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Abstract

Resilience of infrastructure networks is a key requirement for a functioning modern
society. These networks work continuously to enable the delivery of critical services
such as water, natural gas, and transportation. However, recent natural disasters and
cyber-physical security attacks have demonstrated that the lack of effective failure
detection and identification capabilities is one of the main contributors of economic
losses and safety risks faced by service utilities. This thesis focuses on both strategic
and operational aspects of inspection processes for large-scale infrastructure networks,
with the goal of improving their resilience to reliability and security failures. We ad-
dress three combinatorial problems: (i) Strategic inspection for detecting adversarial
failures; (ii) Strategic interdiction of malicious network flows; (iii) Analytics-driven
inspection for localizing post-disaster failures. We exploit the structural properties
of these problems to develop new and practically relevant solutions for inspection of
large-scale networks, along with approximation guarantees.

Firstly, we address the question of determining a randomized inspection strat-
egy with minimum number of detectors that ensures a target detection performance
against multiple adversarial failures in the network. This question can be formulated
as a mathematical program with constraints involving the Nash equilibria of a large
strategic game. We solve this inspection problem with a novel approach that relies
on the submodularity of the detection model and solutions of minimum set cover and
maximum set packing problems. .

Secondly, we consider a generic network security game between a routing entity
that sends its flow through the network, and an interdictor who simultaneously in-
terdicts multiple edges. By proving the existence of a probability distribution on
a partially ordered set that satisfies a set of constraints, we show that the equilib-
rium properties of the game can be described using primal and dual solutions of a
minimum-cost circulation problem. Our analysis provides a new characterization of
the critical network components in strategic flow interdiction problems.

Finally, we develop an analytics-driven approach for localizing failures under un-
certainty. We utilize the information provided by failure prediction models to calibrate
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the generic formulation of a team orienteering problem with stochastic rewards and

service times. We derive a compact mixed-integer programming formulation of the

problem that computes an optimal a-priori routing of the inspection teams. Using

the data collected by a major gas utility after an earthquake, we demonstrate the

value of predictive analytics for improving their response operations.

Thesis Supervisor: Saurabh Amin
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation: Infrastructure Resilience

Critical infrastructure networks, such as electricity, water, and transportation net-

works, are essential for our modern society. These systems work continuously to en-

able the delivery of essential services from diverse resources to diverse loads through

physical networks that are comprised of heterogeneous, interconnected components.

These infrastructure components are numerous and diverse in type, behavior, and

vulnerabilities, and need to be monitored to ensure their operation. Indeed, these

components are routinely subject to reliability failures due to aging infrastructure,

as well as security threats from malicious entities. Therefore, ensuring the resilience

of these infrastructure networks against reliability and security failures is crucial for

ensuring the availability and quality of the essential services that rely on these net-

works.

Many utilities and their customers face significant issues related to the service

quality and reliability of supply, as evident by recurrent (and often disastrous) inci-

dents f59, 64]. These incidents are becoming more frequent due to the deteriorating

state of infrastructure and the high-intensity natural events that many parts of the

world are facing [47]. For instance, electricity and transportation networks are di-

rectly impacted by the increase in the number of hurricanes that the past thirty years

have witnessed.
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In addition, recent incidents have demonstrated that malicious entities can disrupt

or gain control of these systems by exploiting cyber vulnerabilities or physical faults,

or their combination. Indeed, sophisticated cyber intrusions, e.g., BlackEnergy3 [60],

Stuxnet [29], physical attacks, e.g., Metcalf power substation sniper attack [92], and

the significant increase in the number of successful incidents over the past ten years

[8, 18, 23, 28, 37, 46, 58, 69, 73, 80, 90], confirm the insufficiency of the existing pro-

tection solutions. Such incidents can cause correlated failures, resulting in significant

economic losses, and even loss of human lives.

Since resiliency was not considered at the design stage of existing infrastructure

systems, there is a need to improve the utilities' situation awareness to security at-

tacks, as well as its operational readiness to respond to failures caused by natural

disasters. The goal of this thesis is to develop a foundational approach for strategic

security planning and operational response design, so that our infrastructure sys-

tems can better withstand, recover from, and adapt to both random and adversarial

failures. For strategic planning, we focus on designing inspection strategies to moni-

tor large-scale infrastructure systems that face risks of random failures and security

attacks. For operational response in the aftermath of a natural disaster, we study

the problem of scheduling inspection operations assisted by predictive analytics to

localize component failures. In particular, we exploit the features of the problems to

develop scalable and implementable solution approaches, along with optimality guar-

antees. Through this thesis, we contribute to methods in network and combinatorial

optimization, computational game theory, and predictive analytics.

1.2 Thesis Focus: Inspection Operations

Inspection systems for monitoring critical infrastructure networks play a crucial role

in providing situational awareness to the distribution utilities, who are tasked with

maintaining the functional state and service quality of their expansive assets. During

the last two decades, utilities have started to deploy new sensing, communication,

and control technologies to detect a variety of incidents and improve their operations.
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1.2.1 Current Operations and Challenges

Consider the inspection problem faced by a utility company (typically a regulated

monopoly) that manages a natural gas pipeline network in an urban area. Tradition-

ally, utility personnel conduct inspections of network assets and customer connections

at a predetermined frequency (once every 2-4 years), or when an emergency situation

is reported [66]. The main challenges faced by these inspection systems are threefold:

1) Utility companies do not have enough resources to continuously monitor ev-

ery component. Thus, current inspection operations tend to prioritize major

components such as main lines and valve stations. As a result, the detection

of minor leaks is delayed, often causing significant damages in the future: for

instance, minor gas leaks occasionally evolve to become major explosions.

2) In many situations, utility crews do not have an immediate access to the diag-

nostic information about the type or location of failure events. Consequently,

the actual response times often exceed the time to failure, resulting in major

losses to utilities and safety risks to both customers and utility personnel. In

addition, this increase in response time also impacts the cost of utilities' inspec-

tion operations, as they may dispatch their inspection teams to locations that

do not contain failures.

3) Physical or remote access to critical components can be exploited by malicious

entities. These entities may use a combination of physical and digital tampering

to bypass safety systems. However, inspection systems typically do not account

for strategic and resourceful attackers whose actions are more difficult to detect,

in comparison to isolated random failures.

In summary, although current inspection systems are configured to provide situa-

tional awareness to the system operator under nominal conditions, they only provide

limited and uncertain information when a major event occurs (e.g., natural disaster

or security attack). Since utilities are operating a large number of components with
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limited resources, these challenges result in inspection systems with limited perfor-

mances, which in turn result in infrastructure networks being less resilient to reliability

and security failures.

1.2.2 New Opportunities

Fortunately, recent advances in sensing technologies have resulted in commercially

available smart detector systems, which include a sensor, a detection software, and a

communication unit [20, 102]. These detectors can be easily operated by the utility

personnel and flexibly positioned in the network for timely detection of failure events.

For example, wireless sensor networks have been successfully used in the monitoring of

water networks [5, 94]. These sensors provide timely and accurate data to enable the

detection of possible pipeline breaks and contamination events [83]. Sensor networks

are also being utilized to monitor oil and natural gas networks [104]. By adopting

smart detectors in their inspection operations, the utilities can at least partly address

the aforementioned limitations [84].

In addition, Unmanned Aircraft Systems are rapidly emerging as a deployable im-

agery asset, which can be tasked in a manner similar to the fixed vision sensors, but

with mobility as a constraint. Significant advancements in autonomous systems dur-

ing the past 15 years have resulted in rapidly deployable, low-cost small Unmanned

Aircraft Systems (sUAS) with heterogeneous sensing modalities, for e.g., onboard

electro-optical and infrared sensors. Typical use cases include executing reconnais-

sance and surveillance operations for command and control centers. More recently,

widespread commercial availability of sUAS has generated significant interest in us-

ing them for situational awareness in urban environments. The opportunity to use

sUAS as monitoring systems is especially promising in a range of infrastructure ap-

plications such as detection of power line failures, clearance of highway incidents, and

identification of pipeline bursts.

Finally, these new technologies also enable service utilities to acquire data regard-

ing their inspection operations. In addition to publicly available information, such

operational data can significantly improve the diagnostic information regarding the
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type and location of failures within their infrastructure network. For example, the

increase in the number of crowdsourcing apps where users can report incidents proves

to be of interest for assessing the damage of the utilities' extensive assets.

1.2.3 Research Statement

The goal of this thesis is then to develop tools based on predictive analytics, combina-

torial optimization, and game theory, to improve the service operations of large-scale

critical infrastructures. First, we exploit the newly acquired data (from their previous

inspection operations and public sources) to improve the prediction of failure loca-

tions. We then integrate the diagnostic information into decision models that focus

on scheduling inspection and response operations. Specifically, we consider a network

and strategic modeling approach that captures the important features of the problem

and improves the strategies of the utilities. We illustrate this overall approach in

Figure 1-1.

Operational data

Disio Inspection

proble and response

Public data - Optimization
MACHINE LEARNING - Network, combinatorial, stochastic

- Strategic modeling
- Game theory

Figure 1-1: Our focus.

In this thesis, we develop this approach to improve inspection operations both

before and after a failure event occurs. For pre-event operations, we study how to

optimally allocate both fixed and mobile detectors to monitor infrastructure networks

against faults and attacks. The goal is to allocate detectors so that when a failure

event occurs within the network, it is detected in a timely manner. This is crucial

21



for facilitating the response operations. Then, after a failure event occurs, we pro-

pose an analytics-based approach that improves the diagnostic information, and then

integrates it into the problem of dispatching inspection teams for localizing failures.

Improving both pre and post event inspection operations is crucial for cyber-physical

security and disaster response problems, and for improving the resilience of infras-

tructure networks; see Figure 1-2.

Cyber-physical security, Disaster response

Dat datae
Dat Vlnrailty Network Nw Predictive Response Tm

assssmnt Monitoring daa diagnostics operations

Failure event

Random events Natural disasters Strategic attacks

Figure 1-2: Inspection operations for critical infrastructure resilience.

More specifically, this thesis addresses the following three questions (summarized

in Figure 1-3):

1. How many detectors are required and how to strategically position them in the

network to detect multiple adversarial attacks?

2. How to strategically coordinate multiple interdictors to prevent the routing of

illegal goods in a flow network?

3. How to optimize the scheduling of monitoring resources for post-disaster inspec-

tion under diagnostic uncertainty?
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Strategic inspection for
detecting adversarial failures

(g.M

Time

Strategic interdiction of
malicious network flows
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Network and combinatorial optimization Stochastic optimization

Figure 1-3: Thesis overview.

1.3 Thesis Contributions

Strategic Positioning of Detectors. In this work, we investigate how the cur-

rently available smart detector systems - with on-board sensors and data process-

ing/transmission capabilities - should be positioned in a large-scale network to ob-

tain detection guarantees against multiple failure events. This problem is relevant to

applications such as sensing of methane leaks, pipeline bursts, and water contami-

nation events. In these applications, the performance of inspection strategies should

be evaluated against worst-case events. We approach this problem by considering a
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game-theoretic model of interaction between the utility operator who can position

a fixed number of detectors, and an adversary who can target one or more network

components. The operator's payoff is given by a submodular detection function which

counts the components whose failure can be successfully detected. Similarly, the ad-

versary's payoff is the number of components whose failure cannot be detected. The

action set of each player is determined by the limited number of available resources.

Despite its modeling simplicity, the extremely large size of this game precludes the

applicability of known algorithms [63].

To design a good inspection strategy and evaluate its performance, we develop

a new scalable approach to study the expected fraction of detected failures - which

we refer to as detection rate - in any mixed strategy Nash equilibrium of the above-

mentioned game. Firstly, we prove that by inspecting a subset of nodes in a random-

ized manner and ensuring that each component is monitored with a non-zero proba-

bility, the operator can obtain a strictly better detection performance than any fixed

positioning of detectors. Secondly, we provide lower and upper bounds on the detec-

tion rate in terms of the optimal values of Minimum Set Cover (MSC) and Maximum

Set Packing (MSP) problems, as well as the operator's available resources. Thirdly,

we construct an approximate equilibrium strategy profile based on solutions of the

MSC and MSP problems. In particular, we show that the detection performance for

an MSC-based inspection strategy is close to the actual equilibrium detection rate in

practical settings. Finally, we show a rather surprising property that the equilibrium

detection rate in large networks can be evaluated by considering that the adversary

only has a unit attack resource. This implies that an MSC-based inspection strategy

can be further refined using a column generation algorithm.

Our proofs are based on game-theoretic arguments and combinatorial properties of

the network inspection problem. In particular, we employ linear-programming duality

in zero-sum games, properties of the MSC and MSP problems, and submodularity of

the detection function. The richness and generality of our solution approach make

it applicable to various network inspection settings [86], and even extend results of

a large class of game-theoretic models [65, 52]. The detection function used in our
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formulation can also be refined to capture features such as probability of detection

and criticality of components. Most importantly, our approach can be used to design

practical inspection strategies that use minimum number of detectors and achieve the

target detection performance against worst-case or adversarial failure events.

Strategic Interdiction in Flow Networks. In this work, we study the useful-

ness of game theory for designing network inspection strategies against a malicious

entity (router). In particular, we consider an interdiction process by an agency who

seeks to intercept a flow of illegal goods (smuggled drugs, weapons, etc.) through

a supply-demand network. In this setting, the agency needs to anticipate how the

strategy of the malicious router might change in the presence of interdiction points.

Prior work in this area [114] considers bilevel optimization formulations and solves

them using mixed integer programming techniques. These models assume that the

agency chooses her interdiction plan to induce a maximum lost flow for the router,

who chooses her initial flow after observing the agency's plan. This assumption leads

to fixed interdiction plans that are not optimal for inspecting strategically chosen

route flows.

By contrast, our work shows that by modeling the interaction between the agency

and router as a strategic game, we can account for a richer class of malicious router's

strategies, and design randomized interdiction plans to impose an optimal strate-

gic flow interdiction. In our model, the router sends her flow through the network

while facing heterogeneous path transportation costs; and the agency simultaneously

chooses an interdiction plan comprised of one or more edges. The router (resp.

agency) seeks to maximize the value of effective (resp. interdicted) flow net the

transportation (resp. interdiction) cost. We obtain a characterization of the routes

that are likely to receive malicious flows, and the edges that need to be interdicted

with non-zero probability.

Importantly, a departure of our analysis from the existing literature is the find-

ing that classical interdiction plans based on minimum capacity cutsets do not fully

exploit the agency's interdiction capability. Instead, we discover that an optimal

interdiction plan satisfies a set of constraints which ensure that the corresponding
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marginal edge interdiction probabilities are equal to the dual solutions of a minimum

cost circulation problem. Moreover, an equilibrium strategy of the malicious router

maximizes the route flows that cross edges with high interdiction costs, and such a

strategy is given by the primal solution of our circulation problem. This imposes

another set of constraints on the minimum probability with which each route needs

to be interdicted. Since an interdiction plan in our model is a randomized strategy

over subsets of edges, it is natural to inquire about the existence of a strategy that

satisfies the two sets of equilibrium constraints.

To address this question, we prove a more general result on the existence of a

probability distribution on a finite poset that satisfies a set of constraints involving

marginal probabilities of the poset's elements and maximal chains. Resolving this

existence problem is equivalent to solving a linear optimization program with ex-

ponentially many variables and constraints. We positively answer this question by

designing a combinatorial algorithm which solves the linear program. Each iteration

of the algorithm involves selecting subsets of poset elements and assigning weights

to them in a manner that all the equilibrium constraints are satisfied when the algo-

rithm terminates. This result demystifies the complexity of equilibrium computation

for our game-theoretic model. Computing an equilibrium interdiction plan is NP-hard

due to the enumeration of maximal chains in our algorithm. However, the marginal

edge interdiction probabilities and route flows can be obtained in polynomial time by

solving the minimum cost circulation problem.

Analytics-Driven Response Operations. This work deals with the problem

of optimal scheduling of response operations under imperfect diagnostic information

regarding failure locations. We model this problem as a stochastic orienteering prob-

lem, which consists of finding a scheduling of sites to inspect that maximizes the

expected reward obtained from successfully addressing failures in the network. To

overcome the challenge in computing an optimal strategy for large-size networks, we

identify key features of optimal solutions to develop a compact integer programming-

based solution approach. Our approach leads to practical strategies which prescribe

an a priori response schedule. Importantly, it captures the essential tradeoff between
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the travel time between sites and the inspection time of each sites, given the imperfect

diagnostic information, distances between sites, and available response time. These

results demonstrate the advantages of integrating predictive models of failures into

emergency response operations.

The rest of this thesis is organized as follows: In Chapter 2, we study the strate-

gic inspection problem for detecting adversarial failures. In Chapter 3, we study

the strategic interdiction of malicious network flows. In Chapter 4, we study the

analytics-driven inspection problem for localizing post-disaster failures. In Chap-

ter 5, we present an overall summary of the thesis contributions, and discuss future

research directions for improving infrastructure resilience.
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Chapter 2

Strategic Inspection for Detecting

Adversarial Failures

2.1 Introduction

In this chapter, we study a network inspection problem in the face of simultane-

ous failures cased by a strategic adversary. Our setup is motivated by the need to

enhance the capabilities of traditional inspection systems through the use of smart

detectors, and achieve a target level of detection performance against incidents, in-

cluding strategic attacks. Specifically, we consider a game-theoretic formulation of the

strategic network inspection problem, and address the question: How many detectors

are required and how to strategically position them in the network to detect multiple

adversarial attacks? Solving this game is challenging because the sets of actions of

both players grow combinatorially with the size of the network. Hence, commonly

known algorithms [75, 87] cannot be used to compute equilibrium player strategies

in a scalable manner. Instead, we construct an approximate equilibrium strategy of

this large-scale game based on the properties of minimum set cover and maximum

set packing problems. This construction enables a scalable solution approach for our

network inspection problem.
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2.1.1 Our Contributions

In Section 2.2, we introduce a generic detection model, which captures the key fea-

tures of modern inspection systems with respect to sensing technology for event de-

tection and flexibility of positioning. Mathematically, the model is represented by a

monotone submodular detection function. We use this detection model to define a

game-theoretic model of strategic interaction between a defender (inspection agency)

and an attacker. The defender chooses where to position her detectors, and the

attacker chooses to target one or more network components. Each player is resource-

constrained. The defender's objective is to maximize the number of detected attacks,

whereas the attacker's objective is to maximize the number of undetected attacks.

We adopt mixed strategy Nash equilibrium as the solution concept of this game.

We then formulate our inspection problem, denoted (P), as a mathematical program

with equilibrium constraints. In this problem, the defender seeks to minimize the

number of detectors such that the expected detection rate of attacks (i.e., detection

performance) in any Nash equilibrium is above a pre-specified threshold.

Essentially, solving the problem (P) involves computing the equilibria of the

defender-attacker game. However, the sets of players' actions grow combinatorially

with the size of the network, which makes the equilibrium computation challenging.

For large-scale networks, the number of available pure strategies for each player n can

easily reach 1060. Well-known algorithms such as Lipton et al. [63]'s n O(1nn/ 2 ) time

algorithm for computing an E-Nash equilibrium are practically inapplicable for this

setting. Instead, in this chapter, we develop a new solution approach based on the

properties of minimum set cover (MSC) and maximum set packing (MSP) problems.

This approach enables us to solve the problem (P) in a scalable manner and also

provide performance guarantees.

Our equilibrium analysis in Section 2.3 consists of first studying useful structural

properties that are satisfied by all Nash equilibria of the defender-attacker game.

We present these properties for the most conservative case when the attacker has

the ability to spread her attacks across the network. In particular, we show that
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in any equilibrium, both players must randomize their actions and use all available

resources, and every network component must be monitored with positive probability

(Propositions 2-3). Importantly, while these are game-theoretic results, their proofs

also rely on the properties of the detection function, as well as MSCs and MSPs which

respectively capture the "coverage" and "spread" of the network.

These properties enable us to derive lower and upper bounds on the expected

detection rate in equilibrium in terms of both players' available resources, and the

optimal values of the MSC and MSP problems (Theorem 1). Moreover, using solutions

of MSC and MSP problems, we construct a strategy profile that not only is an E-Nash

equilibrium, but also provides each player a payoff that is e-close to the payoff they

would get in any Nash equilibrium (Theorem 2). In Section 2.3.3, we specialize our

results to the case when the duality gap between our two combinatorial optimization

problems is zero, i.e., when the sizes of the MSCs and MSPs are the same. We

show that, for this case, MSCs and MSPs can be directly used to construct a Nash

equilibrium of the game (Proposition 4). We also deduce analytical expressions of

the players' payoffs and the expected detection rate of failures in any equilibrium

(Corollary 1).

These results enable us to derive (in Section 2.4) an exact solution to the network

inspection problem for the case when the MSCs and MSPs are of same size, i.e., we

provide an analytical expression of the optimum number of detectors, and an equilib-

rium strategy profile. For the general case (i.e., when the size of MSCs is larger than

or equal to the size of MSPs), Theorems 1 and 2 are used to derive an approximate

solution to the problem (P), with guarantees on the detection performance and the

corresponding optimality gap (Proposition 6).

Although our approach to solve problem (P) relies on the MSC and MSP problems

which are known to be NP-hard, we find that modern integer programming solvers

can solve large instances of these problems. In particular, in Section 2.5, we show that

our solution approach is scalable to large-sized benchmark distribution networks, and

can be used to provide good performance guarantees for monitoring against pipeline

disruptions and contaminant injection attacks. In addition, we show that our solution
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approach is also valid when only approximate solutions of the MSC and MSP problems

(obtained from standard greedy or heuristic algorithms) are available instead of the

exact ones.

In Section 2.6, we describe additional settings that can be modeled with our game.

First, we study a security game on flow networks, in which an interdictor aims at

preventing the routing of illegal goods by a malicious entity. Despite the exponential

number of possible network paths that can be taken by the malicious entity, we

extend our solution approach by computing a maximum set of edge-disjoint paths

and a minimum cardinality cut-set of the network. The max-flow min-cut theorem

guarantees that our proposed strategy profile is a Nash equilibrium of the security

game. Then, we study a network inspection game in which the operator routes a

fleet of small Unmanned Aircraft Systems to detect failures induced by an attacker.

We overcome the exponential number of possible inspection paths by formulating two

mixed-integer programs that compute our MSC/MSP-based strategy profile.

Although our approach to (P) provides a solution with good approximation guar-

antees in practice, the defender might still prefer to improve that solution. For that

purpose, we prove in Section 2.7 that the expected detection rate and the inspection

strategies in equilibrium do not depend on the attacker's number of resources if they

are smaller than the size of MSPs (Theorem 3). This important and rather surprising

structural property is a consequence of the attacker's ability to spread her attacks

in the network, and the submodularity of the detection model. From the defender's

perspective, this implies that she does not need to know precisely the amount of

attack resources. Another implication is that Nash equilibria can be obtained by

solving a linear program with a large number of variables but a small number of

constraints. Therefore, column generation can be used to iteratively improve our

MSC/MSP-based solution. Each iteration provides stronger performance guaran-

tees until it reaches optimality, where the primal and dual solutions give the players

strategies in equilibrium. However, the downside is that it can result in an inspection

strategy with a large support, which may not be desirable from an implementation

perspective. Therefore, a compromise can be reached by running iterations of the
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column generation procedure until a tradeoff between the performance and simplicity

of the solution is achieved.

Although our results are shown in the case of interest when the attacker has the

ability to spread her attacks across the network, we briefly discuss the other case in

Section 2.8. Finally, we conclude this chapter by providing the complete proofs of

our results in Section 2.9.

2.1.2 Related Work

Our detection model is inspired by modern sensing technology used in detecting leaks

and other failure events in pipeline networks for distribution of natural gas [85], and

water [78, 91]. A classical problem in sensing of these infrastructure networks is to

optimally place sensors for detecting leaks and pipe bursts in the case of reliability

failure events. Typically, it can be modeled as a problem of optimal allocation of lim-

ited sensing resources to optimize a performance metric, such as observability of the

network [19], uncertainty about failure events 157], or proportion of affected popula-

tion [14]. Some of these formulations can be solved using mixed-integer programming

methods, while others exhibit properties of submodular optimization leading to the

application of greedy algorithms with approximation guarantees.

Robust formulations of the sensor placement problem have received interest in

the literature; for example, Krause et al. [56] proposed an efficient approximation

algorithm to maximize the worst-case detection performance against a set of possible

failure scenarios. More recently, Orlin et al. [77] and Tzoumas et al. [97] designed

approximation algorithms to find a sensor placement that is robust against a subset of

sensors' failures. The main feature of this line of work is fixed sensing, i.e., continuous

operation of sensors placed at fixed locations in the network. On the other hand, our

setting is inspired by inspection operations based on smart detectors that can be

flexibly positioned in various parts of the network to detect and report incidents. In

such settings, it is well-known that randomized strategies can significantly improve the

defender's performance against worst-case or adversarial failure events [15, 86, 105].

Our game-theoretic model is more general than the classical Hide-and-Seek game
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first introduced by Von Neumann [1031, and further discussed in Chapter 3.2 of Karlin

and Peres [53]. In this zero-sum game, a robber hides in one of a set of "safe-houses"

located at roads intersections, and a police unit simultaneously chooses to travel

along one road to find the robber. The roads are restricted to be vertical avenues

and horizontal streets. Our solution approach can be applied to solve the generalized

hide-and-seek game which involves multiple police units patrolling in a complex street

network to find multiple robbers. This is possible because our approach can account

for multiple player resources, and more realistic monitoring capabilities of the pa-

trolling units. Our game similarly generalizes the Infiltration Game with a Cable, as

defined in Chapter 2.1 of Garnaev [341. In this problem, an infiltrator wants to cross

a (discretized) channel and a guard uses an electric cable to detect the infiltrator.

Finally, related to our setting is the work by Mavronicolas et al. 165], who consider

a security game on an information network in which the nodes (servers) are vulnerable

to multiple attacks and the defender can install a firewall to protect a subnetwork.

The defender's goal is to maximize the number of attack detections by randomizing

the placement of her firewall. Simultaneously, the attacker's goal is to minimize the

number of attacks detected by the firewall. While the authors made the restricting

assumption that each subnetwork contains exactly two servers, our detection model

can accommodate attack detections within subnetworks of heterogeneous sizes. In

fact, our solution approach can be used to derive a defense strategy based on the

installation of multiple firewalls to secure the network against multiple simultaneous

attacks.

A comparison of these security games is given in Table 2.1.

2.2 Problem Description

In this section, we introduce a generic formulation of strategic network inspection

problem based on a game-theoretic model of defender-attacker interaction on the

network. Our formulation is a mathematical program with constraints defined in

terms of the Nash equilibria of this game.
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Table 2.1: Model comparisons.

Detection model Resources Combinatorial objects used

(monitoring locations, components, def./att. for equilibrium
monitoring sets) characterization

Our model V Ci, i E V bi/b2 MSC MSP

street safe- safe-houses bi = 1 minimum maximum
[53] roads houses located on b2 = 1 line cover matching

sections minimum maximum
[35 cable channel covered from bi = 1 interval independent

location sections the cable's b2 = 1 cover infiltration set
location i

network network end nodes of b1 = 1 minimum maximum
[65] edge nodes edge i b2 > 1 edge cover independent

_ set

2.2.1 Defender and Attacker Models

Consider the setting where a defender (inspection agency) is concerned with posi-

tioning a set of smart detectors in a given network to monitor a predefined set of

components, denoted E. The set of locations (or nodes) where a detector can be

positioned is also predefined, and is denoted V. All components in the set E are

"critical" in that they are prone to targeted attacks by an attacker (malicious entity).

The attacker can simultaneously attack multiple components, and compromise their

functionality or quality of service. The defender seeks to inspect the network in order

to maximize the number of detected attacks. On the other hand, the attacker wishes

to avoid being detected (i.e., maximize the number of undetected attacks), so as to

reduce the overall functionality of the network.

For our purpose, each detector can be viewed as an integrated system comprised of

a sensor, a detection software, a communication unit, and a human operator (utility

employee) [20]. When a detector is positioned at node i E V, the following steps

are executed: Firstly, the sensor collects relevant state measurements from node i.

These measurements capture the operational state of a subset of components Ci E

2-. Secondly, the detection software processes these measurements and generates a

diagnostic signal indicating the number of attacks present within the component set

C2 . Thirdly, the communication unit transmits the diagnostic signal to the defender.

Finally, the human operator coordinates all these steps, and also ensures that the
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detector system is positioned in the network as intended by the defender. The cost of

data collection, processing, and transmission is negligible in comparison to the cost

of procuring the detector (which includes the cost of purchasing the equipment and

the cost of employing the operator). For a detector positioned at node i E V, we refer

to the set Ci as a monitoring set, because under the aforementioned assumptions, an

attack to any component e E S can be detected if and only if e E Ci. The tuple

g := (V, 8, {C, i E V}) represents the detection model of the network.

We assume that the defender has access to only a limited number of detectors

for network inspection. This limitation results from the economic and operational

constraints of the defender. For simplicity, we consider that all detectors are ho-

mogeneous in terms of their monitoring and detection capabilities, and cost. Let

b, E N be the number of available detectors that can be simultaneously positioned

on distinct nodes in V. We denote a detector positioning by a set S E 2V of nodes

that receive detectors. The set of feasible detector positionings is then defined by

A, := {S E 2V 1 IS1 5 bi}. For a given detector positioning S E A,, let Cs := Uis Ci

denote the set of components that are monitored by at least one detector in S.

To count the number of components in any given subset of components of S

that can be monitored using an arbitrary detector positioning, we define a detection

function F : 2V x 2- N. Specifically, for a detector positioning S C 2V and a

subset of components T E 2-, the value of F(S, T) is the number of components of T

that are monitored by at least one detector positioned in S, i.e.:

V(S, T) E 2V x 2-, F(S, T) := |Cs n TI = ZEeCCS. (2.1)
ecT

The detection function has two natural properties:

(i) For any subset of components T E 2e, F(., T) is submodular and monotone:

VT E 2S , V(S S') E (2 )2 F(S U S', T) + F(S n S', T) < F(S, T) + F(S', T),

S C S' =#= F(ST) < F(S', T).

That is, adding a detector to a smaller detector positioning increases the number
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of monitored components in T by at least as many as when adding that detector

to a larger detector positioning.

(ii) For any detector positioning S E 2V, F(S, -) is finitely additive (a direct conse-

quence of (2.1)):

VS E 2V, V(T, T') E (2 )2 1 TnT' = 0, F(S, T U T') = F(S, T) + F(S, T').

Similar to the defender, the attacker is also resource-constrained, in that she

can attack a subset of components T E 2 e of the network of size no larger than

b2 E N; we refer to such a subset as an attack plan. This limitation arises from

the attacker's constraints in gaining an unauthorized access to network components

and compromising their functionality. However, the attacker has the flexibility to

spread her attacks throughout the network. The set of all attack plans is given by

A 2 := {T E 2- 1 ITI < b2 }-

2.2.2 Network Inspection Problem

We model the simplest form of strategic interaction in which both players make indi-

vidual decisions to maximize their objectives. Particularly, for a detector positioning

S E A, and an attack plan T E A2, the payoff of the defender (resp. attacker) is

F(S, T) (resp. ITI - F(S, T)). Both players have the flexibility of changing their ac-

tions from one subset to another. For the defender, this means that her detectors can

be repositioned from one subset of nodes to another. Practically, changes in detector

positioning are executed by the utility personnel who use manual or automated means

to shift detectors.

In our model, the defender (resp. attacker) inspects (resp. attacks) the net-

work using a detector positioning S (resp. an attack plan T) realized from a chosen

probability distribution on the set A1 (resp. A 2 ). Specifically, the defender and

attacker respectively choose a mixed inspection strategy al E A(A 1) and a mixed

attack strategy Ec A (A 2), where A(A 1 ) := {or E [0, 1]IA II ESEA, CIS = 1} and
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A(A 2) {U 2 E [0, 1 ]IA 2 1 I o2 = 1} denote the strategy sets. Here, a' (resp.

o2) represents the probability assigned to the detector positioning S (resp. attack

plan T) by the defender's strategy o (resp. the attacker's strategy ,2 ). The players'

strategies are independent randomizations. Then, the expected players' payoffs for a

mixed strategy profile a = ( or') C A(A1 ) x A(A9 ) are given by:

Ui(ou, 02 ) E, [F(S, T)] . (2.2)

U2)(o0, Or) =E, [ITI] - E, [F(S, T)] .(2.3)

We consider that each player faces a strategic uncertainty about the other player's

action, but the model parameters (9, bi, b2) as well as the payoff functions and strategy

sets are common knowledge. Thus, we arrive at the strategic game of complete

information: F(bi, b2) := ({1,2},(A(A 1 ), A(A 2)), (U1 , U2)), where we refer to the

defender as player 1 (or P1) and the attacker as player 2 (or P2).

We illustrate this lmodel with an example:

Example 1. Consider the network shown in Figure 2-1. In this network, critical

components are represented by the edges of the graph, and detectors can be positioned

on the vertices. Consider the detection model in which a detector positioned at

any vertex can monitor edges at one hop vertically, and at two hops horizontally.

Thus, Ci1 = {el, e2, e 3}, Ci2 = {e, e2, e4}, Ci3 = {ei, e 2 ,e 5 }, Ci4 = {e 4 ,e 6 ,e 7 }, Ci5 =

{e5 , e6 , es}, Ci6 = {e3 , e9, ei0}, C7  {e7, e9, eio}, and Ci- = {es, e9, eio}.

. l . C2
21 22

e e

e3  Z4 i5

e7 e

i6 Z7  Z8

Figure 2-1: Example network. The monitoring set Ci3 = {ei, e 2, e5 } is represented by
the double blue edges.

P1 has b, = 2 detectors that she positions according to the inspection strategy
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or defined by o-' 8} = I and o- I - j. Similarly, P2 has b 2 = 2 attack re-

sources that she allocates according to the attack strategy o 2 defined by U2e - 1

and a2  1 The strategy profile (Oa, a2 ) is illustrated in Figure 2-2. Since{e 6 ,ejo}-

F({i, i8 }, {ei, e10}) = 1, F({i6, i8 }, {e6, eI0}) = 1, F({i2, i7}, {ei, eio}) = 2, and

F({i2 , i7 }, { 6, e1o}) = 1, then P1's expected payoff is U(al, a) = and P2's

expected payoff is U2(aI, a2 ) =

S22 .l 2 , I C 2
Ii '2 Z3 Ii T2 i3 Zi Z2 23 Z1 Z2 Z3

e4 e5 C4 e5 e4 e5 e4 C5
e6  e 6  C6 e6

e3 i4 i5 e 3  i4 i 5 e 3 i4 i5 e 3  i 4  S
e7 47 8 e7 e'

i7  6  i 8 i 6  i 7  i8  i6 i7
9 10  eg 10 10 10

(a) oa 1  =. (b) o' 3. (C) =a 2. e1 (d)a 2

Figure 2-2: P1's inspection strategy al (left) and P2's attack strategy ( 2 (right) for
the example network in Figure 2-1.

A

A strategy profile (a*, oa*) E A(A 1 ) xZA(A 2) is a mixed strategy Nash Equilibrium

(NE) of the game F(bi, b2) if:

Vo E A (A1 ), U(al*, a2 *) Ui(al, a2*), (2.4)

Vo 2 E A(A 2), U2 (a *,a .2*) U2 (91 *, a2). (2.5)

Furthermore, given E > 0, a strategy profile (al', a2 1 ) E A(A 1 ) x A(A 2) is an

6-NE if:

Va' E A(A1), Ui(a1 ', a2) U1 (a, a2') - , (2.6)

Va2 E A(A 2), U2 (l', or) 2 U2(a"', a2 ) - E. (2.7)

We denote the set of NE (resp. set of E-NE) of the game F(bi, b2 ) as E(bi, b2 ) (resp.

EE (bl, b2)).
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From a game-theoretic viewpoint, a NE in mixed strategies describes the behavior

of P1 and P2 who play the game F repeatedly against each other and ignore any

strategic relationship in-between plays. In such a repeated play, each player cannot

guess the actions of her opponent in any particular round of play [32]. Thus, NE in

mixed strategies can be viewed as a stochastic steady state of the repeated interaction

between players. By extension, we view E-NE as strategy profiles in which the players

are almost at a stochastic steady state, i.e., no player has more than an incentive of

c to change her mixed strategy.

For ease of exposition, we denote F(i, e) := F({i}, {e}), V(i, e) E V x E. We

will also use the notations Ui(S,u 2 ) = U(1f{s1, O2 ) and U (a', T) = Ui(U'i I f{T) for

i E {1, 2}. The support of a' E A(A 1 ) (resp. u2 E A(A 2 )) is defined as supp(ol) =

{S c A, I a' > 0} (resp. supp(O 2 ) ={T E A 2 1 U2 > 0}). The node basis

of a strategy or E A(A 1 ), denoted Vi := {i E V I Pa (i E S) > 01, is the set

of nodes that are inspected with non-zero probability. Analogously, the component

basis of a strategy o 2 E A(A 2 ), denoted .,2 {e C I P8a(e E T) > 01, is the

set of components that are targeted with positive probability. Also, when there is no

confusion, we will refer to F(bi, b2 ), E(bi, b2), and E(bi, b2) simply as F, E, and E,.

Henceforth, we assume without loss of generality that each component in E can be

monitored from at least one node in V. Indeed, if k components cannot be monitored

from any node in the network, then P2's incentive is to always target those compo-

nents, and then allocate her remaining resources (if any) to target other components.

We can remove those k components from 8, and solve the resulting game where P2

now has max{b2 - k, 0} resources that she can allocate on the resulting subnetwork

(where each component is now monitored from at least one node); we simply need

to increase her payoff by min{k, b2} to account for the components already targeted

and never detected by P1.

Despite its simplicity, the game F(bi, b2) captures some of the key features of

network inspection in strategic settings, as listed in Table 2.2.

Firstly, the underlying detection model g is generic in that it represents the detec-

tion capability of the defender, without making further modeling assumptions about
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Table 2.2: List of applications of our network inspection problem.

Inspection setting Network Type of detector Type of attacks

Urban patrolling city streets police unit robbery

Network security information network firewall cyberattack on server

Sensing of gas and gas and water leak/pressure sensor pipe disruption
water networks pipelines

Interdiction of illegal transportation police officer drug trafficking
goods network

Infiltration game water channel electric cable malicious infiltration

how the monitoring sets Ci, i E V, depend on specific aspects such as sensing tech-

nology employed by the detectors, the different means that the attacker may use in

targeting a component, and the network's topological structure [5, 89, 91]. Secondly,

it considers multiple resources on the part of both defender and attacker. This is a

particularly desirable feature for strategic inspection settings, in which the attacker

can simultaneously attack multiple components across the network, and the defender's

inspection involves positioning multiple detectors in order to monitor a large number

of critical components. In contrast, the previously studied security games typically

assume that one or both players are constrained to using only a single resource; see

Table 2.1.

More importantly, any strategy profile of the game F(bi, b2) can be associated

with a metric of detection performance against attacks. For a given strategy profile

- E A(A 1) x A(A 2), we define this metric as the expected detection rate, r(o), which

is the expectation (under a) of the ratio between the number of attacks that are

detected and the total number of attacks:

FF(S, T)~1
r(o-) := E, .T J (2.8)

We are now in the position to introduce our network inspection problem, which

we define as a mathematical program with equilibrium constraints. In this problem,

given the attacker's resources b2, the defender seeks to determine a minimum-resource

inspection strategy (i.e., to minimize the number of detectors b, and strategically

position them in the network), while ensuring that the expected detection rate in
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any equilibrium of the game F(bi, b2 ) is no less than a pre-specified threshold level

a E [0, 1]:

(7') :minimize bi
bi, at

subject to r(o-*) > a, Va* E E(bi, b 2) (2.9)

a- E E(bi, b 2 ) (2.10)

b, c N.

Constraints (2.9) ensure that the expected detection rate in any equilibrium of the

game induced by the chosen number of detectors b1 and the given number of attack

resources b2 is at least a. Constraint (2.10) requires the computation of one NE of

game F(bi, b2 ), which exists due to Nash's Theorem [72]. The optimal value of (P),

denoted bl, is the minimum number detectors for which the equilibrium constraints

(2.9)-(2.10) are satisfied. Thus, (bt, u t ) with c-t E E(bt, b2) is an optimal solution

of (P), where the inspection strategy in aft specifies a randomized positioning of bt

detectors. The target detection rate a reflects the performance requirement that the

defender seeks to achieve in any equilibrium of the game, besides seeking a minimum-

resource inspection strategy.

2.3 Equilibrium Strategies

To solve the inspection problem (P) in a brute force manner, one would need to

compute every NE of the game F(bi, b2) for each b, E N, and check - for each

of them - whether or not the expected detection rate is at least a. Clearly, this

exhaustive approach is not computationally scalable. One way to approach this

problem is to note that F is strategically equivalent to the zero-sum game F :=

({1, 2}, (A(A 1 ), A(A2)), (-U2, U2)). Therefore, the NE of F can be obtained by solv-

ing the following two linear programming problems:

(LP1 ) max min -U2(o, T) (LP2) max min U2 (S,o 2 ).
EA(A) TEA2 C2EA(A2)SA1
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Thus, in principle, linear programming techniques can be used to compute NE

of F. However, the computation of (LP1 ) and (LP2 ) quickly becomes intractable

as the size of the network increases. In particular, due to the size of the players'

sets of actions (JA I = E" 0 (I) and IA2 1 = E1 0 (le)), the number of variables

and constraints in both linear programs can be huge. For example, for a network

consisting of 200 nodes and components, and b, = b2 = 10, computing the equilibria

of game F(bi, b2) entails solving linear programs containing 2.37 - 1016 variables and

constraints. For large bimatrix games, Lipton et al. [63] provide an algorithm to

compute an 6-NE in nO(In n/
2

) time. However, for realistic instances of the game F,

the number of available pure strategies n for each player can easily reach values for

which the algorithm is practically inapplicable.

In this section, we develop new results to study the equilibrium characteristics

of the game F(bi, b2), given any parameters b1 and b2. Our equilibrium characteri-

zation utilizes properties of two combinatorial optimization problems, formulated as

minimum set cover and maximum set packing problems. We also construct an ap-

proximate NE using solutions of these problems and derive bounds on the detection

performance, which subsequently enable us to solve the network inspection problem

(P).

2.3.1 Set Cover and Set Packing Problems

We say that a set of nodes S E 2' is a set cover if and only if every component in S

can be monitored by at least one detector positioned in S, i.e., F(S, e) = 1, Ve E e.

A set of nodes S E 2V is a minimal set cover if S is a set cover that is minimum with

respect to inclusion, i.e., if any node of S is removed, the resulting set is not a set

cover anymore. A set of nodes S E 2V is a minimum set cover (MSC) if and only if

it is an optimal solution of the following problem:

(IMsc) : minimize IS| subject to F(S, e) = 1, Ve E . (2.11)
SE2V

Solving (IMsc) amounts to determining the minimum number of detectors and
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their positioning to monitor all network components. We denote the set (resp. the

size) of MSCs by S (resp. n*). Since we assumed that each component can be

monitored from at least one node in the network (Section 2.2.2), (IMsc) is feasible

and n* exists.

We say that a set of components T E 2 - is a set packing if and only if a detector

positioned at any node i can monitor at most one component in T, i.e., F(i, T) <

1, Vi E V. A set of components T E 2 - is a maximum set packing (MSP) if and only

if it optimally solves the following problem:

(IMSP) : maximize ITI subject to F(i, T) < 1, Vi C V. (2.12)
TG2E

Solving (IMsP) amounts to finding the maximum number of "independent" compo-

nents, i.e., a set of components of maximum size such that monitoring each component

requires a unique detector. We denote the set (resp. the size) of MSPs by M (resp.

m*).

To formulate (IMsc) and (ImsP) as integer programs, we define the detection

matrix F = (F(i, e))(i,e)evxe. F is a IVI x SEJ binary matrix whose rows (resp.

columns) are indexed by the nodes (resp. components) in the network. Thus, a given

row of F indicates the components of the network that a detector positioned at the

corresponding node monitors. Similarly, a given column of F indicates the locations

from where a detector is capable of monitoring the corresponding component.

Then, solving (IMsc) is equivalent to selecting a subset of rows of the detection

matrix F of minimum cardinality such that each column of F is covered, i.e., it has

at least one 1 entry in the selected subset of rows. This problem can be formulated

as the following integer program:

minimize 1x

subject to FTx > li1 (2.13)

X E {0, l}IVI,

where 1IvI (resp. 1i,) represents the vector of length IVI (resp. JEJ) filled with ones.
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Similarly, solving (AIsp) is equivalent to selecting a subset of columns of F of

maximum cardinality such that each row of F has at most one 1 entry in the selected

subset of columns:

maximize

subject to (2.14)

1Ty

Fy lIvl

y E {0, 1 }1.

We illustrate (IMsc) and (IMsp) with the following example:

Example 2. Consider the detection model represented in Figure 2-1. Then, the

corresponding detection matrix is given by:

il

i2

i3

F =i4

i5

i6

i7

i8

1

1

1

0
0
0
0

\0

C2

1

1

1

0
0
0
0
0

e3

1

0
0
0
0
1

0
0

e4

0
1

0
1

0
0
0
0

C5

0
0
1

0
1

0
0
0

6

0
0
0

1

1

0
0
0

e7

0
0
0
1

0
0
1

0

8

0
0
0
0

1

0
0
1

09

0
0
0
0
0

1

1

1

0

0
0
0
0
1

1

1

Then, a solution of (IMsc) is given by {i3 , i4 , 46 , is} and a solution of (ImsP) is

given by {e3 , e4, 68}. They are illustrated in Figure 2-3.
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Figure 2-3: Illustration of an MSC (left) and an MSP
(top) and the network (bottom) corresponding to the

ij: 1 2 2

64 C5
e6

e3  i4 Z5

e7 C8

Z6 ea 1Z i8

(right) on the detection matrix
detection model in Figure 2-1.

A

Although (IMSC) and (IMsP) are known to be NP-hard problems 1100], modern

mixed-integer optimization solvers can be used to optimally solve them for realistic

problem instances; see Section 2.5. Furthermore, their integer programming formu-

lations (see (2.13)-(2.14)) have linear programming relaxations that are dual of each

other. This implies that m* < n*.

MSCs and MSPs naturally arise in our approach for equilibrium characterization

due to the fact that they provide a measure of coverage and spread of the network: n*

represents the minimum number of detectors required by P1 to completely monitor

the network, and m* represents the maximum number of attack resources for which

P2 can spread her attacks across the network. In fact, solving F(bi, b2 ) is trivial

when b, > n*, because P1 can monitor all network components by deterministically
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positioning the detectors on an MSC. A direct consequence is that the optimal number

of detectors in (P), bt, is at most n*.

Additionally, the equilibrium characterization of the game F(bi, b2 ) is practically

relevant (and interesting) when P2's number of attack resources is less than the size of

MSPs, i.e., b2 < m*. This case captures the situations in which the network is "large

enough" in that P2 can exhaust her ability to spread attacks, thereby making it most

challenging for P1 to detect the attacks using her inspection strategy. Furthermore,

when b2 > m*, a larger number of attack resources improves P1's ability to detect

some of the attacks. Thus, an inspection strategy that ensures the target detection

performance for the case b2 < m* can also be applied when b 2 > m* (see Section 2.8.1).

Henceforth, our analysis of the game F(bi, b2) primarily focuses on the case when

b1 < n* and b2 < m* (see Figure 2-4). We discuss the other cases whenever relevant.

b.

Redundant attacks
(easy detections)

Complete monitoring
M (trivial game)

Case of interest
(large network)

0 n* bi

Figure 2-4: Equilibrium regimes with respect to the players' resources b1 and b2 -

2.3.2 Equilibrium Properties

Our analysis of the game F(bi, b2) proceeds in three steps: Firstly, we derive bounds on

the players' equilibrium payoffs in the strategically equivalent zero-sum game f7(bi, b 2 )

(Proposition 1). Secondly, we show that every NE satisfies certain structural prop-

erties, which enables us to obtain bounds on the players' payoffs and the expected

detection rate in equilibirium of the original game F(bi, b2 ) (Propositions 2-3 and The-

orem 1). Finally, we construct an approximate NE based on exact or approximate

solutions to the MSC and MSP problems (Theorem 2).
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Recall that in any equilibrium, P1's strategy is an optimal solution of (LP1 ), and

P2's strategy is an optimal solution of (LP 2). Moreover, the optimal values of these

linear programs represent the players' equilibrium payoffs in the game F (bi, b2). In the

first step of our analysis, we derive bounds on the optimal values of (LP1 ) and (LP2 ),

along with mixed strategies that achieve these bounds. To carry out this step, we

utilize the following construction of a mixed strategy profile: consider a set of nodes S

of size at least b, and a set of components T of size at least b2 . Lemma 1 below shows

the existence of a mixed strategy profile whose node basis and component basis (as

defined in Section 2.2.2) are S and T respectively, and which satisfies the following

properties: (a) P1 randomizes the positioning of her detectors over subsets of S of

size b, such that each node of S is inspected with an identical probability; (b) P2

randomizes the attack of b2 components in T such that each component is targeted

with an identical probability.

Lemma 1. Consider a set of nodes S E 2' of size n > b1 , and a set of components T E

2- of size m > b2 . Then, there exists a strategy profile, denoted (a'(S, b1), g 2(T, b2)) E

A(A 1 ) x Ai(A 2), whose node basis and component basis are S and T respectively, and

such that:

Vi ES, P,1(,bi) (i is inspected by P1) = , (2.15)
n

Ve E T, P,2(Tb2 )(e is targeted by P2) = b. (2.16)
m

For details on the construction of (o 1 (S, bi), 2 (T, b2)), we refer to Lemma 6. The

main idea behind the construction of the inspection strategy a' (S, bi) is to "cycle"

over size-b1 subsets of S, such that every node of S is inspected with an identical

probability given by (2.15); similarly for the attack strategy a2 (T, b2 ).

We illustrate this construction with an example:

Example 3. Consider a set of three nodes S = {ii, i2, i 3} and suppose that P1 has

two detectors (b 1 = 2). First, we define three pure actions Sl = {ii, i2}, S2 = fi2,is},

and S3 = {i, ii}; see Figure 2-5. The strategy or(S, bi) is then obtained by assigning
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uniform probability (i.e., 1) to each pure action. One can check that each node in S

is inspected with probability 2 = b.

S S1 s2 s 3

Figure 2-5: Support of o-'(S, bi) when S is composed of three nodes and b1 = 2.

A

Next, we use Lemma 1 to solve restricted versions of (LP1) and (LP2), where only

specific subsets of variables are considered. Formally, given a subset of nodes S' C 2'.

and a subset of components T' E 2". consider the following linear programs:

(LPsI) max min --U2 (a', T)
{ci'EA(A1) V, 1 CS'} TeA 2

(LPT,) 102Amax min U2 (S, O.2 )
{&EA(A2)1-6,2GT'} sEA1i

We note that adding the constraint V,1 C S' is equivalent to setting o = 0 for

every detector positioning S that contains a node outside of the set S'. It is easy to

argue that the optimal values of (LPs/) and (LPT,) are lower bounds on P1 and P2's

equilibrium payoffs in the zero-sum game f. Furthermore, when S' and T' are the

node basis and component basis of a NE, the optimal values of (LPs,) and (LPT,) are

exactly equal to P1 and P2's equilibrium payoffs in f.

We now discuss how to select a subset of nodes S' and a subset of components T'

such that the optimal values of (LPs,) and (LPT') are close to the players' equilibrium

payoffs in the game f. Recall that if P1 had at least n* detectors (i.e., b1 ;> n*),

an equilibrium inspection strategy would be to position n* detectors on an MSC. We

claim that, even for the case when P1 has strictly less than n* detectors, a set cover is

a good candidate for node basis. Analogously, a good candidate for component basis
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is a set packing. Indeed, if P2 targets components that are spread apart, then it will

be difficult for the resource-constrained P1 to detect many of these attacks. Thus,

by targeting a set packing, P2 can ensure that a single detector can detect at most

one attack. In fact, when S' is a minimal set cover and T' is a set packing of size at

least b2 , we can use the construction of the strategy profile (al(S', bi), a 2 (T', b 2)) in

Lemma 1 to analytically solve (LPs,) and (LPT').

Proposition 1. Given a minimal set cover S' E 2V, the optimal value of (LPs,) is

b2  b - 1), and an optimal solution is given by or (S', b 1). Also, given a set packing

T' E 2- of size at least b2, the optimal value of (LPT') is max {O, b2 (i - }, and

an optimal solution is given by a 2 (T', b2).

From this proposition, we know that for any minimal set cover S' and any set

packing T' of size at least b2, lower bounds on P1 and P2's equilibrium payoffs in the

zero-sum game f are given by b2 (_L_ - 1) and max {0, b2 (i - , respectively.

By decreasing the size of the minimal set cover and increasing the size of the set

packing, one can maximize the respective lower bounds. Thus, the best lower bound

on the optimal value of (LP1 ) (resp. (LP2 )) that we obtain is b2 ( l - 1) (resp.

max {0, b2 (1 - ) }). This concludes the first step of our analysis.

The second step consists of deriving structural properties satisfied by every NE.

This enables us to translate the bounds on the players' equilibrium payoffs in game

f to bounds on the expected equilibrium detection rate. An important property is

that when b1 < n* and b2 < m*, any equilibrium strategy for each player necessarily

randomizes over actions that use all available resources.

Proposition 2. In equilibrium, P1 must choose an inspection strategy that random-

izes over detector positionings of size exactly b1 , and P2 must randomize her attacks

over sets of b2 components.

V(Ol*, O C*) E E, VS E supp(ul*), S = bi, (2.17)

V(Ol*,o 2 *) E E, VT E supp(O2 *), TI = b2 . (2.18)
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Then, the NE of F can be obtained by solving the following two linear programs:

(LP1 ) max min Ui(a', T) (LP2) min max U1 (S, o 2 )
01 EA(Ai) TEA 2  U2 EA(A 2 ) SEA 1

where A1 := {S 2V | |S = b 1 } and A 2  {T E 2e 1 b 2 }-

Although it is intuitive that both players should use all available resources, the

value of this result lies in the fact that both players must necessarily do so. Prop-

erty (2.17) is proven by showing that any additional detector can be utilized by P1

to strictly improve her payoff, which holds because the network is "large" (captured

by the inequality b1 < n*). Similarly, property (2.18) is proven by showing that any

additional attack resource can be used by P2 to strictly improve her payoff. This

argument combines the fact that P1 cannot monitor all network components with

a single detector positioning, and that P2 can spread her attacks (since b2 < m*).

In addition, showing (2.18) involves using the features of the detection function F,

Proposition 1, and the properties of (IMsc) and (IMsp). Proposition 2 also holds

when b, < n* and b2 = m*. However, counterexamples can be found when b1 > n* or

b2 > m*; see Section 2.8.1.

From (2.17) and (2.18), we conclude that the NE of the game F can be obtained by

solving smaller linear programs. Indeed, the number of variables and constraints can

be reduced from 1 + E _O (M) and 1 + E,=0 (lel) for (LP1 ), to 1 + (f) and 1+ (I)

for (LP1 ); similar reduction applies between (LP2 ) and (LP2 ). Although (LP1 ) and

(LP2) can be used to compute NE for small-sized networks, this approach is not

applicable to large-sized networks. For example, for a network where IVI = EJ= 200

and b1 = b2 = 10, the number of variables and constraints only drop from 2.37 1016

for (LP1 ) and (LP2) to 2.25 - 1016 for (LP1 ) and (LP 2). Therefore, using (LP1 ) and

(LP2) to compute the NE of F is still not scalable.

Hence, we continue our analysis by focusing on the node bases of inspection strate-

gies in equilibrium, which represent the sets of nodes that are inspected with positive

probability by P1.
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Proposition 3. In any NE (a'*, a2 *) E E, the node basis Vi* is a set cover.

Furthermore, both players must necessarily randomize their actions in equilibrium.

Equivalently, in any NE, P1's strategy monitors every component with positive

probability. This directly implies that P1 must necessarily choose a randomized in-

spection strategy, since each detector positioning is of size at most b, < n*. In fact,

Proposition 3 shows that, due to her resource constraints, P2 must also randomize

her actions in equilibrium. The proof of this result is based on a best-response ar-

gument, and uses the fact that from any inspection strategy that leaves one or more

components completely unmonitored, we can construct another strategy that strictly

improves P1's payoff. This argument is completed by repositioning some detectors

and evaluating the resulting change in P1's payoff, which involves exploiting the sub-

modularity of the detection function F, the upper bound on P1's equilibrium payoff

in F (Proposition 1), and the fact that the players must use all resources in equilib-

rium (Proposition 2). Interestingly, this result may not hold when b2 ;> m*: In that

case, P2 may target components that are "close" to each other, which can result in

P1 leaving some components completely unmonitored to focus on the ones for which

targeted attacks are easier to detect; see Section 2.8.1 for an example.

Proposition 3 is also a practically relevant result. Consider, for example, the

setting where the pure strategies of P1 consist of placing and operating a set of

detectors on a subset of locations (nodes) of the network that need to be initially

prepared for the installation of detectors. The node basis of an inspection strategy

in equilibrium would give the locations that need to be prepared, and the probability

distribution u can be interpreted as the random scheduling of b, detectors on subsets

of these locations. To minimize the number of locations that need to be prepared, we

need to find an inspection strategy in equilibrium whose node basis is of minimum

size. From Proposition 3, we deduce that this number is at least n*, i.e., the size of

an MSC.

We can now combine the aforementioned equilibrium properties to derive para-

metric bounds on the players' payoffs and the expected detection rate in equilibrium,

which is crucial for addressing the equilibrium constraints (2.9) in ('P).
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Theorem 1. For a given detection model g, and the players' resources b1 < n* and

b2 < m*, the game F(b1 , b2) has the following properties:

(i) Equilibrium payoffs of both players are constant and bounded as follows:

V(ul*, (72*) E E(b1 , b2 ), b1 b2  2*) < min , b2 I
n* m* J

V(ol*, u 2 *) E E(bi, b2 ), max 0, b2 I - U2 (ol*, 9) < b2  I - -

(ii) In any equilibrium, the expected detection rate is constant and bounded as fol-

lows:

Vo* C E(b1 , b2 ), li < r(o*) < min b, 1 .

Firstly, we note that the lower and upper bounds on P1's equilibrium payoff are

nondecreasing with respect to b1 and b2 . The intuition is that the more detectors P1

has, the more attacks she will be able to detect. Also, the more attack resources P2

has, the more components she will target (due to Proposition 2); this results in more

detections, since each component is monitored with positive probability in equilibrium

(Proposition 3). Secondly, these bounds are also nonincreasing with respect to n* and

m*. Indeed, as the network size becomes larger, both n* and m* increase because

each monitoring set covers a smaller fraction of the network. Thus, it is more difficult

for P1 to detect attacks (with the same number of detectors) in larger-sized networks,

reducing her detection performance. Similar conclusions can be drawn regarding the

bounds on P2's equilibrium payoff. Thirdly, the bounds on the expected detection

rate in equilibrium are nondecreasing with Pl's resources (because she can detect

more attacks), and are nonincreasing with respect to n* and m* (because P2 can

spread her attacks further apart). Importantly, these bounds do not depend on the

attack resources b2 . This property will be further investigated in Section 2.7.

The final step of our analysis consists of constructing an approximate NE (as

defined in (2.6)-(2.7)) to address the constraint (2.10) of ('P). In particular, we
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combine Propositions 1 and 2 to show that the construction introduced in Lemma 1,

based on an MSC and an MSP, is an approximate NE of r7.

Theorem 2. Consider a detection model 9, and the players' resources b1 < n* and

b2 < m*. Then, for any MSC Smin E S and any MSP Ta, E M, the strategy profile

(or(S 7" b1), U2 (Tmax, b2 )) satisfies the following properties:

(i. a) (or I(S"in , bi), Or2(T"max, b2)) E E(bi,I b2),i

(i.b) V(Ol*, O 2 *) E >(bi, b2 ), Vi E {1, 2}:

U (or (Smin, bi), O2 (Tmax, b2 )) - Ui(ol*, o92*) < E,

where e = b1b2 (ax{Ji m *}

Furthermore, given an MSC Sm in e S, the expected detection rate by positioning

b1 detectors according to a (Smin, b1 ) provides the following detection guarantee:

(ii) V(ol*,2-*) E E(bm b2)a

min r(ol(Sm"" bi), o 2 ) = > max bi, m*}I o

012EA(A2) n* n*

Theorem 2 (i.a) implies that by computing an MSC and an MSP, we can con-

struct an 6-NE where e depends on the players' resources and on the sizes of MSCs

and MSPs. Furthermore, from (i.b), we conclude that this 6-NE has the additional

property that it provides both players payoffs that are E-close to their respective

equilibrium payoffs. It is important to note that this is not a generic property of

c-NE, but a consequence of Propositions 1 and 2. Thanks to this result, our ap-

proximate NE is obtained by direct construction (i.e., by solving the MSC and MSP

problems), and not by iterative computation.

Furthermore, from Theorem 2 (ii), we know that by using o (Sml, bi) as inspec-

tion strategy, P1 is guaranteed an expected detection rate of at least , regardless of

the attack strategy chosen by P2. This result can be viewed as a worst-case guaran-

tee; that is, if P1 wants to ensure that the expected detection rate is at least - even
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in the worst-case attack scenario, she can guarantee this performance by choosing

a I(S"i, bi) as her inspection strategy. In fact, the relative difference between the

expected detection rate in equilibrium and when P1 chooses a1 (S"nzn, bi) is upper

bounded by 1 - maxJm*}; we refer to this bound as the relative loss of performance.

We note that when n* and m* become closer to each other (or equivalently, as the

duality gap between (IMsc) and (IMsP) decreases), the gap between the upper and

lower bounds in Theorem 1 also becomes narrower, and (a I(Sin, bi), o2 (T"mx, b2))

in Theorem 2 becomes closer to a NE. Next, we refine these results to the case when

n* = m* , and also comment on how our work generalizes some of the prior results in

the literature on security games.

2.3.3 Special Cases

We argued in Section 2.3.1 that the size of MSPs m* is no more than the size of

MSCs n* for any detection model g = (V,,E, {Ci, i E V}). However, in some situ-

ations, MSCs and MSPs are of same size. For example, consider a bipartite graph

where detectors can be placed on the vertices to monitor adjacent edges (i.e., one-hop

detection model). In this setting, MSCs and MSPs respectively become minimum

vertex covers and maximum matching, and are of the same size [551.

In such examples (that is, when b, < n*, b 2 < m*, and n* = m*), we can refine

our results in Theorems 1 and 2, and obtain a rather complete equilibrium character-

ization of the game F based on MSCs and MSPs. First, from Theorem 1, we notice

that when n* = m*, the upper and lower bounds on both players' payoffs and the

expected detection rate in equilibrium become equal. This observation is documented

in the following corollary:

Corollary 1 (of Theorem 1). Consider a detection model g and the players' resources

b1 < n* and b2 < m*. If n* = m*, then the game F(b1 , b2) has the following properties:
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(i) Equilibrium payoffs of both players are constant and given by:

U,(01*,r 2*) = bib2
V(al*, .2*) E E(bi, b2 )' bi (2.19)

U2 (l*, or*) = b 2 (1 - )( .

(ii) In any equilibrium, the expected detection rate is constant and given by:

Vo-* E E(bi, b2 ), r(o*) = . (2.20)
n(

Secondly, it is easy to see that e given in Theorem 2 is equal to 0 when n* = m*,

which implies that the strategy profile defined in Lemma 1 is a NE. In fact, we can

obtain a sufficient and necessary condition for a strategy profile constructed over an

MSC and MSP to be a NE.

Proposition 4. If n* = m*, b1 < n*, and b2 < m*, then for any MSC Smi" E S and

any MSP Tm a" E M, a strategy profile (0.*, U2*) E A(Ai) x A(A 2) whose node basis

is Smin and whose component basis is Tmax is a NE if and only if:

Vi E smi, P-i (i is inspected) =b
n* (2.21)

and Ve E T", P2- (e is targeted) = b2n*

In other words, a strategy profile in which P1 and P2 randomize over subsets of

an MSC and an MSP is a NE if and only if each node of the MSC is inspected with

an identical probability, and each component of the MSP is targeted with an identical

probability, given by (2.21). This result is relevant for practical settings where it is

of interest to minimize the number of network locations that need to be prepared to

receive a detector (represented in our model by the node basis). From Proposition 3,

we deduced that at least n* locations are needed, and from Proposition 4, we know

that, when n* = i*, there exists an inspection strategy in equilibrium whose node

basis is an MSC. Therefore, in this case, we conclude that the minimum number of

locations that need to be prepared to receive a detector in equilibrium is exactly n*;
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these locations form an MSC, Smin, and can be inspected according to the strategy

o(T s"i , bi).

Proposition 4 generalizes the equilibrium characterization of prior results on se-

curity games. Indeed, our MSC/MSP-based characterization of NE applies to any

detection model for which the equality n* = m* holds. In Table 2.1, we list some

of the classical models that fall into this category, and compare their features with

those of our game. The table highlights the flexibility of our detection model Q, and

compares the combinatorial objects underlying our equilibrium characterization with

their settings. Importantly, our results generalize the players' equilibrium strategies

to the case where they have multiple resources.

We end our analysis of the case n* = m* with a further characterization of the

support of the NE of F. In particular, using MSCs and MSPs, we derive necessary

conditions that are satisfied by every NE.

Proposition 5. If b1 < n*, b2 < m*, and n* = m*, then the set of NE has the

following properties:

(i) In any NE, a node is inspected with positive probability only if it monitors exactly

one component of any MSP:

V(al*, U2 *) E E, Vi E Vai , VT max E M, F(i, T"a) = 1.

Furthermore, in any NE, a detector positioning is chosen with positive proba-

bility only if each of its detectors monitors a different component of any MSP:

V(al*, oU*) E E, VS E supp(Ou*), VT max E M, Ve E Tm ax , F(S,e) = ZF(ie).
iES

(ii) In any NE, a component is targeted with positive probability only if it is moni-

tored from a unique node of any MSC:

V(Col*, o*) E E, Ve E S,2*, VSmi ES, ~ i E Sm I F(i, e) = 1.
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In other words, if there exists at least one MSP, Tmax, such that a node i E V does

not monitor any edge in T", then i is never inspected in equilibrium. Moreover,

Proposition 5 tells us that if there exists a component e E E of an MSP such that

at least two detectors of a detector positioning S monitor e, then S is never chosen

in equilibrium; since P2 targets components that are spread across the network, P1

must avoid redundant detections. Similarly, if there exists at least one MSC, Smn,

such that a component e is monitored from at least two nodes in Smin, then e is never

targeted in equilibrium.

2.4 Solving the Network Inspection Problem

In the previous section, we derived properties satisfied by all equilibrium inspection

and attack strategies in the game F(bi, b2), with b1 < n* and b2 < m*. These proper-

ties enabled us to prove Theorem 1 which provides bounds on the expected detection

rate in any NE, and also Theorem 2 which gives an E-NE of F using optimal solutions

of (IMsc) and (IMsP). Next, we use these results to derive a solution approach to

approximately solve the network inspection problem (P).

To motivate our approach, let us first consider the special case of n* = m*.

From (2.20), we can easily conclude that the minimum number of detectors that are

needed for the expected detection rate to be at least a in equilibrium is bt = [*].
Besides, for an MSC Smin and an MSP T max, we know from Proposition 4 that

(ol(Smin bf), .2 (T"ax, b2 )) is a NE of the game F(bf, b 2 ). Therefore, when b2 < m*

and n* = m*, our approach straightforwardly provides an optimal solution of the

network inspection problem (P), given by [an*], (u1(Smin, [an*]), 0.2 (Tmax, b2 )).

Now consider the problem (P) in the general case m* < n*. Can our approach be

extended to obtain an approximate solution of (P) in this general case? To address

this question, we consider E-NE as an admissible equilibrium concept for the game

F, and focus on a relaxed version of (P) in which the constraint (2.10) is replaced by

at E e(bi, b2 ), with c > 0. Our next result shows that this relaxed problem, denoted

(P,), is approximately solvable using our approach.
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Proposition 6. Consider a detection model !, a target detection performance a G

[0,1], and P2 's attack resources b2 < m*. Then, for any MSC Smi" E S and any MSP

T "nax E M, bf := [an*] and ( 0o1(Smin, bk), ,2 (T"mab2 )) is an approximate solution of

(P,), where 6 = b'b2 ( , - with an optimality gap given by [an*] - Fam*].

Indeed, with [an*] detectors, the lower bound on the expected detection rate

in equilibrium of the induced game F(Fan*], b2), given in Theorem 1, ensures that

the equilibrium constraints (2.9) are satisfied. Furthermore, the upper bound on the

expected equilibrium detection rate in Theorem 1 implies that P1 needs at least

[am*] detectors to satisfy (2.9). Consequently, the optimal value of (P,) satisfies

[am*] < bt < [an*], which gives the optimality gap in Proposition 6. Moreover,

from Theorem 2, we know that our strategy profile constructed over an MSC and an

MSP (according to Lemma 1) is an E-NE. Thus, we obtain an approximate solution

of the relaxed problem (P,), using solutions of the MSC and MSP problems. Clearly,

this solution is optimal when n* = m*.

Next, we illustrate our solution approach with an example.

Example 4. Consider the network inspection problem (P) for the detection model

represented in Figure 2-1. The target expected detection rate is given by a = 0.75,

and the number of attack resources is b2 = 2. For this small-sized problem, we can

solve (LP1 ) and (LP 2) to compute the NE of F, and obtain the expected detection

rate in any NE for each bi E N. Table 2.3 summarizes the results.

Table 2.3: Expected detection rate in equilibrium for every b1 E N.

b1  0 1 2 3 >4

r(o-*) 0 2 4 6 17 7 - 7

From Table 2.3, we conclude that the optimal value of (P) is bt = 3, i.e., with 3

detectors, P1 is capable of detecting > a of the attacks in equilibrium. However,

as mentioned in Section 2.3, this method does not extend to larger networks, as it

requires solving large (LP1 ) and (LP2) for each bi E N and checking if the constraints

on the expected detection rate for every NE (2.9) are satisfied.
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Now consider our solution approach based on the results presented in Sections 2.3

and 2.4: Firstly, by solving (IMsc), we obtain an MSC given by Smn = {i3,4 i 6 , i8};

thus n* = 4. Then, from Theorem 1, we know that the expected detection rate in any

equilibrium of the game F(bi, b2 ) is lower bounded by &. Thus, with b' := [an*] = 3

detectors, the expected detection rate in any equilibrium is at least a.

Secondly, by solving (IMsP), we obtain an MSP given by T",, = {e 3, e4 , 8}; thus

M* = 3. Then, from Theorem 1, we know that the expected detection rate in any

equilibrium of the game F(bi, b2 ) is upper bounded by min{ , 1}. This implies that

if b1 < [am*], then the equilibrium constraints (2.9) are not satisfied. Thus, an

optimality gap associated with b' is given by [an*] - [am*] (Proposition 6). In fact,

for this example, we obtain that the optimality gap is [3] - [2.25] = 0. Therefore, by

solving (IMsc) and (IMsP), we can estimate the number of detectors to ensure that

the equilibrium constraints in (P) are satisfied; furthermore, we can verify that this

number is optimal for this example, i.e., b' = b = 3.

Thirdly, given b' = 3 and b 2 = 2, we use S"mi and Tm" to construct an approxi-

mate NE. Using Lemma 1, we construct the strategy profile o = (u1 , 2 ) defined by

71 1 i -o 1 1 - 1 ,and o2  - 02  2 -1.
Vi3 7 4 46 1 f i440,8} - i6 ,i8 ,i3 } = -f~~~ 4 ~ {e3,e4} - e4,e8} = {Te8,e3} 3'

o- is illustrated in Figure 2-6. From Theorem 2, we obtain that the above-constructed

strategy profile a is an e-NE, and provides each player a payoff that is C-close to

their equilibrium payoff, with E = bb 2  I- = -. Indeed, from (LP1 ) and

(LP 2), we can deduce that P1 and P2's equilibrium payoffs in the game F are 12 and

7 respectively, while our strategy profile o provides them with the respective payoffs

and 1. One can easily check that a gives each player a payoff that is 3 (< E) close2 14

to their equilibrium payoff.

Finally, we give an upper bound on the relative loss of performance by choosing

our inspection strategy a' (see Figure 2-6 (top)), instead of choosing an equilibrium

strategy for P1. From Theorem 2, we know that with 3 detectors, or detects at least

of the attacks regardless of P2's strategy. On the other hand, in equilibrium, , of

the attacks are detected (Table 2.3). Thus, the relative loss of performance is 12.5%.

This exact calculation is possible only because, for this example, we can solve (LP1 )
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Figure 2-6: P1's inspection strategy -1 (top) and P2's attack strategy a 2 (bottom)
for the example network in Figure 2-1.

and (LP2 ) and compute the value of the expected detection rate in equilibrium. In

contrast, Theorem 2 provides an upper bound on the relative loss of performance

without solving (LP1 ) and (LP2 ), but instead by computing n* and m* from (2.13)

and (2.14). This upper bound is given by 1 - " * = 25%. A

We now summarize the main advantages of our solution approach. Firstly, it

reduces to a significant extent the size of the optimization problems that are involved

in computing a solution. Indeed, recall that the number of variables and constraints

of (LP1 ) is equal to 1 + 0 (I) and 1 + 0 (191) respectively. On the other hand,

the number of variables and constraints of (IMsc) is only IVI and 1II, respectively;

analogous comparisons can be made between (LP2) and (XMsp). Again, for a network

with IVI = 1E1 = 200 and b1 = b2 = 10, the number of variables and constraints are

reduced from 2.37. 1016 for (LP1 ) and (LP2) to only 200 for (IMsc) and (IMsp).

Secondly, solving a single instance of (IMsc) and (IMsP) enables us to use our

approach and derive a solution to problem (P) for any attack resources b2 , and any

target detection rate a. In contrast, recall from Section 2.3 that computing an op-

timal solution of (P) using (LP1 ) and (LP 2) requires solving them for each value of
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bl. Furthermore, P2's amount of resources b2 explicitly enters in the formulation of

(LP1 ) and (LP2) as a parameter. On the contrary, in our approach, P1 does not need

to know the exact amount of attack resources b2 to determine the number of detectors

she needs and how to position them. Indeed, from Theorem 2, we know that with

[an*] detectors that are positioned according to u1 (S"*i, Fan*]), P1 is guaranteed

to meet the target detection rate a. Furthermore, as long as b2 < m*, the perfor-

mance guarantees, and the optimality gap associated with our solution can directly

be computed from n* and m*. In fact, we argue in Section 2.7 that if b2 < m*, then

the optimal number of detectors in (P) does not depend on b2 , and their positioning

in equilibrium can be determined by considering b2 = 1.

Finally, we note that while the above-mentioned results require computing an

MSC and an MSP (both NP-hard problems), modern mixed-integer optimization

solvers can be used to optimally solve them (see Section 2.5). However, for extremely

large-sized problems, these solvers may not be able to solve (IMsc) and (IAsp) to

optimality. Still, we can extend our results based only on the computation of a set

cover and a set packing. Indeed, using a heuristic or greedy algorithm [2, 21], one can

compute a set cover S'. Then, our arguments in Proposition 6 can be extended to

conclude that with [aIS'J] detectors, the expected detection rate in any equilibrium

of the induced game is at least a. We can also construct an inspection strategy

9'(S', [alS'1l), which ensures that the expected detection rate is at least a, regardless

of P2's strategy. Of course, P1 would end up using more sensing resources than if

she had been able to compute an MSC. Similarly, a set packing T' can be computed

using a heuristic 142, 44]. Again, by suitably extending Proposition 6, we can obtain

an optimality gap associated with FalS'll of [alS'fl - FaIT'l1. Finally, if T' is of size

at least b2, we can also conclude that (u1 (S', [alS'l]), U 2 (T', b2)) is an --NE, where

= [a|S'flb2 ( ,[,1 } - ; this i-NE provides each player a payoff that is

E-close to their equilibrium payoff. We note that our solution is better when the set

cover is smaller. Similarly, the optimality gap is tighter and E is smaller when the set

packing is bigger.
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2.5 Computational Results

In this section, we demonstrate the modeling and computational advantages of our

approach for the positioning of detectors in pipeline networks facing strategic attacks.

First, we instantiate our detection model on a small-sized network, and illustrate how

our theoretical results can be applied to achieve guaranteed detection performance

against two practically relevant attack scenarios. Then, we evaluate the scalability

and performance of our solution approach for a batch of large-scale networks in the

water sector. All network simulations were implemented in Matlab, and all optimiza-

tion problems were solved using the Gurobi solver on a computer with a 2.81 GHz

Intel Core i7 processor and 16 GB of RAM.

2.5.1 Monitoring of Pipe Break and Contaminant Intrusion

Events

We first consider the Apulian benchmark water network, which consists of 23 nodes

and 34 pipes [36]; its layout is shown in Figure 2-7. To illustrate our approach,

we consider two attack scenarios for this network: (a) pipeline break events, and

(b) water contaminant intrusion events. To detect the failure events of interest, we

consider that the defender has access to the relevant detection technology that is

typically deployed on valve access points or fire hydrants [5, 20, 1021. For scenario

(a), flow and pressure sensors can indicate a potential leak or pipe break by measuring

signals which can be used to detect the sudden rate of change of pressure or mass flow

at different locations of the network. For scenario (b), contaminant detection sensors

can be used to measure water quality indicators such as electrical conductivity, free

and total chlorine, turbidity, and oxygen reduction potential in the water [4].

For any given attack scenario, the set of detector locations V is given by the

set of network nodes. Following standard modeling practice, we consider that for

scenario (a), the set S that the defender is interested in monitoring is the set of

pipes; and for scenario (b), this set is the set of pipes and nodes of the network.

Then, for each possible detector location i (E V, we compute the monitoring set Ci
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(defined in Section 2.2.1) which corresponds to the set of components that can be

monitored from location i, depending on the type of failure events. Specifically, for

scenario (a), monitoring sets are computed through simulations using a threshold-

based detection model, as proposed by Deshpande et al. [25] and Sela Perelman et

al. [91]. In this model, a pipe break event can be detected if the distance traveled

over pipes from an inspected node is less than the expected detection threshold of the

propagating disturbance signal, which is typically ~ 1 km in urban water networks

[1011. For scenario (b), monitoring sets are constructed through simulations using a

hydraulic network solver [99] that tracks the advection and reaction dynamics from

a contaminant intrusion event [79, 81]. Figure 2-7 illustrates the region of a network

from where the signal resulting from a pipe break (left) and a contaminant intrusion

(right) can be detected. Note that in both scenarios, the network topology plays a

key role in the propagation of the signal resulting from a failure event. In particular,

the signal generated from a break event propagates in all directions of the network.

whereas the signal from a contaminant intrusion heavily depends on the direction of

the flow.

pipeline contaminant
break intrusion

Figure 2-7: Detection model for the Apulian water network in scenario (a) (left) and
in scenario (b) (right). The colored regions indicate the set of network locations from
where the signal generated by the failure events can be detected.

Now, we consider the problem (P) for scenario (a), where the defender faces

an adversary with b2 = 2 number of attack resources (i.e., up to two pipes can be
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targeted), and wants to ensure an expected detection rate of a = 0.75. We apply

our solution approach to obtain an approximate solution of (1). Firstly, using the

monitoring sets C, i C V, we solve (IMsc) to compute an MSC Smin E S. The

results show that the size of S"in is n* = 4 (see Figure 2-8a). Then, from Theorem 1,

we deduce that with b' = [an*] = 3 detectors, the expected detection rate in any

equilibrium is at least a. Secondly, we solve (IMsP) to compute an MSP Tmax E .M,

which is of size m* = 3 (see Figure 2-8a). Then, from Proposition 6, we obtain that

the optimality gap associated with b' is given by Fan*] - [am*] = [3] - [2.25= 0.

Therefore, the optimal number of detectors is bl = 3. Thirdly, given b' = 3 and b2 = 2.

we use S"in and Tmax to construct the strategy profile (al(Smin, bk), 0.2 (T"max, b2 ))

according to Lemma 1. From Theorem 2, this strategy profile is an c-NE, and

provides each player a payoff that is E-close to their equilibrium payoff, with E

bl b2  1 - -L) = 1. Finally, Theorem 2 also gives an upper bound on the

relative loss of performance by choosing -1 (S"if, b') as inspection strategy, relative
maxb' ,m* I

to an equilibrium strategy. This upper bound is given by 1 - " '"* , = 25%.

In fact, for this small network, we can optimally solve (P) using (LP1 ) and (LP2 ) to

validate the optimality guarantees provided by our solution approach; see Figure 2-8b.

1

404
0.8 -......................... ..... .... ..........

13

0.6
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0.2 - --- Upper Bound

-4-NE

30 -
.- -Lower Bound

01
0 1 2 3 4

bi

(a) MSC Sm if (labeled nodes) and MSP (b) Equilibrium detection rate with respect to

Tm "X (labeled pipes). the number of detectors bi.

Figure 2-8: Solving (P) for the Apulian benchmark network facing adversarial pipeline
break events.
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We now consider the problem (P) using the monitoring sets computed for the

contaminant intrusion scenario (b) on the benchmark network. In this scenario, we

notice that the optimal solutions S"'" of (IMsc) and Tm x of (IMsp) satisfy Smin=

n* = m* = IT"aX = 4; see Figure 2-9. Therefore, from Proposition 6, we deduce that,

for any a E [0, 1] and b2 < m*, [an*], (ol(Smin, [an*1), a2 (Tna,, b2 )) is an optimal

solution of the network inspection problem (P). In particular, for this scenario, our

solution approach provides the optimal number of detectors, and their positioning in

equilibrium.

1
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(a) MSC Sm in (labeled nodes) and MSP
Tm 'a (labeled pipes).
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Figure 2-9: Solving (P) for
taminant intrusion events.

the Apulian benchmark network facing adversarial con-

2.5.2 Evaluation on Real-Networks

We now test the scalability and performance of our solution approach for large-scale

networks. For the sake of illustration, we consider a batch of benchmark distribution

networks from the water sector that are used by researchers to test network monitoring

algorithms. Table 2.4 lists the characteristics (i.e., total pipe length, and number of

nodes and pipes) of the 13 networks considered in our study. The data for these

networks can be found in [49, 82, 98].
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For these networks, consider the scenario (a) introduced in Section 2.5.1, where

the defender is tasked with detecting multiple pipeline leaks caused by the attacker.

For each network, we apply our solution approach to construct our (approximate) so-

lution of (P): we first compute the monitoring sets Ci, i E V. Then, we solve (IMsc)

to compute the number of detectors that are sufficient to achieve the target detection

performance, and to construct an inspection strategy. Next, we solve (IMsp), which

enables us to evaluate the performance of our solution, i.e., we compute the opti-

mality gap given in Proposition 6 and the relative loss of performance derived from

Theorem 2. The computational results are summarized in Table 2.4.

Table 2.4: Network data and computational results, a = 0.75.

Total No. No. Running Optimality Relative
Network length of of time [s] m* n* [an*] O p loss of per-

[km] pipes nodes (IMSP) (IMSC) formance

bwsnl 37.56 168 126 0.05 0.11 7 7 6 0% 0%

ky3 91.29 366 269 0.01 0.03 15 15 12 0% 0%

ky5 96.58 496 420 0.02 0.05 18 19 15 1 (7.14%) 5.3%

ky7 137.05 603 481 0.09 0.08 28 28 21 0% 0%

ky6 123.20 644 543 0.08 0.06 24 24 18 0% 0%

kyl 166.60 907 791 0.03 0.08 31 31 24 0% 0%

ky13 153.30 940 778 0.06 0.08 28 30 23 2 (9.52%) 6.7%

ky2 152.25 1124 811 0.39 0.41 18 19 15 1 (7.14%) 5.3%

ky4 260.24 1156 959 0.03 0.05 62 64 48 1 (2.13%) 3.1%

ky8 247.34 1614 1325 0.14 0.22 45 45 34 0% 0%

dover 779.86 16000 14965 4.34 8.36 119 121 91 1 (1.11 %) 1.7%

bswn2 1,844.04 14822 12523 0.77 4.06 352 361 271 7 (2.65%) 2.5%

mnsr 476.67 25484 24681 58.89 68.67 50 52 39 1 (2.63 %) 3.8 %

We note that the sizes of MSCs and MSPs are equal for 6 out of the 13 networks.

Thus, for these 6 networks, our approach gives an optimal solution of (P). For the

remaining 7 networks, we note that the relative difference between n* and m* is still

small, which implies that our estimate of the optimal value of (P), b' = ~an*], is close

to the optimal value bl. Indeed, for these networks, when a = 0.75, our solution is

not off by more than 1 or 2 sensors, except for bswn2 for which the optimality gap is

7 sensors (which corresponds to 2.65 % of the optimal value bl for this large network).
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Additionally, we can see from Table 2.4 that the relative loss of performance by

choosing o 1 (S"*i, b') in comparison to the performance in equilibrium is small (2.7%

on average over all networks). Indeed, even for the networks for which n* > m*, we

obtain a relative loss of performance between 1.7 % and 6.7 %.

Finally, the time to solve the integer programming formulations (2.13)-(2.14) of

(IMsc) and (IMsP) is fairly small. For networks with less than 1500 nodes and compo-

nents, Gurobi computes an optimal solution in less than half a second, which directly

enables us to construct an (approximate) NE. Recall that even for such medium-sized

networks, (LP1 ) and (LP2) cannot be used to compute equilibrium strategies. Be-

sides, for larger networks, we can obtain an MSC and an MSP in about a minute.

Thus, our approach is scalable to large-scale networks, thanks to modern optimization

solvers.

2.6 Additional Applications

In this section, we demonstrate the applicability of our model and results to additional

settings. In particular, we show how our MSC/MSP-based strategy profile can be

constructed in particular cases where the set of detector locations V or the set of

critical network components E is of exponential size. We illustrate our results on a

network path interdiction problem, and on a network inspection problem using small

Unmanned Aircraft Systems.

2.6.1 Strategic Network Path Interdiction

Consider the setting where a security agency is concerned with dispatching up to b1

interdictors to prevent the traffic of illegal goods through a transportation network.

We model this network as a connected graph W = (Af, A), where H (resp. A)

represents the set of nodes (resp. set of edges) of the network. This network is utilized

by a malicious entity composed of b2 routers to carry illegal goods from a set of source

nodes Ks C A( to a set of destination nodes AF C M, with As n Af = 0. Each

router travels along a path in W that originates from a node in Ks and terminates
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at a node in AfT. We denote the set of such paths as A. Simultaneously, the agency

chooses up to b1 edges to interdict.

If a router travels along a path that intersects with an edge that is inspected

by an interdictor, the router is then intercepted. In this model, we suppose that

the security agency wants to maximize the number of routers it intercepts, and the

malicious entity wants to maximize the number of routers that successfully cross the

network. Both the security agency and the malicious entity can choose a randomized

strategy. Then, this problem can be modeled with our game F(bi, b2): P1 is the

security agency, P2 is the malicious entity, the set of "detector" locations is given

by V = A (i.e., the set of network edges), and the set of critical components of the

network is S = A (i.e., the set of network paths that originate from Ks and terminate

at JVT). Furthermore, for any edge e E A that is inspected, the set of paths that are

monitored is given by Ce = {A E A I e E A}.

Therefore, our MSC/MSP-based strategy profile can be computed by solving

(IMsc) and (IMsP). However, in this setting, the number of constraints (resp. num-

ber of variables) in the integer programming formulation of (XMsc) (resp. (IMsP)) is

equal to the number of network paths in A, which may be exponential. Thus, (2.13)

and (2.14) cannot be used to compute an MSC and an MSP.

Instead, we note that (IMsc) consists of finding a set of edges of W of minimum

size that intersects with every path in the network. Thus, an MSC is a minimum

cardinality cut-set of W. Similarly, (IMsP) consists of finding a maximum set of

edge-disjoint paths in N. This implies that an MSP can be obtained from the path

decomposition of an integral maximum flow f* in N (where each edge capacity is 1).

From the max-flow min-cut theorem, we know that a minimum cardinality cut-set

S"' and a maximum set of edge-disjoint paths T" are of same size. Therefore,

n* = m*. From Proposition 4, we deduce that for any b, < n* and b2 < m*, the

strategy profile (al(Smin, bi), U 2 (Tmx, b2 )) defined in Lemma 1 is a NE of the game

F(bi, b2 ). In this equilibrium, the security agency interdicts each edge of the minimum

cardinality cut-set S"in with probability b+. Similarly, the malicious entity's strategy

is such that each path of T"m is taken with probability .
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2.6.2 Strategic Network Inspection Using Unmanned Aircraft

Systems

We now consider the inspection problem faced by an operator who is interested in

monitoring an infrastructure system using a fleet of small Unmanned Aircraft Sys-

tems (sUAS). The main objective is to inspect a set of locations in order to detect

component failures caused by a strategic attacker. We assume that the operator has

a set of b1 homogeneous fuel-constrained sUAS at her disposal that she can simulta-

neously dispatch to inspect the network. Each sUAS can be launched from a base

node 0 and can visit a set of tasked locations A! before returning to the base node.

Each such exploration provides diagnostic information to the operator (i.e., presence

of a component failure), and can help improve the operator's response to failures.

For every pair of locations (i, j) E AF2, let dij denote the amount of fuel needed by

an sUAS to travel from i to j. When assigning the parameters dij, we can take into

account several factors: for example, air space restrictions and obstacles can influence

the shortest distance from one location to another, the height difference between two

locations can influence the amount of fuel that is burnt, etc. Note that we do not

impose symmetry, i.e., we allow dij f dji. This allows us to consider explorations in

which sUAS take different paths during onward and return journeys between the base

node and a set of target locations. We assume that the parameters dij, (i, j)C 2

satisfy the triangular inequality.

We consider that all bi sUAS are homogeneous, i.e., they have identical sensing

capabilities, and each has a fuel carrying capacity of Dmax. For the special case when

the amount of fuel required to travel from one location to another depends linearly

on the traveled distance, dij can be viewed as the distance of the shortest path from i

to j, and Dmax as the maximum distance that can be traveled by each sUAS in each

exploration. We will use this interpretation of dij and Dmax from now on.

To represent the set of feasible flight plans of an sUAS, consider the complete

directed graph IC = (K, A), whose set of nodes is the set of locations K, and whose

set of directed edges is A := {(i, j) E K 2 I i # j}. For each edge (i, j) C A, we assign
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the distance from node i to j, dij, as its length. In IC, a walk can be represented as a

sequence of m E N nodes (4,..., im) E gm, and its length is obtained by summing

up the lengths of the edges on the walk. A walk that starts and ends at the base

node 0, referred to as a 0-closed walk, can be represented as a sequence of vertices

W := (i,... , im) E gm such that i= = 0. Thus, the set of feasible flight plans

of an sUAS can be represented as the set of 0-closed walks of length at most Dmax in

C, and is written as follows:

m-1

F:={(ii, ... im)E m | i = m = 0 and Zdikik1 <; Dmax, m E N}.
k=1

Note that 0-closed walks allow the sUAS to visit a node more than once. Without

loss of generality, we assume that every location in K is part of at least one feasible

flight plan.

Next, we consider that the attacker can simultaneously target up to b2 C N in-

frastructure components. Let C be the set of infrastructure components that can be

targeted by the strategic attacker. We assume that each location from K provides a

vantage point to monitor nearby infrastructure components. In particular, for each

location i C K, we consider a discrete set Ci E 2 ', which represents the subset of

components that an sUAS is capable of monitoring when positioned in location i. If

an sUAS visits location i E K and the attacker targets a component e E Ci, then

the sUAS detects the resulting failure. In practice, the sets Ci, i E K, are defined

depending on the sensing capabilities of the sUAS and the environment they are op-

erating in. For example, in the context of a wildfire monitoring application, an sUAS

can use thermal/IR cameras to detect fires occurring within a certain range; in such

cases, Ci would consist of the region around a vantage point i within that range.

In this model, we suppose that the operator wants to maximize the number of

failures that she detects, while the attacker wants to maximize the number of failures

that remain undetected. Furthermore, we allow the operator and the attacker to

randomize over their sets of actions. Then, this problem can be modeled using our

game F(bi, b2): P1 is the operator, P2 is the attacker, and the set of vulnerable
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components is S. Interestingly, the set of detector "locations" V now represents the

set of feasible flight plans F. Furthermore, for each feasible flight plan w E F, the

corresponding monitoring set is given by Cw = UiE Ci.

Therefore, our MSC/MSP-based approximate NE can be derived for this game.

However, as in Section 2.6.1, the integer programming formulation (2.13) (resp.

(2.14)) of (IMsc) (resp. (IMsP)) cannot be solved for this model because of its expo-

nential number of variables (resp. constraints). Instead, we derive two compact mixed

integer programming formulations of (IMsc) and (2TMSP) by exploiting the features of

the model.

First, from the triangular inequality satisfied by dij, (i, j) E K 2, we deduce that

the optimal value of (IMsc) remains unchanged when restricting its feasible solutions

(i.e. sets of feasible flight plans) to be pairwise node-disjoint cycles. Therefore, we

only consider feasible solutions of (IMsc) such that every location in .AJ\{0} is visited

at most once. We can now provide a mixed integer programming formulation that

optimally solves (IMsc). For the sake of convenience, we introduce the following

notation: for every component e E E, let f(e) E 2 g denote the set of locations from

where an sUAS can monitor e, i.e.:

Ve c E, A(e) = {i E A I e E Ci}.

For each directed edge (i, j) E A in IC, we define the binary variable xij equal to

1 if an sUAS goes from i to j, and 0 otherwise, and we define the real variable zij

which is the total distance traveled by the sUAS when it reaches location j (within

its cycle). Finally, let n denote the decision variable that represents the number of

sUAS that are needed. (IMsc) can then be solved with the following mixed integer
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program, which we denote (MSCUAs):

nminimize

subject to Ve E S

Vi E NA

Vi E A\{

Vi E A\{0}

V(i, j) E A

Vi A\{0}

V(i, j) E A.

Constraint (2.22) ensures that for every network component e E S, at least one

location i E M(e) that can monitor e is visited by an sUAS: Constraints (2.23)-(2.25)

impose that n sUAS travel only along pairwise node-disjoint cycles: constraint (2.23)

is a flow constraint (if an sUAS arrives at node i, it also needs to leave node i);

constraint (2.24) forces that all the n sUAS leave the launching site, and (2.25) does

not allow a node (except 0) to be visited more than once.

Constraints (2.26)-(2.28) model the limit on the maximum distance traveled by

each sUAS. Constraint (2.26) computes the distance traveled so far by an sUAS when

flying over each location. Notice that this constraint, first introduced by Kara 150] and

Waters [107], also ensures the elimination of subtours that usually arise in these types

of problems (analogous to the MTZ formulation of the Traveling Salesman Problem

[70]). Constraint (2.27) enforces the distance traveled by each sUAS to be at most

Dmax, and sets zij to be equal to 0 if edge (i, j) is not taken by any sUAS. Finally,

constraint (2.28) initializes the total distance traveled by an sUAS when it leaves the
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base node.

We note that we do not require the sUAS to visit all the locations in Af, as long as

all the network components are monitored. In the specific case where each location

needs to be visited by at least one sUAS, then we find again the classical distance-

constrained vehicle routing problem (with minimization of the number of vehicles)

widely studied in the literature [3, 51, 62, 61, 71, 93]. This entails that (MSCUAS) is

an NP-hard problem.

Secondly, we note that in this model, (IMsP) consists of finding a maximum set

of components Tma, C E such that there is no feasible flight plan that can monitor

more than one component in Tmax. More specifically, for any two components el '

e2 E Tm , there is no feasible flight plan that can visit a location ii E K(ei) and a

location i2 E K(e 2 )-

Importantly, a 0-closed walk of shortest length that visits any two locations i1 #

i2 E M has a length equal to min{doil + dii 2 + di2 0 , doi2 + di2il + dilo}. We can now

derive an integer programming formulation that optimally solves (IMsP) . For each

component e C E, we define the binary variable ye equal to 1 if e is part of the MSP,

and 0 otherwise. We denote (MSPUAS) the following optimization problem:

maximize E Ye (2.29)
eES

subject to doi + dij + djo > (Dmax + c)( Y Ye - 1), V(i, j) C g2  (2.30)
eECiUCj

Ye E {0, 1}, Ve E L,

where c = min{doi + dij + djo - Dmax doi + dij + djo > Dmax, (i, j) E /j 2

Objective (2.29) maximizes the number of components to include in the set pack-

ing. Interestingly, our formulation only requires constraints (2.30). First, note that

(MSPUAS) is feasible: ye = 0, for every e E E is a feasible solution. Now, let y be

a feasible solution of (MSPUAS), and consider a feasible flight plan (0, i, j, 0) E F.

Since d0 i + dij + d3 o < Dmax, then necessarily (Zeeciucj Ye - 1) < 0 (otherwise, we

would have Dmax + E < Dmax). Therefore, any feasible flight plan only monitors one
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element e such that ye = 1: the support of y is a set packing.

Now, consider a set packing T C S, and let y be such that ye = LeCT. By

definition of a set packing, we deduce that for any feasible flight plan (0, i, j, 0) E F,

ZeEciuCj ye < 1. Therefore, constraints (2.30) are satisfied for (i, j) E [2 such that

(0, i, j, 0) E F. Now, consider (i, j) E A( 2 such that (0, i, j, 0) V F. Then, necessarily,

doi +dij +do > Dmax +E. Furthermore, since i is part of at least one feasible flight plan

(i.e., (0, i, 0) E F), and by definition of T, we deduce that ZecC ye < 1. Similarly,

we obtain that Eeec Ye < 1. Therefore:

E Ye<5Ye+E ye,<2,
eECjUCj eECj e/ECj

which implies that:

(Dmax + )( Ye - 1) < (Dnax + ) < doi + di + dIo.
eECiUCj

Therefore, y is a feasible solution of (MSPUAS). We can then conclude that

(MSPUAS) is an integer programming formulation of (IMsP).

Example 5. Next, we illustrate our results with three example networks.

Star Network: Consider the network in Figure 2-10.

1

1 mi

1 mi 0 1 mi

2 3

Figure 2-10: A star network.

This example has the base node 0 and three other locations { 1, 2, 3} that are at

a distance of 1 mile from the base node. There are three infrastructure components

el, e2 , and e3 that can be respectively monitored from locations 1, 2, and 3. Finally,

assume that the sUAS can travel for 2 miles.
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Then, the optimal value of (IMsc) is n* = 3, and the optimal solution is S"' =

{(0, 1, 0), (0, 2,0), (0,3, 0)}.

Now, suppose that the operator has two sUAS. Then, the dispatches in the

support of al(Smin, 2) are S' = {(0, 1, 0), (0, 2, 0)}, S2 = {(0, 2, 0), (0, 3, 0)}, and

S3 = {(0, 3, 0), (0, 1, 0)}, and are each chosen with probability j. Since each of these

0-closed walks is in exactly 2 dispatches in the support of a I(S"in 2), then each one

of them is taken with probability 1 = . u1(Sm", 2) is shown in Figure 2-11.

1 1 1

0 0 0

2 3 2 3 2 3

(a) al(Smin, 2)si = I. (b) ol(Smin,2)S 2 = (C) or(S"l",2)S 3 - 3

Figure 2-11: Randomized dispatch on the star network.

Furthermore, no sUAS can monitor two components with a single feasible flight

plan. This implies that the MSP is Tmx = {ei, e2, e3}. Therefore, for any number of

attack resources b2 < m* = 3, the attacker's strategy o.2 (Tm"x, b2 ) is such that each

component in T"'x is targeted with probability --. From Proposition 4, we deduce

that (al(Smin, bi), U 2 (Tmax, b 2 )) is a NE of the game lF(bi, b2 ), for any b1 < 3 and

b2 < 3.

Complete Network: Consider the fully connected network given in Figure 2-12

consisting of 10 locations uniformly placed on a circle of radius 1 mile. The distance

between each pair of node is the Euclidean distance. The sUAS can fly for 4 miles.

The set of vulnerable components is only comprised of the network edges, and an

sUAS at location i can only monitor the edges adjacent to i.

After solving (MSCUAS), we obtain that the minimum number of sUAS needed to

monitor all the edges of the network is n* = 4, and they can respectively be sent along

the cycles w* = (0, 1, 2,3, 0), w* = (0, 4,0), w* = (0, 5, 0) and w* = (0, 7,8,9, 0).

Note that all but one locations are visited by an sUAS. Now, if the operator only
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1 9

2 8

3 77

4 6
5

Figure 2-12: A complete network.

has 2 sUAS, she can randomize their dispatch according to the following probability

distribution a: send them along {w*, w*} with probability 1. and along {w*, w*}

with probability i; see Figure 2-13.

0
19

2 80

3 7

4 6
5

1
(a) &ii = g

0
1 9

2 8

3 7

4 6
5

1
(b) a'2 =

Figure 2-13: Randomized dispatch on the complete network.

Tree Network: Now, consider a binary tree network given in Figure 2-14 con-

sisting of 15 locations, and whose edges are of length 1 mile. Assume that the sUAS

can only travel along the edges of the tree, and can travel for 12 miles.

Thus, to compute the shortest distance between each pair of nodes dij, (i, j) E V2,

one can run Floyd-Warshall Algorithm [311. We now assume that the set of vulnerable

components is only comprised of nodes of the tree, and that the sUAS need to visit

the node in order to monitor it. First, we solve (MSCUAS): the minimum number
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1 2

3 4 5 6

7 8 9 10 11 12 13 14

Figure 2-14: A tree network.

of sUAS needed to monitor all the nodes of the network is n* = 3, and they can

respectively be sent along the cycles w* = (0, 1, 3, 7, 8, 9, 4, 0), w* = (0, 10, 2, 5,11),

and w* = (0, 12, 6,13,14) in the directed graph KC. Note that even though w* is a

cycle in KC, the actual walk that an sUAS traveling according to w* is taking (in the

tree network) is (0, 1, 3, 7, 3, 8, 3,1,4,9,4, 1, 0). Let S"'n = {w*, w*, w*}. Now, if the

operator only has 2 sUAS, she can randomize their dispatch according to a' (Sm", 2):

send them along {w*, w*} with probability 1, along {w*, w*} with probability 1, and

along {w*, w*} with probability 1. The strategy ul (Sm2i, 2) is illustrated in Figure 2-

15.

0 0 0

1 2 1 2 1 2

3 4 5 6 3 4 5 6 3 4 5 6

7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14 7 8 9 10 11 12 13 14

_1 1 1
(a) al(Smin, 2)s1 = I (b) al(Smin, 2)S2 = I (c) al(Smin, 2)S3 =

3 3 3

Figure 2-15: Randomized dispatch on the tree network.

A

Therefore, in this section, we demonstrated additional modeling advantages of our
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game. In particular, our detection model can be applied to settings where the set of

detectors locations or the set of critical network components is given by network paths.

To overcome the exponential size of the integer programming formulations of (IMsc)

and (IMsP) that we derived in Section 2.3.1, we exploited the structure of the problems

we considered. For the strategic network path interdiction problem, we showed that

(IMsc) and (IMsP) could be solved efficiently by computing a max-flow and minimum

cardinality cut-set of the transportation network. For the strategic network inspection

problem using sUAS, we formulated (IMsc) as a vehicle routing problem that we

solved thanks to a mixed integer programming formulation. Furthermore, we showed

that (IMsc) could be formulated using a compact integer program.

2.7 Refinement Procedure for Exactly Solving (P)

The computational results in Section 2.5 indicate that our solution approach is scal-

able to realistic instances of (P), and provides reasonable performance guarantees.

However, one can construct a particular example for which the guarantees provided

by our solution approach are arbitrarily bad:

Example 6. Consider a graph W = (K, A), where K = [1, nj is the set of vertices,

and A = {(i, j) E K 2 I i j}\{(1, 2)} is the set of edges. Let the detection model

be such that V = A, S K, and Vi = (u, v) E V, C = {u, v}. Then, in this

case, an MSC is a minimum edge cover of W-, which is of size [i, and an MSP is a

maximum independent set of W, which is only of size 2. Consider that P2 has b2 = 1

unit of resources, and the target detection rate is a E [0, 1]. Then, as the size of the

graph n increases, the upper bound on the optimality gap of our solution given in

Proposition 6 is equal to FaF]] - [2a] -+ +oo. Furthermore, for b1 = b2= 1,2 n-++00

the relative loss of performance of our MSC-based inspection strategy, derived from

Theorem 2, is equal to 1 _ 2 - 100%. A
TF /2-1 ___

More importantly, the defender might desire an inspection strategy that outper-

forms our MSC-based strategy by requiring less number of detectors. In this section,
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we develop a procedure that iteratively refines the MSC/MSP-based solution pro-

posed in Proposition 6 to provide a stronger performance guarantee, until it reaches

optimality of (P). This procedure relies on an important and rather surprising prop-

erty of the expected detection rate in equilibrium of the game F, which we describe

next.

2.7.1 Impact of P2's Resources on Detection Performance

We recall from Section 2.3.3 that when n* = m*, the expected detection rate in

equilibrium of F(bi, b2 ) with b2 < m*, is equal to - (Eq. (2.20)). That is, it does

not depend on P2's resources b2. In fact, we can show that this property holds in

general, as long as b2 < m*:

Theorem 3. Given a detection model g, and P1's resources b1 E N, the expected

detection rate in equilibrium is identical in any game F(b1 , b2), with b2 < m*; we

denote it as r*1 -

Vb c N1, r* E [0, 1] 1Vb2 < m*, Vo'* E EZ(b1 , b2 ), ru)=r 1

This result is trivial when b1 > n*, since the expected detection rate in equilibrium

is 1, regardless of P2's resources. So, our proof in Section 2.9.4 focuses on the case

when b1 < n* (and b2 < m*). Thanks to Proposition 2, proving Theorem 3 is

equivalent to showing the following claim: for a fixed number of detectors b1 < n*,

P1's equilibrium payoff is linear with respect to b2 . From Proposition 2, we also

know that P2's strategy in equilibrium is an optimal solution of (LP2) which, by

additivity of F, can be rewritten as mine( maxsex Zee pc (e) F(S, e) where

PU2 (e) is the probability of component e E E being targeted by P2. Thus, our claim

can be restated as follows: There exists an attack strategy in equilibrium of the game

F(bi, 1), denoted a.2*, and there exists an attack strategy in equilibrium for any game

F(bi, b2) with b2 < m*, denoted a.2', such that the corresponding attack probabilities

of each component e E E satisfyP2' (e) = b2 p, 2 * (e). Showing this would imply that

P1's equilibrium payoff, given by the optimal value of (LP 2), is linear with respect
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to b2 .

The above-mentioned claim is proven in two steps: First, we show that there

exists an attack strategy in equilibrium of F(bi, 1), o.2*, such that the corresponding

attack probability of each component e E S satisfies p,2* (e) < -1. The intuition

is that given P2's strategy, P1's best response is to allocate detectors to the nodes

from where she can monitor the components that are targeted by P2 with highest

probability. Therefore, in equilibrium, P2 would allocate her attack resources in order

to minimize the maximum expected number of detections from P1. Because of P2's

ability to spread her attacks in the network (captured by Proposition 1 and MSPs)

and the submodularity of F, this results in at least m* components with identical

(highest) probability of being targeted. This first step implies that for any b 2 < m*

and any component e E 9, b2p,2* (e) < 1.

The second step then consists in proving that given b2 < m*, there exists an

attack strategy in equilibrium of F(bi, b2 ), 02', for which each component e E E is

targeted with probability b2p, 2 * (e) (which is now guaranteed to be no more than 1).

The existence of such an attack strategy is shown using Farkas' lemma; moreover, the

additivity of F ensures that this attack strategy is in fact optimal for (LP2 ). Thus,

we complete proving the claim that P1's equilibrium payoff is linear with respect to

b2 , which directly implies that the expected detection rate does not depend on b2 in

equilibrium. Indeed, from Proposition 2, the expected detection rate in equilibrium

is equal to P1's equilibrium payoff divided by b2. It is important to stress that this

whole argument holds because the network is large in comparison to P2's resources,

i.e., b2 < m*. In fact, Theorem 3 also holds when b2 = m*, but counterexamples can

be found when b2 > m*; see Section 2.8.1.

An immediate consequence of Theorem 3 and Proposition 2 is that both players'

equilibrium payoffs can be expressed as follows:

1* U, (or1* 19.2*= b2 r*Vbi < n*, Vb 2 < m*, V(l*, o.2*) E E(bi, b2 ), U '(o1* U 2 * b 1  (2.31)
U2 (u*, .2 *) = b2 (1 -rb 1 ).

For the special case when n* = m*, r* = b (from (2.20)) and we find again (2.19)
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from (2.31). Another implication of Theorem 3 is that the optimal value of (P) does

not depend on b2 (since the equilibrium constraints (2.9) can be replaced by r* > a).

Finally, we derive from Theorem 3 the following result on equilibrium inspection

strategies in the game F:

Proposition 7. Given P1's number of detectors b1 < n*, inspection strategies in

equilibrium of the game F(b1 , 1) are also inspection strategies in equilibrium of any

game F(b1 , b2 ) with b2 < m*.

Therefore, we can solve the problem (P) by considering that b2 = 1! From a

computational viewpoint, this conclusion provides a significant advantage, which we

discuss next.

2.7.2 Column Generation Procedure

Recall from Proposition 2 that the inspection strategies in equilibrium of the game

F(bi, b2) are the optimal solutions of the linear program (LP1 ), which has (I) + 1

variables and (I') + 1 constraints. Now, given bi < n*, and by considering that

b2 = 1, the optimal value of (LP1 ) is the expected detection rate in equilibrium r*

(see (2.31)), and its optimal solutions are inspection strategies in equilibrium of any

game F(bi, b2) with b2 < m* (Proposition 7). Thus, (LP1 ) can now be reformulated

with (VI) +1 variables and only IS 1+1 constraints, and one can use column generation

to solve it [24].

Each iteration of the column generation algorithm involves solving a master prob-

lem and a subproblem. Essentially, the master problem is a restricted version of (LP1 ),

where only a subset of variables is considered. Formally, given a subset I ; A, of

indices, the master problem of the column generation algorithm applied to (LP1 ) is
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given by:

(PCG): maximize z

subject to z < F(S, e)o, Ve E .
SdI
aj = I

SEI

OS 0,I VS EI.

Let o', z* (resp. p*, (e E I), z'*) denote the optimal primal (resp. dual) solution of

(PCG)-

Once the master problem is solved, the optimal dual variables are used to construct

the subproblem, which involves finding the variable in the unrestricted (LP 1) with

highest reduced cost. The reduced cost associated with each S E A1 is given by

eEE F(S, e)p* - z'*. Therefore, the detector positioning with the highest reduced

cost can be obtained by solving a maximum weighted covering set problem, which

can be formulated as the following integer program:

(DCG): maximize PeYe
eEe

subject to ye < xi, Ve E S

{iEV I eECe}

xi b1
iEV

iye E{0, 1}, Vi E V, Ve E s.

If the optimal value of (DCG) is no more than z'* , then this proves that the optimal

primal solution of (PCG), (al*, z*), is also an optimal solution of (LP1 ). However, if

the optimal value of (DcG) is more than z'*, then we add the detector positioning

corresponding to the optimal solution of (DcG) to the set of indices I. (PCG) is then

solved with the new set of indices I. This process is repeated until the highest reduced

cost computed from the subproblem is nonpositive, which certifies that the current

optimal solution of the master problem is also optimal for the unrestricted (LP1 ).

Note that this algorithm can be initiated by considering I = supp(ol(Sm"n, bi)),
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where S"'f E S is an MSC.

Thus, we finally arrive at the following computational procedure to exactly solve

problem (P):

Refinement Procedure

- Build the detection model 9 = (V, E, {C, i E V})

- Compute an MSC S"'i E S and its size n* by solving (IMsc)

- Choose [an*] as initial value of b,

- For each decreasing value of bi, solve (LP 1) by considering b2 = 1 using the

following steps:

- Construct the MSC-based inspection strategy a I(S"n, bi)

- Run the column generation algorithm, using ai(S"ni, bi) as a warm-start

- At termination, obtain an equilibrium inspection strategy which uses b1

detectors, and has expected detection rate r*

- Stop the overall procedure if r* < a

Note that the above procedure is guaranteed to terminate at optimality, since

we can argue that b, - r*1 is strictly increasing on 0, n*]. Indeed, if there exists

bi < n* such that r* = r*1 , then an inspection strategy in equilibrium of F(bi, b2)

(which randomizes the positioning of b1 detectors) is also an inspection strategy in

equilibrium of F(bi + 1, b2); this contradicts Proposition 2.

After each iteration of the column generation algorithm on (LP1 ), let o' and r'

respectively denote the current inspection strategy and value of the objective func-

tion; note that r' = minese U1 (a"', e). Then, one can derive performance guarantees

for a' by solving (IMsP), similarly to Theorem 2. Indeed, given m*, an upper bound

on the relative loss of performance is given by f' = 1 - a b",* r'. Furthermore,

for any b2 < m*, one can use Lemma 1 to construct an MSP-based attack strategy.

The resulting strategy profile (al', 2 (T"ax, b2 )) is an '-NE of F(bi, b2) and pro-
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vides both players payoffs that are E'-close to their respective equilibrium payoffs,

where E' = bb2( - ). Note that when the MSC-based inspection strategy

ol (S"', bi) is used as an initial feasible solution for the column generation algorithm,

the first iteration of the master problem will give r' = b, for which we find again

the expressions of r and the relative loss of performance from Theorem 2. Then, as

the number of iterations of the column generation algorithm increases, r' increases,

which causes E' and f' to decrease: thus, the inspection strategy improves with each

iteration.

Furthermore, given b' < [an*], we can note that if an iteration of the column

generation method outputs an objective value that satisfies r' > a, b' becomes a

feasible solution for the problem (P); the reason is that r' is a lower bound on the

optimal value of (LP 1), r*,. Similarly, MSPs can be used to derive an optimality

gap associated with this new feasible solution: Since bt > Fam*1 (Proposition 6), an

optimality gap is then given by b' - [am*]. Of course, for each decreasing value of

b', the optimality gap decreases as well.

When (LP1 ) is solved to optimality for a given bi, the optimal dual variables

p*, Ve E E, give the probabilities with which each component can be targeted in

equilibrium of the game F(bi, 1). In the proof of Theorem 3, we show how to reallocate

these probabilities to create an attack strategy in equilibrium of F(bi, 1) with the

additional property that each component is not targeted with probability more than

-.. Then, from Lemma 8, given b2 < m*, we can obtain an attack strategy in

equilibrium of F(bi, b2 ), denoted o 2 E A(A 2 ), by solving the following linear program:

Ao 2= b2 p*

o 2 > 0-e 1A-a21 '

where A =({T)(TGx.This can be done by considering the following
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auxiliary problem:

minimize 1s

subject to Ac 2 + s = b2p*

o 2 > 0-
- 1A21' S > 01Cl

This auxiliary problem can also be solved using column generation, with (o 2 , s)

(0:, b 2p*) as initial feasible solution. Given the current master problem generated

by the column generation algorithm, let #* (E RIA denote its optimal dual variables.

Then, the index T* with lowest reduced cost is given by T* E arg maxTC- EeCT /e,

i.e., T* targets the components with highest values /*. From Lemma 8, we know that

at optimality, the objective value is 0 (i.e., s = O1I) and a2 is an equilibrium attack

strategy. In summary, given b1 < n* and b2 < m*, two column generation algorithms

can be run in order to obtain an exact NE of game F(bi, b2).

A downside of this refinement procedure is that it throws away the simplicity of our

initial inspection strategy a' (S"", bi). In practice, the defender may prefer inspection

strategies with smaller support for ease of implementation. While our MSC-based

inspection strategy a I(S"in , bi) uniformly randomizes over n* detector positionings,

the column generation algorithm can output in principle an equilibrium strategy

with a support of size 191, which may be much larger than n*. Thus, scheduling

inspection operations according to this new strategy may require a larger level of

effort. In contrast, our MSC-based inspection strategy is more amenable for periodic

scheduling of inspections.

Additionally, recall that there are settings where network locations need to be

initially prepared for the installation of detectors. In such cases, it is in the defender's

best interest to minimize the number of such locations (represented in our model by

the node basis). Our MSC-based inspection strategy only requires n* locations to

be prepared, and we showed that this number is optimal when n* = m*. On the

contrary, the inspection strategy computed using column generation can have a node

basis of size up to bi E , which may drastically increase the cost of preparing network

locations to receive detectors. One possibility is to run few iterations of the column
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generation algorithm, and stop when the inspection strategy achieves a desirable

tradeoff between detection guarantee and support size.

2.8 Discussion

In this section, we discuss the case when P2 has at least m* attack resources. In

particular, we show by way of an example which of our results still hold. Then, we

conclude by summarizing our contributions in this chapter.

2.8.1 Case When b2 ;> m*

As argued in Section 2.3.1, the network inspection problem (P) when b2 ;> m* is

of limited practical interest. However, for the sake of completeness, we now briefly

discuss this case. First, recall from Section 2.3.1 that the optimal value of (P) is no

more than n*, since P1 can achieve any target detection rate when she has at least n*

detectors; thus, we will continue to restrict our attention to the game F(bi, b2) when

b, < n*.

To evaluate the equilibrium constraints (2.9)-(2.10), we derived in Section 2.3

equilibrium properties of the game F(bi, b2 ) that hold when b1 < n* and b2 < m*.

Note that all these properties, except Proposition 3, also hold when b1 < n* and

b2 = m*. This implies that Proposition 6, i.e., our (approximate) solution for the

network inspection problem (P), and Theorem 3, are still valid when b2 = m*.

However, most of these properties are not satisfied by the NE of F(bi, b2 ) when

b1 < n* and b2 > m*, as discussed in the following example.

Example 7. Consider the detection model ! = (V, E, {Ci, i E V}) defined as follows:

Let V = {ii, ... , i2n}, with n E N, and let E = E1 U{e1,... , en}, where E1 is a discrete

set. Then, we define the following monitoring sets: Vk E [1, n12, Cik = I U {ek} and

C.n+k = { ek }.

In this example, Smin = {i,..., in} is an MSC, and Tm" = {ei, ... , e} is an

MSP; so n* = m* = n. Given any b1 < n and any b2 E n, 1E1 | -+ n], one can check
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that VT E A 2  T m "x C T, ({i1, . . . , ib}, T) is a pure NE, whose node basis is not a

set cover. Therefore, Proposition 3 does not hold anymore.

Now, if we consider b2 = 1,+n, we just showed that we could construct NE where

P2 can use n, n+ 1, ... , or n+ 1|1 = b2 resources. Thus, (2.18) in Proposition 2 does

not hold anymore. This also implies that P1's payoff and the expected detection rate

are not constant in equilibrium anymore: We found equilibria where P1's payoff is

equal to bi, b, +1, .. ., bi + |Ei. This corresponds to equilibrium detection rates equal

to L b1 1 b,..1., 1 which violates Theorem 3. Since b181  - 1, the upper
n I n 1 n+J1 I n isii I

bound on the expected detection rates given by Theorem 1 is violated. Furthermore,

the bound derived in Theorem 2 is not valid anymore. By choosing a I(S",ifl bi), the

expected detection rate may be arbitrarily far from an equilibrium expected detection

rate: we can only trivially bound the difference with 1 - -. A

Still, some results remain valid when b1 < n* and b2 > m*: In Proposition 2, (2.17)

still holds. In Theorem 1, the lower bound on the equilibrium expected detection rates

is still valid. In Theorem 2, when choosing al(S"'", bl), the expected detection rate

is still guaranteed to be at least 1, regardless of P2's strategy. From these remaining

results, we can show that b' = [an*] is still a sufficient condition for the expected

detection rates in equilibrium to be at least a, and provides an upper bound on the

optimal value bl of (P). Furthermore, given an MSC, S"'2 , if P1 positions these

b' detectors according to the inspecting strategy a' (Smm, b'), she is still guaranteed

to detect a fraction a of the attacks in expectation, regardless of which strategy P2

chooses.

2.8.2 Summary

In this chapter, we studied a stylized formulation of strategic network inspection in an

adversarial environment. In this problem, the defender seeks an inspection strategy

that randomizes over minimum-size detector positionings, while ensuring that the

expected detection performance against attack plans is above a certain threshold.

We formulate the problem as a mathematical program with constraints involving the
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mixed strategy NE of a defender-attacker game. Previously known algorithms for

equilibrium computation of two-player games cannot be applied to solve this large-

scale game. Therefore, we developed a novel approach for analyzing equilibrium

properties of this game, which enables us to solve the inspection problem for large-

scale networks along with performance guarantees.

Our approach involves: (i) deriving useful qualitative properties satisfied by all

NE; (ii) constructing an c-NE based on solutions of MSC and MSP problems; and

(iii) computing an approximate solution of the inspection problem that estimates the

required number of detectors (with optimality gap), and provides an inspection strat-

egy with guarantee on the expected detection performance. Furthermore, we showed

a rather surprising property that, in equilibrium, the expected detection rate and de-

fender strategies can be analyzed by considering a unit attack resource. This property

leads to a column generation-based procedure for further improving the guarantees of

our solution. Our proofs are based on both game-theoretic and combinatorial ideas;

they crucially rely on linear programming duality in zero-sum games, properties of

MSC and MSP (including the weak duality between them), and submodularity of the

detection model. Our approach can be applied for equilibrium characterization of

various security games studied in the literature; importantly, it can be used to solve

more generalized models that consider multiple defense and attack resources.

2.9 Proofs of Statements

2.9.1 Preliminary Results

First, we define the following quantities: For a strategy al E A(A 1) of P1, the

inspection probability of node i E V, denoted pai (i), is the probability with which i is

inspected, i.e.:

Val E A(A 1), Vi E V, pai(i) := Eo1 [ {iesi] S c4. (2.32)
f{SEA, I iES}
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Given a strategy oa 2 E A(A2), the attack probability of component e E 8, denoted

p,2(e), is the probability with which e is targeted by a', i.e.:

Va E A(A 2 ), Ve E E, pa2(e) := E, 2 [1 {eET}] =

Lemma 2. The detection function defined in (2.1) satisfies the following properties:

(i) For any subset of components T E 28, F(-, T) is submodular and monotone:

VT E 2-, V(S, S') E (2 v)2 .

F(S U S', T) + F(S n S', T) < F(S, T) + F(S', T),

S C S' ==-> F(ST) < F(S',T).

(2.34)

(2.35)

(ii) For any detector positioning S G 2v, F(S,-) is finitely additive:

VS E 2 , V(T, T') E (2F)2 | TnT' = 0, F(S, T U T') = F(S, T) + F(S, T'). (2.36)

Proof of Lemma 2.

(i) Consider a subset of components T E 2-, and a pair of detector positionings

(S, S') G (2V)2. Then, Csust = Cs U Cst and Csns, C Cs n Csl, and we obtain:

F(S U S', T) + F(S n S', T) ( )sus, n T + ICsns, n T

= |(Cs n T) u (Cs, n T)I + |Csns, n T|

= ICs nT + |Cs, nT - ICs nCs, nT| + ICsns, nT|

F |Cs n TS +C s, n T| = F(Si T) + F(S I T ).

Furthermore, if S C S', then: F(S, T) = Cs n Tj <|Cs, n Tj = F(S' IT).

90

E
f{TEA 2 I eET}

2
rT. (2.33)



(ii) Consider a detector positioning S E 2 '. Then:

V(T, T') G (2e)2 1 TnT' = 0, F(ST U T') | Cs n(T U T')

= |Cs n T|+|Cs n T'| -|Cs nTnT'|
(2.1)

F(S, T) + F(S, T').

Corollary 2. The detection function defined in (2.1) satisfies the following properties:

V(S, T) E 2V x 2-, F(S, T) < F(iI T),
iES

V(S, T) E 2c x 2 -, F(S, T) = F(S, e).
ecT

Proof of Corollary 2.

(i) Consider T E 2e. Since F(., T) is a submodular and nonnegative function, then

F(., T) is subadditive, i.e., V(S, S') E (2 V)2, F(S U S', T) F(S, T) + F(S', T).

Therefore, by induction, we obtain:

VS E 2V, F(S, T) = F(UiEs{i}, T) < F(i, T).
iES

(ii) Consider S E 2V. Since F(S, -) is additive (Lemma 2), we obtain by induction

that:

VT E 2-, F(ST) = F(SUeET{e}) (26) ZF(S e).
eET

Lemma 3. Given an inspection strategy a1 E A(A 1 ), let {i1, ... , in E 2V denote a

set that contains its node basis V,1 and such that p,1 (i1 ) < ... - Pl (in). Then, we
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have the following inequality:

b b
Vb E I , nj, IEPal1(ik) :5 n Eal1S. (2.39)

k=1

Similarly, given an attack strategy au2 e A(A2), let {e1 ,..., en} E 2e denote a set

that contains its component basis 8 a2, and such that p,2(e 1 ) > ... p,2(eM). Then,

we have the following inequality:

bb

Vb E [ Z p ,2(ei) > E 2[T I]. (2.40)

Proof of Lemma 3. Consider an inspection strategy ou E A(A 1 ), and a set of nodes

{ii,. .. , in} E 2V such that a C {ii,. .. , in} and pal(ii) . - - < pal(in). We show

the result by contradiction: let us assume that 3 b E 1, n] I E _1 Pal (ik) > - IEa [IS 1.

First, we can deduce the following inequality:

1 ' b ' bEor1[I SI] Eal1[ISI]
Pa1(ib) = ,Zpa1(ib) > - jPal (ik) > = n (2.41)

k=1 k=1

Besides, since Val {i,. .. ,in}, then VS C supp(ul), S C {i1 ,... ,i} and we

have the following equality: VS E supp(Ou), S = En= 1 {(keS. This enables us to

obtain the following contradiction:

n b n

E1i[ISI] = EE,1[11ikES}] (2E2) pal (ik) + E pa1(ik)
k=1 k=1 b+1

bE 1 1[ISf] (2.41)
S H I + (n - b)p,1(ib) > Ei[SHISH.n

Therefore, Vb E 1, n, E= 1 pal (ik) E1i[ISI]. (2.40) can be analogously

proved. E

Lemma 4. F is strategically equivalent to the game F := ({1, 2}, (A1, A 2 ), (-u 2,u 2 )).

Proof of Lemma 4. Adding a term to P1's payoff that only depends on P2's action

does not change the NE of the game. Thus, the following transformation preserves
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the set of NE:

V(S,T) E A, x A2, ui(S, T) - jT| = F(S, T) - TI = -u 2 (S, T).

So F(bi, b2) and fZ(bi, b2) are strategically equivalent, and

E(b1, b2 ).

have the same set of NE

Lemma 5. The size of MSPs is no greater than the size of MSCs, i.e., m* < n*.

Proof of Lemma 5. Consider an MSP T"ma = {e,..., , e* }
Smin = {il,. .

E M and an MSC

. , in-} E S. Then, we have the desired inequality:

m*

m(* 1) F(Smin,
=1

(237) m* n*

el) < ZZ F(iel)
l=1 k==1

F(ik ,el) (2=8) F(i, T max) (

k=1

n.

F-1

2.9.2 Proofs of Section 2.3

Lemma 6. Consider a set of nodes S = {i1, ... , in} E 2V of size n > b1, and a set

of components T = {e1,... , er} e 2E of size m > b2. We define the following pure

actions:

Vk E1, n, S-k

Vl E [1, m], T=

{
{

{ik, .. , ik+b--1}

{ik,. .. , ini, , . ., ik+bi-n-1

{ el, . .. el+b 2 -1}

{el, . .. , em, ell. - - , eI+b2 -m-1}

if k < n - b1 + 1,

if k > n - bi + 2,

if 1 < m - b2 + 1,

if 1 > m - b2 + 2,
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and a strategy profile (o'(S, bi), O2 (T, b2 )) E A(A 1 ) x A(A 2) supported over IS',

S'} and {T ,..., T'}, where:

1
Vk e 1, n], o'(S, bl)Sk -, (2.45)

n
1

Vl E [1, m], o.2 (T, b2 )TI := -
Hi

(2.46)

Then, the strategy profile (a'(S, b1 ), .2(T, b2)) has the following properties:

(i) Each node in S (resp. each component in T) is inspected (resp. targeted) with

an identical probability given by:

Vi E S, pJ.1(S,bi) (i) - -1, (2.47)
n

Ve E T, p0 2(T,b 2 )(e) = b2  (2.48)
m

(ii) Each node in S (resp.

actions) in the support of a'(S, b1 ) (resp. a.2 (T, b2 )):

Vi c S, {k E 1,n] E Sk}| = bi,

Ve E T, If1 E [1, m I e E T1} = b2.

(iii) The following inequality is satisfied:

Ve E S, F(S, e) + F(Sk, e).

Proof of Lemma 6. We show the result for a set of nodes S = {ii, . .

(2.49)

(2.50)

(2.51)

, in} E 2V of size

First we note, by construction, that each node il, I E [1, n] belongs to the same

number of detector positionings Sk, k E [1, n . Thus, (2.49) follows from the following
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calculations:

nb1 (2.43) ZEE 1{eS} = {k E [1,] i E Sk}
k=1 iEV iEV

- n x I{k E [1,nI i E Sk}|, Vi E S.

Then, we can show (2.47). For every node i E S, we have:

nn
(2.32) (.5

Pal(S,bi) (i) ( 2 b)Sk1{iESk} (2.5) 1 iESk

k=1 k=1

1 k E [1, nI i E Sk (2.49) bi
n n

An analogous proof can be applied to T E 2 e of size m > b2 to show (2.48) and

(2.50).

Finally, let us show (2.51). Consider e E S.

- If F(S, e) = 1, then 3 io E S I F(io, e) = 1. Since there are b1 detector position-

ings in {Sk, k E [1, nj} that contain io, then _- En_ 1 F(Sk, e) > 1 = F(S, e).

- If F(S, e) = 0, then Vi E S, F(i, e) = 0 and y- Z" I F(Sk, e) = 0.

Note that (2.51) can also be derived from a property of the detection function.

Since VT E 2 , F(., T) is submodular, monotone and nonnegative (Lemma 2), then it

is fractionally subadditive [30]. Inequality (2.51) is then a direct application of this

property combined with (2.49). 0

Proof of Proposition 1. We show that (i) given a minimal set cover S' E 2V, the

optimal value of (LPS,) is b2  - 1), and an optimal solution is given by o'(S', bi).

Then, we show that (ii) given a set packing T' E 2' of size at least b2, the optimal value

of (LPT) ismax {0,b2 (i -- ) and an optimal solution is given by a.2 (T', b2 ).

(i) Consider a minimal set cover S' = {i,... , in E 2V of size n. Necessarily, S' is

such that:

Vk c 1, n]j, 3 ek E E 1 F(ik, ek) = 1 and F(ij, ek) = 0, Vj -f k. (2.52)
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- First, let us demonstrate that maxpu1EA(A1 )Iv,1S'} minTEA2 -U 2 (o1, T) >

b2 (- - 1). Consider oJ(S', bi) E A(Al) defined in (2.45). Recall that or(S', bi)

is such that V,11(S',bi) = S' and Vk E [1, n, pal(S',bi) (ik) = b'- Also, recall that

we are in the case when b1 < n*, implying that b1 < n* < n.

Since S' is a set cover, then Ve E S, 3ke E [1, n I F(ike, e) = 1. Further-

more, F is a nonnegative function. Therefore:

(2.35)
F(S, e) >Ve E E, E 1 1(S', bi)s

S EA1, {SEA1 I ik, ES}

(2.32) (2.47)
Pori (S',bi)(lNJ

n

Thus, we obtain:

S O1 (S', bi)s F(S, T) - ITI
SEA1

(2.38) E E (S',
eET SEA1

(2.53) by
n

eET

bl)s F(S, e) - ITI

(2.54)- TI = _ I IT
n <

-<b2
<0

> b2 ( - 1)
(n

Therefore:

max min -U 2(ou, T) > min -U 2(ol(S, bi), T)
{oEA(A) I Vj1gS'} TEA 2 TEA 2

- 1). (2.55)

Note that the only property of or(S', bi) that was used to show (2.55) is

that its node basis is S' and that Vi E S', Pal(S',bi)(i) = -

- Now, let us show the reverse inequality. Consider any al E A(A 1 ) such

that V,1 C S' = {il, ... ,in}. Let us reorder the indices such that p,i(ii) <
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-Pa(n).

Consider T' = {eI, .. , eb2 } (where the ek's are defined in (2.52)). Then, for

every k E [1, b2l:

E01[F(S,ek)] (2_2) Z uF(S, ek) + o rF(S,e)
{SEA 1 I ikES} -1 {SEAI I ik S} =0

( Pa1(i4), (2.56)

where we combined the fact that the node basis of a' is a subset of S' and that

ik is the only node from S' that monitors component ek (by construction). This

implies that:

min -U 2(ol, T) < -U 2 (or, T') = Ea1[F(S, T')] - |T'l
TEA 2

(2.38),(2.56) b2 (2.39) b -
-a ( ,(ik) -b2 < b2 1
k=1

This upper bound holds for any a' E A (A1 ) such that Val C S', and does not de-

pend on a'. Therefore, maxfaleA(A) I viS/} minTcA 2 -U 2(a, T) < b2 (L - 1),

and we can conclude that:

max min -U 2 (o1, T) = min -U 2 (o-(S', bi), T) = b2 bi
{OEA(Al)IVl CS'} TEA2 TEA 2  J

The optimal value of (LPs') is b2 (L - 1), and an optimal solution is given by

a'(S', bi).

(ii) Consider a set packing T'= {ei,..., em} E 2 g of size m > b2 -

Case 1: If b, > m, then P1 can monitor all the components of T' with a single

detector positioning S'. Therefore, the optimal value of (LPT') in this case is

equal to 0 = max{O, b2 (1 - ").

Case 2: Consider b1 < m. In this case, note that max{0, b 2 (1-6)} = b2-(I-)

- First, we show that max{,2EA(A 2 ) |, 2 cT'} minSeA1 U2 (S, a2 ) > b2 (1 - L).
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Consider a.2 (T', b2) E A(A 2) defined in (2.46). Since T' is a set packing, then

Vi E V, F(i, T') < 1. This implies that:

VS E A1 , U2(S, o2 (T', b 2 )) = EU2(T',2) - F(S, T)]
(2.37),(2.44)

> b2 - r E92(T',b 2)[F(i, T)]
iES

(2.38),(2.33)
=). b2

(2.48),(2.38)
=b2

- S F(, e)p2(T',2)(C)
iES eES

- 2E F(iT')
i<s <1

> b2 (I -
bi

-J

Therefore:

max min
{a.2EA(A 2 )j E,2CT'} SEA 1

U2(S U 2) > min U2(S, U 2 (T', b2 ))
b1A

> b2 1 - i.
mn

Similarly, the only property of a2 (T', b2 ) that was used to show (2.57) is that

its component basis is T' and that Ve E T', pO2(T',b 2)(e) = -

- Now, let us show the reverse inequality. Consider any o 2 E A(A 2 ) I Eo2 C

T' = {ei, ... , em}. Let us reorder the indices such that P,2 (e1) > - - - > p,2(e.).

In Section 2.2.2, we assumed that each component can be monitored from at

least one node. Therefore Vl E [1, m , 3 ii E V I F(ij, el) = 1 (note that the il's

are distinct since T' is a set packing). Now, consider the detector positioning
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S' = {ii, .. .,ibi}. S' monitors {ei, . .. ,eb}, which enables us to show:

min U2 (S, u 2 ) < U2 (S', 2 )
SEA1

(2.3),(2.38) E,2[IT|] - E,2[Z F(S', e)

eET

1 i) b2.
M)

(2.40) b
< - E02 [IT] <

<b2
>0

(
This upper bound is valid for any a2 E A(A 2) such that .,2 C T', and

does not depend on oa2 . Therefore, max{,2eA(A2 ) 1 T'} minSeA 1 U2 (S, 0 2 ) <

b2 (1 - (), and we can conclude that:

0,
2  max mil U2 (S, U 2 )

{2E A(A2)| E '2 gT'} SEA,
= min U2 (S, 72 (T', b2 )) = b2

SEA1

The optimal value of (LPT') in this case (b 1 < m) is b2 (1 - I) = max {0,

b2 (1 - ()}, and an optimal solution is given by U2 (T', b2 ).

Proof of Proposition 2.

(i.a) First, let us show by contradiction that P1 uses all her resources in equilibrium.

Suppose that 3 (a1*, 2 *) E E, 3 S' E supp(o1*) I IS 0 I < bi.

- The first step is to show that P2's strategy a2 * necessarily targets with

positive probability at least one component that is not monitored by So. On

the contrary, assume that Ve E S : p,2* (e) > 0 ==- F(S0, e) = 1.

P1 can detect all the attacks of a2 * with the detector positioning So.

Then,

Thus,

S0 is a best response for P1 to a2 *, and P2's payoff in equilibrium is 0. Since

P2's payoff is identical for any NE (direct consequence of Lemma 4), then P2's
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l=1

m

F(S', ei)p, 2 (C)

1=bl+l >0
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payoff for the initial NE we considered, (a*, *'*), is also 0. However, since

b, < n*, we know that D e' E S I F(SO, e') = 0, i.e., e' is not monitored by

So. Since SO E supp(Ul*), then e' is not monitored with positive probability.

Therefore, if P2 targets e', she will get a positive payoff, which contradicts the

equilibrium condition (2.5) for (o1*, or2*). Therefore, 3 eO E S 1 p* (eo) > 0 and

F(S0 , eo) = 0.

- Now, we can show that P1 can increase her payoff by placing one more

detector. Let us denote io E V\S0 that satisfies F(io, eo) = 1. Then, by consid-

ering the detector positioning S' = So U {io} E A,, we obtain:

U, (S', or * .),(2.38) E~r [E F (S', e) I feET}
eEES

) p2* (eo) + F(S', e)p 2* (e)
eEE\{eo}

(2.35)
> p 2*(eo) + F(SO, e)p 2* (e)

eEE\{eo}

(2.2)p (eo) + U1 (S 0,2*)

>0

> U1 (SO I 0* *

which violates the equilibrium condition (2.4) for (a*, la*). Therefore, VS E

supp(Ul*), ISI = b1 .

(i.b) Now, let us show that P2 uses all her resources in equilibrium. By contradiction,

suppose that 3 (Ol*, U2*) E E, 3 To E supp(U 2*) I ITO1 < b2 -

- The first step is to show that there exists a component e' not in To that is

not monitored by every detector positioning in the support of a'*. Let us assume

the contrary, i.e., that VS C supp(Ul*), Ve To, F(S, e) = 1. First, let us denote

T' C To the subset of components of To that are unmonitored by at least one

detector positioning S E supp(OU*), i.e., T' := USEsuPP(a*)(E\CS) 9 To.

For all S E supp(uo*), let ks denote the number of components of T' that
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are not monitored by S. Since every component outside of T' is monitored by

every detector positioning in the support of or*, then P2's best response to a-'*

is any attack plan T E A2 such that T1 C T (note that IT'l I b 2 ), and P2's

equilibrium payoff is equal to k* := Ei* [ks]. This is shown in the following

steps:

VT E A 2 T' C T, U2(ol*, T) (.)2.3) IT - E,1 [F(S, T')] - E,1- [F(S, T\T)]

= |T - -Oi* [|T1 | - ks] - E,1* [|T\T1 |]

= E,11* [ks].

Thus, P1's equilibrium payoff in the zero-sum game IF is equal to -k*. From

Proposition 1, we know that -k* > b2 (n - 1). Since we are in the case when

b2 < m*, and we have m* < n* (Lemma 5), then we obtain:

k* < -- (n* - bi) < , (n* - bi) < n* - bi. (2.58)
n n

Consider S E supp(ul*). We know that S leaves ks network components

unmonitored, that we denote e1 , ... , eke. For 1 E 1, ks]I, let il be a node

from where a detector can monitor component el. Then, S U {i, ... ,1iks} is

a set cover (of size at most bi + ks). By definition of n*, we deduce that

b, + ks > n*. Therefore, VS E supp(ul*), ks > n* - bl. This last result implies

that k* = E*,1 [ks] > n* - bi, which contradicts (2.58). Thus, 3 (e', ') E

E\TO x supp(a1 *) I F(S', e') = 0.

- Now, we can show that P2 can increase her payoff by targeting component

e' and the components in To. Let T' = To U {e'} E A 2 (since ITOI <b 2). Then,
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we get:

U2 (orl*, T') - U2(ul*, TO) (3)(2.36) 1 - E0,* [F(S, e')] = Eg- [1 - F(S, e')]

>0

> O S1oj (I - F(S, e')) > 0,
>0 =0

which is a contradiction. Therefore, VT E supp(o.2*), |TI = b2 -

(ii) Finally, we show that P1's strategies in equilibrium are the optimal solutions of

(LP1 ). First, from (i), we can deduce that the set of optimal solutions of (LP1 )

is a subset of A(A 1 ). Therefore, the equilibrium inspection strategies are the

optimal solutions of max."EA (;4i minTeA 2 -U 2 (aI, T).

Now, consider an inspection strategy ul E A(A 1 ). Since A2 C A2, then we triv-

ially have minTeA 2 -U 2 (ua, T) < minTCE- -U 2(a', T). To obtain the reverse in-

equality, let TO C A2 be an attack plan that satisfies To E arg minTEA2 - U2 (0'

T). Then, consider T' E A 2  To C T'. We can deduce that:

min -U 2(o 1 , T) = -U 2 (O 1 , TO) > -U 2 (oa1 ,T') > min -U 2(ol, T).
TeA 2  TEA 2

Therefore, Vol E A(AI), minTEA2 -U 2 (ou, T) = minreTE -U2(o', T), which

implies that max1GlA(Xy) minTEA 2 -U 2(u-1 , T) maxalEA( ) TE -U 2 (

T). Furthermore, V(ua, T) E A (A,) xA 2 , -U 2(9 ,T) (22 U1(o', T) - b 2 . Thus,

the equilibrium inspection strategies are the optimal solutions of (LP1 ). An

analogous proof can be applied to show that the equilibrium attack strategies

are the optimal solutions of (LP 2 ).

Proof of Proposition 3.

(i) We show the result by contradiction, that is, suppose that 3 (ol*, .2*) C E such
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that Vi- is not a set cover. For simplicity, we introduce the following notation:

Ve E 9, q,,- (e) := Egj- [F(S, e)], (2.59)

which is the probability with which component e is monitored by a'*. Let us sort

the components in nondecreasing order of monitoring probability: i1a* (ei) <

T,- (e 2 ) 5 - - - ili* (elel). Then, T' = {eI,..., eb2 } is a best response to a'*

for P2 (recall that P2 uses all her resources; see Proposition 2). Let To =

{ei, ... , ek} E 2 e denote the components that are not monitored by any detector

positioning S E supp(ul*). Then, rgi*(ei) = --- = rgi*(ek) = 0, and P2's

equilibrium payoff is:

U2 (al*, T') = IT'I - Eai* [F(S, T')]

b2
(2.38)(2.59) b 2 - 0 * (e) b2 - rI* (ei). (2-60)

ecT' i=k+1

Thus, P1's equilibrium payoff in the game I is -b 2 + Zi'k+1 9* (el). Now,

to show the contradiction, we construct another strategy '1 that will provide a

better payoff than a'* to P1.

- Case 1: k > b2 . Then P1's equilibrium payoff in f is -b 2 (it corresponds

to zero detections). However, she has an incentive to switch her strategy, and

by randomizing over the nodes that can monitor the k components in To, she

will increase her payoff; which is a contradiction.

- Case 2: k < b2. Then P2 will randomize over attack plans that contain

To.

- Case 2.1: k > b1 . Then P1's equilibrium payoff in f is at least equal to

b, - b2 (since she can monitor b1 components in T0 that are always targeted).

This implies that P2's equilibrium payoff is at most b2 - bi. However, thanks

to Proposition 1, we know that P2's equilibrium payoff is larger than or equal

to b2 - b > b2 - b1 (since b2 < m*). Therefore there is a contradiction.
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- Case 2.2: k < bl. Then, the idea is to construct another strategy that

position k detectors to monitor the components in To (that were previously

unmonitored), and that randomizes the positioning of the remaining b1 - k

detectors over the node basis of or*.

For now, assume that P1 has bi - k detectors. For any detector positioning

S E supp(cr*) (viewed as a set of nodes), we consider u1 (S, b1 - k) defined in

(2.45) (in this case, we randomize the placement of b, - k detectors over the

set S of size bi). Recall that supp(O-1 (S, b1 - k)) = {S 1, ... , Sbi}, and that

Vl E [1, bi , o(S, bi - k)si = -. Now, let us construct the following inspection

strategy:

o' S Ojs*(S, bi - k). (2.61)
SEsupp(al*)

Then, supp(o') = USEsupp(o1'*{S 1 , ... , Sbi}. Notice that it is indeed a

probability distribution:

it (2.61) 5 5 S

S'EA1  S'EA1 SEsupp(al*)

- ~ a' S: al* c(S, bi -k)st= S
SEsupp(-l*) S'EA1  SEsupp(ol*)

where we first used the fact that VS e supp(al*), a'(S, bi - k) is a probability

distribution, and then that o' is a probability distribution.

Thus, aj' is a probability distribution that randomizes over detector po-

sitionings of size b1 - k. Then, VS E supp(Oi'), we augment S by plac-

ing k additional detectors to monitor the subset of components T0 that was

previously unmonitored and that is always targeted in equilibrium by P2.

We denote {i1 ,... , ik} the placement of such additional detectors, and we de-

note S = S U {i 1 ,... ,i k}, VS E supp( 1 ') the augmented detector position-

ing. Then, we consider the probability distribution 'a with support equal to
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USEsuPP(al*)fS,-- Sbi} and such that:

VS E supp(Ol'), as4 = & , (2.62)

i.e., o is the same probability distribution as o' except that it randomizes over

the augmented detector positionings present in the support of o

Then, we can derive the following calculations which combine the previous

construction of &1 with a property of the detection function derived in (2.51),

and which will lead to a contradiction. VT e A 2 I TO C T and ITI = b2

E&1[F(S, T)] (236) E&1[F(S, To)] + E&1[F(S, T\T)]

=k

b1

-k + Z ZabF(S ,T\T)
SEsupp(al*) l=1

(2.35),(2.62) bi
> k+ S 5oriF(S',T\TO)

SEsupp(Ul*) 1=1

bi
(2.45),(2.61) k + Su I( * F(S), T\T0)

SC-SUPP(U1*) 1=1 b

(2.51) k+ - k
Sk + -0b1 F( S, T\T )

SEsupp(ol*)

(2.38),(2.59) bi -= k + 1- (e)
,..eET\TO

>0

Sk + b1 - k

i=k+1

b2 b2

= rl, 1 * (ei) + k ( 1 2 1- (ei) (2.63)
i=k+n bi i=k+s

From Proposition 1, we know that the equilibrium payoff of P2 is at least
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b2 - bb2 . Therefore:

U2 (ol*, or*) (-0 b2 - r/,1* (es) > b2 - b
i=k+1

1b
2  

b+-> rlm* (ei) < <1,
i=k+1

since b2 < m*. Then, by combining the previous inequality with (2.63), we

obtain:

(2.3),(2.63) b 2

VT E A2 1.TO c T and T|= b2, -U2(,T) > -b 2 + E q1*S(e)
i=k+1

(2. 0) - ( _*

Since each attack plan in the support of an equilibrium strategy uses all the

resources (Proposition 2), and must contain TO (beginning of Case 2), then:

- 01 *) = E, 2*[-U2 (&1, T)] > -U 2 (al* Ia*), which violates the equilib-

rium condition (2.4) in the strategic equivalent game F.

Therefore, V(oA*, o&*) E E, Vqi* is a set cover.

(ii) From Proposition 3 and the fact that b, < n*, P1 must randomize her detector

positionings in equilibrium so the node basis is a set cover. Now, assume that

there exists a NE (al*, T) E E such that P2 chooses a pure strategy T (of size

b2 from Proposition 2).

- If b, > b2, then P1 can detect all the attacks in T by placing b2 detectors

at the nodes that can monitor the components of T, and P2's equilibrium payoff

would be 0. Again, since P2's payoff is identical for any NE, then U2(l*, T) = 0.

However, we showed in the proof of Proposition 2 that there exists a component

outside of T that is not monitored with positive probability by a'*. Therefore,

P2 can increase her payoff by targeting that component, thus leading to a

contradiction.
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- If b, < b2, then P1 can detect at least bi attacks in T by placing detectors

on b1 nodes that can collectively monitor b1 components of T. The resulting

payoff for P1 in the game f is at least b1 - b2 . However, from Proposition 1, we

know that P2's equilibrium payoff is at least max{O, b2 (1 - ) ; b2 (1 - L) >

b2- b1 (since b2 < m*). Therefore, P1's equilibrium payoff in F is strictly upper

bounded by b1 - b2 , thus leading to a contradiction.

Therefore, in equilibrium, both players must randomize their actions.

Proof of Theorem 1.

(i) Since P2's expected payoff in the game F is also her expected payoff in f, we

know that P2's equilibrium payoff is constant. From Proposition 1, we can

directly obtain that V(ol*, a2 *) E E:

max 0, b2 I - ) } U2 (Ul*, O2 *) < b2 I- i. (2.64)

By combining (2.42) and Proposition 2, we deduce that P1's payoff in equilib-

rium of F is also constant, and can be bounded as follows:

V(*,O*) (E E, Ibb 2  U1(a'*, a*) < min 2, b2} (2.65)

(ii) Again, thanks to Proposition 2, we have:

Vo* E E, r(o-*) [F(ST) 1 E,[F(ST)] 1(O
L T| b 2 b2

Therefore, from (2.65), we obtain that the expected detection rate in equilibrium

is constant and bounded as follows:

Vo-* E E, b < 'r(-*) < min , I I
n* -M*
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Proof of Theorem 2.

(i.a) Let S"'i E S be an MSC and T" E M be an MSP. Then, let us show that

(o(S"i", bi), c.2702,(T b2 )) is an E-NE where e = b1b2 maxm* . First,

note that -c = max {O, b2 (1 - I)+b2

- U2 (Ul(S"in, bi), 2 (T"axb2 ))

Prop. -( =b-max,

(s - 1) . Then, we have Vor E A (A,):

min
o 2 eA(A 2)

(1
1- min U2 (a , 0-2 (T"", b2)) - 6

-1'EA(Ai)

> -U 2(or, 0.2(Tma, b2)) - f.

Therefore, Vol E A(Ai):

Ui(l(Smin, bi), O 2 (Tmax, b2 )) - UI(O , a 2 (Tmaxb 2 ))
(2.66),(2.42)

Analogous calculations show that Va.2 E A(A 2 ) :

U2 (0l(Smn, bi), a.2 (T max, b2 )) > U2 (0l(Smin, bi), O. 2) -

Therefore, we conclude that (l(Smin, bi), O.2 (Tmax, b2 )) E EC(bi, b 2 ).

(i.b) Again, from Proposition 1, we deduce that:

max 0, (1 - b2 5 U 2(ol(Smin, bi), o.2(Tmax, b2 )) < b2 (1

By combining it with (2.64), we obtain:

V(Ol*, .2*) E E, IU2 (ol(Smin, bi), o.2 (Tma", b2 )) - U2 (ol*, .2*)I

< b2 1
b4
n*

- max 0, (1 b)
M*)

108

(2.66)

-C.

b2 = E.

-U2(O l(S"mi", bi), o.2)
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Furthermore, from (2.42), (2.18), and (2.44), we also deduce that:

V(ol*, o 2*) E E, JUi(ol(Smin, bi), o.2 (Tmaxb2 )) - U1(or* 1 *)1

=jU2 (l(S"in, bi), o2 (Tmax, b2 )) - U2 (orl*, o 2 *) 6.

(ii) Consider an MSC S mi c S. Then we have:

VT EA2,U1 (or (S"in , bi), T) (2.42) --U2 (a1 (S"in , bi), T) + TIVT E A2,

(2.54) b1

Thus, by linearity of the expectation, we obtain:

Vc 2 E A(A2), r(Or(Smin, bi), O2 ) (2.=),(2.2) Tha2

(2.67)

(2.67) b1

n*[
Therefore, mina2EA(A 2 ) r(Oc(Smin, bi), -2 ) > L+. Now, consider i' E S"'". Recall

from (2.52) that 3 e' E S F(i', e') = 1 and F(i, e') = 0, Vi E Sm if\{i'}. Then,

it is easy to see that:

r(Or 1(s"m , bi), e') (2.8),(2.32) P (sa,1 ( 2 (247) b

Therefore, min,2EA(A 2 ) r(ul(Smi", bi), ) = .

Finally, from Theorem 1, we have V(ol*, O2 *) E E, r(Ol*, 2 *) < b , and
- maxbi,m*}

we can deduce that:

max{bi, m*}
' r(01 , or*) <bi

n*
min r(al(S"n, bi), U2 ).

a 2e A(A 2 )

F-
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Proof of Corollary 1. By rewriting Theorem 1 when n* = m*, we obtain V( 1*, .2*) E

E(bi, b2) :

b1 b2  1* b1 b2  . bib 2  b1 b2U(o- <,o- m mib =min b2  =n m* n* n*

b2 ( - i max 0, b2  1 - b) U2 (U*, 9.2*) b2  1 - b)

since b1 < n*.

Similarly, for the expected detection rate in equilibrium, we obtain:

VU* E E(bi, b2 ), i r(0-*) min , 1 = min , 1 =b
n* m* n* n*

Lemma 7. For any MSC S"'" C S and any MSP T"t ' E M such that n* = m*,

each component in T"ax is monitored from exactly one node in Smin, and each node

in S"' monitors exactly one component in Tmax

Proof of Lemma 7. Consider an MSC S"' E S and an MSP Tm ax E M. Since T max

is an MSP, each node in S"in monitors at most one component in Tmax . Now, assume

that at least one node in S"in does not monitor any component in T max. Since S"' is

an MSC, then the n* components in T"x are monitored from at most n* - 1 nodes.

From Dirichlet's principle, there exists a node in S"in that monitors at least two

components in Tmax, which is a contradiction. Therefore, each node in S"in monitors

exactly one component in T"'.

Thus, we can define a mapping 0 : S"in -- + T m ax such that Vi E Smin, q4'(i) is

the component in Tmax that is monitored from node i. Now, since Smin is an MSC,

for every component e E Tmax, E i E Smin such that e is monitored from i. Therefore,

/ is surjective which is equivalent to 7P being injective since its domain and codomain

have the same number of elements. Therefore, each component in Tax is monitored

from exactly one node in Sm".
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Proof of Proposition 4. For simplicity, given an optimization problem (Q), we denote

Z*Q its objective value. Let Smin E S be an MSC and T"X E M be an MSP,

and assume that they are of same size. Recall that from Proposition 1, we have

Z*<LP ZLp ( LP) -Z(LP). Since n* = m* (and b1 < n*), then we also

have:

ZLP )b2 ( - 1) =-max O, b2(- ( -).

Therefore, ZLPm) Z) and z(LP ) ZLP. Since (LPSmin) and (LPTmax)

are restrictions of (LP1 ) and (LP2) respectively, then any inspection strategy or*

(resp. attack strategy a.2 *) that is optimal for (LPsmin) (resp. (LPTmax)) is optimal

for (LP1 ) (resp. (LP2)). Thus, any strategy profile (Ul*, U 2 *) such that a'* and o 2'*

are optimal solutions of (LPsmin) and (LPTrmax) respectively is a NE.

To show that an inspection strategy a'* (whose node basis is S"') is an op-

timal solution of (LPsmin), it is sufficient to show that min,2EA(A 2 ) -U 2 (7l*, 0
2 ) >

b2 (b - 1) = Z*LP.mn) By applying (2.55) for S"' (which is a minimal set cover),

we obtain that mina2eA 2 ) -U 2 (jl(Smin, bi), 72 ) > b2 ( - 1). However, recall that

to show this inequality, the only property from a (S"n ", bi) that we used was that its

node basis is S"in and that Vi E Smin, P0r1(Smin,bi) (i) = g. Therefore, any inspection

strategy that satisfies the same conditions also satisfies the same inequality and is an

optimal solution of (LPsmin).

Similarly, we can easily deduce from (2.57) that any attack strategy a2 * whose

component basis is T"' and which satisfies Ve E Tma, p2* (e) = - also satisfies

the inequality minal eA(Al) U2 (91 , a2*) > b2 (1 - and is an optimal solution of

(LPTmaX).

Thus, any strategy profile (al*, 9*) whose node basis is Smin, whose component

basis is T"n", and that satisfies p,1* (i) = ., Vi E S"', and P,2* (e) = , Ve E T

is a NE; it is a sufficient condition.

Now, let us show by contradiction that this is also a necessary condition. Consider

a NE (ol*, g2 *) E E whose node basis is an MSC Smin = {i, .. . , in*} E S, and assume
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that the inspection probability is not identical among the nodes in S"'f. Without

loss of generality (by reordering the indices), assume that p,- (ii) < p,- (b 2 +1)-

Consider an MSP Tmax {el, ... , en- M. Thanks to Lemma 7, and without

loss of generality, we can rearrange the indices such that Vk E [1, n*], ek is only

monitored from node ik in S"'i. Now consider O2 (T"x, b2) defined in Lemma 6. Since

0 2 (T", b2 ) satisfies the above-mentioned sufficient conditions, i.e., its component

basis is Tm x and each component of T tm x is targeted with probability n, then

a2 (Tmax , b 2 ) is an optimal solution of (LPTmax). This implies that (al*, 2 (Tmax , b2 ))

is a NE. Furthermore, the support of o 2(T"ax , b2 ) contains T' = {e} U {e2, . .. , eb2 }

and T2 = {eb 2 +1} U {e 2, ... , eb2 } (which are different since b2 < m* = n*). Therefore,

T1 and T2 should give the same payoff to P2. However, we have the following

contradiction:

U2 (ol*, T1 ) - U2(o(l*, T 2 ) (2.3),(2.36) Eai- [F(S, eb 2 +1)] - E,.1 - [F(S, ei)]

= E01* [{ib 2 +lES}] - ]Eo1l [1{ilES}] (2.68)
(2.32)

p,-* (4 2 +) - P1* (1) > 0.

Note that in (2.68), we used the fact that the node basis of or* is S"' and that el

(resp. eb2 +1) is only monitored from i1 (resp. b2 +1) in smn.

Thus, the inspection probability is necessarily identical among the nodes of S"'":

3 - i E n, pE(i) R {SEAI iES} * = 7. By summing over the nodes

of Smin, and by combining Proposition 2 with the fact that the node basis of a is

Smn, we obtain:

n* I* 1* {E (2.17) bi
iESmin {SEA 1 I iGS} SEA1  iESmin SEA 1

Therefore, = -I-, meaning that in any NE (ul*, o 2 *) whose node basis is an MSC,

the inspection probability must be equal to - for all the nodes of the MSC, which

proves the necessary condition on the inspection strategy.

Analogously, we can prove that in any NE (al*, 2 *) whose component basis is an
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MSP, the attack probability must be equal to . for all the components of the MSP.

Proof of Proposition 5. Let Cr* = (or*, o2 *) E E, and assume that n* = m*. Consider

an MSC Smin C S, an MSP T"' E M, and (ul(Smin, bi), O2 (Tmoa, b2)) constructed

in Lemma 6.

(i) From Lemma 4, we know that the NE of F are interchangeable. Proposition 4

implies that (0l(Smin, bi), ,2(Tmax, b 2 )) defined in (2.45)-(2.46) is a NE. There-

fore, (al*, o 2 (Tmax, b 2 )) is also a NE, and we obtain:

b1 b 2

12*

(2 19) U 2 T ax (2.2),(2.46)
[ F(S, Ti)]

n=1

(2.38) 1
-nE 1 [Z F(S, e) Z I{eETI}]

eGS l=1

(2.50) E1 F(S, e)b
nT-

(2.38) b2El [Fs rax)].
Ee r f , [( F (S , T f m

Therefore, Eori*[F(S, T max)] = bi, from which we deduce that:

bi = E01* [F(S, Trnax)]
(2.38),(2.37) (2.12)

K
(2.17)

EUI* [|SI] - b1.Eoi* [1 F(i, T"max)]
ic s

Then, all the previous inequalities become equalities. The first one implies that

VS E supp(Ul*), Ve E T max, F(S, e) = Eics F(i, e).

The second induced equality implies that Vi E V, 1 *, F(i, T"nax) = 1.

(ii) Similarly, by interchangeability of NE, (ol (Smin, bi), o2 *) E E. Then:

bM 2 (2.19)

72*
Ui(-l(S"mn, bi),u 2 * (2.2),(2.5),(2.38) 1E2[ F(Sk, e)].

* Tk
ecT k=1

(2.69)
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Since S"'f E S, then Ve E 8, 3ie E Sm  I F(ie, e) = 1. Therefore:

n*
Ve E E, F(Sk, e)= 1 + F(Sk, e)

k=1 {k E[1,n* I ieESk} {kEE1,n*j I ie Skj }

> I{k E 1, n*] ie E Sk (219) bi.

Thus, we obtain:

bib 2 (2.69),(2.70) 1bi (2.18) b1
- EU* [ b1 ] eT = - EU [|T|] = -b2.

Therefore, we obtain the following property:

VT E supp( 2 *), Ve c T, Vk E [1, n*j I ie Sk F(Sk,e) = 0.

(2.70)

(2.71)

Now, consider T C supp(o2 *), e E T, and let ie C S"in be a node that satisfies

F(ie, e) = 1. Consider i' E S"' such that i' # ie. Since b, < n*, then there

exists a detector positioning Sk' in the support of a' (S"', bl) that satisfies i' E

Sk' and ie .k'. From (2.71), we deduce that 0 < F(i', e) F(Sk', e) (21) 0.

Therefore, for any i' E S"in such that i' # ie, i' does not monitor e, which

implies that e is only monitored from ie in Smn . Thus:

Ve E 82*, VSmin E S, 3!i C Smin I F(i, e) = 1.

i

2.9.3 Proofs of Section 2.4

Proposition 8. Consider a detection model g that satisfies n* = m*, a target de-

tection performance a E [0,1], and P2's resources b 2 < m*. Then, for any MSC

S"' E S and any MSP Tra, C .M, an optimal solution of (P) is given by [an*],

(0ol(Smrn, ran*]), .2(T"nax, b2 )).
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Proof of Proposition 8. When n* = m*, we know from Corollary 1 that Vo-* E E, r (a*)

b. Therefore, (P) can be rewritten as follows:

minimize b,
bi, o-t

subject to > a,

0-f E EO(i, b),

b, E N.

Then, the optimal value of (P) in this case is bl = Fan*].

Now, consider an MSC S"' E S and an MSP Tmax E M. From Lemma 1 and

Proposition 4, we deduce that (a1(Smin, bt), 02(Tmax, b2 )) E E(bt,b2 ), i.e., is a NE of

the game induced by bl and b2 . Therefore, [an*1, (or (Smin bl), .2(Tmax, 2 )) is an

optimal solution of (7).

Proof of Proposition 6. Recall that in the general case m* < n*, we admit a relaxation

of (P) and consider instead the following mathematical program with equilibrium

constraints:

(7e) : minimize b1
bi, u-t

subject to r(-*) > a, Vo* E E(bi, b2 ) (2.72)

0-t E Ec(bi, b2 )

b, E N,

for some c > 0.

In this case, we know from the lower bound in Theorem 1 that Vb1 < n*, Vo* E

E(bi, b2 ), -i < r(o*). Therefore, constraints (2.72) are satisfied if bi > b' := [an*.
n

Now, consider an MSC Smin E S and an MSP T"ax E M. We know from Theo-

rem 2 that (0l(S"", bl), 2 (T"x, b2)) E E,(b', b2 ), where c = b'b2 ( , -

Therefore, bl, (al(Smin, bk), .2 (T"ax, b2 )) is a feasible solution of (P) (with the same

c), and the corresponding objective value is b'.

Finally, from the upper bound in Theorem 1, we know that Vb1 < n*, Vo*
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E(bi, b2 ), r(-*) 5 min { , 1}. Therefore, constraints (2.72) cannot be satisfied if

bi < [am*]. This implies that an optimality gap associated with b', (- 1 (S"'", b'),

a2 (T'ax, b2 )) is given by [an*~ - [am*].

2.9.4 Proofs of Section 2.7

Lemma 8. Given b2 < m*, let p E [0, 1]1'6 that satisfies eEe Pe = b2 . Then, there

exists an attack strategy a2 E A(A 2) that satisfies Ve E E, p,2 (e) = Pe

Proof of Lemma 8. Given b2 < m*, let A be the ISI x ( I) binary matrix whose rows

(resp. columns) are indexed by the components (resp. the size-b2 subsets) of ., and

which satisfies V(e, T) c 8 x A2, ae,T = 1 1 eET}. Then, given p E [0, 1]1C6 that satisfies

ZeEe Pe b2 , we must show that the following system of equations has a feasible

solution:

Ao2 = p

1 d= 1

o2 > o-
- lAW

Since each T E A 2 is of size b2 , it is easy to see that y1jT A = iT- Furthermore,

since ITIp = 1, it implies that if a2 satisfies Ao 2 = p, it also satisfies 1T or2 - 1.

Therefore, we only need to show that there exists u2  Ox such that Au 2 = p. By

Farkas' lemma, such a solution exists if and only if there does not exist w E RIel such

that wTA < OT and wT p > 0.
- lI42l

Let w E RIEI that satisfies wTA < OT, and let us order the components in E so

that we, > .. >. > For notational simplicity, let wk := we, and Pk := Pe,, Vk E

[1, 8EJ. Note that since T1 = {ei,..., eb2} c A 2 , we have Z9b2 wk = (wTA)T1 0.
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Then, we obtain:

b2

WkPk = Wk

k=1

m

+ b1 Wk >0
k -W b2 >0

b2

k=1 Wb2 <0

<0

Wb2 (EPk-
k=1

b2)= 0.

Therefore, there does not exist w E RI1 such that wTA < T and wTp > 0, which,
_ 1 21

by Farkas' lemma, implies that there exists an attack strategy o.2 E A(A 2) such that

Ve E e, p,2(e) = Pe

Proof of Theorem 3. Consider P1's amount of resources bl. If b1 > n*, then it is easy

to see that Vb 2 < m*, VU* E E(bi, b2), r(9*) = 1. Henceforth, we assume that b, < n*.

Recall from Proposition 2 that the NE of F can be obtained by solving (LP1 ) and

(LP2 ).

(i) First, we show that for b2 = 1, there exists an optimal solution of (LP 2 ), or2 E

A(A 2 ), that satisfies Ve G E, p,2 (e) < -. Since b2 = 1, then A = 8, and

Vo E A(e), Ve E 8, U2 = p,2(e).

- Consider an optimal solution of (LP2 ), U E A(E), and assume on the con-

trary that I e' E E, 3 E > 0 1p ,2(e') = $+E. Let S* E arg max U 2*).

From Proposition 1, we know that:

U1(S* o.*) 2(*) + 1 < - max{1

Therefore, we can show that 3i' E S* I Ui(S*, o
2 *) -- U(S*\{i'},u2 *) < .

Indeed, if Vi E S*, Ui(S*, 02 *) - U1(S*\{i'},Or2 *) > -, then we obtain the

following contradiction:

(2.2),(2.51)
(b 1 - 1)U(S*, 0*) < > Ui(S*\{i'}, 02*) < biU1(S*, o2*) - 1

iES*

(2.73)
< (b, - 1)U1(S*, o*).
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- This implies that e' E CS*: If e' Cs* instead, then repositioning the

detector on node i' to a node that can monitor e' improves P1's payoff by at

least F and contradicts the definition of S*:

Ui(S*\{i'} u {*}, ) (.2) -* + Z 2* F(S*\{i'} U {i*}, e)
eEE\{e'}

(2.35)
>2 o,* + o* F(S*\{i'}, e)

eEE

E + -+ U(S*\{i'}, o*) -- U(S*, IU*) + U1(S*, u2*)

> E + Ui(S*, 2 *) > max Ui(S, U 2 *).
SE A1

- Then, we show that at least b1 components are monitored by S*. Let

2 C A(S) denote the uniform probability over the set of components e, and

let S E arg maxSE- Ui(S, 2 ). Since b, < n*, 3 e E E F(S, ^) 0. Then, we

obtain:

UI(S*,u*) = min maxUi(S,uo) < max U(S, o2 ) = U
a 2 EA(E) SEAf1 SEA1

E 6&F(, e) Z&e - aj = 1 -&2 < 1. (2.74)
eE<\} eES

If we assume that |Cs*I < bi, then at least one detector in S* can be removed

without changing P1's payoff. Let io E S* denote the location of that detector.

Now, we can show that 2 e E S\{C5 } |-* > 0: if on the contrary, we had

Ve E E\{Cs}, j 2 * = 0, then we would obtain Ui(S*, o 2 *) = 1, which contradicts

(2.74). Let e E S\{CS*} 2* > 0 and let i E V I F(i, e) = 1. Repositioning the

detector from node io to node i will increase P1's payoff by at least a-2*, which

contradicts the definition of S*. Thus, JCs* ;> bi.

- Now, we show that we can construct o2' which is the same probability

distribution as o2 * except that it reallocates e probability from e' to a subset

of components T1 monitored by S* while ensuring that the attack probability

of each component in T1 is not above -. Let us split Cs* into {e'}, T' = {e E
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Cs*\{e'} o2* < }, and T 2 = {e -Cs*\{e'} | -* > $}. Now, we have:

1(2.) U , 2*) - 2

eET lUT2

(2.73) bi - IT - 1
_ 2T

eET1

< Cs - IT2

eET1  eET1

which implies that T1  0, and that it is possible to allocate E additional

probability to components in T' so that the attack probability of each com-

ponent in T' is not above -. Thus, O2 ' can be constructed. It satisfies

Ve C E\{T 1 U {e'}}, o-' o u = / - e, and ZecT1(U-' - Oe)

- Now, consider S' E arg maxSE2 U1 (S, o.2'). The goal of this step is to show

(by contradiction) that e' e Cs,. First, we derive the following calculations:

+ E (0-2' - a

eET1 >0

') + Zo-2* F(S', e)
eEC\{T' U{e'}}

2**)F(S' e) + S O-
<1 eET1

F(S', e)

5 O-2* F(S' Ie) + 1(-2' _ U*) - E F(S', e')
eES eET'

(2U2) 
o*) + E(-=U1 (S', a2 )+ ( - F(S', e')). (2.75)

Thus, if e' Cs,, then Ui(S', U2 ') < U1(S', o72 *) + E. Since we assumed that

each component can be monitored from at least location (Section 2.2.2), we

deduce that 3 i* E V\S' | e' E Ci*. Then, we have:

Vi E S', Ui(S*, o2 *) U1({i*} U S'\{i}, U 2*)
(2.2),(2.35) 1

S - + E + U(' }J )m
(2.76)

119

U1(S', ol) =(oel -E) F (S', e



Next, we can derive the following calculations:

U(S', a2*)
(2.2),(2.51) 1

b 1 U(SI\{i}, 
2 *)

iES'

(2.76) 1
< ((b1

bi - 1
- 1)Ui(S*,0. 2 ) + Ui(S*, o2*) - _ *M*

(2.73) * - bi
< Ui(S*, 0. ) - 1.

Combining everything together, we obtain the following contradiction:

max Ui(S, o.2)
SE1

(2.75),(2.77)
K Ui(S*, 0 2 *) - I E

bi -1

< U1(S*, 2*) = min max U1(S, o2).
a 2

EA() SEA1

- Therefore, we showed that e' E Cs'. This implies that E(1 - F(S', e')) = 0,

and we obtain:

max Ui(S, 02)
S E:A1i

(2.75)
K U1(S', 02*) < max U1 (S, O2*) = min max U1 (S, O2).

Sc A1 O.2 EA(E) SEA1

Thus, a2 is also an optimal solution of (LP2 ). Therefore, if an optimal solution

of (LP2) is such that at least one component is targeted with probability more

than W, we can construct another optimal solution of (LP2 ) with one less

component targeted with probability more than -. We can then repeat this

process until all attack probabilities are no more than -.

(ii) Given bi < n*, let z*(b2) denote the optimal value of (LP 2) for any b2 < m*.

Now, consider b2 < m*, and let a2* E A(A 2) be an optimal solution of (LP2).

Since ZE C2 b = 1, we can construct an attack strategy 0' 2E A (.) such

that Ve E , 12 p2*(e) ThethtV GS e .02 () b Thn, the additivity of F gives us:

z*(b2 ) (2.2),(2.33),(2.38) max F(S, e),2(e) (2.) b2 max U(S, or') b2 z*(1).
SeA 11 S6A 1 -

Now, consider a2 E A(E) which is an optimal solution of (LP 2) (where the num-
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ber of attack resources is 1) with the additional property that Ve E E, pa2 (e) <

. Then, given b2 < m*, since Ve E S, b2 pa2(e) < 1 and 1e, b2pa2(e) = b2,

there exists a probability distribution '2 E A(A 2), that satisfies p&2 (e)

b2pa2(e), Ve E E (Lemma 8). Then, by additivity of F, we obtain:

z*(1) = max 2 7F(S, e)p& (e) 2 max Ui(S I az*(b2).
SE A1 e4 E b2 SE A1 2

Thus, Vb2 < m*, z*(b 2) = b2z*(1). Therefore, we conclude that:

Vo* E E(bi, b2), r(u*) (2 b2) Ui(o-*) _ z*(b2 ) z*(1) =: ,

which does not depend on b2 .

E

Proof of Proposition 7. Given P1's resources b1 < n*, let a V E A(Ai) be an inspec-

tion strategy in equilibrium of the game F(bi, 1). From Proposition 2, we know that

or* is an optimal solution of (LPI) for b2 = 1. Now, consider b 2 < m*. We can derive

the following inequality:

VT E A 2, U1(9l*, T) U1(ol*, e) Zmin U(or*, e') =b2r*l
eeeteET eCET%

=bi

(2.31)1
max min U(a, T').

o'E(A) T'EA 2

Since this inequality is valid for any T E A 2, we deduce that minTrE U1 (*, T) >

maxayEA(]y) MinTEz 4 2 U1(a1, T). Therefore, a'* is an optimal solution of (LP1 ) (when

the number of attack resources is b 2), and is an inspection strategy in equilibrium of

the game F(bi, b2 ). LI

121



122



Chapter 3

Strategic Interdiction of Malicious

Network Flows

3.1 Introduction

In this chapter, we study the problem of showing the existence of a probability dis-

tribution over a partially ordered set (or poset) that satisfies a set of constraints

involving marginal probabilities of the poset's elements and maximal chains. This

problem is directly motivated by the technical issues arising in the equilibrium analy-

sis of a generic network security game, in which a strategic interdictor seeks to disrupt

the flow of a routing entity. In particular, our existence result on posets enables us to

show that the equilibrium structure of the game can be described using primal and

dual solutions of a minimum cost circulation problem. Furthermore, we show that the

set of critical components for our network security game can be characterized using

strict complementary slackness in linear programming.

3.1.1 Probability Distributions over Posets

For a given finite nonempty poset, we consider a problem in which each element is

associated with a value between 0 and 1; additionally, each maximal chain has a

value at most 1. We want to determine if there exists a probability distribution over

123



the subsets of the poset such that: (i) The probability with which each element of

the poset is in a subset is equal to its corresponding value; and (ii) the probability

with which each maximal chain of the poset intersects with a subset is as large as its

corresponding value. Solving this problem, denoted (D), is equivalent to resolving the

feasibility of a polyhedral set. However, geometric ideas - such as the ones involving

the use of Farkas' lemma or Caratheodory's theorem - cannot be applied to solve this

problem, because they do not capture the structure of posets. We positively resolve

problem (D) under two conditions that are naturally satisfied for our purposes:

1. The value of each maximal chain is no more than the sum of the values of its

elements.

2. The values of the maximal chains satisfy a conservation law. Particularly, let C

be the union of two intersecting maximal chains. Then, for any decomposition

of C into two maximal chains, the sum of the corresponding values is constant.

Under these two conditions, we prove the feasibility of problem (D) (Theorem 4).

First, we show that solving (D) is equivalent to proving that the optimal value of

an exponential-size linear optimization problem, denoted (Q), is no more than 1

(Proposition 9). Then, to optimally solve (Q), we design a combinatorial algorithm

(Algorithm 1) that exploits the relation between the values associated with the poset's

elements and maximal chains. In particular, we show that the optimal value of (Q)
can be computed in closed form: it is equal to the largest value associated with

an element or maximal chain of the poset, which is no more than 1 (Theorem 5).

Each iteration of the algorithm involves constructing a subposet, selecting its set

of minimal elements, and assigning a specific weight to it. The proof of optimality

of the algorithm is carried out in three steps: First, we prove that it is well-defined

(Proposition 10). Secondly, we show that it terminates and outputs a feasible solution

of (Q) (Proposition 11). Finally, we show that at termination, it assigns a total weight

that is exactly equal to the optimal value of (Q) (Proposition 12). Importantly, in

the design of the algorithm, we need to ensure that the conservation law satisfied by

the values associated with the maximal chains of the poset is preserved after each
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iteration. This design feature enables us to obtain a relation between maximal chains

after each iteration (Lemma 11), which leads to optimality guarantee of the algorithm.

Next, we show that the feasibility of problem ('D) on posets is crucial for the

equilibrium analysis of a class of two-player non-cooperative games on flow networks.

3.1.2 Network Security Games

We model a network security game between player 1 (routing entity) that sends its

flow through the network while facing heterogeneous path transportation costs; and

player 2 (interdictor) who simultaneously chooses an interdiction plan comprised of

one or more edges. Player 1 (resp. player 2) seeks to maximize the value of effective

(resp. interdicted) flow net the transportation (resp. interdiction) cost. We adopt

mixed strategy Nash equilibria as the solution concept of this game.

Our security game is rich and general in that it models heterogeneous costs of

transportation and interdiction. It models the strategic situation in which player 1 is

an operator who wants to route flow (e.g. water, oil, or gas) through pipelines, while

player 2 is an attacker who targets multiple pipes in order to steal or disrupt the

flow. An alternative setting is the one where player 1 is a malicious entity composed

of routers who carry illegal (or dangerous) goods through a transportation network

(i.e., roads, rivers, etc.), and player 2 is a security agency that dispatches interdic-

tors to intercept malicious routers and prevent the illegal goods from crossing the

network. In both these settings, mixed strategies can be viewed as the players intro-

ducing randomization in implementing their respective actions. For instance, player

1's mixed strategy models a randomized choice of paths for routing its flow of goods

through the network, while player 2's mixed strategy indicates a randomized dispatch

of interdictors to disrupt or intercept the flow.

The existing literature in network interdiction has dealt with this type of problems

in a sequential (Stackelberg) setting (see [9, 11, 88, 108]). Typically, these problems

are solved using large-scale integer programming techniques, and are staple for design-

ing system interdiction and defense (see [17, 22, 74, 95, 109J). However, these models

do not capture the situations in which the interdictor is capable of simultaneously
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interdicting multiple edges, possibly in a randomized manner. Recently, Bertsimas

et al. 116] considered a sequential game in which the interdictor first randomly in-

terdicts a fixed number of edges, and then the operator routes a feasible flow in the

network. The interdictor's goal is to minimize the largest amount of flow that reaches

the destination node. Although this model is equivalent to a simultaneous game, our

model is general in that we do not impose any restriction on the number of edges

that can be simultaneously interdicted. Additionally, we account for transportation

and interdiction costs faced by the players.

Our work is also motivated by previous problems studied in network security

games (e.g. 112, 40, 96]). However, the available results in this line of work are for

simpler cases, and do not apply to our model. Related to our work are the network

security games proposed by Washburn and Wood [106] and Gueye and Marbukh

[39]. In 1106], the authors consider a simultaneous game where an evader chooses

one source-destination path and the interdictor inspects one edge. In this model, the

interdictor's (resp. evader's) objective is to maximize (resp. minimize) the probability

with which the evader is detected by the interdictor. Gueye and Marbukh [39] model

an operator who routes a feasible flow in the network, and an attacker who disrupts

one edge. The attacker's (resp. operator's) goal is to maximize (minimize) the amount

of lost flow., Additionally, the attacker faces a cost of attack. In contrast, our model

allows the interdictor to inspect multiple edges simultaneously, and accounts for the

transportation cost faced by the routing entity.

The generality of our model renders known methods for analyzing security games

inapplicable to our game. Indeed, prior work has considered solution approaches

based on max-flows and min-cuts, and used these objects as metrics of criticality

for network components (see [6, 26, 40]). However, these objects cannot be applied

to describe the critical network components in our game due to the heterogeneity

of path interdiction probabilities resulting from the transportation costs. A related

issue is that computing a Nash equilibrium of our game is hard because of the large

size of the players' action sets. Indeed, player 1 (resp. player 2) chooses a probability

distribution over an infinite number of feasible flows (resp. exponential number of
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subsets of edges). Therefore, well-known algorithms for computing (approximate)

Nash equilibria are practically inapplicable for this setting (see [63, 67]). Guo et al.

[41J developed a column and constraint generation algorithm to approximately solve

their network security game. However, it cannot be applied to our model due to the

transportation and interdiction costs that we consider.

Instead, we propose an approach for analyzing equilibria of our game based on a

minimum cost circulation problem, which we denote (M), and our existence problem

on posets (D). In particular, we show (Proposition 13) that Nash equilibria of the

game can be described using primal and dual optimal solutions of (M), if they satisfy

the following conditions: (i) each network edge is interdicted with probability given

by the corresponding optimal dual variable; and (ii) each source-destination path is

interdicted with some probability, derived from the properties of the network, as well

as the optimal dual solution. In fact, this problem is an instantiation of problem (D),

and an equilibrium interdiction strategy can be constructed with our combinatorial

algorithm (Algorithm 1). We show that in some cases, this algorithm can be refined

to run in polynomial time.

The main insights from our equilibrium analysis are as follows:

1. An equilibrium strategy for player 1 is given by an optimal flow of (M), and

marginal edge interdiction probabilities resulting from player 2's equilibrium

strategy are given by the dual solutions of (M). This result circumvents the

complexity of equilibrium computation for our game-theoretic model. Comput-

ing an equilibrium interdiction strategy with our algorithm is NP-hard due to

the enumeration of exponentially many maximal chains. However, the marginal

edge interdiction probabilities and route flows can be obtained in polynomial

time by solving the minimum cost circulation problem (M) (see [54, 76]).

2. Primal-dual pairs of solutions of (M) that satisfy strict complementary slack-

ness provide a new characterization of the critical components in the network.

Specifically, the primal (resp. dual) solution provides the paths (resp. edges)

that are chosen (resp. interdicted) in at least one Nash equilibrium of the game
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(Theorem 6). This result generalizes the classical min-cut-based metrics of net-

work criticality previously studied in the network interdiction literature (see

[7, 68, 106, 109]). Indeed, we show that in our more general setting, multiple

edges in a source-destination path may be interdicted in equilibrium, and can-

not be represented with a single cut of the network. We address this issue by

computing the dual solutions of (M), and by constructing an equilibrium in-

terdiction strategy using our combinatorial algorithm (Algorithm 1) for posets.

The rest of the chapter is organized as follows: In Section 3.2, we pose our existence

problem on posets, and introduce our main feasibility result. Section 3.3 constructs

a solution to the existence problem. The implications of our existence result are

then demonstrated in Section 3.4, where we study our generic network security game.

Lastly, we provide some concluding remarks in Section 3.5, and the complete proofs

of our results are provided in Section 3.6.

3.2 Problem Formulation and Main Result

In this section, we first recall some standard definitions in order theory. We then

pose our problem of proving the existence of probability distributions over partially

ordered sets, and introduce our main result about its feasibility.

3.2.1 Order Theoretic Definitions

A finite partially ordered set or poset P is a pair (X, d), where X is a finite set and

3 is a partial order on X, i.e., < is a binary relation on X satisfying:

- Reflexivity: Vx E X, x -< x in P.

- Antisymmetry: V(x, y) C X 2 , if x d y in P and y < x in P, then x =y.

- Transitivity: V(x, y, z) E X 3 , ifx - y in P and y -< z in P, then x -< z in P.

Given (x, y) E X2 , we denote x -< y in P ifx -< y in P and x / y. We say that

x and y are comparable in P if either x -< y in P or y -< x in P. On the other hand,
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x and y are incomparable in P if neither x -< y in P nor y -< x in P. We say that

x is covered in P by y, denoted x -: y in P, if x -< y in P and there does not exist

z E X such that x -< z in P and z < y in P. When there is no confusion regarding

the poset, we abbreviate x -- y in P by writing x - y, etc.

Let Y be a nonempty subset of X, and let < denote the restriction of -< to

Y. Then, is a partial order on Y, and (Y, -<ly) is a subposet of P. A poset

P = (X, --<) is called a chain (resp. antichain) if every distinct pair of elements in

X is comparable (resp. incomparable) in P. Given a poset P = (X, f), a nonempty

subset Y C X is a chain (resp. an antichain) in P if the subposet (Y, -g) is a chain

(resp. an antichain). A single element of X is both a chain and an antichain.

Given a poset P = (X, -<), an element x E X is a minimal element (resp. maximal

element) if there are no elements y C X such that y -. x (resp. x -< y). Note that any

chain has a unique minimal and maximal element. A chain C C X (resp. antichain

A C X) is maximal in P if there are no other chains C' (resp. antichains A') in

P that contain C (resp. A). Let C and A respectively denote the set of maximal

chains and antichains in P. A maximal chain C E C of size n can be represented as

C = {x1, . .. , x,} where Vk E [1, n - 1 , Xk -<: Xk+1. We state the following property:

Lemma 9. Given a finite nonempty poset P, the set of minimal elements of P is an

antichain of P, and intersects with every maximal chain of P.

Given a poset P = (X, f), we consider its cover graph, denoted Hp = (X, Ep).

Hp is an undirected graph whose set of vertices is X, and whose set of edges is given

by Ep := {(x, y) E X2 I x -<: y or y -<: x}. When Hp is represented such that for

all x -<: y E X, the vertical coordinate of the vertex corresponding to y is higher

than the vertical coordinate of the vertex corresponding to x, the resulting diagram

is called a Hasse diagram of P.

We now introduce the notion of subposet generated by a subset of maximal chains.

Given a poset P = (X, -<), let X' C X be a subset of elements, let C' C C be a subset
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of maximal chains of P, and consider the binary relation -c, defined by:

V(x, y) E X'2 , x -c, y +-> (x = y) or (3 C E C' such that x, y c C and x < y)

Furthermore, we consider that if C' = {Xk, ... , x_ 1, X*, 1 , ... , xn} and C2

{Y-1, I- , *1, 1 ... , Ym} are in C' and intersect in x* E X', then C' also contains

C= {Xk, ... , X1,X *, y1, ... , ym} and C2 = fy-j,- , y-1,x*,X1, ... , Xn}. In other

words, C' preserves the decomposition of maximal chains intersecting in X'. Then,

we have the following lemma:

Lemma 10. Consider the poset P = (X, -), a subset X' C X, and a subset C' C C

that preserves the decomposition of maximal chains intersecting in X'. Then, P' =

(X', c) is also a poset. Furthermore, for any maximal chain C of P' of size at least

two, there exists a maximal chain C' in C' such that C = C' n X'.

The subposet P' = (X', --<c) of P in Lemma 10 satisfies the property that if two

elements in X' are comparable in P, and belong to a same maximal chain C E C',

then they are also comparable in P'. Graphically, this is equivalent to removing the

edges from the Hasse diagram Hp if their two end nodes do not belong to a same

maximal chain C C C'.

Example 8. Consider the poset P represented by the Hasse Diagram Hp in Figure 3-

1.

6

4 5 6

3 3

1 2 1 2

Figure 3-1: On the left is represented a Hasse diagram of a poset P.
is represented a Hasse diagram of the subposet P' = (X', ic') of P,
{1, 2, 3,4, 61 and C' = {{1, 3, 5, 6},{2, 3,5, 6}}.

On the right
where X' =

We observe that 1 -< 4, 2 -<: 3; 1 and 3 are comparable, but 4 and 6 are in-
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comparable; {2, 4} is a chain in P, but is not maximal since it is contained in the

maximal chain {2, 3, 4}. Similarly, {4} is an antichain in P, but is not maximal

since it is contained in the maximal antichain {4, 5}. The set of maximal chains

and antichains of P are given by C = {{1, 3, 4}, {2, 3, 5, 6}, {1, 3, 5,6}, }{2, 3, 4}} and

A = {{1, 2}, {3}, {4, 5}, {4, 6}}, respectively. The set of minimal elements of P is

given by {1, 2}, and intersects with every maximal chain in C. Finally, P' = (X', C'),

where X' = {1, 2, 3, 4, 6} and C' = {{1, 3, 5, 6}, {2, 3, 5, 6}}, is a poset, and is illus-

trated in Figure 3-1. A

3.2.2 Existence of Probability Distributions over Posets

Consider a finite nonempty poset P = (X, -). Let P := 2X denote the power set

of X, and let A(P) := {u E RLI I Us = 1} denote the set of probability

distributions over P. We are concerned with the setting where each element x E X is

associated with a value px E [0, 1], and each maximal chain C E C has a value -c < 1.

Our problem is to determine if there exists a probability distribution 0, E A(P) such

that for every element x E X, the probability that x is in a subset S E P is equal

to px; and for every maximal chain C E C, the probability that C intersects with a

subset S c P is at least 'rc. That is,

S 0s = PX, VX E X, (3.1a)
{SE'P I XES}

(D) : E R1 PR such that US :? TC, VC E C, (3.1b)
Isc-P sncool

Eosr=1. (3.1c)
SeP

For the case in which vc < 0 for all maximal chains C E C, constraints (3. 1b) can

be removed, and the feasibility of (D) follows from Caratheodory's theorem. However,

no known results can be applied to the general case. Note that although (3.1a)-(3.1c)

form a polyhedral set, Farkas' lemma cannot be directly used to evaluate its feasibility.

Instead, in this chapter, we study the feasibility of (D) using order-theoretic properties

of the problem. We assume two natural conditions on p = (px)xx and r = (lrc)cec,
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which we introduce next.

Firstly, for feasibility of (D), p and -x must satisfy the following inequality:

VC E C, E PX > 7C. (3.2)
xEC

Indeed, if (D) is feasible, then for - E R1 ' satisfying (3.1a)-(3.1c), the following

holds:

VC E C, px ) z z -s=xEs = E s|s n c
xEC xEC {SEP I xES} SEP xEC SEP

(3.1b)

> Us rc.

{se? I sncsol

That is, the necessity of (3.2) follows from the fact that for any probability distribution

over P, and any subset of elements C C X, the probability that C intersects with

a subset S E P is upper bounded by the sum of the probabilities with which each

element in C is in a subset S E P.

Secondly, we consider that 7 satisfies a specific condition for each pair of max-

imal chains that intersect each other. Consider any pair of maximal chains C1

and C2 of P, with C' n C2 $ 0. Let x* E C' n C2, and let us rewrite C1 =

{Xki,... , x*,x, xi, ... , xn} and C2 = {yl,...,y_1, X*, y,... ym}. Then, P also

contains two maximal chains C {Xk, ... , X-1, X*, y1,. ... , ym} and C2 =

Y-1, X*, i, .. . , Xn} that satisfy C1 U C2 = C2 U C2; see Figure 3-2 for an illustration.

We require that r satisfy the following condition:

7FC1 + 7rC2 = 7rC2 + 7T1. (3.3)

Thus, (3.3) can be viewed as a conservation law on the maximal chains in C.

We now present our main result regarding the feasibility of (D), under conditions

(3.2) and (3.3).
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6 6

4 CC 2  5 C1 5 4 C2

3 3 3 3

1 2 1 2

Figure 3-2: Four maximal chains of the poset shown in Figure 3-1.

Theorem 4. The problem (D) is feasible for any finite nonempty poset (X, 2), with

parameters p = (px) E [0, 1] I and 7r = (wc) c] - oc, I] CI that satisfy (3.2) and (3.3).

This result plays a crucial role in solving a generic formulation of network security

game, which we study in Section 3.4. The game involves two players: a "router" who

sends a flow of goods to maximize her value of flow crossing the network while facing

transportation costs; and an "interdictor" who inspects one or more network edges to

maximize the value of interdicted flow while facing interdiction costs. Our analysis in

Section 3.4 shows that if a randomized network interdiction strategy interdicts each

edge x with a probability px, and interdicts each path C with a probability at least 7C,

then it is an interdiction strategy in a Nash equilibrium. Essentially, for this game,

(px) and (wc) are governed by network properties, such as edge transportation and

interdiction costs, and naturally satisfy (3.2) and (3.3). In fact, when the network is

a directed acyclic graph, a partial order can be defined on the set of edges, such that

the set of maximal chains is exactly the set of source-destination paths of the network.

Thus, showing the existence of interdiction strategies satisfying the above-mentioned

requirements is an instantiation of the problem (D). Theorem 4 can then be used to

derive several useful insights on the equilibrium strategies of this game.

Importantly, note that (D) may not be feasible if P is not a poset. Let us consider

the following example: X = {1,2,3}, C = {{1,2}, {1,3}, {2,3}}, px = 0.5, Vx E X,

and 7rc = 0.5, VC E C. There is no poset that has C as its set of maximal chains. If

a E R" 1 satisfies (3.1a) and (3.1b), then necessarily, o{x} = 0.5, Vx C X. However,

this implies that E>G, -s > 1.5 > 1, which renders (D) infeasible for this example.
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Thus, in proving Theorem 4, we consider that the problem (D) is defined for a

poset. Next, we show that (D) is feasible if and only if the optimal value of a linear

program is no more than 1.

3.2.3 Equivalent Optimization Problem

Consider the problem (D) for a given poset P = (X, -), and vectors p E [0, 1]IxI and

7F El - O0, 1]1C1 satisfying (3.2) and (3.3). We can observe that when EXEX Pr <

1, a trivial solution for (D) is given by: aUp} = pr, Vx E X, and u0 =1 -

ZXEX pr. The vector & so constructed indeed represents a probability distribution

over P, and satisfies constraints (3.1a). Furthermore, for each maximal chain C C C,
(3.2)

Z{SEP I sncl} as = EXEC Pr > 7rc. Therefore, a is a feasible solution of (D). How-

ever, in general, EZGX px may be larger than 1, which prevents the aforementioned

construction of a from being a probability distribution. Thus, to construct a feasible

solution of (D), we need to assign some probability to subsets of elements of size

larger than 1. This is governed by the following quantity:

VC CC, 6C = P -7TC. (3.4)
XEC

To highlight the role of 6 = (6c)cec when assigning probabilities to subsets of

elements, we consider the following optimization problem:

(Q): minimize US
SEP

subject to as = pX, VX E X (3.5)
{SEPIr XES}

os(IS n C1 - 1) < 6c, VC E C (3.6)
{SeP I Isncl>2}

os>0, VSEP.

Problems (Q) and (D) are related in that the set of constraints (3.1a)-(3.1b) is

equivalent to the set of constraints (3.5)-(3.6); see the proof of Proposition 9 below.
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Furthermore, the objective function in (Q) is analogous to the constraint (3. 1c) in

(D). The feasibility of (Q) is straightforward (for example, a constructed above is

a feasible solution); however, a feasible solution of (Q) may not be a probability

distribution.

Note that given a maximal chain C E C, constraint (3.6) bounds the total amount

of probability that can be assigned to subsets that contain more than one element in

C. One can see that for a subset S E P such that iS n C < 1, the probability o-s

assigned to S does not influence constraint (3.6). However, the more elements from

C a subset S contains, the smaller the probability that can be assigned to S, due to

scaling by the factor (iSn C - 1). Thus, 6 determines the amount of probability that

can be assigned to larger subsets.

Let z*Q) denote the optimal value of (Q). We show the following equivalence

between (D) and (Q):

Proposition 9. (D) is feasible if and only if z* < 1.

Therefore, proving Theorem 4 is equivalent to showing that z*Q) < 1. In fact, we

show a stronger result, which will be useful for our equilibrium analysis in Section 3.4.

Theorem 5. z*g2 = max{max{px, x c X}, max{wc, C E C}}.

It is easy to see that z-9 ) f max{max{px, x E X}, max{lrc, C E C}}. Indeed, any

feasible solution o- E R1 of (Q) satisfies ESjj u-s > Es I XS} u-s px, V E X,
(3.24)

and EEP -S > Es I sncse} Os >- c, VC E C. To show the reversed inequality,

we need to prove that there exists a feasible solution of (Q) with objective value equal

to max{max{px, x E X}, max{irc, C E C}. This is the focus of the next section.

3.3 Constructive Proof of Theorem 5

We design a combinatorial algorithm to compute a feasible solution of (Q) with

objective value exactly equal to max{max{px, x E X}, max{wc, C E C}. Recall

from Section 3.2.3 that such a feasible solution is optimal for (Q), and can be used

to construct a feasible solution of (D); see the proof of Proposition 9.
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Before formally introducing our algorithm, we discuss the main ideas behind its

design. In each iteration, the algorithm selects a subset of elements, and assigns

a positive weight to it. Let us discuss the execution of the first iteration of the

algorithm.

Firstly, we need to determine the collection of subsets that can be assigned a pos-

itive weight without violating any of the constraints in the problem (Q). Essentially,

this is dictated by the maximal chains C C C for which 6c = 0. Indeed, for any C E C

with 6 c = 0, we have the following equivalence:

U-s (n C - 1) < 0 .-= s = 0, VS E P such that S nC ;2.
{seT' IsnclI 2 >0 >0

In other words, if a maximal chain C E C is such that 6c = 0 (i.e., E Cx = ?C),

then a vector a E RC is feasible for (Q) only if its support does not contain any set

S E P that intersects C in more than one element. Therefore, our algorithm must

select a subset of elements S C P that satisfies IS n CI < 1, for all C e C such that

6C = 0.

To precisely characterize this collection of subsets, we consider the notion of sub-

poset generated by a subset of maximal chains, introduced in Section 3.2.1. In par-

ticular, by considering C' the set of maximal chains C E C such that 6c = 0, and

X' the subset of elements x E X such that Px > 0, we can show (in Proposition 10

below) that the condition stated in Lemma 10 is satisfied, and P' = (X', <c') is a

poset. Interestingly, we can then deduce that the subsets of elements that we can

select from at that iteration are the antichains of P'. In any poset, a chain and an

antichain intersect in at most one element. By definition of ac,, this implies that

IS n CI < 1 for every antichain S C X' of P' and every maximal chain C E C of P

such that 6c = 0.

Now, we need to determine which antichain of P' to select. Let S' C X' denote

the subset of elements selected by the algorithm in the first iteration. Recall that an

optimal solution of (Q) satisfies constraints (3.1a)-(3.1b) with the least total amount

of weight assigned to subsets of elements of X. Thus, it is desirable that the weight

136



assigned to S' in this iteration contribute towards satisfying all constraints (3.1b).

To capture this requirement, our algorithm selects S' as the set of minimal elements

of P'. The selected S' is an antichain of P', intersects with every maximal chain

of P, and provides further properties that enable us proving the optimality of the

algorithm.

Secondly, we discuss how to determine the maximum amount of weight w' that

can be assigned to S' in the first iteration, without violating any of the constraints

(3.5) and (3.6). This is governed by the remaining chains C C C for which 6 c > 0

and the elements constituting S'. If w' is larger than 5C for C E C such thatis'ncI-1

|S' n C| > 2, then the corresponding constraint (3.6) will be violated. Similarly, w'

cannot be larger than p_, Vx C S'. Thus, the weight that we must assign to S' is:

w' =min min{ px, x E S'} ,min { C , C C |6c > Oand|S'n C ;> 2}.
|S' n C| - V

At the end of the iteration, we update the vectors p and 6, as well as the sets of

elements X' and maximal chains C' to consider in subsequent iterations. In particular,

we will show that some maximal chains need to be removed in order to preserve the

conservation law at each iteration. The algorithm terminates when there are no more

elements x E X with positive px. This completes the discussion of the main points

that we need to account for in designing the algorithm. We are now in the position

to formally present Algorithm 1.

137



Algorithm 1 : Optimal solution of (Q)

Input: Finite nonempty poset P = (X, d), and vectors p E R<', 6 E RC

Output: Vector o E R.

Al: C1 <- C, p1 <- Px, Vx E X,

A2: X1 <- {x E X I > 0},

A3: k +- 1

61 +- 6c, VC E C

C <-{CE C 6= 0}, C1 <- IC E C1 6 > o}

A4: while Xk / 0 do

A5: Construct the poset pk - (Xk, <)

A6: Choose Sk the set of minimal elements of pk

A7: crsk <- W > = min{min{ pk, x E Sk}, min SkCI1 C

A8: pk+ 1 _ p _ Wk1 {xSk}, Vx E X

Isk nC|> 2}}

A9: 6k+1 6k wk(|Sk n C| 1)l{\sknc\>2}, VC E C

A10: Ck+ 1 <_ {C C Ck | the minimal element of C n Xk in P is in Sk}

All: Xk+1 X {E Xk I p+1 > 0}

A12: Uk+1 {C Ck+1 I6k+l = 0}, C1+1 - {C E Ck+1 Ik+1 > 0}

A13: k <-- k + 1

A14: end while
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Let n* denote the number of iterations of Algorithm 1. Since we have not yet

shown that it terminates, we suppose that n* E N U {+c'}. For every maximal chain

C E C, let us define the sequence (7rn)keD1,n*+1l induced by Algorithm 1 as follows:

7FC = 7rc, and for every k E 1, n*i, 7T+ = T - wkISknc$0 } (3.7)

Given k E [1, n* + 1], 7k (resp. pk) represents the remaining value associated with

the maximal chain C c C (resp. the element x E X) after the first k - 1 iterations of

the algorithm. For convenience, we let X0 +- X.

We now proceed with proving Theorem 5. Our proof consists of three main parts:

Part 1: Algorithm 1 is well-defined (Proposition 10);

Part 2: it terminates and outputs a feasible solution of (Q) (Proposition 11); and

Part 3: it assigns a total weight Z wk equal to max{max{px, x E X}, max{rc, C c

C}} at termination (Proposition 12).

3.3.1 Part 1: Well-Definedness of Algorithm 1.

To show that Algorihm 1 is well-defined, we need to ensure that at each iteration

k E f1, n*] of the algorithm, Pk is a poset. Lemma 10 can be applied to show this,

provided that we are able to prove that C preserves the decomposition of maximal

chains intersecting in Xk. This property, and some associated results, are stated

below:

Proposition 10. Each iteration of Algorithm 1 is well-defined. In particular, for

every k E (1, n* + 1J, the following hold:

(i) For every maximal chain C C C, 6k determines the remaining weight that can

be assigned to subsets that intersect C at more than one element:

vcE C, Z= p- 7T (3.8)
xEC

VCECk, > 0. (3.9)
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(ii) Ck preserves the decomposition of maximal chains intersecting in Xk--:

V(C 1 C2) E C2 I C1n C2 n Xk-1 # 0, (C1 , c2) E (Ck)2 ==> (C2, C2) G (Ck) 2.

(iii) 7k satisfies the conservation law on the maximal chains of Ck that intersect in

Xk-1

V(C1, C2) G (Ck) 2 I Cl n C2 n Xk-l 0, 7rkl + 7 2 = 7r + 7r. (3.10)

(iv) pk = (Xk, zgk) is a poset.

The proof of Proposition 10 highlights the importance of our construction of Ck+1

for k E [1, n*j as given in (A10). This step of the algorithm ensures that Ck+1

preserves the decomposition of maximal chains intersecting in Xk. It also ensures

that each maximal chain in Ck+1 intersects Sk. A direct consequence is that 7rk+1

satisfies the conservation law on the maximal chains of Ck+1 that intersect in Xk. We

then deduce that Ck+1 preserves the decomposition of maximal chains intersecting in

Xk+1, which implies that pk+1 is a poset (Lemma 10). The issue however is that

some maximal chains in Ck may be removed when constructing Ck+1, and we must

ensure that the corresponding constraints (3.6) will still be satisfied by the output of

the algorithm. This is the focus of the next part.

3.3.2 Part 2: Feasibility of Algorithm 1's Output.

Now that we have shown the algorithm to be well-defined, the second main part of the

proof of Theorem 5 is to show that the algorithm terminates, and outputs a feasible

solution of (Q). Showing that the algorithm terminates is based on the fact that there

are finite numbers of elements and maximal chains. To show the feasibility of the

solution generated by the algorithm, we need to verify that constraints (3.5) and (3.6)

are satisfied. From (All), we deduce that constraints (3.5) are automatically satisfied

at termination, since an element x E X is removed whenever the remaining value pk

is 0. Similarly, from Proposition 10, we obtain that constraints (3.6) are satisfied
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for all maximal chains in C"*+1 , i.e., the maximal chains that are not removed by

the algorithm. As mentioned before, the main issue in showing the feasibility of

Algorithm l's output is with regards to the constraints (3.6) corresponding to the

maximal chains that have been removed at some iteration of the algorithm. For such

maximal chains C G C\Cn*+l, we create a finite sequence of "dominating" maximal

chains, and show that constraint (3.6) being satisfied for the last maximal chain of

the sequence implies that it is also satisfied for the initial maximal chain C. To carry

out this argument, we essentially need the following lemma:

Lemma 11. Consider C() E C, and suppose that E k 1 E j1, n*i such that C) E

Ck, \CkI+1 and 01) n Xkj 0. Then, 3 C(2) C Ck1+1 such that 6k, > 63 k and
C( 2 )fl~C( DCC(l~l

C1) n Xkj ;;; C1) n Xkj.

As shown in the next proposition, one of the implications of Lemma 11 is that

if a maximal chain C) is removed after the ki-th iteration of the algorithm, then

there exists another maximal chain C(2), which dominates 01) in the sense that if the

output of the algorithm satisfies constraint (3.6) for C(2), then it also satisfies that

constraint for 01). Additionally, it is guaranteed that C(2) is not removed before the

ki + 1-th iteration of the algorithm. We can now show the second main part of the

proof of Theorem 5

Proposition 11. Algorithm 1 terminates, and outputs a feasible solution of (Q).

The output of Algorithm 1, by design, satisfies constraints (3.5), and also con-

straints (3.6) for the maximal chains in Cn*+1 . Recall that the remaining maximal

chains were removed after an iteration k in order to maintain the conservation law

on the resulting set Ck+1. This conservation law played an essential role in proving

Proposition 11, i.e., in showing that constraints (3.6) are also satisfied for the maxi-

mal chains that are not in Cn*+1 (see the proof of Lemma 11). Thus, Algorithm I's

output is a feasible solution of (Q). Next, we show that this solution is optimal.
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3.3.3 Part 3: Optimality of Algorithm 1.

The final part of the proof of Theorem 5 consists in showing that the total weight

used by the algorithm is exactly max{max{px, x E X}, max{wc, C E C}}. This is

done by considering the following quantity:

Vk E [1, n* + 1 , Wk := max{max{p', x E X}, max{j, C E C}}.

First, we show that Vk E [1, n*i, Wk+1 = Wk - wk. Then, we show that W*+1

0. Using a telescoping series, we obtain the desired result. This part of the proof also

uses Lemma 11 to conclude that max{1rn, C E C} is attained by a maximal chain

C E Ck+ 1 .

Proposition 12. The total weight used by the algorithm when it terminates is:

max{max{px, x E X}, max{irc, C E C}}.

In conclusion, Propositions 10, 11, and 12 enable us to show that Algorithm 1

outputs a feasible solution of (Q) with objective value equal to max{max{px, x E

X},max{irc, C E C}}. Therefore z*) < max{max{p2, x E X},max{wc, C E

C}}. Since we already established the reversed inequality at the end of Section 3.2.3,

we conclude that = max{max{px, x E X},max{wc, C E C}}, thus proving

Theorem 5.

Furthermore, since Vx E X, p2 < 1 and VC E C, 7rc 1, then z*Q) < 1. From

Proposition 9, this implies that (D) is feasible: Given the output o of Algorithm 1,

& obtained from o by additionally assigning 1 - z*) to 0 satisfies (3.1a)-(3.1c), and

proves Theorem 4.

We illustrate Algorithm 1 with the following example:

Example 9. Consider the poset P represented by the Hasse diagram given in Fig-

ure 3-3.

In this poset P, the set of maximal chains is given by C = {{1, 3,4}, {2, 3,5},

{ 1,3, 5}, {2, 3, 4}}. We assume that the values assigned to each maximal chain are
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Figure 3-3: Hasse diagram of a poset P.

7134 = 7r135 = 0.8 and r234 = r235 = 0.6, and the values assigned to each element are

pi = 0.4, P2 = 0.3, P3 = 0.5, P4 = 0.5, P5 = 0.7.

First, we can see that VC c C, E pX > 7c, and 7 134 + 7F23 5 = 7135 + 7 234 -

Therefore, conditions (3.2) and (3.3) are satisfied, and we can run Algorithm 1 to

optimally solve (Q) (and construct a feasible solution of (D)). Figure 3-4a (resp.

Figure 3-4b), illustrates each iteration of the algorithm using the poset P (resp. the

posets Pk, for k E 1, n*]).

k=1:X 1 = X = [1, 5], C' = C, p' = px, Vx E X. Note that 61 34 =

0.6, 6235 = 0.9, 6135 = 0.8, and 6234 = 0.7. Since VC E C, 6' = 6c > 0,

then C = 0, and C1 = C. Therefore, each pair of elements in P1 = (X1, -jl) is

incomparable, and S1 = {1, 2,3,4, 5}. Then one can check that minxEsi pl = 0.3

and min{c C1ncI 2} 1 = 0.3. Therefore, Osi =W = 0.3 = pi =fc(eiI sinj 2}Is'ncI-1
6134

is' n{1,3,4}1--1

Next, the values are updated as follows: p 2= 0.1, p 2= 0, p 2= 0.2, p2 =

0.2, p2 = 0.4, and 6234 = 0, 62 = 0.3, 6235 = 0.2, 6234 = 0.1. Since each

maximal chain's minimal element is in S1, then C2 = C. We conclude the first

iteration of the algorithm by letting X 2 = {1, 3, 4, 5}, u 2 = {{1, 3, 4}}, and

C2= {{2,3,5},{1, 3,5}, {2,3,4}}.

* k = 2 : The set of minimal elements of the new poset P 2 = (X2 , -j2) is

given by 12 = {1, 5} (see Figure 3-4b). Furthermore, minXEs2 p2 = 0.1 and

min1 0 Cp2.2s2 ncI2 sni 1 =02 which imply that US2 = W2 = 0.1 = p2. Then,

the values are updated as follows: p3 = 0, p3 = 0, p3 = 0.2, p3 = 0.2, p3 = 0.3,

and 634 =0, 63 =0.3, 6235= 0.1, 634 =0.1.
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Now, one can see that the minimal element of {2, 3, 5}n X 2 and {2, 3, 4}n X 2 in

P is 3, which does not belong to S2 . Therefore, C3  {{1, 3, 4}, {1, 3, 5}}. The

new sets are then given by X 3 = {3,4, 5}, e 3  {{1, 3,4}}, andC3 = {{1, 3,5}}.

* k = 3 : The set of minimal elements of P 3  (X 3 , -<3) is given by S= {3, 5}

(see Figure 3-4b). Since minGS3 pi = 0.2, and min{cej3 I snci>2 IS3nCI-1 =

0.1, then o-s3 = W= 0.1 = I _3 . The values are updated as follows:

p = 0, p4 = 0, p4 = 0.1, p4 = 0.2, p4 = 0.2, and 6134 = 0, 6235 = 0.2, 635 =

0, 6234 = 0.1. Then, X4 = {3,4,5}, C4 = C3, 4 = {{1, 3,4}, {1, 3,5}}, and

C4 = 0.

* k = 4 : The set of minimal elements of P4 = (X 4 , -<4) is S4 = {3} (see Fig-

ure 3-4b). Then, US4 = W4= minZs4 pi = p = 0.1, and the new values are:

pi =0, p =0, p = 0, p= 0.2 p 0.2, and 5=6C, VC E C. The new

sets are X 5 = {4, 5},C = C4, 5 = {{1, 3,4},{1, 3,5}}, and Ct = 0.

* k = 5 : The set of minimal elements of P5 = (X5 , -<d) is given by S5 = {4, 5}

(Figure 3-4b), and the weight associated with it is o-S5 = W = pi = p4 = 0.2.

The updated values are given by: p6 = 0, Vx E X, and 66 = 65, VC E C.

Since X 6 = 0, the algorithm terminates, and outputs a. One can check that

- satisfies constraints (3.5) and (3.6), and has a total weight Jscp -s of 0.8 =

max{max{px, x E X}, max{7rc, C E C}}. Therefore, from Theorem 5, 0- is an

optimal solution of (Q). Since 0.8 < 1, then & E RLP given by &s = O-s, VS 'P\0,

and 'U = 0.2, is a feasible solution of (D).

A
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OS5 = 0.2

(a) Poset P at the beginning of each iteration of the algorithm. The solid nodes are
in Xk, the dashed nodes are in X\Xk, and the blue nodes are in Sk. An edge is solid

if there exists a maximal chain in Ck that contains both end nodes of the edge. The
values pX are given next to each element.

P1

0.4 0.3 0.5 0.5 0.7

usi = 0.3

0.2

4

3 0.2

0.1 0.4

Us2 = 0.1

p3:

0.2

4I

0.2 0.3

-s3 = 0. 1

p5p

0.2 0.2

4 

5

0.1
@

0.2 0.2

-s4 = 0.1 : us5 = 0.2

(b) pk, for k E [1, 5]. The values px are given next to each element. Sk is given by the
blue nodes.

Figure 3-4: Illustration of Algorithm 1 for the poset P given in Figure 3-3.

145

0.2 0.4

4 (

3 0.2

2

0.1 0.0

s= 0.1

0.5 0.7

*0.5

0.4 0.3

ousi = 0.3

0.2 0.3

4

0.2

1 ~2

0.0 0.0

-s3 = 0.1

2 4

'



3.4 Applications to Network Security

In this section, we use Theorem 4 on the existence of probability distributions on

posets for the purpose of equilibrium analysis of a generic security game. The game

involves a routing entity and an interdictor interacting on a flow network.

3.4.1 Game-Theoretic Model

Consider a flow network, modeled as a directed connected acyclic graph 9 = (V, E),

where V (resp. S) represents the set of nodes (resp. the set of edges) of the network.

For each edge (i, j) E S, let cij E R* denote its capacity. We consider that a single

commodity can flow in g from a source node s E V to a destination node t E V. An

s - t path A of size n is a sequence of edges {ei = (si, ti), ... , en = (sn, itn)} such that

si = s, t, = t, and for all k E [1, n- 1, tk = Sk+1- We denote A the set containing

all s - t paths of 9.

A flow, defined by the vector f E RJI, enters the network from s and leaves from

t. A flow f is said to be feasible if the flow through each edge does not exceed its

capacity; that is, for all (i, j) E E, fij := AEA I (i,(j)EA fA < cij. Let F denote the set

of feasible flows of g. Given a feasible flow f E F, let F (f) = ZACA fA denote the

amount of flow sent from the node s to the node t. Each edge (i, j) E S is associated

with a marginal transportation cost, denoted bij E R*. Thus, for each s - t path

A E A, b := (ij)E bij represents the cost of transporting one unit of flow through

A. Given a feasible flow f E F, T(f) : AEA b\f.x denotes the total transportation

cost of f.

Consider a two-player strategic game F := ({1, 2}, (F, I), (U 1, U 2)), played on the

flow network g. Player 1 (P1) is the routing entity that chooses to route a flow f E F

of goods through the network, and player 2 (P2) is the interdictor who simultaneously

chooses a subset of edges I E 2' to interdict. The action set for P1 (resp. P2) is F

(resp. I := 2-). For every edge (i, j) E ., dij E R* denotes the cost of interdicting

(i, j). Thus, the cost of any interdiction I E I is given by C (I) := Egij)Ej dij. In this

model, P2 (resp. P1) gains (resp. looses) the flow that crosses the edges that are
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interdicted by P2; furthermore, P1 cannot re-route its flow after P2's interdiction. 1

The effective flow, denoted fP, when a flow f is chosen by P1 and an interdiction I is

chosen by P2 can be expressed as follows: VA E A, f' = fxlni=O}. We also suppose

that the transportation cost incurred by P1 is for the initial flow f and not for the

effective flow f . This modeling choice reflects a monetary transaction between the

routing entity and the network owner; for example, an advance fee incurred by the

routing entity for accessing and sending a quantity of flow through the edges of the

network.

The payoff of P1 is defined as the value of effective flow assessed by P1 net tile

cost of transporting the initial flow: ui(f, I) = pi F (f') - T(f), where pi E R* is

the marginal value of effective flow for P1. Similarly, the payoff of P2 is defined as

the value of interdicted flow assessed by P2 net the cost of interdiction: u2 (f, I) =

p2(F (f) - F (f ')) - C (I). where P2 C R* is the marginal value of interdicted flow

for P2.

We illustrate this model through an example.

Example 10. Consider the network shown in Figure 3-5. This network contains 3

paths A1 = {ei, e4}, A
2 = {ei, e3, e} and A3 = {e 2.e5}.

1
3,1,10 2,,10

el e4

s e3 1,1,5 t
e2 e5

2,3,10 3,2,10
2

Figure 3-5: Example network. The edge labels correspond to their capacities (red),
transportation costs (orange), and interdiction costs (purple).

In this example, consider that P1 sends one unit of flow through each of the paths

Al, A2 and A 3 , and P2 interdicts edges e2 and e4 ; see Figure 3-6a. Therefore, the flows

through paths A' and A' are interdicted and the effective flow, shown in Fig. 3-6b,

consists of the unit flow through the path A', i.e., F (f') = 1.

'We do not consider partial edge interdictions for the sake of simplicity.
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fe=2 ,fe4=1 fI= fe =0

sfe 1 s 2 =el

fe2 = 1 ' fe 5 =2 f5=0f/' f = 1

2 2

(a) Initial flow and interdiction. (b) Resulting effective flow.

Figure 3-6: Illustration of the game F.

Since 1 unit of flow crosses the network after interdiction, and the total trans-

portation cost of f is T(f) = 13, then P1's payoff is ui(f, I) = pi - 13. Similarly,

P2 interdicts 2 units of flow and faces an interdiction cost of C (I) = 20. Therefore,

P2's payoff is 1u2 (f, I) = 2P2 - 20. A

We consider that P1 can route goods in the network using a flow f realized

from a chosen probability distribution on the set F, and P2 can interdict subsets of

edges according to a probability distribution on the set I. Specifically, P1 and P2

respectively choose a mixed routing strategy a-1 E A(T) and a mixed interdiction

strategy or2 E A(I), where A(F) = {o E R1 I-Y = 1}, and A(I) = {.2 E

RI-I I EjOr2 = 1} denote the strategy sets. Here, o-f (resp. oU) represents the

probability assigned to the flow f (resp. interdiction I) by P1's routing strategy

1' (resp. P2's interdiction strategy U2 ). The players' strategies are independent

randomizations. Given a strategy profile o- = (al, a2 ) E A((F) x A(I), the respective

expected payoffs are expressed as:

U1(al, O2) = p1EI[F (f')] - E 0[T(f)], (3.11)

U2 (01 , 02) = P2 (IE,[F (f)] - E,[F (f')]) - EO[C (I)]. (3.12)

Thus, the mixed extension of the game F is ({1, 2}, ((T), A(I)), (U1 , U2 )).

We seek to study the mixed strategy Nash equilibria of this game. As in Sec-

tion 2.2.2, a strategy profile (or*, 02 *) E A (F) x A(I) is a mixed strategy Nash
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Equilibrium (NE) of game F if:

Vor E CA (.7), U1((U * 1, 02*) > U (or', or * )

Vo 2 E A(I), U2(l*, o2*) > U2(Or*, 
2 ).

Equivalently, in a NE (a*, oa2 *), Ul* (resp. U2 *) is a best response to Ou* (resp. al*).

We denote E the set of NE of F. We will also use the notations U (a', I) = U (u1 , I1{})

and U(f, a2 ) = U,(IIf}, a2 ) for i E {1, 2}.

We now proceed with the equilibrium analysis of the game F.

3.4.2 Properties of Nash Equilibria

We first note that F is strategically equivalent to a zero-sum game. In particular, the

following transformation preserves the set of NE. V(f, I) c F x I:

1 1 1 1-ui(f, I) + - C (I) = F (f') - - T(f) + - C (I) =: ii1(f, I), (3.13)
P1 P2 Pi P2
1 1

-u2(f, I) - F (f) + - T(f) = -ii(f, I). (3.14)
P2 Pi

Therefore, F and F := ({1, 2}, (F, I), (ii1, - ii)) have the same equilibrium set.

Additionally, NE of F are interchangeable, i.e., if (ol*, a*) E E and (o1', a2') E E,

then (al*, o,') c E and (Z', o2*) E E.

In principle, NE of F can be obtained by using linear programming techniques.

However, this would entail solving a linear program with an infinite number of vari-

ables and an exponential number of constraints (since F is the set of feasible flows in

g, and I = 2VI). We now present our approach for analyzing the NE of the game F.

Our approach, which utilizes the existence result on posets Theorem 4, is based on

a minimum cost circulation problem. Essentially, we show that its primal solutions

are equilibrium routing strategies for P1, and that its dual solutions give properties

of equilibrium interdiction strategies for P2.
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Specifically, consider the following network flow problem:

1(M) maximize F (f) IT(f)
Pi

subject to ) f, < min i, ci4 , V(i, j) E E
{AEA I (ij)EA} EP2 I

fA> 0, VAEA.

This problem can be viewed as a minimum cost circulation problem in a graph

= (V', 8') such that V' = V, E' = E U {(t, s)}. The capacity of each edge (i, j) E E

is given by min{ , cij}, and edge (t, s) is uncapacitated. The transportation cost of

each edge (i, j) E S is given by >, and the transportation cost of edge (t, s) is -1.

Equivalently, (M) consists in finding a feasible flow f in F that maximizes ul (f, 0)

with the requirement that the flow through each edge (i, j) is no more than d . Game
P2

theoretically, this threshold captures P2's best response to P1: If fij > d 3 for some
P2

(i, j) E E, then P2 has an incentive to interdict (i, j), resulting in an increase of

P2's payoff (since u2 (f, {(i, j)}) = P2fij - dij > 0). Thus, (M) can be viewed as the

problem in which P1 maximizes its payoff while limiting P2's incentive to interdict

any of the edges. For each s - t path A E A, let us denote iro := 1 - L. Then, the
1\Pi

value pi7ro represents the gain in P1's payoff when one unit of flow traveling along A

reaches the destination node. The primal and dual formulations of (M) are given as

follows:

(Mp): max 1r\fA
AEA

s.t. Z fAc, V(i, j)E
{AEA I(i~J)EA}J P2

E f\ :! cij, V(i, j) E S
{AEA I (iJ)EA}

f\>0, VAEA
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(MD) : min Zd -( ij Pij + Cij lij)
P2

s.t. (pij + pij) 7TA,
(ij)EA

Pij 0,

PiJ 0,

VA E A

V(ij) E E

V(ij) E 8

Let f* and (p*, pi*) denote optimal solutions of (Mp) and (MD), respectively. By

strong duality, the optimal value of (Me) is identical to that of (MD); we denote it

by z*.). Note that (Mp) and (MD) may have an exponential number of variables

and constraints, respectively. However, equivalent primal and dual formulations of

(M) of polynomial size can be derived as follows:

(M' ) maximize

subject to

E
{iEV I (it)

{jeV Iji)eE}

b- - f

f P

{jev I (ij)E8}

0 < f~j < Cij,

0 < f d
P2

V(ij) E E

V(ilj*) GE8.

minimize 5 Cijp + ij
(ij) e P2

Yi - Yj + Pu + Iij >

-Yj + Psj + Ilsi

Yi + Pit + /tit >

Pij > 0,

[ij > 0,

bi

Pi
b -

Pi

Pi

V(i, j) E E

V(i, j) E 8.

We show the following relation between the equivalent primal and dual formula-

tions of (M):
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VJ E V (sj) E 8

Vi E Vj (i, t) E 8
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Lemma 12. Any s - t path decomposition of any optimal solution f' of (M) is

an optimal solution of (Mp). Furthermore, given any optimal solution (p', ', y') of

(M'D), (p', [t') is an optimal solution of (MD)-

Thus, f* and (p*, [*) can be computed in an efficient manner by using an interior

point method (Karmarkar [541) or a dual network simplex algorithm (Orlin et al.

[76]).

We illustrate the network flow problem (M) with an example.

Example 11. Consider the network represented in Figure 3-5. Recall that this

network contains 3 paths Al = {ei, e 4}, A2 = {e1, e3 , e5 } and A3 = {e 2 , e5 }. Consider

that the marginal value of effective flow for P1 is pi = 10, and that the marginal

value of interdicted flow for P2 is P2 = 5. Therefore, 7rn = 0.6, wr 2 = 0.6, 7[)0 = 0.5.

Then, the optimal primal solution f* of (M) routes 2 units of flow along each of the

paths A' and A 2 . Furthermore, an optimal dual solution (p*, pt*) of (M) is such that

p* = 0.5, p* = 0.3, p* = 0, p* = 0.1, p*, 0.2. and p* 0. for every e E E. They

are illustrated in Figure 3-7.

11
fe*=2 fe* =2 P* =e. p*= 0 . 1

s fe* = 0 Q sp=O0 E

fe*2f* =2 .3  P*
2 2

Figure 3-7: Optimal primal (left) and dual (right) solution of (M) for the network
represented in Figure 3-5, when pi = 10 and P2 = 5.

Next, we define the following binary relation on 8, denoted -<g. Given (u, v) E g2,

u ig v if either u = v, or there exists an s - t path A E A that traverses u and v

in this order. Since g is a directed acyclic connected graph, we have the following

lemma:

Lemma 13. P = (8, : g) is a poset, whose set of maximal chains is the set of s - t

paths A.
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Then, we recall the following properties for a pair of optimal solutions f* and

(p*, p*) of (Mp) and (MD) that can be obtained from complementary slackness:

V(i, j) E S, p* > 0 =>f* = * = - d, (3.15)
{AA I (i)eA} P2

V(i, j) E &, p. > 0 - f* = f cj, (3.16)
{AEA I (ij)EA}

VA E A, fA* > 0 -=> (p3 .+p3 )=7r. (3.17)
(ij)GA

These properties, along with Theorem 4, enable us to derive the following result:

Proposition 13. Consider f* and (p*, p*) optimal solutions of (M p) and (MD),

respectively. Theorem 4 guarantees the existence of an interdiction strategy a2 G A( I)

satisfying:

V(i, j) E I Z p, (3.18)

VAE A > 7r a2 , (3.19)
{IeI I inAsIA}

where VA E A, 7r* := - p(ij)EA .*

The strategy profile (f*, 2) E F x A(I) is a NE of the game r. The corresponding

equilibrium payoffs are Ui(f*, 52) = pi (,j)G cijp and U2 (f*, 52) = 0.

Thus, a solution f* (resp. (p*, /*)) of the primal (resp. dual) formulation of (M)

can be used to describe a NE of F. In particular, f* is a pure equilibrium strategy

for P1. Furthermore, for all (i, j) E E, p* is the probability with which edge (i, j)

is interdicted by P2 in equilibrium. To draw this conclusion, we need to show the

existence of an interdiction strategy a2 E A(I) satisfying (3.18) and (3.19). In fact,

this existence problem is an instantiation of problem (D) that we introduced earlier,

and positively answered in Theorem 4.

Additional properties of P2's equilibrium interdiction strategy i2 are given by

p*: Given an s - t path A E A, 7,' is the probability above which A should be
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interdicted in equilibrium by P2. However, when edges belonging to A have high

interdiction costs, P2 does not interdict these edges, and may not be able to interdict

A with probability 4ro. The reduction of interdiction probability of A is captured by

E(ijex [tp. Indeed, by complementary slackness (3.16), p* > 0 for (i, j) C A only

when cj = f* < , i.e., when the interdiction cost of (i, j) is too high. The resulting

interdiction probability of A in equilibrium is then given by ir* = 7ro - Z(ij)p 4g.
Consequently, if an s - t path A E A is such that EZ(ipj)E Pi* > 0, then each unit of

flow sent through A increases P1's payoff by pi p(ij)EA 117. This is captured by P1's

equilibrium strategy f*, which saturates every edge (i, j) E E for which p > 0 (see

(3.16)). Since f* only takes s - t paths that are interdicted with probability exactly

7r* (from (3.17)-(3.19)), the resulting equilibrium payoff for P1 can then be derived

from p*; see Proposition 13. Recall that f* is such that interdicting any edge does

not increase P2's payoff. Furthermore, P2 only interdicts edges for which the value

of interdicted flow compensates the interdiction cost (from (3.15)). Thus, her payoff

is 0 in equilibrium.

We note that P1 does not need to randomize its flow in the game F. Indeed, for

every routing strategy or E a(F), the flow I defined by VA E A, f\ = IEo. [f.], satisfies

the following properties: f E F, and Vi E {1, 2}, Vo& E A(), U(u1 , c.2) = U(f, 7).

We illustrate Proposition 13 with an example.

Example 12. Consider again the network represented in Figure 3-5, and assume that

pi = 10 and P2 = 5. Let f* and (p*, p-*) be the optimal primal and dual solutions

of (M) that are represented in Figure 3-7. From Proposition 13, we deduce that the

optimal primal solution f* of (M) is an equilibrium strategy for P1. Furthermore,

we deduce from Theorem 4 that there exists an equilibrium interdiction strategy

a2 E A(I) that interdicts every edge (i, j) E S with probability p*, and every path

A E A with probability at least 7r*. In fact, this equilibrium interdiction strategy can

be obtained from Algorithm 1; see Figure 3-8.

A

154



1

el e4

S e3 Q

e2 e e5

2
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Figure 3-8: Equilibrium interdiction strategy a2 of the game F on the network repre-
sented in Figure 3-5 when pi = 10 and P2 = 5. Note that o = 0.4.

Next, we characterize the set of s-t paths (resp. set of edges) that are chosen (resp.

interdicted) in at least one NE. This involves using the notion of strict complementary

slackness. Specifically, optimal solutions ft and (pt, pt) of (Mp) and (MD) satisfy

strict complementary slackness if:

d1
V(i, j) E E, either p y > 0 or f =

V(i, j) E ., either p - > 0 or f; =

VA E A, either f > 0 or S
(ij)eA

f < i

{AEA I(ij)EA}

ft < c(, ,
{ AEA I (i,j)EA}

(PT. + At.) > 7r. 

We say that ft and (pt, pt) form a strictly complementary primal-dual pair of

optimal solutions of (M). Such a pair is guaranteed to exist by the Goldman-Tucker

theorem f38], and can be computed using any of the.existing methods in the literature

(see 11, 10, 48]). From Proposition 13, we already know that there exists a NE of F
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where P1's strategy is ft and P2's strategy is such that each edge (i, j) is interdicted

with probability p .. In fact, we can show that ft and pt characterize the s - t paths

and edges that are chosen by both players in equilibrium:

Theorem 6. Let ft and (pt, pt) be a strictly complementary primal-dual pair of

optimal solutions of (M). The set of s - t paths (resp. the set of edges) that are

chosen with positive probability by P1's strategy (resp. P2's strategy) in at least one

NE is given by supp(ft) (resp. supp(pt)):

U U {AEAIfA>0}=supp(ft),
(a1*,a

2 *)EE fGsupp(Cl*)

U U Isupp(pt).

(a1*,a 2 *)EE IEsupp(u 2*)

Thus, from Theorem 6, we obtain a complete characterization of the s - t paths

that are taken by P1's equilibrium strategy, and the edges that are interdicted by

P2's equilibrium strategy. By computing ft and (pt, pt) a strictly complementary

primal-dual pair of optimal solutions of (M), the set of critical s - t paths of the

network is given by supp(f t), and the set of critical network edges is given by supp(pt ).

We note that in the setting that we consider, P2 may need to interdict edges that

are not part of any minimum-cut set, and can even belong to different cut sets; Fig-

ure 3-9 illustrates an example. In this example, the equilibrium interdiction strategy

targets edges (s, 1) and (2, t) that do not belong to a same cut set. Thus, Theo-

rem 6 generalizes the previously studied max-flow min-cut-based metrics of network

criticality (see [6, 26, 401).

Finally, we can derive additional equilibrium properties for the setting where each

edge is potentially worth interdicting by P2, i.e., when - < cij, V(ij) E E. Recall
P2

that d', is the threshold on the flow fij that determines P2's incentive to interdict
P2

edge (i, j) or not. If edge (i, j) is such that d 3 ;> cij, then for any feasible flow f E F,P2

fj < d 3 , and interdicting that edge does not increase P2's payoff. On the other

hand, if " < cij, then P2 has an incentive to interdict (i, j) if P1 routes more than
P2

d j3 units of flow through that edge. Next, we exploit the strategic equivalence to the
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52 = 0.1 0t = 0.7

1,2,1,5 2,3,1,10

1,2,1,10 1,2,1,10

2

Figure 3-9: NE when pi = 10, P2 = 5. The label of each edge (i, j) represents

(f, cij, bij, dij). Edge (s, 1) is interdicted by the equilibrium interdiction strategy 52,
but is not part of the minimum-cut set.

zero-sum game IF, as well as Theorems 4 and 5, to derive additional results for this

special case.

Proposition 14. If V(i, j) E E, < cij, then any NE -* = (al*. o2 *) E E satisfies
P2

the following properties:

(i) Both players eqIulibriumi. payoffs are constant and equal to 0.

(ii) P1's routIng strategy satisfies: E - [ p1 F (f) - T(f)] = p1*,).

(iii) The expected cost of P2's interdiction strategy is given by: E,2* [C (I)]

(iv) The expected amount of interdicted flow is given? by: E,. [F (f) - F (f')] =

From (i) - (iv) in Proposition 14, we observe that some quantities (such as ex-

pected interdiction cost and expected amount of interdicted flow) in equilibrium can

be computed in closed form using the parameters of the game and the optimal value of

(M). Thus, our results in Section 3.4 provide a new approach to study the generic se-

curity game IF, and derive equilibrium properties for settings involving heterogeneous

cost parameters and general network topologies.

3.4.3 Special Cases

In Proposition 13, we showed that an interdiction strategy that satisfies (3.18) and

(3.19) is an equilibrium strategy for P2. Although such a strategy can be constructed

by utilizing Algorithm 1, it requires the enumeration of exponentially many maximal
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chains of (S, -<g) (i.e., s - t paths of G). Next, we show that in some cases, this enu-

meration can be avoided, thus leading to the efficient computation of an interdiction

strategy in equilibrium of the game F.

Homogeneous Path Transportation Costs

Assume that the network g = (V, 8) is such that every s - t path has an identical

transportation cost, denoted b := bX, VA E A. If b > pi, then the game r is trivial:

P1's equilibrium strategy is not to send any flow in the network, since the trans-

portation cost incurred for one unit of flow outweighs its value. This implies that

P2's equilibrium strategy is not to interdict any edge. On the other hand, if b < p1,

then (M) can be viewed as a maximum flow problem in the graph G2 = g, where the

capacity of each edge (i, j) E 9 is replaced by min{, cij}. Let Ec be a minimum-cut

set of g2. Furthermore, let E = {(ij) E Ec I d < cij } be the subset of edges in
P2

the minimum-cut set EC that are potentially worth interdicting by P2. Then, an

optimal solution of (MD) is given by:

S-- - if (ij) E ES,
V(ij) c e, p* = P

0, otherwise,

, - , if (ij) G EC\E ,
and V(i, j) E S, p*= Pi

0, otherwise.

Finally, consider the interdiction strategy &2 E A(I), defined by a* = 1 -b
EC P2'

and a2 = -b. The strategy a2 naturally satisfies (3.18). Additionally, consider an0 P2

s - t path A E A. By definition of a cut-set, we obtain that A n EC # 0.

- If A n E# 0, then:

Z - -;2 70 >
= E* A -nAs-

-IEI I i r r<0 =

- Otherwise, A n $CE 0, and 7r = -,'r 0
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Thus, in both cases, (3.19) is satisfied by 2'. Therefore, 2 is an equilibrium

interdiction strategy of the game F.

Series-Parallel Graphs

Let us consider the class of networks that can be represented as series-parallel graphs

(SP-graphs) [27, 43]. A directed graph 9 = (V, 8) is two-terminal series-parallel, with

terminals sg and tq, if it can be produced by a sequence of the following operations:

1. Create a new graph, consisting of a single edge directed from sg to tg.

2. Given two two-terminal series parallel graphs W and K with terminals sw, t-H,

sk, tr, form a new graph g = Pc(W,IC) by identifying sG = s- = s and

tg =t = ti. This is known as the parallel composition of N and c.

3. Given two two-terminal series parallel graphs N and IC with terminals s-, t-,

sl, tK, form a new graph g = Sc(N, C) by identifying sg = sn, t- = si, and

tg = tAc. This is known as the series composition of N and k.

We note that SP-graphs are acyclic.

An SP-graph g can be represented by a binary decomposition tree, which we

denote Tq. The leafs of 7g are labeled by the edges in 9. Each internal node r of

Tg is labeled S, or Pc, depending on which composition is used to construct a new

graph from the graphs represented by the children of r. This decomposition tree can

be obtained in O(log(IVI) 2 + log(|El)) time (see [43]). An example of SP-graph and

its decomposition tree is represented in Figure 3-10.

First, we derive properties satisfied by primal-dual pairs of solutions of (M) in

SP-graphs.

Lemma 14. Let (p*, A*) be an optimal solution of (MD), and let ei | e2 G 8 denote

two edges such that p*, > 0 and p*2 > 0. Let r be the root of the minimal subtree of

Tg that contains e1 and e2 .

- If r = Pe, then there is no path A E A such that e1 C A and e2 G A.
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22 
e4

Figure 3-10: Series-parallel graph 9 (left),

- If r = Se, then there exist an optimal

such that fx* > 0, el E A, and e 2 E A.

Se

e4 PC

e2 e3

and its decomposition tree Tg (right).

solution f* of (Me) and a path A E A

From this lemma, we can deduce that if two edges el and e2 are in parallel,

then we can assign weight to {ei, e2} without violating the set of constraints (3.6).

Furthermore, if several edges el, ... , e, in the support of p* are in series, then we can

assign separate weights to each of them, without violating constraint 3.1c. This is

possible since there exists a path A E A f* > 0, which implies by complementary

slackness (3.17) that:

n

k=1 (ij)EA

Thus, given an optimal solution (p* Ij*) of (MD), we can then derive an algorithm

that exploits the decomposition tree Tg to efficiently construct an interdiction strategy

that satisfies the conditions listed above. The algorithm first assigns each leaf (i, j)

of Tg a vector or defined by oa(j)} = p. Then, iteratively, the algorithm selects

two leaves of the tree that share a same parent r. Let 91 and g2 denote the graphs

represented by the leaves, and let a.2 and oa' be the respective associated vectors.

- If r = S, (i.e., g1 and g2 are in series in g), then we associate the vector

.2" y_ 2 .2 O .a 2/ U + a 2 f to r.

- On the other hand, if r = P, (i.e., 91 and 92 are in parallel in 9), then we asso-
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ciate to r the vector a 2" defined as follows: We iteratively select I C supp(a 2 )

and I' C supp(r 21 ), and associate the weight min{or, or,'} to crc",. We update

the weights from ao 2 and a2', and repeat the process until all the weights are

transferred from a 2 and ar2' to U2".

We repeat this overall process until the tree only has one vertex.

The algorithm is formally defined in Algorithm 2.

Algorithm 2 : Equilibrium Interdiction Strategy in Series-Parallel Graphs

Input: Decomposition tree Tg, and vector p* E R .

Output: Vector ao 2 E R1-1.

T' +- subtree of Tg generated by supp(p*)

Associate each leaf labeled (i, j), for (i, j) c supp(p*), with the vector or2  -p
{(i'M j

k +

while Tk is not the single vertex tree do

Take two leafs sharing the same parent. Let a 2 and a2 ' be the associated vectors.

if the parent is Sc then
.2" .2 .2'

Associate a2" with the parent Sc. Remove the children from Tk.

else if the parent is P, then

Without loss of generality, let us assume that EE1 I - EIE1 I-

while supp(U2') # 0 do

Select I E supp( 2 ) and I' E supp(Cr2 ')

0~-1 +- min{o-2, o- ,'

2 2 U2 -j-,' +- 2' min{c-,j}cr1  cr1 a minf I UP, 2' cr~f cr1, in a U

end while

a-2" c-2 VI E supp(o2)

Associate a2 " with the parent Pc. Remove the children from Tk.

end if

Tk+1 +- resulting subtree.

k +- k +1

end while

It is easy to see that after each iteration of the algorithm, for each subgraph
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9' = (V', E') of 9 represented by a leaf of the resulting tree, its corresponding vector

o2 is such that:

oZ - = ax p
IEI (ij)&\ns,

Therefore, at termination, the algorithm outputs a.vector o 2 that satisfies:

~' 2 * (3.17)*o-u = max Z ax I: T*aAEAAE
IeI (ij)EA (ij)EA

Thus, 0r2 is an optimal solution of (Q). Finally, by assigning the weight 1 -

maxEA 7r* to oU, we obtain that or is an equilibrium interdiction strategy of the

game F.

We illustrate Algorithm 2 with an example:

Example 13. Consider the SP-graph represented in Figure 3-10, and suppose that

an optimal solution of (MD) is such that p*1 = 0.4, p*2 = 0.2, 0.3, * 0.2.

By complementary slackness, 7ree, 4 = 0.6, and 7r1e2 e3 e4} = 0.7.

Then, the first iteration of Algorithm 2 selects nodes {e2} and {e3} of the decom-

position tree Tg. Since {e2} and {e3} are in series, then the algorithm associates the

vector o 2 defined by O-eU2 = 0.2 and a2  - 0.3. Next the algorithm selects nodes

{e1} and {e2, e3}. Since they are in parallel, the algorithm associates the vector or2

defined by o- eie2 } = 0.2, or 2 =0.2, U- 2 - 0.1. Finally, since {e 4} and {ei, e2 , e 3 }

are in series, then the algorithm associates the vector ar2 defined by U- eie2 } = 0.2,

or 2  = 0.2 =2 0.1 0r2  - 0.2. Finally, if or = 0.3, then Cr2 E A(I) is an{ el,e3} - {e3} - e4} jiali C 0  ~.j

equilibrium interdiction strategy for P2. A

Comparability Graphs

We now consider any network, modeled as a directed connected acyclic graph G =

(V, E), and we assume that the edge capacities, transportation costs, and interdiction

costs, are such that there exists an optimal solution f* of (Mp) that satisfies f * > 0,

for every edge (i, j) E S.
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This implies that there exists a path decomposition of f* such that for every s - t

path A E A, f* > 0. From complementary slackness (3.17), we deduce that any dual

solution (p*, pt*) of (.M) satisfies:

VA E A, p = - = rT
(ij)E A (ij)E A

For this special case, problem (Q), whose optimal solution provides an interdiction

strategy in equilibrium of the game IF, can be rewritten as follows:

(R) minimize 5a
IEI

subject to > u = pi, V(i, j) E
{IeI I (ij)EI}

o 0, V(IA) I x A I 1InAl >2

>_0 VI C .

Recall from Lemma 13 that P = (E, dg) is partially ordered set. We now associate

to P its comparability graph W, which is an undirected graph whose set of nodes is E

and whose set of edges is given by {(e, e') C S2 e g e er e' g e}.

We recall that a set of nodes I C E in N is a stable set if any two nodes in I

are not adjacent in W. Let S := {I E I VA c A, JI n Al < 1} denote the set of

interdictions that can potentially be part of the support of an optimal solution of

(7). By definition of the partial order -<a (see Section 3.4.2), we then deduce that S

is the set of stable sets of W. Indeed, a set of nodes I in W is a stable set if and only

if any two nodes e and e' in I are not comparable in the poset P, i.e., there is no s - t

path that intersects with both e and e'. This is equivalent to II n AI < 1, VA E A.

Surprisingly, this implies that (7) can be viewed as a minimum-weighted fractional

coloring problem on the comparability graph W, whose primal and dual formulations
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are given as follows:

(Rp) minimize L a
IeS

subject to -c pUj, V(i, j) E S
IIES I (i,j)Ei}

Or 0, VI E S.

(RD) maximize p yYij
(ij)ES

subject to Z y I, VI E S
(ij)eI

Yij 0, V(ij) E .

Now, we recall some graph theoretic definitions. An undirected graph is a perfect

graph if the chromatic number of every induced subgraph equals the size of the largest

clique of that subgraph. Furthermore, an undirected graph g is strongly perfect if

for each induced subgraph g' of g, ' contains a stable set that meets all maximal

cliques of g. Such a stable set is called a strong stable set.

Then, we know that every comparability graph is a strongly perfect graph, and

every strongly perfect graph is a perfect graph 113]. In addition, problem (Rp) is

totally dual integral if and only if W is a perfect graph (see [33]).

Therefore, we conclude that the optimal value of (R) is the weight of the maximum-

weighted clique in W. Since a maximal clique in W corresponds to an s - t path in

the directed graph g, we obtain that the optimal value of (R) is:

MxE * (3.17) *
max p max7rA.

AEA AEA
(ij)EA

Then, an optimal solution of (Rp) can be obtained by using Hoing's O(IXI2 )-

time algorithm [45]. This algorithm iteratively selects a strong stable set of the

comparability graph, and assigns weight to it while making sure that each edge (i, j) E

E does not receive a weight larger than p!. We describe the algorithm in more details

in Algorithm 3.
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Algorithm 3 Equilibrium Interdiction Strategy from Comparability
Graphs

Input: Comparability graph WH of the poset P = (S, -g), and vector p* E R1.

Output: Vector o.2 E R"'.

p1 pi~ , V(i, A) E S, X <- supp(p').

' subgraph of 71 generated by X'

k +- 1

while Wk is not the empty graph do

Select a strong stable set Ik of Wk

wk +-min{pk , (ij) E Sk}
or2 k Wk Pk+ +- k k+j)ESk 1 nk V(ij) E Xk\Sk

Xk+1 <- supp(pk+l)

71'+- subgraph of Wk generated by Xk+1

k <- k + 1

end while

We note that since 'H is a strongly perfect graph, then each iteration of the algo-

rithm decreases the length of each maximal clique in the graph by the weight assigned

to the selected strong stable set. This explains why when the algorithm terminates,

the total weight assigned to u.2 is equal to the length of the maximal clique in 71.

We illustrate Algorithm 3 with an example.

Example 14. Consider the network in Figure 3-11.

1

e 

e40

e2 e5

2

Figure 3-11: Directed acyclic gra
corresponding poset (right).

e5

e2

C3

e4

ph ! (left), and the comparability graph 71 of its
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We suppose that the parameters of the problem are such that an optimal dual

solution (p*, [*) of (M) is such that p*1 = 0.1, p*2 = 0.2, p 3 = 0.2, p*, = 0.6, p* =

0.4. In addition, we assume that for every path A in the network, p(ij)EA = P r*.

The first iteration of Algorithm 3 selects the strong stable set P = {e2, e3, C4},

and assigns a weight o-4i = 0.2 to it. Then, it selects the strong stable set 12 =

and assigns a weight a-2 = 0.1. Finally, it selects the strong stable set 13 = {e4 , e},

and assigns a weight o-r = 0.4. Note that the algorithm used a total weight of

0.7 = max p . Furthermore, if we assign the weight a = 0.3, the resulting

probability distribution is an interdiction strategy in equilibrium of the game F.

A

3.5 Summary

In this chapter, we studied an existence problem of probability distributions over

partially ordered sets, and showed its implications to a class of security games on

flow networks. In the existence problem, we considered a poset, where each element

and each maximal chain is associated with a value. Under two practically relevant

conditions on these values, we showed that there exists a probability distribution

over the subsets of this poset, with the following properties: the probability that each

element (resp. maximal chain) is contained in a subset (resp. intersects with a subset)

is equal to (resp. as large as) the corresponding value. We provided a constructive

proof of this result by designing a combinatorial algorithm that exploits structural

properties of the problem.

By applying this existence result, we were able to study a generic formulation

of network security game between a routing entity and an interdictor. To overcome

the computational and analytical challenges of the formulation, we proposed a new

approach for analyzing equilibria of the game. This approach relies on our existence

result on posets, as well as optimal primal and dual solutions of a minimum cost

circulation problem. Furthermore, we showed that a pair of optimal solutions of

the circulation problem that satisfy strict complementary slackness provides a new
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characterization of the critical network components that are chosen in equilibrium by

both players.

3.6 Proofs of Statements

3.6.1 Proofs of Section 3.2

Proof of Lemma 9. Let P be a finite nonempty poset, and let S be the set of minimal

elements of P. If ISI = 1, then S is an antichain of P. Now, assume that ISI > 2,

and consider x # y E S. Since x (resp. y) is a minimal element of P, then y 7 x

(resp. x 7 y). Therefore, x and y are incomparable, and S is an antichain of P.

Now, consider a maximal chain C E C, and assume that C does not contain any

minimal element of P. Let x be the minimal element of (C, _Alc). Since x is not a

minimal element of P, there exists y E X\C such that y -< x. By transitivity of -,

we deduce that y -< x', Vx' E C. Therefore, C U {y} is a chain containing C, which

contradicts the maximality of C. Thus, every maximal chain of P intersects with the

set of minimal elements of P.

Proof of Lemma 10. Consider X' C X, and C' C C that preserves the decomposition

of maximal chains intersecting in X'. Let us show that -c, defined in Section 3.2.1

is a partial order on X':

- Reflexivity: For every x E X', x -C, x by definition.

- Antisymmetry: Consider (x, y) E (X') 2 such that x -c' y and y <c, x. If x $ y,

then we would have x -< y and y -< x, which contradicts -< being a partial order.

Therefore, x = y.

- Transitivity: Consider (x, y, z) E (X')3 , and assume that x -c, y and y -<c z.

If x = y or y = z, then we trivially obtain that x -<c, z. Now, let us assume

that x # y and y # z. By definition of -<c,, 3 C' E C' I (x, y) E (C') 2 and

x -< y. Similarly, 3 C2 E C' I (y, z) E (C2)2 and y -< z. We can rewrite C' and
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C2 as follows:

C1 = {XO, ...,X X, X+ 1, ... ) ,l+m y X+m+, ., iiX+m+n}

0 2 {Yo, ... Yq- , Yq+1 ... ,Yq+r Z, Yq+r+1, , Yq+r+s}

Now, consider the maximal chain C2 = {,..., Xl = X, X 1+1, - . =

Yq+1,- , Yq+r =Z, Yq+r+, ... , Yq+r+s}, as illustrated in Figure 3-12.

CCl
C1 Z

Y

x
0-2

Figure 3-12: Illustration of the transitivity of dc'. C is represented by the thick
chain.

Since C' and C 2 intersect in y E X', and C' preserves the decomposition of

maximal chains intersecting in X', we deduce that C2 c C' as well. Furthermore,

(x, z) E (C2)2, and the transitivity of - implies that x -< z. Therefore, x dc' z.

Thus, -c' is a partial order on X', and P'= (X', -c,) is a poset.

Let C C X' be a maximal chain of P' of size at least two. Let us rewrite C =

{.i, ... , Xn with n > 2, where Vk E [1, n - 11, Xk -<:c' Xk+1. We show by induction

on k E [2, nr that 3 C' E C' such that {xi, .. . , Xk} C C'. If k = 2, then by definition,

3 C' E C' such that {1, X2} C C'. Now, assume that the result is true for k E

[2, n - 1]. Consider Cl E C' such that {x 1 , ... , Xk} C C'. SinceXk -<C' Xk+l, then

C 02 C C' such that (xk, k+l) E (C2)2. Analogously, we can show that C2 (illustrated

in Figure 3-12), which is in C', contains {, ... , Xk+1}. Therefore, by induction, we
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obtain that 3 C' C C' such that C ={i, ... , x,} C C'. Since C C X', then we have

C = CnX' c C'nX'.

Now, assume that I x' E C' n X'\C. For every k E [1, nr, (Xk, X') E (C')2.

Therefore, x' is comparable in P' with every element of the chain C. This implies

that CU {x'} is a chain in P', which contradicts the maximality of C in P'. Therefore,

C = C' nX'. D

Proof of Proposition 9. First, let us show that the set of constraints (3.1a)-(3.1b) is

equivalent to the set of constraints (3.5)-(3.6). Let - E RLP that satisfies Z{spjizs} o =

Px, Vx C X. For every maximal chain C E C, we have the following equality:

E Px = E s = - 1{xss} = 5- is n C|. (3.23)
xEC xGC {SEP I XS} SEP xEC {SEP I SnC$0}

Therefore, for every maximal chain C C C, we obtain:

O- c7rC (3.4 23) 6C 5 s(iS n C - 1)
{SEP I SnC#0} {SEP I SnC$0}

= o s(|S n Cl - 1). (3.24)
{SEP I ISnC|>2}

Now, let us show that (D) is feasible if and only if the optimal value of (Q) satisfies

z* < 1.

If 3- E R1p that satisfies (3.1a)-(3.1c), then we showed that - also satisfies

(3.5)-(3.6). Therefore, a is a feasible solution of (Q). Furthermore, the objective

value of a is equal to 1, which implies that z*,) < 1.

- If z* 1, let -* be an optimal solution of (Q). Necessarily, o = 0 and

we can define a vector a EC RIPI as follows: as = -*, VS E P\0, and o- =

1 - SE- = 1 - Z(Q) > 0. Therefore, a E R'1 and satisfies (3.5)-(3.6),

which we showed is equivalent to satisfying (3.1a)-(3.1b). Finally, a satisfies

(3.1c) by construction. Thererefore, a is feasible for (D).

D

169



3.6.2 Proofs of Section 3.3

Proof of Proposition 10. We show (i) - (iv) by induction.

First, consider k = 1. Since C1 = C, p1 = p, i1 = F, and 31 = 6, then (i) follows

from (3.2) and (3.4). Since X0 = X, and C1 = C contains all maximal chains, then

(ii) is automatically satisfied. (iii) is a direct consequence of (3.3).

Now we apply Lemma 10 to show (iv), i.e., P1 = (X1 -<1) is a poset. Specifically,

we show that C preserves the decomposition of maximal chains intersecting in X1 .

Consider C, C2 E C such that C1 n C2 n Xi # 0, and let us consider the other two

maximal chains C' and C), which we know from (ii) are in C1 , since X' C X0 . We

need to show that they are also in U1 . Let x* E C' fl2 f X 1 , and let us rewrite

C1 = {X, ... ,X_ 1,iXo = x*, I, .. ., Xn} and C 2 ={y_,...y_1,yo = *y,. .., ym}.

Then, C= {Xk,. .., ,X ,y,.. ., ym} and C2 ={yl,..., y1, X*, 1,. ..,Xn}. We

now use (i) - (iii): Since C1, C2 c C'; the conservation law is satisfied by 7' on the

maximal chains in C1 intersecting in X; C1, C2 E Cl; and since 31 > 0 on C', we

have:

1: PI + 71 1~ i + 71 2 = 7r' + ir.= 1 X X
i=-k j=-I xEC2 xEC'

n m

< z + z P
i=-k j=-l

Therefore, 31 =1- = 0, and C2 and C2 are in C. From Lemma 10, we conclude

that P1 = (X1 , --<,) is a poset.

We now assume that (i) - (iv) hold for k E [1, n*], and show that they also hold

for k + 1:

(i) Since pk is a poset, the k-th iteration of the algorithm is well-defined, and we

can consider the set Sk and the weight wk at that iteration. Then, for every
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C E C, (A8), (A9), and (3.7) give us:

Z p +l _,k+1 _ 7k _ Wk n Sk|+Wk fsknC+01

xEC xEC

= - wk( Cn Sk| - 1)l{sknc+0} = 6 k+1

Now, consider a maximal chain C E Ck. Since 6k > 0 on Ck, then Ck = k U

(from (A12)).

(a) If C E Ck, then by definition of - ,, C n Xk is a chain in pk. From

Lemma 9, we know that Sk is an antichain of pk. Therefore, ISkn(CnXk)l < 1.

Since Sk C Xk, we obtain that |Sk nC = (SkfnXk)nC| = |Skn(CnXk)| < 1.

Thus:

6k+1 G) - wk (|C n Sk- 1)1 \sknc|;>2} = 6k = 0.

(b) If C E &, then by definition of wk, we have:

6 k+1 (_ _ wk k AC - 1)l{|Sknc>2} 0.

In summary, for all C C o +1 > 0. Since Ck+1 C Ck, then for all C E

Ck+1,I k+1 > 0.

(ii) Consider C1, C2 E Ck+1 C Ck such that C1 n C2 n Xk # 0, and let C2 and

C2 be the other two maximal chains such that C2 U C2 = C1 U C2 . Since
(All)

Xk C Xk-, then C1 n C2 A Xk-- # 0. Therefore, by inductive hypothesis,

C1, C E Ck as well. Let x1 (resp. yi) denote the minimal element of the chain
(AlO)

C1 n Xk (resp. 02 n Xk) in P. Since C', 02 C Ck+1, then (x1 , yi) E (sk)2.

Let x* E Xk denote an intersecting point of Cl and C2. Since C n Xk is a chain

in P, contains x*, and whose minimal element is xl, then necessarily, x1 -< x*.

Similarly, we obtain that Y, -3 x*. Therefore, the minimal element of C2 n Xk

(resp. C2 n XI) is x1 (resp. yi), which is in Sk. Thus, C2, C2 E Ck+l, and Ck+l

preserves the decomposition of maximal chains of P intersecting in Xk.
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(iii) Now, given C', C2 in Ck+1 that intersect in Xk, we just proved that C2 and C'

are in Ck+1 as well. Therefore, VC E {C1, C2, C2, C2}, we have 7r +1 (3.) r -wk

(since Sk n C 7 0). By inductive hypothesis, since Ck+1 C Ck and Xk+1 C Xk,

7k satisfies the conservation law between C', 02, C?, and C2. Thus, we can

conclude that:

7k 1 +Fk+1 T k +7rk 2 w kw7k +wk 2Wkw= 7k--+1 7 k+1
i C2 C C C1  02 2 C i

(iv) This is a consequence of (i) - (iii); the proof is analogous to the one derived for

the first step of the induction.

Therefore, we conclude by induction that (i) - (iv) hold for every k E 1, n* + 1].

Proof of Lemma 11. Consider 01) c C, and suppose that 3 k, E [1, n* such that

C(1) E Cki, 01) n Xki # 0, but 01) Ckl+1. This case arises when the minimal

element of c() n Xki in P is not a minimal element of pki. Then, we can find a

chain in pki whose maximal element is the minimal element of C() n Xki in P, and

whose minimal element is a minimal element of Pk. From the definition of pki and

Lemma 10, this chain is contained in a maximal chain in Uk. We can then exploit

(i) - (iii) in Proposition 10 to show that there exists a maximal chain in Cki+l that

satisfies the desired properties.

Formally, let x* denote the minimal element of C0() nXki in P. Since 01) Cki+1,

then x* V Ski, i.e., x* is not a minimal element of pki. Let C' C Xki denote a maximal

chain of pki that contains x*. From Lemma 9, we know that the minimal element of

C' in pki, which we denote yi, is a minimal element of pki. Therefore yi E Sk and

yi # x*. Thus, C' is of size at least two, and there exists a maximal chain C2 E Uk

such that C' = C2 n Xki (Lemma 10). Since 01) n C2 n Xkil- I {*} # 0, let us

consider the other two maximal chains C 2 E C such that C2 U C21 C() U C2.

Since 01) and C2 are in Cki, then from Proposition 10, C2 and C2 are in Cki as well.
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Let us rewrite:

C) = {X-m, ... ,XO = x X...,Xn}, C2= -- Yo,Yi,, ,Yp = X*, ,p+r},

C = - ,.. _,yp,...,yp+r}, C21={y-",...,IyPI X1,...,iXn};

they are illustrated in Figure 3-13.

C1 C2

C C

'~X1 Yp 1

X-1 Yp- 1

J. Y2 .

YO *

Figure 3-13: Illustration of C), 02, 02, and C. In dark blue are the elements in
Xkl, in light blue are the elements that may or may not be in Xki, and in white are
the elements that are not in Xkl. The "double" node yi is in Ski.

Since x* is the minimal element of c() n Xki in p, then Vi E [-m, -1], x0 ( Xkj

and p 0. Since 02 Ck and C2 E Cki, and from the conservation law between

C), C2, C2 and C', we obtain:

p+r -1 p+r

7f ki- 1 (3.10) k i(3.8) ki 6 Pk + Ak
7r2lWC(l) = C2 - S P -< C2

3=-q z=* v j=p=0 =0 >0

(3.9) P- 1

E p. (3.25)
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This implies that:

n p-1 p-1 p-1
6k1 (3.) \7 ki k1  ki \~,ki (3.8) 6 k1  ~k1  ~k1 k1

0(1) /Px% -c1 TC +Z E Y - +. 7Y3  c 1 -c c(' - ~
i=0 j=-q j=-q j=-q

(3.25)

> 6k1 -

Furthermore, since yi is the minimal element of C2 n Xki in pki, it is also the

minimal element of C2 n Xk, in P. This implies that yi is the minimal element of

Ci n Xki in P. Since yi belongs to Ski, we deduce that C2 C Cki+l.

Finally, since Vi E [-m, -1 , xi Xkl, then C nXk1 2 {* ,fx , .. .,z}flXk1 -

CM' n Xk1, as illustrated in Figure 3-13. In conclusion, given C(E E Cki\Ckl+l such

that 01) n Xkic # 0, ] C(2) := C2 E Ck,+1 such that 6 k 1 > 6 k2 and C(2) n Xkl D

01) n X kl.

Proof of Proposition 11. We recall that the algorithm terminates after iteration n*
(All)

if Xn*+ 1 = 0. First, we note that X' C X and Vk E 1,rn*], Xk+1 C Xk.

Additionally, C' C C, and from (A9), we have Vk E [1, r*], C+' C &. Now, consider

k C [1, n* , and the weight wk chosen by the algorithm at iteration k. From (A7),

SE Xk such that wk = pX, or : C E C such that wk = sk 1. In the first case,

we deduce that x Xk+l, so Xk+1 c Xk. In the second case, either C ( Ck+1, or

C E Ck+l and 6k+l = 0, which both imply that C E Ck+l. Therefore, C k+ and

Thus, Vk E [1, n*], lXk+l x C'^k+ < |Xk X CI. Since IX' x C 1I E N, if n* were

equal to +o0, we would obtain an infinite decreasing sequence of natural integers.

Therefore, we conclude that n* E N, i.e., the algorithm terminates. At termination,

we have Xn*+l 0.

Next, we show that the output o E R'1 of the algorithm is a feasible solution of

(Q). First, the equality constraints (3.5) are trivially satisfied:

n* n*

VxEX, Px = = pJO*1 + w I{xcsk} = sklGxcsk} = S Us.

k=I k=l {SEPIXES}=0
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Regarding constraints (3.6), we first show the following equality:

n*

VC EC, 3;n*+1 ( 61 - Z wk(Sk n C| - 1)lI sknc 2}
k=1

(A1) A7) E
{SET' I isnlI2}

-s ( s n C - 1).

Therefore, constraints (3.6) are satisfied if and only if VC E C, n*+1 > 0.

From Proposition 10, we know that VC E Cn*+1 , 6n*+1 > 0.

C) C C, and suppose that E k, E [1, n*i such that 01) E Ckl\Ckl+l

Now, consider

If 01) n Xkj = 0, then Vl E [kin*],
(All)

X' C

IS, n C 1 )1 = 0 since S'

Xkl. Therefore, since C) E Ckl, we have:

6 n*+l ( 6 i
0(M = CM1

- wl(IS' n C )I - 1)1{fsnc(1)2} = 6M(> 0.
I=k1

If 01) n # 0, then 3 C(2) E Ckj+l such that 6ki > 6k and C(2 n Xkj D
C(' > 602) and ) _

01) n Xkj (Lemma 11). Consider i E [ki, n*].
(A6),(Al1)

Since S' C

Si n C(2) D si n 01), and we obtain:

Vl E jki, n* + 1i, 6-c(1)

I-1
= 6 j9 -- [ wi(iSin Cn1)j - 1)I{IsincoI>2}

i=ki
1-1

> 62 - Wi(Si n C(2) - 1)-{Isinc(2)j 2}
i=ki

= ( (2)

In particular, 6 * 1 > 6 .*+
r(1) - C( 2 )

arise:

(3.26)

We note that C(2) E Cki+l, and two cases can

1) C(2) E Cn*+1 . In this case, 6n*l1 > 0 (Proposition 10).

2) E k2 E k1+ 1, n*f such that C(2) E Ck2\Ck2+1. Then we reiterate the same

argument:
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(a) If C(2) X k2 = 0, then *+ 1 = 6 k2  (. .
) ) n the C(2) 02) - 0

(b) If C(2) nXk2 # 0, then there exists C(3) E Ck2+1 such that C(2 2 C(3)

and C(3) n Xk2 D C(2) n Xk2 (Lemma 11). Analogous calculations to

(3.26) show that 6C(2 - C(3)

By induction, we construct a sequence of maximal chains (C(8)), a sequence of

increasing integers (k,), and a termination point s* E N*, such that:

Vs E 1, s* - 1, C(s) E Cks\Ck,+1, 3*1 6 gln*+), and 6n*l > 0.

Note that s* exists since k 5 < n* + 1. Then, we deduce that 6 n+M > - > - fl6"1 > 0.

Thus, VC E C, 6n*+1 > 0, and constraints (3.6) are satisfied by the output a of

the algorithm. In conclusion, the algorithm outputs a feasible solution of (Q). 0

Proof of Proposition 12. For all k E J1, n* + 1 , let Wk := max{max{pk, X E X},

max{4rk, C E C}}. First, we show that Vk E [1,1n*, Wk+1 = Wk - wk. Consider

k e 1, n*], and let C E C\Ck+1. Then, there exists k, < k such that C E Ckl\Ckl+1.

-~ I oX k l -, t e k+1 < 7k < wXkl (3.) _ 6k1 (3.9)

- if C n X =0, then 7+ r _ < 0.

- If Cn Xk #0, then 3 C(2) E Ckl+1 such that C > C(2) and C(2)n Xki D

C n Xkj (Lemma 11). This implies that Vl E [ki, n* + 1 , 6b

C(2) n Xi D C n X'. Then, we obtain:

(3.26)
> 02) ,and

PX - + 7FC(2) + 6C1()

XEcnx,

XEcnxi
(3.26)

<K C2

S px
Xe ((2) nx1 )\(Cnx')

In particular, we deduce that 7r- C (2) and -rC+1 - C(
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As in Proposition 11, we construct a sequence of maximal chains (C(s)), a sequence

of increasing integers (k,), and a termination point s' E N*, such that:

C) = C, Vs C [1, s' - 1 , CCs) E Ck,\Cks+, 7k,) < 7rk 1 >, and 7r k1 < 7rkil

At termination, C(S') E Ck5', and either k, = k+1, or ks, < k-+I and C ') nXk' =

0.

- If ks, = k + 1, then we conclude that wr k <rCk, and 7rk+1 < rk+, with

C(s') E Ck+1.

- If ks, < k + 1 and c(s') n Xk,' = 0, then:

(3.7) (3.7) (3.9) (8)
kr+1 < kr k <rg~ ) 7kr '38 -o ', < 0 < pk+1 < pk V X.c rC < 70 (.Sl) C 3) _ 6CSk , I -x Ez

Thus, we deduce that Wk = max{max{4p, x E X}, max{7r, C E Ck+1}}, and

Wk+1 - maxfmax pk+l, x E X}, maxf{ir+l, C E Ck+1}}.

Since k E [1, n*j and Algorithm 1 terminates after the n*-th iteration, we know

that Xk # 0. Furthermore, since Vx E Xk, p > p+1 > 0, and Vx E X\Xk,

S=p+1 = 0, then max{p, X} = max{p, X E Xk}, and max{p+l, E

X} = max{pk+1 , X E Xk}.

Next, we consider x E Xk\Sk. Then, 3y # X E Xk such that y h, x, and

y E Sk is a minimal element in pk. By definition, E C E Ck such that y, x E C, and

y x x. In fact, y is the minimal element of C n Xk in pk, and C E Ck+1. Since
-k k (3.8)k k+ k>pESk

C E Ck then 7rc = E EC , P p + PX p- . Furthermore, since y E 5k, then

k(A7) kk1 k<7k-k<7 k(.)F~
wk < pY. Thus, we obtain that p+ 1 = pX qr - p r - wk (__) + , from

which we conclude that Wk = max{max{pk, X E Sk} max{7r, C E Ck+1}}, and

Wk+1 = maxfmaxfpk+l, X E Sk}, max{7rk+1, C E Ck+1}}.

Finally, we note that VC E Ck+1 +1 (37) Wk since SkOnC 0, and Vx E Sk,
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k 1 (As) k -wk

p+ X W _ . Putting everything together, we conclude:

W+1 =max{max{pk+1, XE Sk}, max{7+1, C E Ck+l}

= max{max{p , X E Sk}, max{7{ , C E Ck+1} _ Wk Wk _ Wk.

Next, we show that W"*+1 = 0. First, we know that Vx C X, p *1 = 0.

Secondly, VC E C we have 7r*+1 6 *+ < 0. Thirdly, S"* / 0 since P'*

is a nonempty poset. This implies that:

n*+1 = max{max{pn*+l, XE Sn*}, max{7rn*+1, C EC n*+ 1}} = 0.

Finally, using a telescoping series, we obtain:

SEs
SE'P

n*

k=1

n*

= Wk - Wk+1=l -W1 -
k=1 =0

(A1),(3.7)
= 'max{max{px, x E X}, max{7rc, C E C}}.

0

3.6.3 Proofs of Section 3.4

Proof of Lemma 12. Let z*y,) denote the optimal value of (M' ) and (M'D), and

let f* E R be an optimal solution of (Mp). Then, f' E RS defined by

{AEAI (ij)EA} f* is a feasible solution of (M'). Therefore:

E () Z
{iEV I (i,t)ES}

f2 b- 0 f of**

(ij)Ee AEA,

Now, let f' E R1" be an optimal solution of (M'). From the flow decomposition

theorem, there exists a vector f* E JA such that V(i, j) F,
+R suhtaA~, )Ef' = {EAAI (i,j)El A}

Since f* is a feasible solution of (Me), we deduce that z(M) > Z*,). In conclusion,

Z*yM = ZM*), and an optimal solution of (Mp) can be obtained by decomposing an
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optimal solution of (M') into s - t paths.

Now, consider an optimal solution (f', M', y') of (M'). Then, one can verify that

for every s - t path A E A:

(pi1 + I) > 0bi = ,
(ipj)E 3

Pi (ij)EA

since the y' cancel in a telescopic manner along each s - t path. Therefore, (p', p') is

a feasible solution of (MD). Since Z(M) = ZM), we can conclude that (p', /') is an

optimal solution of (MD)-

Proof of Lemma 13. Let us show that -g is a partial order on E.

- Reflexivity: For every u E 8, u -g u by definition.

- Antisymmetry: Consider (u, v) E E2 such that u -<g v and v _g u. If u # v,

then there exists A' and A 2 in A such that A' traverses u and v in this order,

and A 2 traverses v and u in this order. They can be written as follows:

A1 = {U, .. . UnU Un+1 ... ,Un+m, V, Un+m+1, ... , Un+m+pl

A 2  {V1 .  , V, V q+1, ... , Vq+r, U, Vq+r+1, .. , Vq+r+s}.

Then, {u, Un+ 1 , - - , Un+m, V, Vq+1, . . ., Vq+r} is a cycle (see Figure 3-14), which

contradicts 9 being acyclic. Therefore u = v.

U02  2

3 4

Figure 3-14: Proof of antisymmetry of -g by contradiction: if u -g v, v ig u, and
u $ v, then one can see that u and v necessarily belong to a cycle (shown in thick
edges), although g is acyclic.
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Transitivity: Consider (u, v, w) E S3, and assume that u -g v and v -g w. If

u = v or v = w, then we trivially obtain that u -g w. Now, let us assume that

u v v and v f w. Then, there exists A' and A2 in A such that A' traverses u

and v in this order, and A2 traverses v and w in this order. They can be written

as follows:

A' = {Ui, ... ,UUn+1 ... , Un+m, V, Un+m+l, ... ,Un+m+p},

A2 = {VI,..., Vq, V, Vq+1, ... , Vq+r, W, Vq+r+1, ... , Vq+r+s}-

Then, Af = {UI,. Un, U, Un+1, I un+m, VVq+1,. ..,Vq+r, WVq+r+1, ... , q+r+s}

is an s -t path (see Figure 3-15), and traverses u and w in this order. Therefore,

u --<g W.

A' \2 O-~
2 t

Figure 3-15: Proof of transitivity of -g: if u -g v, and v d w, then one can

construct an s - t path A2 (in thick line) that traverses u and -w in this order.

In conclusion, P = (E, g) is a poset.

Next, we prove that the set of maximal chains C of P is A. First, we show that

C C A. Consider a maximal chain C E C of P. If C = {u} is of size 1, then necessarily

u = (s, t), because ! is connected. Therefore, C = {u} is an s - t path. Now, assume

that IC| > 2. Let us write C = {u1, .. ., u}, where Vk E [1, n - 1], Uk -<:g Uk+1-

Since ui -<g U2 and u2 -<g U3 , then there exist A' and A2 in A such that A' traverses

ui and u2 in this order, and A 2 traverses U2 and U3 in this order. When showing the

transitivity of -g in the proof of Lemma 13, we deduced that there exists Al E A

that traverses u1 , U2, and U 3 in this order. If we repeat this process, we obtain an

s - t path A E A such that C C A.

Now, assume that 3 u E A\C. Since C C A, and u e A, then we deduce (by

definition of -g) that u is comparable with every element of C. Therefore C U {u} is
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a chain in P, which contradicts the maximality of C. Therefore C = A and C C A.

To show the reversed inclusion, consider an s - t path A E A. From the definition

of -_<g, A is a chain in P. Let us assume that A is not a maximal chain of P, i.e., there

exists a maximal chain C E C such that A ; C. Let us write A = {ui,... , us} where

Vk E [1, n - 1 , uk -<g Uk+1, and let v E C\A. Since A C C and v E C, then v is

comparable with every element of A. By transitivity of -g, if E k E [1, n] such that

V <g Uk, then Vl c [k, n , v -g ul. Similarly, if 3 k E 1, n such that Uk -<g v, then

VI E [1, k], u -<g v. Therefore, three cases can arise:

- v -<g u1 . In this case, 3 A' = {W1, ... , W , V, W+ 1 , ... ,W+m, Ui, Wn+m+1, ...

Wn+m+p} E A. However, since A is an s - t path, then the start node of u1 is s,

which is also the start node of wi. Therefore, {w1 , ... n, V, wn+ 1,. -, Wn+m}

is a cycle, which is a contradiction.

- Un -<g v. In this case, 3 A' = {V1,..., Vq, Un, Vq+1, Vq+r, V, Vq+r+1, ... ,Vq+r+s}

E A. Analogously, we deduce that the end nodes of un and vq+r+s are the

destination node t, which implies that {Vq+1, ... , Vq+r, V, Vq+r+1, --- , Vq+r+s} is a

cycle in the acyclic graph 9.

- Uk -<g V -<g Uk+1 for k E T1, n - 1]. In this case, there exist two s - t paths

Al, A2 E A defined by:

AI = {V1, .. .,VUkq1,.. ., Vq+r, V, Vq+r1,..., Vq+r+s

A 2 = {Wi, ... , Wn, V, Wn+1, - -, Wn+m, Uk+1, Wn ?n+1,-- Wn+m+pl.

One can verify that {Vq+1,. . , Vq+r, V, Wn+1, - . -, Wn+m} is a cycle in g since the

start node of Vq+1 is the end node of wn+m. This is in fact the end node of Uk,

which is also the start node of Uk+1 since A is a path. This contradicts g being

acyclic.

Thus, A = C, and A C C. In conclusion, C = A.

El
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Proof of Proposition 13. Let f* and (p*, bt*) be optimal solutions of (Mp) and (MD),

respectively. From Lemma 13, we know that (8, -g) is a poset, whose set of maximal

chains is the set of s - t paths A. Thus, showing that there exists i2 E A(I) that

satisfies (3.18) and (3.19) is an instantiation of problem (D). Since (p*, [-*) is a feasible

solution of (MD), then condition (3.2) is satisfied, i.e., VA E A, E >X *w.

Additionally, for any s - t path A E A, r* = 1 - ()A(bii +p ), and 7r* is an

affine function of the elements constituting each s - t path. Therefore, lr* satisfies

the conservation law described in (3.3). Finally, since V(i, j) E 8, p- E [0, 1], and

VA E A, 7F* 1, all conditions of Theorem 4 are satisfied, and we obtain the existence

of an interdiction strategy 52 E A(I) satisfying (3.18) and (3.19).

Next, we show that (f*, 52) is a NE. We can write the following inequality for

P1's payoff:

Vf EF, Up(fi52 ) 1 Pi fAEa21 - 1IinA#0}] - bAfA
AEA AGA

=p f-pi f a2=P1Z~fA -P1fA0
AEA AEA {IEII InA#0}

(3.19)

Pi A * = pi fijp Pi cigp . (3.27)
AEA (ij)EA (i, )EE FjE

Now, given A C A such that fx* > 0, we obtain:

E
f{IEI I inAoo}

a25 E I nA = 2 1{(i,j)I} (3.18)

IeI (ij)EA IEI (ij)EA

(3.17),(3.19)

{IEz I InAA0}

(3.16)Furthermore, V(i, j) C E such that p > 0, f*3 = ci3. Then, inequality (3.27) is

tight for f*, and U1(f*, 52) = Pi cij y .
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Similarly, regarding P2's payoff, we first derive the following inequality:

VIE I, Z > f* =5 f,*I n Al
(ij)E P2 (ij)EI {AEA I (i,j)EA} AEA

> 1inA5o} = F (f*) - F (f*I). (3.29)
AcA

(3-12)(3.29)
Therefore, VI C , U2 (f*, I) P2(F (f*) - F (f*I)) - E(ij)E dij 0.

Now, given A E A such that f* > 0, we obtain:

0o z 1*(3.17) z * (3.18) : a27 - = * P13 - IS n Al
(ij)EA (ij)EA JE1

Z a(3.19)
I > wr- 5 M4. (3.30)

fIEI1 inA$VJ} (ij)EA

Therefore, VI E supp(a2), II fn Al I 1. Furthermore, given I E supp(a 2) and
(ij)CIZAEI~,)A~A(3.15) dL sice2). I

(since * > 0. Thus, VI E supp(&2 ), inequality

(3.29) is tight, and U2 (f*, I) = 0. Therefore, U2 (f*, a
2 ) = 0, and (f*, 52) is a NE.

Proof of Theorem 6. Let ft and (pt, 1 ut) be optimal solutions of (Me) and (MD)

that satisfy strict complementary slackness. We denote a2 C A(1) the interdiction

strategy, constructed from Algorithm 1, which interdicts every edge (i, j) E S with

probability pT , and interdicts every s - t path A E A with probability at least rw:

- , . Given E the set of NE of the game F, let:

71:= U U fA E A I fA>01,
(0l*,U 2

*)C fEsupp(oi*)

W2 = U U I.
(l*,U

2*)Er IEsupp(a
2 *)

From Proposition 13, we know that (f t, 52) is a NE. Consequently, W-1 ; supp(f t),

and W2 2 supp(pt). To show the reversed inclusions, we exploit properties of zero-

sum games: Recall that the game F is strategically equivalent to the game F =
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({1, 2}, (F, ), (ii1 , -1ii)) where i1 is given by (3.13). Therefore, each player's payoff

in f is identical in any NE. We note the following equality:

E&2[F (fW ) - F (f 3.) ( 3 0) f 2[IrnA 1 (3-18)5ft E Pt
AEA AEA (ij)EA

(3.21),(3.22) *

(ij)ee

(3.31)

where z(*) is the optimal value of (M). This enables us to obtain P1's equilibrium

payoff in the zero-sum game F: For every (ol*, O2 *) E E,

U1(ol*, o2 *) = Ui(f t, 2 )

E&2[F (ftl)] - F (ft) + F (ff)

(38) -E2[F (f t) - F (ftl)] + z(M) +

1- -T(f t )
Pi

+1
P2

d( p

a2

IEI
E

(i~j)EI

(3.3.1) *
=Z(M).- (3.32)

Consider (ol*, 92 *) E E. Then, (ft, a'*) E E as well. Thus:

VI E supp(o2 *), Z*M) (3.32) ( I

1 C (I)
P2

(3.29)

> Z<*

1 )- IT(f t )
Pi

Therefore, for I E supp(u2 *), (3.29) is tight, i.e., V(i, j) E i = E{AEA I (ij)EA} fA'

From (3.20), we deduce that V(i,j) E I, pl. > 0, i.e., (i,j) E supp(pt). We can then

conclude that N 2 ; supp(pt), and we obtain that W2 = supp(pt).

We now show the remaining inclusion for H 1. Given (ol*, o2*) E E, we know that

(ol* 12) E E as well. Recall that VS E supp(a 2 ), (3.29) is tight. This implies that
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for every f E supp(ol*),

* (3.32) U 2(f (3 13) 1 U1(f, a2) + 1Z(M) = 1 (E&2-[C,5)- (I)]
Pi P2

(3.29),(3.31) U1(f,52 )-+ zgM)- +Cj~p ( z*)

Therefore, Vf E supp(ou*), (3.27) is tight, i.e.:

VA E A I fA >, = 1 -
{IeII InA$0} (ij)EA

However, this is not enough to invoke strict complementary slackness (3.22). We

also need to show (by contradiction) that VI E supp(5 2 ), Vf c supp(ol*), VA C A

such that fA > 0, we have I n A| ; 1.

Let us assume that 3 (I', f', A') C supp(a2) x supp(ol*) x A such that fA, > 0 and

I' n A'j > 2. Since I' interdicts at least two edges belonging to A', which is taken

by a flow in the support of a *, then we can construct another interdiction strategy

a.2' that provides P2 with a better payoff than a2 does. This is done by reassigning

some probability initially assigned to I' by a2 to a non trivial partition of I'. This is

possible because no interdiction 0 belongs to the support of 52, which is guaranteed

by Theorem 5.

Specifically, from Theorem 5, we know that:

= 1 -max{max{pT, (i, j) G E}, max{7r', A E A}}.

Since V(i, j) C E, bij > 0 and pT ; > 0, then VA E A, 7rt = 1--_iJ)EA( +p 1j) < 1.

By optimality of pt in (.MD), we deduce that V(i, j) E 8, pT < 1. Therefore, a2 > 0.

Now, let c = min{5j, 5,} > 0, and let e C I' n A'. Then, we construct the strategy

or E A(1) defined by ' = Up - E, O-2'fe = 52,\Jej + E, oU' = 5e + 2' = 6 -6 ,

and o-2' = a5, VI E supp(a2)\ {I, I,\ el, {el, 0}.

First, we note that the edge interdiction probabilities are preserved between i2

and 0.2', i.e., V(i, j) E 8, E, E'[1{(3,)6 I}] = E2[t{(2,)}1 (3.18) t. Secondly, each s - t

185



path A E A is interdicted by a2 / with a probability no less than the probability with

which A is interdicted by a2, i.e., VA E A, E U2/ [1{1rinA}] > Ea2[1{jnAg}]. Thirdly,

given A', since jI' n A'j > 2 and e E I' n A', then I'\{e} n A 4 0 as well. This implies

that EU2 , [1 {inA'7o}] = Ea2 [1inA'$0}] + e.

Putting everything together, we obtain:

(2.3)

U2 (U*,U2 ) ; U2 ((r*, 02) +p2Er [fy E] ;> U2(Or 1, 2) +p20-3*fAe > U2(Ol*,a 2)

This contradicts (al*, 2) being a NE. Therefore, we deduce that:

VI C supp(a2 ), Vf E supp(ul*), VA E A I fA > 0, 1I n A < 1.

Then, we obtain:

Vf E supp(ol*), VA E A I f, > 0, 7r" - P linAO0} = ji nIAl

(3-18)

(i j)EA

From (3.22), we deduce that Vf E supp(ul*), VA E A such that fA > 0, we have

ft > 0 as well, i.e., A E supp(ft). Therefore, 'Hi 9 supp(ft), and we can conclude

that W, = supp(ft).

Proof of Proposition 14. In (3.32), we established that V(ul*, a.2*) E E, UI(al*, 0.2*)

z(M. Let f* and (p*, tu*) denote optimal solutions of (Mp) and (MD), respectively.

Since V(i, j) E S, < cij, then V(i, j) E S, fi* < < ci. Therefore, from (3.16),P2 - P2

we deduce that V(i, j) E S, p-! = 0. Let a2 E A(I) denote the interdiction strategy

constructed from Algorithm 1 that satisfies (3.18) and (3.19). We denote f0 E F the

action of not sending any flow in the network, i.e., fAO = 0, VA E A, and we denote

' (1 + E)f*, with E= min{p 2 L - 1, (ij) E } > 0. Then, f' E F.

Let us consider a' E A(F) defined by: a', = ., and ;= Then, we show

that (a1, 52) is a NE. Regarding P1's payoff, since y!- = 0, V(i, j) E S, we can rewrite
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(3.27) as follows:

Vf (Ey, U1 (f,2 2)Wp (3r1) fA
AEA

(3.19)

; P, 7rfA
AEA

-Pi Z S
AEA {IEI IDnAgJ}

-pi fxr = 0.
AEA

Trivially, we obtain that U1 (f 0, 52) = 0. Furthermore, we know from (3.28) that

VA E A such that f* >10, EfiEi I nAs} Sj = 7ri. Since f* > 0 4- f{ > 0, we deduce

that U1(f', 52) = 0. Therefore U1(al, 5 2 ) = 0.

Regarding P2's payoff, we know that Vo-2 E A(I), U2 (51 ,2a) U2 (Ea1[f],a-2 ) =

U2 (f*, a2 ). Therefore:

U2(51, 2) = U2(f*,52) ; U2(f*,a2 ) = U2( 1, u2 ), V- 2 E A(I).

Thus, (a1, 52) is a NE.

We now consider (or*, or2 *) E E. Then, we know that (ol*,5 2 ) E E and (51, oa 2 *) E

E. Since f0 E supp(al), we obtain that p2Ui1(f o*) Ia ) E2 [C (I)] ( P2Zg).

Similarly, since 0 C supp(5 2 ), then p1Ui(l*, 0) (3i3) E0 1* [p1 F (f)-T(f)]

We deduce the players' equilibrium payoffs:

E0 2* [C (I)]
P2

(3.32)
- Piz G/).

9P2 Pz(1M) - Piz*M) = 0,

U2 (ol*, 2 *) 1 )
* * 1 (3.32)

P2(-i(a*, Ia )) + P2E 2* [F (f) - - T(f)] = 0.
Pi

Finally, we characterize the expected amount of flow that is interdicted in any

equilibrium: E, [F (f) - F (fI)] = -LU2 (-1*,O 2*) + !-E,2* [C (I)] = Z(M)'

Proof of Lemma 14. Let (p*, p*) be an optimal solution of (MD), and let (ei, e2) E

supp(p*) 2 . We denote r the root of the minimal subtree of T that contains ei and

C2. Let 91 (resp. g 2) denote the graph represented by the child of r that contains ei

(resp. e 2 )

- If r = P, (i.e., el and e2 are in parallel), then we can show by contradiction that
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there is no path in g that goes through el and e2. Indeed, if there were one, it

would create a Wheatstone bridge and would contradict g being an SP-graph;

see Figure 3-16.

Gi

80

G 2

Figure 3-16: Proof that if two subgraphs of an SP-graph are in parallel, then there is
no path that goes through both of them.

- If r = S, (i.e., el and e 2 are in series), then we know by definition that tg1 = sg2 -

Now, consider an optimal solution f* of (Mp). From complementary slackness

(3.15), we deduce that f d' - > 0. Similarly, f*2 > 0. Therefore, A (A 1, A2 ) E
P2

A 2 |f > 0, f 2 > 0, el E A1 and e2 C A2 .

If e2 E A or ei EA 2 , then we get the expected result. On the other hand, if

e2 A 1 and el i A2 , then we can note that both paths A1 and A2 go through

the same node tgl = sg2 ; see Figure 3-17.

elD Q

A 2  Al

Figure 3-17: Proof that if two edges in the support of p* are in series in an SP-graph,
then there is a path (in thick line) taken by an optimal flow that goes through both

of them.

We can then partition A1 into Att and Aend, depending on the edges in A1 that

are before or after tgl. Similarly, we partition A2 into A""' U A"d. Then we

can construct another optimal flow f' by removing c units of flow from f* along
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the paths A, and A 2, and adding c units of flow through A' = Atart U Aend and

start U A end. Note that el C A', e2 E A', and fx, > 0, which proves the result.
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Chapter 4

Analytics-Driven Inspection for

Localizing Post-Disaster Failures

4.1 Introduction

In this chapter, we consider the problem of optimal scheduling of inspection operations

for a utility company who has access to imperfect diagnostic information (e.g., sensor

alerts, customer calls, incident reports) regarding the failure locations in different

parts of its distribution network after a major natural disaster. The problem is

to find an inspection strategy, i.e., the scheduling of sites to inspect, to maximize

the expected reward obtained from successfully identifying failure locations in the

network, while also ensuring that the time constraints faced by inspection teams are

satisfied.

4.1.1 Our Contributions

Our first contribution is to model this problem as a stochastic team orienteering

problem in which a set of sites needs to be inspected by an inspection team for likely

failures. To calibrate our model, we utilize data from the inspection operations that

were conducted by a major gas utility on its pipeline network in the aftermath of an

earthquake. Our second contribution lies in identifying the key features of the optimal
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solution, and using them to provide both exact and approximate solution approaches

to the problem. The resulting strategy prescribes a deterministic inspection schedule,

and captures the essential tradeoff between the travel time between regions, the in-

spection time of each region, the imperfect diagnostic information, and the available

inspection time.

More broadly, our work addresses the need to integrate predictive models of fail-

ures into the emergency response and repair operations of infrastructure utilities [6].

Currently, utilities conduct inspection operations either based on a set of a priori fixed

schedules, or on an as-needed basis after receiving customer calls. On one hand, the

downside of fixed schedules is that they are not able to address critical disruptions in

a timely manner, and can contribute to increased non-revenue losses for the utilities.

On the other hand, experiential evidence suggests that the as-needed response strate-

gies may be prone to gaming by customers who misreport or misjudge failure alerts.

Thus, inspection strategies that account for the value of addressing these failures (i.e.,

criticality) as well as the likelihood of finding failure events in different regions are

desirable. Fortunately, in recent years, utilities have been spending significant efforts

in collecting the data relevant for estimating the failure probabilities and the value

of service restoration for various regions. Our work utilizes this data to calibrate the

stochastic orienteering model defined over network sites. In particular, we estimate

the probability of finding failures within each site by building a statistical model using

the data on properties of distribution pipelines, geological data (e.g., ground motion

prediction equations), and the output of damage modeling software. The site-specific

values of service restoration are also obtained using data on inspection costs and

revenue losses. See Figure 4-1 for a summary of contributions.

4.1.2 Related Work

Note that inspection problem is related to previous work on stochastic knapsack [26],
stochastic orienteering [44], and stochastic probing [45]. The main progress achieved

by the above-mentioned literature is the design of approximation algorithms which

provide efficient non-adaptive strategies, with bounds on the optimality gaps relative
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Current operations
Prioritization

Inspection

Dat strategy
Calibrated

(Our approach

Figure 4-1: Scheduling of response operations.

to optimal adaptive solutions. Instead, we exploit the features of the problem to

derive an exact approach to compute optimal nonadaptive strategies. This relies on

However, these algorithms cannot be directly applied to solve our problem because

of its nested structure in that inspecting a region involves probing a set of locations.

We address this issue by exploiting the basic ideas behind the construction of a good

non-adaptive strategy for the stochastic orienteering problem [44], and by refining

that strategy using physical properties such as (i) the expected value of each region,

(ii) the travel times between regions, and (iii) the expected exploration time of each

region.

The computational approach involves solving multiple instances of a determinis-

tic truncated knapsack orienteering problem (which can be posed as an integer pro-

gram) and selecting the best non-adaptive solution. This approach provides notable

improved performance relative to strategies obtained by solving known greedy algo-

rithms or deterministic orienteering problems. Our computational experiments on

test instances confirm that the resulting inspection strategies maintain an optimality

gap less than 5

4.2 Problem Formulation

Consider the setting where a utility is concerned with dispatching its inspection teams

to localize failures within its distribution network in the aftermath of a natural disas-
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ter. Specifically, after a natural disaster event occurs, component failures are created

within the distribution network, and need to be fixed. However, their locations are

often unknown, and the utility dispatches inspection teams to survey parts of the

network and determine whether or not they contain failures. Let V be the set of sites

that potentially contain failures. Typically, when an inspection team surveys a site,

it checks the distribution network within that site with detectors. If a failure is iden-

tified by the team, it is reported to the utility, which then schedules the dispatch of

repair teams. Once the inspection of a site is completed, the inspection team travels

to another site for inspection.

After a natural disaster occurs, the utility gathers information regarding the state

of its infrastructure. This information is generally gathered from different sources,

such as fixed sensors placed within the distribution networks, calls from customers

and emergency services. In addition, the utility analyzes other type of data, such

as information on the natural disaster itself, but also regarding the environment

surrounding the distribution network. For instance, power lines that are surrounded

by trees are most likely to go down after a hurricane. Another example for natural

gas networks is that pipelines that are next to a fault line are most likely to be

more damaged during an earthquake. Using this data, the utility obtains diagnostic

information regarding the state of its network.

We consider that for each site i E V, there are ni possible failure scenarios. For

instance, a scenario may represent the number of failures present in the site. If the

utility has less information, a scenario may only represent whether a site contains

no failures, a small number of failures, or a large number of failures. For each site

i C V and possible failure scenario k E [1, nil, we consider a criticality level vo and

a discrete random inspection time Tk. The criticality level is usually determined

from the cost of damage associated with a failure scenario within a particular site.

It can also account for the importance of a site. In practice, it is determined from

the number of failures within the site, the number of people living in the site (if

this is a residence), whether or not this is a school, hospital, etc. The inspection

time Tk is assumed to be random for a given site i and failure scenario k because of
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the uncertainty in the distribution of failures within a site. For instance, there are

settings where the inspection team will stop the inspection of a site as soon as it finds

a failure. The reason is that when it is determined that a site contains at least one

failure, a repair team will be scheduled to fix it. For security purposes, when repair

teams come to a site, they also conduct a final inspection to clear the site. Therefore,

in this setting, the time to "complete" the inspection of a site depends on when the

first failure is found, which is uncertain. Note that no further assumption is made

on T.k. This allows us to consider different inspection times for different scenarios.

This is a desirable feature when for instance the inspection time of a site depends

on the number of failures. Note that when determining Tk, we can account for the

characteristics of the network in site i, the sensing capabilities of the detectors, as well

as prior knowledge regarding failure locations within site i (e.g. due to experience).

Let ff denote the probability mass function of Tk.

We consider that the diagnostic information determines a probability distribution

over failure scenarios for each site. Specifically, for each site i E V, we denote Bi the

random variable that characterizes the failure scenario in i. For each failure scenario

k c 1, njJ, -rF := IP(Bi = k). Then, the marginal inspection time of site i E V, which

we denote by T, with probability mass function fi, is such that:

ni

Vs > 0, fi(s) = Irk

k=1

The utility has b inspection teams that can be simultaneously dispatched for local-

izing the failures. Without loss of generality, we consider that all teams leave from the

same yard so. For each pair of locations i # j C {so} U V, we denote tj the symmetric

travel time between i and j. In post-disaster settings, time is a crucial resource. In

particular, the goal of response operations is to address failures in a timely manner.

Thus, we consider a time budget TTrtaI during which inspection teams operate. TTotai

typically represents a day of operations. Then, the utility is interested in scheduling

the dispatch of its b inspection teams so that it maximizes the reward obtained from

localizing failures within the time budget TTotaI. In particular, the utility receives the
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reward vo if an inspection team completes the inspection of site i under scenario k

before time TTotal. For simplicity, we consider discrete units of time, and assume that

each time quantity presented in this model can be expressed as a multiple of the time

unit. Without loss of generality, we let the time unit to be 1.

Thus, the Post-Disaster Inspection Problem (PDIP) is a team orienteering prob-

lem with stochastic rewards and service (i.e., inspection) times. For this problem, we

focus on the study of nonadaptive strategies. Indeed, certain utilities do not currently

have the means to incorporate new information within a day of operations, and can-

not change the scheduling of their teams to adapt to the realization of uncertainty

as the teams inspect new sites. Utilities instead determine fixed scheduling of their

operations, that they decide at the beginning of each day of operations. Then, each

team inspects sites as dictated by their assigned schedule, and stop whenever they

reach the end of their schedule or they reach the time limit TTotaI.

The PDIP then consists of finding b routes originating at yard so and that maxi-

mize:

E [Reward from inspecting site i]
ieV

- E[Reward from inspecting site i I Bi = k]P(Bi = k)
iEV k=1

ni

-V7r3(inspection of site i is completed before TTotai I Bi = k)
iEV k=1

A route p originating from the so is represented by a sequence of nodes {io, . .. , i,}

with io = so. Let P denote the set of routes originating from yard so. Then, given a

route p ={io, ... , i} E P, we note that the time to complete the inspection of the

l-th site visited along that route under the failure scenario k E [1, nij is given by the

random variable E._i Tij +Tk +Ei ti,i , which is composed of the (deterministic)

travel time to reach site il, the (random) marginal inspection time of each site ij, for

j E [1, 1 - 1 , and the (random) inspection time of site il under scenario k.

We suppose that the utility does not schedule different teams to inspect the same
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site within the same day of operations. Let A denote the set of possible schedules. A

is defined as follows:

A = {(Pl, ... ,Pb) E pb I Pi # pj, Vi , j E [1, b }.

For notational convenience, given a scheduling of operations (PI,... , Pb) E A, we

denote pi = {io, ... , im,}, with mi being the number of sites in route pi. Then, the

mathematical formulation of the PDIP is given as follows:

b mi nil

max V k 7 P(inspection of site il is completed before TTOtaI I Bi, = k)
(P1--,Pb)GA i=1 1=1 k=1

b m, nil i-i i-

= max k 7 krP(T, + T < TTotal - ti,, +) (4.1)
i=1 1=1 k=1 j=1 j=0

The PDIP is an NP-hard problem. In 'particular, it contains an exponential num-

ber of feasible solutions. In addition, the objective function itself requires an exponen-

tial number of operations to be evaluated. Indeed, given a scheduling of operations

(P1,... , Pb) C A, the corresponding objective function is given by:

b m, nil Ttotal Ttotal 1-1

~~ k 7 .. k 171 (Sj)fi(l1S+.S k ~t1Z3~ (4.2)E Er E -l -l f,(fil (si),{si+..-+si-1<;rrotai-Elo ti,,ij,1I
i= 1=1 k1 81=O 81=O j=1

Next, we show that (4.2) satisfies some properties that enable us to provide a

solution approach to the PDIP.

4.3 Solution Approaches

In this section, we exploit the features of the model to propose two mixed-integer pro-

gramming problems that optimally solves the PDIP. We then define two approximate

solution approaches, based on greedy and a certainty equivalent integer program.
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4.3.1 Exact Methods

In Section 4.2 we formulated the PDIP as a stochastic optimization problem; see

(4.1). However, the objective function requires an exponential number of operations

to be evaluated.

Consider a route pi = {io, ... , im,} G , and for each 1 E [1, mJ, let z* be defined

as follows:

Vi e [mi - 1, Vt E Z, <(t) = P(( Ti, < t - Z ti,i+). (4.3)
j=1 j=0

The quantity z', (t) represents the probability that the inspection of the l-th site

visited along route pi is completed before time t.

Then, we can rewrite the PDIP as follows:

b m, nil TTotal 1-1 1-2

max ZZ V7< kr fi (s)P(J(Tj < Tjotal - S - til,, - Zti,, 1)
(P1Pb)EA i=1 1=1 k=1 s=0 j=1 j=0

(4.3) b mi nil k TTotal~-til_,,il
max E E E r fi (s) (TTota - ti_-1 , - s).

(P1,---,Pb)EA i=1 1=1 k=1 s=O

We show the following result:

Lemma 15. Given a route pi = {io,... ,imJ} E 7, the quantity z* defined in (4.3)

satisfies the following properties:

Vt E Z, z (t) = 1t>0)

t-til- 1 ,il

Vi E [1, mi - 1],1 Vt G Z, Z (t i sz_( i_,,-s).

8=O

Therefore, although z, (t) would have required O(Totai) operations if computed

using (4.2), it can now be computed using 0(l x TTotal) operations and 0(l x TTotal)

memory.

Most importantly, in Lemma 15, we obtain a linear recurrence relation satisfied by

z*. Next, we leverage this result to formulate a mixed-integer programming formula-
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tion of the PDIP. For each pair of locations (i, j) E ({so} U V) 2 I i f j, we define the

binary variable xij equal to 1 if an inspection team goes from i to j, and 0 otherwise.

Then, for each pair of locations i / j E {so} U V, and each time t E 0, TTotalI, we

define the real variable z., which represents the probability with which the inspection

of site i is completed before time t. The PDIP can then be solved with the following

mixed integer program, which we denote (IPI):

max Z
iEV jEVU{so}

isi

TTotalttji ni

s=O k 

rI=1s z -"
8=0 k=1

s.t. I: < 1,
jEVU{so}

xii xi,
jEVU{so} jEVU{so}

isi isii

jEV

-j xii,

4 <
jEVU{so} jEVU{so}

isi i#h i

ij E {0, 1},

z. > 0,

Vi E V

Vi ECV

Vi = j C V U {SO}, Vt G R[0 TTotajd

fi(s)ztiis, Vi c V, Vt E [0, TTota]I
s=0

Vi

Vi

j E V U

j C V U

{so}

{so}, Vt E [0, TTotal.

Proposition 15. (IP1) is a mixed-integer programming formulation of the PDIP.

Constraints (4.5) ensure that each site is visited by at most one team. Constraints

(4.6) ensure the continuity of each route taken by a team. In other words, if a team

travels to site i E V, it must then leave it. Constraint (4.7) models the fact that

b teams are dispatched from the yard so. Constraints (4.8) ensure that for every

time t E [0, TTotalj, zy is nonzero only if a team travels from location i E V U {so}

to another location j E V U {so}. Most importantly, constraints (4.9) update the

z values as a team travels along a route. Although constraints 4.9 are formulated
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with inequalities, they become tight at optimality. Formulating them as inequality

constraints rather than equality constraints proved to significantly speed the solution

of (IP1 ). Objective (4.4) then represents the reward obtained by traveling along the

routes defined by the x variables.

Interestingly, this formulation does not require subtour elimination constraints.

Although an optimal solution of (IP) may contain subtours, they do not contribute to

the objective function. The reason is that the only value of z that satisfies constraints

(4.9) along a cycle that does not contain so is 0.

In addition, we do not require each site to be visited. Typically, the total number

of sites is much larger than the number of sites that can be inspected within a day of

operations.

One limitation of (IP 1) is that it contains O(TrotaIV2 ) variables and constraints.

Next, we propose another mixed integer programming formulation of the PDIP that

requires less variables. In this formulation, we again consider a binary variable xj1

for each pair of locations (i, j) E ({s0} U V) 2 I i # j that determines whether or not

a team travels from i to j. Then, for each location i E V U {so}, failure scenario

k E [1ni, and time t c [0, TTota1d, we define the real variable zk,, which represents the

probability with which the inspection of site i under scenario k is completed before

time t. The PDIP can then be solved with the following mixed integer program,
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which we denote (IP2 ):

ni

max ok7r zg* (4.10)
iEV k=1

s.t. E 1 = 1, Vi E V (4.11)
jEVU{so}

isii

SX = 1, Vi E V (4.12)
jEVU{so}

isii

E x8j =b, (4.13)
jEV

zs = 1, Vk < no, Vt C [0, Total 4.14)
t-tji nj

Zk 7fT(s)5 rz- -+(1 -X ), Vi C V, Vj C V U {so},
s=O k'=1 Vk < ni, Vt C 0, TTotaI (4.15)

xi E {0, 1}, Vi A j c V U {so}

z, > 0 Vi E V U {so}, Vk < ni,

Vt C [OTTotalj

Proposition 16. (IP2) is a mixed-integer programming formulation of the PDIP.

Interestingly, that formulation requires the each site to be "visited" by a team

(with a potential reward of 0). This is because constraints 4.15 need each site to be

visited by a route to correctly update the z variables along each route. Unlike (IP1 ),

(IP2 ) requires less variables (as the number of failure scenarios per site is usually

small). However, the LP relaxation is much larger than that of (IP1 ). This results

in integer programming solvers being much slower at solving (IP2) than at solving

(IP1 ), despite the fact that (IP2 ) has less variables.

4.3.2 Approximation Methods

A certainty equivalent problem can be formulated to approximate the solution to the

PDIP. Given a partitioning of TotQal in Ttravei units of time for traveling and Tinspect
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units of time for inspecting sites, we can consider the following deterministic knapsack

orienteering problem.

s.t. E3 xi < 1,

jEVU{so}
isi

jEVU{so} jEVU{so}

xsoj = b,
jEV

Yij < TraveiXij,

Wij TexploreXij,

Ysoj Tix 80 j,

wsoi = xojg,

xii E {0, 1},

z4 ;> 0,

max Z V 7rk S Xi
iEV k=1 jEVU{so}

jii

Vi C V

Vi GV

Vi j E VU {so}

Vi #j E V U fso}

Vj cV

Vj E V

Vi # j E VU {so}

Vi # j E V U (so}

Finally, one can consider a greedy algorithm, where each site to inspect is assigned

myopically to each team. At each iteration, if a team is at site i, the algorithm selects

and assigns to that team the site that maximizes the performance metric:

k= Vj 7ri

tij E,>O sfj(s)

In particular, the algorithm selects a site that has a large expected reward, that

is close to the current location of the team, and that has a small inspection time.

4.3.3 Computational Study

We compared the performance of the four approaches using synthetic data as well

as real data from the inspection operations of a major gas utility after an earth-
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quake. In Figure 4-2, we show that exact solution approaches significantly improve

the inspection operations in comparison to the greedy and deterministic knapsack

approaches.

Performance of optimal solution compared to approximate solutions
701

60-

50-

40-
C

E
30-

10-
E

20-

10.

0.

Greedy Knapsack

Figure 4-2: Comparison of exact and approximate solution approaches.

In addition, using the data collected by [67], we incorporated different failure

prediction models into the PDIP, and evaluated the combined performance on the

testing set. In particular, we tested different binnings of the classes considered in

classification models.

The result is that the optimal binning of failures for each region is 0, 1 - 4, 5 - 10,

11+.

4.4 Summary

In this chapter, we studied the problem of optimal scheduling of inspection opera-

tions under imperfect diagnostic information regarding failure locations. We modeled

this problem as a team orienteering problem with stochastic rewards and inspection

times, and consists of finding a scheduling of sites to inspect that maximizes the

expected reward obtained from successfully addressing failures in the network. To
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Performance of optimal solution with respect to binning

5 6 7 8 9 i 11 12 13 14 i5 16
# Classes

Figure 4-3: Solution team scheduling on test set for different number of

sidered.

classes con-

overcome the computational challenge in solving this NP-hard problem, we identified

key features of optimal solutions to develop a compact integer programming-based

solution approach. We demonstrated the improvement with respect to known ap-

proximate solutions. Our approach leads to practical strategies which prescribe an a

priori response schedule. Importantly, it captures the essential tradeoff between the

travel time between sites and the inspection time of each sites, given the imperfect

diagnostic information, distances between sites, and available response time. These

results demonstrate the advantages of integrating predictive models of failures into

emergency response operations.
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4.5 Proofs of Statements

Proof of Lemma 15. Consider a route pi = {io, .. , im,} E ', and let z* be the quan-

tity defined in (4.3). Then, trivially:

Vt E Z, z*(t) = IP(0 < t) = llt;>o}.

Furthermore:

Vi E [I, mi - 1 , Vt E Z, z(t) P(Z
j =1

1-1

T < t - tij,i+)
j=o

t 1-1

- f (s)P(Z
s=O j=1

Ti t - s - til,_,,1 -

t-4zl 1 ,0

- (3 f (s)z1 (t - ti_ - s).
s=O

Proof of Proposition 15. From constraints (4.5)-(4.7), we deduce that a feasible solu-

tion of (IP1) consists of a scheduling of operations (PI, . .. , Pb) E A. Let us consider

route pi, with i E c1, bl, and let us express it as follows: pi = {io = so, ii, ... ,imiimi+1 =

So}.

Then, the z variables along route pi satisfy (from constraints (4.8)-(4.9)):

Vt G [0,TTotaIl, ZOi K 1,

Vt c 0, TTotal, Vi e 1, Mi - 1],zI <
S=0

This implies that:

Vt E T0, TTotal , V1 E 0, Mi - 1 1, zi I P( T, < t -
j= 1

jZ2O

(4.3)

(4.24)
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However, at optimality, inequality (4.24) is tight. We can then conclude that the

reward obtained for each site il visited along route pi is:

TTotal~~ii TTotal til-l S (->1r f(s)z - z Total -ti_ 1,i - S).
s=0 k=1

Now, we must ensure that subtours do not contribute any reward to the objective

function. Assume that a feasible solution of (IP 1) contains a subtour {1, ... , m, m +

1 = 1}. From constraints (4.8) and (4.9), we deduce that:

t-tm-1,m

Vt C [OTTotalji, Z4i < fm(Sm)z, im- m
Sm=O

t-tm-1,m t-tm-1,m-tm-2,m-1-Sm

< E SM~M- I (s - I-m-1,M--tm-2,m-1-Sm--sm-1S fSm m- (Sm)Z-2,m-1

Sm=_ Sm-1=0

-- 1-, fi1(sj)z ='2s

Sm=0 s1=0 j=1

Case 1: >jm' t+j+1 > 0. Then zo 1 = 0, and by induction on t, we show that

Vt E [0,TTotalI, Zmti = 0.

: _ += 0. Then, necessarily _1 fj(sj) < 1. If x 0 > 0 this would

imply that:

m
~0 < TTPj(9j
Zm1 - 1 j Zsj)Zml < Zm.

j=1

Thus, Z4. Again, by induction on t, we show that Vt C 10, TTotal]I, Z4 = 0.

Therefore, if a feasible solution to (IP1) contains subtours, they do not contribute

to the objective function. Thus, if an optimal solution of (IP1) contains subtours, we

can remove the subtours from the solution and still maintain optimality.

Proof of Proposition 16. From constraints (4.11)-(4.13), we deduce that a feasible

solution of (IP2 ) consists of a scheduling of operations (P, .. . , Pb) E A. Contrary
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to a feasible solution of (IP1), an feasible solution to (IP2 ) visits every site in V

(potentially with a reward equal to 0).

Consider a site i E V. Since it is visited by one team, then 3 !j c {so} U V I xj = 1.

Therefore:

t-tji ni

Zi, f(s) r z -j , Vk <ni, Vt E [0,TTota]-
s=0 k'=1

Thus, at optimality, we deduce that Zik represents the probability with which the

inspection of site i under scenario k is completed before time t.

As in the proof of Proposition 15, the z variables ensure that subtours do not

contribute any reward to the objective function. Thus, if an optimal solution of (IP2)

contains subtours, we can remove the subtours from the solution and still maintain

optimality.
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Chapter 5

Concluding Remarks

5.1 Overall Summary

This thesis focuses on the design of inspection and response operations to improve

the resilience of critical infrastructure networks against failure events resulting from

cyber-physical attacks and natural events.

In Chapter 2, we studied the generic problem of strategic network inspection, in

which a defender (inspection agency) is tasked with detecting the presence of multi-

ple attacks in the network. We addressed the question of determining a randomized

inspection strategy with minimum number of detectors that ensures a target detec-

tion performance. This question can be formulated as a mathematical program with

constraints involving the Nash equilibria of a large-scale strategic game between the

defender and attacker. We developed a novel approach to construct an approximate

equilibrium strategy profile of the game by utilizing solutions of minimum set cover

and maximum set packing problems. This construction generalizes some of the pre-

viously known results in security games, and is applicable to a variety of settings

such as urban patrolling, sensing of gas and water networks, and routing of small

Unmanned Aircraft Systems for leak detection.

In Chapter 3, we studied a routing entity sends its flow through the network while

facing heterogeneous path transportation costs, and an interdictor simultaneously in-

terdicts one or more edges while facing edge interdiction costs. The router (resp.
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interdictor) seeks to maximize the value of effective (resp. interdicted) flow net the

transportation (resp. interdiction) cost. We show that the equilibrium properties

of the game can be described using primal and dual solutions of a minimum-cost

circulation problem. Our equilibrium analysis relied on a more general result on the

existence of a probability distribution on a finite partially ordered set (poset) that

satisfies a set of constraints involving marginal probabilities of the poset's elements

and maximal chains. We positively answer this question by designing a combina-

torial algorithm. Our results provide a new characterization of the critical network

components in strategic settings.

In Chapter 4, we developed a prescriptive analytics framework for localizing net-

work failures in the aftermath of a natural disaster. Given the diagnostic information

provided by a failure prediction model, we considered a generic team orienteering

problem with stochastic profits and service times. We derived a compact mixed-

integer programming formulation of the problem that computes an optimal a-priori

routing of the surveying teams. Using the data collected by a major gas utility after

an earthquake, we demonstrated the value of predictive analytics for improving their

response operations.

The main modeling contribution of this thesis is the study of generic models that

are applicable to various settings, such as urban patrolling, sensing of gas and wa-

ter networks, and routing of small Unmanned Aircraft Systems for leak detection.

To address the computational challenge arising from the combinatorial nature of the

problems, we provided solution approaches based on lower dimensional representa-

tions. We showed optimality guarantees of our proposed solutions by deriving the-

oretical characterizations of the optimal ones. This requires exploiting the interplay

between linear programming duality, submodularity, network flows, and game theory.

This lead to solutions that are scalable, accurate, and implementable in practice. Fi-

nally, we applied our framework to real-world infrastructure networks, such as water

distribution, gas transmission, and transportation networks.
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5.2 Future Work

5.2.1 Strategic Inspection of Heterogeneous Components

A future research question is to solve the inspection problem from Chapter 2 under

a more refined detection model that accounts for imperfect detection of attacks (and

other types of compromises). Typically, the diagnostic ability of sensing technology

is represented by a probabilistic detection rate for any given false alarm rate. In fact,

the guarantees provided by our approach can be easily extended (via simple scaling)

to the case when the detection probability is a priori known and homogeneous across

all detectors. The general case of heterogeneous detection rates can be addressed by

extending our detection model; in particular, by adding a weight to each inspected

node to represent the probability of detecting an attack within the node's monitoring

set.

Finally, the question of how our solution approach can be extended to account

for the heterogeneity of network components in terms of their criticality to the over-

all network functionality is also an interesting one. In principle, this case can be

addressed by adding weights to the payoff functions of our defender-attacker game.

However, in many practical situations, the defender can only qualitatively distinguish

the criticality of various components (high versus low). In such cases, our approach

for strategic network inspection can be applied to each group of components with

homogeneous criticality levels, and the inspection strategies for individual groups can

be then integrated based on the defender's operational constraints.

5.2.2 Strategic Interdiction of Multi-Commodity Network Flows

In Chapter 3, we studied a simultaneous game of full information between a mali-

cious router and a security agency. One of the main modeling assumptions is that the

problem's characteristics (network topology, transportation and interdiction costs)

are common knowledge. However, in some situations, each player only has partial

information about their adversary. We are interested in extending our work in this
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direction, and addressing the following question: How to design inspection operations

for network interdiction under limited information? We plan to answer this ques-

tion by developing new ideas in adversarial multi-armed bandit problems and online

optimization. In the exploration phase, the agency allocates interdiction resources

to learn the preferences of the malicious router, who strategically responds to the

agency's interdiction. In the exploitation phase, the agency utilizes the gained infor-

mation to strategically allocate interdiction resources and optimally intercept the flow

of malicious goods from the router. We would like to design policies that can improve

the current inspection operations in uncertain and adversarial environment, and can

directly benefit agencies addressing the security of critical infrastructure networks

and supply chains. Applications of this work include strategic defense of critical food

and drug delivery supply chains facing risks of adulteration and counterfeiting by

adversarial entities.
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