
__j

Decentralized On-board Planning and Scheduling for

Crosslink-enabled Earth-observing Constellations

by

Warren Grunwald

B.S. Mechanical Engineering, University of California at Berkeley (2012)

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

@Massachusetts Institute of Technology 2019. All rights reserved.

Signature redacted
A uthor ... I..........

Department of Aeronautics and Astronautics

Signature redacted August 22, 2019

Approved by.............

Mark Abramson
Principal Member of the Technical Staff

The Charles Stark Draper Laboratory, Inc
Technical Supervisor

Certified by...S.. ignature redacted-.................
Kerri Cahoy

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Acceptedby..... Signature redacted
MASSACHUSETTNS ITTE Sertac Karaman

Associate Professor of Aeronautics and Astronautics

oCT 02019 Chair, Graduate Program Committee

LIBRARIES

I

I

Decentralized On-board Planning and Scheduling for

Crosslink-enabled Earth-observing Constellations

by

Warren Grunwald

Submitted to the Department of Aeronautics and Astronautics
on August 22, 2019, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Small satellites have improved in capability, nearing a future where high data-rate
payloads and crosslinks can provide improved geospatial and temporal coverage, while
at a fraction of the cost. Planning and scheduling for efficient bulk data routing with
discrete crosslink windows in a dynamic network is a difficult combinatorial optimiza-
tion problem [30]. As problem size grows, quickly solving the planning and scheduling
problem involves implementing algorithms that can leverage parallelization. Decen-
tralized algorithms are inherently parallelizable and can be implemented on-orbit by
individual satellites.

This thesis investigates a decentralized approach that builds upon the Coupled
Constraints Consensus Based Bundle Algorithm (CCBBA) with enhancements to ad-
dress maximum flow problems. Maximum flow problems occur when moving some
resource from sources to sinks across a network, such as a satellite constellation ob-
serving targets (sources), moving data between satellites with crosslinks, and down-
linking to ground stations (sinks). The CCBBA enhancements include task forking,
task outflow coupling, and dynamic task creation based on satellite flow direction
preferences. These enhancements increase the total data throughput and decrease re-
quired runtime. When implemented on each satellite, this decentralized auction-based
approach, named Iterative-CCBBA for Maximum Flow problems (ICMF), provides
the following benefits: 1) has robustness in convergence to differences in agent situ-
ational awareness, 2) decouples operations from ground station planning resources,
and 3) provides an inherently parallelizable algorithm, if implemented on the ground
instead of each satellite.

ICMF is compared to a state of the art Centralized Global Planner (CGP) in
six test cases, with two different inclinations and three different numbers of total
satellites. Across all six unique use cases, ICMF has linear scaling in number of
consensus rounds and, on average, runs in 94% less time than the CGP, with a
4% improvement in total data volume delivered. ICMF is an effective planner for
satellite constellations that value total data throughput and runtime efficiency. The
CGP performs better on median latency for observations and median average target

3

age of information, performing better by 58% and 23%, respectively. Future work
options for incorporating additional data routing information that could help close
the latency and target age of information gap while still using a decentralized approach
are presented.

Thesis Supervisor: Kerri Cahoy
Title: Associate Professor of Aeronautics and Astronautics

4

Contents

Acronyms 17

Symbols 19

1 Introduction and Motivation 23

1.1 Small Satellite Capability Growth 23

1.2 Coordination of Small Satellite Constellations 24

1.3 Motivation for Decentralized Planning and Scheduling 25

2 Background and Literature Review 27

2.1 Small Satellites and Bulk Data Routing 27

2.1.1 Proliferation of Small Satellite Constellations 27

2.1.2 Bus Capabilities . 29

2.1.3 High Data Rate Payloads . 30

2.1.4 Laser Communications Crosslinks 31

2.2 Coordinated Small Satellite Constellations 32

2.2.1 Benefits of Coordination . 33

2.2.2 Planning Communication Architectures 34

2.3 Multi-agent Planning and Scheduling 36

2.3.1 Trade-offs in Different Approaches to Coordination 36

2.3.2 Centralized and Semi-Centralized Approaches 39

2.3.3 Decentralized Approaches . 45

2.4 Max-Flow Problems . 52

5

2.4.1 Decentralized Max-Flow Approaches 52

2.4.2 Implementing Max-Flow Algorithms for Small Satellites 53

3 Approach 55

3.1 Framing the problem . 55

3.1.1 Definitions and Assumptions 56

3.1.2 Mathematical Formulation . 62

3.1.3 Test Cases . 67

3.2 Enhancements to CCBBA to Address the Max Flow Problem 68

3.2.1 Motivation for modifying CCBBA 70

3.2.2 Pre-coordination Phase . 71

3.2.3 Bundle Phase Modifications - Task Forking and Flow-Based

C oupling . 74

3.2.4 Consensus Phase Modification - Exact Time Matching and Flow

State Sharing . 84

3.3 Iterative CCBBA for Max Flow problems (ICMF) 91

3.3.1 Improving Convergence of Valuable Reception Crosslinks . . . 91

3.3.2 Considerations for Making Transmission Crosslinks Multibid . 95

3.3.3 ICMF interfaces for on-board planning 98

3.4 Greedy Routing Algorithm . 99

3.4.1 Routing Requirement . 100

3.4.2 Minimizing Latency and Age of Information from ICMF Tasks 102

4 Results 107

4.1 Observations and Downlinks Only Results 107

4.1.1 30 degree inclination constellation 108

4.1.2 60 degree inclination constellation 110

4.2 Selecting Optimal ICMF Parameters for Test Cases111

4.2.1 Iterative CCBBA for Max Flow problems (ICMF) Algorithm

Parameters .111

4.2.2 Parameter Study Setup and Results 113

6

4.2.3 Bounds on consensus rounds required for convergence 114

4.3 ICMF Performance against Centralized Planner 116

4.3.1 Centralized Planner Configuration for on the same Test Cases 118

4.3.2 30 degree inclination constellation 121

4.3.3 60 degree inclination constellation 124

5 Conclusion 127

5.1 Contributions Summary . 127

5.2 Future W ork . 128

5.2.1 ICMF Improvements . 128

5.2.2 On-orbit Planner . 131

A Full Schedules 135

A.1 30 degree inclination constellation . 136

A.2 60 degree inclination constellation . 139

B Additional Properties, Methods, and Pseudocode 143

B.1 Object Properties and Methods . 143

B.2 CMF Full Bundle Phase Pseudocode 148

7

8

List of Figures

2-1 Performance benefits of adding crosslinks [30 43

2-2 Computation and simulation pipeline used in Scheduling Planning Rout-

ing Inter-satellite Network Tool (SPRINT) [30] 44

2-3 Summary of how CCBBA handles mutual dependence 51

3-1 Simplified CCBBA loop with modifications for CCBBA for Max Flow

(CMF) shown in the white boxes with light blue text 56

3-2 General objective function and constraints for CMF, annotated for

satellite BD RP . 62

3-3 Example base task value . 64

3-4 Example task value evaluated for an agent with tasks already in its

bundle . 65

3-5 Example of a satellite's state over the planning horizon 67

3-6 Results contain 10,20, and 30 satellites per plane. In (a), green dots

represent observation targets, blue squares are the ground stations, and

red lines are the satellite ground tracks. This is a densely packed con-

stellation with frequent crosslinks and saturated observation schedule. 69

3-7 Results contain 10,20, and 30 satellites per plane. In (a), green dots

represent observation targets, blue squares are the ground stations, and

red lines are the satellite ground tracks. 70

3-8 Example of downlink windows that need to be deconflicted 73

3-9 Deconflicting downlink tasks . 74

3-10 Example of downlink schedule after deconfliction 75

9

3-11 Example task that would break data state if full duration was added 77

3-12 Forked tasks from adding feasible portion of a single task 78

3-13 Forked ExecutableTasks relationship to original Task 79

3-14 Example of Task Outflow Coupling Repairing Data State 81

3-15 Recursion Step in Implementation of Task Outflow Coupling 82

3-16 Example satellite schedule highlighting the modifications to the bundle

phase of CCBBA . 83

3-17 Annotated tables highlighting the impact of the bundle phase modifi-

cations to the 30 satellite test cases. 83

3-18 Example of Time Matching Algorithm Creating New Crosslinks . . . 85

3-19 Performance of fixed crosslink windows 88

3-20 Example of flow direction state . 89

3-21 Performance of flow based crosslink windows 91

3-22 Diagram showing the outer loop of ICMF, which iterates rounds of CMF. 93

3-23 Example of ICMF convergence with 90 satellites 96

3-24 Example of TX crosslinks that result from different TXmultibidvalues 97

3-25 Graphical view of single bid vs. multibid TX crosslinks 97

3-26 Possible ICMF functional interfaces to other satellite subsystems. . . 100

3-27 Simple Age of Information (Aol) example calculation with one obser-

vation . 102

4-1 Downlink and Observations only results for 30 degree inclination test

case. 109

4-2 Downlink and Observations only results for 60 degree inclination test

case. .111

4-3 Parameter Study: DV and Runtime Performance 115

4-4 Consensus rounds for each unique parameter setting. 117

4-5 Metrics and Runtime Results for 30 degree inclination constellation . 122

A-1 Legend for satellite schedules. 135

A-2 30 satellites: Full Schedule for 30 deg inclination constellation. 136

10

A-3 60 satellites: Full Schedule for 30 deg inclination constellation. (satel-

lites 1-30) . 137

A-4 60 satellites: Full Schedule for 30 deg inclination constellation. (satel-

lites 31-60) 138

A-5 30 satellites: Full Schedule for 60 deg inclination constellation. 139

A-6 60 satellite: Full Schedule for 60 deg inclination constellation. (satel-

lites 1-30) . 140

A-7 60 satellite: Full Schedule for 60 deg inclination constellation. (satel-

lites 31-60) . 141

11

12

List of Tables

2.1 Small Satellite Categories by Mass [37] 28

2.2 Near Earth Network (NEN) Ground Station Parameters [41] 29

2.3 Assumed notional 6U CubeSat Subsystem Capabilities 33

3.1 State Impacts of Each TaskType . 66

3.2 Use case names and number of unique activity windows. 69

3.3 Comparison of CBBA, CCBBA, and ICMF in addressing key aspects

of the Bulk Data Routing Problem (BDRP) 72

4.1 SPRINT CGP Results for All Use Cases 120

4.2 30 deg inclination results: comparison to SPRINT in same units . . . 123

4.3 30 deg inclination results: comparison to SPRINT as a performance

m ultiplier . 123

4.4 Metrics and Runtime Results for 60 degree inclination constellation 124

4.5 60 deg inclination results: comparison to SPRINT in same units . 125

4.6 60 deg inclination results: comparison to SPRINT as a performance

m ultiplier . 125

13

14

List of Algorithms

1 Task Forking . 78

2 Crosslink Time Matching . 86

3 Flow Direction Preference Calculation 90

4 Iterative CCBBA for Maximum Flow problems (ICMF) 94

5 Greedy Routing Algorithm Post Activity Selection 106

6 CM F Bundle Phase . 150

15

16

Acronyms

ADCS Attitude Determination and Control Subsystem

ADEPT All-Domain Execution and Planning Technology

Aol Age of Information

ASPEN Automated Scheduling and Planning ENvironment

AWS Amazon Web Services

BDRP Bulk Data Routing Problem

CBBA Consensus Based Bundle Algorithm

CCBBA Coupled Constraints Consensus Based Bundle Algorithm

CGP Centralized Global Planner

CLICK CubeSat Laser Infrared CrosslinK

CMF CCBBA for Max Flow

DARPA Defense Advanced Research Projects Agency

DV Data Volume

GA Genetic Algorithm

GPS Global Positioning System

ICMF Iterative CCBBA for Max Flow problems

17

LCCC Limited Communication Constellation Coordinator

LEO Low Earth Orbit

MILP Mixed Integer Linear Program

MIT Massachusetts Institute of Technology

NASA National Aeronautics and Space Administration

NEN Near Earth Network

NODE Nanosatellite Optical Downlink Experiment

OAP Orbit Average Power

PAT Pointing, Acquisition, and Tracking

RAM Random Access Memory

RX Reception Crosslink

SLO San Luis Obispo

SPRINT Scheduling Planning Routing Inter-satellite Network Tool

SSTP Small Spacecraft Technology Program

STAR Lab Space Telecommunications, Astronomy and Radiation Laboratory

TX Transmission Crosslink

vCPU Virtual Central Processing Unit

18

Symbols

To facilitate understanding of this thesis, some of the pseudocode will use an object-

oriented style. The objects are included at the end of this symbol list, see Appendix

B for definitions of all properties and methods.

Nu total number of agents

Nt total number of tasks

Lt task bundle size limit

Nsteps total timesteps in the planning horizon

I set of all agents

set of all tasks

T set of all timepoints in the planning horizon

Ii set of all agents that can bid on Task with index j

fi set of all Tasks biddable by Agent with index i

jexec set of all ExecutableTasks biddable byAgent with

index i

xi assignment vector for Agent with index i, xi

{0, I}N

bi task bundle for Agent with index i, ordered by de-

creasing task value

pi task path for Agent with index i, ordered by in-

creasing task start time

19

ejdsx

diam

di(t)

e (t)

a (t)

DMAX

DMIN

beype(ai (t))

Etype (ai (t))

DJ.type

E.type

Ei(t)

Kchg

I

J

Je

Ev (ei (t),I Je)

Dv(di(t), Je)U

Rc

U61°

20

insertion symbol. Inserts the argument on the right

into the argument on the left at the location de-

noted by idx

diameter of a communication networks; measures

the maximum number of hops between any two

agents in the network

data state for Agent with index i at time t

energy state for Agent with index i at time t

activity state for Agent with index i at time t

maximum data storage on board a satellite

minimum data storage on board a satellite

data rate from activity at time t

energy rate from activity at time t

data rate from activity of type Je.type

energy rate from activity of type Je.type

sunlight tracker for Agent with index i at time t: 1

for sun, 0 for eclipse

charging rate when in sunlight

Agent object, has agent-unique index i

Task object, has task-unique index j

ExecutableTask object, has executable task-

unique fork number je

data state violation from adding EecutableTask

Je to the bundle

energy state violation from adding ExecutableTask

Je to the bundle

number of communication rounds within the con-

sensus phase

mutual dependence counting parameter for Agent

with index i to bid solo on Task with index j

vii

itersMAX

TXmultibid

Je.forkable E {T, F}

forkj,(newTaskInds)

timeout parameter for Agent with index i for Task

with indexj

ICMF algorithm parameter: (integer) sets number

of CMF rounds that are iteratively executed

ICMF algorithm parameter: (boolean) determines

if new crosslinks created are multibid (True) or sin-

glebid (False)

object property example

object method example

21

22

Chapter 1

Introduction and Motivation

The purpose of this thesis is to present an algorithm based on set of enhancements to

the Coupled Constraints Consensus Based Bundle Algorithm (CCBBA) decentralized

task allocation algorithm that can solve maximum flow problems that arise in Earth

observing satellite constellations. Maximum flow problems involve moving a resource,

such as observation data, from a set of sources to a set of a sinks across a network.

The new algorithm, known as ICMF, is presented with simulation results for solving a

Bulk Data Routing Problem (BDRP) with small satellites. Bulk data routing means

transmission of raw data that is observed by any satellite in the constellation to any

ground station in the network. The bulk data routing problem is solved with a feasible

plan for each satellite in the constellation which optimizes for total data throughput,

with a preference for lower average observation latency and lower average age of target

information. The problem is described in more detail in Section 2.4.

1.1 Small Satellite Capability Growth
A 'small satellit' is any satellite that is less than 180 kg, according the National

Aeronautics and Space Administration (NASA) Small Spacecraft Technology Pro-

gram (SSTP) [371. CubeSats will soon be capable of supporting high-data rate pay-

loads, such as hyperspectral imagers [34, 59] and video [16], with laser communication

crosslinks and downlinks [6, 44, 22] to achieve tens of Gb downlinked per orbit of

valuable scientific data. Overall, the data delivered by small satellites is expected to

23

double from 2020 to 2030, reaching up to 3.9 exabytes [581 (exabyte = 1012 MB) over

that decade. In addition to the cost and performance benefits, networks of satellites

also have higher resilience against anti-satellite actions [12]. However, for small satel-

lites to achieve this level of data throughput, the satellites need to coordinate their

actions across the constellation.

1.2 Coordination of Small Satellite Constellations

Efficient coordination of many satellite actions in a constellation, such as SpaceX's

proposed Starlink constellation [52], especially with mutually dependent tasks such as

laser communication crosslinks, requires solving challenging planning and scheduling

problems. Current methods involve framing the planning and scheduling problem as

an optimization. Because these optimization problems are usually computationally

taxing, schedules have been computed at ground stations and then uplinked to the

satellites. Some missions only require observations and downlinks to be scheduled,

such as the Planet Labs mission which uses CubeSats to image the entire landmass of

Earth every day. Their approach uses simulated annealing to solve the optimization

in a non-deterministic way [51]. Other non-deterministic methods have been demon-

strated in simulation. Zheng et al. showed a coordination approach for a constellation

with intersatellite communication between one 'mother satellite' and multiple 'daugh-

ter satellites' using a genetic algorithm [62].

However, there are limited results for large constellations with crosslinks enabled

between all satellites. Zhou et al. demonstrated a contact plan approach that could

effectively plan for a six-satellite constellation in two near polar orbits that scaled

well with planning horizon, but did not show scaling results as the constellation size

increased [65]. Scaling effectively with the number of satellites is critical for crosslink-

enabled constellations because the number of possible routes that data can take from

the observation point to a downlink opportunity scales at least exponentially with

the number of satellites because the number of simple paths in the communication

graph grows factorially in the worst case [24]. Andrew Kennedy's 2018 PhD thesis

addressed this problem by using a route downselection phase to limit the number of

24

routes considered per observation to a constant value [30]. Kennedy demonstrated

that the problem could scale polynomially, if parallel processing is used for the route

downselection [29]. However, both Kennedy's and Zhou's methods require all of

the problem information to be in one location and to have sufficient computational

resources in that location. The centralization of information and processing power

provides a large roadblock to implementing these methods on-orbit.

1.3 Motivation for Decentralized Planning and Schedul-

ing
Using a decentralized approach for planning and scheduling has two main benefits.

The first is that decentralization naturally works with parallelization because it is

intended for use by multiple agents. If a constellation operator wants to implement the

methods at the ground station, they could run a decentralized algorithm on parallel

processors and reap the benefits of on-demand computation services, such as Amazon

Web Services (AWS), more easily. However, the ultimate goal with decentralized

methods is to deploy them in flight software on-orbit. Deploying the algorithms on-

orbit could be done with centralized algorithms, but places a larger computational

burden on one satellite instead of spreading it around the entire constellation. In most

decentralized algorithms, each agent is executes a relatively simple set of procedures

and the problem is solved by the combined effort of all agents.

This leads to the second main benefit of decentralized methods: the ability to

execute the mission with minimal required ground station direction. This leads to

many more specific positive aspects, such as:

" Lower ground station staffing requirements and no requirement to centralize all

planning information in one location for each planning session.

• Robustness to correlated ground station failures.

" Ability to autonomously handle distributed user requests. If the constellation

is serving a distributed user base that has tactical uplink terminals, then direct

requests to the constellation may be more feasible then communicating back to

25

a ground station to incorporate a task into the next plan. The satellites can

accumulate tasks on-orboard and use them in the next planning cycle. Or if

the tasks are high priority enough, then they can trigger a new replan to serve

the users more immediately and directly.

In this thesis, ICMF was developed from a general decentralized task allocation

algorithm that can handle coupled constraints, known as CCBBA. ICMF introduces

several key new enhancements to CCBBA [61] to increase performance and conver-

gence time for BDRPs. The enhancements are: task forking, task outflow coupling,

exact time matching, flow-preference sharing, and iterative new task creation. With

these enhancements, ICMF is compared to a state of the art centralized planner in

six test cases, resulting in 94% less runtime with a 4% improvement in total data

volume delivered, averaged over the six cases.

The next chapter in this thesis starts with reference material on multi-agent plan-

ning and scheduling. Then max-flow problem and different solutions are summarized,

since the BDRP is a specific instance of a max-flow problem. Chapter 3 describes the

BDRP mathematically, presents the specific use cases that are tested, and describes

ICMF in detail. Chapter 4 presents the results when varying the ICMF parameters

and the performance against a state of the art centralized planner. Finally, Chapter 5

summarizes findings and describes areas for future work.

26

Chapter 2

Background and Literature Review

This chapter focuses on the capabilities of small satellites and the algorithmic back-

ground. First, small satellite capabilities and approaches for satellite constellation

coordination are reviewed. Next, multi-agent planning and scheduling is reviewed,

with an emphasis on how the problem can be solved with different levels of autonomy

for the satellite. Then, decentralized approaches for planning and scheduling are dis-

cussed. Finally, ideal max flow problems and algorithms are presented in the context

of laser communication enabled bulk data routing.

2.1 Small Satellites and Bulk Data Routing

This section will describe the capabilities of small satellites, focusing on the ability

to route large of amounts of data with increased throughput, latency, and resilience.

2.1.1 Proliferation of Small Satellite Constellations

According to the NASA SSTP, a satellite is a 'small satellite' when its wet mass is

below 180 kg. There are four main subcategories of small satellites in this range

shown in Table 2.1 [37].

27

Table 2.1: Small Satellite Categories by Mass [37]

Over the past ten years, small satellites have come to dominate the number of

satellites launched, especially CubeSats. This thesis focuses on 6U CubeSats, which

are still considered nano-satellites even though their mass can be to 12 kg [33]. Cube-

Sats were proposed in 1999 by Bob Twiggs at Stanford and Jordi Puig-Suari at Cal

Poly San Luis Obispo (SLO) with the development of a standard launcher and bus as

a way to help university students build and launch satellites on a low-cost platform

[47]. The first CubeSat launch occurred in 2003, and by the end of 2012, over 100 had

been launched, mostly by universities [57]. As the technologies for CubeSats matured

and the students working on them entered the work force, more commercial entities

became interested in the capabilities of CubeSats. By 2014, the majority of CubeSat

launches were commercial and there were over 40 new companies established aiming

to leverage small satellite capabilities [58]. This planned growth of small satellite

constellations also lead to increasing ground station and operator requirements to

coordinate and schedule the growing number of satellites in orbit.

This thesis assumes that the satellites use the NASA NEN for ground stations.

The NEN consists of ten ground stations around the world, some with multiple an-

tennas, that can provide downlink and uplink support for satellite missions. NASA's

analysis shows that the NEN has difficulty supporting equatorial CubeSats, but can

support additional capacity for inclined and polar CubeSat constellations [53]. The

ten NASA NEN ground station locations are summarized in Table 2.2. Note that

some of these locations have multiple antennas with different abbreviations and that

these are the same locations and abbreviations that will be seen in Chapters 3 and 4

of this thesis when discussing the test cases and results.

28

Name Mass Range (kg)

Mini-satellite 500-100

Micro-satellite 100-10

Nano-satellite (CubeSat) 10-1

Pico-satellite <1

Station Location Abbrev. Lat (deg) Lon (deg)

Fairbanks, Alaska, USA ASI 64.8587 -147.8576

McMurdo, Antartica MG1 -77.8391 166.6671

Wallops, Virgina, USA WG1 37.9249 -75.4765

SSC South Point, Hawaii, USA USHIO1 19.014 -155.6633

SSC Kiruna, Sweden KU1S 67.8896 21.0657

SANSA, South Africa HB5S -25.8869 27.7067

SSC Dongara, Australia AUWA01 -29.0457 115.3487

KSAT TrollSat, Antartica TR2 -72.0022 2.0575

KSAT Svalbard, Norway SG1 78.231 15.389

KSAT Singapore S11 1.3962 103.8343

Table 2.2: NEN Ground Station Parameters [41]

To provide additional ground station services to the small satellite market, AWS

has entered the ground station business in a joint venture with Lockheed Martin to

provide ground station capabilities as a service [17]. The capability to have the data

reception, processing, and storage handled by a separate entity could drive satellite

and mission providers to develop on-board planning and scheduling capabilities so

their planning segment isn't tied to a specific ground segment and they can pursue

different options for ground station services without worrying about the planning and

scheduling software compatibility. This is just one potential motivating factor for

pursuing a decentralized planning and scheduling approach. However, to perform on-

board planning and scheduling, the satellite bus has to be capable enough to execute

the mission and carry the overhead for additional computation and communication.

2.1.2 Bus Capabilities

As CubeSats became more popular for university projects, commercial companies

improved the capabilities of nearly every subsystem. For example, initially single

junction solar panels with an efficiency of 16.9% were directly mounted to the surface,

while now there are deployable solar panels with triple-junction GaAS solar cells

29

with efficiencies up to 33% [37]. Prices for the various subsystems has also decreased

significantly over time due to the large market for CubeSat subsystems and the bus

standard published by Cal Poly SLO [13]. Some vendors offer the entire CubeSat

bus, with a specified payload interface for power, data, and mechanical so that the

customer can focus on payload and mission applications. One example is the nano-

avionics M6P 6U Satellite Bus [401.

The propulsion unit [39] takes up 1U of space in the M6P 6U Satellite Bus, so there

is up to nearly 5U available for the mission payload and communications equipment

when the propulsion unit is removed. By modifying that bus with additional solar

panels similar to the deployable solar panels used by the MarCO mission, the orbit

average power generation can reach up to 36 W 135]. By removing the propulsion unit,

adding an X-band downlink antenna compatible with the NASA NEN [43], additional

computer for planning and scheduling, and two additional battery cells, this thesis

assumes the bus capabilities outlined at the end of this section in Table 2.3.

The capabilities in Table 2.3 are used to represent the state constraints in the plan-

ning and scheduling problem. The physical basis for the rest of the activity param-

eters used in this thesis, observations and crosslinks, are presented in Sections 2.1.3

and 2.1.4 and are reviewed in Section 3.1.2.

2.1.3 High Data Rate Payloads

Traditionally, high data rate payloads, such as hyperspectral imagers, required a large

satellite bus and expensive launch vehicle. For example, the NASA Earth Observing

1 (EO-1) mission launched in 2000 and cost over $200 M to develop [34]. However,

NASA has proposed a follow-on mission that leverages the recently developed Head-

wall Nano-hyperspec instrument, which can fit on a CubeSat and generates 0.5-1

Gbps of raw data, for a total mission cost below $5 million. While the best reso-

lution is limited by the size of the CubeSat aperture, using a constellation of these

CubeSats would provide much higher revisit time and more data at a fraction of the

development and launch costs [34]. The NASA CubeSat hyperspectral imager is still

in study phases, but with more integration effort, even better performance can be

30

achieved, such as the multi-spectral imager generating about 5 Megabits per picture

(1 Mb per band) proposed by Tsitas and Kingston that fit on an 8 kg CubeSat and

has similar payload and downlink capabilities when compared with a 150 kg satellite

[59].

Gathering video from space is another mission that small satellites can soon fulfill.

One company, Skybox Imaging, used 83 kg satellites to provide the first ever high

definition video (above 50 Mbps data generation) from space [16]. This company was

acquired by Planet Labs in 2017 [58]. Planet Labs operates a fleet of over 100 small

satellites, mostly 3U CubeSats, to provide imagery of over 150 million km2 every

day [51]. As these examples demonstrate, there is a large and growing market for

dense data products with improved latency. With the proliferation of CubeSats and

the ability to fly high data rate payloads, the amount of data to be downlinked by

small satellites is expected to double in the next decade, reaching up to 3.9 exabytes

[58] over 10 years. This leads to a challenge for energy-limited and storage-limited

CubeSats, because the data downlinked per unit energy is not yet high enough using

UHF and S-band radios, as shown in Clements et al. [11].

For higher data rate payloads, CubeSats need to leverage more efficient downlink

methods, such as X-band radio or laser communications. If a laser communication

payload, which is also capable of cross-linking with other satellites, is used, this

can increase total mission performance, because using crosslinks can achieve +25%

throughput and up to 75% reduction in latency, which is discussed in more detail in

Section 2.3.2 and Figure 2-1.

2.1.4 Laser Communications Crosslinks

Recent efforts in the Massachusetts Institute of Technology (MIT) Space Telecom-

munications, Astronomy and Radiation Laboratory (STAR Lab) have focused on

developing and demonstrating laser communication crosslinks for CubeSats. First,

Nanosatellite Optical Downlink Experiment (NODE) was developed to show the fea-

sibility of an optical downlink on a CubeSat at a data rate up to 43 Mbps and demon-

strated the feasibility of a low-cost laser communications ground terminal known as

31

PorTeL 111, 50]. Then, the CubeSat Laser Infrared CrosslinK (CLICK) CubeSat

was developed to show the feasibility of closing a laser communications link between

CubeSats, especially the Pointing, Acquisition, and Tracking (PAT) capability, and

is capable of achieving up to 25 Mbps at 920 km range with a size of 1.5 U [6, 44, 22].

With the small form-factor of the CLICK payload, it is feasible to have a primary

payload, such as a hyperspectral imager, on a 6U CubeSat as well.

Crosslinks make the optional planning and scheduling problem harder (NP-Hard)

because optimal solutions require information about all possible paths between ob-

servations and downlink, referred to as data routes. The number data routes scales

exponentially in the number of satellites since there are an exponential number of

simple paths in an undirected graph [24]. Solving the crosslink-enabled bulk data

routing problem efficiently is the main focus of this thesis and will be discussed in

detail in Chapter 3.

By allocating 1.5U of payload space to a laser communications payload, 1U of

payload space to the hyperspectral imager and processing electronics, and 1.5U of

space to an additional planning computer, Global Positioning System (GPS) receiver,

and Xband radio electronics, this thesis assumes the capabilities shown in Table 2.3

for a notional crosslink-enabled hyperspectral imaging 6U CubeSat.

2.2 Coordinated Small Satellite Constellations

Coordination in this context is defined as leveraging information about what ac-

tivities other satellites plan on executing to determine what activities a particular

satellite should execute. Coordination could occur on the ground, where a central-

ized planner has access to information about all the satellites, or on-board, where

the satellites communicate with each other to adjust their plans. One example of a

satellite constellation with minimal coordination is the GPS constellation, where each

satellite is set to broadcast a signal repeatedly and the actions of the other satellites

have little to no impact on the plan for that satellite. A planned constellation with

high levels of coordination is the SpaceX Starlink constellation, where over 10,000

satellites must coordinate constantly for low latency routing decisions [23].

32

Subsystem Capability

Payloads Hyperspectral Imager and Laser Communi-
cations Crosslink

Power Generation (Orbit Average 30 W
Power (OAP))
Power Storage 10 cells, 8.0 V, 13.8 Ah
Attitude Determination and Con- 3-axis stabilized, rate: 10/s, control: ±0.1°
trol Subsystem (ADCS)
Orbit Determination GPS Receiver (0.5U and 1W power) [55]
Bus base power draw 10 W
Data Storage 12 Gb Solid State Memory
Downlink Rate -20 Mbps at 20 W total power draw
Observation Rate +50 Mbps at 10 W total power draw
Crosslink Transmission -10 Mbps at 20 W total power draw
Crosslink Reception +10 Mbps at 5 W total power draw

Table 2.3: Assumed notional 6U CubeSat Subsystem Capabilities

2.2.1 Benefits of Coordination

As mentioned in Section 2.1.4, crosslinks can significantly increase the complexity of

coordinating the activities of a constellation. Crosslinks inherently require coordina-

tion because a transmission and reception crosslink are mutually dependent on each

other. However, even in the no-crosslink case, coordination can still be required to

deconflict downlinks from multiple satellites to the same ground station at the same

time since this thesis assumes that a ground station can only point to and receive

data from one satellite at a time. This occurs when more than one satellite is in

view of the same ground station, which will happen if the constellation has enough

satellites or the satellites are clustered together. Since CubeSats are usually launched

as secondary payloads, they are likely to be clustered together and must use differen-

tial drag or propulsion to space themselves out within the orbit. In either case, the

constellation will have radio frequency interference and/or dropped data packets if

there is not coordination between satellites on scheduling the downlink activities.

There are many other potential benefits of mission level coordination, includ-

ing multi-modal sensing [14], distributed aperture radar missions [54], and reactive

constellations [1, 38]. Multi-modal sensing missions, such as the Defense Advanced

33

Research Projects Agency (DARPA) BLACKJACK program, need to coordinate to

have heterogeneous payloads collect on the same target at specific times to gather

temporally correlated data [14]. For distributed aperture radar missions, such as the

Air Force's TechSat 21 program, coordination is required to set the radar imaging

baseline to achieve high resolution images [54]. Reactive constellations are those that

coordinate to exploit new information gained by some satellites (or ground operators)

to replan selectively with satellites that have fast slewing capabilities [1, 38]. For ex-

ample, if a satellite observed Target A and did some initial processing that resulted

in a higher priority that initially assumed, it would broadcast this information which

might result in other satellites slewing to view Target A instead of their original plan.

Truly reactive constellations require advanced autonomy to process the observed data

accurately and reason correctly about the decision to abandon the current plan based

on the new information. While there are other benefits of constellation coordination,

this thesis will focus on coordination for the purposes of solving the bulk data routing

problem and enabling future reactive constellation capabilities.

2.2.2 Planning Communication Architectures

To achieve coordination among satellites in a constellation, there are several commu-

nication architectures available for small satellites. In order of decreasing planning

information latency, the communication architectures covered in this thesis are:

1. Ground Station Contact only: this is the traditional method of managing a

satellite constellation, where planning information is only transmitted from a

ground station when a satellite passes overhead. Assuming there is network

connectivity between all of the ground stations, this allowed for a centralized

planning algorithm to gather telemetry and payload data from all the satellites

as they pass overhead and uplink new schedules. The coordination between

satellites occurs indirectly in the centralized planning algorithm and the satel-

lites do not have any direct information transfer between each other. This

communication method is the simplest for the satellite software since there is

no onboard planning or inter-satellite communication required.

34

2. Ground Station Contact plus Radio Crosslink Plan Dissemination: this method

is the same as method 1, except that now satellites share new planning informa-

tion with their neighbors via radio crosslinks. This approach was demonstrated

to improve mission performance in average revisit time using a weak consensus

mechanism in the Limited Communication Constellation Coordinator (LCCC)

algorithm [29]. However, this approach increases satellite bus complexity and

requires additional radio communications to be planned in the activity schedule

and power budget, while also still requiring ground stations to develop the new

plan.

3. Ground Station Contact plus Intersatellite Backbone Plan Dissemination: this

method is the same as method 1, except that there is an assumed communi-

cations backbone constellation that the small satellites can also all interface

with to receive planning updates. This method has very low plan dissemination

latency since all the satellites in the constellation can receive the information

shortly after it is uplinked to the communications backbone without scheduling

radio crosslinks with each other. This has been demonstrated with CubeSats

and the Iridium communications constellation with the PicoPanther satellite

[52]. There have also been simulations showing that this type of architecture,

where the mission constellation is at a lower altitude than the communications

constellation, provides more robustness to total satellite failures and better per-

formance for similar cost values [12].

4. Radio Crosslink only: In this approach, there is no dynamic planning informa-

tion from the ground stations and the satellites have to develop and disseminate

the plan with crosslinks only. Satellites still receive static planning information

from the ground as a starting point. This static information concerns aspects

of the mission that are not expected to change between planning horizons, such

as the location of the ground stations and the observation targets. The satel-

lites still have to deconflict mission data downlinks to ground stations and let

the ground station know which satellite has a downlink scheduled at each time

35

point. This has the highest complexity requirement on the satellite, but it frees

up ground station planning resources for other constellations and also means

that the satellite constellation is robust to ground station failures. This setting

naturally lends itself to decentralized planning algorithms, but they must be

able to handle the complex, coupled constraints of satellite missions with laser

communications crosslinks. Since the satellites are developing the plan them-

selves, as soon as it is updated and consensus is achieved, all of the satellites

already know the plan so there is no plan dissemination latency that would be

added ontop of plan generation time since the time between plan convergence

and dissemination is zero. Note: that does not mean that the replan time is

zero since a disruption that requires a replan will require a new consensus to be

achieved.

2.3 Multi-agent Planning and Scheduling
Multi-agent planning and scheduling covers a large set of potential applications.

Traditionally, planning was done in a central location with all of the information

about the problem represented in a mathematical model that could be solved. A

planner that uses all of the problem information at once and then directs all of the

agents is known as a centralized planner. For satellites, the location of the centralized

planner is generally on the ground, but it could also be a special satellite on-orbit.

If the satellites can decide on their own activities, but don't communicate directly

with each other, instead going through one information hub satellite for coordination,

then this is referred to as a semi-centralized approach because there is a still a single

location where all information passes through. A truly decentralized approach has all

satellites communicating directly with each other and the communication network is

coupled with the agent's path (or each satellite's orbit, in the satellite network case).

2.3.1 Trade-offs in Different Approaches to Coordination

The fundamental trade-off between centralized, semi-centralized, and decentralized

planning and scheduling algorithms is based on where the required information and

36

computing resources are located and how they interact during planning. For all three

types, this thesis reviews limited planning horizon algorithms, where a specific time

into the future is planned for. The difference between the three approaches can be

summarized as:

" Centralized algorithms aggregate all information and use it one shot to solve the

problem for a given time horizon. Because of this aggregation, there can gen-

erally be optimality guarantees for deterministic centralized methods, although

the solutions are usually intractable because solving the BDRP with routing for

individual observations, not just routing for bulk data, is NP-hard. So heuristic

or randomized methods are usually employed to selectively throw away por-

tions of the aggregated information. Both types of algorithms, heuristic and

randomized, are discussed in Section 2.3.2.

" Semi-centralized algorithms still aggregate all information in one place, but the

information might not all be there at the same time and the decisions could

be made in a distributed way. This is the most general category, meant to

catch the planning approaches that fall between centralized and decentralized.

Optimality guarantees depend on whether information consistency is enforced,

such as in the implicit coordination algorithm with perfect information 12].

Approaches that have demonstrated results for satellite networks are discussed

in Section 2.3.2.

" Decentralized algorithms rely on agents communicating directly with each other

and sharing some subset of information relevant to the planning problem. The

agents that share information depend on the communication network at that

time, which can change dynamically. Because these algorithms are often imple-

mented on agents with limited processing power and energy storage, efficient

computation and bounded messages between agents are both essential. There is

a trade-off in guaranteeing convergence vs. optimality in the presence of infor-

mation inconsistency due to noise which will be discussed more in Section 2.3.3

37

Centralized and some semi-centralized algorithms can directly enforce global infor-

mation consistency. Since all information is available they can use statistical methods

to perform a best estimate of the true global state if there are disagreements between

local information received from agents. Because of the guarantee of globally con-

sistent information, these algorithms can make optimality guarantees that are not

available if global information consistency is not enforced 127]. Use and consistency

of knowledge also directly impacts the routing capabilities of algorithms, especially in

delay tolerant networks. Jain et al. investigated this trade off in knowledge about the

network topology vs. routing performance and found that, in general, using the least

knowledge led to the worst performance. However, there were situations where using

limited additional knowledge could greatly increase performance [25]. This bodes

well for decentralized algorithms that can create activities that require routes, such

as ICMF, and determining the right information to share to increase this performance

opens an interesting avenue of future work.

For all of these different approaches, especially if implemented on-orbit, another

important aspect to consider is how planning duration can impact plan execution. If

the planning duration is not accounted for and the planning duration runs into the

start of the planning window, then the returned schedule can be infeasible and result

in a cascade of schedule failures. One approach is just to the algorithm can always

return a feasible solution, so that if the expected execution start window of the plan

is reached then the agents can switch to execution. However, this can be difficult

to implement and still maintain performance. Another approach, known as Deadline

Aware Search, directly incorporates the deadline into the planning process and prunes

solutions based on the distance to the deadline [15]. This can work well for fixed

deadlines, but if the deadline is more flexible, then it leads to ambiguity on the benefits

of continuing to plan vs. starting to execute. A more recent approach from Cashmore

et al. in 2018 tries to estimate the trade-off in starting execution vs. continuing to

plan, which allows for more flexible planning windows [8]. While the consideration

of planning time on performance is important for an on-orbit planner that can solve

the BDRP, this thesis does not directly incorporate it into the methdology. There

38

are areas outlined for future work in Section 5.2.2 that consider this issue.

2.3.2 Centralized and Semi-Centralized Approaches

This subsection covers the centralized and semi-centralized approaches that have been

used to coordinate satellite activities. First, methods that use heuristics to prune the

solution space are covered, with additional time spent on reviewing the SPRINT

Centralized Global Planner (CGP), which is a heuristic centralized planner based on

the GP-Fast algorithm developed by Andrew Kennedy [30]. This additional review

is warranted because the SPRINT CGP is used for comparison with the performance

of ICMF across six different test cases in Chapter 4. Then, methods that use a

randomized approach are discussed.

Heuristic Methods

Heuristic methods for optimal planning and scheduling often involve some sort of

local search that deliberately prunes the search space to reduce the runtime and/or

memory required to solve the problem. Historically, satellite schedules have been

planned by satellite operators working directly with collection requirements. Before

discussing satellite constellation planning, a heuristic planning method used to par-

tially automate (humans in the loop) single satellite operations is discussed. This

method is part of the Automated Scheduling and Planning ENvironment (ASPEN)

system used by NASA for the Citizen Explorer (CX-1) satellite and for automating

ground station contact planning for the Deep Space Terminal (DS-T) [9]. The core

of the planning and scheduling approach is known as iterative repair. The human op-

erator can specify high level goals (or directly provide a low level schedule) and then

the ASPEN system approach produces a base schedule and then iteratively improves

the schedule by removing schedule conflicts (constraint violations) as time allows [48].

The iterative repair mechanism continues to run as long as planning time is avail-

able. While this mechanism is effective for single satellite operations, the local search

heuristic does not provide guarantees on conflict resolution and it assumes operator

interaction to perform effectively. This type of approach is a classic example of soft-

ware enhanced satellite planning, but it does not scale well to managing constellations

39

of tens to hundreds of satellites, with coupled constraints between those satellites.

The classic planning problem for satellite constellations involves maximizing the

value of observations and scheduling of downlinks, with no crosslinks between satel-

lites. This problem area is still sufficiently rich because there can be a wide variety of

additional constraints, such as consecutive target observations, temporal constraints,

and different polygon shapes of target areas that require the planning algorithm to

partition. One solution to this type of problem is to use a tabu search [19, 20],

which is a type of local search that allows one step degradations of performance and

uses a tabu list to prevent coming back to poor solutions, along with certain con-

straint relaxations to help explore the space faster. A modified tabu search was used

by Bianchessi et al. in a small satellite constellation setting with multiple potential

users, where observation value is analogous to profit. Their results achieved near op-

timal performance for two satellites with four different users over a 24 hour planning

horizon with 10 minutes of planning time [5]. However, the limited constellation size

and lack of description of computational complexity scaling with constellation size

make it difficult to access performance in the BDRP context.

A recent advance that is directly applicable to the problem setting of this thesis,

is the Global Planner from Andrew Kennedy's 2018 PhD thesis [30]. Kennedy pro-

vided a centralized planning method that could handle the increased computational

complexity of crosslinks between satellites. The complexity increases from the total

number of routes in the observation and downlink only case is O(N kNbS), up to

O(NdlnksNobsNu!) when crosslinks are included (Note: Nu! here is number of satellites

factorial).

Before discussing the global planner, some setup is warranted because the same

setup is used for the approach in this thesis. The Global Planner, and the algorithms

developed in this thesis, assume a starting point of knowing each satellite's physical

access windows over the planning horizon. These windows come from knowing the

target set, ground station locations, and other satellites' propagated orbital position

over the planning horizon. Each satellite's orbit is propagated over the planning

horizon and the following windows, which map to potential activities, are output:

40

" Observation Activity: Each satellite has a unique set of observations for the

targets that are within their field of regard during the planning horizon. A

single target can have multiple observation activities across multiple satellites,

or the same satellite if the planning horizon consists of several orbits.

" Downlink Activity: Each satellite has a unique set of downlinks to the ground

stations that are within their field of regard during the planning horizon. A sin-

gle ground station can have multiple downlink activities across multiple satel-

lites, or the same satellite if the planning horizon consists of several orbits.

" Crosslink Activity: Communication access between satellites when they can

close a link. For satellites that are neighbors in the same orbital plane, this can

be a continuous window which will be broken up into smaller fixed duration

windows that can be scheduled selectively. A single satellite schedules either

a transmission (TX) or reception (RX) crosslink, which is only valid if the

corresponding satellite schedules the opposite crosslink type at the same time.

The Global Planner solves the BDRP in centralized manner with three steps:

1. Route Downselection: The information about the BDRP in the planning hori-

zon is collected, which includes all satellite observation, downlink, and crosslink

activities. These activity windows are used to create all possible data routes

which consist of an observation, zero or more crosslinks, and a downlink. These

data routes are downselected to keep a constant amount of routes per observa-

tion window using three heuristics (each configurable, with default values shown

below):

* hDV (heuristic for data volume): Top 6 data throughput routes per obser-

vation. This ensures that that each observation activity has options for

maximum data throughput.

" hiat (heuristic for latency) : Top 6 best (minimum) latency routes per

observation. This ensures that each observation activity has options for

best latency performance.

41

*hLO (heuristic for least overlap): Top 30 least overlap routes per observa-

tion. This ensures route diversity to provide the activity scheduler with

more options for an optimal schedule.

2. Model Construction: After route downselection, there will be at most Nob*

(hDV+ hiat+ hLO) possible routes. These routes limit the number of possible

activities that can be scheduled. Activities are constructed in a mathematical

model as a Mixed Integer Linear Program (MILP). Constraints such as data

storage, energy storage, and activity time limits are enforced via the MILP. In

the implementation, this model construction occurs with the python optimiza-

tion modeling software, Pyomo.

3. Activity Scheduling: Once the model is created in Pyomo, it is solved as a

MILP using an optimization software package, such as Gurobi. The MILP is

solved with objective function weights on data throughput, data latency, and

energy margin. These can be tuned by each user, but are set by default to 1.0

to value them equally. The MILP solver itself uses heuristic methods to find a

near optimal solution, but maintains an optimal tolerance bound by evaluating

the dual formulation of the problem [30].

The basic strategy of the Global Planner is to reduce the problem size by cutting

off activities that are likely to not be beneficial. The activities are cut off by examining

the potential routes available in the problem with the heuristics shown above (hDV,

hiat, hLO). Using these heuristics for route downselection resulted in the Global

Planner running two orders of magnitude faster for long planning horizons (above 1000

minutes) while maintaining 90% optimality [30]. Each of these steps can take a large

amount of time for large problem sizes, but the key insight from the thesis was to make

route downselection parallelizable to improve scalability with number of satellites [30].

This limits the complexity from adding crosslinks to a constant factor multiple of

the number of satellites and targets, which makes planning for a constellation with

crosslinks enabled more tractable. The benefits of utilizing crosslinks to solve the

BDRP are summarized in Figure 2-1.

42

1 Obs. throughput Max increased from 44% to 70% (Walker),
(% of potential)

2 Median observation :5 10 Reduced from 63 to 15 mirnutes (SSO Ring)
latency min. Reduced from 14 to 8 minutes (Walker)

Figure 2-1: Performance benefits of adding crosslinks [30]

The Global Planner from Kennedy (2018) is used as the basis for a piece of open

source software known as the Scheduling Planning Routing Inter-satellite Network

Tool (SPRINT). The Global Planner from (Kennedy, 2018) was renamed the SPRINT

CGP. The SPRINT CGP has a benchmark case to use the 10 NASA NEN ground

stations, with 20 observation targets and 30 satellites in a 3 plane Walker configura-

tion, inclined at 30°. However, there was an initial version of the problem that had

100 observation targets spaced equally around the world from -30° to 30° in latitude.

This initial version served as the developmental test case for ICMF. All of the com-

parison cases for ICMF share the same orbit propagation and communication link

modeler front end, so that the use cases are as similar as possible up to the start of

the planning algorithm execution. These modules are shown in the context of the

SPRINT pipeline in Figure 2-2.

Randomized Methods

In addition to heuristic methods, algorithms that leverage randomization techniques

have also been used to solve satellite constellation scheduling problems. The company

Planet Labs uses a scheduler known as micromanager which takes in available events

(similar to observations and downlinks) and uses a simulated annealing algorithm to

yield a good schedule [36]. This is done at the ground station and the schedules are

uplinked to satellite as they pass overhead, with no intersatellite backbone to help

plan dissemination. The simulated annealing algorithm was first proposed in 1983

by Kirkpatrick et al. Simulated annealing creates a connection to finding optimal

energy states in statistical mechanics to finding the optimal solution in a combina-

torial optimization problem, and leverages a randomized approach to approximate

an optimal solution [31]. This approach is able to effectively solve the satellite con-

43

Orbit Propagation access times a t es
data rates

I Comm Unk Modelerl

Constellation Sim
activity times,

Sat 1 Local Planner -A kdata rates

Ischedules
-.

Sat 2 Local Planner
schedule, staite oito
er position

Sat N Local Planner udata
(onrom an) l _

Visualizer (CesIum)

Figure 2-2: Computation and simulation pipeline used in SPRINT [30]

stellation scheduling problem for just observations and downlinks, but has not been

applied to the BDRP with crosslinks enabled. This would likely be difficult because

the simulated annealing approach makes randomized moves by shifting the schedule

around. This activity would be more difficult to frame for crosslinks; to capture the

mutual dependence between two different satellites, they would have to coordinate

random moves to avoid breaking their respective schedules.

Another popular randomized approach is to utilize a Genetic Algorithm (GA). In

general, a GA randomly tests solution points in the space and uses a fitness function to

evaluate each point. Points must meet some fitness threshold to survive into the next

round, and then they are combined in different ways to yield new points in the next

generation. Different variants of GAs come with different mutation approaches when

the points are combined. In one example of a semi-centralized approach that had

multiple satellites coordinate their schedules via one central satellite, Zheng et al. de-

veloped a Hybrid Dynamic Mutation (HDM) strategy to coordinate actions between

eight daughter satellites and one mother satellite [62]. Only one daughter satellite

could communicate with the mother satellite at a time, and the mother satellite was

44

responsible for downlinking all data to Earth while the daughter satellites made ob-

servations. The HDM approach was shown to be the best approach on average for

overcoming local optimum and runtime performance limitations among different GA

variants for creating a schedule in this case. Zheng et al. later expanded their approach

to include repair replanning mechanisms with a semi-centralized approach where the

re-planner lives on the mother satellite, but is triggered by a status monitor on-board

each daughter satellite [63]. Zheng et al. proposed two replanning techniques, both of

which can successfully recover from emergency situations in simulation and trade-off

data throughput vs. re-planning runtime. While Zheng et al. demonstrated effective

recovery in a small scale constellation, runtime performance as a function of con-

stellation size is not available and using a GA for completely decentralized planning,

instead of just limited replanning, may struggle to provide guaranteed runtime bounds

to come up with a feasible plan.

2.3.3 Decentralized Approaches

For any decentralized algorithm, one of the first things to determine is if a syn-

chronous communication model can be used or an asynchronous model must be used.

A synchronous model assumes that all operations occur in lockstep across the net-

work, while an asyncrhonous model has no guarantee on the relative exeuction rates

of processes and/or communication channels [241. Relying on a synchronous model

can make the analysis of the algorithms bounds on execution rounds and the number

of messages more straightforward, and certain guarantees are possible, such as the

ability to come to consensus in the presence of failures, that the asynchronous model

does not allow [24]. This thesis primarily considers synchronous decentralized algo-

rithms. Some asynchronous algorithms are considered as well for comparison. Since

Low Earth Orbit (LEO) satellite clocks can be kept in sync with GPS, and as long

as the clock difference and communication time between each agent is bounded, then

the synchronous model is appropriate [321.

Before focusing on CBBA, which is an auction algorithm that forms the basis

of ICMF, this thesis presents some other decentralized algorithms that have been

45

used in satellite planning and scheduling or data routing. Zheng et al. developed

a fully distributed version of their Hybrid Dynamic Mutation GA approach that

uses a local constraint satisfaction module to solve local feasibility before exchanging

information to globally optimize the schedule directly among daughter satellites by

contributing elements of their local population to the global population solution [64].

Their distributed randomized approach showed improvement in computation time

once the problem duration increased to above 50 orbits (around the moon, in this

case). The computation benefit increases as the number of satellites grows from 6 to

12. However, the computation time for both Zheng et al. centralized planner and

the decentralized planner appears to grow exponentially as a function of the number

of satellites. Because of this exponential runtime growth, randomized decentralized

algorithms were not chosen for further investigation in this thesis.

Another interesting aspect of decentralized algorithms involves the field of mech-

anism design [42]. In general, the field of mechanism design focuses on how private

preferences (not shared with other agents) can be steered toward choices that are ben-

eficial for all agents in the problem. An important example of mechanism design is the

border gateway protocol (BGP) used by different internet service providers to route

data, with different quality of service requirements, across the internet seamlessly [42].

Mechanism design may become increasingly useful as satellite constellations managed

by different users interact with each other in a federated network to provide services

to end point users. Some work in multi-path, multi-hop routing has improved upon

the mechanisms in BGP [56]. However, because the problem setting for this thesis

involves full knowledge of all agent's preferences, mechanism design itself was not

implemented.

Auction Algorithms

Algorithms that allow different agents to bid on certain tasks against each other are

known as Auction Algorithms. This thesis focuses on combinatorial auctions, in which

economic efficiency, and thus total global performance, is improved if bidders can bid

directly on different combinations, or bundles, of tasks instead of just individual tasks

46

[60]. Combinatorial auctions have additional advantages in a dynamic communication

network with limited communication between all agents because some conflicts can

be resolved in parallel amongst the different agents. Single task auctions can be more

effective with constant communication, such as the case of robots working directly

next to each other. The MURDOCH system is one example of a single task auction

approach that uses anonymous broadcasts between tightly coordinating robots to

achieve global goals [18]. However, the satellite constellation problem setting does

not have continuous communication between agents, so information takes time to

propagate through the network and the number of agents can be over 100 for large

constellations.

Decentralized combinatorial auctions methods were reviewed because bidding against

bundles of tasks reduces the computational complexity of resolving the bidding and

clearing portions for the auction. For certain subsets of bundles considered and the

objective functions used, some bounded optimality guarantees can also be preserved

[3]. This review of auction algorithms led to focus on decentralized task allocation

algorithms that consider bundles of tasks and can be used in a dynamic communi-

cation network. Consensus Based Bundle Algorithm (CBBA) is one such algorithm

that was developed by Choi et al. in 2009, and has had many variants and extensions

since it was first developed for use in aerial drone task allocation [101.

CBBA

CBBA has two main phases that are repeated until no agent changes their bundle.

The first phase is the bundle phase, in which all agents independently act to allocate

tasks greedily to their bundle. The greedy allocation means that the next best value

task (highest score function) is added to the bundle, without consideration for future

combinations of tasks. CBBA assumes the score function is Diminishing Margin Gain

(DMG), which means that no additional tasks can be added which would increase

the score of existing tasks in the bundle. Johnson et al. elaborate on the importance

of submodularity and how to handle non-submodular objective functions [26]. The

second phase of CBBA is the consensus phase, where agents communicate with their

47

neighbors and fixed rules are used to reset tasks in the bundle to prevent conflict

between agents in the global task allocation.

Since each satellite is assumed to have the capability to propagate their own orbit

over the planning horizon and the starting states have uncertainty in them, each satel-

lite's local information about when it has access to other satellites, ground stations,

and targets will likely be inconsistent with the truth. Because of this local informa-

tion inconsistency, there could be convergence delays if agreement on a shared truth

state was required. However, some decentralized auction-based task allocation algo-

rithms, such as CBBA 110], do not require information consistency between agents.

Convergence time, measured in number of communication rounds, is not a function

of relative information error. This is important, because it allows satellites to set a

bound on communication required to come to a solution regardless of starting errors.

There is a drop in optimality as starting error increases, but this is expected for most

algorithms. The key take-away is that as long as the planning time and communi-

cation rounds can be effectively bounded, then an on-orbit decentralized planner is

feasible.

This convergence guarantee is what led to the decision to base ICMF off a CBBA

variant. Because of this, additional review of the mathematical formulation and

generalized constraints is warranted. The objective function for CBBA is shown in

Equation (2.1) with the generalized constraints immediately following.

N. N

maxE Eci(xi,pi)xij (2.1)
i=1 j=1

subject to

48

Nt

Zxi Lt Vi C I
j=1

N.

xi < 1 Vj E J

N. Nt

ZZxjNin := min{Nt, N.Lt}
i=1 j=1

xjj E 0, 1 V(i, j) C I XJ

where N, is the number of agents, Nt is the number of tasks, Lt is the maximum

bundle lengths (max number of tasks that an agent can assign), xi is the vector of

tasks that agent i plans to execute, where the elements of this vector are the decision

variables, xij, relevant to agent i , pi is the path vector which contains the task index

and when agent i will execute that task, ci,(xi, pi) is the generalized score function.

In CBBA, convergence can be assured when an agent hasn't witnessed any changes

to the consensus dictionaries for 2*diam rounds, where diam is the communication

network diameter, defined as the maximum number of hops between any two agents.

So the algorithm keeps running until each agent observes this and then the algorithm

terminates and/or moves on to anotherstep.Withoutanother consensus mechanism,

agents running CBBA could declare termination at different times, but each time

a node sees no changes for 2*diam rounds ,then the entire algorithm has actually

terminated and no agent will see more changes.

CBBA was originally developed for a synchronous communication environment,

although all agents did not need to be in constant communication. Since it was orig-

inally developed, many other variants that are relevant to satellite network planning

problem have been introduced, such as:

• Asynchronous CBBA (ACBBA): Developed by Johnson et al., ACBBA contains

the notions of both global and local convergence and allows agents to build

bundles and perform consensus rounds on their own schedules [28]. This variant

is appropriate if there is intermittent communication resulting in formation of

a disconnected graph and/or limited ability to keep clocks synchronized.

49

*Ponda et al. developed a chance-constrained variant that uses a risk adjustment

method based on individual agent risk distributions to ensure a mission level

risk threshold is reached 146]. This method could be relevant to the satellite

constellation planning scenario when certain targets and/or payloads have a

probability of activity failure (i.e. due to cloud cover) and some of targets must

be observed successfully at least once during a planning horizon with a specified

probability of success.

CCBBA

The variant of CBBA that is most relevant to the BDRP is known as CCBBA because

it assumes a synchronous communication mode and can handle complex mission con-

straints, such as temporal and mutual dependence constraints [61]. The ability to

handle temporal constraints is required for the BDRP because satellites must execute

their downlink activities only when all other satellites are not executing a downlink

activity to the same ground station. Handling mutual dependence between tasks is

what allows transmission and reception crosslinks to pair between different satellites.

Task coupling constraints are handled in CCBBA by forming a single activity be-

tween all tasks that share a coupled constraint, such as mutual dependence. All tasks

in an activity, k, have their inter-dependencies represented in a dependency matrix,

Dk.For an individual entry, D , the following entries represent the relationship:

1 iftask u depends on task q

* 0 if task u can be assigned independently of q

* -1 if task u and task q are mutually exclusive.

For the BDRP, the dependency matrix is only required for crosslinks, which are

mutually dependent, so the dependency matrix will look like the following:

RX-TX L J01 (2.2)

50

where j E J. represents the fact that this dependency structure exists for all

crosslink pairs. CCBBA allows mutually dependent tasks to be allocated by having

optimistic vs. pessimistic bidding strategies. An optimistic bidding strategy means

that the agent can bid on the task, even though all dependencies are not met. There

are technically two separate levels of optimistic bidding, as shown in Figure 2-3, where

the vector wf"I tracks if agent i can bid on tasks without any of their dependencies

met and the vector w?"" tracks if agent i can bid on tasks with at least one other

dependency met. The elements of this vector are decremented every time a timeout

parameter for each task j, vij, is reset, which counts the number of rounds that the

task has not met all of its dependency constraints. The authors note that usually

elements of w"" are set higher than the elements of w'11". The multiplication of

each vij and corresponding element in woI yields the total number of rounds that an

agent can bid solo on a given task. Increasing these values means that the agent can

wait longer for another agent to bid on the coupled task, which increases convergence

time, but can also increase performance.

soloSo and wany are both
Super Optimistic: "Permission to bid solo" decrementedevery time

the number of iterations in
constraint violation (Vik)

any Ap4 a} reaches the timeoutOptimistic: "Permission to bid any" 1 - '' ,e r t

Pessimistic: Only bid if all dependencies are canBid (k) = any > 0 A n"*(k,|zj) > 0)
satisfied

(I > 0 V (n"(kqz,) = N(k,))

Figure 2-3: Summary of how CCBBA handles mutual dependence

Note: that the term 'Optimistic' is used to describe when both or either the 'solo'

and 'any' bidding parameters are above zero in the CCBBA paper [61], and the term

'Super Optimistic' is only used in this thesis to help differentiate the two parameters.

CCBBA forms the basis for the algorithms described in this thesis. The enhance-

ments to CCBBA to address the maximum flow elements of the BDRP are described

in detail in Section 3.2.

51

2.4 Max-Flow Problems
This section will cover background information for network flow problems. Typ-

ically, the objective is to find the set of choices that permit maximum flow in the

network from the sources to the sinks. These network flow problems are called maxi-

mum flow (max-flow) problems. Time-varying maximum flow problems include those

where the properties of the network, such as edge capacity and connectivity, can

change with time. Typically, centralized algorithms are used to solve these problems,

and can do so in polynomial time [7]. The satellite BDRP is an instantiation of a re-

source constrained time-varying max-flow problem with the satellites as the network

nodes, observation targets as the sources, ground stations as the sinks, and crosslinks

are the inter-network connections between agents. The choices are which activities

each satellite should execute to globally route the most data from the sources to

the sinks. However, the BDRP does not translate directly to a typical time-varying

maximum flow problem because of the addition of the energy state constraint, which

limits the set of actions that can be taken in the planning horizon and is unique to

each satellite because of different eclipse times.

2.4.1 Decentralized Max-Flow Approaches

For the synchronous decentralized algorithm setting with a fixed (not time-varying)

network, auction algorithms can be used to solve the max-flow problem. Bertsekas

shows that the problem can be reframed as a minimum cost auction problem and

solved in O(n3) time [4]. This auction approach differs from the centralized approach

of Goldberg and Targan, known as pre-flow/push, that could solve the problem in

O(nmlog(n2 /m) time and can also be parallelized [211 . The pre-flow/push algorithm

allows an original estimate of flow, the pre-flow, to exceed capacity and then creates a

residual graph that each node pushes excess flow towards the sink. This idea helped

inspire the task-outflow coupling enhancement of ICMF described in Section 3.2.3.

However, this algorithm in its original form assumed one single source and one sink

in a centralized computation, so direct implementation was infeasible.

The preflow/push algorithm from Goldberg and Targan also inspired a fully de-

52

centralized and asychronous maximum flow algorithm developed by Pham et al. [45].

This algorithm can use multiple sources and sinks and each node performs local com-

putations, then each node exchanges messages with each other until the maximum

flow is established. The algorithm starts with a non-optimal flow across the network

and terminates once no more flow can be pushed toward the sink. Time complexity

is O(n2), while number of messages sent is O(mn2). This algorithm is promising for

decentralized max-flow problems; however, it does not directly address time-varying

problems and would need to also be augmented to handle total activity set constraints,

such as a satellite energy state.

2.4.2 Implementing Max-Flow Algorithms for Small Satellites

While decentralized maximum flow algorithms exist and can address the core aspects

of the BDRP, they do not directly address all the differences and model assumptions

required for small satellite constellations, namely:

" Multi-source (observation targets), multi-sink (ground stations) problems with

dynamic network connectivity;

" Ground station accesses need to be deconflicted in time;

* Crosslink mutual dependence: flows between network nodes need to be coordi-

nated and agreed to (cannot send flow to another node without the other node

also agreeing to accept flow at the same time);

* Energy state is another constraint, bin addition to flow capacity;

• Discrete problem with transition times in-between flow changes.

As a starting point for ICMF, a max-flow algorithm could have been used instead

of CCBBA. However, this would have over-specified the algorithm since the goal is to

develop an algorithm that performs well in the BDRP, but can handle other types of

missions as well. This is why CCBBA was instead modified with some of the max-flow

algorithm principals in mind.

53

54

Chapter 3

Approach

This chapter describes the decentralized approach used to solve the bulk data routing

problem for small satellites.

First, the problem is framed in more detail, with a review of key assumptions,

mathematical formulation, and explanation of the use cases that serve as the perfor-

mance testing benchmarks. Then, the enhancements to CCBBA required to address

maximum flow problems are presented in detail as the basis for a new algorithm called

CMF. After the CCBBA enhancements are presented, Section 3.3 explains the main

contribution of this thesis: the ICMF algorithm, which includes an iterative loop

around CMF. Finally, a simple routing algorithm is presented, which uses the output

of ICMF to generate data routes after the satellite's activities have been agreed upon.

3.1 Framing the problem
This section frames the bulk data routing problem in detail by enumerating key

definitions and assumptions, providing the mathematical formulation of the problem

and the relevant constraints, and explaining the use cases to test the algorithm during

development. The use cases presented in Section 3.1.3 are also used in Chapter 4 to

demonstrate the performance of ICMF against a state of the art centralized planning

and scheduling tool. To setup the high level context for some of the definitions and

assumptions laid out in this section, a high level block diagram of how CCBBA

functions and the modifications made as part of this thesis is shown in Figure 3-1.

55

Il
Pre-Coordination Phase

CMF converged, ready to
iterate as needed L

Bundle Phase

Consensus Phase

Share inflows, outflows.
distance to downlink

Time-Matching

Figure 3-1: Simplified CCBBA loop with modifications for CMF shown in the white
boxes with light blue text

Details on enhancements to CCBBA, which are highlighted in the white boxes with

blue text in Figure 3-1, refer to Section 3.2.

3.1.1 Definitions and Assumptions

This subsection focuses on the definitions, assumptions, and a subset of the notation

used in this thesis:

* Agent (I): an agent executing the algorithm (whether CMF or ICMF). Through-

out the rest of this thesis, the terms satellite and agent will be used interchange-

ably. Agent (with italics) will be used to describe an agent object, which ap-

pears in pseudocode as I and has certain properties and methods that facilitate

execution of the algorithms.

* Task (J): a satellite activity that involves slewing to point at a specific object

and executing one of its subsystems. There are four specific types of tasks:

1. Observation: Pointing to a ground target and using the mission payload

to collect data. When this type of task is active, the state of the satellite

changes with an additional 10 Watts of power draw and 50 Mbps of data

coming into the satellite.

56

2. Downlink: Pointing to a ground station and using the radio to transmit

data to the ground station. When this type of task is active, the state of

the satellite changes with an additional 20 Watts of power draw and 20

Mbps of data leaving the satellite. For the downlink to be successful, this

must be the only satellite attempting to downlink to a particular ground

station at that time.

3. Transmission Crosslink (TX): Pointing to another satellite and using the

laser communication payload to send data to the receiving satellite. When

this type of task is active, the state of the satellite changes with an addi-

tional 20 Watts of power draw and 10 Mbps of data leaving the satellite.

For the TX to be successful, the receiving satellite must be executing a

reception crosslink at the same time with the same satellite executing the

TX.

4. Reception Crosslink (RX): Pointing to another satellite and using the laser

communication payload to receive data from the transmitting satellite.

When this type of task is active, the state of the satellite changes with

an additional 5 Watts of power draw and 10 Mbps of data entering the

satellite. For the RX to be successful, the transmitting satellite must be

executing a transmission crosslink at the same time as the same satellite

executing the RX.

* ExecutableTask (Je): a subset of time a Task that can be executed by the

satellite. As discussed in later sections and in Appendix B.1, a Task object

cannot be directly changed by an agent, but agents can create new Tasks or

select Tasks for deletion from consideration, which is required for time match-

ing (see Section 3.2.4). Only ExecutableTask objects are actually stored in a

satellite's bundle. Consensus occurs on the Tasks, and each ExecutableTask

only has one parent Task, but each Task can have multiple ExecuteableTasks.

This distinction occurs because of task forking (see Section 3.2.3).

* Bundle (bi): A value-ordered list of ExecutableTasks that the satellite will

57

execute. Tasks in the bundle are ordered by value and are added one at time.

" Path (pi): A time-ordered list of tasks that the satellite will execute. This is

just a book-keeping mechanism to build up the data and energy states to ensure

that no state violations occur.

" Bid: the value of all ExecutableTasks corresponding to a single Task added

to the bundle is recorded by the Agent and stored as a bid. Agents use bids to

determine who should be the winner for a Task and achieve consensus. Bids

are stored and compared across Tasks since all Agents have a consistent set

of Tasks, while ExecutableTasks are created by each agent individually, see

Section 3.2.3 for additional explanation. Normally, an agent cannot add a task

to its bundle unless its value is higher than the highest known bid, but there

will be some exceptions, as explained in Section 3.2.

" Winner: The agent with the highest bid for a Task is the winner. There may

be multiple winners while the algorithm is running, but for consensus to be

achieved, each Task can have at most one winner.

" Activity Timeline (ai(t)): This state tracks each satellite's planned activities in

the planning process. Each timestep in the planning horizon is recorded in the

activity timeline with required transition times enforced in between activities.

Each element of this state vector will be either: null, T (transition), D (down-

link), 0 (observation), R (reception crosslink), or X (transmission crosslink).

" Energy State (ei(t)): The state of each satellite's energy storage. Each satellite

has a minimum storage level of 2.78 Watt-hours (Wh) and maximum storage

level of 13.89 Wh. Each satellite starts the scenario with the energy state set to

12 Wh. Each satellite has a base power draw of 10 Watts, with additional power

being used depending upon the task being executed. When in eclipse, there is

no power generation. While in the sun, there is an assumed orbit average power

(OAP) of 30 Watts. This OAP of 30 Watts is how each satellite replenishes its

energy state and only occurs while not in eclipse. Satellites take energy state

58

into account when evaluating tasks to add to their bundle and will limit the

duration of a task if it will put their energy state below the minimum.

" Data State (ei(t)): The state of each satellite's data storage. Each satellite has a

minimum data storage of 0 Gb and a maximum storage of 12 Gb. Each satellite

starts the scenario with data state set to 0 Gb. Data State only changes as a

result of tasks that the satellite executes.

" Greedy: Myopic selection of the next item, whether it is an activity to add to

the bundle or a step along a route, based on that item having the highest value,

without consideration for multiple items in combination.

• Multibid: A property of a task that allows multiple agents to bid on the same

task and only the agent with the highest bid can execute the task. This is the

general setting for CBBA tasks; however, ICMF also allows for singlebid tasks,

which are tasks that only one agent can bid on and are not shared with other

agents (such as individual observation windows).

* Singlebid: A property of a task where only one agent can bid on the task. This

occurs in the satellite bulk data routing problem setting because access windows

can occur with no overlap between different agents (e.g. for downlinks with low

numbers of total satellites). Singlebid can also occur when data from all targets

is desired and not just the satellite with the best observation window for each

target.

" Consensus Round: A consensus round includes both the bundle phase and

consensus phase of CMF. The bundle phase and consensus phase distinctions

are similar to those of CCBBA, with the exceptions due to some of the en-

hancements in CMF described in Section 3.2. Each consensus round can have

multiple communication rounds during the consensus phase. These commu-

nication rounds occur until information is propagated across the network, or

consensus is achieved (all agents agree). The number of communication rounds

per consensus round is limited by R, which is explained in Section 3.2.2.

59

*CMF Iteration: ICMF includes multiple iterations of the CMF with limited

information to achieve consensus faster with higher value. The number of CMF

iterations is bounded by itersMAx, which is a parameter set by the user of

ICMF, as described in Section 3.3.

Some assumptions are also necessary to establish the capabilities of each satel-

lite that pertain to setting up and executing ICMF. Key assumptions include the

satellite's ability to:

1. Calculate access windows to downlink locations and other satellites based on

orbit propagation.

2. Perform full duplex communication to exchange bid and a subset of state infor-

mation with all neighbor satellites over a low-bandwidth radio link.

3. Keep clocks well synchronized (able to sync with GPS time at least once per

orbit).

4. Assess the energy and data impact of each task over the planning horizon.

5. Transition between activities within 10 seconds (configurable). This is likely too

low for most activity transitions, unless the two activities have boresight lines

that are less than 100 apart; however, this was used for algorithm comparison

purposes because this is what the transition time was set to in the satellite

model for the centralized planner [30].

Note that if ICMF is used as a planner deployed at the ground station, instead

of deployed as an on-board planner, then only assumption 5 is necessary and can

be changed flexibly depending on the satellite's slewing capabilities and pointing

requirements.

One notation difference to highlight before going into the mathematical formula-

tion is the use of the dictionary datatype in some of the pseudocode. This datatype

holds information that can be accessed with a unique key. Using this instead of

indexing the information is required because different agents will create new Tasks

60

simultaneously that have the same unique ID (used as a "key"), but may have different

indices depending on the order of operations in the decentralized setting. Important

examples of this datatype are the consensus dictionaries.

There are three properties that all agents need to agree on during a round of

CMF to achieve consensus. Consensus is achieved for a single agent when it has

communicated with all of its neighbors and there are no changes. Once an agent

hears that all agents have achieved consensus, it moves on to the next phase of the

algorithm. Note: instead of referring separately to each of the three dictionaries, they

will be collectively referred to as the consensus dictionaries. See Appendix B.1 for

more details on the notation and other properties and methods of Agents.

* I.bids(J.id) E RN: dictionary of latest bid information available toI (Agent)

that has the J (Task) bid value at the corresponding J ID. All values in the

dictionary are initialized to 0. All keys, which are the unique strings to retrieve

the bids, are Task IDs, denoted in pseudocode as J.id. Note: in the CBBA

papers, this dictionary serves the same purpose as the "winning bids list", which

is the variable: yi(t) [10, 61].

* I.winners(J.id) E NN: dictionary of latest winner information available to I

that has the winning Agent ID corresponding to the J ID. All values in the

dictionary are initialized to null. All keys are Task IDs, denoted in pseudocode

as J.id. Note: the domain is N (all integers) because each unique ID string

can be translated to a unique integer (and vice versa) based on the encoding

used. Note: in the CBBA papers, this property serves the same purpose as the

"winning agents list", which is the variable: zi(t) [10, 61].

* I.inds(J.id) E SNI: dictionary of latest information about planned timesteps

available to I, stored as indices in the discrete planning domain, that has the

set of timestep indicies corresponding to the Task ID. All values in the dic-

tionary are initialized to 0 (the empty set). All keys are Task IDs, denoted

in pseudocode as J.id. Note: the domain of S means that each value of the

dictionary is a set.

61

Global Objective

Na N'

max c (xi, p,)x

Local Objective

General Constraints

NI

< .~Lt

il

ViE I

Vj E J

Nu = Total Number of Agents

Nt = Total Number of Tasks
ci;(xi, pi) = score function~
path dependent reward for agent i
performing task. Here this is Data
Volume transferred with a linear
incentive to act sooner.
Xj E {0, 1} V(ij) E I x

Enforce max number of tasks per agent
(usually limited by state / time constraints
instead of max bundle size)

Enforce "conflict-freeness"
(downlinks to the same ground station
at the same time)

Figure 3-2: General objective function and constraints for CMF, annotated for satel-
lite BDRP
Bolded text explains the score function used, additional details in Figures 3-3 and 3-4

3.1.2 Mathematical Formulation

With the definitions and assumptions established, the mathematical formulation of

the problem will now be covered. First, the objective function is discussed, which

leads to how task value is calculated. Then, the state constraints and their limits are

presented.

Objective Function and Task Value

Figure 3-2 highlights the objective function and general constraints used for CMF,

with some commentary specific to the satellite bulk data routing problem. This is a

more specific view of the equations based on the CBBA objective function discussed

in Section 2.3.3.

The global objective function is a linear function of the individual score function,

c 2 (xi, pi), used for each task. For the BDRP, this thesis assumes that total data

62

I

volume delivered is the primary objective. Secondary goals include accomplishing

activities earlier in the planning window and trying to preserve some data margin on

each satellite. With this in mind, the task value formulation is as follows:

t~ts

where DG is the total data generated by the activity, which is negative for out-

flows and positive for inflows, hence the absolute value. fDM is a fractional scaling

factor that incentivizes inflows more when the satellite is low on data and incentivizes

outflows more when the satellite is full of data. fDM is calculated as follows:

DM AX - di(ts)
fDM(di(ts),J) D is an observation or RX crosslink (inflow)

DMAX

di(ts) - DMINfDM(di(ts), Je eMX ifJ is a downlink and TX crosslink (outflow)

In Equation (3.1), vj (t) is the value of a task at a particular timestep. For all

tasks used in this thesis, vj(t) is a linearly decreasing value from 1 to 0 over the time

horizon, but this can be easily modified to incentivize other behaviors. Note that the

calculations highlighted in this equation and equation 3.2 make the value function

non-Diminishing Marginal Gain (DMG), which violates the convergence guarantees

of CCBBA [61]. However, the value function is only non-DMG between inflows and

outflows, i.e. adding an outflow makes other outflows less valuable (DMG), but makes

inflows more valuable (non-DMG), so the non-DMG only occurs with a subset of task

interactions. This limits the negative impact of using a non-DMG value function as

described in Section 2.3.3.

The summation in Equation (3.1) occurs from t, which is the start time of the

task, up to t*, which is the new window end time based on state violations and is

calculated with:

t* = te - max([Dv .di(2 Je)]Ev i(t)IJe) (3.2)
whereit eojtype Eietye

where t, is the original end of the window under consideration based on the current

63

1

Value per
Mb per sec

0
time

Figure 3-3: Example base task value

The notation targ1@SO means that this is the value of target 1 from the

perspective of satellite SO. The zero portions of the value function occur when

target 1 is outside the physical access window of SO. The linear decreasing function

is used to motivate taking observations and downlinks sooner rather than later.

activity timeline ai(t), E,(ei(t)) is the amount of energy state violation based on the

current state and execution of the full ExecutableTask duration, and D,(di(t)) is the

amount of data state violation based on the current state and execution of the full

ExecutableTask duration. j,.type is the energy use rate of ExecutableTask J, and

Dj.typ is the data use rate, which are both based on the type of ExecutableTask,

see Table 3.1. Equation 3.2 reduces the duration of the task if the full execution will

result in state violations. If this reduction puts the task below the minimum duration

required for that task time, then it will receive no value. Discussed in Section 3.2.3,

t* limits the duration of the task that is added to the bundle now, but allows the

task to be separated into different executable forks that can be added to the bundle

later. The summation term in Equation (3.1) also drops any terms that are at not

null in the activity timeline because those are times when the satellite will be already

busy. This is explained in the next section and also presented as part of an example

in Figures 3-3 and 3-4.

State Constraints

This section covers the state constraints and the equations used to evaluate them.

There are only three states used in this problem, which were all introduced briefly in

64

Mask out when 'SO'is already busy
(black bars). Assume 'SO' has a data
state violation if the full observation Is
executed, so it only scores up to t*

"targ1@SO"
Value per
Mb per sec

0
time ts te te

Figure 3-4: Example task value evaluated for an agent with tasks already in its bundle
Task value evaluated after four tasks are already in the bundle. No value is obtained

for times when the satellite is busy. Actual value calculation is based off data
generated, data state at start of task (di(t,)), and if there are any state violations

from using the full duration of the task.

Section 3.1.1.

The data state constraint is formally framed as:

dm < di (t) < dma" Vi E I, Vt E T (3.3)

where d "in= 0 Gb and d"x = 12 Gb for all results presented in this thesis. The

energy state constraint is:

ei - (t)) e!a" ViE ,VtET (3.4)

where ei" = 2.78 Wh and e max = 13.89 Wh for all results presented in this

thesis. The states are calculated based on the executable tasks in the bundle and

the execution times in the path. The calculations are done with the discrete "state"

equations (Vi E-I):

e (t + 1) =ei(t) + (Ei(t)kg + j.type + base) At

di(t + 1) =di(t) + bJ.typest

where Ebase is -10 W, regardless of the activity timeline. This represents the base

rate for the other subsystems on the satellite. Kchg is the satellite charge rate and

Ei(t) represents if the satellite is in the sunlight or not. Ej.type is the energy usage

rate of the activity at that timestep, which is analogous to the data usage rate as a

65

Task Name and String D..type (Mbps) Ej.type (W)
Idle - null 0 0

Transition - T 0 0
Observation - 0 +50 -10

TX - X -10 -20
RX - I +10 -5

Downlink - D -20 -20

Table 3.1: State Impacts of Each Task Type
As explained in Section 2.1 and Table 2.3, the data and energy state values are
assumed based on current or projected CubeSat capabilities.

function of activity at that timestep, hje.type, in the data state equation. At is the

timestep between the discrete time points in the planning horizon, which is set to

10 seconds for all results in this thesis. These states are evaluated for each potential

task to add to the bundle as well.

To capture the bundle and path information with variable length tasks, another

state is kept, known as ai(t), which is the activity schedule at each timestep. The ac-

tivity schedule is Nep. long with each index corresponding to the respective timestep.

Only the following entries are allowed at each index:

" null: no activity or transition scheduled.

" T: transition occurs at this timestep. Required when tasks change nodes, based

on activity transition times as specified in the satellite model.

* 0: observation occurs at this timestep.

• X: transmission crosslink occurs at this timestep.

" R: reception crosslink occurs at this timestep.

* D: downlink occurs at this timestep.

The state impacts for each of the possible tasks are shown in Table 3.1:

Initial conditions for state:

ei(0) =12 Wh Vi E I

di(0) =0 Gb Vi E I

66

bobs = +50 Mbps bdlfk = -20 Mbps DRx-xlnk= +10 Mbps
D .. ,=12 Gb

DMIN D(t0) = 0 Gb
DS(t): Data Storage onboard a satellite over time ibTx-xnk 10 Mbps

E(to)= 12 Wh dInk= -20 W X-xnk = -5 W

EMAJ= 13.89 WhI

...... 1ol. I........ I................ %...... I......

EMIN = 2.78 Wh Nbase= -10 W oAP = +30 W ETx-xlnk= -20 W

ES(t): Energy Storage onboard a satellite over time

Figure 3-5: Example of a satellite's state over the planning horizon

Figure 3-5 shows an annotated example of a typical satellite's data and energy

state over the course of a 105-minute planning horizon. Note that the dark grey region

in the energy state plot represents the eclipse period, where Ei(t) = 0, otherwise Ei(t)

= 1.

3.1.3 Test Cases

As ICMF was being developed, the main test scenario was based on a challenging

planning case similar to the nominal case for the central planner used in the SPRINT

project, which was the state of the art centralized planner for small satellite BDRPs

described in Section 2.3.2, based on the GP-Fast planner developed by Kennedy [30].

One use case is not sufficient for testing the algorithm, especially in the performance

validation phase, so additional versions were developed.

e Commonalities between all use cases:

- 100 observation targets equally spread around the world from ±30° lati-

tude

- 10 NASA NEN ground stations (see Table 2.2 for latitude and longitude

locations)

- 3-plane Walker constellation with equal spacing between all satellites in

the same plane at an altitude of 600 km

67

- Absolute start time fixes the starting position of the constellation relative

to the Sun and Earth

- Planning time horizon of 105 minutes. This time was chosen because it is

close to the orbital period and aligned with the planning horizon time that

the SPRINT CGP was tuned for

• Differences between use cases:

- Inclination of the Walker constellation was either 30° or 60°. At 30° incli-

nation, the constellation is observation dense and there is more frequent

inter-plane connectivity. However, the 600 inclination constellation has

more downlink opportunities per observation because a larger diversity of

the NASA NEN ground stations are flown over. Both of these factors are

apparent in Figures 3-6 and 3-7.

- Number of satellites in the constellation was set to either: 30, 60, or 90.

The satellites are always equally spaced, so this results in 10, 20, and 30

satellites per plane (respectively). As the number of satellites goes up, the

number of unique observation and downlink windows increases linearly;

however, the number of possible routes increases exponentially because

the satellites come closer together, increasing the network connectivity.

There are six unique use cases, each with different planning complexity range

in terms of number of potential Tasks (Obs for Observations, Dlnk for Downlinks,

and Xlnk for Crosslinks) to schedule, as shown in Table 3.2. The Xlnk windows are

calculated based on being broken up into five minute windows.

3.2 Enhancements to CCBBA to Address the Max

Flow Problem
CMF was developed with modifications to CCBBA to accommodate the nature

of the max flow problem with time-gated windows of execution. This section covers

those modifications by first revisiting why CCBBA formed a solid foundation for the

68

Use Case Name Obs Windows Dlnk Windows Xlnk windows
walker30_inc30 NEN 262 56 1,080
walker60 inc30 NEN 524 111 4,392
walker90 inc30 NEN 766 164 10,248
walker30 inc60 _ NEN 116 58 1,272
walker60 inc60 NEN 234 115 5,208
walker90 inc60 NEN 358 175 12,864

Table 3.2: Use case names and number of unique activity windows.
These use cases have unique names that follow the pattern: walkerXXincYYNEN,
where XX is the number of satellites and YY is the inclination of each orbital plane,
in degrees.

60°

30°

0

30°

60°

90*

S -

0.* 60°E 120°E 180° 120'W 60°W

(a) Miller Projection of test case with 3
planes at 30 degrees inclination

(b) t=0 satellite comunication network
for walker30_inc30_NEN

Figure 3-6: Results contain 10,20, and 30 satellites per plane. In (a), green dots
represent observation targets, blue squares are the ground stations, and red lines
are the satellite ground tracks. This is a densely packed constellation with frequent
crosslinks and saturated observation schedule.

69

0.- -- _J3 -

0- .E 120*E 10° 120*W 60W

(a) Miller Projection of test case with 3 (b) t=0 satellite comunication network
planes at 60 degrees inclination for walker30_inc60_NEN

Figure 3-7: Results contain 10,20, and 30 satellites per plane. In (a), green dots
represent observation targets, blue squares are the ground stations, and red lines are
the satellite ground tracks.

problem, then describing the modifications. First, the pre-coordination phase, which

allows agents to create new Tasks that better represent the problem based on the

constellation geometry, is described. Then, the modifications are explained in the

context of the two main CCBBA phases: the bundle phase and the consensus phase,

as shown in Figure 3-1.

3.2.1 Motivation for modifying CCBBA

As explained in Section 2.3.3, CCBBA provides the capability to address complex

task allocation problems while maintaining the majority of the convergence and op-

timality properties of CBBA. A satellite constellation is made up of unique satellite

agents that will each have different noisy situational awareness yielding different task

valuations because of error in each orbit propagation and access window calculation.

As mentioned in Section 2.3.3, the difference in task valuation can lead to slow con-

vergence and excessive communication in decentralized methods that require state

convergence. However, this makes CCBBA is a good starting point for creating a

decentralized planning and scheduling algorithm because the convergence rate is not

affected by the difference in situational awareness.

The other main motivation for modifying CCBBA instead of modifying a decen-

tralized max flow algorithm to handle satellite constraints is based on the fact that

70

many of the realistic use cases may support multiple mission types, not just bulk data

routing. Using CCBBA as a base for developing ICMF preserves the generality of

task allocation setting, mainly: 1) handling both single bid and multibid tasks, 2) ac-

cepting different value functions and/or priorities for each target (instead of treating

all data as equal in value), and 3) accommodating new tasks at any time during the

plan execution. All of these factors led to the decision to enhance CCBBA to address

the BDRP for small satellites, instead of modifying a max flow algorithm.

The majority of modifications to CCBBA were required because of the time-fixed

nature of the tasks. The tasks are time-fixed because they are only possible during

physical access windows dictated by the orbit geometry and satellite's elevation lim-

itations for observations and downlinks. This leads to the pre-coordination phase,

task forking, and exact time matching enhancements present in CMF. Other modi-

fications were made to account for the similarities to the max flow problem, where

each agent has limited data capacity and some tasks decrease on-board data, while

others increase it. Taking advantage of this led to: task out-flow coupling and flow

state sharing. The final reason for modification was to improve upon the convergence

rate of CCBBA for this type of problem, which is where the iterative outer loop came

into the algorithm and created ICMF from CMF.

Figure 3-1 provides an overview of where the modifications occur in relation to the

original execution steps of CCBBA and Table 3.3 compares the aspects of the BDRP

that CBBA, CCBBA, and CMF can handle. These two graphics provide a high level

map of how the algorithms are related and why the modifications were made.

3.2.2 Pre-coordination Phase

This is required because of the assumption that each satellite only knows about their

own access windows to targets and ground stations. So downlink windows need to be

shared to deconflict. In original CCBBA, tasks are deconflicted based only on which

agent does them; however, in this case, ICMF needs to deconflict based on which

agent executes a downlink task to a particular ground station at a particular time.

The deconfliction moves from the binary task level (yes/no can agent X execute a

71

Can Algorithm Address BDRP Aspect?

BDRP Asped CBBA CCBBA ICW (mechanism)

Achieve Consensus on Multibid Tasks Yes Yes Yes (same as CBBA)
Mutually Dependent Crosslink Tasks No Yes Yes (same as CCBBA)
Deconflict Downlink Tasks Time
Overlap No Yes* Yes (pre-coordination)
Revisit Remainder of a Task after Part
of it is on the Bundle No No Yes (task forking)
Couple another Task to Repair the
State Violation from the Next Best
Task No No Yes (task outflow coupling)
Enforce Exact Time Match for
Mutually Dependent Tasks No Yes* Yes (exact time matching)
Dynamically Create newTasks base
on Flow Preferences No No Yes (flow state sharing)

Table 3.3: Comparison of CBBA, CCBBA, and ICMF in addressing key aspects of
the BDRP
(*) Note that CCBBA can technically handle the downlink deconfliction and crosslink
time match by using "not during" and "during" temporal constraints, respectively.
However, to represent all of the possible overlaps between different satellites, the
temporal constraint matrix grows as (1+ 2 Nsats-1) in rows/columns because each new
"not during" constraint has to split between all the previous before and after splits.
For example, in the 90 satellite case for the 30° inclination constellation, 30 of the
satellites have downlink windows with the same ground station at some point over the
planning horizon, which results in a temporal constraint matrix of size 536,870,913
x 536,870,913. This is what led to the development of the pre-coordination phase as
a way to avoid storing a matrix that large for each ground station.

72

(b)

HB5S

HB5S

)' HB5S

1.0 1.2 1.4
Time (hours) HB5S

(a) Subset of walker60_inc30_NEN un- (b) Downlink windows available at t=1.25

planned schedule. Dashed line is time hours from use case in (a)

represented in (b)

Figure 3-8: Example of downlink windows that need to be deconflicted

Satellites 40,41, and 42 from the 60 satellite case in the 30 inclination Walker

constellation are in the same plane and will all pass over ground station HB5S

between the 1.0 and 1.4 hour mark in the planning horizon. This is shown in

schedule form in the figure on the left. The figure on the right shows what the

physical geometry looks like from a view oriented normal to the orbit plane (not to

scale, approximation only).

task) to the time step level (only one agent can execute "downlink to ground station

X" per timestep).

The pre-coordination phase algorithm is simple and can be explained in a few

steps and accompanying graphics:

1. For the starting point, each satellite only knows their own downlink windows.

Each satellite creates downlink tasks from these windows. An example of this

starting point is shown in Figure 3-8.

2. The satellites communicate to all of their neighbors, sharing all of their own

unique downlink windows and any other downlink windows they know about

yet. A satellite sends "done" once it receives no new information from any of

its neighbors and records how many rounds it took to reach "done" as Rc. All

satellites stop and move to the next phase once they all have received a "done"

message from every satellite. This termination condition is just a distributed

flooding algorithm in a synchronous setting and will converge in O(diam) rounds

after the last "done" is sent [24]. Note that Rc +1 is used to bound the number

73

40

42

of communication rounds in each consensus round during each CMF execution

and in all cases tested, Rc = [diam/2] because in each round the satellites pull

and push information from/to each of their neighbors.

3. After communication of all downlink windows is complete, each satellite runs

a procedure that calculates the overlap regions for each ground station. The

procedure uses powerset enumeration, which creates out the set of all subsets

of time overlaps, to output unique tasks for each unique overlap set. Since all

satellites have the same information, they all output the same final unique task

set. An example is shown in Figure 3-9.

(three sats can bid)

so

S1

S2

time-> (two sats can bid)

Figure 3-9: Deconflicting downlink tasks

Creating separated downlink tasks based on shared downlink window times to the

same ground station

After the steps above are completed, then the rest of the algorithm starts with

the first bundle phase. After planning is complete, the deconfliction of downlinks

results in schedules similar to those shown in Figure 3-10 (which is a subset of the

full schedule shown in Figure A-4).

3.2.3 Bundle Phase Modifications - Task Forking and Flow-

Based Coupling

After completing the pre-coordination phase to create unique downlink tasks that ac-

count for time overlap at each ground station, CMF starts the bundle phase. Overall,

74

x
-o
C

4-I
(U

U,

o

~-1

r4t

1.0 1.2 1.4

Time (hours) ' HB5S

(a) Subset of walker60_inc30_NEN (b) Downlink windows and executions at
planned schedule. Dashed line is time t=1.25 hours from use case in (a)
represented in (b)

Figure 3-10: Example of downlink schedule after deconfliction
Satellites 40,41, and 42 from the 60-satellite case at 30° inclination are in the same

plane of the Walker constellation and will all pass over ground station HB5S
between the 1.0 and 1.4 hour mark in the planning horizon. Figure (b) shows what

the physical geometry looks when S40 is executing a downlink task that has a
potential overlap with S41. The grey color indicates that S41 cannot downlink

during this time because S40 won the bid for that unique task..

the bundle phase is similar to the bundle phase for CCBBA described in Section 2.3.3

where each agent individually does a greedy allocation of tasks one at a time until

their bundle is full or no other task can provide value. However, some key modi-

fications are required to address the BDRP successfully. All modifications in this

section are executed by individual satellites acting alone because they take place dur-

ing the bundle phase. However, the modifications can impact the convergence of the

algorithm and information shared during the consensus phase and those considera-

tions are noted throughout. Those modifications are covered in this section and the

pseudocode for the entire modified bundle phase is presented in Appendix B.2.

Task Forking

Task Forking is a method used to preserve the remainder of a Task for allocation at

a later point in the planning process without growing the amount of information that

needs to be shared between agents. By preserving the remainder of a Task, more

total value can be achieved with the computation overhead only in the bundle phase,

which is the phase that scales best with problem size. As mentioned in Section 3.1.2,

75

40

41

task value is based on the summation of value at each time point and the window

end time, te, will be adjusted to t* if the task will violate the data or energy state of

the satellite at a time greater than t*. For energy state violations, adding additional

tasks will only worsen the state and revisiting the rest of a task will not provide more

value; however, for data state violations, adding more tasks to the bundle could result

in the rest of the task (from t* to te) now providing value. For example:

1. Consider the observation window of target 1 by satellite 0, referred to as task

targl_SO, represented by the trapezoid region in the top plot of Figure 3-

11. Assume SO already has four tasks on the bundle, which are represented

by the black rectangles, which prevent any additional value being obtained at

those times. targ1_SO is split into two regions because one task already on

the bundle occurs in the middle of time window for targl_SO. SO evaluates

targl_SO from tto te and finds that it will break its maximum data state if

execution goes longer than t* as shown in the bottom plot of Figure 3-11, so SO

only considers adding targ1 SO to its bundle from tto t* and not for the full

duration.

2. After going through all biddable tasks, SO determines targl_SO to be the most

valuable task. SO adds the ExecutableTask associated with targl_SO, known

as targl_SOf0, to the bundle, only executing from times tto t*. Then SO

forks targl_SOLO based on the total window of targl_SO and the execution

information, (t, and t*) associated with targl_SO. This results in the final

task allocation and data state shown in Figure 3-12.

The next pass through all of the tasks during the bundle phase will include

the tasks forked from targl_SOf0. The relationship between the original and new

ExecutableTasks and the Task is shown in Figure 3-13.

Task forking, shown in algorithm 1, occurs after a task has been added to the

bundle and it's execution information has been set. Also note that algorithm 1 does

not impact the consensus dictionaries directly because it only forks ExecutableTasks

and not Tasks. All of the deconfliction is done at the Task level with the consensus

76

1

"targl@SO"
Value per
Mb per sec

0 ts te

time

dso(t)

ts t te
time

Figure 3-11: Example task that would break data state if full duration was added

dictionaries. For singlebid tasks, such as multiple contact observations, no additional

coordination is required because each satellite can observe the same target without

concern that it has already been observed.

However, if the task is a multibid task (such as a conflicting downlink or trans-

mission crosslink), then an optimistic bidding strategy is used to evaluate if the set

of forked tasks, which are all ExecutableTasks corresponding to one Task, can be

added to the bundle at all or not. At the end of the bundle phase, if any multibid

tasks were added in an optimistic way, they are checked against the winning bids

dictionary. If the accumulated value of the forked tasks does not beat the current

bid, then the bundle is rebuilt with an exclusion on those tasks that did not beat the

winning bid. This optimistic bidding strategy is used to avoid creating a multitude

of new tasks that need to be deconflicted with other agents, which could increase the

data sharing requirements and the consensus phase runtime. Refer to algorithm 6 for

more details on this aspect of task forking.

Note: the method updatePostForkj,(Rinds,newTasks) cleans up the possible ex-

77

"targ1@
Value pe
Mb per s

1

So"

ec

0

New Biddable Tasks
In bundle

00 1

tst*ete

time
DMAX

dso(t)

time ts t*

Figure 3-12: Forked tasks from adding feasible portion of a single task
Note that the light green 00 region technically includes the time up to ts as well (black
bar in the middle of the entire Task window). This is because the forking process
splits off new ExecutableTasks to preserve the entire set of time indices present in
the original Task. However, these indices will never be executed because that black
bar represents a task already on the bundle with higher value.

Algorithm 1 Task Forking

1: procedure FORKTASKI(Je)
2: newTasks +- null
3: if Je.forkable then
4: Rinds - Je.Pnds \ Je.Einds > Remaining t = possible t - executed t
5: if Rind 0 then
6: Rinds +- sort(Rinds) > assure in ascending timestep order

7: newTaskIndsList <- split(Rind,)
8: newTasks <- createExecutableTasksFromlndsr(newTaskIndsList)
9: updatePostFork j(Rinds, newTasks)

10: if newTasks then

11: jexec eecU l{newTasks}

78

targ1_SOO
Start: 45, End: 55

Before
forking

targiSO_fO
Start: 45, End: 55

------------ -------- -------- I

targ1_SO_0
After Start: 45, End: 55

forking

targ1_SO_fOO targISOfO targ1_SO_fOl
Start: 45, End: 50 Start 51, End: 53 Start: 54, End:55

Figure 3-13: Forked ExecutableTasks relationship to original Task

Task forking is a mechanism to allow satellites to select other portions of a phys-

ical activity window (grey Task box) after only a subset is selected for execution

(dark green ExecutableTask box) by allowing the remainder to made into new

ExecutableTasks (light green boxes). Note that each Task originally starts with

just one ExecutableTask covering all time points within it (top graphic "Before fork-

ing").

79

ecutable timesteps for the original task and adds to its forked family tree so it tracks

its own forked children and parents. See Appendix B.1 for more details.

As shown in Figure 3-17, task forking significantly enhances the ability of CCBBA

to handle max flow problems by allowing tasks to be segments that allow value to

be obtained with interweaving of inflows and outflows, but there are cases where

additional measures are required to capture more data throughput potential.

Task Outflow Coupling

The flow-nature of the BDRP results in outflows that can repair state violations that

would occur in the future from inflows (and vice-versa). Task outflow coupling is

used by an individual agent and leverages the flow-based nature of the problem to

pair two tasks together that are feasible in combination, but infeasible when added

sequentially. This can overcome some of the limitations of a sequential algorithm

such as CCBBA to address flow-based problems. Since the BDRP is focused on

maximizing DV downlinked, only inflows (observations and reception crosslinks) are

coupled to downlinks, which is why the implementation is "task outflow coupling"

and not just "flow coupling". More explicitly, task outflow coupling is invoked when

an observation or reception crosslink exceeds the maximum data state at some point

in the future. If a downlink can fully or partially repair that data state violation,

then the original violating task is coupled to the downlink (outflow) and both are

added to the bundle together in one step. Since task outflow coupling occurs in the

bundle phase, there is no interaction between agents and this is a method that is used

individually by each agent only.

To motivate the use of task outflow coupling, examine Figure 3-14. This figure

shows a reception crosslink that would not be possible without outflow-based coupling.

Reception crosslinks often benefit the most from this enhancement, which can be

crucial to allow CMF to achieve throughput levels similar to that of the centralized

planner. In task outflow coupling, the coupled downlink task, Jc, is added to the

bundle right after the inciting inflow task, Je, if Je is the highest scoring task out of all

available biddable tasks. This means that if Je is removed from the bundle (e.g. if it

80

DMAX - - - - --

data
state ~

0

tRXs tRX tBtj~5 ~ time t

data
state

IC
i tDs tD tBtime •

Figure 3-14: Example of Task Outflow Coupling Repairing Data State
Reception Crosslink Example (Je): The downlink (Jc) was previously forked and now

the forked portion can add value when coupled to this reception crosslink because

there will be data onboard at tDs. This repairs the data state violation that Je

induced at tB.

is a reception crosslink and never matches with the mutually dependent transmission

crosslink), then Jc will also be removed because it occurs later in the bundle.

The main idea behind the implementation of task outflow coupling is to allow a

temporary violation of the data state constraints, save that temporary violated state,

then use the same functions in a recursive approach to find the best assignment for

a potential repairing downlink. If a repairing downlink exists, then it is assigned as

the coupled task and if the original task is the best task, they are both added to

the bundle. If no repairing downlink exists, then the original task is shortened and

forked as described in Section 3.2.3. Both mechanisms can be active in the case where

a partially repairing downlink is found, but the task still needs to be shortened to

81

-k FindBestAssignment

Check ag(t) to remove
Bundle , busy times fromJ, times CalcValueOverWindow
Phase /

J, end at t, anid Anothe

EvaluateJand breaks state at tasig C)of

modified candidate . ta > t,
J.- Ic execution window **

aWknui wt .. m true

MJbKUpufwuimdi

PkMfm mdJ

Check minimum I "*c

- duration requirement, false
retum J.,Jc,t 0 calcdatet

Figure 3-15: Recursion Step in Implementation of Task Outflow Coupling
Some of the details have been omitted for clarity. The solid black dot represents the
function start point and the black dot with a circle around it represents function end
point. See full algorithm pseudocode of the two main functions in Appendix B.2

achieve a feasible data state, even with the coupled downlink. The two main functions

and the relevant recursive step are shown graphically in Figure 3-15.

Bundle Phase Enhancements Summary

This section describes an example satellite schedule and presents the results of using

these modifications to show how they enhance CCBBA to better solve the BDRP.

Figure 3-16 depicts an example satellite data state and schedule with annota-

tions explaining the impact of the modifications. A numerical evaluation of the

benefit of the modifications, in terms of total runtime, data throughput, and con-

sensus iterations, is shown in Figure 3-17. Task forking allows over 70% additional

data throughput to be achieved. The sequential CBBA based algorithms, including

CCBBA, without task forking, leave a lot of throughput unused because the algo-

rithm is not able to revisit previous observation windows after more downlinks have

been added to the bundle. The impact of task outflow coupling is more subtle. There

is improvement in all three metrics, but the biggest effect is in reduced consensus

iterations. This occurs because high value transmission and reception crosslinks can

match sooner because they often occur earlier. This is especially apparent in use

82

Observation Window

Forked & OF Coupled Downlink: The coupling allowed the reception crosslink to Observation Execution (Obs)be executed even though data state is at maximum at some point in the future
Downlink Window

Downlink Execution (Dlnk)

% S-4 Gs
2

t13 t35 GS1 t56 t77 t99 Gs3 t83 t64
(44 ,r1

time ->
www[i T1 L 1 [T F8 1FIi

Forked Downlink: The forking occurred because not
enough data was onboard when just targ56 was on the

bundle. Then the forked Dink was added, which allowed
targs77 and targs99 to be observed.

Transmission Crosslink (TX)

Reception Crosslink (RX)

Figure 3-16: Example satellite schedule highlighting the modifications to the bundle
phase of CCBBA
The first plot in this figure with linear elements represents the data state over time
for satellite S27 in the 30 satellite case for the 30° inclination Walker constellation.
The plot below that is S27's activity schedule as a result of running CMF. The
numbered abbreviations inside that plot represent the other physical objects that
S27 is interacting with for each activity (either other satellites, targets, or ground
stations). The numbers below the schedule represent the order that the tasks were
added to the bundle, which is a decreasing value order.

cases with a lot of observations that will hit max data state at some point, where the

only way to add a reception crosslink near the start is to couple it with a downlink

somewhere in the start or middle of the timeline (this is also shown in Figure 3-16).

Impact of Task Forking
(Observations and Downlinks only case) Change from baseline with coordination phase

I I A, With Forking
ase (30 sats) Runtime % change DV % change Iters % change

nc 30 38% 71% 0%
nc 60 7% 12% 0%

Forking improves DV
throughput because the
unused portion of a task
can now be allocated
later in the bundle

Impact of Task Outflow Coupling
(all Task types) I Change from baseline with coordination phase

With ForkingandUrLoupling
.ase (30 sats) Runtime % change DV % change Iters % change

nc 30 -12% 1% -23%

nc 60 -13% 2% -13%

OF coupling improves
runtime and DV
throughput because
crosslinks that are more
likely to couple are
chosen sooner

Figure 3-17: Annotated tables highlighting the impact of the bundle phase modifica-
tions to the 30 satellite test cases.

83

S26 t8

14 &15

GS2

10]
r7w

ME

3.2.4 Consensus Phase Modification - Exact Time Matching

and Flow State Sharing

The bundle phase modifications help achieve higher performance on the BDRP; how-

ever, they do not address all aspects of the problem to create a physically realistic

schedule. The first reason is that exact time matching between crosslinks is not en-

forced, only matching between mutually dependent tasks with the same mechanisms

as CCBBA is used. While this ensures that a TX crosslink will occur around the

same time an RX crosslink, the two satellites could choose only a small portion that

overlaps in exact time. To fix this, a mechanism to enforce exact time matching by

removing non-matching tasks and creating tasks more likely to exactly match based

on current plan information was developed.

The other main modification was needed because using fixed crosslink windows

led to excessive combinations of non-matching mutually dependent crosslinks. This

caused slow convergence and a large number consensus rounds, making physical de-

ployment of the algorithm less feasible. To address this, a flow direction preference

state, or "flow state", is calculated for each agent at each timestep and then shared

with other agents during consensus rounds. This flow state is used to match in-

flows with outflows and create fewer total crosslink tasks, while still keeping the most

valuable crosslink possibilities.

Exact Time Matching

While crosslinks may match at the task level, there is no mechanism in CCBBA to

enforce an exact match for each timestep (except for the temporal constraint matrix,

which was deemed to grow too large for this task, see Table 3.3). For example,

crosslink task "TX:SO-+S1_10-20" and "RX:SO-+S1_10-20" represent a crosslink from

satellite SO and S1 from time indices 10 to 20. Both satellites have to bid on the

respective task, but they may execute different portion of the task (e.g., SO plans to

execute "TX:SO-+S1_10-20" from 10 to 15 (before running into a potential data state

violation) while S1 executes "RX:SO-+S1_10-20" over the entire duration from 10 to

20). If this were to go uncorrected, then satellite S1 would think it has 5 steps worth

84

ON SAT SO Same Outcome

TX:SO->S1_10-20
Start: 10, End: 20 Dead Crosslinks:

RX:SO->S1_10-20
TX:S0->S1_10-20Tx:s->s1_10-20f0 TX:SO->S1_10-20f00

1 Start:10, End:15 Start: 16, End: 20 NewCros-slinks:

ON SAT S1

RX: SO->S1_10-20
Start:10, End: 20

RX:SO->S1_10-20f0
Start:10, End: 20

SO.inds(RX:SO->S110-20)=10:20 TX:SO->S1_10-15 S1.inds(TX:SO->S1_1O-20) = 10:15
Match: 10:15 RX:SO->S1_16-20 Match: 10:15

Non-Match: 16:20 TX:SO->S1 16-20 Non-Match: 16:20

Figure 3-18: Example of Time Matching Algorithm Creating New Crosslinks
Red signifies a reception crosslink and purple is used for transmission crosslinks. Filled
boxes signify the ExecutableTask that is actually on the bundle. Even though the
two satellites perform the operation independently at the end of the consensus phase,
they come to the same outcome (box in the middle of the figure) because they have
shared information.

of reception crosslink data that was never actually delivered yielding an incorrect

plan. To fix this, satellites also share their planned execution times for all crosslinks

with each other during the consensus phase. At the end of the consensus phase, any

satellite that has met the mutual dependence requirement for a crosslink task then

checks the execution times. If the execution times do not match, then new tasks are

created at both agents based off the time disagreement. This example is shown in

Figure 3-18.

In Figure 3-18 "Dead Crosslinks" means that they are no longer used in the al-

gorithm. These crosslinks have all the ExecutableTasks removed from the bundle

and are communicated to other satellites during the consensus rounds to remove

them from their respective consensus dictionaries. "New Crosslinks""are added to the

consensus dictionaries and have corresponding ExecutableTasks created. The time

matching procedure is shown in algorithm 2 and executes at the end of each consensus

round. During each consensus round, each satellite also shared their list of "All Dead

Crosslinks" with their neighbors so that they can remove them from their consensus

dictionaries; this step is not shown in algorithm 2. Some notation is introduced below

to simplify some of the book-keeping required.

. Xi'"l: this is a specific type of Task (J), which has the following properties:

85

type of xlnk (TX or RX), one or more of its ExecutableTasks is on the bundle

of satellite agent with index i, and has its mutually dependent Task met as

well. The last property means that the bid value of the Task that is mutually

dependent with X alid is greater than 0, I.bids(Xialid.MD.id) > 0.

• X"lid: this is the set of all valid crosslinks on the bundle of agent with index i.

" For other properties, methods, or simple functions not yet defined, refer to

Appendix B since they are used in multiple pseudocode blocks.

Algorithm 2 Crosslink Time Matching

1: procedure MATCHTIMEI(Xvaid)
2: deadinks <-0
3: neWxlnks- 0
4: for Xvalid i XYalia do
5: tx - I.inds(X"alid.id) > exec timesteps for xlnk
6: ty <-I.inds(X"valid.MD.id) > exec steps for mutually dependent xlnk
7: if tX / ty then
8: deadxIks - deadxinks U{ Xiau, Xialid.MD}
9: match <- tz x ty

10: all Xvalid.Pinds > all possible timesteps for this xlnk
11: nonMatch <- all \ match > set difference operation
12: nonMatches -split(nonMatch) > sets of continuous timesteps
13: newlndsSets {match, nonMatches} t> set of separated sets
14: newxlnks +- newinUs U createNewXlnks(newIndsSets, Xalid)

15: removeAllExecFromBundler(deadxlnks)
16: initNewXlnks(newxink,)
17: I.AllDeadxlnk +4- I.AllDeadxink, U deadxlnks

In most cases, the percentage of crosslinks that exactly match in time (as a per-

centage of the crosslinks that match at the Task level) is above 60% after the first

round with crosslinks present, with an example shown in Figure 3-23. This is because

ICMF only creates crosslinks based on matching inflow with outflow states at each

timestep. This flow matching yields crosslinks that are shorter duration, while still

having potential value. The user of ICMF can tune the minimum duration of all

activities to ensure windows are not too short. This reduces the amount of crosslink

removal and creation from the time matching procedure because a lot of crosslinks are

86

set for full duration. Task forking also helps reduce non-time matches because after

one task has matched at the Task level, more forked ExecutableTasks will fill in for

that same Task, resulting in higher likelihood of both Tasks being full duration since

they can revisit the original duration until it has been fully allocated to the activity.

Flow State Sharing

With the bundle phase modifications and crosslink time matching, all of the infras-

tructure is in place to start testing CMF performance. Performance with just these

modifications is reasonable and comes within 5% for data throughput of the SPRINT

CGP. However, the runtime is only slightly better and the data throughput as a

function of consensus rounds is flat. While this shows the feasibility of the method,

it also reveals that using fixed duration windows for the crosslink tasks results in

an inefficient information sharing approach. In the initial approach, crosslink Tasks

are created by breaking up physically continuous crosslink windows between satellites

into 5 minute chunks and calling each time chunk a separate Task. This preserves all

possible physical crosslink opportunities, but also creates a large number of crosslinks

and presents an arbitrary time barrier between physically continuous windows. The

performance limitations of this approach are highlighted for one example in Figure 3-

19.

After reviewing these initial results, a new approach was developed based on a

flow preference state, either "inflow" or "outflow", that is calculated for each timestep

at the end of each bundle phase. An "inflow" preference means that the satellite

can take reception crosslinks at that time and and "outflow" preference means the

satellite can take a transmission crosslink at that time. These preferences are only

a function of the agent's bundle and accumulated knowledge about other satellites

up to that point. Agents share their flow direction preference with their neighbor

during each consensus round and they keep a dictionary of all other agents "inflows"

and "outflows". This is a key point because the flow state is a property of that agent

which other agents use to determine if they should create crosslinks that involve that

agent. TX crosslinks are created for each timestep where an agent's set of outflows

87

Critical RX crosslinks 4010 -- ---

are being selected, Z Fnan D
but not pairing
efficiently with 3 -325

coupled TX crosslinks. SPRINT GP Runtime:1310 sec
This is apparent >

because DV drop off 2

occurs when RX E

crosslinks exceed .500
maximum rounds to

bid solo 25

0 10 20 30 40 5o0 6
Consnsus R&M4 4*)

Figure 3-19: Performance of fixed crosslink windows
Use Case: 30 satellites in 30 inclination walker. With fixed crosslink windows, CMF
achieves 23% faster runtime, but with 3% less DV throughput than the SPRINT
CGP.

matches with a neighbor's set of inflows. That neighbor will create the mutually

dependent RX crosslink at the same timesteps by matching their own inflows with

the original agent's outflows. This approach is flexible in that the user can program

a function to calculate the direction preference at each time step. The flow direction

preference should be related to the global objective function for best performance.

The flow direction approach is summarized with an example shown in Figure 3-20.

The particular function used to determine flow preference state and how it fits

into the rest of CMF is shown in algorithm 3. This is run at the end of each bundle

phase. A critical part of this function is the use of the "distance to downlink for

agent I" or distllk(t). This represents the network distance, measured in hops, that

a satellite agent is from a downlink as a function of time. If a satellite has an open

downlink (i.e. a downlink window that is not fully executed) at some point tod then

all times t < tod will have distdink(t) - 0 since that satellite can downlink new data

itself. Otherwise, distInk(t) is based on the minimum of all neighbors distlnk)

Mathematically, it is calculated as follows:

88

satellite inflow In this example, 4 TX and 4 RX tasks
are created, instead of the 84 total

satellite outflow tasks that would be created via the
five minute window interval approach

time->

time->

• The flow state of all known satellites is shared
with all communication partners during TXnid= self.outflows f neighbor.inflows

consensus phases
• After consensus phase, each agent makes RX id= self.inflows nneighbor.outflows

executable tasks out of overlapping flow
windows

Figure 3-20: Example of flow direction state
Chart describing flow direction windows in one example schedule after the first bundle
phase. Satellites calculate flow preference state for each timestep in the planning
horizon. The bars underneath each schedule represent the flow preference state: blue
is an inflow preference, orange is an outflow preference, and gray is null (busy at that
time).

minDistdh +(t) = min(di nk(t))+1 VtET (3.5)
ViEI

distil'k(t) = min(minDist dl t dl"k(t)) Vt E T (3.6)

During the first bundle phase (before any information sharing about planned bun-

dles), distdlnk(t) - inf Vt> t,,d,wheretod is the timepoint of the last open downlink

in its bundle. If there are no open downlinks, thendistlnkt - inf VtE T

This functionality is referenced in the pseudocode of algorithm 3 by the function

updateDistanceToDnkQ(). The flow direction state, I.fd(t) is stored as an array of

strings, where each entry will either be 'I', '0', or null, which stands for "inflow",

"outflow", or "no flow", respectively. "No flow" occurs when the satellite is already

busy at that time step with another task or transition.

Note that fds, the fraction of data storage heuristic, controls the balance between

inflow vs. outflow at time t when distink # 0. This can be used to tune the balance

between data margin preservation, performance, and consensus rounds. Values closer

89

Algorithm 3 Flow Direction Preference Calculation

1: procedure CALCFLOwDIRECTION(fds)
2: distIl+k(t)<- updateDistanceToDlnkj()
3: for t in T do
4: if distdlnk(t) = 0 then
5: I.f d(t) <- 'I'
6: else > no open downlinks remaining for this agent at times > t
7: if di(t) < fds(DMAX - DMIN) then
8: 1. f d (t) <- 1'I
9: else

10: I.f d(t) <-0'O

11: if ai(t) $ null then
12: I.fd(t) - null > busy during this time, overwrite with no flow

to fds=0.5 will create more total crosslinks, but could lead to more consensus rounds

and less data margin. For the results shown for the rest of this thesis, fds = 0.1,

because a lower value biases towards outflow when there are no open downlinks avail-

able for that agent. The outflow bias increases the likelihood that the satellites that

still have open downlinks will create matching transmission and reception crosslink

tasks since there are more total outflows to match with. The bias is there because

the objective function focuses on total data throughput and trying to allocate all

of the open downlinks will maximize data throughput. This functionality could be

improved by calculating the average distance to downlink at each timestep and then

using that information as well to influence the flow preference state. In its current

implementation, the performance gain is shown in Figure 3-21.

With the flow preference based crosslink creation approach, the runtime and num-

ber of consensus rounds required improve drastically as shown in the annotated box in

the lower left of Figure 3-21, with only a small additional drop off in total data volume

throughput performance as compared with using fixed crosslink windows. Lowering

the number of consenus rounds is a key requirement to make this approach physically

realizable on small satellites, so this was determined to be the better approach to cre-

ating crosslink windows. However, the performance as a function of consensus rounds

was still flat and the last 50% of consensus rounds had little effective information

sharing (i.e. information which impacted the actual final schedules vs. information

90

CMF compared to SPRINT CGP

DV: -5%
Runtime: - 77%

Comparison to CMF with fixed window
crosslinks

DV: -2%
Runtime: -70%
Rounds: - 35%

SPRINT DV Sched: 404 Gb
400 - -- --------------------------500

ni~ DV: 305 CA

400.
300

200.

Rutime- 303.21a s00

1100

SPRINT GP Runtime: 1310 sec

0 5 10 15 20 25 30 35 40
Consensus Roud (* I

Figure 3-21: Performance of flow based crosslink windows
Data throughput performance drops slightly, but runtime is much better and con-
sensus rounds improves. However, still a long flatline of performance as the final
crosslinks are being agreed too.

that is just repeated), so an approach which only created new crosslinks outside of

CMF and then iteratively ran CMF to improve performance was developed. This

approach is the final overall algorithm, known as ICMF.

3.3 Iterative CCBBA for Max Flow problems (ICMF)
While CMF, with modifications to both the bundle and consensus phases of

CCBBA, showed promise in being able to address the BDRP in a decentralized way,

still improvements needed to be made in the convergence rate.

3.3.1 Improving Convergence of Valuable Reception Crosslinks

The main idea behind ICMF was to reduce total crosslinks created while keeping

the most valuable ones. By focusing on reception crosslinks, and only creating new

transmission crosslinks that paired with value-adding reception crosslinks, the algo-

rithm could converge faster while keeping similar levels of total data throughput.

The iterative approach comes from running CMF in an inner loop. Value-adding RX

crosslinks are found by all satellites running a single "virtual" bundle phase with all

potential RX crosslinks based on flow preference state at the end of a CMF iteration.

This results in only a subset number of crosslinks used in each CMF run, except

for new crosslinks created for time matching purposes as described in Section 3.2.4.

91

However, the new crosslink creation for time matching does not increase convergence

time significantly since the new crosslink times are always a subset of timesteps of the

original crosslink times. For the first iteration when CMF is called, no crosslinks are

available, so only observations and downlinks are added to the bundle. Coordination

is still required for downlink deconfliction in this first round.

Before continuing on, reviewing terminology to keep the various types of phases,

rounds, and iterations consistent is helpful. Starting from the outer most loop:

" ICMF Iteration: This is the outer loop of ICMF, as shown in Figure 3-22.

One iteration calls CMF once and either creates new crosslinks and re-enters

to start the next iteration or terminates. Only on the initial iteration is the

pre-coordination phase run to share all downlink windows for deconfliction, as

described in Section 3.2.2.

* CMF Consensus Round: Inside CMF, there are consensus rounds, which include

all agents completing the bundle phase and consensus phase of the algorithm.

* CMF Bundle Phase: In this phase of a consensus round, each agent allocates

tasks in sequential greedy manner with the enhancements described in Sec-

tion 3.2.3.

" CMF Consensus Phase: In this phase of a consensus round, each agent executes

Rc communication rounds to fully propagate information across the network and

performs crosslink time matching as described in Section 3.2.4.

Subsequent rounds of CMF occur after the execution diagram shown in Figure 3-

22 loops back to the CMF block. ICMF terminates when there are no new crosslinks

created (termination condition on the left side of Figure 3-22), or when a counter

is reached for the maximum number of CMF iterations (termination condition on

the right side of Figure 3-22). A more in-depth discussion on a sensible value of the

maximum CMF iterations counter, iterSMAX is in Section 4.2.

The high level pseudocode for ICMF is shown in algorithm 4. Note that this is

written from the point of view of a "manager" process that could run the algorithm

92

Key: i Iteration 0 -> Pre

Intersatellite Comm Coordination Phase
Downlink and Obs

Individual Actions windows

Dissmant se true

false

Creae T (mlti/inge btrue
true cosik o de seiaeT

true
false

Dise .ia- false

Figure 3-22: Diagram showing the outer loop of ICMF, which iterates rounds of CMF.
The box with the thick outline represents a key step in ICMF that limits the number
of crosslinks considered to only value-adding reception crosslinks.

on a single CPU; however, the actual implementation is intended for a decentralized

environment. This pseudocode is just intended to give a sense of the overall flow of

the algorithm and not describe the details, see Appendix B.2 for more details and

descriptions of the functions used. The two input parameters are itersMAx E N

and TXmultibidEf6{true, false}. itersMAx is a cap on the number of CMF iterations

that occur. This parameter is used to help stop the algorithm once the majority

of value adding crosslinks have been found and scheduled. TXmltibid is a boolean

flag that is left as an algorithm parameter to let the user select for creating multibid

transmission crosslinks or not. A parameter study that focuses on the algorithm

runtime and performance as a function of these two parameters was conducted and

is presented in Section 4.2.

The results of using ICMF are presented in Chapter 4, but one example with

90 satellites is shown in Figure 3-23. Figure 3-23 is intended to display some of

the key properties of ICMF: the majority of consensus rounds are sharing important

information which is either helping improve exact time matching, crosslink coupling,

or data throughput. Note that the temporary drops in performance occur when

93

Algorithm 4 Iterative CCBBA for Maximum Flow problems (ICMF)

1: procedure ICMF(itersMAx,TXmutibid)
2: propagateOrbitsAndCalculateWindows(
3: deconflictDownlinks()
4: iters <- 0
5: newXlinks +- true

6: newXlnksSet <- 0
7: while newXlnks do
8: consensus <- false
9: while not consensus do

10: shareNewXlnks(newXlnksSet)
11: cmfBundlePhaseAll()
12: consensus <- cmfConsensusPhaseAll()

13: iters +- iters + 1
14: if iters > itersMAX then
15: return "Complete: Reached CMF Iterations Timeout"

16: AllXlnksRx +- createRXFromFlowState()
17: VARX +- tempBundlePhaseAll(AllXlnksRx)
18: mutuallyDependentXlnksTx +- createTXFromRX(VARx, TXltibid)
19: newXlnksSet <- AllXlnksRx U mutuallyDependentXlnksTx
20: if newXlnksSet # 0 then
21: newXlnks +true

22: else
23: newXlnks +-false

24: return "Complete: No more valuable RX Crosslinks"

94

crosslinks are removed from the bundle because they hit the timeout parameter limits,

°!° and vij, that enforce mutual dependence between TX and RX crosslinks.

3.3.2 Considerations for Making Transmission Crosslinks Multi-

bid

In Section 3.3.1, the ICMF algorithm parameter TXmutibid was introduced. The

difference between the two settings of this parameter are shown graphically in Fig-

ure 3-24 and are explained in detail as follows:

" TXmultibid= true: will cause ICMF to create new TX crosslinks that are split

up based on the unique overlaps of all agents that have an outflow state for a

single agent's inflow state. This is similar to how downlinks are deconflicted

based on overlap in physical windows to the same ground station, only now

the reception crosslink agent is the ground station and the time periods that

the reception crosslink agent is in an inflow state is the total physical access

window for the ground station. For downlinks the number of potential overlaps

is usually limited to satellites in the same plane, so the growth of overlaps is

manageable. This is not the case for crosslinks and the growth in potential

overlaps increases dramatically as satellite plane density increases because both

in-plane and crossplane crosslink opportunities grow. The main advantage of

this setting is that the RX crosslink never has to choose different potential TX

crosslinks to match with. Every timestep of RX crosslink time only matches

with one TX crosslink, but that TX may have mutiple bidders.

* TXmultibid= false: will cause ICMF agents to create separate new TX crosslinks

for every neighbor agent that has a matching outflow with its own inflow

states. rRecall from Figure 3-20 that TX with a given neighbor is created

when TXd = self.outflowsfnleighbor.outflows. This results in less total

crosslinks because they do not need to be separated based on different overlaps,

but it also has the potential for lost RX crosslink opportunities if the RX and

TX crosslinks don't line up before the timeouts are reached on each task. This

95

walker90inc60NEN

- I

I V: 437 Gb

CCBBA
convergence points XInk Pairing

Exact Time Matching

0 5 10 15 20 25 30
Consensus Round (#)

35 40 45

Figure 3-23: Example of ICMF convergence with 90 satellites
This example has three CMF iterations, indicated by the dotted vertical lines. On the
first iteration, only observations and downlinks are present, so convergence completes
in 5 rounds. Then new crosslinks are created following the approach outlined in this
section. After the 2nd iteration of CMF convergence, one more round is done to see
if there are any new beneficial crosslink opportunities for the constellation. Note that
both "Xlnk Pairing" and "Exact Time Matching" lines are fractions whose values are
shown with the blue axis on the right. "Xlnk Pairing" is the fraction of crosslinks that
have met their mutual dependence constraint out of all crosslinks bid and "Exact Time
Matching" is the fraction of crosslinks with an exact time match out of the crosslinks
that have met their mutual dependence constraint. The dropoffs in the plot occur
when crosslinks permission to bid solo parameters reach zero because they have not
matched with the mutually dependent partners.

96

500-

Q400-

C
0

300-

3200-
CV

100-

*1.0

3.8

0

K3.6d

-.4

0- W W.

(a) Flow Preferences

I)

4d

i

Key:

stscani

nflow nflo

TXTSO 1S

(b) Resulting crosslinks if TXMbd = false (c) Resulting crosslinks if TX bd = true

Figure 3-24: Example of TX crosslinks that result from different TXmultibid values
Note that there are 4 unique TX crosslinks created in the figure on the bottom left,
when TXmultibid = false and 6 unique TX crosslinks created in the figure on the
bottom right, when TXmultibid = true.

is shown visually in Figures 3-24 and 3-25

Single-bid: Multi-bid:
New TX crosslinks are created for New TX crosslinks are created using

a single agent to bid. They a similar approach to downlink de-
overlap in time with other TX confliction, where the minimum

crosslinks for the same RX overlap windows are found. This
window and use the CCBBA results in multiple TX satellites

timeout parameters to agree on a competing via bids for the same RX
pairing. window.

Figure 3-25: Graphical view of single bid vs. multibid TX crosslinks

This view is intended to be a single timestep snapshot. The ' case has multiple RX

crosslinks that may not find a match, resulting in lost total DV output, while the

multibid case has only one RX crosslink per satellite per timestep, but there may be

more total crosslinks to consider which can slow down the consensus phase.

Initially, the hypothesis was that creating multibid transmission crosslinks would

always be better for performance and consensus rounds because the RX crosslinks

97

would not time out unless there was no possible satellite that could add a TX crosslink

to its bundle at that time. However, after more testing it was clear that, in general,

setting TXmultibid = true results in slightly better performance at the cost of more

runtime and consensus rounds. The runtime and consensus gap increases because

there are more total crosslinks created in the true case, especially as more satellites

are added. This is shown visually in a simple example in Figure 3-24 (c). The runtime

gap also increases as the number of satellites is increased because the powerset-based

calculation of unique overlap windows starts to dominate the runtime and becomes

infeasible for efficient on-board computation between 60 to 90 satellites. Additional

details on the difference between the two settings and when a user might want to use

one over the other is presented in the algorithm parameter study in Section 4.2.

3.3.3 ICMF interfaces for on-board planning

This section presents a notional interface for the ICMF algorithm to some of the sub-

systems onboard a typical small satellite. Figure 3-26 depicts the high level functional

interfaces and differentiates between interfaces required during algorithm execution

(in blue) and those required before or after planning and scheduling is completed

(in yellow). This is intended to be used as a basis for future work on development

of an on-board version of the algorithm or for additional development with lower

level schedulers that can improve failure recovery performance. ICMF could be used

as the planner in a larger autonomy framework, such as the All-Domain Execution

and Planning Technology (ADEPT) framework [49] developed by The Charles Stark

Draper Laboratory, Inc as a modular framework for autonomous systems.

The functionality of each of the subsystems or functions that would interface to

ICMF can be summarized as follows:

* Guidance, Navigation, and Control (GNC) Subsystem: this subsystem is re-

sponsible for orbit determination, maintaining knowledge of constellation neigh-

bors, and, if equipped with propulsion, commands for orbit maintenance. ICMF

sends the target set and planning horizon to this subsystem and receives the

activity windows for all activities and eclipse windows.

98

" Communications (Comm) Subsystem: this subsystem includes the low-rate ra-

dio used for planning communications. The laser communications done with

crosslink activities is controlled by the Executor (or Task Manager), which in-

terfaces directly with the payloads.

" Mission Scheduler: this subsystem could be a software agent that is a lower

level scheduler used to maintain the schedule produced by ICMF and trigger

replanning if the schedule becomes unexecutable. This subsystem also has the

responsibilty to interface to the attitude determination and control (ADCS) sub-

system at appropriate times to ensure that pointing requirements for upcoming

activities are met.

" Executor: this function represents the physical interface to all of the activities

in the schedule, including the laser communications payload for crosslinks, radio

for downlinks, and observation payload for observations.

* Task Interference Agent: this is an advanced autonomy function that could be

used to predict new targets from existing target sets. Some level of on board

data processing and/or ground user feedback would be required to implement

this functionality.

" Distributed Ground Users: this represents the user set that ICMF would collect

target and downlink information from and incorporate it into future planning

horizons.

3.4 Greedy Routing Algorithm
The activity schedule produced by ICMF does not provide a unique way to execute

the plan. This is because each satellite needs to decide what data to pass over the

crosslinks and downlinks in the schedule. This is where data routing is required. This

section covers the routing algorithm used to route the data and generate the results

in Chapter 4 for median observation latency and median average age of information.

First, a brief explanation of why a routing algorithm is required to calculate these

99

interface during P&S Interface before/after P&S

*Next planninghorion and targets,- _-__

Activity/eclipse windows GNC Subsystem

Iterative CCBBA for Max Flow (ICMF)

Planning info to send

Comm Subsystem

PerformancePl
nforc iv

information
fromlastrun Target set & priority -Adjst projected state based on execution actuals

Acti"itSchedule -Trigger immediate replanningIf needed

TaskInferenceAgent Mission Scheduler Executor

(recovery from self-fixable failures) (direct control and/or interface to

Distributed Ground Users - (interfaces to other subsystem to Status /failureflags subsystem control computers)
meet schedule requirements)

Figure 3-26: Possible ICMF functional interfaces to other satellite subsystems.

metrics is given. Then, the algorithm itself is presented. One of the key assumptions

of this routing algorithm is that it is executed after the tasks have all been agreed to

and the schedule has been set with ICMF. As discussed in Chapter 2, this is different

from many other planning with routing algorithms that either select candidate routes

first, or weave them into the planning process 130].

3.4.1 Routing Requirement

Individual observation data packet routing is not taken into account when ICMF

creates an activity schedule. Data routing is needed to determine which observation

data will be passed across non-observation activities (downlinks and crosslinks) in

the schedule. The results from data routing are used to determine statistics relevant

to each observation window and unique target. While total data throughput metrics

can be calculated without data routing, determining latency for each observation

window and the age of information for each unique target requires knowing which

observations' data packets are present in each of the downlink tasks, which requires

a data routing algorithm. The data latency and Aol metrics are used for two main

reasons: 1) they represent metrics that may be important to some users that might

prefer timeliness of information as well as total amount of information, and 2) these

metrics are used in the SPRINT CGP [30] and can provide additional comparison

100

points for ICMF against a centralized algorithm that is more route-focused in its

approach. The definitions of these metrics are:

• Initial Observation Latency (or latency, latob): This metric is a property of each

individual observation window (which are converted to observation Tasks at the

start of the algorithm) and is simply the time from the end of the observation

to the time of the downlink for a specified amount of data from that observa-

tion window. latob is calculated for each observation window as the difference

between the time the first 100 Mb of data was downlinked for that observation

and the end time of the observation ExecutableTask (lateb tonk- ted). A

different satellite could downlink the data than the satellite that observed the

data, but for this metric to be calculated, at least 100 Mb from an observation

Task has to be transmitted in the same downlink Task.

" Target Age of Information (or Aol, Gtar,(t)): This metric is a property of each

unique target and measures the age of the knowledge on the ground about each

target. Calculated for each target and for each timestep in the planning horizon

in an iterative fashion for the set of all completed observations of that target.

This done in the following steps:

1. Initialize as linear function from 0 to durho, (duration of the planning

horizon): ar = t - tj , where ttart is the start of the planning

horizon and t is the absolute time in the schedule.

2. For each observation in the set of all observations for that target, compute

the following:

Gtarg(t) = min(t - tenjd, Gtarg(t)) Vt > tend + latob (3.7)

3. The final value of Gtarg(t) after all observations have been accounted for

is the Aol for that target. In the loop above (2), a new increasing linear

function replaces the previous one and the new linear function starts at 0

and goes up to durhor- tend, starting at the ending time of the observation;

however, this function only applies after the data has been downlinked,

101

lat.b

I I -

Gtag (t)

I - I
I I

time ->

Figure 3-27: Simple Aol example calculation with one observation.
The thick blue line represents the final Aol as calculated with this one observation
and the dotted blue lines represent the remainder of the two linear functions that
are removed in the composition to compute the final Aol. Except for discontinuous
jumps when a downlink occurs, the slope of the Aol function is always 1 (if schedule
and AoI time units are the same, which is true in this case).

which is why it is only applicable for t > tenb + latob since the time of

downlink is equal to the observation end time plus the calculated latency,

to"k= t0jd + lato. A simple example with only one observation is shown

in Figure 3-27.

3.4.2 Minimizing Latency and Age of Information from ICMF

Tasks

With the key metrics, observation latency and target age of information, and with the

defined data threshold of 100 Mb, a simple greedy routing algorithm was developed

to route the data after ICMF determines the activity schedule for all Tasks. The

solution ICMF provides to the BDRP limits the route options to be those that pass

through the linkages provided by the scheduled activities of the constellation.

However, there is still some flexibility for data routing options because of the

decision to route the first 100 Mb through a crosslink or a downlink. When the

102

downlink comes before the crosslink, the decision is easy and the downlink is always

chosen. When the crosslink is before the downlink, there is a possibility that the

crosslink could result is better latency and AoI performance. Instead of optimally

solving this problem with another round of consensus, a routing algorithm that uses

afixed heuristic value is used to address this decision. This heuristic, h "isrepresents

the bias to route the 100 Mb of observation data on a downlink available to the satellite

instead of sending it on a transmission crosslink. This way, additional communication

is not required and each satellite can make their own routing decisions. The value of

hnba was set to 30 minutes for all results in Chapter 4, but it could be any positive

number. Each satellite uses its own schedule to see when the next transmission

crosslink and downlink are, if the crosslink occurs h bisminutes or more before the

downlink, then that first 100 Mb associated with an observation is routed on the

crosslink instead of the downlink. The entirety of the algorithm is shown in the

pseudocode block of algorithm 5.

One additional note is that if a first 100 Mb data block comes across in a reception

crosslink, then that data block gets priority on the next downlink or crosslink (after

the satellite's own "first 100 Mb" blocks). Each satellite does not know until execution

time what the routes are, but in all cases tested, no downlink was full from just the

first 100 Mb blocks, so as additional priority blocks came across reception crosslinks,

they were able to add them to the next available downlink and defer some bulk data

to later downlinks. After each of the first 100 Mb blocks are downlinked, then any

remaining data is bulk data and not counted for in the latency and Aol statistics, so

the routing is simple since there is no preference. The remaining downlink time is

filled with any remaining data on-board the satellite executing each downlink.

The inputs to the routing algorithm are as follows:

* 0: The set of all executed observations. This is equivalent to the set of all

ExecuteableTasks that are on the final bundles of all satellites that have type

obs.

* Ips: The set of all satellite agents after ICMF has been run (post-scheduling).

103

The bundle of these agents collectively set the possible routes that can be exe-

cuted because they constrain the routing problem to the tasks on the bundle.

SDViat: The amount of data volume that needs to be delivered for initial latency

to be counted for that observation and for target age of information to be

updated. This is fixed at 100 Mb for all results in Chapter 4 due to the rationale

from Kennedy 2018 that the first 100 Mb provides science users the most critical

information [30], but it could be changed based on user needs.

•*h b: The heuristic bias to downlink instead of crosslink. A crosslink has to

occur h "a minutes sooner (30 minutes in all reasults) than a downlink for it

to be chosen for routing.

The first loop of the algorithm, which is a "For loop" over all the observation tasks,

initially populates the openRoutes and completedRoutes sets. These variables contain

route ordered set objects, RO, which always start with an observation. openRoutes

contains routes that end with a transmission crosslink, which is why they are "open"

still. After the first "For loop", these two sets are populated, but the openRoutes

could still be completed with a downlink by considering the activities on board the

receiving satellite from the transmission crosslink. This is the function of the second

loop, which is "While loop" because a route could remain in openRoutes after several

iterations by having more transmission crosslinks added instead of downlinks.

In the second loop, each RO in openRoutes is examined. The receiving satellite

agent from the latest transmission crosslink is retrieved and stored as I,. This satel-

lite's next open outflows are checked with getNextOpenOutflows (I,, e, DVIat) func-

tion. If there are no open outflows, then RO is removed from openRoutes and its data

will be routed to ground in the next planning cycle. If there are open outflows still

then the same comparison as the first loop is made to determine if the next stage

of the route should be a downlink or transmission crosslink. If a downlink is added,

then RO is added to completedRoutes and removed from openRoutes. Eventually

openRoutes will be empty and the routing algorithm returns the completedRoutes.

104

The getNextOpenOutflows(I, e, D ia) function is also used in algorithm 5 and

requires additional explanation:

e getNextOpenOutflows(I,, e, Dat): Inputs are a fully planned agent (I,), an

executed task (e), and the amount of data to route for that observation (DViat).

This function returns a tuple containing two tasks. The first task is the earliest

downlink executed by I that occurs after e has ended, where the downlink also

has at least DVat of available DV left (not yet routed). The second task is the

earliest transmission crosslink (TX) executed by I, that occur after e has ended,

where the TX also has at least Dat of available DV left. The data already

allocated to a particular outflow is tracked with the outflow.availableDV prop-

erty. Note that this function will return (null, null) if there is no downlink or

TX crosslink that meets the criteria specified above. However, for simplicity of

the pseudocode, these null objects still have the property ttart, but it evaluates

to 0 in this case.

Note that algorithm 5 doesn't explicitly route data from each observation beyond

the first DVat (100 Mb). This is because this thesis is not comparing final latency

for each observation and the remainder of the data can be sent in bulk over the the

remaining space in each outflow. Also note in line 23 of algorithm 5 that observations

are never routed if the observation has gotten to a point where it is on a satellite that

has no available outflows. This is only because of the limited planning horizon and

the BDRP has no requirement that all observations are routed within the planning

window. These will be downlinked in the next planning cycle. Ways that ICMF

can be modified to accomodate a requirement to route all observations within the

planning window and further improve latency and target Ao performance is discussed

in Chapter 5.

105

Algorithm 5 Greedy Routing Algorithm Post Activity Selection

1: procedure ROUTEDATA(O, Ips, DViat, hk)
2: openRoutes<- 0
3: completeRoutes<- 0
4: for each o in (do
5: R - {o} > ordered set indicating tasks in a route
6: 1,- getObserver(o)
7: dlnknext, tXnext <- getNextOpenOutflows(Io, D~Iat)
8: if has > dlnknext-tstart - tXnext-tstart then
9: tXlatest t-- tXnext

10: Ro <- Ro Gen tXlatest
11: openRoutes <- openRoutes U Ro
12: txnext.availableDV +- txnext.availableDV - DViat
13: else
14: Ro <- Ro een dlnknext
15: completeRoutes +- completeRoutes U Ro
16: dlnknext.availableDV <- dlnknext.availableDV - DVIat
17: while openRoutes # 0 do
18: for each RO in openRoutes do
19: tXlatest +- getLast Element(RO)
20: Irx +- tXiatest.RXsat

21: dlnknext,tXnext <- getNextOpenOutflows(Irx,tXlatest, DVIat)
22: if dlnknext = null and tXnext = null then
23: openRoutes +- openRoutes \ Ro
24: else
25: if h as > dlnknext.tstart - tXnext.tstart then
26: tXlatest +- tXnext

27: Ro <- Ro eend tXlatest
28: txnext.availableDV +-- txnext.availableDV- DVat
29: else
30: Ro +-- Ro Eend dlnknext
31: completefRoutes <- completeRoutes U Ro

32: openRoutes <- openRoutes \ Ro
33: dlnknext.availableDV <- dlnknext.availableDV - DViat
34: return completeRoutes

106

Chapter 4

Results

This chapter covers the results forICMF applied to the bulk data routing problem.

Throughout this section comparisons are made to the SPRINT CGP, which is de-

scribed in detail in Section 2.3.2. This baselines performance of the ICMF algorithm

against a state of the art planning tool for crosslink-enabled small satellite constel-

lations. First, data throughput and runtime metrics are presented in Section 4.1

for observation and downlink cases only, which show the feasibility of the approach

and highlight the benefits of the pre-coordination phase to help deconflict downlinks.

Then, the results of an ICMF parameter study for the test cases are presented in

Section 4.2. This parameter study highlights how the algorithm can be tuned by dif-

ferent users depending on their priority for runtime, consensus rounds, and total data

throughput. Finally in Section 4.3, the parameters are fixed to the same value for all

test cases and the results are presented for all metrics, including median latency and

median Aol, which are defined in Section 3.4.

4.1 Observations and Downlinks Only Results

This section covers the performance of ICMF against the SPRINT CGP for six

test cases, refer to Table 3.2, when crosslinks are disabled. Without crosslinks, the

bulk data routing problem becomes much simpler because the each satellite only needs

to coordinate to deconflict downlinks to ground stations. In addition to coordination

being simpler, the total number of activities drops significantly, especially for larger

107

constellations, since crosslinks make up a larger percentage of total possible activities

as the constellation size increases (e.g. for the 30 degree inclination case, with 30

satellites there are 1,080 potential crosslink activities out of 1,398 total activities,

while with 90 satellites there are 10,248 crosslink activities out of 11,178 total ac-

tivities). This change simplifies the problem because of the impact on both activity

scheduling and routing complexity.

When activity scheduling is framed as a Mixed Integer Linear Program (MILP),

no crosslinks means a significantly lower number of decision variables for selecting

activities. When scheduling is done with a greedy sequential task allocation algorithm,

such as ICMF, then it results in fewer total tasks to loop through every time the next

task to add to the bundle is selected. In both the MILP and greedy sequential cases,

there are no mutual dependence constraints to enforce between activities, so there is a

decrease in constraint size as well. The total number of routes is only O(NnksNobs),

which is a massive reduction from the worst case number of routes when crosslinks are

enabled of O(NdlnkNobsNs!) (Note: N,! here is number of satellites factorial, which

is included in worst case routing complexity because the number of simple paths in

graph grows factorially [24]). Testing performance against OD-only cases is useful to

validate algorithm performance, even with the reductions to complexity. The reason

is that if ICMF performs poorly in OD-only, then it is unlikely to perform well in the

crosslink enabled cases.

In all OD-only test cases, both ICMF and the SPRINT CGP were run on the

same computer, which has the following specifications:

e Intel(R) Core i5-7300U CPU 2.6 GHz, with 2 cores and 4 logical processors

* 16.0 GB of Random Access Memory (RAM)

4.1.1 30 degree inclination constellation

The first results presented in this section are for the 30 degree inclination case, with

either 30, 60, or 90 satellites equally spread across three orbital planes. Recall from

Section 3.1.3 that this case is observation dense because all of the observations lie

108

DV: +6%, Runtime: - 94% DV:+1%, Runtime: - 48% DV: +1%, Runtime: -82%

30 satellites 60 satellites 90 satellites

SPRINT DV Sched: SPRINT DVSched: 534Gb -------------- 00

343 Gb Final DV: 365 Gb b SPRINT DV Sched: Final DV: 566 Gb
Final DV: 539 Gb C 562 Gb

a

10 I.C0..Oo-E

00SPRINT GP RuntiSG meRne: 49 sec SPRINT GP Runtime: 298 sec
(notshown) (n(not shown)

0.00 020 0.50 0.7s 1.00 1.25 0.00 1.00 2.00 0 2 4 5 0 0 ,o 0 a
Ca.0 no"00(0) COCOOOOI,0R)#Od(#0 C2 0).

Figure 4-1: Downlink and Observations only results for 30 degree inclination test
case.
DV performance and runtime are both favorable compared to the SPRINT GCP,
which is summarized in the gray boxes above each subplot. This use case is downlink-
limited, so adding additional satellites once ground stations are fully tasked has lim-
ited effect on DV throughput

between -30° and +30° latitude, so the constellation is always over the observation

locations. This case is also relatively downlink-limited because there are additional

NASA NEN ground stations at higher latitudes. This results in the constellation fully

allocating much of the downlink time at the 60 satellite size, so there is only a minor

increase in total throughput when going to 90 satellites. This also means that ground

station deconfliction occurs at almost every possible window so this case is a good

test to verify that the pre-coordination phase and downlink deconfliction mechanism

for ICMF works effectively. Overall, ICMF resulted in more data throughput and

faster runtime than the SPRINT CGP for all three different constellations sizes, as

shown in Figure 4-1.

Note that the SPRINT CGP objective function has weights for data throughput,

route latency, energy storage, and keeping existing routes. Initially, data thoughput

was weighted at 1.0 and the rest were set to 0, but this resulted in runtimes that were

over twice as long for the 90 satellite case (compared to what is shown in Figure 4-

1), with only a slight improvement to DV. So the objective weights were set to 1.0

for data throughput and 0.1 for the remainder of the factors. This results in near

optimal data volume throughput and better runtime performance. The SPRINT CGP

activity scheduling MILP also has a 1% optimality gap tolerance so the solutions are

within 1% of optimal. SPRINT also uses heuristics to remove routes before activity

109

scheduling. This may explain how ICMF is able to perform slightly better for data

throughput than the SPRINT CGP in this case.

4.1.2 60 degree inclination constellation

This section covers results for observation and downlink only for the 60 degree incli-

nation case. This case is more observation-limited since each satellite only spends a

portion of its orbit over the target set. Because of the limited observation opportu-

nities, this test case has less total data volume delivered. As shown in Figure 4-2,

ICMF still performs well compared to the SPRINT CGP when it comes to runtime

performance with a runtime decrease of -87% on average across the three cases; how-

ever, there is a slight drop-off in data throughput performance when compared to the

SPRINT CGP. This is probably because this test case has more downlink windows

in total, but they are also shorter on average and more unevenly distributed between

the different orbital planes for a given start time (see Figures A-2 and A-5 for a com-

parison between the two constellations' downlink windows). More explicit reasoning

about the combinations of observations and downlinks over the entire constellation

could result in giving downlink windows to satellites that will hit their data limit

later in the schedule.

This type of reasoning is possible in a centralized MILP that considers the combi-

nations of all activities over the constellation. This is is more difficult to implement

in a decentralized algorithm that is based on sequential allocation such as ICMF since

only high level information is shared in-between task selection rounds. However, data

throughput for ICMF is still within 4 % of SPRINT in the worst case, so this is

deemed acceptable since there are still large runtime improvements. ICMF is able

to stay within a close percentage of SPRINT's data throughput performance because

the local value function used for ICMF uses the capacity fraction incentive, fDM (in-

troduced in Section 3.1.2, to capture the majority of instances where a satellite can

get more total data volume delivered by outbidding other satellites for a downlink.

Additional potential improvements that would allow ICMF to fully close the gap are

discussed in Section 5.2.

110

DV: -2%, Runtime; - 96% DV: -4%, Runtime: - 88% DV: -1%, Runtime: - 78%

30 satellites 60 satellites 90 satellites

.00, 1, 7 D

I SPRINT DV Sched: SPRINTDVSched:
SPRINT DV Sched: i 309 Gb Final DV: 296 Gb 375 Gb
155 Gb Final DV: 152 Gb 0 49360 - - - - - - - - - -- - --------- - - C r o n 0372Ob

t1
Ruh 0.00 75 s P.10-04.30 S 200 ft000)0 20.87.s

SPRINT GP Runtime: 19 sec SPRINT GP Runtime: 35 sec aGPRuntime: 97s
6' U xooSPRINT GP Runtime: 97s

(not shown) (notshown) X (not shown)
0.00 0.23 0.10 0.7is 1.00 0.23 1.30 1. 7S 2.00 0 1 2 3 4 5 0 1 2 3 4 6 7 8

C000. . d416 C.000110000(M Colafts ,0.10(0

Figure 4-2: Downlink and Observations only results for 60 degree inclination test
case.
Runtime is favorable compared to the SPRINT GCP and DV throughput is close,
which is summarized in the gray boxes above each subplot. This use case is not
downlink-limited to DV throughput continues to increase as constellation size grows.

Before comparing results with crosslink activities, the effect of the ICMF param-

eters on algorithm performance is explored.

4.2 Selecting Optimal ICMF Parameters for Test Cases
While ICMF was in development, there were several algorithm parameters tested

as a way to improve the flexibility of the algorithm. These include a subset of the

parameters used for coordinating mutually dependent tasks from CCBBA, such as

snoloi°, which is the permission to bid solo parameter, and, vij, which is the timeout

parameter for Task j stored onboard Agent i. Algorithm parameters also include the

factors described in Section 3.3, such as the number of CCBBA rounds and whether

to use multibid transmission crosslinks or not. One could also consider the functions

used to create the flow direction preference state as an algorithm parameter since

that can be changed modularly and influences different outcomes for the subset of

crosslinks considered. To simply the analysis presented in this thesis, an informal

study was carried out to fix the CCBBA parameters and the flow direction function

for all test cases.

4.2.1 ICMF Algorithm Parameters

Recall from Section 2.3 that the CCBBA parameters need to be tuned for each prob-

lem. Generally, there is a tradeoff in runtime and consensus rounds against data

111

throughput, with number of consensus rounds increasing as Wo° and/or vij increase.

Number of consensus rounds increases because, as wogf' and/or vij are increased, it

allows additional wait time for each task to be in the bundle without its mutually

dependent task being selected. However, data throughput doesn't always increase as

these two parameters are increased because the coupled task may never be feasible for

the other agent(s). Even if data throughput does increase, it is usually a small benefit

for a relatively large increase in runtime. After some informal testing to determine

which values of the CCBBA parameters resulted in a large amount of DV delivered

without unnecessary increases in consensus rounds and runtime, the following values

were set for all results presented in this section and remainder of this chapter:

4 og.O° - Permission to bid solo rounds: set to 1 for all crosslink tasks. Generally,

this ranges from 1 to 5, but can be any integer greater than 0.

• vij- Time out parameter: set to 3 for reception crosslinks and set to 2 for

transmission crosslinks. Generally, this ranges from 2 to 5, but can be any

integer greater than 0.

With these values fixed for CMF, which is based off CCBBA with the modifications

described in Section 3.2, the parameter study for this thesis focused on the ICMF

parameters that govern the iterative loop behavior, which includes crosslink creation

type. As mentioned in the Section 3.3, ICMF has two main parameters:

" Maximum Number of CMF iterations (integer): this sets the maximum num-

ber of CMF algorithm runs as the inner loop of ICMF. Recall that because

crosslinks are created after each CMF convergence, this implies that the num-

ber of crosslink creation stages will always be 1 less than this number, so it is

also referred to as "Max Iter Xlnks" (for Maximum Iterations for Crosslinks) in

some of the plots in Section 4.2.2.

" Create Multibid Tranmission Crosslinks (boolean): if set to true, then the trans-

mission crosslinks created after each CCBBA round are multibid, which requires

112

using the powerset operation to enumerate all the possible overlap combina-

tions (Many TX per RX). If set to false, then only the crosslink coupled to

each reception crosslink that provided value will be created (1 TX per RX), see

Figure 3-24.

4.2.2 Parameter Study Setup and Results

The ICMF parameters are varied over a small range and a full factorial comparison

is done with all use cases. The parameter values used are:

* itersMAx - Maximum Number of CMF iterations (integer): 2, 3, 4

" TXmultibid- Create Multibid Tranmission Crosslinks (boolean): True, False

Each unique use case and parameter setting was repeated 10 times with different

random seeds to see how the random ordering of the communication pattern during

the consensus phase impacted overall performance. This results in 360 total runs

to gather the data for all use cases. The variance from the 10 trials per setting is

captured in the error bars present in Figure 4-3.

Figure 4-3 shows the values of data throughput and runtime. Each subplot cor-

responds to a test case, which can be understood from the title of the subplot. For

example, walker30_inc30_NEN corresponds to the 30 degree inclination constella-

tion with 30 satellites. In general, walkerXX incYYNEN refers to use case with

YY degree inclination and XX satellites. Note that the legend is only included on

the top left subplot to avoid cluttering the figure. The key in the legend can be

interpreted as follows:

" DV-MB-True: Data throughput values for Multibid = True. (red solid line)

" DV-MB-False: Data throughput values for Multibid = False. (red dashed line)

• RT-MB-True: Runtime values for Multibid True. (blue solid line)

" RT-MB-False: Runtime values for Multibid False. (blue dashed line)

113

In general, setting multi-bid to true results in slightly better DV throughput per-

formance at the cost of a potentially large increase in runtime, as shown in Figure 4-3

by comparing the solid to dashed lines.. The runtime increase is especially true for

larger constellation, where the powerset operation is computed for up to 20 poten-

tially overlapping crosslinks and since that operation scales factorially in input size

and must be done for each satellite for all overlapping crosslinks, this operation after

each CCBBA round converges can start to dominate the runtime. Another general

trend is that DV performance increases with number of CCBBA rounds (which is the

X-axis in Figure 4-3 as Max Iter Xlnks); however, this trend is not as consistent and

sometimes adding a fourth iteration can decrease total DV throughput performance.

This is a worrying trend that warrants further investigation as described in Chapter 5.

Overall, the parameters provide users with options to trade off additional runtime for

a slight increase in total data throughput. The selection of parameters for the final

results is explained in Section 4.3.

4.2.3 Bounds on consensus rounds required for convergence

Before moving on to the final results, one additional aspect that is especially import

for deploying this algorithm on flight software is the total number of consensus rounds

required. Recall from Section 3.3.1 that a consensus round is inclusive of one bundle

phase and one consensus phase of CMF. The consensus phase of CMF involves each

satellite exchanging consensus dictionaries with all of their neighbors in the commu-

nication network until consensus is achieved or round information has propagated

through the network (this is controlled by the Rc parameter, see Section 3.2). Know-

ing a bound of the number of consensus rounds allows users to estimate the energy

impact of planning when done on-orbit. Once the amount of data sent per transmis-

sion (based on number of tasks) and transmissions per round (based on constellation

geometry) are specified, then the energy per round can be estimated. Using this with

a bound on the number of rounds allows each satellite to estimate the energy state

impact of planning at the start so that there is a lower likelihood of unexpected energy

shortage. The results for consensus rounds from the parameter study are presented in

114

walker30_inc3ONEN

--- RT-MB-True
-$- RT-MB-False

DV-MB-Tru T

-- DV-MB-False

400-

- 398-

CL396 -

394-
~-

392-

390-

568-

566-

564-
-

562 -

F- 560-

558-

556-

582-

580-

578-
576 -

574-

572-

- 0.8

- 0.7

- 0.6

-.0.5 E

-0.4

-0.3

- 0.2

232.5

3230.0

227.5

225.0
0

F- 222.5

220.0

217.5

4

2 3 4
Max Iter Xlnks

walker90_inc3ONEN

3
Max Iter Xlnks

2

- 12

-10

-8

-6 E
Z

-4

2

390-

385-

380-
a

375-

370-
I-
> 365-

360-

-

-40

:3-30

E
-20

-10

445-

440-

435-

430-

425-

4

walker30_inc6ONEN

1,

3

- 1.4

- 1.2

- 1.0 C

-0.8
-
C

- 0.6

- 0.4

- 0.2
4

Max Iter Xlnks

walker60_inc6ONEN

----- -- a

---- -

2 3 4
Max Iter Xinks

walker90_inc6ONEN

2 3
Max Iter Xlnks

- 25

- 20

- 15

- 10

-5

*160

- 140

- 120

-100

-80

- 60

- 40

- 20

-0
4

Figure 4-3: Parameter Study: DV and Runtime Performance

115

2 3
Max Iter Xlnks

walker60_inc3ONEN

E

C

E

c

-B-a-

- -

2

r''

355 J-

Figure 4-4. Additional analyses required for implementing the algorithm for on-orbit

planning are discussed in Section 5.2.

Figure 4-4 shows that consensus rounds grows linearly at worst with the number of

satellites for all parameter settings tested over all use cases. The variance in consensus

rounds is also relatively low, with the maximum and minimum over 10 trials always

within 10 rounds of the mean. While this is not a comprehensive analysis, it does

provide confidence that implementation on-orbit is possible since the satellites can

establish a conservative, but relatively tight, bound on the impact of planning on

energy state by taking the maximum value for the desired setting. One final note is

that the total number of messages sent grows super-linearly because in each consensus

round there are more neighbors to talk with during each round. This raises the

number of messages per round linearly with the number of satellites (e.g. for the

pre-coordination phase in the 30 degree inclination case, the average messages per

satellite are 14.4, 31.8, and 53.2, for 30, 60 and 90 satellites, respectively). The two

linear impacts are multiplicative and causes the number of messages scaling as O(N).

Therefore, additional modifications may be required to make the communication and

energy impact manageable for large constellations. This important issue is discussed

further in Section 5.2.

4.3 ICMF Performance against Centralized Planner
This section covers the performance of ICMF with the greedy routing algorithm of

Section 3.4 against the SPRINT CGP over all metrics. The metrics covered include:

" Runtime: Measured in minutes, this is the total time required to go from a set

of physical windows (Tasks) to a full feasible schedule, which is consistent for

the runtime measurement used in the SPRINT CGP. Additional details on the

computation platforms used for the comparisons are explained in Section 4.3.1.

* Data Throughput (DV): Measured in Gigabytes, this is the total amount of

observation data downlinked to any ground station.

" Median Latency (Med. Lat): Measured in minutes, this metric is calculated by

116

Walker-inc30Max Iter Xinks: 2
0u

~0

0
U

E)
z

. - I 1 0
60

Number of Satellites

Walker-inc30_Max Iter Xlnks: 3

60

90

90
Number of Satellites

Walker-inc30_Max Iter Xinks: 4

-4-Multibid=True
-4Multibid=False

60
Number of Satellites

100

0

Ix

C
a)
U
4-
0

E
z

;W

0
Cr

0
U

0

E
z

90

80.

40-

20-

0*

100

80

60

40

20

0

Walker inc60Max Iter Xlnks: 2

40-

-u-bMultibid=True
-- Multibid=False

30

30

60
Number of Satellites

Walker-inc60Max Iter Xlnks: 3

60

90

90
Number of Satellites

Walker inc60Max Iter Xlnks: 4

-4Multibid=True
-- Multibid=False

30 60
Number of Satellites

90

Figure 4-4: Consensus rounds for each unique parameter setting.
Parameters tested are shown at the start of Section 4.2.2 and printed in the title and
legend of each subplot. This shows linear growth as a function of number of satellites
for all test cases and all algorithm parameters, although number of messages grows
superlinearly because in each consensus round there are more neighbors to talk with
as the constellation density increases

117

100

80 |

60-

40-

20-

0

100-

80----

60---

30

Multibid=True
-4-Multibid=False

80+-

60-

40-

20

0
30

-4- Multibid=True
-4- Multibid=False

-4- Multibid=True
-4- Multibid=False

100

80

60

40

20

0

U)

0

En
U)

30

1

taking the median over all observations latency values. Observation latency is

calculated for each observation window as the time from observation to the time

of downlink for the first 100 Mb of data.

•Median Average Target Age of Information (Med. Ave. Aol): Measured in min-

utes, this metric is calculated by first taking the average with respect to time of

the age of information for each target. This yields one average value per target.

The median of those average values is taken to yield one metric per run. Aol

is a property of each target and measures how old the information is on the

ground about each target, see Figure 3-27 for an example.

As mentioned in Section 4.2, two parameters of ICMF need to be set to execute the

algorithm. As shown in Figure 4-3, the following parameters are chosen to compare

performance with SPRINT:

" Maximum Number of CCBBA iterations (integer): 3. This was chosen because

3 always increases Data Volume (DV) compared with 2 iterations for a relatively

minor -runtime increase. Generally, additional value can be gained by using 4

iterations, but sometimes this also results in worse performance and excessive

runtimes.

" Create Multibid Tranmission Crosslinks (boolean): False. False was chosen

because of the runtime performance benefit compared with setting it to True.

4.3.1 Centralized Planner Configuration for on the same Test

Cases

Before presenting the comparison results, this section presents details on the settings

used for the SPRINT CGP. Initially, the SPRINT CGP and ICMF runs were done

on the same computer with the following specifications (note: all ICMF runs were

done on this computer):

* Intel(R) Core i5-7300U CPU 2.6 GHz, with 2 cores and 4 logical processors

118

e 16.0 GB of RAM

However, this laptop was unable to run SPRINT for the use cases above 30 satel-

lites, so after the 30 satellite comparisons were completed and ICMF was validated

for those use cases, another approach was needed to get performance results for the

SPRINT CGP. On another project which focused on improving the scalability of the

SPRINT CGP, all test cases were run on an AWS instance that provided enough Vir-

tual Central Processing Unit (vCPU) cores and RAM to be able to solve the problem

with a centralized planner. :

Recall that the SPRINT planning paradigm is to first enumerate all the possible

routes, then downselect the routes to only consider a subset for planning and schedul-

ing purposes. Because of this approach, the total planning and scheduling runtime

includes:

" Route downselection

• Model construction, using Pyomo for the MILP solver interface. (Pyomo is a

Python-based open source modeling framework for optimization, see www.pyomo.org).

" MILP solving using Gurobi as the solver. (Gurobi is a commercial optimization

software with free academic licenses, see www.gurobi.com).

Runs were done on an AWS m5.24xlarge instance which has a Xeon Platinum 8000

with 3.1 GHz clock speed, 96 vCPU and 384 GiB memory. SPRINT was setup to take

advantage of the increased processing power by using parallelization in the following

two ways:

" Route down selection cores were 8, 8, 32 for the 30, 60 , and 90 satellites cases,

respectively. This part of the SPRINT solution pipeline parallelizes well and

receives about a 40% speed up for every doubling of cores.

" Gurobi MILP solver was using 32 cores (96/2, rounded down to nearest power

of 2). However, the MILP doesn't benefit nearly as much from parallelization

and only receives about a 10% speed up for every quadrupling of cores.

119

SPRINT CGP Results
Walker Constellation at 30 degree inclination with 100 targs and 10 NEN ground stations

Number of sats Runtime (minutes) DV (Gb) Med. Lat (minutes) Med. Ave. Aol (minutes) MILP hit 5,000 sec timeout?

30 17.5 403.4 12.74 31.34 No

60 113.5 531.2 9.83 23.67 Yes

Yes, no feasible soln
90 N/A N/A N/A N/A after 10,000 sec

Walker Constellation at 60 degree inclination with 100 targs and 10 NEN ground stations

Number of sats Runtime (minutes) DV (Gb) Med. Lat (minutes) Med. Ave. Aol (minutes) MILP hit 5,000 sec timeout?

30 85.3 262.7 12.87 35.33 No
60 95.78 378.4 10.25 29.72 Yes

90 104.18 330.7 9.24 33.33 Yes

Table 4.1: SPRINT CGP Results for All Use Cases
SPRINT CGP is able to solve the two 30 satellite cases optimally, but hits the 5,000
second optimality timeout in all other cases. Also hit the 10,000 feasibility timeout
in the walker90_inc30_NEN case.

The objective function was set to value DV at 1.0, energy at 0.1, latency at 0.1. This

was used because using DV at 1.0 actually caused slower runtimes generally with less

slightly less DV than putting the other objectives at a lower weighting. The runs also

had a MILP "feasibility" timeout of 10,000 seconds, where it would give up if a feasible

solution was not found in 10,000 seconds. This happened in the 90 satellite, 30 degree

inclination case. The runs had a MILP "optimality" timeout of 5,000 seconds, where

it would stop iterating to improve the solution after 5,000 seconds. This happened in

4 of the 6 cases, as annotated in the table below.

The results for the SPRINT CGP for all test cases and all performance metrics are

summarized in Table 4.1. Note that the 90 satellite case for the 30 degree inclination

constellation was not able to finish within the feasibility timeout window so no results

are available in the table. Since the SPRINT results were from a different project

which required additional funding to execute and getting results for this use case were

not essential, the timeout was not increased and re-run. However, there are enough

results to make a suitable comparison to show the feasibility and benefits of using

ICMF.

In general, an effort to exactly match the computation resources between SPRINT

and ICMF is not done in this thesis. ICMF is intended to be ran on embedded pro-

cessors in a decentralized way so the computational complexity needs to be limited

120

to a level much lower than available to that of a centralized planner like the SPRINT

CGP. As shown by the difference in processor speed and parallelization, SPRINT had

more computational resources for the comparisons that follow in the next two subsec-

tions. If computational resources were matched, it is likely that the performance gap

would increase significantly since ICMF also lends itself naturally to parallelization

because of the decentralized nature of the algorithm (i.e. bundle phases can be com-

pletely parallelized). Another note is that the routing algorithm from Section 3.4 is

not included in runtime numbers for ICMF, but this routing algorithm runs in under

30 milliseconds for the 30 satellite cases and scales linearly with number of satellites

because it is looping over number of observations twice, so should never take more

than 1 second, which was confirmed for the 60 and 90 satellite cases. The next two

subsections cover the results by constellation type (30 or 60 degree inclination).

4.3.2 30 degree inclination constellation

For the constellation with orbital planes inclined at 30 degrees, the performance of

ICMF as a function number of satellites is shown in Figure 4-5. A total of 10 trials

were executed with the algorithm parameters fixed as described in the previous sec-

tion. Figure 4-5 provides insight into how ICMF performance scales over all metrics

for different numbers of satellites. Note that the latency and Aol metrics are rather

flat with ICMF, while SPRINT decreases both metrics as constellation size increases.

This is because there is no explicit incentive in the problem to address these metrics

so the additional routing opportunities present with more satellites is only exploited

for bulk data transmission and not latency nor Ao. However, the iterative consensus

approach of ICMF lends itself to incremental consolidation of information such that

a tentative routing plan could be built after each CCBBA convergence and the in-

formation from that routing plan could influence the value function of the new set of

crosslinks. See Section 5.2 for more details.

Tables 4.2 and 4.3 present more direct comparisons to SPRINT performance.

Table 4.2 highlights the difference between ICMF and SPRINT for each metric. As

mentioned before, SPRINT is able to exploit improvements from additional routes

121

Runtime and Consensus Rounds
SPRINT CGP Runtimes: 17.50/113.57/0.00 (minutes)

0'i
30 60 90

Number of Satellites

Median Latency

-4- SPRINT

20 - -4-ICMF

15-

10 -

5 - - -

AC
30 60

Number of Satellites
90

40

- 35

- 30

*25 C

-20

-15 '

-10

- 5

800-

700-

Z 500-

640 -

300

200

103

50

-240*

30
c

a

DV Throughput

-0- SPRINT
-4-ICMF

30 60 90
Number of Satellites

Median Mean Aol

30 60
Number of Satellites

Figure 4-5: Metrics and Runtime Results for 30 degree inclination constellation

Note that SPRINT results for runtime are included as a subtitle for the top left plot

to preserve axis scale so that the ICMF runtime trend can be shown. All SPRINT

results are in Table 4.1

122

10 -

8 -

6

E

2-

4,

I

-0- SPRINT
- ICMF

==

WS

90

-

Relative performance: (ICMF - SPRINT)
Walker Constellation at 30 degree inclination with 100 targs and 10 NEN ground stations

Number of sats Runtime (minutes) DV (Gb) Med. Lat (minutes) Med. Ave. Ao (minutes)

30 -17.09 -5.90 2.01 4.38

60 -111.34 32.61 6.23 12.10

90 N/A N/A N/A N/A

Table 4.2: 30 deg inclination results: comparison to SPRINT in same units
Note: the text is colored red if SPRINT is better in that metric and colored blue if
ICMF is better. N/A means that ICMF achieved results within timeout, but SPRINT
did not, so no comparison is made.

Performance Multiplier: ICMF/SPRINT (if higher is better), or SPRINT/ICMF (if lower is better)
Walker Constellation at 30 degree inclination with 100 tarp and 10 NEN ground stations

Number of sats Runtime DV Med. Lat Med. Ave. Aol

30 42.68 0.99 0.86 0.88

60 52.55 1.06 0.61 0.66

90 N/A N/A N/A N/A

Table 4.3: 30 deg inclination results: comparison to SPRINT as a performance mul-
tiplier
Note: larger than 1 means ICMF performs better on that metric and lower than 1
means SPRINT performs better, with the magnitude of improvement represented by
the multiplicative difference. N/A means that ICMF achieved results, but SPRINT
did not within the timeout, so no comparison is made.

to improve latency and AoI metrics as the constellation size grows. However, ICMF

is not that far behind in the 30 satellite case, with average latency only 2 minutes

longer than SPRINT.

Table 4.3 shows the relative performance difference using a "performance multi-

plier". This performance multiplier is used because it is easy to interpret for algorithm

comparison purposes. Larger than 1 means ICMF performs better on that metric and

lower than 1 means SPRINT performs better, with the magnitude of improvement

represented by the multiplicative difference. For example, in the 60 satellite case for

this constellation, the table shows that ICMF runs 52 times faster, achieves 1.06 times

the data volume, but only 0.61 the latency performance and 0.66 the Ao performance.

123

Runtime and Consensus Rounds
SPRINT CGP Runtimes: 85.30/95.78/104.18 (minutes) DV Throughput

40-
50 600 - 4- SPRINT

35- -4 ICMF

30 - 40 500

25- C 400
30 W

210-
2E 300

15- 20
200 --- -

10- 0
-10 100 - - - - - - - -

0 1 i-/10 0
30 60 90 30 60 90

Number of Satellites Number of Satellites

Median Latency Median Mean Ao

-4- SPRINT 4- SPRINT

25. +4 ICMF 50 - - - -ICMF

E 20- E 4u

U 0

Table 4.4: Metrics and Runtime Results for 60 degree inclination constellation

Note that SPRINT results for runtime are included as a subtitle for the top left plot

to preserve axis scale so that the ICMF runtime trend can be shown. All SPRINT

results are in Table 4.1

4.3.3 60 degree inclination constellation

This subsection presents the same format of results as Section 4.3.2, for the constel-

lation inclined at 60 degrees. The same trends described in the previous subsection

hold here as well.

The latency benefit of SPRINT over ICMF increases as the constellation size

grows, as seen with the addition of the SPRINT result for the 90 satellite constellation.

The contribution of ICMF remains as a near optimal data throughput planner that

can run on average 50 times faster than the SPRINT centralized global planner for

small satellite constellations. However, there are several possible areas of improvement

that could yield improved latency and AoI performance while still maintaining the

runtime advantage. In addition to drawing some conclusions from these results, these

improvement methods, as well as some necessary modifications to make flight software

124

Walker Constellation at 60 degree inclination with 100 targs and 10 NEN ground stations

Number of sats Runtime (minutes) DV (Gb) Med. Lat (minutes) Med. Ave. Aol (minutes)

30 -84.69 -35.47 5.41 3.31

60 -90.67 2.42 8.08 7.30

90 -77.44 107.92 10.26 2.62

Table 4.5: 60 deg inclination results: comparison to SPRINT in same units

Note: the text is colored red if SPRINT is better in that metric, and colored blue if

ICMF is better.

Performance Multiplier: ICMF/SPRINT (if higher is better), or SPRINT/ICMF (if lower is better)

Walker Constellation at 60 degree inclination with 100 targs and 10 NEN ground stations

Number of sats Runtime DV Med. Lat Med. Ave. Ao

30 139.84 0.86 0.70 0.91

60 18.74 1.01 0.56 0.80

90 3.90 1.33 0.47 0.93

Table 4.6: 60 deg inclination results: comparison to SPRINT as a performance mul-

tiplier
Note: larger than 1 means ICMF performs better on that metric and lower than 1

means SPRINT performs better, with the magnitude of improvement represented by

the multiplicative difference.

implementation possible, are discussed in the next chapter.

125

126

Chapter 5

Conclusion

ICMF addresses the challenge comes exponential complexity growth when consider-

ing all the possible data routes, by planning the activities first for near optimal data

throughput, which reduces the possible data routes. There has also been growing

interest in decentralized planning and scheduling capabilities to facilitate more au-

tonomous constellations. While ICMF in its current form is implemented on a single

CPU and simulates synchronous decentralized execution, this chapter discusses how

it can be feasibly deployed on-orbit.

5.1 Contributions Summary
This thesis introduced a new decentralized algorithm called ICMF that can effi-

ciently create a schedule to solve BDRPs for satellite constellations. The functionality

of ICMF is described in Chapter 3 and comparisons to a state of the art centralized

planner (SPRINT CGP) are presented in Chapter 4. Across the six different test

cases used in this thesis, ICMF demonstrated the following:

" ICMF runtime is 3.9 to 139.8 times faster than SPRINT CGP runtime.

" ICMF data throughput is 0.86 to 1.33 times that of the SPRING CGP.

" ICMF with the routing algorithm described in Section 3.4 results in median

latency values that are 2.01 to 10.26 minutes longer than the SPRINT CGP

median latency values.

127

*ICMF with the routing algorithm described in Section 3.4 results in median

average Aol values that are 2.62 to 12.10 minutes longer than the SPRINT

CGP median average Aol values.

The runtime comparisons are with no parallelization implemented for ICMF, while

the SPRINT CGP is using a significant amount of parallel processing, as described in

Section 4.3.1. With the current implementation, if a ground based planning user val-

ues the ability to quickly return a solution that is near optimal for data throughput,

then ICMF is a good choice. Additionally, because ICMF is a decentralized algorithm,

it naturally lends itself to parallelization when used as a ground based planner. Each

bundle phase can be completely done in parallel and parts of the each communica-

tion round in the consensus phase can be done in parallel, with some inter-process

communication at key points in the communication network.

5.2 Future Work

This section outlines the future work items to improve ICMF. These improvements

are along two different lines. Section 5.2.1 describes algorithm improvements that

will benefit all users of ICMF, whether running it on a ground station network or

running it on different satellite agents on-orbit. Section 5.2.2 explains some of the

modifications needed to make implementation of ICMF in flight software on-orbit

feasible and effective.

5.2.1 ICMF Improvements

In this subsection, additional analysis and improvements are described that could

improve ICMF performance. First, research directions that could further increase the

data throughput are described. Then, additional work items to make ICMF route

aware, in a computationally efficient manner, are explained. Making ICMF aware

of the current set of routes will provide opportunities to increase latency and Aol

performance.

128

Data Throughput Improvements

In Figure 4-3 there were some occurences of total data throughput decreasing as

the itersMAX parameter increased from 3 to 4. When itersMAX is set to 4, this

means that there will be 3 rounds of crosslink creation instead of 2, and CMF will

be run 4 times. Generally, this is not a problem because each user can tune the

parameters to values that work best on average for their constellation size. However,

in the cases tested in this thesis, data throughput decreased in 3 cases out of 12.

There are12 cases because each of the 6 test cases is run once for TXmultibid = true

and once for TXmultibid = false. The decrease in data throughput as a function

of itersMAX should be improved because a user should be confident that as they

increase the itersMAx parameter, performance is non-decreasing, although runtime

may increase significantly. To investigate this further, ICMF could be run with a flag

to log whenever any of the bundles decrease below the set that was finalized at the end

of CMF round 3. Nominally, this should not happen, but sometimes disagreement in

consensus phase can cause invalid data states at the start of the next bundle phase, so

the bundle needs to be rebuilt from empty. This is not usually a large impact because

the most valuable tasks will still be selected again, but there could be occurrences

where some key crosslinks were near their last bid solo values and this bundle reset

could prevent them from matching again in CMF round 4.

Another interesting research direction to improve data throughput would be to

evaluate modifying the value function of a downlink based on both the satellite's

current data level and the ratio of observations to downlinks available in the rest of

the planning time horizon. Recall the issue noted in the observation and downlink

only case for the 60 degree inclination constellation in Section 4.1.2. This issue

was a performance drop relative to SPRINT because the SPRINT CGP performs

more explicit reasoning about the combinations of observations and downlinks over

the entire constellation. This could result in giving downlink windows to satellite

that will hit their data limit later in the schedule. Since ICMF is a sequential task

allocation algorithm, it only reasons about one task a time (except for task outflow

129

coupling) based on its current bundle and knowledge of other agents. The data

throughput performance gap comes in because of the downlink deconfliction where

only one satellite can downlink at a time. Normally, the heuristic that whichever

satellite is more full should win the downlink is effective. However, if the satellite

that loses the bid for the downlink is currently less full at the time of the downlink, but

has a higher observation to downlink task ratio in the future, then total throughput

might be decreased if the fuller satellite wins the downlink. Thus, research into

new value functions that can dynamically account for remaining activities could help

improve total constellation throughput.

Route Aware Improvements

The largest improvements to ICMF can come in the form of closing the gap in the

latency and Aol metrics. To do this, some level of route awareness needs to be

brought into the algorithm. There are two approaches discussed in this subsection.

The first leverages the iterative nature of ICMF to create pseudo-routes from the

current activity set at the end of each CMF round. The second shares additional

information during each consensus phase. These methods can be combined to be

even more effective.

After each CMF execution, the satellite constellation has achieved consensus on

a feasible plan. This means that each satellite could execute the routing algorithm

based on the current plan to gain some awareness. These are not the final real routes,

so they will be called pseudo-routes. These pseudo-routes can be used to modify the

value functions for new tasks. For example, after the first CMF iteration (where only

observations and downlink Tasks were scheduled), satellites with with no downlinks

will have no completed routes for their observations. This means any TX crosslink

they receive from the satellites creating RX-TX pairs should be more valuable if

it occurs after one or more of their observations. This information can be used

after each round to place higher value on TX-RX crosslink pairs that provide routes

for non-routed observations or for observations that have existing routes, but the

latency score is near the maximum value. The overhead of executing this additional

130

information sharing should be small. There will be the routing step, which can be

executed in under 1 second for all observations, and one additional consensus round

before entering CMF, to give the opportunity for both the TX and RX crosslinks to

adjust their values accordingly. This is an open research direction that could provide

interesting heuristics to give users the ability to tune performance toward the metrics

they care most about, while still preserving runtime benefits.

There are also modifications that could be made inside each CMF execution. Ad-

ditional data could be shared as new crosslinks are agreed on that include partial

routing information and do not require strong consensus. This could facilitate im-

proved crosslink matching during execution and crosslink creation at the end of the

CMF execution. One example of a weak consensus mechanism that helps share in-

formation about observations for planning purposes is the Limited Communication

Constellation Coordinator (LCCC) [291. This tool did not plan for laser commu-

nication crosslinks, but it showed improvements in observation and downlink task

allocation by sharing information about observation target plans without enforcing

strong consensus, so no additional runtime requirement was imposed.

5.2.2 On-orbit Planner

The ability to have an autonomous constellation execute planning and scheduling

on-orbit is becoming a larger priority for both commercial and military space ap-

plications. A distributed set of users constantly tasking the constellation without a

centralized pooling location is a challenge for current centralized planners. However,

decentralized task allocation algorithms fit naturally for this purpose. CBBA based

algorithms can easily accomodate additional tasking, add them to the current bun-

dle, and pool them until a threshold has been reached to execute a new planning

horizon. Or, if they are high enough priority, they can trigger a total replan where

activities are released and replanned. ICMF inherits these benefits from CBBA and

is still effective at accommodating distributed user requests. There is also the chal-

lenge of ensuring that all satellites can communicate with neighbors while sharing

the same radio spectrum. To ensure feasible execution on-orbit the amount of energy

131

using during the planning phase needs to be accounted for so that the plan does

not immediately become infeasible due to the starting energy state no longer being

accurate.

As mentioned in Section 4.2.3, the upper bound on energy required to complete

planning, (Nc,, D, N, p), can be estimated with the upper bound on number

of consensus rounds, Nc, and where Rc is the number of communication rounds per

consensus round, D, is the data transmitted per communication partner, N, is the

number of communication partners each round, and p is the satellite's communication

subsystem parameters which allows conversion from total data to transmit to an

estimate of energy required. As the constellation side grows, the total number of

messages sent grows polynomially because in each consensus round there are more

neighbors to talk with (N, and Nc both grow linearly and are multiplicative together

for number of total messages). To decrease for a given satellite constellation using

ICMF, the main variables to adjust are R, D,, and N,.

To adjust these variables, this thesis outlines two main types of modifications in

the communications structure and/or the communication data:

e Communication Structure: Currently, each satellite communicates with all

satellites that are within range of radio communications (N, is all satellites in

radio range). This is likely sharing a lot of redundant information, especially

for dense constellations. Some different communication structures within the

communication graph should be investigated, such as:

- In-plane immediate neighbors plus x out of plane neighbors: This struc-

ture would have a parameter x that controls the number of x closest out of

plane satellites to communicate with during each consensus round. Keep-

ing x large would result in a lot of crossplane communication and minimal

in-plane communication; however, information could still pass quickly in

plane after a few rounds if there is a dense crossplane network.

- Nearest x neighbors, plus y furthest neighbors: This structure would have

two parameters where the closest x neighbors are included in communica-

132

tion, while also including the furthest y neighbors. This structure could try

to exploit the small world effect that relies on small groups having a few

far-flung connections with other groups in the graph to share information

efficiently.

- A combination of one of the two plans above with changing R, number

of communication rounds, as a function of estimated convergence state.

Satellites can estimate how close the algorithm is to convergence by looking

at the percentage of matched mutually dependent crosslinks and time-

matched crosslinks, as shown in Figure 3-23.

*Communication Data: Additional modifications to the amount and type of

data shared between satellites should be investigated to limit the data passed

to only what is essential. This will take some investigation and analysis to

determine what is essential for each problem because any information that is

not shared might risk potential conflict at a later point.

With these adjustments, the value of E can be lowered to a manageable level for

small satellites to execute on-orbit planning. An accurate bound on also implies

an upper bound on the planning time, t,. Knowing t, allows the constellation to

determine when they need to start the next planning and scheduling session. These

adjustments, along with the ICMF algorithm improvements described in Section 5.2.1

should provide a strong basis for a flight software ready algorithm to solve BDRPs

with small satellite constellations.

133

134

Appendix A

Full Schedules

Here is where the full schedules from each of the main results runs are shown (30/60

sats for inc 30 and inc 60 using ICMF). Four schedules total are presented. The

schedules for the 90 satellite cases are available upon request and do not fit well

on this paper size. For all four schedules, the legend used for the different types of

possible and executed activities is shown below in figure A-1. This legend is only

included here and not next to each individual schedule.

MW Obs-Poss
Obs-Exec
Dinks-Poss
Dink-Exec
TX-Xlnks
RX-Xlnks

Figure A-1: Legend for satellite schedules.

The "Poss" tag indicates a physical window that could be scheduled. If it was

scheduled, then the hatched "Exec" tag will be overlaid. This is only applicable for

Observations and Downlinks, because there is always possible crosslink windows to

at least one satellite.

135

A.1 30 degree inclination constellation

-M
61

WG1 rg 919 targ71 arg4

targ0 Marg a ta t Q 0

r* lrgoxag5S ag~ t;95 AUNAItarg71 ta U2 rg33 CU5 IV42tag1

g22 ri tar64 G'g6 r tag

terj e r WW96 targ77t~ iag3

t ta rg 22 'ar97 targ g

vargl tar7 trg2 t g92 arga"
rg

__;-9 targ96
g59gad Fag2 -argl-- -

targ 7 1 arg92 t rg 52 tapr twor

00 LOTWI targ9Vtarg7 targ tar s arg3 rgLb Apw

arg1 na~ tar ! targ7

-4 arW arg ta52 targ9

N- ag avl V9 W5 g , USHo t901 trg l

taarg2i trg2

C 0
4j n targdo targ21 twg7 -Uw% Ufq trl

-4NA -a-tr9

r]-5 r]~2 E 1,[aEKI"eg

CANT

CO fagg
taggqG

grg gI
r_

9tNga
tg

alro K.~arga rW

0.010 M98 0.4 0.6gI 0.8-4 --ra

Time since 0.0 (hours)

Figure A-2: 30 satellites: Full Schedule for 30 deg inclination constellation.

136

0
IF

N

in

1

0r

0.0 0.2 0.4 0.6 0.8 1.0 12 1.4 1,6
Time sin(e 0.0 (hours)

Figure A-3: 60 satellites: Full Schedule for 30 deg inclination constellation. (satellites
1-30)

137

W' ywq varyaw 60, W 09VITfw& w W&V MRTNIL
M MOM6 rM rM ON I in

10 wl MINEl

leg"
wln r7l. O&VAN"$-, 0 u I -

-'v.. wv -I- Ivw "IYU.7

Ur jww w 4

WTVU

AMA rm rz MIM M

AW3 %Ipw"
1`1

YU
M

%w"Vownwa r vg;r

rqyU wvf& VVU
ri & IV J - AUiw1vule tviv - TVU4 YN 1 LGIYUA MXXXIVI A 117

'NUJL RpI Vow AVI %fiV21 w-
n 51FE

lull- %qf I-- VIIWAG
Or Rai ypq"q ITV4.7 WV" _qQ 'i

TL

FI 3r.,
'v- w

i" 141pu

09
ri L [mrvwIff-' I K" 77

1 IN ri I
via 1mvd* wpa 7119-59 MUZU kipip

KM n M r-I

05 17 PC rVIO Arm vu ri

Al A

n

MPM M57 M

drm IF Ivi %r ww V41VII mvrw vvA
IN Vw %w Ulf luvifu tolruN

0

R
wn

0 0.4 0.6 0.8 1.0
Time since 0.0 (hours)

12 1.4 1.6

Figure A-4: 60 satellites: Full Schedule for 30 deg inclination constellation. (satellites
31-60)

138

myl %IRV, W VW- Wyfu %diva

3 IL t V' t -v- r- 1 V..
E Mm- -

tovi VU YL

YNQ trM
C3 a rM ry ZWiwi

log
-14 -Vjr-

CL

"712 WTI-
UJI, NOW

Low up Vi r YO
13

tof UjfTIUI -.VIwi %MN"w im, vs r urve -v7 Wjj

UMIUI

WOO! qrp f

Wv NNW iflip UP N"
M - MY

"Plyzi

V-j UPYRU ts 3 UjIIIIUi %V-7-1

ZVI rM mom,
;Ir 774M1 2M MMMIM Emma

YL.? Q-Njd .1. Irjdw %Wv -law UFW33 V.31VIUA IV03 YUM ITWO-i upwil)

r-W r-q -MWM M 3 A, 11

-V-- - I-W-IU -v- V-%npl,
M M rM r-6.. EIL-%-qn a

W-LI M 1 tMU33 --- W'N-' U1

TWO Ij
*M% r7w .1

WRY" V..

rk ra M
rg&% to, VJ- vMIv:O:O 013MIYA IOOU

M
w1vau V:3nlu.L W1 W03 TvUjj %WRY&L

M CKEM- a
Idlyn virTIVI

%VON-
0

Ivou VI r

x

C
vi

02.0

A.2 60 degree inclination constellation

targOd wGI tMQI2 trglSngitrgi

WGI KIiSiugBZ tarq33

KU15 nrU~ tagi

KLFIS targYz rargS,
3 sW22 are

at~l rarg22 tb%8f3 Qr

F-1. LN3 O7g Qq r, ~' PI~ IHA ?
targId targfl wargEI targi ^

[XWJZ@? Pi 1 [[318 ~ [1q KJU1
wag2 targEIM

CT"

thr~l tmg63 WG1

t&W3 MI barun ari

F] r- [-- n o=
tMi7U

ri
W959l targa

n M 12
5g19 taro__ arE

Carge KargE

nri Fi110YY Mw 4 -
tWg2O agc I

-7 pF3WitPAI r
taW9z9 "ard900agE KUlS 51(27

targ29 WOWJ Ufails

talnfro
ta119a W939j

w9,

WGt arg EE w gl £51

AS rvu r"-i rarg2
Th2 targfl6Ugm S1 ar9

ASYJTd1 W931~ Sageig

~M1= 12 LI I~I]-L [rrl rU
Ml targfl harggt Allx- WtA SwlofrI -I

£516 WGJrrgs targ

*l f"p
o~ 02gI 0- 0.6 AIW95 r

Time since 0.0 (hours)

Figure A-5: 30 satellites: Full Schedule for 60 deg inclination constellation.

139

0

U,

'C

C)

VU

r4

"4

"*4
"4

M
P"4

qt
"4f

U,
"-4

kc
r-4

"-4

IM

"-4

0~
N
"4
M

N

N

0.

i Is

5

0
1-4

'0

N

0,

se rr

I IN ITS

0.2 0.4

Figure A-6: 60 satellite:
1-30)

0.6 0.8 1.0 12 1.4 1.6
Time sinte 0,0 (hours)

Full Schedule for 60 deg inclination constellation. (satellites

140

x

C

L41YO4 TVUL V!
06 va E rq

LGIVI UwWJJ

n LN - d
ww

Y34

rM ryri rM

r vsv v go Miki

Fv rl

FN

Jac&-, 13
M

I v9p BF52
MULrw rw 1 4

01 rw v viv ri

Man
LAIRAN

IV
IYU1

r92-11

"U1 %=WSJ

YW ;T

0

ref

.92X mC a I ,ao

.97 17 16 la7,310 K-A l a

c O

rm r- 71

1. FU=r1
9 a - .- 13 riun

.JU..L .. IT- A o;me

O, 0406 O,8 1,0 1 2 1:4 1.6
Timesine 00 (hours)

Figure A-7: 60 satellite: Full Schedule for 60 deg inclination constellation. (satellites
31-60)

141

142

Appendix B

Additional Properties, Methods, and

Pseudocode

B.1 Object Properties and Methods
This section provides additional details on the key methods and properties used

in the pseudocode blocks and descriptions in the thesis. The use of an appendix

is intended to provide a reference for the interested reader that wants to understand

more of the details than just the higher level points presented in the thesis. Properties

will come after each description, then methods will be listed. The notation distinction

is defined in the Symbols list.

*Agent object, shown in pseudocode as: I.

- Consensus Dictionaries: The following three properties are what all agents

need to agree on during a round of CMF to achieve consensus. Consensus

is marked as achieved for a single agent when it has communicated with

all of its neighbors and there are no changes. Once an agent hears that

all agents have achieved consensus, it moves on to the next phase of the

algorithm. Note: instead of referring to all three dictionaries, they will

be collectively referred to as the consensus dictionaries. These dictionaries

are used instead of just indexing the information because different agents

143

will create new tasks simultaneously that have the same unique ID, but

may have different indices depending on the order of operations in the

decentralized setting.

* I.bids(J.id) E RNt: dictionary of latest bid information that has the

Task bid at the corresponding Task ID. All values in the dictionary

are initialized to 0. All keys are Task IDs, denoted in pseudocode

as J.id. Note: in the CBBA papers, this property serves the same

purpose as the variable: yi(t) [10, 61].

* I.winners(J.id) E NNt: dictionary of latest winner information that

has the Agent ID corresponding to the Task ID. All values in the

dictionary are initialized to null. All keys are Task IDs, denoted in

pseudocode as J.id. Note: the domain is N because each unique ID

string can be translated to a unique integer (and vice versa) based on

the encoding used. Note: in the CBBA papers, this property serves

the same purpose as the variable: zi(t) [10, 61].

* I.inds(J.id) c SN: dictionary of latest planned timesteps, stored as

indices in the discrete planning domain, that has the set of indicies

corresponding to the Task ID. All values in the dictionary are initial-

ized to 0. All keys are Task IDs, denoted in pseudocode as J.id. Note:

the domain of S means that each value of the dictionary is a unique

set.

- I.fd(t): property that holds the flow preference state of this agent. This

property is calculated after each bundle phase is completed.

- I.tmpAcc(J.id) E RN: dictionary that holds the accumulated value that

a Task accrues during the bundle phase. This addition is only required

because of task forking for multibid tasks. If a task it not forkable or

singlebid only, then this accumulator is not used. When it is used, each

ExecutableTask that is added to the bundle accumulates value in this

dictionary, which is then used to check at the end of the bundle phase

144

if J has accumulated enough value to beat the current winning bid in

I.bids(J.id). If it has, then the winner is set to I and the ExecutableTasks

of J are kept on the bundle; otherwise, all the ExecutableTasks associated

with J are removed from the bundle. Then the bundle is rebuilt, with the

exclusion of evaluating any ExecutableTasks associated with J.

- checkMultibidTasks(): this method is run right before the end of each

bundle phase and is required because of task forking. See appendix B.2

for more details.

- cmfBundlePhaser(): bundle phase for CMF which modifies the following:

bi, pi, and the consensus dictionaries. Has no inputs or return values.

The pseudocode for this procedure is included in algorithm 6. Similar to

CCBBA bundle phase, except for modifications required to support task

forking and outflow coupling.

- updateBundleCacheQ (): this method resets all satellite states (data, energy,

and activity timeline, which are di(t),ei(t), and ai(t), respectively), then

computes them based on everything in the current bundle, bi. Has no

inputs or return values. This function is run at the start of each bundle

phase because tasks may be removed from the bundle during the consensus

phase, so the state needs to be repaired to reflect the current bundle when

starting a new bundle phase.

- findBestAssignment(Je): this method returns three values: 1) inds, which

are the indices of execution (must be sequential) that provide the most

value for Je, 2) cij, which is the value of Je executed at inds, and 3) Jc,

which is the flow-coupled task (must be a downlink and could be null if

no coupled task needed).

- forkTaski(Je): the pseudocode for this algorithm is shown in algorithm 1.

- getOptimisticScore(Je,iinds, ci): this method is required because of task

forking. Since there could be many ExecutableTasks associated with a

single Task and the consensus dictionaries achieve consensus on the Tasks,

145

a mechanism is needed to allow a small portion of a Task to be added to

the bundle when the cumulative value of executing all ExecutableTasks

could beat the current bid associated with the Task. This method returns

the best case value that the Agent can achieve on Task based on the

current bundle and inds selected for execution of Je.

- createExecutableTasksFromnds(newTaskndsList, J): Creates new

ExecutableTasks based off the indicies provided in the list and the original

Task (J) that the ExecutableTasks should point back to.

- getMutualDependentTaskI(J): this method returns JMD, which is the

Task that is mutually dependent with J. This is used to check and enforce

mutual dependence instead of the more general activity matrices used in

CCBBA. This is done because for max flow problems there will only be

mutual dependence between two tasks at a time (the transmitter and the

receiver). For the satellite context, this is represents a mutual dependence

between every TX with a matched RX (and vice-versa).

- updateStates(Je): this method updates all satellite states based on the

addition of a single task (Je) to the bundle. It does this from the ex-

ecuted timepoints and activity type, Je.Eind, and Je.type, respectively.

This method also considers time-adjacent ExecutableTasks to determine

if a transition time is required or not. Note: transition time between

ExecutableTasks is only required when the parent Task has a different

nodeid value because that means that the Agent must slew to point at

a different object.

- updateDistanceToDnkQ(): Returns the distance to downlink value based

on the satellites current bundle and knowledge of other satellites' distance

to downlink. As explained in section 3.2.4, the distance to downlink value

is used to calculate I.fd(t) at each time step.

.Task object, shown in pseudocode as : J.

146

- J.nodeid E N: this is the unique string associated with the physical

location the satellite has to point to when executing the task. The corre-

spondence of node type to task type is as follows: observation - target

ID, downlink - ground station ID, TX <- reception satellite ID, RX*-

transmission satellite ID.

- No methods. Tasks are static objects that are fixed once created. This is

one of the major distinctions between Tasks and ExecutableTasks.

*ExecutableTask object, shown in pseudocode as: Je.

- Je.Pinad E SN: Set of integers indicating the possible timesteps in the

planning horizon this ExecutableTask can be executed.

- Je.Einds C SN: Set of integers indicating the timesteps in the planning

horizon this ExecutableTask is planned for execution.

- Je.multibid E {true, false}: boolean property stores whether or not an

ExecutableTask is multibid or not. If true, that means that multiple

agents can bid on the task and only the highest bidding agent can execute

the task. In the default use case, this occurs with downlinks at the same

ground station at the timetime and in multibid transmission crosslinks.

If false, it means that only one agent can bid on the task, so there is

no need to update the consensus dictionaries since no other agents need

to know about the execution of this task (with the exception of crosslink

tasks, which always update the consensus dictionaries because they need

to couple with their mutually dependent task).

- Je.typeE {xink, obs, dlnk}: property that stores the type of satellite ac-

tivity.

- Je.direction E {tx, rx}: denotes the flow direction of Je. This is completely

determined by Je.type, with observations and reception crosslinks being rx,

while downlinks and transmission crosslinks are tx.

- Je.task C J: returns the Task that Je corresponds to. Each Je only has

147

one Task as its parent; however, each Task can have many ExecutableTasks

because of forking.

- updatePostFork j, (Ringd, newTasks): This method removes Rin&s from Je's

possible timesteps (Pind) because those timesteps are allocated to the

newTasks. This method also links the newTasks to eachother as "forked

siblings" and links them to Je as their "forked parent". This creates a

tree structure that can be used to quickly construct information about the

portion of the original Task scheduled for execution.

- updateExecTimeAndValuej 6 (indsB,c st): this method modifies the fol-

lowing properties of Je: Einds <- indsB and value <- C .

Some general functions referenced in the pseudocode.

* split(x): Splits the set or list stored in x based on consecutive values. Returns

separate sets or lists of consecutive values (assumes integers in the input set or

list).

* sort(x): Sorts x in ascending value.

B.2 CMF Full Bundle Phase Pseudocode
Because the bundle phase modifications alter the flow of the CCBBA bundle

phase, the entire bundle phase pseudocode is provided here. Task forking allows

ExecutableTasks to be split up for a single Task, which provides the ability to

increase value of a schedule. However, since the schedule consensus is at the Task

level, there needs to be a mechanism to validate that all multibid Tasks that have

ExecutableTasks on the bundle were actually the highest bidder cumulatively. The

function

GetOptimisticScorer(Je,inds, cij) allows for adding forked tasks to the bundle when

their accumulated value could possibly beat the current bid, but is not guaranteed to

beat the current bid. GetOptimisticScorei(Je,inds,cij) returns cij if Je.multibid =

false. On line 40, the function CheckMultibidTasksi() is used to ensure that only

148

the actual highest bidder gets to keep ExecutableTasks associated with a Task on

its bundle.

The CheckMultibidTasksi() function will remove all multibid tasks that are not

actually the highest total bid by comparing I.tmpAcc(J.id) to I.bids(J.id). Once

these are removed, they are prevented from being bid on and the bundle-phase is

repeated until all ExecutableTasks are valid. In all test cases so far, this recursion

is only needed once per bundle phase, but it could theoretically go on multiple times

if there are enough ExecutableTasks. CheckMultibidTasksI() requires no additional

communication since the information required is already stored in the consensus dic-

tionaries build from previous consensus phases.

Note that when a value set to null is evaluated in an "if" statement, it will evaluate

to false. This means the bundle phase will proceed to CheckMultibidTasksi() if

there is no "best" ExecutableTask (JeS' = null), which means that no remaining

ExecutableTask provided additional value.

The consensus phase pseudocode is not provided because the overall consensus

phase execution and information agreement protocols are the same as CCBBA, except

that additional information is being shared and time-matching is executed at the end

of the consensus phase, but the time-matching only impacts the next round and

doesn't impact the execution order of the consensus phase. Also note that Multibid

tasks and crosslinks (xlnks) are the only tasks that are shared during the consensus

phase.

149

Algorithm 6 CMF Bundle Phase

1: procedure CMFBUNDLEPHASEI
2: unchanged +- true

3: updateBundleCacheI()
4: while |bil < Lt do
5: Jbest+- null > Best scoring task
6: cist 0
7: j°upled +- null > Flow-Coupled task for Jest
8: indSB +-- null

9: for Je in jexec do
10: J +- Je.task

11: canBidij3 - true

12: if Je.type = lnk then > only xlnks have mutual dependence
13: JMD <- getMutualDependentTask 1(J)
14: canBidij <- (wij > 0) V (I.bids(JMD.id) > 0)

15: if canBidij A Je bi then
16: inds, cij, JC +- FindBestAssignmentI(Je)
17: cij <- GetOptimisticScoreI(Je, inds, cij)
18: if (Bij > I.bids(J.d)) A (cij > c bst) then
19: Jbest {Je

20: c es -i .
21: J oupled JC
22: indsB+- inds

23: if Jbest then
24: tB -indsB(0)

25: bi +bi (end {J}est
26: pi p1 E@tB { best}
27: UpdateExecTimeAndValuejbest (indsB,cst)
28: UpdateStates(Jbest) > updates dj(t),ej(t),aj(t)
29: if Jbest.multibid then
30: I.tmpAcc(Jeest.task.id)<- I.tmpAcc(Jbest.task.id) + Jbest.value
31: else

32: if Jebest.type = xlnk then
33: I.inds(Jebest .task.id) <- I.inds(Jebest.task.id) U Jest.Einds
34: I.bids (Jbest.task.id) +-Jbest.value
35: I.winners(Jiest.task.id) <- I.id

36: ForkTask(Jebest) > See alg. 1

37: unchanged +-- false
38: else b No more valid tasks to add
39: Break > break out of while loop, goto line 40

40: CheckMultibidTasks,()
41: return unchanged

150

Bibliography

[1] Johannes Aldinger and Johannes L6hr. Planning for Agile Earth Observation
Satellites. ICAPS Workshop on Planning in Continuous Domains, pages 9-17,
2013.

[2] Mehdi Alighanbari. Task assignment algorithms for teams of UAVs in dynamic
environments. page 118, 2004.

[3] M. Bernardine Dias, Robert Zlot, Nidhi Kalra, and Anthony Stentz. Market-
based multirobot coordination: A survey and analysis. Proceedings of the IEEE,
94(7):1257-1270, 2006.

[41 Dimitri P. Bertsekas. Auction Algorithms for Network Flow Problems. Technical
report, 1992.

[5] Nicola Bianchessi, Jean Frangois Cordeau, Jacques Desrosiers, Gilbert Laporte,
and Vincent Raymond. A heuristic for the multi-satellite, multi-orbit and multi-
user management of Earth observation satellites. European Journal of Opera-
tional Research, 177(2):750-762, 2007.

16] Kerri Cahoy, Peter Grenfell, Angela Crews, Michael Long, Paul Serra, Anh
Nguyen, Riley Fitzgerald, Christian Haughwout, Rodrigo Diez, Alexa Aguilar,
John Conklin, Cadence Payne, Joseph Kusters, Chloe Sackier, Mia LaRocca,
and Laura Yenchesky. The CubeSat Laser Infrared CrosslinK Mission (CLICK).
Technical report, CubeSat Developers Workshop, 2019.

[7] X. Cai, D. Sha, and C. K. Wong. Time-varying universal maximum flow prob-
lems. Mathematical and Computer Modelling, 33(4-5):407-430, 2001.

18] Michael Cashmore, Andrew Coles, Bence Cserna, Erez Karpas, Daniele Maga-
zzeni, and Wheeler Ruml. Temporal planning while the clock ticks. Proceedings
International Conference on Automated Planning and Scheduling, ICAPS, 2018-
June:39-46, 2018.

[9] Steve Chien, Gregg Rabideau, Russell Knight, Robert Sherwood, B. Engelhardt,
D. Mutz, Tara Estlin, B. Smith, F. Fisher, T. Barrett, G. Stebbins, and D. Tran.
ASPEN: Automated Planning and Scheduling for Space Mission Operations.
SpaceOps, (December 2000):1-10, 2000.

151

[10] Han Lim Choi, Luc Brunet, and Jonathan P. How. Consensus-based decen-
tralized auctions for robust task allocation. IEEE Transactions on Robotics,
25(4):912-926, 2009.

[11] Emily Clements, Raichelle Aniceto, Derek Barnes, David Caplan, James Clark,
Inigo del Portillo, Christian Haughwout, Maxim Khatsenko, Ryan Kingsbury,
Myron Lee, Rachel Morgan, Jonathan Twichell, Kathleen Riesing, Hyosang
Yoon, Caleb Ziegler, and Kerri Cahoy. Nanosatellite optical downlink experi-
ment: design, simulation, and prototyping. Optical Engineering, 55(11):111610,
2016.

[12] Frederic Cristini. Satellite networks: Solutions against emerging space threats.
IFAC Proceedings Volumes (IFAC-PapersOnline), 18(PART 1):380-385, 2010.

[13] CubeSat. 6U CubeSat Design Specification Rev. 1.0. Technical report, 2018.

[141 DARPA. Broad Agency Announcement Blackjack Pit Boss Tactical Technology
Office. Technical report, 2019.

[15] Austin J. Dionne, Jordan T. Thayer, and Wheeler Ruml. Deadline-aware search
using on-line measures of behavior. In Proceedings of the 4th Annual Symposium
on Combinatorial Search, SoCS 2011, pages 39-46, 2011.

[16] Jonathan M. Dyer and Jim McClelland. Paradigm Change in Earth Observation
- Skybox Imaging and SkySat-1. In Proceedings of the 12th Reinventing Space
Conference, pages 69-89, 2017.

[17] Jeff Foust. Amazon-Lockheed venture casts shadow on ground station startups,
2018.

[18] Brian P. Gerkey and Maja J. Matarid. Sold!: Auction methods for multirobot
coordination. IEEE Transactions on Robotics and Automation, 18(5):758-768,
2002.

[19] Fred Glover. Tabu Search - Part 1. ORSA Journal on Computing, 1(3):135-206,
1989.

[20] Fred Glover. Tabu Search - Part 2. OSRA Journal on Computing, 2(1):1-97,
1990.

[211 Andrew Goldberg and Robert Tarjan. A New Approach to the Maximum-Flow
Problem. Journal of the ACM, 35(4):921-940, 1988.

[22] Peter Grenfell, Alexa Aguilar, Kerri Cahoy, and Michael Long. SSC18-WKI-01
for Small Satellite Laser Communications. In 32nd Annual AIAA/USU Confer-
ence on Small Satellites, pages 1-7, 2018.

[23] Caleb Henry. SpaceX launches 60 Starlink satellites, begins constellation buildout
- SpaceNews.com, 2019.

152

[24] Omid S. Jahromi. Distributed Algorithms. Morgan Kaufmann Publishers, Inc,
San Francisco, CA, USA, 2007.

[25] Sushant Jain, Kevin Fall, and Rabin Patra. [2004] Routing in a Delay Tolerant
Networking.pdf. In SIGCOMM' 04, 2004.

[26] Luke Johnson, Han Lim Choi, Sameera Ponda, and Jonathan P. How. Allowing
non-submodular score functions in distributed task allocation. Proceedings of the
IEEE Conference on Decision and Control, (1):4702-4708, 2012.

[27] Luke B. Johnson, Han Lim Choi, Ponda Sameera, and Jonathan P. How. Decen-
tralized task allocation using local information consistency assumptions. Journal
of Aerospace Information Systems, 14(2):103-122, 2017.

[28] Luke B. Johnson, Sameera S. Ponda, Han Lim Choi, and Jonathan P. How.
Asynchronous decentralized task allocation for dynamic environments. AIAA
Infotech at Aerospace Conference and Exhibit 2011, 2011.

[29] Andrew K. Kennedy. Resource Optimization Algorithms for an Automated Coor-
dinated CubeSat Constellation. Master's thesis, Massachusetts Institute of Tech-
nology, 2015.

[30] Andrew Kitrell Kennedy. Planning and Scheduling for Earth-Observing Small
Satellite Constellations. PhD thesis, Massachusetts Institute of Technology, 2018.

[31] S Kirkpatrick, C D Gelatt, and M P Vecchi. Optimization by Simulated Anneal-
ing. S, 220(4598):671-680, 2007.

[32] Leslie Lamport. Time, Clocks, and the Ordering of Events. Comm ACM,
21(7):558-565, 1978.

[33] Elizabeth Mabrouk. What are SmallSats and CubeSats?, 2015.

[34] Daniel Mandl, Gary Crum, Vuong Ly, Matthew Handy, Karl F Huemmrich,
Lawrence Ong, Ben Holt, and Rishabh Maharaja. Hyperspectral Cubesat Con-
stellation for Natural Hazard Response (Follow-on). In Annual AIAA/USU Con-
ference on Small Satellites, pages SSC16-XII-02, 2016.

[35] MMA-Design. HaWK 17AB36,2018.

[36] Philippe Monmousseau. Scheduling of a Constellation of Satellites: Improving a
Simulated Annealing Model by Creating a Mixed-Integer Linear Model. 2015.

[37] K. Muthuchelian, N. Nedunchezhian, and G. Kulandaivelu. Small Spacecraft
Technology State of the Art. Technical Report 4, 1994.

[38] Sreeja Nag, Alan S. Li, and James H. Merrick. Scheduling algorithms for
rapid imaging using agile Cubesat constellations. Advances in Space Research,
61(3):891-913, 2018.

153

[39] Nano-avionics. CubeSat Propulsion "EPSS" - Green Chemical Propulsion Sys-
tem, 2019.

[40] NanoAvionics. NanoAvionics 6U satellite bus M6P, 2019.

[41] NASA. Near Earth Network (NEN) Users' Guide, 453-NENUG, 2016.

[42] Noam Nisan and Amir Ronen. Algorithmic Mechanism Design Algorithmic
Mechanism Design contact. Journal of Economic Literature, pages 0-34, 1999.

[431 Scott Palo, Darren O'Connor, Elizabeth DeVito, Rick Kohnert, Gary Crum, and
Serhat Altunc. Expanding CubeSat Capabilities with a Low Cost Transceiver.
AIAA/USU Conference on Small Satellites, 2014.

[44] Cadence Payne, Angie Crews, Paul Serra, Kerri Cahoy, Alexa Aguilar, Peter
Grenfell, and Haeyoung Choi. Laser Crosslink Atmospheric Sounder to Investi-
gate the Effects of Deep Convection on Ozone, Massachusetts Institute of Tech-
nology , Depart. In 32 Annual AIAA/USU Conference on Small Satellites, 2018.

[45] Thuy Lien Pham, Ivan Lavallee, Marc Bui, and Si Hoang Do. A distributed
algorithm for the maximum flow problem. In ISPDC 2005: 4th International
Symposium on Parallel and Distributed Computing, volume 2005, pages 131-138,
2005.

[46] Sameera S. Ponda, Luke B. Johnson, and Jonathan P. How. Distributed chance-
constrained task allocation for autonomous multi-agent teams. Technical report,
2012.

[47] J. Puig-Suari, C. Turner, and W. Ahlgren. Development of the standard Cube-
Sat deployer and a CubeSat class picosatellite. In IEEE Aerospace Conference
Proceedings, volume 1, pages 1347-1353, 2001.

[48] Gregg Rabideau, Russell Knight, Steve Chien, Alex Fukunaga, and Anita Govin-
djee. Iterative Repair Planning for Spacecraft operations using the ASPEN sys-
tem. Fifth International Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space, ISAIRAS '99, 440(May):99-106, 1999.

[491 Michael Ricard and Stephan Kolitz. The ADEPT Framework for Intelligent
Autonomy. In Intelligent Systems for Aeronautics, number May, pages 13-17,
2002.

[50] Kathleen Riesing, Hyosang Yoon, and Kerri Cahoy. A portable optical ground
station for low-earth orbit satellite communications. 2017 IEEE International
Conference on Space Optical Systems and Applications, ICSOS 2017, (Llcd):108-
114, 2018.

[51] Ricardo Rios-Olmo and Martin Miller. Planet's Open Water Imaging-Geo-
Accuracy Assessment. AIAA/USU Conference on Small Satellites, (787), 2017.

154

[52] Christian Rodriguez, Henric Boiardt, and Sasan Bolooki. CubeSat to commer-
cial intersatellite communications: Past, present and future. IEEE Aerospace
Conference Proceedings, 2016-June:1-15, 2016.

[53] Scott H. Schaire, Harry Shaw, Serhat Altunc, George Bussey, Peter Celeste,
Obadiah Kegege, Yen Wong, Yuwen Zhang, Chitra Patel, David Raphael, Jacob
Burke, La Vida Cooper, James Schier, William Horne, and David Pierce. NASA
near earth network (NEN) and space network (SN) CubeaSat Communications.
In SpaceOps 2016 Conference, 2016.

[54] Thomas Schetter, Mark Campbell, and Derek Surka. Multiple agent-based au-
tonomy for satellite constellations. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 1882:151-165, 2000.

[55] SSTL. SGR-10 - Space GPS Receiver. Technical report, Surrey Satellite Tech-
nologies Ltd, 2013.

[56] Xueyuan Su, Sammy Chan, and Gang Peng. Auction in multi-path multi-hop
routing. IEEE Communications Letters, 13(2):154-156, 2009.

[57] Michael Swartwout. The first one hundred cubesats: A statistical look. Journal
of Small Satellites, 2(2):213-233, 2013.

[58] Martin N. Sweeting. Modern Small Satellites-Changing the Economics of Space.
Proceedings of the IEEE, 106(3):343-361, 2018.

[59] S. R. Tsitas and J. Kingston. 6U CubeSat design for Earth observation with
6-5m GSD, five spectral bands and 14Mbps downlink. Aeronautical Journal,
114(1161):689-697, 2010.

[601 Sven Vries de and Rakesh V. Vohra. Combinatorial Auctions: A Survey. Journal
on Computing, 15(3):284-309, 1998.

[61] Andrew K. Whitten, Han Lim Choi, Luke B. Johnson, and Jonathan P. How.
Decentralized task allocation with coupled constraints in complex missions. Pro-
ceedings of the American Control Conference, pages 1642-1649, 2011.

162] Zixuan Zheng, Jian Guo, and Eberhard Gill. Swarm satellite mission scheduling
& planning using Hybrid Dynamic Mutation Genetic Algorithm. Acta Astronau-
tica, 137:243-253, 2017.

[63] Zixuan Zheng, Jian Guo, and Eberhard Gill. Onboard autonomous mission re-
planning for multi-satellite system. Acta Astronautica, 145:28-43, 2018.

[64] Zixuan Zheng, Jian Guo, and Eberhard Gill. Distributed onboard mission plan-
ning for multi-satellite systems. Aerospace Science and Technology, 89:111-122,
2019.

155

[65] Di Zhou, Min Sheng, Xijun Wang, Chao Xu, Runzi Liu, and Jiandong Li. Mission
aware contact plan design in resource-limited small satellite networks. IEEE
Transactions on Communications, 65(6):2451-2466, 2017.

156

