an 

incremental manner. We did that in order to test the models on unseen data. Demand is 

shown in straight lines and time series forecast is shown in dashed lines for representative 
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parts for each of the quadrants of SBA in Figure 6.  Starting with the lower left and moving 

clockwise, there is smooth, erratic, lumpy, and intermittent. 

Figure 6: Time Series Forecast and Actual Demand 

We can see from the above charts that the forecast is missing the lumpiness or 

overshoots of the parts demand. However, it is noted that as the forecast is calm then it 

will have a better impact on inventory policies and positions. In the case of the smooth 

demand in the lower left corner of Figure 6, Simple Exponential Smoothing method was 

used. The stability of demand is reflected in the relative stability of its forecast. As one 

moves clockwise, the erratic demand category has a demand every period, but the size 

of the demand in each period varies considerably. The forecast mirrors this. For the lumpy 

Erratic 

Smooth Intermittent 

Lumpy 
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demand, there are a large number of periods with no demand and when the demand 

arrives its size is not consistent. The forecast lags the high and low spikes as it updates 

after the fact. In the case of intermittent demand, the forecast is relatively constant. As 

shown in the chart, demand size variability is low, but the amount of time between each 

instance is high. SBA assumes demand is equally likely in each period. As a result of 

these two factors, the forecast is relatively stable. The above models had an aggregate 

RMSE 316.77. 

4.3 ENSEMBLE LEARNING RESULTS 

As discussed before, we used machine learning algorithms to learn from both time 

series and human forecasts. However, before building the machine learning algorithms, 

we needed to build a data frame that includes all the independent variables and the 

dependent variable (Demand). Table 5 shows the structure of the final data frame that we 

used in all the machine learning algorithms. 

  



39 
 

Variable Explanation 

Demand Aggregated monthly demand to be 
forecasted 

Time Series Forecast Forecast generated through 
traditional methods. For example, Croston 

and SBA. 

Human Forecast Forecasted job counts provided by 
the company 

Spare parts class Class of spare parts based on the 
demand characteristics 

Average Demand Interval Average number of months between 
two demand arrivals 

Square of Coefficient of Variability of 
demand sizes 

Square of Coefficient of Variability of 
demand sizes for periods with realized 

demand 

Table 5: Final Data Frame 

4.3.1 CLASSIFICATION AND REGRESSION TREES (CART) 

The first machine learning algorithm we test is the CART model, which splits the tree 

to minimize impurity at the leaf nodes. This process is controlled by the minbucket 

parameter and the complexity parameter. The tree grows and splits as long the minimum 

number of leaves at the end of a split (minbucket) is satisfied. The resulting tree is then 

pruned using the complexity parameter, which cuts splits that do not improve R-squared 

by at least the complexity parameter value. Logically, then as the complexity parameter 

gets larger, the fewer splits are in the resulting tree. We used 10-fold cross validation to 

tune the complexity parameter of the tree as it controls the final shape more so than the 

minbucket. Figure 7 shows the output for the cross validation and the selected complexity 

parameter was 0.001, as this was the parameter with the highest R-Squared. 
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Figure 7: Cross Validation of Complexity Parameter 

The dependent variable for the CART model was Demand. The independent 

variables used were: Time Series Forecast; Human Forecast; Class; Average Demand 

Interval, and Coefficient of Variability of Demand Sizes. Figure 8 shows both the 

independent variable split on and the associated value of the split in the CART model. 

This resulting model had an R-squared of 0.609 and RMSE of 74.9. There is a significant 

improvement over the time series forecast in terms of RMSE. The CART model improves 

on the time series model with 76% reduction from 316 to 74.9.  
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Figure 8: CART Dendrogram 
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4.3.2      RANDOM FORESTS 

Below we test a random forest model and compare it to the previous model. There 

are three main parameters in random forests in this package in R. Ntree is the number of 

trees in the random forest. We used the default value of five hundred trees beyond which 

have increasingly marginal returns. For each tree in the random forest, we specify a 

minbucket called nodesize. To be consistent with best practice for regression, we used a 

default value of one. Also, for each tree, we consider only a certain number of variables 

from the original set to split on; this is represented by mtry. However, before applying the 

algorithm we executed cross validation to tune the number of variables examined at each 

split of the tree within the random forest as shown in Figure 9. The random forest package 

in R states that the model is most sensitive to this parameter. There appears to be a 

sweet spot of nine variables per split. 

 

Figure 9: Tuning of mTry 
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For the random forest, the dependent variable is the Demand. The independent 

variables were identical to the CART model: Time Series Forecast; Human Forecast; 

class; Average Demand Interval; and Coefficient of Variability of Demand Sizes. 

Parameters for the model were: 80 trees for the number of trees in the forest, 9 variables 

per split; and a minimum of 20 observations in each terminal node. The tuned model 

outputted a R-Squared of 0.736 and an RMSE of 61.5 

This is the best model tested during the project, yet it is more complicated one than 

the CART method. The R-squared is 0.736, which shows an improvement over the CART 

model in terms of fitting the data. Similarly, the RMSE improved from the CART model 

with a change from 74.9 to 61.5.  

An advantage of the random forest model is we can see which variables improve the 

prediction accuracy the most when averaged across all trees in the forest. Figure 10 

shows the importance of variables based on the random forest. One can see that the 

coefficient of variability of demand sizes is the most important variable in determining the 

forecasted demand. Note that the order is more important and interpretable than the value 

of the metric itself.  
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Figure 10: Random Forest Ordering of Variable Importance 

4.4  COMPARISON OF RESULTS 

Overall, both the CART model and the random forest model which incorporated the 

human forecast show a marked improvement over the time series model alone when 

measured by RMSE. RMSE is a measure of forecast accuracy where lower is better.  

However, the goodness of fit as measured by R-squared is not particularly strong, but the 

problem is very difficult as we are predicting the value of the demand if it occurs at all. R-

squared measures how well the model fits the data as given by out of sample 

performance. When it is closer to 1, this is better. This can be seen in Table 6. It also 

appears the added complexity of the random forest resulted in only a marginal 
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improvement to the forecasting accuracy as given by RMSE and out of sample goodness 

of fit as given by R-squared when compared to the CART model. 

Model # Model 
Type 

Time 
Series 

Human 
Forecast 

Class P CV^2 R^2 RMSE 

1 SBA & 
SES 

x      316.77 

2 CART x x x x x 0.609 74.9 

3 Random 
Forest 

x x x x x 0.736 61.5 

Table 6:  Comparison of Models Head to Head 
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5 DISCUSSION 

In this project, we investigated multiple models to improve the forecasting accuracy 

for the sponsoring company. We analyzed the demand patterns of more than 30K SKU 

across thousands of locations and compared conventional forecasting models with new 

ensemble models that incorporate human forecasts and conventional methods into 

different machine learning algorithms. In this section we summarize the challenges faced, 

discussions of the results, recommendations, and project proposals for the sponsoring 

company. 

5.1 CHALLENGES AND IMPLICATIONS 

1. Non-standardized database systems and different treatment for demand across 

the company’s locations => Challenging to implement standard process 

2. Massive amount of data which constituted more than 80% of the time for cleaning 

and manipulation => Hard for company to implement a change in the way they 

forecast 

3. Substantial amount of parts is not classified into respective tool families => Lack 

of data means parts had to give an average value; more data would mean better 

forecasts 

4. Human forecasts are provided in terms of jobs for tool families and not for single 

parts => More granular data could improve what parts are actually demanded 

5. Low number of snapshots for job count forecasts => Reduced data means less 

learning for the algorithms 
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5.2 FUTURE DIRECTIONS 

We have shown that incorporating time series forecasts with human forecasts and 

other demand parameters into machine learning models is superior to time series 

forecasting methods by themselves. Our view of the results is that both time series and 

human forecasts are inherently biased in different directions, and we believe that machine 

learning and artificial intelligence could learn from these biases and provide more 

accurate forecasts in the area of spare parts.  

The challenge in implementing such ensemble models depends on their 

interpretability by humans and implementability by different companies. For instance, it is 

simple to explain how Croston or SBA algorithms work, but it is more challenging to 

explain why the CART model decided on selecting these specific decision trees to define 

the forecast. It is even more complex to explain the Random Forest logic in determining 

the forecasted demand and what are the important variables to include. 

Another area of thought is how current ERP and planning systems lack such machine 

learning algorithms in demand forecasting areas. We have seen Croston’s method in 

some ERP systems, but we believe that including other modern forecasting models could 

help companies improve their inventory management policies and save millions of dollars 

tied up in inventory. Regardless of improvement method, a practical first step in 

quantifying the benefit is understanding current state through baselining the current 

forecast accuracy.  

Since Schlumberger does not have in depth records of previous forecasts, it is 

impossible to compare the time series model, CART, and random forest model to it. It 
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would be highly advisable for them to track the forecast, so we can better measure and 

improve upon its performance. 

5.3 RECOMMENDATIONS 

5.3.1 Company Recommendation 

Combining time series forecasts with human forecasts can improve forecasting 

accuracy massively.  There is no one size fits all model for spare parts forecasting and 

there are financial benefits from investing in better forecasting tools, especially in an asset 

intensive company like Schlumberger.  

In Table 1, we can see that the random forest model is the best model in terms of 

forecasting accuracy, yet it is a very complicated one in terms of interpretability and 

implementability with only marginal improvements to the CART model. We recommend 

implementing the CART model, as it includes interpretable decision rules for forecasting. 

We would also like to emphasize that the model should not be static and should be revised 

with new data during specific time intervals, monthly or quarterly, for example. This is 

mainly because it is a machine learning algorithm that needs to be retrained on real data, 

in order to capture the inherent bias and variability in the different forecasting methods. 

The model should also be tested on a sample of the company’s spares before rolling it 

out to the whole company’s family of parts. 

Although the main purpose of the project was to improve the forecasting accuracy, 

we collected some useful data that could be shared with the company. These data could 

be thought of as a bi-product of our analysis. For example, we identified the spare parts 

that, in aggregate, did not have any movement in the past 5 years. These parts could be 
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at a very high risk of obsolescence and might require different management techniques. 

We also defined parts that are very slow moving, moving only once in the past 5 years. 

These parts were very hard to forecast statistically because there was not enough 

demand data on them and they also might require different management techniques. 

The company’s management should be aware that a better forecasting model by itself 

is not the solution for high inventory levels, although an important piece of the inventory 

management puzzle. Based on our discussions we defined some areas for improvements 

that could be tackled in future research projects: 

1. Lead Time modelling improvements project: Currently, the company uses the 

quoted lead times from vendors in its inventory policy calculations. Variable lead 

times have an impact on safety stocks that have to be taken into consideration 

along with the forecasting error. We believe that future projects could help the 

company define better models for lead times across the whole company. 

2. Multi-echelon inventory optimization project: The company has thousands of 

locations across the globe, and the quoted lead times from the different echelons 

in the supply chain can have an impact on the safety stock held at the different 

echelons. We believe that optimizing the inventory at Schlumberger based on a 

multi-echelon optimization framework will have a profound impact on the inventory 

positions performance at the company. 

5.3.2 Research Recommendations 

We believe that more research is required in the area of ensemble learning models 

for spare parts. Conventional time series forecasting methods, when combined with 

human judgement and machine learning algorithms could lead to improved forecasting 
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metrics in the area of spare parts. Some machine learning models that could be 

investigated in future research are Neural Networks, Deep Neural Networks, and Support 

Vector Machines. 
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6 CONCLUSION 

In this project, we proposed an innovative way to incorporate human judgement into 

current best practices in spare parts demand forecasting. To begin, we calculated the 

historical demand parameters of both the Average Demand Interval and the Square of 

Coefficient of Variation of each SKU. Then we categorized each SKU into four classes 

using Syntetos and Boylan’s classification. Next, we created a time series forecast for 

each part using the recommended conventional method in each class. 

In talking with experts from the oil and gas industry inside of Schlumberger, we were 

convinced that there is substantial value in adding their input to the forecast as well. This 

is mainly driven by the challenge of predicting demand in an industry whose high volatility 

implies the past cannot prognosticate the future. To reconcile, we combined the 

judgmental forecast with the conventional time series forecast and the associated 

historical demand parameters in two different machine learning algorithms.  

By utilizing the above procedure, we were able to show a significant improvement 

over the baseline Synetos and Boylan method in both the CART and random forest. The 

traditional metrics had a Root Mean Squared Error of 316.77.  The CART model reduced 

these errors to 74.9 while the random forest reduced them to 61.5. This reduction is an 

indicator that adding human judgement into a model has merit. This corroborates Franses 

and Legerstee (2012), who state the best models formally incorporate past expert 

performance explicitly along with traditional statistical forecasting at the SKU level so they 

can improve a poor performing initial model.  However, we have used machine learning 
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to model this interaction and they have specified to model it within a time series forecast 

only.  

We recommend Schlumberger run a pilot study using the CART model and measure 

its performance in terms of both accuracy and precision. We recommend the CART model 

for ease of interpretation and implementability. CART’s decision rules are transparent 

which makes explaining to management easier. Random forests typically offer better 

performance but whose inner workings are not easily explainable. In our case, the random 

forest only had marginal improvement over CART, so we recommend CART. 

Furthermore, the model will need to be rerun every month so it can continue to learn, and 

the CART model is easier to implement with the existing tools at Schlumberger.  

The search to improve spare parts forecasting accuracy will continue to be an active 

and challenging area for both academia and industry. We believe the approach in this 

capstone shows the potential of using human judgement to improve spare parts demand 

forecasting in machine learning.  
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