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Abstract

In this thesis, we study the statistics of fluctuating paths and interfaces in the presence
of disorder. Specifically, we consider systems in the Kardar-Parisi-Zhang universal-
ity class for stochastic interface growth, from the perspectives of both fundamental
statistical mechanics and applications to real world problems. We show numerically
that the probability distribution associated with directed polymers in random me-
dia, a lattice model in this universality class, interpolates between Tracy-Widom and
Gaussian distributions when spatial correlations are added to the random energy
landscape. As a possible application, we examine the statistics of optimal paths on
actual road networks as given by GPS routing, exploring connections and distinctions
to directed polymers. We investigate also the effects of roughness in the growth front
of a bacterial range expansion. There, we find that such roughness can account for
the experimentally observed super-diffusivity, and leads to a rapid loss of genetic di-
versity. Finally, we explore the complete eigenvalue spectrum of products of random
transfer matrices, as relevant to a finite density of non-intersecting directed polymers.
We identify a correspondence in distribution to eigenvalues of Gaussian random ma-
trices, and show that the density of states near the edge of the spectrum is altered
by the presence of disorder.

Thesis Supervisor: Mehran Kardar
Title: Professor of Physics
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Chapter 1

Introduction

Stochastic processes which give rise to fluctuations in paths and interfaces are ubiqui-

tous in everyday life. Consider, for instance, a tear through a sheet of paper (example

of a path) or the front of a spreading wildfire (example of an interface). The resulting

shape is determined by the inherent noise in the system, and would differ slightly each

time the process is repeated. By examining the fluctuations over a large number of re-

alizations, statistical properties which are universal to many systems become evident.

We introduce below this rich universality class for stochastic interface growth, and

in the chapters which follow, present results from the perspectives of both statistical

mechanics theory and applications to diverse physical problems.

1.1 Kardar-Parisi-Zhang equation

The time evolution of an interface undergoing stochastic growth is described by the

Kardar-Parisi-Zhang (KPZ) equation [1, 2],

𝜕ℎ(x, 𝑡)

𝜕𝑡
= 𝑣 + 𝜈∇2ℎ(x, 𝑡) +

𝜆

2
[∇ℎ(x, 𝑡)]2 + 𝜂(x, 𝑡), (1.1)

where ℎ(x, 𝑡) is the interface height at spatial position x and time 𝑡. A sample

realization of such an interface is shown in Fig. 1-1. The first term 𝑣 gives the

average vertical growth velocity. It is often dropped by setting 𝑣 = 0, since it does not
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Figure 1-1: Growth of a KPZ interface in 𝑑 = 1 + 1 dimensions. The interface
ℎ(𝑥, 𝑡) roughens over time as the height fluctuations grow with characteristic scaling
exponents.

contribute to the shape of the interface, which is driven by disorder. The second term

𝜈∇2ℎ(x, 𝑡) provides the familiar smoothing mechanism. The third term 𝜆/2[∇ℎ(x, 𝑡)]2

is of particular interest; it describes growth along the local normal to the interface.

This leads to the intuitive picture that a bump in the interface will grow not only

“upwards”, but “outwards”, as shown in Fig. 1-2. The strength of these mechanisms

are governed by the parameters 𝜈 and 𝜆. Finally, the fourth term 𝜂(x, 𝑡) is the

stochastic noise, and the source of disorder in the system. It is typically taken to be

uncorrelated white noise, with

⟨𝜂(x, 𝑡)𝜂(x′, 𝑡′)⟩ = 2𝐷𝛿(x− x′)𝛿(𝑡− 𝑡′), (1.2)

where 𝐷 determines the strength of the disorder.

As the interface grows, the fluctuations also grow with characteristic scaling expo-

nents, in a process known as interface roughening. The statistical properties of these

fluctuations are of great interest, as they form the foundation for the so-called KPZ

universality class. The scaling exponents, as well as the limiting distribution of the

fluctuations, are distinctive, and can be used to identify processes described by the
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Figure 1-2: Illustration of how a protrusion on a KPZ interface propagates. The
growth is “outwards” in the direction of the local normal, as would be intuitive for a
spreading fire front or bacteria colony.

KPZ equation even when they differ drastically in the microscopic details.

1.1.1 Universal scaling form

At its core, the KPZ universality class is characterized by the scaling form for the

interface height fluctuations [1],

∆ℎ = ⟨(ℎ− ⟨ℎ⟩)2⟩1/2 ∼ |x|𝜒𝑓
(︂

𝑡

|x|𝑧
)︂

∼

⎧⎨⎩ 𝑡𝛽, 𝑡 ≪ |x|𝑧,
|x|𝜒, 𝑡 ≫ |x|𝑧.

(1.3)

where the angular brackets represent averaging over many realizations of the disorder,

and 𝑓 is a scaling function. In Eq. 1.3, we have introduced the growth exponent 𝛽, the

roughening exponent 𝜒, and the dynamic exponent 𝑧. We will discuss the significance

of each exponent in turn.

The dynamic exponent 𝑧 quantifies the scaling relationship between the spatial

and temporal directions. In particular, it is often convenient to define the wandering

exponent 𝜁 = 1/𝑧, such that the transverse fluctuations in the system scale as |x| ∼ 𝑡𝜁 .

The growth exponent 𝛽 and the roughening exponent 𝜒 then characterize the scaling

of ∆ℎ in the asymptotic regimes 𝑡 ≪ |x|𝑧 and 𝑡 ≫ |x|𝑧, respectively. From the

definitions in Eq. 1.3, we immediately see that the exponents must be related as

follows,

𝛽 = 𝜒/𝑧. (1.4)
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In systems where the disorder does not have temporal correlations, a second exponent

identity arises from Galilean invariance of the KPZ equation [1, 3],

𝜒 + 𝑧 = 2. (1.5)

The exponent identity in Eq. 1.5 can be derived from the symmetry of the equation

under an infinitesimal tilt transformation by an angle 𝜖 (see Ref. [1] for details),

ℎ → ℎ + 𝜖 · x, x → x + 𝜆𝜖𝑡. (1.6)

Together, these exponent identities reduce the number of independent scaling expo-

nents to one, and allow us to focus on, for instance, 𝛽 alone.

In the chapters which follow, we focus on KPZ growth in 𝑑 = 1 + 1 dimensions

(i.e. one spatial dimension 𝑥 ∈ R and one time dimension 𝑡 ∈ R+). In this case,

the exact growth exponent is known to be 𝛽 = 1/3 [4–7]. Of course, this also gives

𝑧 = 3/2 and 𝜒 = 1/2, via the exponent identities in Eqs. 1.4 and 1.5. Analogous

results in 𝑑 = 2 + 1 dimensions can be found in Ref. [6]; there, numerical studies

place the growth exponent at 𝛽 ≃ 0.24 for various models in the universality class,

although the exact value is not yet known.

1.1.2 Tracy-Widom distribution

A second statistical property which characterizes the KPZ universality class is the

probability distribution of the interface fluctuations. The height function for a KPZ

interface can be written in the form

ℎ(𝑥, 𝑡) = 𝑣∞𝑡 + (Γ𝑡)1/3𝜉 (1.7)

where 𝑣∞ is the asymptotic average growth velocity, Γ is a system-dependent param-

eter which can be estimated using the Krug-Meakin toolbox [8], and 𝜉 is an 𝒪(1)

random variable [9].

In 𝑑 = 1 + 1 dimensions, the limiting distribution for this random variable 𝜉 has
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𝛽 Ensemble Mean Variance Skewness Kurtosis
1 GOE -1.2065335745 1.6077810345 0.2934645240 0.1652429384
2 GUE -1.7710868074 0.8131947928 0.2240842036 0.0934480876
4 GSE -2.3068848932 0.5177237208 0.1655094943 0.0491951565

Table 1-1: Statistics of Tracy-Widom distributions for different ensembles of Gaussian
random matrices.

been shown analytically to be Tracy-Widom (TW), with a parameter which depends

on the initial conditions. These distributions were originally introduced in connec-

tion with the extremal eigenvalues of random matrices [10, 11]. They have since

acquired iconic status [12] due to applications ranging from bioinformatic sequence

alignments [13] to aircraft fault detection [14].

In the random matrix context, the TW distribution with parameter 𝛽 is defined

as the limit

𝐹𝛽(𝑠) = lim
𝑛→∞

P𝛽

(︁√
2𝑛1/6(𝜆max −

√
2𝑛) < 𝑠

)︁
, 𝛽 = 1, 2, 4, (1.8)

where 𝜆max is the largest eigenvalue of an 𝑛 × 𝑛 random matrix in the Gaussian

ensemble associated with parameter 𝛽 [10, 11]. The case 𝛽 = 1 corresponds to the

Gaussian Orthogonal Ensemble (GOE) of real symmetric matrices, while the case

𝛽 = 2 corresponds to the Gaussian Unitary Ensemble (GUE) of hermitian matrices.

The relevant distribution for a given KPZ growth process depends on the details of

the initial condition: Growth in a flat geometry is described by TW-GOE, whereas

growth in a radial geometry (i.e. from a droplet) is described by TW-GUE [9]. These

limiting distributions have not only been derived analytically using various KPZ lat-

tice models [5, 15–17], but have also been observed experimentally in a system of

liquid crystals [18–20]. The last case 𝛽 = 4 corresponds to the Gaussian Symplectic

Ensemble (GSE). While TW-GSE arises theoretically in KPZ growth for some spe-

cific geometries, such as in half-space problems with an absorbing boundary at the

origin [21], or with different growth rates on either side of the origin [22], it is not

as physically relevant as the other ensembles, and will not be discussed further here.

More details on the definition and properties of the GSE can be found in Ref. [23].
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The GUE distribution can be written explicitly in the following integral form,

𝐹2(𝑠) = det (𝐼 −𝐾Ai) = exp

(︂
−
∫︁ ∞

𝑠

(𝑥− 𝑠)𝑞2(𝑥) 𝑑𝑥

)︂
, (1.9)

where 𝐾Ai is the Airy kernel acting on 𝐿2(𝑠,∞),

𝐾Ai =
Ai(𝑥)Ai′(𝑦) − Ai′(𝑥)Ai(𝑦)

𝑥− 𝑦
(1.10)

and 𝑞(𝑡) is the solution to the Painlevé II equation

𝑞′′ = 𝑥𝑞 + 2𝑞3 (1.11)

with the boundary condition 𝑞(𝑥 → +∞) ∼ Ai(𝑥). Ai(𝑥) is the Airy function. The

GOE and GSE distributions can then be written in terms of the above, as

𝐹1(𝑠) = exp

(︂
−1

2

∫︁ ∞

𝑠

𝑞(𝑥) 𝑑𝑥

)︂
(𝐹2(𝑠))

1/2 ,

𝐹4

(︂
𝑠√
2

)︂
= cosh

(︂
1

2

∫︁ ∞

𝑠

𝑞(𝑥)𝑑𝑥

)︂
(𝐹2(𝑠))

1/2 . (1.12)

The TW distributions for the different ensembles are plotted in Fig. 1-3, and

their characteristic statistics are summarized in Table 1-1. Numerical evaluation of

the distributions has been achieved through approximation methods for both the

Painlevé equation and the Fredholm determinant forms [24,25].

1.2 Lattice models

The KPZ universality class comprises a diverse range of lattice models. Some are

direct models of growth processes with a KPZ interface, while others can be mapped

to the KPZ equation through transformations. The advantage of having access to

such a rich universality class is that while each system may be susceptible to different

analytical and numerical methods, the individual results can reveal insights about

the universality class as a whole. Here, we introduce two such lattice models in
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Figure 1-3: Tracy-Widom distributions associated with the largest eigenvalue of dif-
ferent ensembles of Gaussian random matrices.

detail: directed polymers in random media (DPRM) and the Eden model. Other

models which are closely related, but will not be discussed here include the restricted

solid-on-solid model (RSOS) [26,27], ballistic deposition (BD) [28,29], and the totally

asymmetric simple exclusion process (TASEP) [30,31].

1.2.1 Directed polymers in random media

The DPRM problem considers configurations of a directed path (no overhangs) travers-

ing a random energy landscape (see Fig. 1-4 for an illustration) [32–34]. Fluctuations

in the transverse direction are permitted in order to explore the random energy land-

scape, and optimize the sum of energies along the path. The optimal path energy (or

the free energy at finite temperature) exhibits sample to sample fluctuations, which

scale with the path length 𝑡, as 𝑡𝛽. In 𝑑 = 1 + 1 dimensions, and for uncorrelated

random energies, the scaled probability of these fluctuations satisfies the TW dis-

tribution [9, 35]. As one of the simplest random processes described by the KPZ

equation, DPRM has been extensively studied over the past three decades [36–38],

with renewed recent interest [6, 7, 39, 40] due to its connection to TW. Extensive re-
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Figure 1-4: Schematic of DPRM on a square lattice with on-site random energies
𝜂(𝑥, 𝑡). The directed polymer 𝑥(𝑡) is oriented in the 𝑡-direction, but is allowed to
fluctuate in the 𝑥-direction in order to minimize the sum of random energies along
the path.

views from both statistical physics [33,34] and mathematical [9] perspectives provide

an excellent background on the subject.

Similar to other lattice models in the KPZ universality class, DPRM does not

directly model interface growth. To see its connection to the KPZ equation, we

introduce the Cole-Hopf transformation (in 𝑑 = 1 + 1 dimensions for simplicity),

𝑊 (𝑥, 𝑡) = exp

[︂
𝜆

2𝜈
ℎ(𝑥, 𝑡)

]︂
, (1.13)

where ℎ(𝑥, 𝑡) is the interface height and 𝜆 and 𝜈 are the parameters from Eq. 1.1.

Substituting Eq. 1.13 into Eq. 1.1 yields the stochastic heat equation,

𝜕𝑊

𝜕𝑡
= 𝜈∇2𝑊 (𝑥, 𝑡) + 𝜂(𝑥, 𝑡)𝑊 (𝑥, 𝑡). (1.14)

This transformation removes the nonlinear term in the KPZ equation, thus removing

a level of complexity, but exchanges the additive stochastic noise term for a multi-

plicative one.

Eq. 1.14 may look familiar, since it has the same form as the Schrödinger equation
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but with imaginary time. We can therefore write down a formal path integral solution,

𝑊 (𝑥, 𝑡) =

∫︁ (𝑥,𝑡)

(0,0)

𝒟𝑥′(𝑡′) exp

{︃
−
∫︁ 𝑡

0

d𝑡′

[︃
1

4𝜈

(︂
d𝑥′

d𝑡′

)︂2

− 𝜆

2𝜈
𝜂(𝑥′, 𝑡′)

]︃}︃
. (1.15)

𝑊 (𝑥, 𝑡) in the above form can be interpreted as the partition function of a directed

polymer in the continuum limit, with length 𝑡 and terminating at a point 𝑥 ∈ R.

The (𝑑𝑥′/𝑑𝑡′)2 term corresponds to an elastic energy (𝜈 is related to the polymer line

tension), and the 𝜂(𝑥, 𝑡) term corresponds to the random potential energy at (𝑥, 𝑡).

From the above transformation, we expect the free energy of a directed polymer,

𝑓 = − ln𝑊, (1.16)

to be described by the same statistics as the height of a KPZ interface.

The tractability of DPRM in simulations makes it an especially attractive model

with which to study the KPZ universality class. Unlike the traveling salesman problem

(which allows overhangs and loops) [41], the optimization problem for DPRM can be

solved in polynomial time using a transfer matrix formalism [32–34]. In the rotated

square lattice geometry depicted in Fig. 1-4, the optimal path to a point (𝑥, 𝑡) depends

only on the optimal paths at the previous time step, to the neighbouring point from

the left, (𝑥 − 1, 𝑡 − 1), and to the neighbouring point from the right, (𝑥 + 1, 𝑡 − 1).

The partition function for this discrete version of the directed polymer can be written

recursively as

𝑊 (𝑥, 𝑡) = 𝑒−𝜇(𝑥,𝑡) [𝑊 (𝑥− 1, 𝑡− 1) + 𝑊 (𝑥 + 1, 𝑡− 1)] =
∑︁
𝑥′

⟨𝑥|T|𝑥′⟩𝑊 (𝑥′, 𝑡− 1).

(1.17)

where 𝜇(𝑥, 𝑡) = −(𝜆/2𝜈)𝜂(𝑥, 𝑡) is the rescaled random energy, and T is a transfer

matrix which describes the time evolution. At zero temperature, the free energy is

simply the energy of the optimal path,

𝐸(𝑥, 𝑡) = 𝜇(𝑥, 𝑡) + min{𝐸(𝑥− 1, 𝑡− 1), 𝐸(𝑥 + 1, 𝑡− 1)}. (1.18)

31



Figure 1-5: Illustration of DPRM paths. Each black line represents an optimal path
in the pt-pt geometry, from the origin (the bottom of the wedge) to a specific point
along the top. The bolded red line represents the optimal path in the pt-line geometry,
from the origin to any point along the top.

Simulations of DPRM can be performed in two different geometries: The pt-pt

model optimizes over paths from the origin to (𝑥, 𝑡) for given 𝑥 and 𝑡, and obeys

TW-GUE statistics associated with radial interface growth. The pt-line model, on

the other hand, optimizes over paths from the origin to any 𝑥 and a given 𝑡, and obeys

TW-GOE statistics associated with flat interface growth [15–17, 39, 42, 43]. Sample

paths for the two geometries are shown in Fig. 1-5.

1.2.2 Eden model

A more direct model for stochastic interface growth is the Eden model [44, 45], first

introduced in the context of cancer cell growth. This simple algorithm takes as initial

condition a subset of sites on a square lattice which are “filled”. At each time step,

the empty sites with at least one filled neighbour are identified as edge sites, and one

of these edge sites is filled at random, thus introducing stochasticity (see Fig. 1-6).

As this process is repeated and the Eden cluster grows, the roughening of the edge

is described by KPZ statistics. Despite its apparent simplicity, however, analytical

results have proven elusive for the Eden model in comparison to other KPZ lattice

models.
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Figure 1-6: Schematic of the Eden model in the radial geometry. (a) An Eden cluster
at time 𝑡 is shown in black, and the edge sites (empty sites which neighbour the
growth front) are shown in green. At time 𝑡+ 1, the cluster expands into one of these
edge sites at random, as indicated by the white arrow. (b) As the cluster grows over
time, the edge develops increasing fluctuations which obey KPZ statistics.

1.3 Outline

The thesis is organized as follows.

In Chapter 2, we examine the robustness of the KPZ universality class in the

presence of spatial correlations in the noise. Using the DPRM model, we investigate

to what extent the scaling exponents and limiting distributions deviate from those

introduced in Chapter 1.1, and verify the exponent identities.

In Chapter 3, we analyze the statistics of optimal paths given by GPS routing.

We measure the distribution in the stochasticity of the underlying road network for

different regions around the world, and model the paths as directed polymers in a

correlated energy landscape.

In Chapter 4, we study the impact of fluctuations in the growth front of bacterial

range expansions on the genetic diversity of the population. The statistics of genetic

lineages can be characterized using coalescence events, which mark when two individ-

uals share a common ancestor in the past. We also explore the effects of environmental

heterogeneities, around which the bacteria must propagate.

In Chapter 5, motivated by the problem of non-intersecting DPRMs, we search
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for connections between the transfer matrix formulation of DPRM and the Gaussian

random matrices from which the TW distributions are derived. It is known that the

DPRM free energy, related to the largest eigenvalue of a product of transfer matrices,

shares the same limiting distribution. We ask the question why, and look to establish

other similarities and distinctions between the two classes of matrices.

Finally, Chapter 6 provides an outlook on future directions.
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Chapter 2

Probability distributions for directed

polymers in random media with

correlated noise

The results in this chapter are reproduced and adapted from Ref. [46].

The disorder in the KPZ equation is typically taken to be stochastic white noise,

with no spatial or temporal correlations. However, this is not always the case in

physical systems. Consider for instance a spreading forest fire, whose speed of prop-

agation is affected locally by the changing wind speeds and availability of dry foliage

to fuel it. In contrast to the sharp peaks and valleys associated with white noise,

these fluctuations tend to be continuous and slowly varying over a larger length scale.

They can be visualized as hills and valleys in the energy landscape over which the

fire front propagates, causing the fire to spread faster in some regions, and slower in

others. To incorporate this kind of randomness into our models for stochastic inter-

face growth, it is natural to consider noise with correlations which decay slowly as a

function distance (in either space or time).

In this chapter, we test the robustness of the KPZ universality class in the presence

of long-range spatial correlations. Previous renormalization group (RG) calculations

have predicted that the scaling exponents will deviate from their values in the uncorre-

lated case [1,3]. We perform numerical simulations of the DPRM model introduced in
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Chapter 1.2.1, and compare the results to RG predictions. The energy fluctuations are

well described by the growth exponent 𝛽 and the dynamic exponent 𝑧, extracted by

standard data collapse. We find that the KPZ exponent identities reflecting Galilean

invariance hold as expected, with some deviations which could be attributed to sys-

tematic errors. The exponent 𝛽 is qualitatively similar to RG predictions, but varies

smoothly with the correlation exponent, in contrast to these predictions. As the cor-

relations increase, the scaled probability distributions of the directed polymer energy

are no longer well described by the TW form, instead becoming more symmetric.

We thus find a class of distributions that continuously interpolates between TW and

Gaussian forms.

2.1 Spatially correlated noise

Recall that the KPZ universality class is characterized by the scaling relation defined

in Eq. 1.3, which, in the absence of temporal correlations in the noise, can be re-

duced to a single independent exponent 𝛽. It is known that this growth exponent 𝛽

can be modified by introducing noise that is fat-tailed [i.e. noise 𝜂 with probability

distribution 𝑃 (𝜂) ∼ 1/𝜂1+𝜇 as 𝜂 → −∞] [47–49], or long-range correlated [1]. The

former was considered in Ref. [40], concluding that for 0 < 𝜇 < 5, both the scaling

exponent and the end-point distributions are inconsistent with the KPZ/TW univer-

sality class described in Chapter 1.1. They did not, however, focus on the nature of

the modified distributions. Here, we consider the latter, expanding on earlier work in

Ref. [39]. Specifically, we examine both the scaling exponents and limiting probability

distributions in the presence of long-range spatially correlated noise.

We generalize the KPZ equation as in Ref. [1] to include noise with spatial corre-

lations which decay as a power law,

𝜕ℎ(𝑥, 𝑡)

𝜕𝑡
= 𝑣 + 𝜈∇2ℎ(𝑥, 𝑡) +

𝜆

2
[∇ℎ(𝑥, 𝑡)]2 + 𝜂(𝑥, 𝑡),

⟨𝜂(𝑥, 𝑡)𝜂(𝑥′, 𝑡′)⟩ ∼ |𝑥− 𝑥′|2𝜌−1𝛿(𝑡− 𝑡′). (2.1)
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A one-loop dynamical renormalization group (RG) calculation [1, 3] predicts

𝛽(𝜌) =

⎧⎨⎩ 1/3, 0 < 𝜌 < 1/4,

(1 + 2𝜌)/(5 − 2𝜌), 1/4 < 𝜌 < 1.
(2.2)

Eq. 2.2 was also obtained in the field-theoretic works of Ref. [50] and Ref. [51], using

a stochastic Cole-Hopf transformation and a nonperturbative RG approach, respec-

tively. The exponent 𝜌 is used as a measure for the degree of correlation in the system.

On dimensional ground, the case of uncorrelated noise [𝛿(𝑥) ∼ 1/|𝑥|] corresponds to

𝜌 = 0, in the regime where the RG result coincides with the exact value of 𝛽 = 1/3.

The limit 𝜌 = 1 corresponds to the interface of a two-dimensional Ising model in

random fields. The case of 𝜌 = 1/2 is of particular interest: The DPRM problem

is trivial if the noise does not depend on 𝑥, in which case the addition of random

variables at different 𝑡 would lead to a Gaussian distribution whose width grows with

𝛽 = 1/2 (as predicted by the above). However, as we shall elaborate in Appendix A,

the numerical procedure used generates non-trivial correlations for 𝜌 = 1/2 which

vary logarithmically with |𝑥− 𝑥′|.
Qualitatively, the change in scaling behaviour is best visualized by plotting the

optimal paths on a correlated energy landscape. In Fig. 2-1, reproduced from Ref. [1],

we see a comparison of optimal paths (in the pt-line geometry) for different values of

𝜌. As 𝜌 increases, large segments of the paths begin to resemble ballistic trajectories,

which heuristically, leads to the expectation that the wandering exponent 𝜁 = 1/𝑧 =

(𝛽 + 1)/2 increases, consistent with Eq. 2.2.

To study the effects of spatial correlations in more detail, we simulate the discrete

pt-line DPRM on a square lattice, with random energies on each site 𝜂(𝑥, 𝑡). The path

is directed along the diagonal, such that the minimal energy is calculated recursively

according to the transfer matrix relation in Eq. 1.18. The square lattice is wrapped

around a cylinder of size 𝐿, corresponding to periodic boundary conditions along the

𝑥-direction. For 𝜌 < 1, random energies correlated as in Eq. 2.1 are generated using

the Fourier transform method proposed in Ref. [52], the details of which can found

in Appendix A. (A similar method for generating correlated noise was developed in
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Figure 2-1: Optimal paths of 500 bonds along diagonals of a square connecting the
apex to various points on the base. The bonds are all random variables, with correla-
tions in horizontal strips, decaying with an exponent 𝜌. Different figures correspond
to different values of 𝜌. Figure and caption are reproduced from Ref. [1].
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Ref. [53].) For 𝜌 = 1, the noise is constructed as a Brownian bridge, shifted to have

zero mean. The simulated system size is 𝐿 = 106, evolved over 𝑡 = 104 time steps,

and averaged over 102 realizations.

2.2 Scaling exponents

In analogy to the KPZ height function described by Eq. 1.3, the fluctuations in the

optimal DPRM energy, with finite system width 𝐿, is expected to satisfy the scaling

form,

∆𝐸 = ⟨(𝐸 − ⟨𝐸⟩)2⟩1/2 ∼ 𝐿𝜒𝑓

(︂
𝑡

𝐿𝑧

)︂
∼

⎧⎨⎩ 𝑡𝛽, 𝑡 ≪ 𝐿𝑧,

𝐿𝜒, 𝑡 ≫ 𝐿𝑧
, (2.3)

where the angular brackets denote averaging over different realizations (or indepen-

dent segments in the same realization) of random energies.

We extract the growth exponent 𝛽 and the dynamic exponent 𝑧 from the collapse

of the curves of ∆𝐸/𝑡𝛽 vs. 𝐿/𝑡𝜁 for different times 𝑡. Alternatively, 𝛽 and 𝑧 can be

deduced respectively from the scaling of the energy fluctuations ∆𝐸 ∼ 𝑡𝛽, and the

transverse fluctuations ∆𝑥 = ⟨(𝑥−𝑥0)
2⟩1/2 ∼ 𝑡𝜁 , where 𝑥0 is the origin of the directed

polymer. This method yields exponents which are in good agreement with the data

collapse approach for small 𝜌, where finite size effects are less important.

As presented in Fig. 2-2, the data is very well collapsed according to Eq. 2.3,

although somewhat less so for larger values of 𝜌. In particular we note the excellent

collapse at 𝜌 = 1/4 which according to the RG result of Eq. 2.2 is the limiting point

for which 𝛽 sticks to 1/3. However, we find 𝛽 = 0.375 ± 0.005, (and 𝜁 = 0.68 ± 0.01)

in contradiction to RG, but consistent with previous results in Ref. [53] of 𝛽 =

0.364 ± 0.005 and 𝜁 = 0.692 ± 0.005. Indeed, as depicted in Fig. 2-3, the exponent 𝛽

appears to vary continuously with 𝜌, in contradiction to Eq. 2.2. As in Ref. [53], we

extend the simulations to 𝜌 ≤ 0, and throughout this regime obtain 𝛽 = 1/3 consistent

with uncorrelated noise. (We also find 𝜁 = 2/3 in this regime through data collapse as

in Fig. 2-2). For larger values of 𝜌, the agreement with RG improves, and the expected

random field Ising exponents of 𝛽 = 𝜁 = 1 are recovered for 𝜌 = 1. The continuous
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Figure 2-2: Collapse of energy fluctuations of DPRM with a spatially correlated
landscape. The data corresponds to system size 𝐿 = 106, evolved to time 𝑡 = 104. The
error bars on the exponents reflect statistical errors in the fits, neglecting potentially
larger systematic errors.
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Figure 2-3: (a) Variation of 𝛽 with the exponent 𝜌 of spatially correlated energies.
There is a small, but clear deviation from the predicted RG exponents (dashed line).
(b) Validity of the exponent identities predicted by Galilean invariance; the discrep-
ancies are likely a measure of systematic errors.

variation of 𝛽 for 𝜌 ≤ 1/2 is similar to observations in previous simulations of DPRM,

restricted solid-on-solid (RSOS), and ballistic deposition (BD) models [53–56]. We

note that the RG exponents are constrained to be exact for uncorrelated noise due to

a fluctuation-dissipation condition. The exponents in Eq. 2.2, however, follow from a

non-renormalization of correlated noise amplitude, which in view of the numerics is

perhaps questionable.

In principle, the scaling relation, Eq. 2.3, involves two exponents (𝛽 and 𝜁, or 𝜒

and 𝑧). We estimated the roughening exponent 𝜒 from the slope of the collapsed

curve in the regime 𝑡 ≫ 𝐿𝑧. A hallmark of the KPZ equation (even with spatially
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correlated noise) is Galilean invariance [2, 3], which implies the exponent identity in

Eq. 1.5, 𝜒+ 𝑧 = 2. The explicit check of this identity presented in Fig. 2-3 appears to

indicate its breakdown for 𝜌 > 1/2. However, simply dividing this identity by 𝑧, and

using the relation in Eq. 1.4, 𝛽 = 𝜒/𝑧, we obtain a second form 2/𝑧 − 𝛽 = 1, which

is excellently obeyed by the data! The discrepancy between these two identities is an

indication of the systematic errors afflicting the fits, such as the small but systematic

curvature in the initial rise of the collapsed curves in Fig. 2-2, whose slope is used to

obtain the exponent 𝜒.

2.3 Probability distributions

We introduced in Chapter 1.1.2 the TW distributions which characterize systems

in the KPZ universality class. Like the Gumbel and Gaussian distributions, TW is

universal in being independent of various underlying (microscopic) details. However,

whereas it is known how the addition of fat-tailed random variables modifies a Gaus-

sian to a Lévy distribution, corresponding limitations for TW are not known. We

take up this question in the DPRM context, and inquire if and how the TW form

changes in spatially correlated energy landscapes.

The end-point energy probability distributions for DPRM are obtained from time

𝑡 = 103 to 𝑡 = 104, in increments of ∆𝑡 = 103, and are normalized to have mean 0 and

variance 1. The full distributions presented in Fig. 2-4 are qualitatively similar to the

TW-GOE form for 𝜌 ≤ 0, but shift smoothly towards Gaussian as 𝜌 increases to 𝜌 =

1/2, the borderline point between correlations growing or decaying with separation.

Beyond 𝜌 = 1/2, it is unclear whether the distribution remains Gaussian.

The skewness 𝑠 and kurtosis 𝑘, plotted in Fig. 2-5, are obtained by averaging

results over the above snapshots in 𝑡. In the uncorrelated case, it is possible to

estimate the true asymptotic values of 𝑠 and 𝑘 using methods developed in Ref. [8].

In the correlated case, however, we run into problems as the uncertainties grow rapidly

with correlation. For 𝜌 ≤ 0, the skewness and kurtosis approach those of the TW-

GOE, the limiting distribution for pt-line DPRM with uncorrelated noise. As 𝜌
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Figure 2-4: Probability distributions for the optimal energy of DPRM for different
correlation exponents 𝜌. The data corresponds to system size 𝐿 = 106 at time 𝑡 =
5 × 103, rescaled to have mean 0 and variance 1. Results are consistent with the
TW-GOE form (solid line) for 𝜌 ≤ 0, and shift smoothly towards Gaussian (dashed
line) at 𝜌 = 1/2.
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increases towards 1/2, both 𝑠 and 𝑘 decrease to 0, and the distribution becomes more

symmetric. In particular, the data suggests that 𝑠, 𝑘 → 0 as 𝜌 → 1/2, consistent

with a Gaussian distribution. This would be expected if 𝜌 = 1/2 corresponded to

random energies fully correlated in the 𝑥-direction, but randomly changing along the

𝑡-direction. The energy of the DPRM would then be a sum of random variables,

thus 𝛽 = 1/2, while the path executes a random walk with 𝑧 = 2. The latter is

not correct, as the Galilean exponent identity at 𝛽 = 1/2 leads to the numerically

observed exponent of 𝑧 = 4/3. We note also that the Fourier transform procedure

for generating spatially correlated noise, devised in Ref. [52] and used here, actually

produces correlations which vary logarithmically at 𝜌 = 1/2, as ⟨𝜂(𝑥, 𝑡)𝜂(𝑥′, 𝑡′)⟩ ∼
(𝑎− 𝑏 ln |𝑥−𝑥′|)𝛿(𝑡− 𝑡′) (see Appendix A). Interestingly the RG result (also based on

Fourier transformed noise) predicts the observed 𝛽 = 1/2 as well. Finally, for 𝜌 > 1/2,

the uncertainty in 𝑠 and 𝑘 grow rapidly due to the increased correlations in random

energies, and we cannot conclusively state whether the distribution is Gaussian or not.

It is of interest to note that another class of distributions, interpolating between TW-

GUE and Gaussian, was found in Ref. [57] in the context of random matrix theory,

and the convergence of TW distributions to the Gumbel distribution was studied in

Ref. [58].

For an uncorrelated landscape, the optimal energy of DPRM behaves analogously

to Eq. 1.7, as

𝐸 = 𝑓∞𝑡 + (Γ𝑡)1/3𝜉, (2.4)

where 𝑓∞ and Γ are non-universal, system-dependent parameters, and 𝜉 is a 𝒪(1)

random variable obeying TW-GOE statistics. There is currently no analytical pre-

diction for the limiting distribution in the case of correlated noise. From the overall

scaling, we can propose a generalized form,

𝐸 = 𝑓∞𝑡 + (Γ𝑡)𝛽(𝜌)𝜉(𝜌), (2.5)

where 𝛽(𝜌) is the modified growth exponent plotted in Fig. 2-3a. The random variable

𝜉(𝜌) is distributed according to TW-GOE statistics for 𝜌 ≤ 0. A priori one could have
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Figure 2-5: (a) Skewness and (b) kurtosis for DPRM with spatially correlated noise,
compared to the TW-GOE values (solid lines), 𝑠 = 0.293 and 𝑘 = 0.165, respectively:
Both approach the TW-GOE values for 𝜌 ≤ 0, and decrease to 0 as 𝜌 increases to
1/2. Beyond 𝜌 = 1/2, the uncertainties are too large to rule out 𝑠 = 𝑘 = 0.
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imagined that the distribution retains the TW form in general, or that it discontinu-

ously transitions to a different distribution for 𝜌 > 0. Instead, we observe a smooth

shift as 𝜌 increases, to a Gaussian form at 𝜌 = 1/2. For 𝜌 > 1/2, the uncertainty

in skewness and kurtosis become too significant to conclude whether the distribution

remains Gaussian. We thus find a class of distributions, interpolating between TW

and Gaussian, which governs the statistics of DPRM with spatially correlated noise.
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Chapter 3

Optimal paths on road networks as

directed polymers

The results in this chapter are reproduced and adapted from Ref. [59].

Complex networks of nodes and links can be used to model a wide array of sys-

tems. Examples range from biological networks such as those formed by neurons and

synapses in the brain or chemical reactions inside a cell, to social or transportation

networks and the World Wide Web. Their topology in the abstract space of edges and

vertices has been much studied, allowing one to identify widespread properties such

as “small-world” effects, scale-free connectivity, and a high degree of clustering, which

can be captured by simple physical models [60–64]. Comparatively, less is understood

about the spatial organization of complex networks embedded in a Euclidean space,

a very active area of research (see Ref. [65] for a review). The effect of geometry

is especially relevant when the network is strongly constrained by the environment

or when the “cost” to maintain edges increases significantly with their length (e.g.

rivers [66], railways [67] or vascular networks [68]). The spatial structure of streets is

another example that has been particularly studied to gain insight into the structure

of cities and their development [69–71].

Much information about the geometry of a network can be obtained by studying

the shortest paths between the nodes of the network. In many cases, it is also a

problem of practical importance to characterize the paths that optimize a given cost
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function. For example, in transportation networks, one would like to understand the

properties of the paths that minimize the travel time, the distance, or the monetary

cost to travel between two points. An obvious application is in the development of

efficient global positioning system (GPS) routing algorithms which could use prior

information on optimal paths to perform better [72]. The shortest paths between

two generating nodes on the power grid are also important to predict the overloading

of electric lines [14]. Understanding the properties of these optimal paths appears

challenging since they are expected to depend strongly on the geometry of the net-

work which can be shaped by various factors, from natural obstacles to historical

development or differences in policy.

In this chapter, we analyze the statistics of the shortest and fastest paths on the

road network between randomly sampled end points. We find that, to a good approx-

imation, these optimal paths can be described as directed polymers from the KPZ

universality class. Comparing the scaling behaviour of our data with simulations of

DPRM and previous theoretical results, we are able to point out the few characteris-

tics of the road network that are relevant to the large-scale statistics of optimal paths.

Indeed, we show that the local structure is akin to a disordered environment with a

power-law distribution which become less important at large scales where long-ranged

correlations in the network control the scaling behaviour of the optimal paths.

3.1 Connection to directed polymers

The DPRM model introduced in Chapter 1.1.2 explores a physically distinct but

mathematically related problem to that of road networks. It is concerned with the

statistics of a path stretched between two points that minimizes its energy in a random

environment modeled by a fluctuating potential. Configurations of DPRM paths such

as in Fig. 1-5 bear qualitative resemblance to myriad natural transportation systems,

from river deltas to vascular networks; the wealth of data on road networks provides

the opportunity for a quantitative comparison.

Here, we study the statistics of optimal paths on the road network in light of
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Figure 3-1: The location of the three regions considered. For simplicity and efficiency
of our algorithm, they are chosen to be large rectangular areas (in latitude-longitude
coordinates) without sea or ocean.

known statistics for DPRM. Gathering large data sets of millions of paths on three

continents, we compute the probability distribution of path length and travel time

as a function of the distance between the end points. As in the case of DPRM,

appropriately scaled fluctuations can be collapsed approximately to a single curve,

suggesting that details of the local structure of road networks are irrelevant to the

statistics on larger scales. The local environment can be modeled by a power-law

distributed noise with, remarkably, a universal decay exponent. Furthermore, we

show that long-range correlations in the environment, on the scale of hundreds of

kilometers, affect the scaling exponents and are thus relevant to the statistics of

optimal paths. The transverse wandering of the paths is also found to be consistent

with our modeling as a directed polymer.

Let us first make precise the DPRM model that is relevant to road networks, and

summarize the relevant results. The appropriate model to consider here is the pt-pt

DPRM, where the directed polymer is pinned at its ends, and sufficiently stretched

to prevent overhangs. Its wanderings can thus be described by a function ℎ(𝑥), where

𝑥 is a coordinate along the axis between the end points and ℎ the distance from
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this axis. (Note that these variables are distinct from those introduced in Eq. 1.1 for

interface growth. For instance, 𝑥 is traditionally denoted 𝑡 as a time direction, but we

stick here to the spatial notation to avoid confusion with travel times.) The energy

of a configuration of is then given by

𝐸[ℎ(𝑥)] =

∫︁ 𝑑

0

𝑑𝑥

[︃
𝛾

2

(︂
𝑑ℎ

𝑑𝑥

)︂2

+ 𝑉 (𝑥, ℎ)

]︃
, (3.1)

where 𝑑 is the distance between the end points, 𝛾 is related to the line tension of the

directed polymer, and 𝑉 is a random potential modeling a disordered environment.

In the zero-temperature limit, relevant to our problem, the free energy is simply

the energy of the optimal path 𝐸[ℎ*]. Two exponents govern the scaling of the

energy fluctuations ⟨(𝐸 − ⟨𝐸⟩)2⟩ ∼ 𝑑2𝛽 (where the brackets denote an average over

realizations of the disorder 𝑉 ) and the transverse wandering of the optimal chains,

⟨ℎ*(𝑥)2⟩ ∼ 𝑥2𝜁 [32]. If 𝑉 has only short-ranged correlations, the exponents 𝛽 = 1/3

and 𝜁 = 2/3 are known exactly [3], and the limiting distribution is TW-GUE [15].

On the contrary, long-range correlated disorder leads to larger scaling exponents and

different energy distributions [1, 46,51,55,73].

3.2 Statistics of optimal paths

In light of these theoretical results, we now analyze the statistics of two types of opti-

mal paths (the shortest and the fastest) on the road network. We compute the paths

using the Open Source Routing Machine (OSRM) [74] operating on OpenStreetMap

data, a collaborative effort to provide an open source map of the world. The fastest

paths are determined using the default configuration of OSRM which takes into ac-

count speed limitations for cars and road types but no information on traffic. We

gather six data sets for the two types of optimal paths in the three regions indicated

in Fig. 3-1, sampling the end points of the paths uniformly on the network.

In Fig. 3-2, we show examples of optimal paths drawn from an arbitrary center

point (near Munich, Germany) to uniformly sampled points at a 300 km distance.
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Figure 3-2: Shortest (left) and fastest (right) paths from a central point (near Munich,
Germany) to 104 randomly chosen points at a distance of 300 km. The arrow points
to the most prominent overhang in the paths.

Both sets of optimal paths display a fractal branching pattern strongly resembling

what is observed in directed polymer models [32]. However, these routes are not per-

fectly directed. This is especially visible near the end points where the local structure

of the road network may impose overhangs (the most prominent is indicated by a

red arrow in Fig. 3-2). This aligns well with the everyday experience of commuting,

where depending on the neighbourhood, the optimal path may require backtrack-

ing and looping around side streets in order to reach the main street or highway.

Nevertheless, overhangs are mostly avoided by the optimal paths on the rest of the

trajectory, as quantified in Fig. 3-3 where we plot the average length of the paths

⟨𝐿⟩(𝑑) and the part ⟨𝐿ℎ⟩(𝑑) corresponding to overhangs (see Appendix B for a pre-

cise definition of overhangs). The average path length ⟨𝐿⟩ is found to increase linearly

with 𝑑 at large distances while ⟨𝐿ℎ⟩ increases slower. Overhangs thus become less

relevant at larger distances for which we expect a better comparison between road

paths and directed polymers. In the following, we divide accordingly our study be-

tween short paths that are strongly constrained by the network, and longer paths

which result from optimization.

51



Figure 3-3: Average length of the optimal paths ⟨𝐿⟩ and length of overhangs ⟨𝐿ℎ⟩
as a function of the distance 𝑑 between the end points. All lengths are measured in
km. Left: Shortest paths. Right: Fastest paths; 106 points for each curve. Lines are
guides to the eye.

3.2.1 Paths over short distances

We first look in Fig. 3-4 at the distribution of the length 𝐿 of the shortest paths

(respectively the travel time 𝑇 on the fastest paths) between points at a short distance

𝑑 = 1 km. We are interested in 𝐿 and 𝑇 as the quantities that are minimized and thus,

in our interpretation, akin to the energy of a directed chain. The distributions display

clear power-law tails at large 𝐿 and 𝑇 over more than three orders of magnitude. The

tails correspond to situations where the path has to go around an obstacle to reach a

nearby point, e.g., reach the next bridge to cross a river. They thus characterize the

overhangs described previously. Most remarkably, the decay exponent 𝑃 (𝐿) ∼ 𝐿−𝛼

[and 𝑃 (𝑇 ) ∼ 𝑇−𝛼] seems to be universal across continents with 𝛼 ≈ 3 (the best-fit

coefficients for the six curves are all found within [2.89, 3.10]). This appears surprising

since we expect the paths at small 𝑑 to reflect the local structure of the road network

which is a priori very different in the three regions considered. Although we lack an

explanation for the value of the exponent, it can be compared to exponents derived for

the same distribution in different environments. The shortest path between nearby

points on the backbone of a percolation cluster has been numerically found to exhibit

the same 𝛼 = 3 [75] at small distances, while for self-avoiding random walks, the

probability of forming a loop of length ℓ in a 2D chain scales as ℓ−𝛼 with (exact)

exponent 𝛼 = 2.68 [76, 77]. The latter superficially resembles the configuration of a
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Figure 3-4: Optimal paths between points at a distance 𝑑 = 1 km. Top: Probability
distribution of the length 𝐿 of the shortest paths. Bottom: Probability distribution
of the travel time 𝑇 of the fastest paths; 𝑁 = 5 × 105 paths for each curve. Insets:
Scaled plots with the best-fit exponent 𝛼 indicated in the legend.
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road between nearby points that loops around to avoid intervening obstacles, while

not intersecting other roads arriving and/or departing the two points.

3.2.2 Paths over long distances

Because of the fat tails in the distributions of Fig. 3-4, the variance of 𝐿 and 𝑇 is not

defined. We thus cannot estimate the exponent 𝛽 characterizing energy fluctuations

by simply looking at the scaling of ⟨𝐿2⟩𝑐(𝑑) and ⟨𝑇 2⟩𝑐(𝑑), and need to look instead at

the full probability distributions 𝑃 (𝐿|𝑑) and 𝑃 (𝑇 |𝑑) for increasing distance 𝑑 between

the end points. To compare these distributions, we superimpose their maxima and

rescale their width by a factor 𝑑𝛽 where 𝛽 is adjusted so that the distributions converge

at large d. The results are shown in Fig. 3-5 (top) for the shortest paths in Europe

and in Appendix C for the five other data sets, which show similar behaviour. We

find that the exponent 𝛽 can be adjusted such that the left tail of the distribution

converges rapidly to a limit distribution well fitted by the TW distribution expected

for directed polymers. On the contrary, the right tail converges slower and remains

heavy at the largest 𝑑 attainable (larger 𝑑, comparable to the total size of the region,

show strong finite-size effects). It is thus not clear if the right tail also converges

to TW behaviour or to a different distribution, as was observed numerically for a

directed polymer model with long-ranged correlations in the environment [46].

For comparison, we simulated the well-established DPRM model on a square lat-

tice with random independent energies on each site [32,36,78]. The paths are directed

in the diagonal of the lattice, parametrized by 𝑑. As before, the distance (in num-

ber of sites) from the diagonal is denoted by ℎ. The energy of the optimal path is

computed recursively as

𝐸(𝑑, ℎ) = 𝜂(𝑑, ℎ) + min{𝐸(𝑑− 1, ℎ), 𝐸(𝑑− 1, ℎ− 1)}. (3.2)

After 𝑑 iterations, 𝐸(𝑑, ℎ) is then the energy of the optimal path between the point

(𝑑, ℎ) and the line 𝑑 = 0. As opposed to previous studies that considered Gaus-

sian noise, we draw the noise 𝜂(𝑑, ℎ) in a power-law distribution 𝑃 (𝜂) = 2𝜂−3 with
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Figure 3-5: Top: Probability distribution of the length 𝐿 of the shortest paths in
Europe rescaled with 𝛽 = 0.66; 5 × 105 paths for each curve. Bottom: Probability
distribution of the energy for the DPRM model with power-law noise rescaled with
𝛽 = 1/3; 107 paths for each curve. Lattice size of 107 in the transverse direction with
periodic boundary conditions. The insets show the same data with a logarithmic
𝑦-axis. 𝑃𝑚 denotes the maximum of the distribution, found at 𝐿 = 𝐿𝑚 or 𝐸 = 𝐸𝑚.
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𝜂 ∈ [1,∞) to match qualitatively the short-scale distributions in Fig. 3-4. We then

analyze the results as in the experimental case: We shift the energy distributions

𝑃 (𝐸|𝑑) to superimpose their maxima and rescale their width by 𝑑𝛽 (Fig. 3-5, bot-

tom). We observe that, as with Gaussian noise [36], the distribution converges to

a TW distribution with the KPZ exponent 𝛽 = 1/3. Indeed, only a fat tail in the

noise at negative energy, 𝑃 (𝜂) ∼ 𝜂−𝑎 as 𝜂 → −∞ would change the scaling expo-

nents [40, 79]. Interestingly, the convergence when increasing 𝑑 happens in a similar

manner in the model and the experimental data, with the right tails converging much

slower. This also lends credit to our measure of 𝛽 as the exponent rescaling the left

tail of the distributions.

3.3 Long-range correlations in the road network

One salient difference remains between the paths on the road and the directed poly-

mer model: The measured 𝛽 exponents are found between 0.58 and 0.9 (with an error

estimated around 15%) and are thus much larger than 𝛽 = 1/3 in the KPZ univer-

sality class. We now argue that this can be explained by the presence of long-range

correlations in the road network. To show this, we first discretize the full map of

each region in squares of size 100m× 100m and assign the value 𝜌(r) = 1 if a road is

found inside the square and 0 otherwise. We then compute the correlation function

𝐶(𝑟) = ⟨𝜌(r)𝜌(r+x)⟩− ⟨𝜌(x)⟩2 where the average is taken over x and orientations of

r. As shown in Fig. 3-6, 𝐶(𝑟) decreases slowly [slower than 𝐶(𝑟) ∼ 𝑟−0.5], remaining

non-negligible on the scale of hundreds of kilometers. These long-range correlations

reflect the fact that the road network is shaped by many factors acting at every scale,

from different administrative divisions to natural obstacles. They were also shown to

be important in modeling the development of cities [80], obviously related to that of

the road network.

As we discussed in Chapter 2, such a slow decay of correlations has been proven

to be relevant to the large-scale behaviour, both in numerical simulations [46, 73, 81]

and analytic calculations [1,51,82,83]. For Gaussian noise with isotropic correlations
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Figure 3-6: Autocorrelation functions of the road density as defined in the text. The
oscillations in the curve for the US are not an artifact. The peaks are located every
mile (with sub-peaks at half-miles) and correspond to large regions (up to 60 miles)
of grid-like road network.

decaying as a power law with exponents between −0.5 and −0.2 (as measured for

the road density correlations in Fig. 3-6), 𝛽 was measured between 0.5 and 0.7 [73].

Given experimental uncertainties, these values are in relatively good agreement with

our measurements for the road network. Long-range correlations are thus likely to be

at the origin of the large exponents observed.

3.4 Transverse fluctuations

Finally, we look at the wandering of the optimal paths in the transverse direction.

The routing algorithm returns a list of points along each path (on average every

50m) that we use to construct the function ℎ(𝑥), the distance to the end-to-end axis

parametrized by 𝑥. We do so by discretizing 𝑥 in bins of size 𝑑𝑥 = 100m and averaging

points falling in the same bin. This discards any overhang and thus produces a

directed path approximating the real path. The leading behaviour is expected to

be scale invariant, ∆ℎ(𝑥) =
√︀
⟨ℎ2(𝑥)⟩ ∼ 𝑥𝜁 . However, because of overhangs near

the end points, ℎ(0) ̸= 0, so that ∆ℎ(0) ̸= 0, inducing large corrections to the
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Figure 3-7: Transverse wanderings for the shortest paths as a function of the coordi-
nate 𝑥 on the axis between the end points. Averages are over 5 × 105 paths between
points at distance 𝑑 = 1000 km.

putative scaling. Thus, as a first approximation, we estimate the 𝜁 exponent by fitting

∆ℎ(𝑥) = 𝑎 + 𝑏𝑥𝜁 with free parameters 𝑎, 𝑏 and 𝜁. The resulting functions ∆ℎ(𝑥) − 𝑎

show scaling behaviour over two orders of magnitude with exponents 𝜁 ∈ [0.69, 0.75]

(see Fig. 3-7). Once again these values are larger than the KPZ exponent 𝜁 = 2/3, in

qualitative agreement with the presence of long-range correlations that are expected

to increase the value of 𝜁. For comparison, isotropic long-range correlations with a

decay exponent in the range of Fig. 3-6 give 𝜁 ∈ [0.75, 0.85] [73] while correlations

only in the transverse direction yield 𝜁 ∈ [0.67, 0.72] [46].
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Chapter 4

Evolution in range expansions with

competition at rough boundaries

The results in this chapter are reproduced and adapted from Ref. [84].

When a biological population expands into new territory, genetic drift develops an

enormous influence on evolution at the propagating front, and this front resembles the

class of stochastic growing interfaces described by the KPZ equation. In such range

expansion processes, fluctuations in allele frequencies occur through stochastic spatial

wandering of both genetic lineages and the boundaries between genetically segregated

sectors. Laboratory experiments on microbial range expansions have shown that this

stochastic wandering, transverse to the front, is superdiffusive due to the front’s grow-

ing roughness, implying much faster loss of genetic diversity than predicted by simple

flat front diffusive models. We study the evolutionary consequences of this superdiffu-

sive wandering using two complementary numerical models of range expansions: the

stepping stone model, and a new interpretation of the DPRM model, in the context

of a roughening population front. Through these approaches we compute statistics

for the times since common ancestry for pairs of individuals with a given spatial sep-

aration at the front, and we explore how environmental heterogeneities can locally

suppress these superdiffusive fluctuations.
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4.1 Evolutionary dynamics in expanding populations

In evolutionary biology, changes in an allele’s frequency in a population are driven

not only by Darwinian selection but also by random fluctuations, the phenomenon

of genetic drift. Selectively neutral or even deleterious alleles can rise to prominence

purely by chance. In many scenarios an individual competes directly only with a

small subset of the population, e.g. due to spatial proximity, and this small effective

population size increases the influence of genetic drift [85].

Range expansions provide an important example: When a population expands

spatially into new territory, as during species invasion or following environmental

changes, the new territory is dominated by the descendants of a few ancestors at the

expansion front. Genetic drift is amplified by the small effective population size at

the front [85] – the founder effect – and by the related phenomenon of gene “surfing”,

in which alleles that happen to be present at the front spread to high frequency in the

newly occupied space, despite being selectively neutral or even deleterious [86,87].

Genetic drift in range expansions strongly ties fluctuations in allele frequencies to

spatial fluctuations. In laboratory experiments, Hallatschek et al. [86] have shown

that microbial range expansions develop, after a short demixing time, genetic sectors

containing almost exclusively the descendants of a single individual. Thereafter, ge-

netic drift occurs through spatial fluctuations of the sector boundaries, with a sector

lost from the front each time two sector boundaries intersect. Similarly, the genealog-

ical ancestry tree traced backward in time from the front becomes a tree of space

curves that fluctuate transversely to the front propagation direction and coalesce

upon intersection [88]. (See Fig. 4-2.)

The reverse-time coalescence of lineages is of central importance in population

genetics, particularly in the approach known as coalescent theory [89, 90]. One of

the key estimates of interest in coalescent theory is the expected number of pairwise

site differences Π between two sampled genomes, which is proportional to the ex-

pected time since common ancestry of the two sampled individuals, 𝑇2, under the

assumption that neutral mutations have accumulated in the (very long) genome at a
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constant rate since the two lineages diverged. The relation Π ∝ 𝑇2 allows inferences to

be made about the population’s recent evolutionary past from measured genomic dif-

ferences in the present, given reliable models of genealogy. The structured coalescent,

which extends coalescent theory to populations with spatial structure (as opposed to

well-mixed populations) [91], typically assumes migration rules that produce diffusive

dynamics for gene flow. Theoretical studies of the genealogical structure of range ex-

pansions have similarly assumed diffusive spatial fluctuations of genetic boundaries

(as would be appropriate to a flat front range expansion model; see below) in the in-

terests of analytical tractability [85]. Flat front models are equivalent to conventional

stepping stone models [92] and many exact results are available [93].

However, there is strong evidence that evolutionary dynamics in range expansions

are often driven by superdiffusive spatial wandering of both genetic sector boundaries

and lineages. Hallatschek et al. [86] measured the mean-square transverse displace-

ment of sector boundaries in E. coli growing across hard agar Petri dishes, and found it

to scale with the expansion distance 𝑦 as 𝑦2𝜁 with wandering exponent 𝜁 = 0.65±0.05,

greater than the value of 𝜁 = 1/2 characterizing diffusive wandering. In both E. coli

and the yeast species Saccharomyces cerevisiae, genetic lineages similarly fluctuate

with wandering exponent 𝜁 ≈ 2/3 [88]. The same superdiffusive wandering expo-

nent was found numerically for genetic lineages in an off-lattice model of microbial

colony growth [88] and for sector boundaries in a two-species Eden model [85, 94].

Consequently, the number of distinct sectors decreases as 𝑦−𝜁 , with 𝜁 measured to

be ≈ 0.67 [94], a dramatically faster loss of genetic diversity than the 𝑦−1/2 scaling

that would result from diffusive dynamics [85]; see Fig. 4-2, where genetically neutral

strains are competing.

The underlying cause of this superdiffusive behaviour is that the population front

profile has a characteristic roughness that increases with time. Because the range

expansion causes the front to advance along its local normal direction, stochastically

generated protrusions in the front are self-amplifying, and the lineages and genetic

sector boundaries moving with these protrusions experience a faster-than-diffusive

average lateral motion. Such roughening fronts are precisely characterized by the
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KPZ equation [1, 2]. Recall that in 𝑑 = 1 + 1 dimensions, the growth exponent

𝛽 = 1/3 and the wandering exponent 𝜁 = 2/3 are known analytically [4, 5]; this

value of 𝜁 nicely matches the measured value from experiments and simulations of

the microorganism range expansions discussed above.

While there is a wealth of literature on the KPZ equation and its rich universality

class [9, 34, 95], there does not yet exist a similar understanding of the statistics

of coalescing space curves – here, lineages and genetic sector boundaries – whose

superdiffusive wandering is driven by such KPZ roughening. We term these curves

“KPZ walkers” in contrast to diffusive random walkers. In developing a quantitative

understanding of neutral evolution in a biological range expansion, we are thus led to

new questions in statistical physics.

4.2 Models for microbial growth

We employ a complementary pair of simulation approaches: The first, a lattice-based

stepping stone model, introduces front roughness through stochasticity in replication

time. In our second approach, we reinterpret the problem of DPRM [32], introduced

in Chapter 1.2.1, as a model for range expansions with stochastic variation in or-

ganism size. The DPRM approach can be simulated at large scales with much less

computational expense than our stochastic stepping stone model. We also apply an-

alytical results from the DPRM problem to rationalize the measured asymptotic coa-

lescence behaviours. Finally, we study numerically how environmental heterogeneities

temporarily suppress the wandering of KPZ walkers, an effect observed recently in

experiment [96].

4.2.1 Stepping stone model

The stepping stone model [92] imagines a biological population arranged on a spatial

lattice of individually well-mixed subpopulations called “demes”, each containing 𝑁

individuals, with exchange of individuals between neighbouring demes. We implement

the stepping stone model on a triangular lattice with 𝑁 = 1 individual per deme,
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Figure 4-1: Illustrations of the the update rules in our numerical models of range
expansions. (a,b) The stepping stone model with deme size 𝑁 = 1 on a triangular
lattice, using (a) rough front and (b) flat front update rules. We visualize each
individual on the initial line and its descendants with a distinct colour. (c) DPRM
model of range expansion. At horizontal position 𝑥, the height of the front in the 𝑦-
direction, ℎ(𝑥, 𝑡), is increased by a quantity that depends on the two adjacent heights,
namely max{ℎ(𝑥−𝑡, 𝑡−1)+𝜂, ℎ(𝑥+1, 𝑡−1)+𝜂′}, where 𝜂, 𝜂′ are zero-mean stochastic
noise terms that cause front roughness. The nearest neighbour cell which maximizes
the above relation is chosen to reproduce, and passes on its allele label (denoted by
the colour), as represented by white arrows in the illustration.
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which models cases in which local fixation of one allele occurs rapidly compared to

spatial diffusion [85].

As an initial condition, we take the lattice of demes in two dimensions to be

unpopulated except for a linear inoculation “homeland”. Once a deme is populated,

its allele remains unchanged thereafter, as in the microbial experiments on agar plates,

where cell divisions occur only near the frontier, so that the spatial pattern of alleles

is effectively frozen behind the front [86]. We choose as our update rule that of the

Eden model for two-dimensional growth processes [45] (see Chapter 1.2.2): One site

is chosen at random from among all occupied sites with some empty neighbour site,

and the allele is copied from the chosen occupied site into a randomly chosen empty

neighbour (Fig. 4-1a). The key difference from the traditional Eden model, however,

is that we track not only whether a site is occupied or empty, but also the allele

label and genetic ancestry of occupied sites. The simulations use a system width of

𝐿 = 2000 sites, and are evolved until the front has advanced a height ℎ = 1000 sites.

Results are taken from ensembles of 5000 realizations. Periodic boundary conditions

are used in the direction transverse to the mean front propagation. In order to avoid

finite size effects, we keep the system width 𝐿 at least twice as large as the maximum

time 𝑡max, so that no lineage or sector boundary can wind completely (or even halfway)

across the system.

By introducing stochasticity in the replication time, this procedure generates an

irregular interface between the occupied and empty regions (see Fig. 4-2a), simulating

a rough front range expansion. By contrast, the expansion front remains flat if the up-

date rule fills an entire row in parallel (Fig. 4-1b), with each newly filled site inheriting

the allele marker of one of its two filled neighbours below, chosen randomly with equal

probability. The dynamics in Fig. 4-1b is equivalent to a one-dimensional stepping

stone model in discrete time with deme size 𝑁 = 1. The 𝑁 = 1 stepping stone model

is also studied as the voter model with 𝐿 different opinions [97]. We note that ac-

celerated coarsening brought about by superdiffusive wandering has been studied for

the voter model [98], but with opinions spreading by Lévy flights of algebraically dis-

tributed distances, in contrast to the purely nearest-neighbour microscopic dynamics
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Figure 4-2: Range expansions generated by the stepping stone model, using the (a)
rough front and (b) flat front update rules, with periodic boundary conditions in the
horizontal direction. The colours represent allele labels, while the black lines mark
the genetic lineages. Time runs upward in both cases. Note that there are fewer
sectors at the top (genetic coarsening), but fewer lineages at the bottom (lineage
coalescence). Typical coalescence rates are much larger in (a) than in (b).

employed in this work.

4.2.2 Geometric interpretation of directed paths

The second model is a reinterpretation of DPRM, where the accumulated “energy” of

the directed path, characterized by the KPZ equation, can be mapped to the height

of a range expansion front (see Fig. 4-1c). In this mapping, the stochastic noise 𝜂

corresponds to fluctuations in the lengths of individual microbes in the direction of

average propagation 𝑦, about a mean length ℓ.

We simulate DPRM on a square lattice rotated at 45∘ to the 𝑥, 𝑡 axes (see Fig. 1-

4), and optimize over paths from the origin to any site (𝑥, 𝑡) using the transfer matrix

method [32]. An allele label is added to each site, as in the stepping stone model.
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The height of the front ℎ(𝑥, 𝑡) is updated according to

ℎ(𝑥, 𝑡) = ℓ + max{ℎ(𝑥− 𝑡, 𝑡− 1) + 𝜂, ℎ(𝑥 + 1, 𝑡− 1) + 𝜂′}, (4.1)

where 𝜂, 𝜂′ are zero-mean, independent and identically distributed random variables.

Each site at time 𝑡 is then filled by the offspring of one of its nearest neighbours

from time 𝑡− 1, and inherits the corresponding allele label. The choice of competing

mother cells is taken to be the cell that optimizes the relation in Eq. 4.1. Each DPRM

directed path is interpreted as a single lineage, and the set of optimal directed paths to

all available endpoints forms the lineage tree. The simulated system has width along

the 𝑥-direction 𝐿 = 216, is evolved over 𝑡max = 104 time steps, and is averaged over

210 realizations. We use periodic boundary conditions in the 𝑥 direction transverse

to the front propagation.

Thus, while replication time is constant in this model, front roughness is generated

by stochasticity in cell size, with larger size favoured for propagation. While we

assume that the mean cell size at time of division for the microbe in question has

already evolved to a fitness maximum, variance in the cell size leads to front roughness

and accelerated loss of genetic diversity (Fig. 4-3a).

Note that if we fix 𝜂 to have zero variance, and instead choose the mother cell at

random between the left- and right-neighbours, we recover a flat front range expansion

with diffusive dynamics associated with lineages and genetic boundaries (Fig. 4-3b).

Also, if we reduce the system width to a single organism, the front height ℎ(𝑥, 𝑡)

performs a random walk about the deterministic value ℓ𝑡, the variance growing linearly

in 𝑡 with slope given by the variance in 𝜂. A dramatic experimental realization of

such a scenario in E. coli was demonstrated by the “mother machine” of Wang et

al. [99]: Bacteria growing and dividing in narrow channels, quasi-one-dimensionally,

show stability in growth rate over hundreds of generations.
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Figure 4-3: Range expansions generated by the DPRM model, with periodic boundary
conditions in the horizontal direction, as in Fig. 4-2. The colours represent allele
labels, while the black lines mark the genetic lineages. In contrast to the flat front
case (b), the rough front case (a) with the same number of generations shows a
significantly faster decrease in genetic diversity, and much larger coalescence rates,
similar to Fig. 4-2.
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4.2.3 Superdiffusivity of transverse fluctuations

In both the rough front stepping stone model and the DPRM model, lineages and

sector boundaries have superdiffusive lateral fluctuations with wandering exponent

𝜁 = 2/3 [4, 5, 32, 85, 94]. For DPRM models, this behaviour is well-known as the

transverse fluctuations of the minimal-energy directed path. In contrast, for the flat

front stepping stone model and the zero-noise variant of DPRM, the lateral fluctua-

tions of lineages and sector boundaries are merely diffusive, 𝜁 = 1/2.

This superdiffusive behaviour has stark consequences for the genetic structure of

the population. Comparing the flat front and rough front realizations for the stepping

stone model in Fig. 4-2 and for the DPRM model in Fig. 4-3, we see striking differ-

ences in both the coalescing lineage trees and the decay in the number of surviving

monoclonal sectors. Genetic diversity is lost much more rapidly in the rough front

case, and nearby individuals at the front are much more likely to have a common

ancestor in the recent past, reflecting much larger coalescence rates.

4.3 Coalescence of lineages

We investigate numerically the genealogical structure of populations with superdiffu-

sive migration of the KPZ walker type, driven by roughening fronts. We are chiefly

interested in how the expected time since common ancestry 𝑇2 for a pair of individ-

uals depends on spatial separation ∆𝑥0 at the front, as well as in the probability

per unit time 𝐽(𝜏 |∆𝑥0) of lineage coalescence at time 𝜏 in the past, whose first mo-

ment
∫︀∞
0

𝑑𝜏 𝜏𝐽(𝜏 |∆𝑥0) equals 𝑇2(∆𝑥0). As a first approach to this problem, our

work focuses on neutral evolution from a linear inoculation, avoiding effects such as

selection, mutualism/antagonism, and geometrical inflation [100], interesting topics

of future study.
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4.3.1 Rate of coalescence

For two lineages separated by ∆𝑥0 at the front, 𝐽(𝜏 |∆𝑥0) is the probability per unit

time for them to coalesce in a common ancestor at reverse time 𝜏 . In the diffusive case,

on an infinite line, this is the well-known coalescence rate for two diffusive random

walkers with diffusion constant 𝐷 [101]:

𝐽diff(𝜏 |∆𝑥0) =
1√
8𝜋

1

𝜏

(︂
∆𝑥2

0

𝐷𝜏

)︂1/2

exp

[︂
−1

8

(︂
∆𝑥2

0

𝐷𝜏

)︂]︂
. (4.2)

As a function of the dimensionless ratio ∆𝑥2
0/(𝐷𝜏), this rate behaves as a power law in

the limit of large reverse time or small separations at the front, and as an exponential

decay in the opposite limit.

Results such as Eq. 4.2, valid here for flat front models, will serve as a useful

guide to our investigations of more complex coalescent phenomena at rough frontiers.

In population genetics, systems analogous to our flat front models also arise in the

continuum limit of one-dimensional Kimura-Weiss stepping stone models [92]. As

reviewed in Ref. [85], many exact results for quantities such as the heterozygosity

correlation function and coalescent times are available [102–105]. The 𝑥-coordinate

of stepping stone models represents the horizontal axis of flat front simulations such as

those displayed in Fig. 4-2b and 4-3b, while its time coordinate maps on to the 𝑦-axis.

Nullmeier and Hallatschek have used a stepping stone model to study how coalescent

times change in 1-dimensional populations when one boundary of a habitable domain

moves in a linear fashion due to, say, a changing climate [106]. Results from this later

investigation could thus be reinterpreted as applicable to a two-dimensional range

expansion in a trapezoidal domain, in the flat front approximation with diffusive

genetic boundaries.

For superdiffusive lineages, however, the full expression for 𝐽(𝜏 |∆𝑥0) is not known.

We focus instead on its asymptotic behaviours using predictions from DPRM and

intuition gained from the diffusive case. For lattice models like those in Fig. 4-1, it

will be convenient to measure distances ∆𝑥0 in units of the space-like direction 𝑥,

and 𝜏 in units of the fundamental step in the time-like direction, which amounts to
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scaling out the analog of the diffusion constant in Eq. 4.2. We expect on theoretical

grounds that 𝐽 depends on ∆𝑥0 only through the combination ∆𝑥0/𝜏
𝜁 , with exponent

𝜁 = 2/3 as opposed to 𝜁 = 1/2 in the diffusive case. (The coefficient making this

combination dimensionless, analogous to 𝐷, will be system-specific and is suppressed

in our notation.)

First, we consider the regime 𝜏/∆𝑥
3/2
0 ≪ 1, representing rare coalescence events

where lineages located far apart at the front can be traced back to a recent common

ancestor. For the analogous regime of 𝜏/∆𝑥2
0 ≪ 1 in the diffusive case, the coalescence

rate behaves as 𝐽diff(𝜏 |∆𝑥0) ∼ exp[−(∆𝑥0/𝜏
1/2)2]. We hypothesize a similar decay

for the superdiffusive case, as

𝐽(𝜏 |∆𝑥0) ∼ exp

(︃
−
(︂

∆𝑥0

𝜏 2/3

)︂𝛾′)︃
= exp

(︃
−
(︃

𝜏

∆𝑥
3/2
0

)︃𝛾)︃
(4.3)

for some exponent 𝛾 = −2
3
𝛾′. In Fig. 4-4, we plot − ln[∆𝑥

3/2
0 𝐽(𝜏 |∆𝑥0)] vs. 𝜏/∆𝑥

3/2
0

for both the stepping stone model and DPRM on a log-log scale, so that Eq. 4.3

predicts a linear plot with slope 𝛾. At small 𝜏/∆𝑥
3/2
0 , both sets of data appear linear,

confirming the above hypothesized form. The slopes in the linear regime provide

estimates of 𝛾 = −1.96 ± 0.03 for DPRM and −1.93 ± 0.02 for the stepping stone

model.

In fact, we can analytically derive this exponential form, including the value of

𝛾, using the known distribution of directed path endpoints in DPRM [107]. The

calculation, given in Appendix D, shows that

𝐽(𝜏 |∆𝑥0) ∼
1

𝜏

(︂
∆𝑥0

𝜏 2/3

)︂1/2

exp

(︃
− 𝑐

4

(︂
∆𝑥0

𝜏 2/3

)︂3
)︃
, (4.4)

where 𝑐 is a constant of order unity. For 𝜏/∆𝑥
3/2
0 ≪ 1, the leading asymptotic

behaviour of 𝐽(𝜏 |∆𝑥0) ∼ exp(−1
4
𝑐(∆𝑥0/𝜏

2/3)3) thus corresponds to 𝛾′ = 3, 𝛾 = −2.

From the numerical results in Fig. 4-4, we see from DPRM that 𝛾 ≈ −1.96 ± 0.03,

and from the rough front stepping stone model we compute 𝛾 ≈ −1.93 ± 0.02. Both

numerical results are in good agreement with the analytically derived prediction.
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Figure 4-4: Log-log plot of − ln[∆𝑥
3/2
0 𝐽(𝜏 |∆𝑥0)] vs. the KPZ-rescaled variable

𝜏/∆𝑥
3/2
0 for lineages in the stepping stone model and for DPRM. Here, we focus

on the regime ∆𝑥0 ≪ 𝐿, to avoid finite size effects associated with periodic boundary
conditions. Asymptotically for 𝜏/∆𝑥

3/2
0 ≪ 1, the relationship is linear, indicating an

exponential form for 𝐽(𝜏 |𝑥0). The fitted slopes are −1.93 ± 0.02 for stepping stone,
and −1.96±0.03 for DPRM, providing measurements of 𝛾 as defined in Eq. 4.3. (For
comparison, the DPRM theory predicts a slope of −2.)
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In the opposite regime of 𝜏/∆𝑥
3/2
0 ≫ 1, we can again hypothesize a form for 𝐽 in

analogy with the diffusive case, for which Eq. 4.2 shows 𝐽diff(𝜏 |∆𝑥0) ∼ 𝜏−1(∆𝑥0/𝜏
1/2).

For KPZ walkers, the analogous form is

𝐽(𝜏 |∆𝑥0) ∼
1

𝜏

(︂
∆𝑥0

𝜏 2/3

)︂𝛼′

=
1

∆𝑥
3/2
0

(︃
𝜏

∆𝑥
3/2
0

)︃𝛼

, (4.5)

for some exponent 𝛼 = −
(︀
1 + 2

3
𝛼′)︀. Although the expression in Eq. 4.4 is consistent

with this form, that result is obtained by assuming the two KPZ walkers to be inde-

pendent (valid at small 𝜏/∆𝑥
3/2
0 ), so there is no reason to expect the apparent value

of 𝛼′ = 1/2, 𝛼 = −4/3 to hold for 𝜏/∆𝑥
3/2
0 ≫ 1.

The rate of coalescence for the two computational approaches in this regime is

plotted in Fig. 4-5. The asymptotic behaviour is consistent with the hypothesized

power-law decay. The exponent 𝛼 is determined numerically to be 𝛼 = −1.62 ± 0.03

for the stepping stone model, and 𝛼 = −1.65±0.01 for DPRM, giving good agreement

between the two models. Furthermore, these values do not rule out the possibility

that 𝛼 = −5/3, 𝛼′ = 1, which would give the noteworthy conclusion that 𝐽(𝜏 |∆𝑥0)

is linear in the separation ∆𝑥0, just as in the diffusive case.

We have shown, through both DPRM calculations and a stepping stone model

with rough fronts, that the superdiffusive “KPZ walkers” describing genetic lineages

have coalescence statistics whose limiting behaviours are qualitatively, but not at all

quantitatively, similar to those of coalescing diffusive random walkers. In the limit

of large separation or small time in the past, the coalescence rate for KPZ walkers

decays as 𝐽 ∼ exp[−(𝜏/∆𝑥
3/2
0 )−2], in contrast to the scaling 𝐽diff ∼ exp[−(𝜏/∆𝑥2

0)
−1]

for the diffusive case in the same limit. In the opposite limit of small separation or

large time in the past, we find that the coalescence rate varies algebraically as 𝐽 ∼
𝜏−1(∆𝑥0/𝜏

2/3)𝛼
′ with 𝛼′ ≈ 1, whereas the corresponding form for diffusive random

walkers is 𝐽diff ∼ 𝜏−1(∆𝑥0/𝜏
1/2).
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Figure 4-5: Log-log plot of ∆𝑥
3/2
0 𝐽(𝜏 |∆𝑥0) vs. the KPZ-rescaled variable 𝜏/∆𝑥

3/2
0 for

lineages in the stepping stone model and for DPRM. For 𝜏/∆𝑥
3/2
0 ≫ 1, the exponent

of the power-law decay (Eq. 4.5) is extracted from a linear fit to the numerical data,
yielding 𝛼 = −1.62 ± 0.03 for stepping stone, and 𝛼 = −1.65 ± 0.01 for DPRM. As
in Fig. 4-4, we work in the limit ∆𝑥0 ≪ 𝐿 to avoid effects due to periodic boundary
conditions.
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4.3.2 Expected time to coalescence

For a range expansion that has proceeded for a time 𝑡max after a linear inoculation,

if two lineages separated by ∆𝑥0 share a common ancestor on the initial line, we can

calculate their expected time to coalescence (time since common ancestry) as

𝑇2(∆𝑥0, 𝑡max) ≡
∫︀ 𝑡max

0
𝑑𝜏 𝜏𝐽(𝜏 |∆𝑥0)∫︀ 𝑡max

0
𝑑𝜏 𝐽(𝜏 |∆𝑥0)

. (4.6)

Note that the denominator represents normalization by the probability that the two

lineages do indeed coalesce.

In the case of diffusive lineages, Eq. 4.2 leads to an analytic expression for 𝑇2,

𝑇2,diff(∆𝑥0, 𝑡max)

𝑡max

=

(︂
∆𝑥2

0

8𝐷𝑡max

)︂
Γ [−1/2,∆𝑥2

0/8𝐷𝑡max]

Γ [1/2,∆𝑥2
0/8𝐷𝑡max]

, (4.7)

where Γ(𝑥, 𝑦) is the incomplete gamma function. In Fig. 4-6 we compare the numerical

𝑇2 data for KPZ walkers in the rough front stepping stone model with the analytical

prediction from the diffusive case under the same conditions. For large ∆𝑥0, in

principle 𝑇2 approaches 𝑡max; our data do not show this saturation because lineage

coalescence events at 𝜏 ≈ 𝑡max are so rare that the statistics become poor as ∆𝑥0

approaches 𝑡max. The behaviour for small ∆𝑥0 is controlled by the scaling in Eq. 4.5:

an approximately linear scaling leading to 𝑇2 ∼ ∆𝑥0𝑡
1−𝜁
max. We see that lineages with

the same separation ∆𝑥0 coalesce much faster on average when they behave as KPZ

walkers, and that this difference becomes more pronounced for large 𝑡max, as is evident

qualitatively from Figs. 4-2 and 4-3. The scaling of 𝑇2 for KPZ walkers can be written

in a form analogous to Eq. 4.7, and reflects the KPZ transverse scalings inherent in

the system (see Appendix E).

In biological terms, common ancestry is expected to be more recent with rough

front dynamics than under diffusive dynamics. As a result, assuming a constant rate

of neutral mutations, the number of differences Π(∆𝑥0) between pairs of two sampled

genomes at the front is expected to increase more slowly with separation ∆𝑥0 along

the front. This anomaly arises because we expect the habitat to be populated by
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Figure 4-6: Average time 𝑇2 since common ancestry for pairs of individuals with some
common ancestor and with separation ∆𝑥0 ≪ 𝐿 at the front, and for a range of system
expansion times 𝑡max. Solid lines represent numerical data for KPZ walkers in the
stepping stone model, and dashed lines represent analytical predictions for diffusive
walkers with the same parameters. The plateau values are simply 𝑡max.

the offspring of a small number of common ancestors, which decays as 𝑡−2/3 for KPZ

walkers, rather than the 𝑡−1/2 decay characterizing diffusive random walkers, where

𝑡 is the time since the initial inoculation. We have thus shown that the superdiffu-

sive wandering of lineages suppresses 𝑇2 significantly compared to estimates based

on diffusive dynamics. Our results go beyond the known scaling difference between

diffusive and KPZ lineages and genetic boundaries, and provide quantitative informa-

tion about how front roughness leads to more recent, and fewer, common ancestors

for the “pioneers” comprising the front.
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4.4 Environmental Heterogeneities

The presence of environmental heterogeneities in the habitat can have a significant

impact on a range expansion, including on the front shape and propagation speed,

and on the genetic diversity at the front. A prototypical example of environmental

heterogeneity is the obstacle, a nutrient-depleted zone, that the population must grow

around rather than through. As we show here, two different types of KPZ fluctuations

come into play when an obstacle is present.

Range expansions around an obstacle were studied experimentally and via simple

geometrical optics ideas by Möbius et al. [96] (see also [108]). A notable feature of

the experimental (and numerical) results from Ref. [96] is that the sector boundary

which forms at the apex of the obstacle shows suppressed transverse fluctuations

compared to all other sector boundaries. As the front propagates past the obstacle,

a component of its velocity is directed inward from both sides. This in effect pins the

sector boundary to the middle, at a kink in the front, and suppresses its fluctuations.

While we have considered only fluctuations of lineages until now, the fluctuations

of sector boundaries are inextricably related, as a lineage necessarily remains inside

a single sector. Since the lineage fluctuations grow in reverse time as 𝜏 𝜁 , their coa-

lescence causes the number of distinct lineages to decay as 𝜏−𝜁 . Thus for a front at

time 𝑡, the number of roots that the lineage tree has in the initial population decays

as 𝑡−𝜁 . As this number of roots equals the number of sectors, the sector boundaries

must fluctuate in forward time as 𝑡𝜁 .

Here, we study the suppression of sector boundary fluctuations by obstacles in

greater detail using the stepping stone model with a rough front. A gap of width

𝑤gap of unoccupied sites is left in the initially populated line, providing a simplified

representation of a range expansion past an obstacle of such width, or the result of

an environmental trauma (Fig. 4-7a). By considering only two “alleles” (colours) and

using hard-wall boundary conditions, we can track the wandering of the single sector

boundary that forms approximately above the center of the obstacle. We examine

only times sufficiently early that the system’s finite width cannot affect the sector
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Figure 4-7: Geometries of the sector boundary between two alleles (labeled red and
green). The initial inoculations are marked by dashed lines. (a) Illustration of the
gap geometry: A segment of width 𝑤gap is left unpopulated initially, separating the
two alleles which grow from an otherwise flat initial condition. The width 𝑤gap could
represent, say, the width of a square obstacle that terminates at time 𝑡 = 0, or the size
of an interval along the horizontal 𝑥-direction where all organisms are removed by an
environmental trauma. (b) Illustration of the wedge geometry: The initial population
occupies two triangular regions whose growth fronts meet at a wedge angle 𝜃. In both
systems, the two alleles meet at a single sector boundary, along which fluctuations
are suppressed. The front of the range expansion is illustrated for a series of equally
spaced time values 𝑡, with lighter shades representing later times.

boundary. As shown in Fig. 4-8a, the effective wandering exponent 𝜁 is suppressed

from the usual value of 2/3, to 𝜁 ≈ 1/3 for times 𝑣𝑡 . 𝑤gap, where 𝑣 is the average front

velocity. At later times, as the kink in the front heals and the average front normals

return to the vertical, 𝜁 recovers the expected value of 2/3 for KPZ genetic boundaries.

Notably, the effective 𝜁 appears to exceed 2/3 in an intermediate transitory regime

when 𝑣𝑡 ≈ 𝑤gap.

To gain further insight into this changing wandering exponent, we modify the

numerical experiment to a wedge geometry (Fig. 4-7b). This allows us to fix the kink

angle 𝜃 to be a constant value, as opposed to the gap geometry where the kink heals

from some initial 𝜃0 toward 𝜋 with increasing time.
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Now, the stepping stone model with deme size of 1 is, in essence, identical to the

Eden model on a triangular lattice, with the added complication of tracking different

genotypes. The boundary between two Eden clusters meeting at an angle 𝜃 has

previously been studied, [109]. The transverse fluctuations scale as 𝑡𝜁 , where 𝑡 is the

simulation time, and the wandering exponent 𝜁 was conjectured to be

𝜁(𝜃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/3, 𝜃 < 𝜋,

2/3, 𝜃 = 𝜋,

1, 𝜃 > 𝜋.

(4.8)

The value 𝜃 = 𝜋 corresponds to two Eden clusters growing side by side with flat

initial conditions, in which case one recovers the KPZ value of 𝜁 = 2/3 as expected.

The regime 𝜃 < 𝜋 is of relevance to range expansions with obstacles. Heuristically,

the sector boundary becomes pinned by the two Eden clusters growing into each other,

and the usual KPZ transverse fluctuations are suppressed. Instead, the fluctuations

which dominate are those of the propagating fronts themselves, which scale with the

KPZ growth exponent 𝛽 = 1/3 rather than the wandering exponent 𝜁 = 2/3.

The original simulations which led to the estimates in Eq. 4.8 sampled only 3

points in the range 𝜃 < 𝜋, namely 𝜃 = 𝜋/3, 𝜋/2, and 2𝜋/3 [109]. We expand

on this previous work by fitting to an an effective 𝜁(𝜃) for many more values of

𝜃. The results plotted in Fig. 4-8b indicate a smooth crossover between 𝜁 = 1/3

and 𝜁 = 2/3 as 𝜃 increases from 0 to 𝜋. A heuristic explanation for this change

in 𝜁 is given in Appendix F. The results from the wedge geometry are qualitatively

consistent with the 𝜁 values measured from the gap geometry. As the range expansion

propagates around an obstacle, the fronts from either side meet at some angle 𝜃0 < 𝜋,

which can be predicted by a deterministic model of constant speed propagation for

wavefronts in the same geometry, inspired by geometrical optics [96]. The incident

angle increases up to 𝜃 = 𝜋 as the kink in the front heals. Therefore, for the sector

boundary formed after the obstacle, we expect the wandering exponent to initially

take some value 𝜁 < 2/3, and then slowly recover to 𝜁 = 2/3. The kink has healed

when the fluctuations of the front (perpendicular to the direction of propagation) are
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Figure 4-8: (a) Log-log plot of fluctuations of the sector boundary ⟨∆𝑥2⟩1/2 vs. vertical
distance along the sector boundary 𝑣𝑡 in the gap geometry for a range of gap sizes
𝑤gap. Fits to a power law scaling form ⟨∆𝑥2⟩1/2 ∼ 𝑡𝜁 yield exponents varying from
𝜁 ≈ 1/3 to 𝜁 ≈ 2/3, with a crossover region in between. Inset: Data collapse after
rescaling with respect to 𝑤gap. By geometrical arguments, 𝑣𝑡/𝑤gap, where 𝑣 is the
average front speed, is a measure of the angle of incidence of the fronts as determined
by a constant speed or “geometrical optics” model. We see a reasonably good collapse
across many different gap sizes, with 𝜁 ≈ 1/3 for 𝑣𝑡/𝑤gap < 1, and 𝜁 ≈ 2/3 for
𝑣𝑡/𝑤gap > 1. (b) Wandering exponent 𝜁 as a function of the angle of incidence 𝜃 in
the wedge geometry. As 𝜃 increases from 0 to 𝜋, the wandering exponent increases
smoothly from approximately 𝜁 = 1/3 (marked by the dashed line) to the KPZ value
of 𝜁 = 2/3.
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Figure 4-9: Illustration of a range expansion propagating around a spatial obstacle,
depicted by the black circle, which prohibits growth. The colours represent allele
labels, and the dashed lines mark the average front shape at equal time intervals, as
predicted by geometrical optics. The growth fronts around either side of the obstacle
meet at some angle 𝜃 < 𝜋, forming a kink which heals over time.

comparable to the size of the dip. See Fig. 4-9 for an illustration.

Our results explain the suppressed fluctuations of genetic sector boundaries behind

an obstacle observed in experimental work, and connect them with prior numerical

work on Eden model growth. The effect of obstacles can be viewed as a competition

between the usual roughening of the front, which favours the KPZ wandering exponent

𝜁 = 2/3, and the collision of two segments of the front propagating around either side

of the obstacle, which suppresses 𝜁 toward the value of the front roughness exponent

𝛽 = 1/3.
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Chapter 5

Eigenvalue spectrum of the product

of transfer matrices for directed

polymers

The work in this chapter is part of a collaboration with Dr. Ramis Movassagh.

In Chapter 1, we saw that the KPZ universality class is characterized by fluctua-

tions which obey TW statistics. In particular, this result has been derived analytically

for the free energy in the DPRM model using a replica Bethe ansatz method [15–17].

We discussed also that the TW probability distributions originate from the mathe-

matical study of Gaussian random matrices, and more specifically, from the study

of their eigenvalue spectra. In this chapter, we turn to a mathematical analysis of

the transfer matrix formulation of DPRM in order to explore this connection on the

level of matrices. Similar questions have been considered in the context of disordered

elastic networks, where each transfer matrix contains information about the prop-

agation of the displacement field [110]. Our interest in the eigenvalue spectrum of

the product of DPRM transfer matrices is physically motivated by systems of non-

intersecting paths, a problem which has been studied extensively in the context of

the commensurate-incommensurate transition [4, 111].

To simplify the analysis, we construct a set of transfer matrices in such a way that

ensures all eigenvalues of the product matrix are real and positive. We compute the
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fluctuations in the spectrum, and find similarities in distribution to Gaussian random

matrices for all eigenvalues. The spacing between eigenvalues is also relevant for a

finite density of non-intersecting DPRMs, as it determines the cost associated with

adding more such directed polymers in a grand canonical setting. Compared to the

pure system, the presence of disorder changes the scaling of the spacing near the

largest eigenvalue from 1/𝑁2 to 1/𝑁 , where 𝑁 is the system size, thus changing the

density of states.

5.1 Connection to random matrix theory

We first examine more closely the relationship between the DPRM free energy and

eigenvalues of Gaussian random matrices. For a DPRM system of size 𝑁 , let 𝑍(𝑥0, 𝑥, 𝑡)

denote the partition function of a directed polymer originating from (𝑥0, 0) and ter-

minating at (𝑥, 𝑡), with 𝑥0, 𝑥 ∈ [1, . . . , 𝑁 ] and 𝑡 > 0. Using the transfer matrix

formulation, 𝑍(𝑥0, 𝑥, 𝑡) can be written recursively in terms of the partition functions

at time 𝑡− 1,

𝑍(𝑥0, 𝑥, 𝑡) =
∑︁
𝑥′

⟨𝑥|T(𝑡)|𝑥′⟩𝑍(𝑥0, 𝑥
′, 𝑡− 1). (5.1)

If we define the product of transfer matrices,

W(𝑡) =
𝑡∏︁

𝑡′=1

T(𝑡′). (5.2)

we can rewrite the partition function as

𝑍(𝑥0, 𝑥, 𝑡) = ⟨𝑥|W(𝑡)|𝑥0⟩. (5.3)

We consider the ensemble of directed polymers whose endpoints are fixed to be

at the same spatial position 𝑥. Summing over all such paths then gives the partition

function

𝑍(𝑡) =
𝑁∑︁

𝑥=1

𝑍(𝑥, 𝑥, 𝑡) = trW(𝑡). (5.4)
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The free energy is

𝑓 = − ln𝑍

𝑡
= − ln[trW(𝑡)]

𝑡
≃ − ln𝜆1(𝑡)

𝑡
, (5.5)

where 𝜆1(𝑡) is the largest eigenvalue of the product matrix W(𝑡) which dominates

the trace. This motivates the definition of the quantity of interest,

𝜖𝑖(𝑡) =
ln𝜆𝑖(𝑡)

𝑡
, (5.6)

where 𝜆𝑖(𝑡) is the 𝑖th largest eigenvalue of the product matrix W(𝑡).

It has been well-established both indirectly through the Cole-Hopf transforma-

tion, [33] and directly through replica Bethe ansatz solutions, [15–17] that the DPRM

free energy obeys TW statistics, with the details dependent on the geometry. In the

case of Eq. 5.4, however, the geometry is not strictly pt-pt or pt-line (defined in Chap-

ter 1.2.1). Rather, 𝑍(𝑡) is the sum of an ensemble of pt-pt paths. Thus we expect the

limiting distribution to be very similar to TW, but perhaps not precisely the GOE

or GUE form. In other words, we can write

𝜖1(𝑡) = 𝑐0 + 𝑐1𝑡
−2/3𝜉, (5.7)

where 𝜉 is an 𝒪(1) random variable whose distribution is TW-like in the limit of large

𝑡, and 𝑐0, 𝑐1 are system-specific constants. It is important to note that the regime

relevant to DPRM requires 1 ≪ 𝑡 ≪ 𝑁3/2, where 𝑁 is the system size. This scaling

constraint stems from the dynamic exponent which governs the KPZ universality

class, and ensures that the scalings are not affected by finite size.

In comparison, we consider an 𝑛 × 𝑛 GOE matrix L with i.i.d. elements 𝐿𝑖𝑖 ∼
𝒩 (0, 2/𝑛), 𝐿𝑖𝑗 = 𝐿𝑗𝑖 ∼ 𝒩 (0, 1/𝑛) [or respectively, GUE matrix M with i.i.d. elements

𝑀𝑖𝑖 ∼ 𝒩 (0, 1/𝑛), 𝑀𝑖𝑗 = 𝑀𝑗𝑖 ∼ 𝒩 (0, 1/2𝑛) + 𝑖𝒩 (0, 1/2𝑛)]. The largest eigenvalue

then has the following scaling form [10,11],

𝜆TW
1 (𝑛) = 2 + 𝑛−2/3𝜉, (5.8)
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where 𝜉 is a TW-GOE (TW-GUE) random variable in the limit of large 𝑛.

The similarities between 𝜖1(𝑡) in Eq. 5.7 and 𝜆TW
1 (𝑛) in Eq. 5.8 are immediately

evident. The time 𝑡 [also number of transfer matrices in the product matrix W(𝑡)]

in the DPRM context appears to play an analogous role to the matrix size 𝑛 in the

GOE and GUE context. We compare numerics for the DPRM product matrix with

known results from random matrix theory in Chapter 5.4, and explore whether the

connection extends beyond the scaling forms of the largest eigenvalue.

5.2 Non-intersecting paths

We motivate the study of the quantities 𝜖𝑖, related to the eigenvalue spectrum of

the DPRM product matrix, by examining their role in a system of non-intersecting

DPRMs [4]. Physical examples include magnetic domain walls in Ising models [112,

113], and pinned flux lines in superconductors [114]. In such systems, if it is favourable

to create one domain wall or flux line, it is natural to ask why an infinite number is not

created. As we explain below, this is a consequence of the non-crossing condition. The

more general problem of non-intersecting paths is also found in the adsorption of an

atomic monolayer on a crystalline surface [111,115–117], and the equilibrium shapes

of crystals [118, 119]. The statistical behaviour is exemplified by the commensurate-

incommensurate transition, a topic which has sparked much theoretical interest [111,

120–122].

In the pure case (without disorder), the grand canonical free energy ℱ is ob-

tained by minimizing the following expression over the density 𝑟 of non-intersecting

paths, [111]
ℱ(𝑟)

𝑁𝑡
= 𝑓1𝑟 + 𝑏𝑟3. (5.9)

Using the language of domain walls, 𝑁 and 𝑡 are the system dimensions, 𝑓1 is the

free energy of a single wall, and 𝑏 > 0 is a constant. The first term, proportional to

the density, is intuitive. The second term represents an effective repulsion due to the

non-crossing restriction. Performing the minimization over 𝑟, we see that for 𝑓1 > 0,

no domain walls are formed (𝑟 = 0). On the other hand, for 𝑓1 < 0, a finite density
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Figure 5-1: Illustration of configurations of two DPRMs (solid and dashed lines) which
do not satisfy the non-crossing condition. Introducing the factor (−1)# of crossings leads
all such terms to cancel.

(𝑟 > 0) of domain walls are added in such a way that the free energy gain is balanced

by the entropy loss from imposing the non-crossing condition. These walls can also

be interpreted as world-lines of 1D fermions, an approach taken by Pokrovsky and

Talapov in Ref. [111].

If we now consider the presence of quenched impurities, the domain walls can be

represented by a system of non-intersecting DPRMs. Using the replica Bethe ansatz,

the quantity to be minimized over in Eq. 5.9 becomes [4]

⟨ℱ(𝑟)⟩
𝑁𝑡

= ⟨𝑓1⟩𝑟 + 𝑏𝑟2, (5.10)

where the angular brackets denote averaging over the disorder, and again, 𝑏 > 0. The

effective repulsion term in this case is proportional to 𝑟2 rather than 𝑟3. For the pure

system, this repulsion relates to the typical distance between “collisions” of domain

walls due to transverse wanderings, whereas for the disordered system, it relates to

effects of confinement on a finite density of optimal paths.

In writing down the grand canonical description of DPRM, the key difficulty lies

in the implementation of the non-crossing condition. We use the same trick which

proved powerful in the Ising problem, of removing the non-crossing condition, and

introducing a factor of (−1)# of crossings for each term in the partition function. The

terms describing intersecting paths or shared bonds then cancel, as shown in Fig. 5-1,

leaving only contributions from non-crossing configurations.

The grand canonical partition function 𝒵 can then be written in terms of the
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canonical partition functions 𝑍𝑛 for 𝑛 DPRMs.

𝒵 = exp

{︃
𝑁∑︁

𝑛=1

(−1)𝑛+1

𝑛
𝑍𝑛

}︃

= exp

{︃
𝑁∑︁

𝑛=1

(−1)𝑛+1

𝑛
trW𝑛

}︃

= exp

{︃
𝑁∑︁
𝑖=1

[ln(1 + 𝜆𝑖)]

}︃

= exp

{︃
𝑁∑︁
𝑖=1

[︀
ln
(︀
1 + 𝑒𝜖𝑖𝑡

)︀]︀}︃
. (5.11)

(One could introduce a chemical potential 𝜈 such that 𝑍𝑛 → 𝑒𝜈𝑡𝑛𝑍𝑛 counts the number

of added steps. However, without loss of generality, 𝜈 can be absorbed into the

parametrization of the energies.) In the limit of large 𝑡, only terms with 𝜖𝑖 > 0 in

Eq. 5.11 will contribute to the free energy,

ℱ = − ln𝒵
𝑡

𝑡→∞−−−→ −
∑︁
𝜖𝑖>0

𝜖𝑖. (5.12)

The condition on 𝜖𝑖 reflects a constraint on the strength of the average disorder

compared to the hopping energy, in order for it to be energetically favourable to

create more directed polymers. The value of 𝜖1 determines whether a single DPRM is

favourable; after that, the difference 𝜖𝑖− 𝜖𝑖+1 becomes relevant for adding subsequent

DPRMs. We can interpret this as filling levels −𝜖𝑖 in an energy band, starting from

−𝜖1, up to the Fermi energy. The resistance to adding more non-intersecting DPRMs

is therefore related to the density of states near the edge of the spectrum.
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5.3 Definition of the transfer matrix

We define the DPRM transfer matrix at time 𝑡 as

T(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1(𝑡) 𝛾 0 · · · 0

𝛾 𝜂2(𝑡) 𝛾 · · · 0

0 𝛾 𝜂3(𝑡) · · · 0
...

...
... . . . ...

0 0 0 · · · 𝜂𝑁(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.13)

where 𝜂𝑖(𝑡) = exp[−𝜀𝑖(𝑡)] are i.i.d. random variables on the main diagonal, with

constant elements 𝛾 > 0 on the off-diagonals. We choose 𝜀𝑖(𝑡) ∈ 𝒰(𝜇, 𝜎2), uniformly

distributed with mean 𝜇 and variance 𝜎2. For mathematical reasons explained in

Chapter 5.5, the parameters are constrained by the relation

𝜇 +
√

3𝜎 < − ln(2𝛾), (5.14)

which ensures 𝜂𝑖(𝑡) > 2𝛾, ∀𝑖 and ∀𝑡.

The above transfer matrix describes DPRM on a square lattice with closed bound-

ary conditions. At each time 𝑡, the path at position 𝑖 may propagate forward, picking

up a random energy 𝜀𝑖(𝑡), or deviate to the left or right, picking up a hopping en-

ergy 𝐾 = − ln 𝛾 (see Fig. 5-2). This differs slightly from the geometry introduced in

previous chapters, but crucially, does not affect the universality class of the model.

The details of the model are chosen to ensure that all eigenvalues 𝜆𝑖 of the product

matrix W are real and positive (see Chapter 5.5 for a detailed proof). This allows

us to study the objects of interest, 𝜖𝑖 = ln𝜆𝑖/𝑡, which would otherwise be ill-defined.

Note that the condition 𝜆𝑖 ∈ R+ is not a trivial one. Although an individual transfer

matrix T is real, positive, and symmetric, there is a different realization of randomness

for each time 𝑡. Thus the product matrix W is in general, real and positive, but not

symmetric. The Perron-Fröbenius theorem guarantees that the largest eigenvalue is

unique and real (positive), but a priori, all other eigenvalues need not be real. Indeed,
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Figure 5-2: Illustration of the DPRM geometry described by the transfer matrix in
Eq. 5.13. For a directed polymer 𝑥(𝑡), propagating forwards is associated with a
random energy 𝜀, while deviating to the left or right is associated with a hopping
energy 𝐾.

for other geometries of DPRM, the spectrum is in general composed of many complex

conjugate pairs of eigenvalues, the physical significance of which is unclear.

5.4 Statistics of the eigenvalue spectrum

Armed with the above definition, we analyze the complete spectrum of the product of

transfer matrices. We compute numerically the eigenvalues 𝜆𝑖 of W, with parameters

𝑡 = 32 and 𝑁 = 32, over 225 realizations (the scaling of fluctuations in Chapter 5.4.2

is computed over 222 realizations instead). We choose 𝜇 = −2 and 𝜎2 = 1/12 for the

random energies, and 𝛾 = 1 for the hopping energies. The mean values of 𝜖𝑖 = ln𝜆𝑖/𝑡

are plotted in Fig. 5-3, with errorbars indicating the respective standard deviations.

5.4.1 Probability distributions

We focus on the distributions of 𝜖𝑖 after appropriate rescaling of the the mean and

variance. From Eq. 5.7, we expect 𝜖1, corresponding to the largest eigenvalue of W, as

well as the DPRM free energy, to obey TW-like statistics. This is indeed confirmed in
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Figure 5-3: Average eigenvalue spectrum for the product of DPRM transfer matrices
W with parameters 𝑡 = 32 and 𝑁 = 32. The data points indicate the mean of
𝜖𝑖 = ln𝜆𝑖/𝑡, where 𝜆𝑖 is the 𝑖th largest eigenvalue of W, and the errorbars indicate
the standard deviation.

Fig. 5-4a. Rather surprisingly however, we find that 𝜖𝑁 , corresponding to the smallest

eigenvalue of W, also has the same TW-like distribution. This is especially remarkable

given the discrepancy in the variances (see Fig. 5-3). Nevertheless, it is reminiscent

of the symmetry known to exist in Gaussian random matrices, between the pairs of

eigenvalues 𝜆TW
𝑖 and 𝜆TW

𝑁+1−𝑖. There, the behaviour is dictated by the symmetry of the

Wigner semicircle distribution [𝜌(𝜆) =
√

4 − 𝜆2/2𝜋] for the overall spectrum [123].

The study of non-intersecting DPRMs in Chapter 5.2 provides some physical intuition

for the correspondence observed between pairs 𝜖𝑖 and 𝜖𝑁+1−𝑖. Since the quantity 𝜖𝑖

is related to creating 𝑖 directed paths, it could, conversely, be interpreted as creating

𝑁 − 𝑖 + 1 empty “paths”.

Numerically, this pairwise correspondence persists beyond the extremal eigenval-

ues for the DPRM product matrix as well. In fact, for any 𝑖, the pair 𝜖𝑖 and 𝜖𝑁+1−𝑖

shares the same distribution not only with each other, but also with the analogous

eigenvalue pair for Gaussian random matrices. For instance, in Fig. 5-4b, we see

that 𝜖𝑁/2 and 𝜖𝑁/2+1 are Gaussian in distribution, mirroring the expectation for bulk
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eigenvalues in GOE and GUE matrices [124, 125]. The distribution of the remaining

eigenvalues interpolate between TW near the edge of the spectrum, and Gaussian in

the bulk.

5.4.2 Scaling of fluctuations

We compute also the scaling exponents for fluctuations of individual eigenvalues. For

Gaussian random matrices, the following rigidity estimate exists [126,127],

Var[𝜆TW
𝑖 (𝑛)] ∼ 𝑛−4/3[min{𝑖, 𝑛 + 1 − 𝑖}]−2/3. (5.15)

For the extremal eigenvalues 𝜆TW
1 and 𝜆TW

𝑛 , the scaling of fluctuations reduces to

𝑛−2/3, consistent with Eq. 5.8; for the bulk eigenvalues, however, this scaling is

𝑛−1. The term rigidity refers to an effective repulsion between consecutive eigen-

values, specifically in comparison to i.i.d. random variables drawn from the same

Wigner semicircle distribution. In the latter case, order statistics yield typical fluctu-

ations of order 𝑛−1/2 instead [127]. We plot the analogous scaling exponents for the

DPRM product matrix in Fig. 5-5. For 𝜖1 related to the DPRM free energy, we find

[Var(𝜖1)]
1/2 ∼ 𝑡−2/3, as expected from Eq. 5.7. However, for 𝜖𝑖 in the bulk, the scal-

ing is approximately 𝑡−1/2, consistent with ordered i.i.d random variables rather than

GOE or GUE eigenvalues. The correspondence between pairs of eigenvalues observed

earlier in the probability distributions is also present in the scaling of fluctuations,

although to a lesser extent.

5.4.3 Density of states

We now compare the eigenvalue spacings for the DPRM product matrix in disordered

and pure systems, focusing our attention on the density of states near 𝜖1. In the pure

system, the transfer matrix is time-independent, and the eigenvalues are fixed. We
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Figure 5-4: Probability distribution of 𝜖𝑖 = ln𝜆𝑖/𝑡 for the product of DPRM transfer
matrices. All distributions are normalized to have mean 0 and variance 1. (a) On
the edges of the spectrum, 𝜖1 and 𝜖𝑁 have asymmetric distributions consistent with
the TW forms. (b) In contrast, 𝜖𝑖 in the bulk are Gaussian distributed, similar to the
bulk eigenvalues of GOE and GUE matrices.
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Figure 5-5: Scaling exponents for the variance of 𝜖𝑖 = ln𝜆𝑖/𝑡 for the product of
DPRM transfer matrices. For 𝜖1, the scaling of fluctuations [Var(𝜖𝑖)]

1/2 is consistent
with 𝑡−2/3, expected for the DPRM free energy. For bulk 𝜖𝑖, however, the scaling is
approximately 𝑡−1/2, similar to that of i.i.d. random variables drawn from a Wigner
semicircle distribution.

take Tpure to be of the following form,

Tpure =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂 𝛾 0 · · · 𝛾

𝛾 𝜂 𝛾 · · · 0

0 𝛾 𝜂 · · · 0
...

...
... . . . ...

𝛾 0 0 · · · 𝜂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.16)

where 𝜂 is the average strength of disorder 𝜂𝑖(𝑡) defined in Eq. 5.13 and 5.14. We

have introduced additional hopping terms 𝛾 in the (1, 𝑁) and (𝑁, 1) positions, which

correspond to periodic boundary conditions. The effect on the spectrum is negligible

for large system sizes, and the advantage of this choice is that Eq. 5.16 is a circulant

matrix whose spectrum is known analytically,

𝜖pure𝑘 =
ln𝜆pure

𝑘

𝑡
= 𝜂 + 2𝛾 cos

[︂
2𝜋𝑘

𝑁

]︂
, 𝑘 = 0, 1, . . . , 𝑁 − 1. (5.17)
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Figure 5-6: 𝜖𝑖 for disordered DPRM (solid line), plotted against the analogous quan-
tity for the pure system (dashed line), and the rescaled mean eigenvalues of Gaussian
random matrices (dotted line). The “steps” in the dashed line arise from degeneracy.
Near 𝑖 = 1, the curve is linear for disordered DPRM, in contrast to quadratic for pure
DPRM.

[Note that the eigenvalues in the above form are not ordered, and that the bulk

eigenvalues (i.e. not the maximum or minimum) are degenerate.]

We plot 𝜖𝑖 for the disordered and pure DPRM systems in Fig. 5-6. We see that in

the disordered case, the “energy band” is linear near 𝜖1, rather than quadratic. It is

therefore more energetically costly to add non-intersecting directed polymers into the

system. We plot also the mean eigenvalues for rescaled Gaussian random matrices for

reference. (The curves for GOE and GUE matrices are indistinguishable, so only one

is plotted.) There, the density of states follows the Wigner semicircle distribution,

which vanishes continuously at the edge of the spectrum as 𝑛 → ∞.

5.5 Totally positive matrices

We devote this section to proving the claim that the product of DPRM transfer

matrices, as defined in Eq. 5.2 and 5.13, has eigenvalues which are all real and positive.
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To see this, we turn to a class of matrices known as totally positive matrices [128,129].

We begin with some definitions. An 𝑁 × 𝑁 matrix A = {𝑎𝑖𝑗}𝑁𝑖,𝑗=1 is totally

positive if the determinant of any square submatrix (obtained by omitting 𝑁 − 𝑘

rows and columns) is positive. More precisely, let {𝑖𝑙}𝑘𝑙=1 and {𝑗𝑚}𝑘𝑚=1 be increasing

subsequences of {1, . . . , 𝑁}, with length 𝑘 < 𝑁 . Then A′ = {𝑎𝑖𝑙,𝑗𝑚}𝑘𝑙,𝑚=1 is a square

submatrix of A. As a special case, a minor 𝑀𝑖𝑗 of A is the determinant of the

submatrix obtained by removing the 𝑖th row and the 𝑗th column. Furthermore, if

𝑖 = 𝑗, 𝑀𝑖𝑗 is called a principal minor. A consequence of this definition is that a

totally positive matrix A is necessarily also positive (has all positive entries) and

positive-definite (has all positive eigenvalues).

The key property we exploit is that total positivity is preserved under matrix

multiplication. We begin by proving this closure property. We then verify that

each individual transfer matrix T defined in Eq. 5.13 is totally positive. These results

combine to show that the product matrix W is totally positive, with real and positive

eigenvalues.

5.5.1 Closure under matrix multiplication

Consider two 𝑁×𝑁 totally positive matrices A and B. By the Cauchy-Binet theorem,

the determinant of a 𝑘 × 𝑘 submatrix of the product AB can be written as

det[(AB)ℐ𝒥 ] =
∑︁
ℋ

det(Aℐℋ) det(Bℋ𝒥 ) (5.18)

where ℐ, 𝒥 , and ℋ are increasing subsequences of {1, . . . , 𝑁}, with length 𝑘. The

sum is over all possible such subsequences ℋ. Since A and B are totally positive,

det(Aℐℋ) > 0 and det(Bℋ𝒥 ) > 0 for any ℋ. This immediately gives det[(AB)ℐ𝒥 ] > 0

for any minor of the product AB. Thus AB must also be totally positive. The

argument trivially generalizes to the product of 𝑛 > 2 matrices. Therefore, totally

positive matrices are closed under matrix multiplication.

94



5.5.2 Total positivity of the transfer matrix

It remains to show that the DPRM transfer matrix introduced in Eq. 5.13 is indeed

totally positive. We rewrite Eq. 5.13 as

T(𝑡) = T0 + E(𝑡),

T0 = 𝛾

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 · · · 0

1 2 1 · · · 0

0 1 2 · · · 0
...

...
... . . . ...

0 0 0 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1(𝑡) − 2𝛾 0 0 · · · 0

0 𝜂2(𝑡) − 2𝛾 0 · · · 0

0 0 𝜂3(𝑡) − 2𝛾 · · · 0
...

...
... . . . ...

0 0 0 · · · 𝜂𝑁(𝑡) − 2𝛾

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.19)

T0 is now a time-independent Jacobi (tri-diagonal) matrix, while E(𝑡) is a positive

diagonal matrix due to the constraints we placed on the noise 𝜂𝑖(𝑡) in Eq. 5.14. To

proceed, we make use of Theorem 2.3 and Corollary 2.4 from Ref. [129].

Theorem. (Ando, 1987) Let A be an 𝑁 -square Jacobi matrix. If A is positive,

and all principal minors are positive, then A is totally positive. Furthermore, for any

𝑠𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑁 ,

det[A + diag(𝑠1, . . . , 𝑠𝑁)] ≥ detA +
∑︁
𝑖

𝑠𝑖, (5.20)

and it follows that A + diag(𝑠1, . . . , 𝑠𝑁) is also totally positive.

If T0 is totally positive, then by the above theorem, T(𝑡) = T0 + E(𝑡) is totally

positive ∀𝑡. It is trivial that T0 is positive. We need only show that all principal

minors are positive as well. However, if we denote the Jacobi matrix T0 of size 𝑁 as
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T𝑁
0 , the principal minor 𝑀𝑖𝑖 of T𝑁

0 can be written in terms of a block matrix,

𝑀𝑖𝑖 = det

⎛⎝ T𝑖−1
0 0

0 T𝑁−𝑖
0

⎞⎠ = det(T𝑖−1
0 ) det(T𝑁−𝑖

0 ) (5.21)

Thus the proof reduces to showing det(T𝑘
0) > 0, ∀𝑘 < 𝑁 .

We write T𝑘
0 as a block matrix in the following form,

T𝑘
0/𝛾 =

⎛⎝ 2 C

C𝑇 T𝑘−1
0 /𝛾

⎞⎠ , C = (1, 0, . . . , 0)⏟  ⏞  
𝑘−1 terms

. (5.22)

Then by the Schur determinant identity,

det(T𝑘
0/𝛾) = det(2) det(T𝑘−1

0 /𝛾 −C𝑇2−1C)

= 2 det

[︂
T𝑘−1

0 /𝛾 − diag

(︂
1

2
, 0, . . . , 0

)︂]︂
= 2

(︂
2 − 1

2

)︂
det

[︂
T𝑘−2

0 /𝛾 − diag

(︂
1

2 − 1
2

, 0, . . . , 0

)︂]︂

= 2

(︂
2 − 1

2

)︂
· · ·

⎛⎜⎝2 − 1

2 − 1

2−
...

⎞⎟⎠
⏟  ⏞  

𝑘 levels

. (5.23)

In the second line, we can again write the matrix in square brackets as a block matrix,

as in Eq. 5.22. Recursively applying the determinant identity 𝑘 times gives the final

expression in Eq. 5.23. It is not difficult to see that the limit of the continued fraction

is

lim
𝑚→∞

⎛⎜⎝2 − 1

2 − 1

2−
...

⎞⎟⎠
⏟  ⏞  

𝑚 levels

= 1+ (5.24)

and more importantly, for any 𝑚, the continued fraction is positive. Thus det(T𝑘
0) >

0, ∀𝑘, and the proof is complete.
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Chapter 6

Outlook

We have considered in this thesis the statistics of paths and interfaces in the pres-

ence of stochastic noise in a random landscape, as captured by the KPZ universality

class. We examined the scaling and distribution of fluctuations from a theoretical

perspective, and, using the lattice models at our disposal, studied the consequences

of these fluctuations for diverse experimental systems. Here, we summarize our work,

and discuss possible future directions.

In Chapter 2, we showed that the probability distribution for the DPRM free

energy interpolates between TW and Gaussian forms in the presence of spatially

correlated noise. It is worthwhile to extend this study of distributions to energy

landscapes with temporal [1, 82, 130] or isotropic [73] correlations, as these are often

relevant in physical systems. One could also develop an analysis similar to the Krug-

Meakin toolbox in the uncorrelated case [8] in order to characterize higher order

moments of the distributions.

In Chapter 3, we effectively modeled optimal paths on the road network as

DPRMs. In doing so, we replaced the complex road structure by a homogeneous

noise featuring only the relevant properties to account for the observed statistics of

optimal paths. A more realistic model may be constructed by introducing isotropic

correlations in the noise, in place of correlations which are purely transverse to the

direction of travel. It would be interesting as well to see if this approach can be ex-

tended to other transportation networks or different environments, for example, to the
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study of shortest paths on a critical percolation cluster [131], which have important

practical applications.

In Chapter 4, we connected the population genetics of propagating range ex-

pansions with new calculations in models from the KPZ universality class. Going

forward, our calculations of the rate and expected time to coalescence for KPZ walk-

ers in a totally uniform environment will be valuable as a standard against which

deviations can be measured, to reveal the effects of various realistic complications.

These complications include end effects from habitat boundaries [93,106], selectively

advantageous or deleterious mutations, mutualism or antagonism between subpop-

ulations [132], geometrical inflationary effects in radial expansions [100], and more

complex heterogeneities in the environment [96]. With minor modifications, the in-

terface height interpretation of DPRM can be extended to model growth in a radial

geometry. The transfer matrix formulation provides a significant numerical advantage

over other off-lattice models, and, with an appropriate choice of discretization, would

also allow us to circumvent difficulties related to lattice artifacts [100]. On the topic

of environmental heterogeneities, we have made headway here by studying a simpli-

fied representation of an obstacle, which already illustrates the subtle issue of locally

suppressed fluctuations. It will be interesting to extend this analysis of Eden model

growth to situations with multiple obstacles, and with other types of heterogeneities

such as nutrient “hotspots” [108] and uneven topography [133]. The dynamics can also

be made more sophisticated by increasing the number of organisms per deme above

𝑁 = 1, and reintroducing aspects of the original stepping stone model’s migration

dynamics between neighbouring demes [92]. Finally, our results have drawn upon

two quite different processes in the KPZ universality class, the rough front stepping

stone model and DPRM, to obtain quantitative insights about biological experiments

that can be realized in the laboratory. We hope that this work will inspire future

investigations to seek other useful links between disparate model systems that shed

light on the evolutionary dynamics of rough front range expansions, a problem with

much fertile territory.

In Chapter 5, we investigated the eigenvalue spectrum of the product of DPRM
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transfer matrices in relation to a finite density of non-intersecting DPRMs. The

presence of disorder was found to modify the density of states near the edge of the

spectrum in an important way. In defining the transfer matrix, however, we imposed

mathematical constraints on the boundary conditions and the relative strengths of

random energies and hopping energies in order to ensure all eigenvalues of the product

matrix are real and positive. The physical significance of this is unclear, as transfer

matrices which do not satisfy these constraints still describe valid physical systems.
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Appendix A

Algorithm for generating correlated

noise

We present here the method used for generating correlated noise developed in Ref. [52].

Note that a similar method was developed in Ref. [53] to study DPRM and BD models

with correlated noise.

In 𝑑 = 1 dimension, the goal is to use a sequence of i.i.d. Gaussian random

variables {𝑢𝑖}𝑖=1,...,𝐿 to generate a sequence {𝜂𝑖}𝑖=1,...,𝐿 with correlation function [1]

𝐶(𝑗) = ⟨𝜂𝑖𝜂𝑖+𝑗⟩ ∼ 𝑗2𝜌−1, 𝑗 → ∞. (A.1)

Taking the Fourier transform gives the spectral density function 𝑆(𝑞), which has the

asymptotic form

𝑆(𝑞) = ⟨𝜂𝑞𝜂−𝑞⟩ ∼ 𝑞−2𝜌, 𝑞 → 0. (A.2)

The correlated random variables can then be obtained from the relation

𝜂𝑞 = [𝑆(𝑞)]1/2𝑢𝑞, (A.3)

where {𝜂𝑞} and {𝑢𝑞} are the Fourier transform coefficients of {𝜂𝑖} and {𝑢𝑖}, respec-

tively.
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As in Ref. [52], we define the correlation function to be

𝐶(𝑗) ≡ (1 + 𝑗2)𝜌−1/2, (A.4)

on the interval 𝑗 ∈ [−𝐿/2, 𝐿/2]. This then has the same asymptotic power law decay

as in Eq. (A.1). The spectral density can be calculated analytically as the discrete

Fourier transform,

𝑆(𝑞) =
2𝜋1/2

Γ(−𝜌 + 1)

(︁𝑞
2

)︁−𝜌

𝐾𝜌(𝑞), (A.5)

where 𝑞 = 2𝜋𝑛/𝐿 with 𝑛 = −𝐿/2, . . . , 𝐿/2, and 𝐾𝜌 is the modified Bessel function

of the second kind of order 𝜌. We define 𝑆(𝑞 = 0) = 0 to avoid any divergences. For

𝜌 > 0, the modified Bessel function has asymptotic form

𝐾𝜌(𝑞) ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ(𝜌)

2

(︂
2

𝑞

)︂𝜌

, 𝑞 ≪ 1,√︂
𝜋

2𝑞
𝑒−𝑞, 𝑞 ≫ 1.

(A.6)

As 𝑞 → 0, we recover the asymptotic form in Eq. (A.2).

The process for generating the correlated noise used to study DPRM can then be

summarized in the following steps.

1. Generate i.i.d. Gaussian random variables {𝑢𝑖}, and calculate {𝑢𝑞} using the

fast Fourier transform.

2. Calculate the spectral density function 𝑆(𝑞) using Eqs. (A.5) and (A.6).

3. Calculate {𝜂𝑞} using Eq. (A.3), and calculate {𝜂𝑖} using the inverse Fourier

transform.

For the DPRM model simulated in Chapter 2, the system size is 𝐿 = 106, evolved

over 𝑡 = 104 time steps. We check the correlation of the noise generated using the

above method by averaging over 102 realizations. The results for 𝜌 < 1/2 and 𝜌 > 1/2

are plotted in Fig. A-1 and A-2, respectively, and we see that the data is in good

agreement with the expected values of 𝜌 up to a separation of 𝑗 = 103. In the special
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Figure A-1: Log-log plot of correlation of generated noise with 𝜌 < 1/2 for system
size 𝐿 = 106. The data for 𝜌 = 0.35, 𝜌 = 0.25, and 𝜌 = 0.15 are plotted (from top
to bottom). The best fit lines (dashed) give 𝜌 = 0.33 ± 0.02, 𝜌 = 0.24 ± 0.02, and
𝜌 = 0.15 ± 0.01 respectively.

Figure A-2: Log-log plot of correlation of generated noise with 𝜌 > 1/2 for system
size 𝐿 = 106. The data for 𝜌 = 0.85, 𝜌 = 0.75, and 𝜌 = 0.65 are plotted (from top
to bottom). The best fit lines (dashed) give 𝜌 = 0.86 ± 0.03, 𝜌 = 0.77 ± 0.04, and
𝜌 = 0.69 ± 0.04 respectively.
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Figure A-3: Semilog plot of correlation of generated noise with 𝜌 = 1/2 for system
size 𝐿 = 106. The correlation decays logarithmically with separation, and the best fit
line (dashed) gives 𝐶(𝑗) = −1.13 ln |𝑗| + 13.52.

case 𝜌 = 1/2, we find that the correlation decays logarithmically with separation, as

shown in Fig. A-3.

104



Appendix B

Overhangs in optimal paths on road

networks

We define here properly the overhang length 𝐿ℎ displayed in Fig. 3-3. Our algorithm

returns a list of points {𝑃𝑖} along the path. For each of them we compute its coor-

dinate 𝑥𝑖 on the axis running between the end points of the path. We then consider

a point as part of an overhang if we have 𝑥𝑖 < 𝑥𝑗 for some 𝑗 < 𝑖. If the point falls

outside the end points (𝑥 < 0 or 𝑥 > 𝑑) it is also considered as part of an overhang.

This definition is illustrated in the sketch below where the red portion of the path

are defined as overhangs. (The overhangs are exaggerated in Fig. B-1; in reality, for

an optimal path of sufficient length, their contribution to the overall trajectory is

negligible.)

Figure B-1: Illustration of overhangs in an optimal path from GPS routing. The
overhang length 𝐿ℎ is defined as the length of the portion in red.
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Appendix C

Convergence of distributions for

optimal paths in different regions

We show in Fig. C-1 the distributions 𝑃 (𝐿|𝑑) (as in Fig. 3-4 top) for the shortest

paths in the US and Asia. Fig. C-2 shows the equivalent curves 𝑃 (𝑇 |𝑑) for the fastest

paths in the three regions. Rescaling happens in a similar way as for the shortest

paths except for a deviation in the Europe data set at 𝑑 = 100km (Fig. C-2 top left).

In Fig. C-2 (bottom left), we plot the end points of the paths corresponding to the

left bump of the distribution. They appear concentrated along the German highway

network which has no speed limitations on large portions and thus allows for faster

routes.
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Figure C-1: Distribution of the length of the shortest path in the US (left) and Asia
(right) as in Fig. 3-4 top.
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Figure C-2: Distribution of the travel time 𝑃 (𝑇 |𝑑) on the fastest paths in Europe
(top left), the US (top right) and Asia (bottom right). The bottom left corner shows
the end points of the paths between points at distance 𝑑 = 100km sampled in the top
left figure. Green points correspond to the fast paths 𝑇 < 4500 that make up the left
bump in the distribution. Red points correspond to all slower paths.
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Appendix D

Analytical derivation of the rate of

coalescence for DPRM

Here we derive the form of the lineage coalescence rate in rough front range expan-

sions, Eq. 4.4, using the DPRM endpoint distribution obtained in Ref. [107].

Consider two directed paths 𝑥1(𝜏) and 𝑥2(𝜏) starting from 𝑥1(0) = 0 and 𝑥2(0) =

∆𝑥0 > 0 at 𝜏 = 0. At a later time 𝜏 , for 𝜏/∆𝑥
3/2
0 ≪ 1, the spatial fluctuations for

each path are small compared to their initial separation ∆𝑥0, and we can consider the

two paths to be independent. More specifically, setting 𝑥̃ = 𝑥/𝜏 2/3, we can take the

rescaled 𝑥̃1 and 𝑥̃2 to be i.i.d. random variables drawn from the asymptotic DPRM

endpoint distribution 𝑓end obtained in [107]. The probability distribution 𝑓21 for the

random variable 𝑥̃ = 𝑥̃2 − 𝑥̃1 is then obtained from the convolution of the individual

endpoint distributions, as

𝑓21(𝑥̃) =

∫︁ ∞

−∞
𝑓end(𝑦)𝑓end(𝑦 − (∆𝑥̃0 − 𝑥̃)) 𝑑𝑦. (D.1)

For ∆𝑥̃0 ≫ 1, we are interested in the tails of the 𝑓end distribution, which are

known to decay as 𝑓end(𝑧) ∼ exp(−𝑐𝑧3) with 𝑐 a system-specific constant [107]. This

allows us to estimate the integral in Eq. D.1 using the saddle point method. The

maximum of the exponent 𝑔(𝑦) = 𝑐|𝑦|3+𝑐|𝑦−(∆𝑥̃0− 𝑥̃)|3 occurs at 𝑦* = (∆𝑥̃0− 𝑥̃)/2,
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yielding

𝑓21(𝑥̃) ∼ exp(−𝑔(𝑦*))√︀
𝑔′′(𝑦*)

∼ 1√
𝑥̃0 − 𝑥̃

exp
(︁
− 𝑐

4
(∆𝑥̃0 − 𝑥̃)3

)︁
. (D.2)

The coalescence events are represented by 𝑥̃ < 0, resulting in the cumulative

coalescence probability

𝐶(∆𝑥̃0) =

∫︁ 0

−∞
𝑓21(𝑥̃)𝑑𝑥̃ ∼ Γ

(︂
1

6
,
𝑐∆𝑥̃3

0

4

)︂
, (D.3)

where Γ(𝑥, 𝑦) is the incomplete gamma function. After properly normalizing and

differentiating with respect to 𝜏 , we obtain the rate of coalescence displayed in Eq. 4.4,

𝐽(𝜏 |∆𝑥0) ∼
1

𝜏

(︃
∆𝑥

3/2
0

𝜏

)︃1/3

exp

(︂
−𝑐∆𝑥3

0

4𝜏 2

)︂
. (D.4)
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Appendix E

Scaling of the expected time to

coalescence for KPZ walkers

Analogous to the diffusive case given by Eq. 4.7, the expected time to coalescence 𝑇2

for KPZ walkers can be written in the form

𝑇2,KPZ(∆𝑥0, 𝑡max)

𝑡max

∝ 𝑓

(︃
∆𝑥

3/2
0

𝑡max

)︃
, (E.1)

where 𝑓 is some scaling function which depends only on the combination ∆𝑥
3/2
0 /𝑡,

thus reflecting the KPZ wandering. To make this scaling relation evident, we plot a

high quality collapse of the data from Fig. 4-6 in Fig. E-1.
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Figure E-1: Expected time to coalesce 𝑇2 for KPZ lineages with initial separation
∆𝑥0, collapsed with respect to the transverse scaling ∆𝑥0 ∼ 𝑡

2/3
max. The lineages are

taken from rough front stepping stone simulations of size 𝑡max = 100 to 1000.
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Appendix F

Boundary fluctuations in the stepping

stone model with wedge geometry

We present here a heuristic justification for the smooth increase in the wandering

exponent 𝜁 from 1/3 to 2/3 in the wedge geometry stepping stone model, as the

wedge angle 𝜃 is increased from 0 to 𝜋.

Consider a wedge of opening angle 𝜃, with two distinct genotypes inoculated at its

edges. In the case of flat front growth with velocity 𝑢, the advancing fronts meet at

a tip which zips away from the initial apex as 𝑦(𝑡) = 𝑢𝑡/ sin(𝜃/2). With rough front

growth the sector boundary is no longer straight but meanders as the intersection of

the advancing fronts is no longer deterministic. At a time 𝑡, fluctuations of the front

position are governed by KPZ scaling, growing as 𝑡1/3. While on average the time

for the tip to move a distance 𝑦 behaves as 𝑦 sin(𝜃/2)/𝑢, the fluctuations in this time

scale as [𝑦 sin(𝜃/2)/𝑢]1/3.

The geometry is sketched in Fig. F-1. Height fluctuations 𝛿ℎ𝐿, 𝛿ℎ𝑅 push the

advancing tip of the sector boundary – the intersection of the black dashed lines lines

– away from 𝑥 = 0, which is the zero-noise result illustrated by the intersection of

the fainter blue dotted lines. From Fig. F-1, we can solve for the intersection point
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Figure F-1: Illustration of fluctuations in the wedge geometry with opening angle 𝜃.
The red (left) and green (right) sectors meet at a sector boundary whose advancing
tip, the intersection of the two dashed black lines, is pushed away from 𝑥 = 0 by
fluctuations in the front propagation heights ℎ𝐿, ℎ𝑅, which grow as 𝑡1/3. The fainter
blue dotted lines illustrate the zero-noise case (flat front). Coordinates 𝑠𝐿 and 𝑠𝑅 are
defined to be orthogonal to ℎ𝐿 and ℎ𝑅, respectively.
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(𝑥(𝑡), 𝑦(𝑡)) representing the advancing tip:

𝑥(𝑡) = −𝑠𝐿 sin(𝜃/2) + ℎ𝐿 cos(𝜃/2) = 𝑠𝑅 sin(𝜃/2) − ℎ𝑅 cos(𝜃/2),

𝑦(𝑡) = 𝑠𝐿 cos(𝜃/2) + ℎ𝐿 sin(𝜃/2) = 𝑠𝑅 cos(𝜃/2) + ℎ𝑅 sin(𝜃/2). (F.1)

The height fluctuations 𝛿ℎ𝐿, 𝛿ℎ𝑅 can thus be expressed in terms of the resulting

displacements 𝛿𝑥, 𝛿𝑦 of the tip, as

𝛿ℎ𝐿 = 𝛿𝑥 cos(𝜃/2) + 𝛿𝑦 sin(𝜃/2),

𝛿ℎ𝑅 = −𝛿𝑥 cos(𝜃/2) + 𝛿𝑦 sin(𝜃/2), (F.2)

from which we obtain

𝛿𝑥 =
𝛿ℎ𝐿 − 𝛿ℎ𝑅

2 cos(𝜃/2)
. (F.3)

Both 𝛿ℎ𝐿 and 𝛿ℎ𝑅 scale as 𝑢𝑡1/3, which at a given 𝑦 value is 𝑢[𝑦 sin(𝜃/2)/𝑢]1/3. There-

fore, the fluctuations in 𝑥(𝑡) for a given 𝑦-value of the tip vary as

𝛿𝑥 ∝ 𝑢

cos(𝜃/2)

(︂
𝑦 sin(𝜃/2)

𝑢

)︂1/3

. (F.4)

While the meandering exponent remains as 𝜁 = 1/3, the overall amplitude increases

with 𝜃, diverging as the wedge opens up to a single flat edge for 𝜃 → 𝜋. In that limit,

the transverse fluctuations 𝛿𝑥 scale as 𝑡2/3.
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