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Abstract

Blackouts (or cascading failures) in Electricity Networks (ENs) can result in severe con-

sequences for economic activity, human safety and national security. Recent incidents

suggest that risk of blackouts due to cyber-security attacks and extreme weather events

is steadily increasing in many regions of the world. This thesis develops a systematic

approach to evaluate and improve the resilience of ENs by addressing following ques-

tions: (a) How to model security and reliability failures and assess their impact on ENs? (b)
What strategies EN operators can implement to plan for and quickly respond to such failures
and minimize their overall impact? (c) How to leverage the operational �exibility of “smart”
ENs to implement these strategies in a structured manner and provide guarantees against
worst-case failure scenarios?

We focus on three classes of cyber-physical failures: (i) Ine�cient or unsafe economic

dispatch decisions induced by an external hacker who exploits the vulnerabilities of con-

trol center software; (ii) Simultaneous disruption of a large number of customer-side com-

ponents (loads and/or distributed generators) by a strategic remote adversary; (iii) Corre-

lated failures of power system components caused by storm events (or hurricanes) with

high-intensity wind �elds. We develop new network models to capture the impact of

these failures, while accounting for a broad range of operator response actions. These ac-

tions include: partial load control, pre-emptive disconnection of non-critical loads, active

and reactive power supply by Distributed Energy Resources (DERs) capable of providing

grid-forming services, and formation of microgrid islands. We develop practically rel-

evant operational strategies to improve the ENs’ resilience to failure classes (i) and (ii)

(resp. (iii)) based on solutions of bilevel mixed integer programming (resp. two-stage

stochastic optimization) formulations.

Our bilevel mixed integer programming formulations capture the worst-case impacts

of attacks on radial distribution networks operating under grid-connected or microgrid

con�gurations. For the case when the operator response can be modeled as continuous

decision variables, we provide a greedy heuristic that exploits the radial network structure

and provides near-optimal solutions. For the more general case of mixed-binary decision
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variables, we develop a computationally tractable solution approach based on Benders

Decomposition method. This approach can be used to evaluate the value of timely re-

sponse actions in reducing various losses to the network operator during contingencies

induced by attacker-induced failures. We provide some guidelines on improving the net-

work resilience by proactive allocation of contingency resources, and securing network

components in a strategic manner. Furthermore, under reasonable assumptions, we show

that myopically reconnecting the disrupted components can be e�ective in restoring the

network operation back to nominal condition.

Our two-stage stochastic optimization formulation is motivated by the need of a decision-

theoretic framework for allocating DERs and other contingency resources in ENs facing

the risk of multiple failures due to high-intensity storm events. The stochastic model

in this formulation captures the dependence of probabilistic failure rates on the spatio-

temporal wind intensities. Importantly, the formulation allows for the formation of mi-

crogrid islands (powered by the allocated DERs), and considers joint DER dispatch and

component repair decisions over a multi-period restoration time horizon. We present

computational results based on the classical sample average approximation method, with

Benders Decomposition applied to solve the mixed-binary programs associated with the

restoration stage. Finally, we compare the optimal repair decisions with a simpler greedy

scheduling strategy that satis�es soft-precedence constraints.

Thesis Supervisor: Saurabh Amin

Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

The National Academy of Engineering has regarded the electricity grid as “the greatest

engineering achievement of the 20𝑡ℎ century” [105]. This is supported by the fact that the

electricity grids of China and the U.S. are the two largest interconnected machines in the

world. Together, these grids comprise over two million kilometers of high-voltage trans-

mission lines and 20 million kilometers of local distribution lines which link thousands

of generators to over a billion residential and industrial consumers [42, 105]. They help

supply 10 tera-watt-hours of energy annually to power over hundred billion devices in

the two largest economies of the world.

Aside from the physical system of generators, networks, components and devices,

there is an overlaying cyber system of sensors, control centers, and actuators that form

part of the Supervisory Control and Data Acquisition (SCADA) systems. Moreover, there

are human agents comprising of the consumers, electricity utilities and power system

operators. The consumers have time-varying consumption levels. The power plants,

Transmission Networks (TNs) and Distribution Networks (DNs) are owned by pro�t-

maximizing electricity utilities. Finally, there are power system operators, who coordi-

nate, regulate and control the overall operation of the electricity grid.

The overall objective of power system operators is to provide safe, reliable, and af-

fordable supply of electricity to the customers, both residential and commercial. It in-

volves clearing of markets between electricity providers and consumers, maintenance of

TNs and DNs with reasonable amount of redundancy, and maintaining supply-demand
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balance while the millions of components operate within their operating bounds. The

electricity grid is truly an extra-ordinarily complex machine built by humans.

Our modern society is heavily dependent on electricity with a wide range of appli-

cations varying in complexity, scale, and criticality. There are ubiquitous but relatively

simple residential applications like lighting, water pumps, air-conditioners, microwave,

laundry machines, laptops, mobile phones, lifts. Then, there are moderately large appli-

cations such as industrial machines, network of computer servers in o�ces, electronic

devices in critical healthcare applications. Lastly, there are also huge and complex sys-

tems like communication networks, banking industry, (road, rail and air) transportation

systems, intra- and inter-operation of (state, federal, and international) defense and secu-

rity agencies, etc. Indeed, it will be a hugely cumbersome and chaotic way of life if the

entire modern society was suddenly forced to operate without electricity.

Such chaos is very apparent during large-scale blackouts [9, 31, 35]. These adverse

events disrupt the way of life for millions of people, sometimes for months. They have

devastating consequences not only in terms of monetary loss, but also in loss of human

safety, and even increased risk to national security. By the simple virtue of having a

huge number of components, many of which are very large in size, the electricity net-

work components are out there in open. It is near impossible to secure every component

against reliability failure occurring because of gradual wear and tear due to mechanical

movements and/or changing weather conditions. Even those components which are un-

derground, are prone to failure due to short-circuits resulting from �ooding or a rodent

coming in contact with live wire.

Indeed, the power system operators are facing challenges of reliability failures on an

ageing infrastructure burdened by ever-increasing demand. Failure of a small number

of components leads to small scale outages which cause inconvenience to consumers.

However, extreme weather events or natural disasters such as hurricanes, earthquakes,

Tsunamis, etc. can lead to correlated failures of a large number of power system compo-

nents [19]. Such large-scale disruptions can lead to loss of power supply for months. In

2018, the blackouts resulting from three major hurricanes in the US resulted in an eco-

nomic loss of over 300 billion dollars to the US economy. However, natural disasters are

18



not the only causes of large-scale blackouts. Widespread outages can also result from lack

of enough network visibility to the system operators, active or reactive power shortfall,

or under-utilization of network capacity [9].

To alleviate some of these issues, there has been also modernization of grids being un-

dertaken. At the transmission level, there are deployment of smart sensors, e.g. Dynamic

Line Rating (DLR) sensors and Phasor Measurement Units (PMUs). These sensors increase

the visibility of system operators to allow for improved state estimation and dispatch ca-

pabilities. On the distribution side, there has been rapid integration of novel components

such as Electric Vehicles (EVs) and Distributed Energy Resources (DERs) and smart in-

verters in the DNs. DERs, in particular, include small-scale diesel generators, roof-top

PhotoVoltaic (PV) panels, small wind turbines, storage devices. Novel functionalities such

as direct load control and smart net metering are also being implemented. Additionally,

the SCADA systems are being implemented by o�-the-shelf Information Technology (IT)

systems, instead of legacy closed communication networks. This has resulted in cheaper,

faster, and �exible control of power system operations at the transmission and distribution

level.

Although such modernization of grids into “smart” grids provides operational �exi-

bility for the system operators, it has also increased the cyber-attack surface. The “open”

nature of the o�-the-shelf IT systems expose the smart grids to inherent as well as novel

vulnerabilities that can be exploited by remote adversaries. This has been well illustrated

by the recent Ukraine attacks [75], where foreign state actors were able to remotely open

the circuit breakers within a few distribution grids, as well as damage the software con-

trollers at the distribution substation in Ukraine. In [98], the power system experts have

shortlisted a number of critical cyber vulnerabilities of modern DN systems.

The goal of the thesis is to develop a systematic approach to evaluate and improve

the resilience of ENs by addressing following questions: (a) How to model security and

reliability failures and assess their impact on ENs? (b) What strategies EN operators can

implement to plan for and quickly respond to such failures andminimize their overall impact?

(c) How to leverage the operational �exibility of “smart” ENs to implement these strategies

in a structured manner and provide guarantees against worst-case failure scenarios?
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In the rest of the chapter, we �rstly discuss the vulnerabilities of electricity networks

in the context of recent adverse events. Secondly, we discuss the operational �exibility

provided by modern smart electricity networks that can be exploited by system operators.

Thirdly, we describe the overarching resiliency framework and the objective of the thesis.

Fourthly, we brie�y state the work of related papers in existing literature. Finally, we

summarize our �ndings and contributions, and with the thesis outline.

1.1 Resilience of electricity networks

GenerationFuel supply Transmission Distribution Consumption

Our focus

Disruption 
models
- Security 

failures
- Reliability 

failures

Operator 
models
- Resource 

allocation
- Dispatch & 

restoration

Optimization 
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programs
- 2-stage 

stochastic

Figure 1-1: Major parts of power system. Figure shows (from left to right) conventional

sources of energy, bulk power plants, transmission towers, distribution poles, and elec-

tricity consumers (smart buildings, industries, hospitals, universities).

Generically, resilience of a system is de�ned as “its ability to prepare and plan for,

absorb, recover from, and more successfully adapt to adverse events” [93]. The operation

of power grid consists of �ve major parts: fuel supply, power generation, transmission,

distribution and consumption; see Figure 1-1. For the grid to operate resiliently, each

of these major parts need to be operationally resilient. Therefore, one can �nd several

interpretations of power system resilience in the literature.

One interpretation of resilience of power systems is stated in the context of the fuel

supply part. It states that the amount of fuel to be kept in reserves should at least be su�-
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cient to generate electricity for 75 days [25]. Such reserves will be crucial if the fuel supply

chain is a�ected. For example, disruptions in fuel supply chain could result from natural

disasters, accidents to the ships carrying the fuel, or sanctions on a country regarding

nuclear power supply, etc [143]. Another interpretation regarding the consumption part

is that the amount of electricity theft should be below a certain threshold [87]. In some

regions of developing countries, electricity theft is a huge problem, and the amount of

theft estimated is about 50 percent [119].

Although the resilience of other parts such as fuel supply, generation, and consump-

tion are important, in this thesis, we limit the scope of our research to the resiliency

assessment of the transmission and distribution networks. For a systematic approach to

analyze network resilience, we �rst consider the vulnerabilities in the electricity network

components, both physical as well as cyber. Then, we identify potential threat actors

which include strategic adversaries that cause security failures as well as natural disas-

ters which result in reliability failures. Finally, we assess the potential impact that would

result from the exploitation of vulnerabilities of modern ENs in terms of strategic or cor-

related failures. Such a vulnerability assessment is crucial for identifying good proactive

and reactive strategies for the system operators (Sec. 1.2).

1.1.1 Security failures

Security failures are disruptions of network components that are carried out intentionally

by malicious adversaries. As stated earlier, the use of electricity is very crucial for normal

day-to-day life as well as e�ective functioning of security agencies. This provides motiva-

tion for the threat actors (malicious adversaries) to disrupt the ENs. Our attack models are

motivated by the security failure scenarios discussed in [98]. These scenarios capture the

capabilities of the following threat actors: (i) cyber-hackers of an enemy nation motivated

to disrupt supply to critical facilities, (ii) a malicious adversary looking to extort ransom

money from the utility, or (iii) a disgruntled internal employee motivated by revenge. In

this paper, we are concerned with type (i) actors. Furthermore, the sheer size and number

of the network components make it near impossible to secure every component. Thus,

this is a big vulnerability that malicious adversaries can exploit by physical attacks.
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An example of physical attacks on the U.S. grid is the sniper attack on the Califor-

nia substation [1]. In this attack, the attackers damaged 17 transformers, which cost the

electricity utility $15 million worth of equipment damage. Later, the utility decided to

invest another $100 million in upgrading the physical security of its substations. Another

example of physical attacks is that of the 2015 attack in Pakistan [127]. Reportedly, some

rebels damaged two transmission lines which resulted in 80% of the country plunging in

darkness. It also negatively a�ected operations of nearby airports. Such rebels had also

previously attacked Pakistan’s power grid, but the level of impact of those attacks was

not as signi�cant.

Another way to disrupt the power system is via cyberattacks onto the SCADA system

or via compromise of the components which can be accessed via the Internet. Recent event

which brought the cybersecurity aspect of power systems into limelight was the Ukraine

attack [75] in December 2015, which was the �rst successful cyberattack on any electricity

grid. The cyber vulnerability was that the Ukrainian utility had not implemented a two-

factor authentication system. Allegedly, the cyber hackers of a foreign country exploited

this vulnerability to hack into the SCADA system. They �rst obtained the user credentials

of distribution system operator via phishing attacks. Then, they remotely caused the

opening of circuit breakers on the eve of Christmas. As a result, power supply was lost for

several hours. The hackers also managed to damage the software of controllers, which the

utility was not able to repair for months. Therefore, the utility operators had to perform

control actions manually. In December 2016, another such cyberattack was carried out on

a transmission substation in Kiev. A feature of this cyberattack was that the attack was

fully automated and required no intervention by the attackers.

Due to its heavy reliance on automated control operations, a response via manual

control actions will not be conducive in the context of the US power grid. The US De-

partment of Homeland Security has issued alerts to the power companies regarding the

ongoing, prevalent cyberattacks [46]. Moreover, when the security experts investigated

the attacked SCADA system, their �ndings suggested that the cybersecurity of US power

grids is in fact less secure than that of the attacked Ukrainian grid. In a US Congressional

service report [32], the power cybersecurity policy experts reported the cyber attacks on
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the European power grids. The cyberattacks managed to hack gained a backdoor entry

into the SCADA system by accessing the website of a renewable power utility. All these

real-world incidents highlight the vulnerability of modern power systems to both cyber

and physical attacks.

1.1.2 Reliability failures

Although the number of incidents of security attacks are on rise, the impact of weather-

induced reliability failures has been even more signi�cant. Weather-related outages in

electricity networks continue to show an upward trend as utilities face the dual problems

of deteriorating power grid infrastructure and higher frequency of natural disasters (such

as hurricanes [31, 79]). Prolonged delays in restoring the power system of Puerto Rico in

the aftermath of Hurricane Maria highlight the importance of strategic planning and e�-

cient response to such events. In 2018, the damage to power systems due to 3 hurricanes

resulted in an economic loss of over $300 billion.

In 2018, heat waves in Australia resulted in excessive demand which led the grid to

become overloaded [14]. Consequently, several outages in multiple distribution networks

led to half a million homes without electricity during a heat wave. Similar incident occured

in India July, 2012 [35]. Excessive demand caused by a heat wave resulted in a failure of a

critical transmission line because of overloading. This resulted in a blackout which caused

around 1{10𝑡ℎ of the world’s population (600 million people) to be without electricity for

two days.

Another interesting incident was the 2016 blackout in South Australia [141]. Three

factors resulted in this blackout [64]: (i) extreme weather events (two tornadoes hap-

pening over 170 km apart), (ii) reduced inertia of generation mix (because of increased

penetration of inverter-controlled renewables), and (iii) overly sensitive protection mech-

anisms. This event, in particular, highlights the vulnerability of power system to both

extreme weather events and the modernization of grids.
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1.2 Operational �exibility in smart electricity networks

Now, we describe the increased operational �exibility available to the system operators

of modern ENs due to the integration of novel components and functionalities.
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Figure 1-2: Performance under various response capabilities.

After an adverse event (i.e. a security or reliability failure), the system performance

likely degrades. However, to what extent it degrades and how quickly it restores depends

on the available operator proactive and reactive capabilities. Figure 1-2 shows how system

performance evolves over time after an adverse event. Initially, the system is operating in

nominal conditions. As a result of the disturbances resulting from the adverse event, the

system performance degrades. If the operator fails to respond in a timely manner (within

few seconds), then an uncontrolled cascade can occur (resulting in a post-contingency loss

ℒA). Such a cascade is triggered due to activation of protection mechanisms (autonomous

disconnections) that isolate the components based on local measurements. However, to

regain nominal operation, the operator eventually undertakes secondary control actions

(e.g. generator redispatch, changing tap settings of transformers, switching on capacitor

banks). Thus, the nodal voltages and frequency recovers, allowing the possibly discon-

nected loads to reconnect and system performance is restored. However, with some better

response capability, say𝐵 (or𝐶), the operator may be able to reduce the post-contingency

loss to ℒB (or ℒC). Next, we consider what such response capabilities might be which the

modern ENs have to o�er to system operators.
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1.2.1 Contingency reserves: allocation and dispatch

During the operation of any electricity network, the main constraints are as follows. There

are power �ow equations which are physical laws and, therefore, must be satis�ed. The

other constraints model the operating behaviour of the components, e.g. power consumed

by loads. Finally, there are operating constraints, which model the frequency and voltage

regulation as well as line capacities. However, one or more of these operating constraints

may be violated as a result of the adverse event. We argue that such violations result in a

contingency. Thus, we view a contingency as a sudden, unplanned incident caused due to

failure of one or more components that has a direct e�ect on the operating constraints of

the EN [22]. Based on the number of failed components, contingencies can be classi�ed

as

– single contingency - if there is a loss or failure of a single component; or

– multiple contingency - if there is a simultaneous loss of multiple components [22].

Figure 1-3: Examples of Distributed Energy Resources. Figure shows (from left to right) a

small wind turbine, diesel generator, a residential storage device, rooftop solar panel, and

an electric car.

The integration of DERs (see Figure 1-3) into the DNs has allowed sources of power

to be closer to the demand nodes, which results in lower transmission and distribution

losses [50, 129]. In addition, they can also be used as contingency reserves which can be

25



dispatched during contingencies [133]. To prevent or limit the impact of contingencies,

the spatially distributed DERs within a DN and a big generator (BG) supplying power to

the DN via the substation can be redispatched; see Figure 1-4. Any point on the supply-

demand balance line is a resource allocation that determines the amount of power supplied

by the BG and the amount of power supplied by the DERs. If the power consumed by loads

is curtailed, then the supply-demand line shifts inwards due to reduction in aggregate

demand. The capacity of an energy resource (BG or the DERs) in excess of the power

supplied by the resource determines the reserves provided by that energy resource.

Resource
allocation

BG supply

Supply-demand
Balance

Flexible
Loads

Supply

Reserves

Total
capacity

DERs

Supply Reserves

Figure 1-4: An illustration of power allocation through a BG and spatially distributed

DERs.

In the post-contingency situation, violations of operational constraint(s) must be con-

tained by the operator. If such violations are not resolved in a timely manner, additional

components may fail, which can result in new contingencies. For example, signi�cant loss

of DER supply in highly loaded DNs may result in a drop in node voltages below a critical

threshold causing other supply sources to trip, potentially resulting in a network e�ect (or

cascade) [101]. Thus, planning for su�cient resources is essential so that the SO is able to

meet regulation objectives in contingency situations. Typically, these objectives include

voltage regulation (VR), frequency regulation (FR), and capacity management (CM) [30].

In particular, lack of adequate active power resources can cause loss of frequency regu-

lation, and the scarcity of reactive power resources can lead to voltage �uctuations. In
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addition, in many situations, the capacity of one or more lines limits the reallocation of

power that is needed to serve demand during contingencies [22, 35]. These factors have

been identi�ed as crucial for resilience of electricity grids [9, 22, 131], and are poised to

become signi�cant even for DNs.

In recent years, thanks to technological improvements and reduced cost of deploy-

ment, DERs have emerged as a promising solution for provision of reserves; in particular,

by means of active and reactive power control [30, 128]. These functionalities are enabled

by the appropriate power electronics and allow the DERs to respond to a range of �uc-

tuations in a fast manner (order of milliseconds) as opposed to the slower response via

traditional means, which is typically in the order of few seconds to few minutes. Thus,

allocation of DERs as reserves to facilitate fast response for meeting regulation objectives

is both an interesting and important problem; which we consider in the context of DN

resilience.

Another signi�cant aspect of modern DNs is that there are opportunities to allow for

partial DN operation in situations when bulk supply (from the transmission side) is no

longer available. In such cases, microgrids can be operationalized during the recovery

and repair period. Indeed, extensive literature is available on the allocation of repair crew

and optimal response operations [11, 126, 132, 137]. These contributions primarily fo-

cus on resource limitations, failure uncertainties, and physical constraints. However, the

problem of proactive allocation of temporary generators in the pre-storm stage has re-

ceived limited attention in the literature. This opportunity becomes especially relevant

given the technological progress in portable DERs and microgrid technologies [39]. The

signi�cance of proactive DER allocation in the face of natural disasters has already been

acknowledged by federal agencies [65, 129]. A strategic placement of DERs at a subset

of DN nodes in the pre-storm stage, given the uncertainty in component failures can be

done to minimize the resulting lost load. Such proactive resource allocation strategies can

signi�cantly support the post-contingency response and restoration operations.
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1.2.2 Post-contingency operations: response and restoration

After an adverse event, if the operator fails to respond in a timely manner, the protection

devices get triggered resulting in autonomous disconnection of the components. The op-

eration of these devices is based on local checks of operating bounds, and thus does not

rely on the collected voltage and power consumption/generation readings from all over

the EN. This is typically the case for legacy EN management systems where the opera-

tor does not have access to node-level data. Consequently, an operator relying solely on

this response capability does not have the ability to timely detect, accurately identify, and

promptly respond to coordinated or correlated disturbances in an EN during an adverse

event. As such, one can view this capability simply as “no response” from the operator,

since the disconnect operations are local and do not bene�t from network-level coordina-

tion by the operator.

The traditional operator response actions in a DN include control of voltage regulators

and capacitors, and network recon�guration. However, the time-scale of disturbance cre-

ated by the adverse event can be very small (few seconds), and can trigger the autonomous

disconnections due to operating bound violations. Typically, voltage regulators and ca-

pacitor banks require a larger response time; in fact, frequent activation of these devices

is not preferred as they are subject to mechanical wear and tear [3]. On the other hand,

thanks to advancements in the Substation Automation (SA) systems and power electronics

based control of loads/DGs, a response strategy can be implemented within a few millisec-

onds after the information about the timing and extent of disruption is obtained by the

Substation Automation (SA) system.

We consider an emergency response exploits the capabilities of modern SA systems

that have the visibility of node-level consumption, distributed generation, and nodal volt-

ages. Many of the newer installations of smart meters are already equipped with data

logging and communication capabilities. The temporal frequency of data collected by

low-voltage residential meters can vary from 15 minute to 24 hour intervals, depending

on the desired control functionalities, customer privacy levels provided by the operator as

well as the available communication bandwidth between DN nodes and the SA. However,
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the smart meters installed at medium voltage to low voltage transformers at DN nodes can

be utilized to provide aggregated node-level data from the customer meters in real-time

(every second). With this capability, sudden supply demand changes in the nodes can also

be detected by the SA. This level of monitoring does not involve individual customer me-

ter readings, and hence, does not violate privacy regulations. We posit that the currently

available capabilities of collection and processing of node-level data can be exploited by

the operator to implement fast response strategies through SA.

The use of microgrid technologies such as microgrid islanding and dispatch of DERs [84,

100, 133] toward improving DN resilience. Historically, the idea of DER-powered mi-

crogrids as a response mechanism has been considered for responding to reliability fail-

ures [63, 100, 133]. Indeed, microgrids have been implemented to support the reliability

targets of critical facilities such as hospitals, industrial plants, and military bases. How-

ever, their technological feasibility (and related operational aspects) in responding to se-

curity failures has received limited attention. We address this issue by building, and focus

on evaluating the e�ectiveness of DER-powered microgrids in limiting post-contingency

losses after a disruption. Furthermore, we also consider the use of microgrids in facil-

itating power supply while the EN restoration process is taking place after security or

reliability failures.

1.2.3 Key issues

As illustrated from the incident reports of the security and reliability failures listed in

Sections 1.1.1 and 1.1.2, the power systems are vulnerable to simultaneous disruptions of

multiple components resulting from correlated or strategic failures. The operators do N-k

security-constrained optimal power �ow, where N is the number of components in the

network, and k is the number of components which can get disrupted simultaneously.

However, the value for k is chosen typically 1 or 2, to account for reliability failures re-

sulting from single or double contingencies due to normal wear and tear of individual

components. However, the nature of correlated/strategic failures necessitate the consid-

eration of multiple contingencies (i.e. k ě 3). However, as the value of k increases, the

number of potential N-k contingencies grows combinatorially.
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Secondly, the power �ow constraints which are integral to operation of ENs are highly

non-convex. As a result, even the relatively simpler problem of determining an optimal

response for a given contingency is non-trivial. When we consider the task of determin-

ing the worst N-k contingency assuming optimal response by the operator, the problem

becomes even more computationally expensive. Therefore, the scalability of solution ap-

proaches is a huge consideration.

Thirdly, the solution approaches for the vulnerability assessment problems do not

provide any structural insights into the critical components or optimal response. As a

result, if there are even minor modi�cations to the network (in terms of addition/deletion

or securing of a small subset of components), then the worst-case vulnerability or optimal

operator response strategies can change drastically. Therefore, it is desirable to develop

solution approaches that provide some practical insights so that we can systematically

approach the problem of improving resilience of ENs.

1.3 Problem statement and research

Now, we describe the problem formulations considered in this thesis. Since the disruption

model of security and reliability failures are inherently di�erent, we consider two separate

classes of problem formulations. First, we describe the main formulations for case of

security failures, which we pose as bilevel optimization problems.

The �rst problem which we consider is that of a semantic-aware attack generation

against the electricity transmission networks. In this problem, the attacker exploits his

partial knowledge of power system operations to compute target malicious power sys-

tem parameters. The attacker’s goal is to implement the optimal attack using a targeted

manipulation of speci�c power system parameters that reside within a control process’s

dynamic memory space. We pose the problem of generating a physics-aware attack is

posed as a sequential game between the attacker (leader) and the follower (grid operator).

In the �rst stage, the attacker chooses power system parameter manipulations with the

objective of maximizing the violation of capacity limits; in the second stage, the operator

solves the Economic Dispatch (ED) problem to determine generator output levels while

facing the manipulated parameters chosen by the attacker in the �rst stage. Our goal is
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to show that the optimal power injections and nodal voltages computed using the ma-

nipulated parameters yield suboptimal and unsafe power �ow allocations. Moreover, this

can signi�cantly increase the possibility of cascading failures and the risk of subsequent

emergency actions.

Next, we consider a class of bilevel optimization problems for resiliency assessment

in distribution networks with radial topologies [109, 110, 114, 115]. The Stage 1 problem

represents a disruption model that captures impact of attacker-induced disruptions on the

DN. In Stage 2, the operator implements a range of available response strategies. In the

two stages of the game, the objective of the attacker (resp. operator) is to maximize (resp.

minimize) the post-contingency loss (i.e. weighted sum of cost incurred due to operating

bound violations) and cost of operator control actions subject to constraints due to power

�ow, and DER/load models. A generic form of the bilevel problem is as follow:

ℒMm
:“ max

𝑑P𝒟
k

min
𝑢P𝒰p𝑑q

𝐶post-contigencyp𝑢, xq

s.t. xp𝑑, 𝑢q P 𝒳,
(1.1)

where ℒMm denotes the Max-min (Mm) post-contingency loss used for evaluating DN’s

resilience; 𝑑 an attacker-induced failure; k the attacker’s resource constraint; 𝒟k the set

of attacker’s strategies; 𝑢 an operator response; 𝒰p𝑑q the coupling constraints that de�ne

the set of feasible operator responses under the impact of attack-induced failures; x the

post-contingency network state, i.e. the state after the attacker-operator interaction is

completed; 𝒳 the set of constraints that model physical constraints (power �ows), com-

ponent constraints (loads and DGs), and nodal voltage and frequency constraints. For a

given disruption 𝑑 P 𝒟k, the operator’s objective is to minimize the post-contingency

loss 𝐿 p𝑢, xq, and the attacker’s objective is to choose an attack that maximizes the post-

contingency loss assuming an optimal response by the operator. Suppose that p𝑑‹, 𝑢‹q is

an optimal solution to this maximin problem which results in the network state x‹. Then

ℒMm “ 𝐿 p𝑢‹, x‹q is the post-contingency loss that is incurred by the operator when he

implements 𝑢‹ in response to the attack 𝑑‹.

These formulations di�er in the speci�c disruption models, operator response capabil-
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ities, and the post-contingency loss under consideration. In these bilevel problems, the at-

tacker problem (Stage 1) consists of either binary variables [110, 114, 115] or mixed-binary

variables [109, 111]. The inner problem either consists of continuous variables [109, 109]

or mixed-binary variables [114, 115]. The disruption model considers the joint impact of

attacker-induced supply demand-disturbances at the DN nodes as well as the impact of

TN-side disturbances at the substation voltage and system frequency. On the other hand,

the operator model consists of a range of capabilities which include load control, com-

ponent disconnects, DER dispatch, and microgrid islanding. The post-contingency losses

capture the cost of operator control actions (load control/shedding) and cost of operating

bound violations (loss of voltage or frequency regulation). The exact post-contingency

loss function depends on the speci�c operator response capability under consideration.

By solving the problems in stages 1 and 2, we obtain optimal strategies for the attacker

and the SO, which provides insights into answering two Stage 0 problems:

– Optimal allocation of power and contingency reserves in DERs, and

– Optimal security strategy for securing DN nodes against remote node compromises.

We refer to the �rst problem as Resilience-Aware Optimal Power Flow (RAOPF) [110];

see Chapter 4. The Stage 0 problem represents the operator’s problem of resource allo-

cation for optimal power �ow and planning of reserves in anticipation of an attack. The

operator’s objective in Stage 0 is to minimize the sum of cost of resource allocation and

the maximin post-contingency loss. On the other hand, we refer to the optimal security

problem as a Defender-Attacker-Defender (DAD) game. In this game, in Stage 0, the op-

erator invests in securing a subset of DER nodes but cannot ensure security of all nodes

due to his budget constraint [109]; see Chapter 3. In this problem, the operator’s goal in

Stage 0 is to minimize the maximin post-contingency loss incurred in Stages 1 and 2.

Overall, the decisions in each of the three stages of the two problems (RAOPF and

DAD game) can be summarized as follows:

– Stage 2: Given a �xed Stage 0 operator strategy (reserve allocation or secure a subset

of DN nodes) and a �xed contingency, what is the optimal operator response in

terms of dispatch of available resources?
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– Stage 1: Given a Stage 0 operator strategy, and the assumed attacker model, what is

the optimal attack that maximizes the post-contingency cost, assuming the operator

will respond optimally?

– Stage 0: What should be the optimal allocation/security strategy, assuming the op-

timal strategies of the attacker and the operator in Stages 1 and 2, respectively?

These bilevel formulations enable the evaluation of DN resilience in terms of its ability to

minimize the impact of attacker actions.

Additionally, when the DNs consist of microgrids, we introduce a problem about

restoration of DN performance over multiple time periods; see Chapter 6. In each time

period, the operator can, subject to some resource constraints, restore the functionalities

of the components disrupted by the attacker actions. The operator’s objective is to deter-

mine an optimal restoration strategy which minimizes the sum of post-contingency losses

over the multiple time periods. This problem enables the resiliency assessment of the DN

in terms of its ability to restore system performance after a security failure.

Now, we describe the problem formulation pertaining to the weather-induced failures

in the DNs, in particular the failures induced by tropical storms. We formulate a two-stage

stochastic mixed-integer problem which considers the strategic DER placement decisions

in Stage 1 (pre-storm), and a multi-period repair problem with DER dispatch within each

microgrid in Stage 2 (post-storm); see (1.2). For the ease of exposition, we refer to this

problem as 2-SMIP problem. The objective is to minimize the sum of the cost incurred in

DER allocation and the expected cost of unmet demand during the time period of repair

and recovery operations. For a given DER allocation (placement) and for a realization

of DN component disruptions, Stage 2 is a deterministic multi-period problem in which

line repair schedules and dispatch within each microgrid are jointly determined. From

a practical viewpoint, each period can be viewed as one work shift of the repair crews.

In the 0th
period, the subnetworks formed as a result of disruptions start to operate as

microgrids using the available DER supply. In the subsequent time periods, damaged

lines are repaired, permitting connections between smaller microgrids to progressively

form larger microgrids. In the last time period, the DN is connected back to the main grid,
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and normal operation is restored. Crucially, the Stage 2 problem relies on an estimate of

the total number of time periods needed for full recovery. It also utilizes a novel model

of linear power �ow within a microgrid island with parallel operation of multiple DER

inverters. Figure 7-1 summarizes the order of events and decisions in our formulation.
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Figure 1-5: Timeline of events and decision stages. The DER placement decision (𝑎) is

made before the storm hits the network (𝑡 “ 𝑡1). Uncertainty 𝑠 is realized over the course

of the storm. After passing of the storm (𝑡 “ 𝑡2, 𝑚 “ 0), optimal power �ow and line

repair decisions (𝑥, 𝑦) are made. At 𝑚 “ M (end of repair time horizon), the network is

fully restored.

Our formulation considers a tree DN with nodes and distribution lines𝒢 “ p𝒩Ťt0u, ℰq,
where 𝒩 denotes the set of all DN nodes. The substation node is labeled as 0, and it also

forms the connection to the bulk supply through a transmission network. The set ℰ de-

notes the set of directed edges, such that the edges are directed away from the substation

node. The �rst-stage problem is as follows [4]:

min
𝑎P𝒜

 
𝑔 p𝑎q :“Walloc

𝑇𝑎` E𝑆„𝒫𝐽 p𝑎, 𝑆q
(
, (1.2)

where 𝑎 denotes a resource allocation strategy to be chosen from the set of feasible strate-

gies 𝒜. The uncertainty in the random vector 𝑆 characterizes the random failures of dis-

tribution lines and has a probability distribution 𝒫 de�ned over the set of possible line

failure scenarios 𝒮 :“ t0, 1uℰ . In (1.2), Walloc is a length-|𝒩| vector of the allocation cost

per unit resource at the nodes, Walloc

𝑇𝑎 is the cost of resource allocation and E𝑆„𝒫𝐽p𝑎, 𝑆q
is the expected cost of unmet demand under allocation scheme 𝑎.
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To model the post-storm multi-period dispatch with repair scheduling, we consider an

a priori �xed time horizon with M periods. Let ℳ :“ t0, 1, ¨ ¨ ¨ ,Mu denote the set of all

periods. We denote a period by 𝑚. For a speci�c realization of line failures 𝑠 P 𝒮 , 𝐽p𝑎, 𝑠q
denotes the optimal value of the second-stage problem which is given as follows:

𝐽 p𝑎, 𝑠q :“min
x𝑠,𝑦𝑠

Mÿ

𝑚“0

Wdem

𝑇x𝑚,𝑠

s.t. 𝑦𝑠 P 𝒴 p𝑠q , x𝑠 P 𝒳 p𝑎, 𝑠, 𝑦q ,𝑊
»
–𝑥
𝑦

fi
fl ě ℎ ´ 𝑈𝑎

(1.3)

where 𝑊, ℎ, and 𝑈 correspond to constraint parameters. where the scenario-speci�c

second-stage decision variables x𝑠 “ tx𝑚,𝑠u𝑚Pℳ and 𝑦𝑠 “ t𝑦𝑚,𝑠u𝑚Pℳ respectively denote

the collection of dispatch and line repair actions for each period. For a failure scenario

𝑠 P 𝒮 , 𝒴 p𝑠q denotes the set of feasible repair schedules, and 𝒳 p𝑎, 𝑠, 𝑦q denotes the set of

feasible power �ows under the DER allocation 𝑎, and chosen line repair schedule 𝑦 P 𝒴 p𝑠q.

1.4 Related work

Our work is motivated by recent progress in three topics: (T1) Cyber-security attacks of

networked control systems [6, 34, 54, 80, 89, 97, 121, 146]; (T2) Interdiction and cascading

failure analysis of power grids (especially, transmission networks) [20, 102, 103, 142]; and

(T3) Control of distribution networks with DERs and microgrids [40, 53, 67, 130, 133].
1

1.4.1 Models of cyber-security attacks

The adversary model in Chapter 3 considers simultaneous DER node compromises by

false-data injection attacks. Thanks to the recent progress in (T1), similar models have

been proposed for a range of cyber-physical systems [89, 97]. Our model is motivated

by the DER failure scenarios proposed by power system security experts [98]. These

scenarios consider shutdown of DER systems when an external threat agent compromises

the DERs by a direct attack, or by manipulating the power generation set-points sent from

the control center to individual DER nodes/controllers.

1
The topic (T3) has been discussed in detail in Sec. 1.2.
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Our approach to model DN-side disruptions can be extended to other types of attacks,

including disruption of loads or circuit breakers. Despite its simplicity, our approach to

model DN-side disruptions can be applied to capture the physical impact of a broad class

of security failure scenarios. This class includes Distributed Denial-of-Service (DDoS) at-

tacks on the power grid components that can result in simultaneous failures [49, 120, 144].

Another relevant attack scenario is motivated by the vulnerabilities of Internet connected

customer-side devices (e.g. smart inverters, air conditioners, water heaters), also known

as Internet-of-Things (IoT) devices [49]. An adversary can hack into these components

via a cyberattack, create an IoT botnet, and can acccess them via Internet. Indeed, recent

work in cyber-security of power systems has identi�ed risk of correlated failures (e.g. si-

multaneous on/o� events) induced/caused by IoT botnets [120]. In our disruption model,

the impact of such an attack can be straightforwardly modeled by load/DG/line discon-

nects, leading to sudden supply-demand disturbance. However, a single point of failure

such as a cyberattack on DGMS is perhaps a more critical threat to DNs with signi�cant

penetration of DGs.

One speci�c related line of research is proposed false data injection (FDI) attacks [80,

125, 135] that have been explored over the past few years. FDI assumes compromised set of

sensors and make them send corrupted measurements to electricity grid control centers to

mislead the state estimation procedures. The authors propose a system observability [80]

analysis to determine the required minimal subset of compromised sensors to evade the

electricity grid’s bad data detection algorithms [86]. The power system stability has also

been studied under corrupted real-time pricing signals [124]. As a fundamental domain-

speci�c monitoring tool for cyber-physical platforms, state estimation is to �t sensor data

to a system model and determine the current state [2, 6]. Existing real-world solutions to

analyze power system stability [61] run every few minutes [118]. These solutions do not

consider the cyber-side controllers and/or adversarial settings [12, 138]; hence they may

miss malicious incidents such as the controller code execution attacks. Risk assessment

techniques, e.g., contingency what-if analyses [123] investigate potential power system

failures speculatively. However, enumeration of all possible incidents is a combinatorial

problem and does not scale up e�ciently in practical settings [43].
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1.4.2 Network interdiction models and algorithms

Indeed, previous literature has dealt with issues related to resilience of power systems [77,

103, 121]. Existing work in (T2) employs state-of-the-art computational methods for solv-

ing large-scale, mixed integer programs for interdiction/cascade analysis of transmission

networks assuming direct-current (DC) power �ow models. Several papers have used

bilevel optimization formulations for vulnerability assessment of TNs to adversarial dis-

ruptions [24, 97, 103, 121]. Another notable application is the generalization of the clas-

sical N-1 security problem to an N-k problem [24, 121]. These formulations typically

assume the DC power �ow approximation and continuous decision variables in the inner

problem. The latter enables a KKT-based solution approach reformulation, and leads to

single-level Mixed-Integer Program (MIP).

However, when the inner problem consists of binary variables, the solution approaches

become scarce. In this case, the bilevel problem is called a Bilevel Mixed-Integer Program

(BiMIP), with an additional feature of having con�icting objectives in the inner (operator)

and outer (attacker) problems. In general, one can reformulate a BiMIP into single level

MIP (for example, using high-point relaxation (HPR) problem [92, 140]), and use advanced

branch-and-bound algorithm to solve the problem. However, the HPR is a weak relaxation

of the original BiMIP due to directly con�icting objectives [69, 72]. More recent work has

developed intersection cuts [55, 56] and disjunction cuts [85, 134] – these approaches in-

troduce stronger cuts for the HPR problem. However, these approaches are suitable for

BiMIPs in which the inner problem has integer coe�cients in the constraints. On the

other hand, the BiMIP interdiction problems on power systems infrastructure which we

consider have fractional coe�cients. A recent paper by Hua et. al [69] addresses this is-

sue by applying Generalized Benders decomposition method. Another approach by Zeng

and An [145] uses Column Constraint Generation (CCG) method, whose iterations pro-

gressively add variables and constraints (particularly, the disjuntive constraints resulting

from the KKT conditions for the inner problem with �xed binary variables). While these

approaches are certainly of interest in solving (1.1), we �nd that our proposed approach

achieves desirable computational performance as discussed in Chapters 5 and 6.
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1.4.3 Failure detection and attack-resilient state estimation

Another well-studied attack model in the literature considers false-data injection attacks

to a (small) subset of sensors in order to inject biases in state estimates, while being un-

detected by anamoly detectors [54, 59, 81]. Available results include identi�cation and

security of “critical” sensors and attack-resilient state estimation. However, a less com-

monly studied aspect is that of incorrect control actions that could be implemented as a

result of biased state estimation. Based on our previous work [112], one can argue that

our disruption model can be tailored to capture the changes in supply/demand of network

nodes due to disruption of DGs/loads and/or component disconnect actions that may be

induced by successfully bypassed false-data injection attacks on sensor data used by the

control center.

1.5 Contributions and thesis outline

In this thesis, we develop a quantitative framework to evaluate the resilience of smart

ENs in the wake of cyberphysical disruptions. Developing this framework involved: (a)

identifying appropriate resiliency metrics for the ENs (e.g. value of lost demand or in-

creased operating costs), (b) modeling of smart grid control capabilities (e.g. dispatch of

distributed energy resources [109, 110], component disconnects [114, 115] or microgrid

islanding [115]); and (c) developing relevant disruption models (adversary-induced strate-

gic disruptions of components [109]-[112] or weather-induced random failures [38]). We

formulate the problem of resilient control by network operators as sequential, multi-stage

deterministic [109]-[112] or stochastic optimization problems [38]. These multi-stage

problems are computationally hard to solve. By utilizing the tools in optimization the-

ory and the domain knowledge of power systems, we develop a computational approach

to approximately solve these hard problems. Our work contributes to the �elds of resilient

control, and network and combinatorial optimization.

1.5.1 Attack generation and implementation

In Chapter 2, we introduce a new semantic-aware data injection attack against power

grid controllers. The attack leverages an approximate model of power system to manip-
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ulate the controller runtime memory such that the execution of the legitimate controller

software, using partially corrupted values, drives the physical plant towards unsafe states.

We formulate the problem using a game-theoretic framework to optimize the attack strat-

egy in terms of which available data regions in the controller memory space should be

modi�ed. The adversary-optimal values are calculated using fast bilevel optimization pro-

cedures.

Recall from Sec. 1.3 that we consider a 2-stage attacker-defender game and formulate

a mixed-binary bilevel convex optimization problem. In Stage 1, the attacker chooses

a strategy to decide which line rating parameters to compromise, and by how much. In

Stage 2, the system operator who is unaware of the attack, computes an optimal economic

dispatch solution by solving a convex program with assumed compromised line rating

parameters. The inner operator problem is a convex problem, which enables us to solve

the bilevel problem using a KKT-based single level mixed-binary reformulation.

Finally, we show that implemented working prototypes of the proposed controller

attack against real-world large-scale and widely-used energy management systems. Our

implementations leverage logical memory invariants to locate the sensitive power system

parameters in the controller’s memory space. The evaluation results prove the feasibility

of domain-speci�c data corruption attacks to optimize for the physical damage.

1.5.2 Network models

In order to solve the DAD game (Chapter 3), we �rst consider the sub-game involving

Stages 1-2 resulting from �xed operator security strategy in Stage 0. We develop a novel

𝜖´linear power �ow (LPF) approximation along with the classical LPF approximation

which allows us to pose bilevel linear programs. Now, the optimal losses under 𝜖´LPF

and LPF approximations upper and lower bound the optimal loss under non-linear power

�ows, respectively. In [110, 111] we show that these results also hold true if we model the

deviations in the system frequency.

In Chapter 6, we develop a novel network model for radial DNs consisting of one or

more microgrids. This model enables us to capture di�erent microgrid regimes (intercon-

nected vs islanded) as well as the DER operating modes (single-master vs. multi-master)
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using a mixed-integer linear network model. This modeling approach enables us to for-

mulate a Bilevel Mixed-Integer Problem (BiMIP). In Chapter 5, we show that (1.1) can

be solved using a Benders Decomposition (BD) algorithm. In Chapter 6, we show that

the same BD method can be applied to the extended BiMIP formulation for the multi-

microgrid radial DN model.

Our network model is also well-suited for formulating a DN restoration problem as

a multi-period Mixed-Integer Problem (MIP). In our restoration problem, the network

state in any period only depends on the operator response actions in that period, and

the network state in the previous period. We exploit this feature and propose a greedy

heuristic that seeks to reconnect the disrupted components in each period such that the

post-contingency losses for that period are minimized (Chapter 6). We further utilize

the same network model to consider DN restoration after storm-induced failures in the

2-SMIP problem (Chapter 7).

1.5.3 Algorithms for resource allocation, response, and recovery

While solving the DAD game, the 𝜖´LPF and LPF approximations enable us to charac-

terize for �xed attacker (resp. operator) strategy, the optimal strategy of the operator

(resp. attacker). These results lead to a greedy approach, which e�ciently computes the

optimal attack and defender response. We prove optimality of the greedy approach for

DNs with identical resistance-to-reactance ratio, and show that the approach e�ciently

obtains optimal attack strategy and defender response for a broad range of conditions.

We also show that our greedy approach has signi�cantly better computational perfor-

mance than the standard techniques to solve bilevel optimization problems (e.g., Bender’s

decomposition [103]).

In the RAOPF problem, we utilize a similar solution approach as described above. We

primarily focus on the last two stages and considered the �rst-stage resource allocation as

�xed. For the sake of simplicity, we only consider linear power approximations. Then, we

show that our greedy approach can be extended to solve for optimal solutions of Stages

1-2. This approach again enables much faster computation of attack strategy to maxi-

minimize the SO’s post-contingency loss. Furthermore, the optimal attacker and operator
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strategies in the sub-game only depend on the net active and reactive power �owing into

the DN. By implementing a search algorithm (e.g. binary search) over a few values for

the net in�ow, we can minimize the weighted sum of cost of resource allocation and the

post-contingency cost under worst-case scenario.

In Chapters 5 and 6, we further extend the attacker-operator sub-game. In this case,

the operator response problems consists of mixed-binary variables for which the greedy

heuristic is no longer applicable. The bilevel formulation is a BiMIP. Therefore, we develop

a new solution approach which comprises of reformulating the BiMIP into an equivalent

Min-cardinality disruption problem. A key feature of our formulation is that the coupling

constraints which model the e�ect of attacker’s actions on the operator response consist

only of binary variables. As a result, a straightforward application of Benders Decom-

position (BD) method does not rendering useful Benders cuts. Hence, we apply the BD

method on a BiMIP with reformulated coupling constraints, and show the e�ectiveness

of the modi�ed method.

In Chapter 6, we show that the problem of DN restoration by gradually connecting

the disrupted components can be posed as a large-scale MIP, and can be solved using

o�-the-shelf MIP solvers. However, due to the large number of binary variables, it can

become computational expensive to solve for larger networks. Instead, we solve for the

restoration actions using a simple greedy algorithm. In each period, the operator simply

chooses that response which minimizes the post-contingency loss during that time period

subject to the monotonicity and resource constraints. Our computational results, show

the e�ectiveness of this greedy restoration algorithm.

In the 2-SMIP problem (see (1.2)), calculating E𝑆„𝒫𝐽pp𝑥, 𝑦q, 𝑆q is computationally in-

tractable for large networks because the number of all possible scenarios grows exponen-

tially for a network with the number of edges. Using the sample average approximation

(SAA) method [4], one can obtain an approximate solution to the stochastic optimization

problem. This solution can be obtained by solving the following problem:

min
𝑎P𝒜

"
𝑔 p𝒮p𝑎q :“Walloc

𝑇𝑎` 1

𝐾

ř
𝑠P p𝒮 𝐽p𝑎, 𝑠q

*
, (1.4)
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where
p𝒮 Ă 𝒮 is a suitably chosen (preferably small) subset of the set of failure scenarios,

𝐾 :“ | p𝒮|, and 𝑔 p𝒮p𝑎q is the SAA objective value obtained using𝐾 samples drawn from the

distribution 𝒫 .
p𝒮 is chosen using a scenario reduction method described in [48]. The re-

sulting problem is a large-scale MIP, and we solve using a modi�ed version of the Benders

Decomposition method described in [114]; see Chapter 7.

As part of our ongoing work, we are investigating other approaches for solving 2-

stage stochastic MIP problems [107, 116]. In [116], a Reformulation-Linearization Tech-

nique (RLT) and lift-and-project cuts are used if we restrict variables in the Stage 2 to be

binary. This allows the regular BD method to be directly applicable. In [107], it is shown

that the scenario-speci�c Stage 2 problems have similar structure. This characterization

is known as Common-Cuts-Coe�cients (𝐶3
) Theorem, based on which a Disjunctive De-

composition (𝐷2
) algorithm is developed. This algorithm enables to utilize the Benders

cut obtained for one scenario to be modi�ed for other scenarios by using a simple trans-

lation. In Chapter 7, we will describe how the results in [107, 116] might be used for

solving (1.2). Another approach, which is also part of our ongoing work, is that for a

�xed allocation of portable DERs, the problem of optimal restoration strategy in Stage 2

is closely related to optimal scheduling problem of jobs with unit execution times and soft

precedence constraints [126]. Our hope is to utilize the insights from scheduling theory

to generate fast algorithms to solve for Stage 2 problems, which will ultimately enable

improved resource allocation in Stage 1.

In all of the above-described works, full and accurate knowledge of the system pa-

rameters is important, which is why we wanted to develop a data-centric method which

would enable obtaining these parameters based on sensor measurements. This work is

also part of our ongoing research. In Chapter 2, we describe an online learning method

to learn the power transmission dynamics. In particular, the goal is to reconstruct the dy-

namic state matrix of a transmission network using sensor data from Phasor Measurement

Units (PMUs) consisting of time-stamped values of the phase angle and the frequency for

each bulk generator. This work is motivated by the fact that the accuracy of the assumed

system model and its parameters in TNs is very important for a range of nominal appli-

cations such as state estimation, generation re-dispatch, detection of forced oscillations,
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etc. An accurate system model can also be used to timely detect and identify of a secu-

rity attack, as well as to determine an optimal operator response to the attack-induced

disturbance.

The challenge is to develop a data-e�cient learning framework for performing an

online reconstruction of the dynamic network model using minimal number of assump-

tions and exclusively relying on the PMU measurements. Previous work on this problem

showed that with just the knowledge of network topology and complete PMU observa-

tions, it is possible to reconstruct the dynamic state matrix using a maximum likelihood

based approach [82]. However, we show that this approach can also be extended to the

case of partial PMU observability, when the PMU data of certain (hidden) nodes is not

available. Speci�cally, if each hidden node is connected to exactly one observable node

and each observable node is connected to at most one hidden node, then by exploiting the

structure of swing equation model, the entire dynamic matrix can be reconstructed. Our

hope is that the results provide insights into optimal sensor placement of the PMUs in the

TNs.

In summary, our main algorithmic contributions are: (a) an approach to speed up the

computation of attacker-SO strategies (relative to classical MILP approach) by utilizing

properties of power �ow on radial DNs; (b) insights into optimal resource allocation and

DER dispatch when the SO faces tradeo�s in maintaining regulation objectives during

contingencies that resulting from simultaneous node compromises; and (c) optimal DN

restoration strategies which model joint DER dispatch and network repairing operations.

1.5.4 Practical insights

There are several practical insights which we gain from our resilience assessment of elec-

tricity networks. Firstly, the power �ows and the radial topology of DNs leads to implica-

tions on optimal attacker strategy. In Chapter 3, we show that if the attacker’s goal is to

cause the loss of voltage regulation, then the attacker’s optimal strategy shows a prefer-

ence to attack downstream nodes in a clustered manner. As a result, the optimal security

strategy of the operator would be to secure the upstream nodes in a distributed manner.

Finally, we provide a characterization of the optimal security strategy for Stage 1 decision
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by the defender, albeit for symmetric DNs.

In Chapter 4, we show that if the attacker’s objective is to cause loss of frequency reg-

ulation, then the attacker’s optimal strategy involves compromise of nodes with larger

capacity [110]. This tradeo� between the loss of voltage vs. frequency regulation results

in a diversi�cation of optimal operator response. The optimal operator’s response is to

provide more reactive (resp. active) power as opposed to active (resp. reactive) power

from downstream (resp. upstream) DER nodes, to reduce voltage (resp. frequency) reg-

ulation. In [111], we show that this knowledge can be used to implement a distributed

control strategy that pre-assigns the downstream (resp. upstream) DERs to contribute to

voltage (resp. frequency) regulation, and yet performs well in comparison to the central-

ized control strategy.

Another insight is regarding the allocation of contingency reserves in DERs within

the DNs in the RAOPF problem. In Chapter 4, we show that regardless of what DER

setpoints are chosen, as long as the net active and reactive power going into the DN

remains constant, the optimal attacker strategy and optimal operator response remains

the same. This insight can be used to choose the DER setpoints that minimize the cost of

resource allocation in the pre-contingency stage (as stated in Sec. 1.5.3).

The greedy restoration algorithm described in Chapter 6 is based on the insight that

the network state in any period depends only on the operator actions in that period, and

the network state in the previous period. The algorithm returns with the operator actions,

resulting network state, and corresponding post-contingency loss for each time period.

Our experiments show that the greedy algorithm does produce near-optimal restoration

actions.

We refer the reader to Table 1.1 for a summary of our contributions.

The outline of the thesis is as follows. In Chapter 2, we present an end-to-end frame-

work for attack generation and attack implementation on an EMS software to perform

vulnerability assessment of the transmission networks under attacks on control center

functionalities. In Chapter 5, we develop a resilience assessment framework, and present

how the Substation Automation Systems can be leveraged to improve the resilience of

distribution networks. In Chapter 6, we extend the framework to assess resilience of dis-
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Disruption

model

Defense model Problem

formulation

Solution

Approach

Results / Insights

Data injection

attacks

Hardware-based protection Bilevel Linear

Convex Program

KKT-based MILP End-to-end attack

framework [112]

DER node

disruptions

DER response, load control Bilevel NLP 𝜖´LPF, Greedy

heuristic

Downstream preference

for attacker [109]

EV node

disruptions

DER response, load control Trilevel LP 𝜖´LPF, Greedy

heuristic

Diversi�cation in

response and

allocation [110]

DER disruptions,

TN-side

disturbances

DER response,

microgrid islanding,

load control,

component disconnections

Bilevel MIPs

Benders

Decomposition

Value of timely response,

greedy algorithm for

restoration [114, 115]

Stochastic line

failures

Portable DER allocation,

dispatch in microgrids,

line repair scheduling,

load control,

component disconnections

2-stage

stochastic MIP

Benders

decomposition

Recursive scheduling

algorithm for network

restoration [38]

Table 1.1: Summary of contributions.

tribution networks consisting of one or more microgrids. We also develop a novel network

model for DNs with one or more microgrids. In Chapter 7, we consider the problem of

improving DN resilience to storm-induced component failures. Finally, in Chapter 8, we

present a summary of results and a few practical recommendations based on the �ndings

of the thesis.
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Chapter 2

Vulnerability Assessment of

Transmission Network Control Center

In this chapter, we present a semantics-aware attack against a widely used power grid

network control functionality, and demonstrates its practical feasibility on well-known

Energy Management System (EMS) softwares. Speci�cally, we conduct a vulnerability as-

sessment of an important functionality provided by all EMSs – the so-called Economic

Dispatch (ED) problem. In critical infrastructures, ED is routinely solved to set the gen-

erator output levels over a control area of a regional transmission grid. We show that

software security vulnerabilities in power system controllers can be exploited by an at-

tacker (an external hacker or a strategic market participant) to gain a backdoor entry into

power grid operations.
1

By utilizing the knowledge of an approximate power �ow model

– speci�cally, DC approximation – the attacker can launch a semantic memory attack

to change the critical parameters such as transmission line ratings (capacities). A trans-

mission line’s rating re�ects the maximum amount of power that it can carry without

violating safety codes or damaging the line. We design experiments using ED implemen-

tation on real-world EMS software packages to demonstrate the economic and safety risks

posed by use of manipulated line ratings.

1
Throughout the chapter, we use the term controller as the ED implementation software packages that

solve economic dispatch problem.
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2.1 Compromising economic dispatch software

Despite the failures, the past intrusions had two features: i) they mostly required full own-

ership of the target controllers (e.g., Siemens Step7 server compromise by Stuxnet [51]) to

perform the attacks; and ii) they did not fully optimize their adversarial impact via utiliza-

tion of the underlying physical model. A semantics-based attack can do a lot more using

much less resources. For instance, an attacker with access to only few power system pa-

rameters can leverage its dynamical model to calculate the malicious replacing parameter

values such that the ultimate damage to the power system is maximized.

In the literature, there has been an extensive body of work on false data injection

attacks [80], where the compromised sensors send corrupted measurements to mislead

the operators regarding the power system state. Such attacks assume the attacker can

compromise a large number of geographically and logically distributed set of sensors re-

motely. In addition to the scalability barrier, remote malicious access to (analog) sensors

with serial connections may not be feasible in practice. Additionally, by design, false

data injection attacks target sensors or actuators only, and cannot manipulate core sys-

tem parameters such as the network topology and line parameters (e.g., capacities). This

information often resides within the control center servers and are used for power sys-

tem operations such as state estimation and operational control. However, almost all the

past real attacks (e.g., [13, 51]) against critical infrastructures have targeted control center

assets (as opposed to individual sensors or actuators).

The core of our attack generation approach against the power grid infrastructure is a

bilevel optimization problem that encodes the attacker’s partial knowledge of power sys-

tem operations to compute the target malicious power system parameters. This physics-

aware attack generation approach enables us to identify key features of power system data

and software operations whose exposure can signi�cantly increase security risks. The

implementation of our optimal attack against power system operation involves targeted

manipulation of speci�c power system parameters that reside within the EMS’s dynamic

memory space. The exploit performs an online memory data search using lightweight

pattern matching to locate the sensitive power system parameters used by the ED soft-
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ware to calculate the generation output levels. The use of manipulated parameter val-

ues makes the EMS issue incorrect dispatch (generation and power �ow) commands, and

consequently drive the power system towards unsafe states. The merit of our overall ap-

proach lies in the combination of the semantics-based optimal attack generation and a

generic implementation procedure for EMS’s memory data corruption.

The bilevel problem for attack generation can be viewed as a sequential game be-

tween the attacker (leader) and the follower (grid operator). In the �rst stage, the attacker

chooses power system parameter manipulations with the objective of maximizing the vi-

olation of capacity limits; in the second stage, the operator solves the ED to determine

generator output levels while facing the manipulated parameters chosen by the attacker

in the �rst stage. We show that the optimal power injections and nodal voltages com-

puted using the manipulated parameters yield suboptimal and unsafe power �ow allo-

cations. This signi�cantly increases the possibility of cascading failures and the risk of

subsequent emergency actions.

Our main contributions in this chapter are as follows:

• We introduce a new domain-speci�c semantic data attack against power grid con-

trollers. The attack leverages an approximate model of power system to manipulate

the controller runtime memory such that the execution of the legitimate controller

software, using partially corrupted values, drives the physical plant towards unsafe

states.

• We formulate the problem using a game-theoretic framework to optimize the attack

strategy in terms of which available data regions in the controller memory space

should be modi�ed. The adversary-optimal values are calculated using fast bilevel

optimization procedures.

• We implemented working prototypes of the proposed controller attack against real-

world large-scale and widely-used energy management systems. Our implementa-

tions leverage logical memory invariants to locate the sensitive power system pa-

rameters in the controller’s memory space. The evaluation results prove the feasibil-

ity of domain-speci�c data corruption attacks to optimize for the physical damage.
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Figure 2-1: Physics-aware memory attack on control systems.

In the remaining of this section, we present an overview of our proposed attack.

Sec. 2.2 presents the attack model and optimization algorithm to calculate the parame-

ter manipulations that will maximize the ultimate adversarial impact of resulting power

�ows. Sec. 2.3 presents our empirical experiments with real-world commercial power

grid monitoring and control software solutions. Sec. 2.5 discusses the potential mitiga-

tion strategies.

Solution Overview

Our contribution builds on two perspectives that have evolved in the emerging �eld of

cybersecurity of networked control systems. The �rst perspective involves the analysis of

state estimation and control algorithms under a class of attacks to sensor measurements or

actuator outputs [104]. These attack models re�ect the loss of availability (resp. integrity)

of measurements/outputs when the communication network linking the physical system

and remote devices is compromised. Recent work has studied how the physical system’s

performance and stability can be compromised by such attacks [80]. Typically the at-

tacker is assumed to be a resource-constrained adversary with only partial (or possibly

full) knowledge of system, and a resilient control design problem is to ensure a reliable and

safe performance against arbitrary actions that can be performed by the attacker. These

results are grounded in the theory of robust and intrusion tolerant control, which pro-

vides a quantitative framework to study the tradeo�s between e�ciency in nominal con-

ditions and robustness during non-nominal ones including the attacker-induced failures.
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In contrast, as illustrated in Figure 2-1, our attack model considers direct data corrup-

tion (speci�cally, manipulation of power system critical parameters) in the live memory

of EMS software, where all distributed sensor measurements are received and processed,

i.e., single point of compromise. Hence, individual infections of distributed sensors are

not required unlike previous work on false data injection attacks [86]. This allows us to

study how the vulnerabilities in control software implementations and in their links to

external data sources can be exploited by the attackers.

A second perspective has emerged in the vulnerability assessment of large-scale power

grids against physical attacks [23]. Here the objective is to �nd worst-case disturbance

or an adversary-optimal attack to physical components that can maximize the impact on

grid functionality, even under perfect observability and best response by the operator

(defender). Various classes of failures have been considered, for e.g., line failures, sud-

den loss of generation, and load disconnects. Typically, these problems are formulated

as bilevel optimization problems, and involve explicit consideration of both physical con-

straints (e.g., power �ows, generation constraints, and line capability limits) as well as

resource constraints of the attacker. Examples of physical security problems that have

been considered using this framework include 𝑁 ´ 𝑘 contingency analysis problem [43],

network interdiction under line failures, and modeling of cascading failures that originate

due to local component failures in one sub-network and progressively propagate to other

sub-networks of the grid. However, existing work on adversary-optimal attack does not

consider how such an attack can be executed in controller software. In our work, we

combine the computation of adversary-optimal attack with analysis of EMS software to

execute the attack.

Security threats to optimal power �ow

The operator (i.e. Independent System Operator) control software typically solves an ED

problem every 10-15 mins, or even more frequently, to schedule the delivery of electricity

through the high-voltage transmission lines. The decision variables in the ED problem

are the complex voltages at each node (“bus”) and power injections at each generator bus.

In its basic form, the ED can be stated as an optimization problem which minimizes the
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operating costs subject to the power �ow constraints on transmission lines, constraints

on power injections and voltages at generator buses, and capacity ratings of transmission

lines. The generic ED problem is non-convex and NP-hard. Many practical algorithms are

available to �nd a “reasonable” solution (e.g., gradient methods, linear and quadratic pro-

gramming, Newton’s method, interior point methods, etc.). More recently, an approach

based on semide�nite programming relaxation has been proposed, which can guarantee

either a global optimum or provide a certi�cate of infeasibility. The ED module is the

main implemented component of EMS software to ensure an optimal and reliable power

�ow.

The ability of ED to serve as a dependable tool for power system operations relies on

the inputs including the measurement of the state of power system (e.g., transmission lines

capacity, state of circuit breakers). The integrity of these measurements is essential for the

operator’s ability to direct power generation schedules, route power �ows across capacity-

constrained transmission networks, and continuously balance the electricity demand of

consumers across a large geographical region using least costly generation sources. If the

integrity of these power system parameters that ED uses is compromised, the ED problem

is bound to produce infeasible or potentially unsafe solutions. For example, the speci�ed

generator injections may produce power �ows that signi�cantly exceed the line capacity

ratings; some market participants may gain market power (and huge economic bene�ts)

by in�uencing the locational marginal prices, especially in peak demand conditions.

To the best of our knowledge, the existing literature in cybersecurity of control sys-

tems does not focus on how �ne-grained memory attacks despite existing layout random-

ization mitigations with an approximate knowledge of power system topology can com-

promise its safety-critical operation, the �ow allocations or in�uence the market prices.

We call such memory attacks that leverage the underlying physical dynamics (i.e., power

system mathematical models) to maximize their impact, semantic attacks.

Threat model. Our adversary model is concerned with stealthy memory data corruption

of EMS (that typically sits within the control center); thus, we require a compromised con-

troller process within the EMS server. This is a realistic assumption, because it requires

lesser privileges compared to the past real incidents such as Stuxnet [51] and BlackEn-
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ergy [13] that took complete control of the servers. With the access to EMS dynamic

memory, the exploit targets the true memory-resident power system critical parameters,

and implements calculated adversary-optimal incorrect values in EMS memory.

We emphasize two aspects of our model: Firstly, our attack generation and implemen-

tation approach is generalizable. However, to concretely illustrate our approach and to

evaluate its feasibility, we assume that the attacker is concerned with generating “optimal”

dynamic line ratings (DLRs) to maximize capacity violations. Indeed, other variations of

attack generation are possible, for e.g. manipulation of other parameters such as gener-

ator/loads/voltage bounds, etc. Secondly, our implementation approach is motivated by

server-side attacks to EMS software and emphasizes the stealthiness of the attack. Speci�-

cally, the in-memory parameter manipulations are still within acceptable limits and hence

pass the typical out-of-bound checks for false data injections. Thus, they can remain dor-

mant in controller’s memory and can produce the intended consequences (e.g. thermal

overloading, or even physical damage) before the last line of defense (i.e., physical fail-safe

mechanisms) are triggered. Again, other ways of implementing our attack are possible,

for e.g. intercepting network communication and injecting false data.

Implementations. We perform o�-line binary analysis to locate the power system pa-

rameters in the controller’s memory space. We use this information to extract logic-based

structural pattern signatures (invariants) about the memory around power system param-

eter value addresses. The signature predicates are checked during attack-time to identify

the real parameters on the victim controller memory space. Such pattern-based search

(as opposed to absolute memory address-based search) is required because analysis-time

(o�ine) and attack-time (online) parameter value addresses in memory often di�er. This

is because of unpredictable execution paths (due to potentially di�erent workloads) across

di�erent runs that result in di�erent heap memory allocation function call/return se-

quences, and hence di�erent allocated memory addresses. Finally, the attack achieves

a certain level of stealthiness by ensuring that the incorrect parameters re�ect similar

general trends as the true ones.
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2.2 Attack generation using bilevel programming

In this section, we describe how the attacker generates a semantic attack that utilizes the

knowledge of an approximate model of power �ow to manipulate the model parameters

used by the ED software. We choose DC model as the approximate model known by the

attacker, and line capacities as the targeted model parameters.

We show that under our adversary model, the allocation generated by the ED imple-

mentation under the manipulated capacity ratings, causes the power �ows on the trans-

mission lines to exceed the actual line capacity ratings. Speci�cally, its implementation

on the power system will lead to the violation of safe thermal limits of the lines. This can

cause the lines to rapidly deteriorate or degrade, increasing their likelihood of tripping.

The sudden disconnection of power lines can cause an outage. It may cause a short circuit

between two lines that can ignite a �re. Coming in contact with a line that is live, can also

kill people, seriously injure them. Thus, such a semantic attack increases both reliability

and safety risks in power system operations to a signi�cant degree.

In our attack model, the attacker chooses the DLR manipulations in a way such that

his actions are not obvious to the System Operator (SO). If the e�ect of the attack is not

visible to the SO (for e.g., via line �ow measurements or emergency signals), the SO will

not invoke generation curtailment and/or line disconnect operations. In fact, under partial

network observability, the operator may not be able to implement the necessary preven-

tive actions in a timely manner. As a result, the SO will implement the false ED solution

that will violate the line limits.

2.2.1 Attacker knowledge

We �rst describe the attacker’s system knowledge which consists of DC-approximation of

the actual nonlinear AC power �ow equations. The topology of a transmission network

can be described as a connected graph with the set of nodes 𝒩 and the set of edges ℰ.

In power systems terminology, each node refers to a bus and each edge refers to a trans-

mission line. We let 𝑛 “ |𝒩|. Let t𝑖, 𝑗u denote the line joining the nodes 𝑖 and 𝑗, and its

susceptance (inverse of reactance) be denoted as 𝛽𝑖𝑗 . The set of generators at a bus 𝑖 is
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denoted as 𝒢𝑖. The set of all generators is denoted by 𝒢 :“ 𝒢𝑖. For each 𝑖 P 𝒢, 𝑝𝑚𝑖𝑛𝑖 and

𝑝𝑚𝑎𝑥𝑖 are the lower and upper generation bounds that are speci�c to the 𝑖´th generator.

The generation bounds can be expressed as constraints on individual 𝑝𝑖:

𝑝𝑚𝑖𝑛𝑖 ď 𝑝𝑖 ď 𝑝𝑚𝑎𝑥𝑖 . (2.1)

Following the standard formulation of economic dispatch, the cost of power genera-

tion for the 𝑖´th generator is modeled as a convex quadratic function 𝐶𝑖p𝑝𝑖q in 𝑝𝑖. Let

𝑝 P R𝒢
and 𝑑 P R𝒩

denote the generation and demand vectors, respectively. The total

cost of generating 𝑝 is:

𝐶p𝑝q “
ÿ

𝑖P𝒢
𝐶𝑖p𝑝𝑖q, (2.2)

where

𝐶𝑖p𝑝𝑖q “ 𝑎𝑖𝑝𝑖
2 ` 𝑏𝑖𝑝𝑖 ` 𝑐𝑖. (2.3)

𝑎𝑖, 𝑏𝑖, 𝑐𝑖 P R` @ 𝑖 P 𝒢. 𝑎𝑖 and 𝑏𝑖 are not simultaneously zero, i.e., the cost of generation is

an increasing function of power (MWs) supplied.

The power �ow 𝑓𝑖𝑗 from node 𝑖 to node 𝑗 can be expressed as a linear function of the

di�erence between the voltage phase angles at nodes 𝑖 and 𝑗 [23]:

𝑓𝑖𝑗 “ 𝛽𝑖𝑗p𝜃𝑖 ´ 𝜃𝑗q, (2.4)

where 𝜃 P R𝒩
is the vector of voltage phase angles.

The conservation law for the power �ows is:

ÿ

𝑗:t𝑖,𝑗uPℰ
𝑓𝑖𝑗 “

ÿ

𝑘P𝒢𝑖

𝑝𝑘 ´ 𝑑𝑖, (2.5)

which states that the net generation at a node 𝑖 is equal to the sum of out�ows from node

𝑖 to its neighbors. The DC power �ow (2.4)-(2.5) is said to be feasible if and only if total
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supply is equal to total demand (see [23]), i.e.,

ÿ

𝑖P𝒢
𝑝𝑖 ´

ÿ

𝑗P𝒩
𝑑𝑗 “ 0. (2.6)

The power �ows satisfy the capacity line constraints, i.e.,

|𝑓𝑖𝑗| ď 𝑢𝑖𝑗. (2.7)

Thus the DC-optimal power �ow problem faced by the SO can be posed as follows:

min
𝑝,𝜃

𝐶p𝑝q s.t. p2.1q ´ p2.6q, p2.7q. (2.8)

2.2.2 Attacker resources

The true capacities of the transmission lines dynamically vary over time due to weather

conditions (ambient temperature, wind, etc.) [45], and are, in fact, greater than the static

line ratings assumed by the SO for economic dispatch problem (Figure 2-2). Dynamic Line

Rating (DLR) lines are the transmission lines with DLR sensors that report the true line

capacities to the system operator.

Figure 2-2: Static vs Dynamic Line Rating

Let ℰ𝐷 Ă ℰ denote the set of lines that are equipped with DLR devices. The com-

plementary set ℰ𝑆 “ ℰzℰ𝐷 denotes the set of lines that are not equipped with DLR
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technology, and hence their rating will be �xed to the respective static line capacity val-

ues. Given that DLR deployments are done as part of government sponsored smart grid

projects [44, 45], the set of lines ℰ𝐷 equipped with DLR technology is public knowledge.

These lines will be the ones that are routinely prone to congestion and hence receive

priority DLR implementation by the operator.

For a line t𝑖, 𝑗u P ℰ𝐷, we denote 𝑢𝑑𝑖𝑗 as the actual line rating computed by the DLR soft-

ware using measurements collected from the Supervisory Control and Data Acquisition

(SCADA) system.

𝑢𝑖𝑗 “

$
’&
’%
𝑢𝑠𝑖𝑗 if t𝑖, 𝑗u P ℰ𝑆
𝑢𝑑𝑖𝑗 if t𝑖, 𝑗u P ℰ𝐷,

(2.9)

where

@ t𝑖, 𝑗u P ℰ𝐷 𝑢𝑚𝑖𝑛𝑖𝑗 ď 𝑢𝑑𝑖𝑗 ď 𝑢𝑚𝑎𝑥𝑖𝑗 (2.10)

i.e. the DLRs can only take values between a certain range.

Thus the DC-optimal power �ow problem faced by the SO can be posed as follows:

min
𝑝,𝜃

𝐶p𝑝q s.t. p2.1q ´ p2.6q, p2.7q, p2.9q. (2.11)

We assume an informed attacker. Speci�cally, the attacker’s knowledge includes the

network topology, line susceptances, set of generators, and their corresponding genera-

tion limits, and the cost of generation. The attacker also knows the nominal demand 𝑑𝑗

at each node 𝑗 and the nominal generator output 𝑝𝑖 for each 𝑖 P 𝒢. In power systems

terminology, with this knowledge, the attacker can solve for an DC ED solution which is

an approximation of AC ED solution that the EMS implements on the power system. Note

that our assumption on attacker’s knowledge is not unrealistic given that all major ISOs

publicly disclose historical generation and demand patterns and the locational marginal

prices in day ahead and hourly power markets.

Since the SO knows the static line ratings and these are �xed in ED software im-

plementations, we assume that the attacker cannot compromise them in ED implementa-

tion’s memory. Any compromise to static line ratings can be overridden by simple built-in
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checks in power �ow implementations. Also, since the static ratings are typically calcu-

lated for constant (worst-case) weather conditions over an extended period of time (few

months to years), we assume that the attacker knows their values. This assumption can be

justi�ed by the fact that the manufacturers of transmission line conductors supply static

line ratings in their product speci�cations. Thus, under the aforementioned constraints,

the set of lines ℰ𝐷 constitutes the attacker’s constraint since the attacker only targets DLR

ratings and not the static ones.

2.2.3 Attacker objective

Now, we present the constraints faced by the attacker so that the attack remains stealthy,

and the SO’s ED software admits the DLR ratings manipulated by the attacker. Then, we

formulate the attack policy of the attacker as a bilevel optimization problem.

Under our attack model, the attacker accesses the actual DLR values 𝑢𝑑𝑖𝑗 for lines

t𝑖, 𝑗u P ℰ𝐷 in ED’s dynamic memory and replaces them with incorrect values 𝑢𝑎𝑖𝑗 . The

attacker knows 𝑢𝑑𝑖𝑗 and computes 𝑢𝑎𝑖𝑗 in order to maximize the violation of line ratings by

the resulting power �ows. To avoid detection by in-built checks, each 𝑢𝑎𝑖𝑗 is constrained

by minimum and maximum permissible limits of line ratings, denoted as 𝑢𝑚𝑖𝑛𝑖𝑗 and 𝑢𝑚𝑎𝑥𝑖𝑗 ,

respectively. These limits are also known by the attacker. For ease of presentation, we

introduce an auxiliary variable p𝑢𝑖𝑗 to denote the manipulated dynamic line rating for the

line t𝑖, 𝑗u P ℰ𝐷. The attacker is subject to following constraints:

@ t𝑖, 𝑗u P ℰ𝐷

$
’&
’%
p𝑢𝑖𝑗 “ 𝑢𝑎𝑖𝑗

𝑢𝑚𝑖𝑛𝑖𝑗 ď p𝑢𝑖𝑗 ď 𝑢𝑚𝑎𝑥𝑖𝑗 ,

(2.12)

because, the attacker wants to maintain a level of stealthiness, so he does not choose an

out-of-bound DLR value, that may set o� an alarm.

If the DLR value of a line t𝑖, 𝑗u P ℰ𝐷 is manipulated by the attacker, then the EMS

software will obey the following constraint for the power �ow on the line:

@ t𝑖, 𝑗u P ℰ |𝑓𝑖𝑗| ď p𝑢𝑖𝑗. (2.13)
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We pose the problem of optimal attack generation – from the attacker’s viewpoint –

as the following bilevel optimization problem:

max
𝑢𝑎

𝑈𝑐𝑎𝑝p𝑓;𝑢𝑑q “ max
t𝑖,𝑗uPℰ𝐷

100

˜
|𝑓𝑖𝑗|
𝑢𝑑𝑖𝑗

´ 1

¸

`

(2.14a)

min
𝑝,𝜃

𝐶p𝑝q s.t. p2.1q ´ p2.6q, p2.12q, p2.13q, (2.14b)

where 𝑎` :“ maxp𝑎, 0q. This problem is equivalent to a 2-stage sequential (Stackelberg)

game, in which the attacker (leader) chooses his strategy assuming a best response from

the defender (follower). Speci�cally, in the �rst stage, the attacker chooses the incorrect

DLR ratings 𝑢𝑎 (or equivalently p𝑢𝑖𝑗) that are subsequently implemented in runtime by

localizing and corrupting true DLR values in the nonlinear ED controller’s memory. The

attacker’s objective is to maximize the maximum percentage capacity bound violation of

the power �ows 𝑓𝑖𝑗 on lines t𝑖, 𝑗u P ℰ𝐷 over the true DLR values 𝑢𝑑𝑖𝑗 after the defender

responds optimally in the second stage. This objective can be expressed as 𝑈𝑐𝑎𝑝p𝑓;𝑢𝑑q in

(2.14a). In the second stage, the defender chooses the generator outputs 𝑝 and voltage

phase angles 𝜃 that achieves min-cost solution to DC-ED, i.e., minimize the generation

costs (2.2) subject to the constraints (2.1)-(2.6),(2.12),(2.13). The attacker ensures that un-

der the manipulated DLR ratings p𝑢𝑖𝑗 for lines t𝑖, 𝑗u P ℰ𝐷 and given static ratings 𝑢𝑠𝑖𝑗

for lines t𝑖, 𝑗u P ℰ𝑆 , there exists a feasible �ow allocation that minimizes the generation

cost (2.2), otherwise the SO will be require to setting o� an alarm causing the SO to initiate

other actions such as load curtailment.

Note that the actual generation cost faced by the operator when incorrect 𝑢𝑎 are used

in the SO’s nonlinear ED formulation will be di�erent than the defender cost obtained in

the stage 2 subgame. In fact, the nonlinear ED is likely to be infeasible in the sense that

the power �ows on certain lines can exceed the permissible line ratings.

The attack model can be summarized as follows. The physical system consists of the

physical components, e.g., generators, transmission network, and the loads. Each of these

components send data to the EMS via means of SCADA, which is part of the attacker

knowledge. The generators submit the cost functions, the transmission network submits
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the topology and the line ratings, and the loads submit the demand. The attacker uses this

data to compute a DLR manipulation based on his attack policy, and then compromises

the DLR values utilized by the EMS while solving the ED problem. Finally, the EMS imple-

ments the false ED solution by dispatching the new generation set-points to the individual

generators.

Next, we present our computational approach to compute the optimal maximin attack.

2.3 Attack implementation on control center software

We implemented our proposed attack in real controller software packages. Figure 2-3

shows the stages of the implemented attack. Initially, we assume a controller executable

�le (vulnerable point) and sensitive data sources (e.g., inputs such as DLRs originating

from an external source) are given. Next, through memory taint analysis, we narrow

down our search space to identify the the memory regions where the sensitive param-

eters may reside in memory during the controller execution. Accordingly, all the mem-

ory regions a�ected by the target input are marked (tainted). The tainted areas are then

searched for the values of interest (e.g., target DLRs), and candidates are shortlisted. To

identify the correct candidate from the set of candidates, we generate structural memory

pattern signatures around the correct candidates during the o�ine binary analysis phase.

We use our past work [122] to extract binary-level data type and code, and data point-

ers and their interdependencies (discussed below). Given the reverse engineered logical

memory layout, we create structural patterns of the memory regarding where the target

parameters reside. Those patterns are then used to generate the exploit binary. During

the attack phase the exploit searches the dynamic memory address space to locate the

target parameters using the patterns. Finally, it changes the identi�ed parameter values

to the optimal attack values, as discussed in Sec. 2.2.

Every control algorithm implementation by controller software executables involve

code and data. The code instructions encode the algorithm logic (e.g., iterative optimiza-

tion loops), whereas the data stores the controller parameters such as the OPF constraints

and DLRs. Modi�cation of the code instructions are often infeasible due to 𝑊 ‘𝑋 pro-

tections. However, the data regions should be (and are set as) writable, because the EMS
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operators often update their values dynamically according to the most recent power sys-

tem con�guration.

Maintenance of control-sensitive variable values such as DLRs by the controller soft-

ware provides an attack surface to modify them in memory space during the attack. Our

investigations of EMS software binaries showed heavy use of data structures and class

objects to store those values that are used directly by OPF. During the o�ine phase, we

analyzed the EMS software binary to determine its memory’s structural layout. We are in-

terested in structural information such as the allocated class instances (objects), the class

hierarchy, and the logical interdependencies between the instantiated objects within the

memory, e.g., cross-object code and data pointers. We are not interested in exact object

memory addresses, because the addresses will likely di�er during the attack due to unpre-

dictable (inputs and hence) dynamic execution paths. Instead, by capturing the logical in-

terconnections among the instantiated memory-resident objects, we extracted invariants

about their interdependencies that remain the same across di�erent runs. The attacker

later uses the invariants during the attack to locate (and corrupt) the DLR values.

Search for a speci�c DLR value during the attack results in several memory-resident

candidates that are mostly (except one) false positives. To identify the correct candidate,

our implementation uses the invariants, expressed as propositional logic predicates, that

capture the logical memory structural patterns around the target DLR parameters. We use

three kinds of memory patterns: address-relative intra-class type patterns, code pointer-

instruction patterns, and data pointer-based patterns (Table 2.1).

Address-relative intra-class type patterns. The attack extracts execution-agnostic

memory structural patterns around the target DLR values in memory. We concentrate

on intra-class patterns that capture �xed o�set relations among members of the same

class as the target DLR parameter, and their types and/or values. If the DLR parameter

is stored as a member of a class that also contains other variable(s), whose type is (are)

easy to identify, we use that information as a local signature for the target parameter. In

memory forensics, types such as character strings, pointers [78], and �xed-value member

�elds can be identi�ed simply. We investigate the vicinity of the target parameter within

the same object looking for addresses that store easy-to-identify data types. If one or
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more of such samples are found, their type/value and corresponding o�set from the tar-

get parameter address is used to produce the signature. The attack creates simple-to-check

logical predicates for each candidate (e.g., “candidate_addr + 0𝑥08 stores 0𝑥00000001”).

Our implementation aggregates the produced predicates into a single conjunctive logic

signature.

Code pointer-instruction patterns. We leverage the code pointer relations within the

memory regions to extract invariants (logical predicates) about the structural memory

layout around the target DLR parameters. We extract such invariants given the reverse

engineered class object pointers, and their logical interdependencies with the correspond-

ing member and virtual functions. We use the fact that code segments (e.g., instructions

of member and virtual functions) within the controller software binary are typically set

as read-only with �xed content. Table 2.1 shows a sample code pointer-based predicate

for the illustrated pattern. The signature checks whether the �rst four byte content of the

target parameter’s object’s second virtual function is equal to the corresponding function

prologue. As denoted, the signature does not depend on the absolute address values given

the target parameter candidate’s location. The attack can automatically generate the code

pointer patterns for the object’s individual member and virtual functions. Finally, the gen-

erated predicates are combined into a single conjunctive logical predicate to check against

all the identi�ed candidates within the EMS memory space attack time.

Data pointer-based patterns. The data pointer-based patterns do not often assume

�xed data values in memory, and is purely based on memory structure and the relations

between various objects. We perform a recursive pointer traversal among the recognized

objects on the controller’s memory space following its earlier forensics analyses of the al-

located objects and the stored pointer values within them (member �elds). The algorithm

implements a depth-�rst search starting from individual recognized pointers within the

memory space. For each pointer under the consideration, we determine if its destination is

an memory-resident object. If so, the attack recursively traverses all the member pointer

�elds within the destination object. During its recursive search, our implementation gen-

erates the corresponding directed graph, where nodes represent allocated objects, and the

outgoing edges indicate the member pointer �elds within the source object. The generated
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directed graph represents the inter-object dependencies within the memory space. Once

the generation of the graph in completed, our implementation searches for cycles. Such

cycles are very popular in widely used data structures such as linked lists (the rightmost

entry on Table 2.1). The attack turns each cycle within the graph into a logical predicate

that corresponds to a data pointer-based signature.

2.4 Empirical attack deployment results

To assess the proposed attack feasibility in practice, we implemented it against widely-

used commercial and open-source industrial controller software packages. The imple-

mented attack involves the following steps: i) during the o�ine phase, we reverse engi-

neer the EMS software binary to locate DLR parameters within the controller and create

the corresponding invariants that hold true regardless of their absolute memory addresses;

ii) during the online phase (attack time), the exploit searches the controller memory for

the known legitimate DLR values and collects the candidates; iii) the attack recognizes

the only true candidate by applying the invariants on the collected set of candidates; and

iv) our implementation modi�es the value maliciously according to the optimal attack

generation algorithms discussed in the previous section. We now explain the results for

our empirical validation.

Reconnaissance of control center software

We validated the proposed attack on real-world widely-used industrial controller soft-

ware packages. We �rst present the detailed results on PowerWorld, and later compare

the attack’s performance for other controllers (NEPLAN, PowerFactory, PowerTools, and

SmartGridToolbox).

Figure 2-4a shows a generated code pointer-based memory signature in PowerWorld.

The corresponding pattern predicate for runtime memory search was “*(*(candidate_addr

- 0x54) - 0x24) == 0x5356578B”, where 0x5356578B is the hex representation

of the sub_1375A8C function’s �rst four instruction bytes. The rating of every trans-

mission line is stored in o�set 0x24 of the corresponding TTRLine object. The infor-

mation about the transmission lines of the power system is stored as a doubly linked list
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Figure 2-3: Flowchart for attack implementation.

Intra-Class Pattern (type) Code Pointer Pattern (content) Data Pointer Pattern (relation)

 class A size(20): 
    +--- 
0   | {vfptr}  // virtual fn table* 
4   | line-rating  // target parameter 
8   | mem-var2 
12 | mem-var3 
16 | line-name  // char* string 
    +--- 

12
	b
yt
es
	

 class B size(8): 
    +--- 
0  | {vfptr}   // virtual fn table* 
4  | line-rating  // target parameter      
    +--- 

 B's vftable: 
     0  | &A::A_virt1 
     4  | &A::A_virt2 

53   |  push ebx 
56   |  push esi 
8B F2  |  mov esi, edx 

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

type(&line-rating + 0x0C)““ string *(*(&line-rating-0x04)+0x04)““ 0x53568BF2 *(*(&lr - 0x08) + 0x04)““ (&lr - 0x10)

Table 2.1: Logical memory structure signatures for critical parameters.

Table 2.2: The target parameter value recognition accuracy.

Param. values #Hits #Relevant #Recognized Accuracy
0x3FC00000 143 3 3 100%

0x02A45A30 2038 4 4 100%

0x06410570 30 1 1 100%

0x06410810 30 1 1 100%

0x06410810 28 1 1 100%
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0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 C0 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

.text:02A459D8 30 5A A4 02 dd offset off_2A45A30 

.text:02A459DC 00 00 00 00 dd 0

…

.text:02A45A18 8C 5A 37 01      dd offset sub_1375A8C

.text:02A45A1C A8 AA 40 00      dd offset sub_40AAA8

.text:02A45A20 9C AA 40 00      dd offset nullsub_105

.text:02A45A24 80 A5 40 00      dd offset sub_40A580

.text:02A45A28 9C A5 40 00      dd offset sub_40A59C

.text:02A45A2C 10 2E AD 02      dd offset loc_2AD2E10

.text:02A45A30 08 29 37 01      dd offset sub_1372908 

…

.text:02A45A44 24 FE AD 02      dd offset sub_2ADFE24

.text:02A45A48 5C 3C A6 02     dd offset sub_2A63C5C

…

.text:01375A8C 53                             push    ebx

.text:01375A8D 56                             push    esi

.text:01375A8E 57                             push    edi

.text:01375A8F 8B D8                       mov ebx, eax

…

TTRLine Instance TTRLine VMT

TTRLine Function Code (fixed)

(a) Code pointer-instruction pattern.

.bss:02E7FD24    00 00 F5 
04

0x04F50000 00 00 E5 05 24 FD E7 02

…
0x050532C0
…
0x05053380
0x05053390
0x050533A0
0x050533B0
0x050533C0
0x050533D0
…
0x05053450
0x05053460
0x05053470

…
1C DE A3 02 00 00 00 00 00 00 00 00 00 00 00 00 
…
A0 6C 03 05 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 17 B7 D1 38 00 00 00 00 00 00 80 3F 
00 00 00 00 00 00 C0 40 00 00 00 00 00 00 00 00 
00 00 00 00 00 01 00 00 5C FF 79 44 00 00 C6 C2 
00 00 C0 3F 00 00 00 40 00 00 80 BF 00 00 00 00 
00 00 00 00 66 66 6F 43 C3 F5 F8 40 17 B7 D1 3A
…
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 C0 3F 00 00 C0 3F 
00 00 C0 3F 00 00 00 00 00 00 00 00 00 00 00 00

0x05E50000 00 00 32 06 00 00 F5 04

… …

0x06320000 00 00 46 06 00 00 E5 05

...
0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

...
30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 D3 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

(b) Linked-list as data pointer-based pattern.

Figure 2-4: Code and data pointer-based structural memory patterns in PowerWorld used

for graphical predicate generation.
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of TTRLine objects in PowerWorld memory space. The attack used “*(*(candidate_addr

- 0x24) + 0x04) == (candidate_addr - 0x24)” as the pattern predicate for line ratings.

Let us call the linked list node that stores the target line rating 𝐴. The pattern predicate

above essentially veri�es the following linked list invariant: whether 𝐴’s previous node’s

next pointer points to 𝐴. More complex patterns can be extracted if needed; however,

our empirical studies on PowerWorld shows simple patterns always su�ce to identify and

isolate the exact candidate uniquely.

Figure 2-4b shows another PowerWorld data pointer pattern for line ratings. Power-

World allocates linked list nodes (0x13FFF0 sizes each) allocated by VirtualAlloc

for objects instances of di�erent classes (e.g., TGen, TBus and TTRLine). Only three

nodes are shown. If our objective is to look for line rating 0x3FC00000, its corre-

sponding pattern predicate will encode the o�set to get the node’s initial member value

0x05E50000 that points to the next node shown (summarized) on the top of the �g-

ure. The second element of each node (0x04F50000 in the top node) points to the

previous node. A relatively more complex second-degree predicate would be “*(*(*(*(can-

didate_addr - 0x1033C0)) + 0x04)+ 0x04) == candidate_addr - 0x1033C0”, i.e.,

𝐴 Ñ 𝑛𝑒𝑥𝑡 Ñ 𝑛𝑒𝑥𝑡 Ñ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 Ñ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ““ 𝐴, where 𝐴 represents the data

structure that stores the line rating 0x3FC00000.

The attack payload checks for patterns on the identi�ed candidates before corrupting

their values. The code searches for the speci�c value in memory, and modi�es the iden-

ti�ed candidate. Table 2.2 shows how many hits our implementation �nds for individual

target power system parameter values on PowerWorld memory space. The number empir-

ically proves the infeasibility of memory corruption attacks without the use of signature

predicates. The next column shows how well the signatures dismiss the irrelevant candi-

dates and identify the true target values. Table 2.3 shows the forensics analysis accuracy

for �ve di�erent EMS software packages. Through the use of the code pointer signa-

tures and its extracted knowledge about the class hierarchies, our implementation was

able to correctly recognize the class types of all object instances within the EMS memory.

The payload initializes the OPF algorithm in its corresponding thread. Once it changes

the identi�ed memory addresses, it restarts the control loop through the call to Cre-
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Table 2.3: Memory layout (object) forensics accuracy. The instances were correctly

marked with their types.

EMS Software vfTable Line Bus Gen. Accuracy
PowerWorld 8527 3 3 2 100%

NEPLAN 6549 51 30 5 100%

PowerFactory 110 34 39 10 100%

Powertools 3 185 118 53 100%

SmartGridToolbox 194 79 57 4 100%

ateThread function within kernel32.dll that is loaded by almost all windows

processes.

Attack demonstration

As a concrete example, we show how the state of underlying power system gets a�ected

once the memory corruption is completed (Figure 2-5
2
). Before the corruption (Figure 2-

5a), the EMS GUI visualizes the safe state of power system operation, where the trans-

mission lines are mostly fully utilized; however, no line rating (capacity constraints) are

violated. The optimal attack generation algorithm computes the adversary-optimal values

for the line ratings, and chooses to i) modify the 𝐵1 ´ 𝐵3 transmission line to 120𝑀𝑊

from 150𝑀𝑊 ; and ii) modify the line rating for the𝐵2´𝐵3 transmission line to 240𝑀𝑊

from 150𝑀𝑊 . While implementing the optimal attacker strategies that we obtain from

the maximin solution, we need to translate the line rating values to higher values using

basic power �ow calculations. For example, for the implementation of optimal attack, we

use p𝑢13 “ 120 𝑀𝑉𝐴 and p𝑢23 “ 240 𝑀𝑉𝐴. These values are higher than the values

p𝑢13 “ 100 and p𝑢23 “ 200 calculated by the bilevel optimization.

This increase in optimal line rating manipulations is necessary to account for the fact

that the AC OPF implementation is constrained by the line rating bounds on apparent

power �ows (with both real and reactive power components) while the optimal attack

generation procedure calculates manipulated line rating assuming that only real power

�ows are subject to line ratings. As the consequence, the power system enters an unsafe

state after the OPF control algorithm uses the corrupted line ratings and hence produces

2
The pie charts on the transmission lines represent the used percentages of the line power �ow capacities

in that particular state.
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06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

(a) PowerWorld pre-attack power system state (safe).

06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 999A 4019 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 999A 3F99 FAE1 42C7 FAE1 42C7

(b) PowerWorld post-attack power system state (unsafe).

fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax

1 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

1 2 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

2 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

016B2AE0 0001 0000 0000 0000 2AC8 016B 0000 0000 
016B2AF0 0000 0000 0000 3FF8 0000 0000 0000 0000 
016B2B00 0000 0000 0000 3FF0 0000 0000 0000 0000 
016B2B10 0000 0000 0000 0000 999A 9999 9999 3FA9 
016B2B20 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016B2B30 0000 0000 0000 3FF0 0000 0000 0000 0000

016C0500 0003 0000 0000 0000 95B8 016B 0000 0000 
016C0510 0000 0000 0000 3FF8 0000 0000 0000 0000 
016C0520 0000 0000 0000 3FF0 0000 0000 0000 0000 
016C0530 0000 0000 0000 0000 999A 9999 9999 3FA9 
016C0540 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016C0550 0000 0000 0000 3FF0 0000 0000 0000 0000

(c) Powertools memory image of the sensitive parameters.

Figure 2-5: PowerWorld and Powertools controller software attack results as the result of

targeted adversary-optimal line rating manipulation.
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wrong control outputs to the power generators; see Figure 2-5b. Optimal and physics-

aware corruption of the sensitive values through a controller attack allows the intrud-

ers to maximize the physical impact on the power system operations without having to

compromise a large number of sensors as required in false data injection attacks. We

also performed the same memory data corruption attack on Powertools [66] package. In

this scenario, the attacker changed the line rating for two of the branches as shown in

Figure 2-5c. Similar to the PowerWorld case, the exploit locates the sensitive parameters

(line ratings) and modi�es them during the program execution. As the result, the memory

corruption impacted the power �ow iterations of DC-OPF performed by the Powertools

software that consumed the modi�ed memory regions, and made it converge to a dif-

ferent wrong value. In terms of the attack implementation approach, the attacks against

PowerWorld and powertools were identical.

2.5 Cyber-security implications

Our attack and similar domain-speci�c memory data corruption attacks can be mitigated

through several potential solutions: i) Protection of sensitive data: �ne-grained data iso-

lation mechanisms such as hardware supported Intel SGX can be leveraged to store and

process sensitive data such as power system parameters within protection enclave re-

gions. This protects sensitive data against access requests by other irrelevant instructions

in the same memory space. A more �ne-grained version of such memory-based data pro-

tection can distinguish between data that are often �xed during the operation (e.g., power

system topological information) vs. regularly updated data regions (e.g., sensor measure-

ments) to facilitate lower-overhead protection such as read-only memory pages for the

�xed data once they are loaded on memory initially. ii) Control command veri�cation:

controller output veri�cation mechanisms such as an extended version of TSV [88] can

be used to ensure the safety of the (maliciously) issued control commands by an infected

control system software before they are allowed to reach the actuators. Monitoring of

the control channel, however, does not ensure the correct functionality of the control

system software. Instead it just ensures its outputs (even though corrupted) are within

the safety margins of the physical plant. iii) Intrusion-tolerant replication: a more tradi-
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tional approach is to use redundancy such as N-version programming by maintaining a

redundant controller software that is di�erent from the main one used. The replica con-

troller can monitor the dynamic behavior of the physical plant (e.g., power system) as

well as the main controller’s output to the actuators. The replica can rerun the control

algorithm to calculate and compare its calculated control outputs with those of the main

controller. Hence, the main controller infection (misbehavior) can be identi�ed if a mis-

match is detected; iv) Algorithmic redundancy: Carefully designed algorithmic tools (e.g.,

attack-aware optimal dispatch) can provide safe operating regimes to limit the impact of

successful attacks. Indeed, this is a topic of future research.

2.6 Online learning of transmission network dynamics

So far, we assumed that both the operator and the attacker had knowledge about the trans-

mission network parameters. However, changing weather conditions as well as operator

actions overall a�ect the network parameters such as line susceptances, net nodal genera-

tion inertia, damping coe�cients etc. As a result, the attacker and even the operator may

not have exact knowledge about such parameters. This information is necessary for oper-

ator tasks such as accurate state estimation, and determining optimal operator response.

Also, the attacker may able to use this information for generating optimal attacks. Thus,

a key question arises: How can either player could go about achieving this information? In

this section, we describe an approach based online learning from sensor measurements.
3

First, we describe the approach used in [82] in which they assume that each network node

has a Phasor Measurement Unit (PMU). PMUs are the state-of-the-art technology that en-

able real-time monitoring of the TN. Then, we describe the conditions under which the

approach in [82] could be extended to the case when a subset of nodes do not have PMUs.

In [82], an online method to learn the dynamic state matrix using time-stamped PMU

sensor data is described. First, a classical reduction is applied to the TN to obtain a network

of aggregated generators, in which passive loads are eliminated by Kron reduction [47].

Second, a linear phase dynamical model is assumed in which a node 𝑖 P 𝒩 of the network

is characterized by its generator angle 𝜃𝑖, non-zero inertia𝑀𝑖, and damping coe�cient𝐷𝑖.

3
This is joint work with Andrey Lokhov, Sidhant Misra, Marc Vu�ray, and Nathan Lemons.
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The temporal evolution of the networks is obtained using the standard swing equations:

𝑀𝑖
:𝜃 `𝐷𝑖p 9𝜃 ´ 𝜔0q “ 𝑃

p𝑚q
𝑖 ´ 𝑃 p𝑒q𝑖 , (2.15)

where 𝜔0
denotes the synchronous frequency (60 Hz in the U.S.);

9𝜃𝑖pB𝜃𝑖B𝑡 q and
9𝜃𝑖pB2𝜃𝑖B𝑡2

q de-

note the angular speed and the rate of change of angular speed; 𝑃
p𝑚q
𝑖 is the net mechanical

power input; and 𝑃
p𝑒q
𝑖 is the net electrical output.

The line �ows are related to the net electrical output as follows:

𝑃
p𝑒q
𝑖 “

ÿ

p𝑖,𝑗q𝑗Pℰ
𝑓𝑖𝑗, (2.16)

where 𝑓𝑖𝑗 is approximated using DC power �ows as 𝑓𝑖𝑗 “ 𝛽𝑖𝑗p𝜃𝑖 ´ 𝜃𝑗q. The resultant

dynamical model based on the DC linearization is expressed as follows:

𝑀𝑖
:𝜃 `𝐷𝑖p 9𝜃 ´ 𝜔0q “ ´

ÿ

p𝑖,𝑗q𝑗Pℰ
𝑓𝑖𝑗 ` 𝛿𝑃𝑖, (2.17)

where 𝛿𝑃𝑖 “ 𝑃
p𝑚q
𝑖 ´ 𝑃

p𝑒q
𝑖 represents the exogenous power deviations at the nodes, 9𝜔

denotes the relative generator rotor speed with respect to the standard synchronous speed

𝜔p0q. Thus, the dynamical system for the whole system is written as:

»
–

9𝛿𝑡

9𝜔𝑡

fi
fl “

»
– 0𝑁ˆ𝑁 1𝑁ˆ𝑁

´𝑀´1𝐿 ´𝑀´1𝐷

fi
fl
»
–𝛿𝑡
𝜔𝑡

fi
fl`

»
– 0𝑁

𝑀´1𝛿𝑃

fi
fl , (2.18)

where 0𝑁 denotes a 𝑁 -length vector of all zeros, and 1𝑁ˆ𝑁 denotes an identity matrix of

size 𝑁 . 𝐿 is a susceptance-weighted Laplacian matrix de�ned as 𝐿𝑖𝑗 “ 𝛽𝑖𝑗 for p𝑖, 𝑗q P ℰ ,

𝐿𝑖𝑖 “
ř
p𝑖,𝑘qPℰ 𝛽𝑖𝑘, and 𝐿𝑖𝑗 “ 0 otherwise. 𝑀 and 𝐷 represent the diagonal matrices with

diagonal entries being 𝑀𝑖 and 𝐷𝑖. This system can be compactly written as:

9𝑋𝑡 “ 𝐴𝑑𝑋𝑡 ` 𝜉𝑡. (2.19)

It is assumed that the PMU sensor measurements (voltage angles) are accurate, which is
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why we can write 𝜉𝑡 “
»
–0𝑁
𝑣𝑡

fi
fl.

Third, by applying Euler-Maruyama discretization to (2.19), one gets:

𝑋𝑡`1 “ 𝐴𝑋𝑡 `𝐵𝜉𝑡, (2.20)

where 𝐴 “ p𝐴𝑑Δ𝑡 ` 12𝑁ˆ2𝑁q, 𝜉𝑡 „ Normalp0,12𝑁ˆ2𝑁q, and 𝐵 denotes the scale of

�uctuations of 𝜉𝑡. Since it is a reasonable to assume that the deviations in net power

consumption are spatially independent across the nodes, 𝐵 is diagonal. Thus, 𝐵𝑖𝑖 “
𝑀´1

𝑖 𝜎𝑃𝑖

?
Δ𝑡 @𝑖 P r𝑁 ` 1, 2𝑁 s and 𝐵𝑖𝑖 “ 0 @𝑖 P r1, 𝑁 s.

Fourth, the maximum likelihood estimators for matrix 𝐴 are derived. Suppose there

are 𝑇 discrete observations of the system t𝑋𝑡u𝑡“1,¨¨¨ ,𝑇 , the cross-correlation matrices with

and without displacement are:

Σ1 “ 1

𝑇 ´ 1

𝑇´1ÿ

𝑡“1

𝑋𝑡`1𝑋𝑡
J

(2.21)

Σ0 “ 1

𝑇 ´ 1

𝑇´1ÿ

𝑡“1

𝑋𝑡𝑋𝑡
J

(2.22)

Finally, the maximum-likelihood estimator for the dynamic matrix is obtained as follows:

p𝐴 “ Σ1Σ
´1
0 (2.23)

Now, we describe how this approach maybe extended to the case of partial observ-

ability under certain restrictions. Our goal is to use the structural properties of the swing

equations which may allow us to reconstruct the dynamic matrix even under partial ob-

servability.

First, we revisit the dynamical equations for the entire system:

»
–

9𝛿𝑡

9𝜔𝑡

fi
fl “

»
– 0𝑁ˆ𝑁 1𝑁ˆ𝑁

´𝑀´1𝐿 ´𝑀´1𝐷

fi
fl
»
–𝛿𝑡
𝜔𝑡

fi
fl`

»
–0𝑁ˆ𝑁 0𝑁ˆ𝑁

0𝑁ˆ𝑁 𝑀´1

fi
fl
»
–0𝑁
𝑣𝑡

fi
fl . (2.24)

Next, we partition the nodes state into observable nodes (with PMUs) and hidden
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nodes (without PMUs), denoted 𝒪 and ℋ, respectively. Let𝑂 :“ |𝒪| and𝐻 :“ |ℋ|. Then,

we get the following equation:

»
——————–

9𝛿𝒪𝑡

9𝜔𝒪
𝑡

9𝛿ℋ𝑡

9𝜔ℎ𝑡

fi
ffiffiffiffiffiffifl
“
»
– 𝐴𝑑,𝒪𝒪 𝐴𝑑,𝒪ℋ

𝐴𝑑,ℋ𝒪 𝐴𝑑,ℋℋ

fi
fl

»
——————–

𝛿𝒪𝑡

𝜔𝒪
𝑡

𝛿ℋ𝑡

𝜔ℋ
𝑡

fi
ffiffiffiffiffiffifl
`
»
– 𝐵𝒪𝒪 0𝑂ˆ𝐻

0𝐻ˆ𝑂 𝐵ℋℋ

fi
fl
»
– 𝑢𝑡

𝑤𝑡

fi
fl , (2.25)

where

𝐴𝑑,𝒪𝒪 “
»
– 0𝑂ˆ𝑂 1𝑂ˆ𝑂

´p𝑀´1𝐿q𝒪𝒪 ´p𝑀´1𝐷q𝒪𝒪

fi
fl , 𝐴𝑑,𝒪ℋ “

»
– 0𝑂ˆ𝐻 0𝑂ˆ𝐻

´p𝑀´1𝐿q𝒪ℋ ´0𝑂ˆ𝐻

fi
fl ,

𝐴𝑑,ℋ𝒪 “
»
– 0𝐻ˆ𝑂 0𝐻ˆ𝑂

´p𝑀´1𝐿qℋ𝒪 ´0𝐻ˆ𝑂

fi
fl , 𝐴𝑑,ℋℋ “

»
– 0𝐻ˆ𝐻 1𝐻ˆ𝐻

´p𝑀´1𝐿qℋℋ ´p𝑀´1𝐷qℋℋ

fi
fl ,

𝐵𝒪𝒪 “
»
– 0𝑂ˆ𝑂 0𝑂ˆ𝑂

0𝑂ˆ𝑂 ´𝑀´1𝒪𝒪

fi
fl , 𝐵ℋℋ “

»
– 0𝐻ˆ𝐻 0𝐻ˆ𝐻

0𝐻ˆ𝐻 ´𝑀´1ℋℋ

fi
fl ,

𝑢𝑡 “
»
– 0𝑂

𝑣𝒪𝑡

fi
fl 𝑣𝑡 “

»
– 0𝐻

𝑣ℋ𝑡

fi
fl .

Note that we take advantage of the fact that 1𝑁ˆ𝑁 and𝑀´1𝐷 are diagonal matrices with

their o�-diagonal elements being zero. For example, 𝑀´1𝐷𝒪ℋ is a zero matrix.

After applying Euler-Maruyama discretization, we get

»
——————–

𝛿𝒪𝑡`1

𝜔𝒪
𝑡`1

𝛿ℋ𝑡`1

𝜔ℋ
𝑡`1

fi
ffiffiffiffiffiffifl
“

»
– 12𝑂ˆ2𝑂 `𝐴𝑑,𝒪𝒪Δ𝑡 𝐴𝑑,𝒪ℋΔ𝑡

𝐴𝑑,ℋ𝒪Δ𝑡 12𝐻ˆ2𝐻 `𝐴𝑑,ℋℋΔ𝑡

fi
fl

»
——————–

𝛿𝑜𝑡

𝜔𝑜𝑡

𝛿ℎ𝑡

𝜔ℎ𝑡

fi
ffiffiffiffiffiffifl
`

»
–𝐺 0

0 𝐽

fi
fl
»
–𝑢𝑡
𝑤𝑡

fi
fl , (2.26)

where 𝐺 “ 𝐵𝒪𝒪Δ𝑡 and 𝐽 “ 𝐵ℋℋΔ𝑡.

This can be re-written as

»
–𝑦𝑡`1
𝑧𝑡`1

fi
fl “

»
–𝐴𝒪𝒪 𝐴𝒪ℋ

𝐴ℋ𝒪 𝐴ℋℋ

fi
fl
»
–𝑦𝑡
𝑧𝑡

fi
fl`

»
–𝐺 0

0 𝐽

fi
fl
»
–𝑢𝑡
𝑤𝑡

fi
fl , (2.27)
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where 𝑦𝑡 “
»
–𝛿

𝒪
𝑡

𝜔𝒪
𝑡

fi
fl and 𝑧𝑡 “

»
–𝛿

ℋ
𝑡

𝜔ℋ
𝑡

fi
fl denote the observable and unobservable variables.

Assume that 𝐸𝑘 “ 0 for some 𝑘 P Z`. This assumption states that the contribution of

the hidden nodes to the overall evolution of the network state becomes negligible as time

progresses. Then, using this assumption and by expanding (2.27), we get

𝑦𝑡`1 “ 𝐴𝒪𝒪𝑦𝑡 `
𝑘´1ÿ

𝑚“0

𝐴𝒪ℋ𝐴
𝑚
ℋℋ𝐴ℋ𝒪𝑦𝑡´𝑚´1 `𝐺𝑢𝑡 `

𝑘´1ÿ

𝑚“0

𝐴𝒪ℋ𝐴
𝑚
ℋℋ𝐽𝑤𝑡´𝑚´1. (2.28)

This can be equivalently written as:

𝑦𝑡`1 “

»
——————–

𝐴𝒪𝒪
J

p𝐴𝒪ℋ𝐴ℋ𝒪qJ
.
.
.

p𝐴𝒪ℋ𝐴
𝑘´1
ℋℋ𝐴ℋ𝒪qJ

fi
ffiffiffiffiffiffifl

J»
——————–

𝑦𝑡

𝑦𝑡´1
.
.
.

𝑦𝑡´𝑘

fi
ffiffiffiffiffiffifl
`

»
——————–

𝐺J

p𝐴𝒪ℋ𝐽qJ
.
.
.

p𝐴𝒪ℋ𝐴
𝑘´1
ℋℋ𝐽qJ

fi
ffiffiffiffiffiffifl

J»
——————–

𝑢𝑡

𝑤𝑡´1
.
.
.

𝑤𝑡´𝑘

fi
ffiffiffiffiffiffifl
. (2.29)

Let 𝑌𝑡 “

»
——————–

𝑦𝑡`𝑘

𝑦𝑡`𝑘´1
.
.
.

𝑦𝑡

fi
ffiffiffiffiffiffifl

,𝑋 “

»
——————–

𝐴𝒪𝒪
J

𝐴𝒪ℋ𝐴0
ℋℋ𝐴ℋ𝒪

J

.

.

.

𝐴𝒪ℋ𝐴
𝑘´1
ℋℋ𝐴ℋ𝒪

J

fi
ffiffiffiffiffiffifl

and 𝜂𝑡 “

»
——————–

𝐺J

𝐴𝒪ℋ𝐴0
ℋℋ𝐽

J

.

.

.

𝐴𝒪ℋ𝐴
𝑘´1
ℋℋ𝐽

J

fi
ffiffiffiffiffiffifl

J»
——————–

𝑢𝑡

𝑤𝑡´1
.
.
.

𝑤𝑡´𝑘

fi
ffiffiffiffiffiffifl

. Then,

by substitution of 𝑌𝑡, 𝑋 and 𝜂𝑡

𝑦𝑡`𝑘`1
J “ 𝑌𝑡

J𝑋 ` 𝜂𝑡`𝑘J. (2.30)

If we individually left-multiply (2.30) with 𝑦𝑡`𝑘`1, and sum it over from 𝑡 “ 1 to 𝑡 “ 𝑇´1,

we get,

Σ0 “
”
Σ1

J Σ2
J ¨ ¨ ¨ Σ𝑘`1

J

ı
𝑋, (2.31)

where Σ𝑘 “ 1
𝑇´1

ř𝑇´1
𝑡“1 𝑦𝑡`𝑘𝑦𝑡

J
is the generalization of the cross-correlation matrix with

displacement in (2.21) where the observations are limited to the PMU measurements from

only observable nodes. Note that, since 𝑦𝑡`𝑘`1 has zero correlation with 𝜂𝑡, the sum over

several time steps will lead to the contribution of the noise vector terms to zero.
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Similarly, if we left-multiply (2.30) with 𝑦𝑡`𝑘`2, ¨ ¨ ¨ , 𝑦𝑡`2𝑘, and sum it over from 𝑡 “ 1

to 𝑡 “ 𝑇 ´ 1, we get,

»
——————–

Σ0

Σ1

.

.

.

Σ𝑘

fi
ffiffiffiffiffiffifl
“

»
——————–

Σ1
J Σ2

J ¨ ¨ ¨ Σ𝑘`1
J

Σ2
J Σ3

J ¨ ¨ ¨ Σ𝑘`2
J

.

.

.

.

.

.

.
.
.

.

.

.

Σ𝑘`1
J Σ𝑘`2

J ¨ ¨ ¨ Σ2𝑘`1
J

fi
ffiffiffiffiffiffifl
𝑋. (2.32)

Here, we assume the system to be stable which allows it to reach an equilibrium. That

is, Σ𝑘 “ 1
𝑇´1

ř𝑇´1
𝑡“1 𝑦𝑡`𝑘 “ 1

𝑇´1

ř𝑙`𝑇´1
𝑡“𝑙 𝑦𝑡`𝑘 for all 𝑙 P Z`. Equation (2.32) allows us

to straightforwardly compute 𝐴𝒪𝒪 by applying simple Linear Algebra. However, com-

putation of 𝐴𝒪ℋ, 𝐴ℋ𝒪 and 𝐴ℋℋ is non-trivial as they only occur in non-linear terms.

However, we can compute 𝐴𝒪ℋ𝐴𝑚ℋℋ𝐴ℋ𝒪 for 𝑚 “ 0, ¨ ¨ ¨ , 𝑘 ´ 1.

We present the next set of results with the purpose of recovering the individual matri-

ces 𝐴𝒪ℋ, 𝐴ℋ𝒪 and 𝐴ℋℋ given their product terms 𝐴𝒪ℋ𝐴𝑚ℋℋ𝐴ℋ𝒪 for 𝑚 “ 0, ¨ ¨ ¨ , 𝑘 ´ 1.

Consider the following condition, which we assume for the rest of the section.

Condition 1. 1. Each visible node is connected to at most one hidden node.

2. A hidden node is connected to exactly one visible node.

Let 𝒰 Ď 𝒪 be the set of observable nodes such that each one of them is connected

exactly one hidden node. The Propositions 1 and 2 provides us information about the

structure of matrices that constitute the dynamic matrix 𝐴.

Proposition 1. Under Condition 1, the following statements are true:

1. p𝑀´1𝐿qℋℋ is a diagonal matrix.

2. p𝑀´1𝐿q𝒪ℋ has exactly 1 non-zero entry in each column, and exactly 1 non-zero entry

in each row corresponding to node 𝑜 P 𝒰 .

3. p𝑀´1𝐿qℋ𝒪 has exactly 1 non-zero entry in each row, and exactly 1 non-zero entry in

each column corresponding to node 𝑜 P 𝒰 .

Proof of Proposition 1 is trivial.
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Proposition 2. Under Condition 1, for 𝑖 P Z` and 𝑖 ě 1, 𝐴𝑖ℋℋ P R2𝐻ˆ2𝐻 such that

𝐴𝑖ℋℋ “
»
–Λ𝑖1 Λ𝑖2

Λ𝑖3 Λ𝑖4

fi
fl where Λ𝑖1,Λ𝑖2,Λ𝑖3,Λ𝑖4 are diagonal matrices.

Proof. We can prove this using induction. 𝐴1
ℋℋ “

»
– 1𝐻ˆ𝐻 𝑇1𝐻ˆ𝐻

´𝑇 p𝑀´1𝐿qℋℋ 1𝐻ˆ𝐻 ´ 𝑇 p𝑀´1𝐷qℋℋ

fi
fl.

Using Proposition 1, the base case is satis�ed. Now, the inductive hypothesis is that

𝐴𝑖´1ℋℋ “
»
–Λ𝑖´1,1 Λ𝑖´1,2

Λ𝑖´1,3 Λ𝑖´1,4

fi
fl where Λ𝑖´1,1, Λ𝑖´1,2, Λ𝑖´1,3, Λ𝑖´1,4 P R𝑁

are diagonal matrices.

Then, 𝐴𝑖ℋℋ “ 𝐴𝑖´1ℋℋ ˆ 𝐸 “
»
–Λ𝑖´1,1 Λ𝑖´1,2

Λ𝑖´1,3 Λ𝑖´1,4

fi
fl ˆ

»
–Λ1,1 Λ1,2

Λ1,3 Λ1,4

fi
fl. The proof completes by

noting that product of two diagonal matrices is a diagonal matrix and sum of two diagonal

matrices is also a diagonal matrix.

Based on Proposition 2, we can obtain simple non-linear expressions for the terms

in 𝐴𝒪ℋ𝐴ℋℋ𝐴ℋ𝒪, 𝐴𝒪ℋ𝐴2
ℋℋ𝐴ℋ𝒪 and 𝐴𝒪ℋ𝐴3

ℋℋ𝐴ℋ𝒪 based on the entries of the original

dynamic matrix 𝐴. Therefore, we conjecture that under Condition 1, if 𝐴𝒪ℋ𝐴ℋℋ𝐴ℋ𝒪,

𝐴𝒪ℋ𝐴2
ℋℋ𝐴ℋ𝒪 and 𝐴𝒪ℋ𝐴3

ℋℋ𝐴ℋ𝒪 are known, then we can reconstruct 𝐴𝒪ℋ, 𝐴ℋ𝒪, and

𝐴ℋℋ matrices using non-linear regression. We provide a sketch of the procedure for

computing these matrices. Firstly, for 𝑚 P Z`, 𝐴𝒪ℋ𝐴𝑚ℋℋ𝐴ℋ𝒪 P R2𝑂ˆ2𝑂
. Secondly,

p𝐴𝒪ℋ𝐴𝑚ℋℋ𝐴ℋ𝒪q𝑂`𝑜,ℎ “ 𝐴𝒪ℋ𝑂`𝑜,ℎ𝐴
𝑚
ℋℋ𝐻`ℎ,ℎ𝐴ℋ𝒪𝐻`ℎ@ ℎ P ℋ, p𝑜, ℎq P ℰ . Given that

there are 3 |𝒰| variables and 3 |𝒰| constraints, we can write a non-linear regression model

to estimate the parameters of dynamic matrix 𝐴. A computational study of this approach

is part of ongoing work and will be reported in a later publication.

Concluding remarks: In this chapter, we studied an end-to-end framework for at-

tack generation and implementation on an Energy Management System software. First,

we assumed that both operator and the attacker possess knowledge of the parameters of

an electricity transmission network. We showed how an attacker can perform o�ine anal-

ysis of an EMS software, and leverage its internal properties along with the knowledge of

the TN parameters to generate optimal values for manipulation of control-sensitive pa-

rameters in the EMS. Then, we showed how that attack can be implemented during run-

time by injecting the manipulated parameters in the dynamic memory of a compromised
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EMS process. Finally, we showed how both attacker as well as the operator can estimate

the power transmission dynamics by online learning of measurement data from Phasor

Measurement Units even under certain restrictive conditions of partial observability.
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Chapter 3

Vulnerability Assessment of Smart

Distribution Networks

In the previous chapter, we presented an end-to-end framework for optimal attack gener-

ation and implementation in transmission network energy management system software.

We considered an operator model in which the operator implements economic dispatch

by unwittingly using the system parameters manipulated by the attacker.

In this chapter, we consider the problem of optimal attack generation in a radial DN

with an “in�nite” substation bus and a high penetration of Distributed Energy Resources

(DERs), in which the operator can optimally respond to attacker actions. The disruption

model consists of DER node compromises, whereas the operator response comprises of

load control and response by non-compromised DERs. We also consider an optimal secu-

rity problem in which the operator can proactively secure a subset of DER nodes subject

to budget constraints to minimize the maximin loss caused by the attacker’s disruption

and operator’s response.

3.1 Network model with “in�nite” substation bus

Distribution network model

We summarize the standard network model of radial electric distribution systems [41,

108, 130]. Consider a tree network of nodes and distribution lines 𝒢 “ p𝒩 Y t0u, ℰq,
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where 𝒩 denotes the set of all nodes except the substation (labeled as node 0), and let

𝑁 :“ |𝒩 |. Let 𝑉𝑖 P W denote the complex voltage at node 𝑖, and 𝜈𝑖 :“ |𝑉𝑖|2 denote the

square of voltage magnitude. We assume that the magnitude of substation voltage |𝑉0| is

constant. Let 𝐼𝑗 P W denote the current �owing from node 𝑖 to node 𝑗 on line p𝑖, 𝑗q P ℰ ,

and ℓ𝑗 :“ |𝐼𝑗|2 the square of the magnitude of the current. A distribution line p𝑖, 𝑗q P ℰ
has a complex impedance 𝑧𝑗 “ 𝑟𝑗 ` j𝑥𝑗 , where 𝑟𝑗 ą 0 and 𝑥𝑗 ą 0 denote the resistance

and inductance of the line p𝑖, 𝑗q, respectively, and j “ ?´1.

The voltage regulation requirements of the DN under nominal no attack conditions

govern that:

@ 𝑖 P 𝒩 , 𝜈𝑖 ď 𝜈𝑖 ď 𝜈𝑖, (3.1)

where 𝜈𝑖 “ |𝑉 𝑖|2 and 𝜈𝑖 “
⃒⃒
𝑉 𝑖

⃒⃒2
are the soft lower and upper bounds for maintaining

voltage quality at node 𝑖. Additionally, voltage magnitudes under all conditions satisfy:

@ 𝑖 P 𝒩 , 𝜇 ď 𝜈𝑖 ď 𝜇, (3.2)

where 𝜇 and 𝜇 are the hard voltage safety bounds for any nodal voltage, and 0 ă 𝜇 ă
min𝑖P𝒩 𝜈𝑖 ď max𝑖P𝒩 𝜈𝑖 ă 𝜇.

Load model

We consider constant power loads [52].
1

Let 𝑠𝑐𝑖 :“ 𝑝𝑐𝑖` j𝑞𝑐𝑖 denote the power consumed

by a load at node 𝑖, where 𝑝𝑐𝑖 and 𝑞𝑐𝑖 are the real and reactive components. Let scnom𝑖 :“
pcnom𝑖 ` jqcnom𝑖 denote the nominal power demanded by a node 𝑖, where pcnom𝑖 and qcnom𝑖

are the real and reactive components of scnom𝑖 . Under our assumptions, for all 𝑖 P 𝒩 ,

𝑝𝑐𝑖 ď pcnom𝑖 and 𝑞𝑐𝑖 ď qcnom𝑖 , i.e., the actual power consumed at each node is upper

bounded by the nominal demand:

@ 𝑖 P 𝒩 , 𝑠𝑐𝑖 ď scnom𝑖 . (3.3)

1
We do not consider frequency dependent loads as our analysis is limited to attacks that do not cause

disturbances in system frequency; see Sec. 3.2 for our justi�cation of constant system frequency assumption.
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DER model

2
Let 𝑠𝑔𝑖 :“ 𝑝𝑔𝑖` j𝑞𝑔𝑖 denote the power generated by the DER connected to node 𝑖, where

𝑝𝑔𝑖 and 𝑞𝑔𝑖 denote the active and reactive power, respectively. Following [53], [130], 𝑠𝑔𝑖

is bounded by the apparent power capability of the inverter, which is a given constant sp𝑖.

We denote the DER set-point by sp𝑖 “ Repsp𝑖q ` jImpsp𝑖q, where Repsp𝑖q and Impsp𝑖q
are the real and reactive components. The power generated at each node is constrained

as follows:

@ 𝑖 P 𝒩 , 𝑠𝑔𝑖 ď sp𝑖 P 𝒮𝑖, (3.4)

where 𝒮𝑖 :“ tsp𝑖 P W | Repsp𝑖q ě 0 and |sp𝑖| ď sp𝑖u. 𝒮 :“ ś
𝑖P𝒩 𝒮𝑖 denotes the set

of con�gurable set-points.

We denote the net power consumed at node 𝑖 by 𝑠𝑖 :“ 𝑠𝑐𝑖´𝑠𝑔𝑖. A DN can be fully spec-

i�ed by the tuple x𝒢, |𝑉0| , 𝑧, scnom, spy, where 𝑧, scnom, sp are row vectors of appropriate

dimensions, and are assumed to be constant.

Power �ow equations

The 3-phase balanced nonlinear power �ow (NPF) on line p𝑖, 𝑗q P ℰ is given by [41]:

𝑆𝑗 “
ř
𝑘:p𝑗,𝑘qPℰ 𝑆𝑘 ` 𝑠𝑐𝑗 ´ 𝑠𝑔𝑗 ` 𝑧𝑗ℓ𝑗 (3.5a)

𝜈𝑗 “ 𝜈𝑖 ´ 2Rep𝑧𝑗𝑆𝑗q ` |𝑧𝑗|2 ℓ𝑗 (3.5b)

ℓ𝑗 “ |𝑆𝑗|2
𝜈𝑖

, (3.5c)

where 𝑆𝑗 “ 𝑃𝑗 ` j𝑄𝑗 denotes the complex power �owing from node 𝑖 to node 𝑗 on line

p𝑖, 𝑗q P ℰ , and 𝑧 is the complex conjugate of 𝑧; (3.5a) is the power conservation equation;

(3.5b) relates the voltage drop and the power �ows; and (3.5c) is the current-voltage-

power relationship. For the NPF model (3.5), we de�ne a state as follows:

x :“
”
𝜈, ℓ, 𝑠𝑐, 𝑠𝑔, 𝑆

ı
,

2
We use the term DER to denote the complete DER-inverter assembly attached to a node of DN.
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where x P R2𝑁
` ˆW

3𝑁
, and 𝜈, ℓ, 𝑠𝑐, 𝑠𝑔, and 𝑆 are row vectors of appropriate dimensions.

Let ℱ denote the set of all states x that satisfy (3.2), (3.3), (3.4) and the NPF model (3.5),

and de�ne the set of all states with no reverse power �ows (see Sec. 3.2 for additional

assumptions) as follows:

𝒳 :“ tx P ℱ |𝑆 ě 0u.

The linear power �ow (LPF) approximation of (3.5) is:

p𝑆𝑗 “
ř
𝑘:p𝑗,𝑘qPℰ

p𝑆𝑘 ` p𝑠𝑐𝑗 ´ p𝑠𝑔𝑗 (3.6a)

p𝜈𝑗 “ p𝜈𝑖 ´ 2Rep𝑧𝑗 p𝑆𝑗q (3.6b)

pℓ𝑗 “
⃒⃒
⃒p𝑆𝑗

⃒⃒
⃒
2

p𝜈𝑖
, (3.6c)

where px :“ rp𝜈, pℓ, p𝑠𝑐, p𝑠𝑔, p𝑆s is a state of the LPF model, and analogous to the NPF model,

de�ne the set of LPF states px with no reverse power �ows as
p𝒳 .

Notation and de�nitions

All vectors are row vectors, unless otherwise stated. For two vectors 𝑐 and 𝑑, 𝑐 d 𝑑

denotes their Hadamard product.

Let𝐾𝑗 :“ 𝑟𝑗
𝑥𝑗

be the resistance-to-reactance (
r{x) ratio for line p𝑖, 𝑗q P ℰ , and let𝐾 and

𝐾 denote the minimum and maximum of the 𝐾𝑗s over all p𝑖, 𝑗q P ℰ . We say that DERs at

nodes 𝑗 and 𝑘 are homogeneous with respect to each other if their set-point con�gurations

as well as their apparent power capabilities are identical, i.e., sp𝑗 “ sp𝑘 and sp𝑗 “ sp𝑘.

Similarly, two loads at nodes 𝑗 and 𝑘 are homogeneous if scnom𝑗 “ scnom𝑘 .

For any given node 𝑖 P 𝒩 , let 𝒫𝑖 be the path from the root node to node 𝑖. Thus, 𝒫𝑖
is an ordered set of nodes starting from the root node and ending at node 𝑖, excluding

the root node; see Figure 3-1. We say that node 𝑗 is an ancestor of node 𝑘 (𝑗 ă 𝑘), or

equivalently, 𝑘 is a successor of 𝑗 i� 𝒫𝑗 Ă 𝒫𝑘. We de�ne the relative ordering ĺ𝑖, with

respect to a “pivot" node 𝑖 as follows:

- 𝑗 precedes 𝑘 (𝑗 ĺ𝑖 𝑘) i� 𝒫𝑖 X 𝒫𝑗 Ď 𝒫𝑖 X 𝒫𝑘.

- 𝑗 strictly precedes 𝑘 (𝑗 ă𝑖 𝑘) i� 𝒫𝑖 X 𝒫𝑗 Ă 𝒫𝑖 X 𝒫𝑘.
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0 𝑎 𝑏 𝑐 𝑖 𝑚

𝑒 𝑑 𝑘

𝑔 𝑗

Figure 3-1: Precedence description of the nodes for a tree network. Here, 𝑗 ă𝑖 𝑘, 𝑒 “𝑖 𝑘,

𝑏 ă 𝑘, 𝒫𝑗 “ t𝑎, 𝑔, 𝑗u, 𝒫𝑖 X 𝒫𝑗 “ t𝑎u.

- 𝑗 is at the same precedence level as 𝑘 (𝑗 “𝑖 𝑘) i�

𝒫𝑖 X 𝒫𝑗 “ 𝒫𝑖 X 𝒫𝑘.

We de�ne the common path impedance between any two nodes 𝑖, 𝑗 P 𝒩 as the sum

of impedances of the lines in the intersection of paths 𝒫𝑖 and 𝒫𝑗 , i.e., 𝑍𝑖𝑗 :“
ř
𝑘P𝒫𝑖X𝒫𝑗

𝑧𝑘,

and denote the resistive (real) and inductive (imaginary) components of 𝑍𝑖𝑗 by 𝑅𝑖𝑗 and

𝑋𝑖𝑗 , respectively.

Finally, we de�ne some useful terminology for the tree network 𝒢. Let 𝐻 denote the

height of 𝒢, and let 𝒩ℎ denote the set of nodes on level ℎ for ℎ “ 1, 2, ¨ ¨ ¨ , 𝐻 . For any

node 𝑖 P 𝒩 , ℎ𝑖 denotes the level of node 𝑖; 𝒩 𝑐
𝑖 the set of children nodes of node 𝑖; Λ𝑖 the

set of nodes in the subtree rooted at node 𝑖; Λ𝑗𝑖 the set of nodes in the subtree rooted at

node 𝑖 until level ℎ𝑗 , where 𝑗 P Λ𝑖; 𝒩𝐿 the set of leaf nodes, i.e., 𝒩𝐿 :“ t𝑗 P 𝒩 | E 𝑘 P
𝒩 s.t. p𝑗, 𝑘q P ℰu.

3.2 Defender-Attacker-Defender game
We consider a 3-stage sequential game between a defender (network operator) and an

attacker (external threat agent).

- Stage 1: The defender chooses a security strategy

𝑢 P 𝒰𝐵 to secure a subset of DERs;

- Stage 2: The attacker chooses from the set of DERs that were not secured by the

defender in Stage 1, and manipulates their set-points according to a strategy

𝜓 :“
”
spa, 𝛿

ı
P Ψkp𝑢q;
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- Stage 3: The defender responds by choosing the set-points of the uncompromised

DERs and, if possible, impose load control at one or more nodes according to a

strategy 𝜑 :“
”
spd, 𝛾

ı
P Φp𝑢, 𝜓q.

The rDADs game is a sequential game of perfect information, i.e. each player is per-

fectly informed about the actions that have been chosen by the previous players. The

equilibrium concept is the classical Stackelberg equilibrium.

In this game, 𝒰𝐵 and Φp𝑢, 𝜓q denote the set of defender actions in Stage 1 and 3,

respectively; and Ψkp𝑢q denotes the set of attacker strategies in Stage 2. Formally, the

defender-attacker-defender rDADs game is as follows:

rDADs ℒ :“ min𝑢P𝒰𝐵
max𝜓PΨ

k
min𝜑PΦ Lpxp𝑢, 𝜓, 𝜑qq (3.7)

s.t. xp𝑢, 𝜓, 𝜑q P 𝒳 (3.8a)

𝑠𝑐p𝑢, 𝜓, 𝜑q “ 𝛾 d scnom (3.8b)

𝑠𝑔p𝑢, 𝜓, 𝜑q “ 𝑢d spd ` p1𝑁 ´ 𝑢q
d r𝛿 d spa ` p1𝑁 ´ 𝛿q d spds, (3.8c)

where (3.8b) speci�es that the actual power consumed at node 𝑖 is equal to the power

demand scaled by the corresponding load control parameter 𝛾𝑖 P r𝛾𝑖, 1s chosen by the

defender.

The constraint (3.8c) models the net e�ect of defender choice 𝑢𝑖 in Stage 1, the attacker

choice pspa
𝑖 , 𝛿𝑖q in Stage 2, and the defender choice spd

𝑖 in Stage 3 on the actual power

generated at node 𝑖. Thus, (3.8c) is the adversary model of rDADs game: the DER 𝑖 is

compromised if and only if it was not secured by the defender (𝑢𝑖 “ 0) and was targeted by

the attacker (𝛿𝑖 “ 1). Speci�cally, if 𝑖 is compromised, sp𝑖 “ spa
𝑖 , where spa

𝑖 “ Repspa
𝑖 q `

jImpspa
𝑖 q is the false set-point chosen by the attacker. The set-points of non-compromised

DERs are governed by the defender, i.e., if DER 𝑖 is not compromised sp𝑖 “ spd
𝑖 .

Note that the physical restriction (3.4) applies to all DER nodes, including the com-
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promised ones. If the attacker’s set-point violates this constraint, it will not be admitted

by the inverter as a valid set-point. Such an attack will not a�ect the attack model (3.8c),

and consequently it will not change the actual power generated by the DER. Also, our

adversary model assumes that the DERs’ power output, 𝑠𝑔, quickly attain the set-points

speci�ed by (3.8c). Thus we do not consider dynamic set-point tracking.
3

During the nominal operating conditions, the network operator minimizes the line

losses due to power �ow on the distribution lines (LLL). Typical OPF formulations mainly

account for this cost. However, this objective function is not representative of the loss

incurred by operator (defender) during the aforementioned attack on the DN. We de�ne

loss function in rDADs as follows:

Lpxp𝑢, 𝜓, 𝜑qq :“ LVRpxq ` LLCpxq ` LLLpxq, (3.9)

where LVRpxq and LLCpxq model the monetary cost to the defender due to the loss in

voltage regulation and the cost of load curtailment/shedding (i.e., loss due to partially

satis�ed demand), respectively. The term denotes LLL the total line losses. These costs are

de�ned as follows:

LVRpxq :“ ‖𝑊 d p𝜈 ´ 𝜈q`‖8 (3.10a)

LLCpxq :“ ‖𝐶 d p1´ 𝛾q d pcnom‖1 (3.10b)

LLLpxq :“ ‖𝑟 d ℓ‖1 , (3.10c)

where𝑊,𝐶 P R𝑁
` . The weight𝑊𝑖 is the cost of unit voltage bound violation and 𝐶𝑖 is the

cost of shedding unit load (or demand dissatisfaction) at node 𝑖, and 𝑟 denotes the vector

of resistances. Note that LVR is the maximum of the weighted non-negative di�erence

between the lower bound 𝜈𝑖 and nodal voltage square 𝜈𝑖. We expect that during the attack,

the defender’s primary concern will be to satisfy the voltage regulation requirements, and

minimize the inconvenience to the customers due to load curtailment. Thus, we assume

3
Note that, under this adversary model, the impact of DER compromise is di�erent than the impact of a

natural event, e.g. cloud cover, during which 𝑝𝑔 “ 0. The reactive power contribution may be non-negative

during a natural event; however, as we show in Sec. 3.3, a compromised DER contributes reactive power

equal to the negative of apparent power capability.
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that the weights 𝑊𝑖 and 𝐶𝑖 are chosen such that LLL is relatively small compared to LVR

and LLC.

Note that we added the LLLpxq term in (3.9) primarily to ensure that the loss function

Lpxq remains strictly convex function of the net demand 𝑠 “ 𝑠𝑐´𝑠𝑔. The strict convexity

allows us to have a unique solution for the inner problem for �xed attacker’s actions. In

our computational study in Sec. 3.5, we choose the weights 𝑊 and 𝐶 such that the line

loss is negligible compared to LVR and LLC.

However, more generally, the loss function Lpxq should re�ect the monetary costs in-

curred by the defender in maintaining the supply-demand balance and in restoring the

safe operating conditions after the attack. Such a general model will contain following

terms: (a) the cost of supplying additional power from the substation node to match the

di�erence between actual power consumed by the loads and the e�ective DER generation

(LSpxq); (b) the cost due to the loss of voltage regulation (LVRpxq); (c) the cost of curtail-

ing or shedding certain loads (LLCpxq); (d) the cost of reactive power (VAR) control and

the cost of energy spillage for the uncompromised DERs (LACpxq); and (e) the costs of

equipment damage due to the attack (LDpxq).
For the sake of simplicity, we do not consider LACpxq and LDpxq in our formulation.

The choice of ignoring LACpxq can be justi�ed if we assume that the DER owners par-

ticipate in VAR control, perhaps in return of a pre-speci�ed compensation by the opera-

tor/defender. Alternatively, the DERs may be required to contribute reactive power during

contingency scenarios (i.e., supply-demand mismatch during the attack). The main di�-

culty in modeling LDpxq is that it requires relating the state vector to the probability of

equipment failures. Since our focus is on security assessment of DNs, as opposed to net-

work reinforcement using investment in physical protection devices, we ignore this cost

in our analysis. Finally, we also ignore the contribution of LSpxq to the loss function, as

it is likely to be dominated by LVR and LLC.

Stage 1 [Security Investment]

The set of defender actions is:

𝒰𝐵 :“ t𝑢 P t0, 1u𝒩 | ‖𝑢‖0 ď 𝐵u,

86



where 𝐵 ď |𝒩 | denotes a security budget. Since, securing control-center’s communica-

tion to every DER node in a geographically diverse DN might be costly/impractical, we

impose that the maximum number of nodes the defender can secure is 𝐵. A defender’s

choice 𝑢 P 𝒰𝐵 implies that a DER at node 𝑖 is secure if 𝑢𝑖 “ 1 (i.e. DER at node 𝑖 cannot

be compromised), and vulnerable to attack if 𝑢𝑖 “ 0. Let 𝒩𝑠p𝑢q :“ t𝑖 P 𝒩 |𝑢𝑖 “ 1u and

𝒩𝑣p𝑢q :“ 𝒩 z𝒩𝑠p𝑢q denote the set of secure and vulnerable nodes, for a given 𝑢.
4

There are several factors which limit the defender’s ability to ensure full security of

DERs. First, to ensure the security of control software and network communications that

support DER operations, we need cost-e�ective and interoperable security solutions that

can be widely adopted by di�erent entities (e.g., DER manufacturers, service providers,

and owners). Secondly, the DNs are likely to inherit some of the vulnerabilities of COTS

IT devices that may directly or indirectly a�ect DER operations. Third, the defenders

(operators) need to justify the business case to deploy security solutions. Existing work on

security investments in such networked environments, indicates that the operators tend

to underestimate security risks [8]. Consequently, in the absence of proper regulatory

impositions, they tend to underinvest in well-known security solutions. In our model,

we capture the limitations imposed by these factors by introducing a security budget 𝐵

which restricts the maximum number of nodes the defender can secure in Stage 1.

Stage 2 [Attack]

Let Ψkp𝑢q :“ 𝒮p𝑢q ˆ 𝒟kp𝑢q denotes the set of attacker actions for a defender’s choice 𝑢,

where

𝒮p𝑢q :“ś
𝑖P𝒩𝑣p𝑢q

𝒮𝑖 ˆ
ś

𝑗P𝒩𝑠p𝑢q
t0` 0ju

𝒟kp𝑢q :“ t𝛿 P t0, 1u𝒩 | 𝛿 ď 1𝑁 ´ 𝑢, ‖𝛿‖0 ď ku,

4
Note that by a “secure" node, we mean that the DER at that node is not prone to compromise by the

attacker. From a practical viewpoint, the defender can secure a DER node by investing in node security

solutions such as intrusion prevention systems (IPS) [34]. These security solutions are complementary to

the device hardening technologies that can secure the DER-inverter assembly. Our focus is on security

against a threat agent interested in simultaneously compromising multiple DERs. Thus, we restrict our

attention to node security solutions.
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and k ď |𝒩𝑣| is the maximum number of DERs that the attacker can compromise. This

limit accounts for the attacker’s resource constraints (and/or restrict his in�uence based

on his knowledge of DER vulnerabilities). The attacker simultaneously compromises a

subset of vulnerable DER nodes by introducing incorrect set-points (see the adversary

model (3.8c)), and increase the loss L (see (3.9)). The attacker’s choice is denoted by

𝜓 :“
”
spa, 𝛿

ı
P Ψkp𝑢q, where spa

denotes the vector of incorrect set-points chosen by

the attacker, and 𝛿 P 𝒟k denotes the attack vector that indicates the subset of DERs com-

promised. A DER at node 𝑖 is compromised if 𝛿𝑖 “ 1, and not compromised if 𝛿𝑖 “ 0.

We assume that the attacker has full information about the DN, i.e., she knows

x𝒢, |𝑉0| , 𝑧, scnom, spy and maximum fraction of controllable load at each node. The at-

tacker also knows the set of DERs secured by the defender in Stage 1 of the game, voltage

regulation bounds, and defender’s cost parameters (i.e. the weight 𝑊𝑖 for voltage bound

violation and the cost of unit load shedding 𝐶𝑖 for each node 𝑖). By assuming such an in-

formed attacker, we are able to focus on how the attacker uses the knowledge of the phys-

ical system toward achieving her objective. Thus, we take a conservative approach and

do not explicitly consider particular mechanisms of how a security vulnerability might be

exploited by the attacker. Admittedly, our attack model may be unrealistic in some sce-

narios; however, it allows us to identify the critical DER nodes, and characterize optimal

security investment and defender response; see Sec. 3.5.

Next, we justify the attacker’s resource constraint k. First, the DERs are likely to be

heterogeneous in their capacity, design, and manufacturer type. The attacker may not

have the speci�c knowledge to exploit vulnerabilities in all DER systems deployed on a

DN. Secondly, in practice, the process of DER integration is gradual and so is the progress

on implementing security solutions in the control processes that support DER operations.

The attacker’s capability to compromise DERs depends on how the available threat chan-

nels vary which such a technological change. Third, the security of DNs is likely to be

a�ected by the security practices adopted by owners of DERs. For example, the attacker’s

capability will be limited if the DER operations are secured by a regulated distribution

utility who faces compliance checks or mandatory disclosure of known incidents. In con-

trast, he is more likely to gain a backdoor entry if the DN has substantial participation
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from a variety of third party DER owners who may not follow prudent security practices.

In our analysis, we model the attacker’s capability by introducing a parameter k, which

is the maximum number of DERs that the attacker can compromise.

Stage 3 [Defender Response]

Let 𝛾
𝑖
ě 0 denote the maximum permissible fraction of load control at node 𝑖, and de�ne

the set of Stage 3 defender actions:

Φp𝑢, 𝜓q :“ 𝒮 ˆ Γ,

where Γ :“ ś
𝑖P𝒩 r𝛾𝑖, 1s. The defender chooses new set-points spd

of non-compromised

DERs, and load control parameters 𝛾𝑖 to reduce the loss L. The defender action is modeled

as a vector 𝜑 :“
”
spd, 𝛾

ı
P Φp𝑢, 𝜓q, where spd

(resp. 𝛾) denotes the vector of spd
𝑖 (resp.

𝛾𝑖).

We make the standard assumption that the defender knows the nominal demand

(i.e., the demand in pre-attack conditions) using measurements collected from the DN

nodes. We also assume that the defender can distinguish between compromised and non-

compromised DERs. In heavy loading conditions, the defender expects the output of a

non-compromised DER to lie in the �rst quadrant (see Figure 3-3 in Sec. 3.3), i.e. it con-

tributes positive active and reactive power to the DN. A simple technique to detect com-

promised DERs is whether the inverter output lies in the fourth quadrant.

Assumptions about the DN model

In general, rDADs is a non-convex, non-linear, tri-level optimization problem with mixed-

integer decision variables. Hence, it is a computationally hard problem. Our goals are:

(i) to provide structural insights about the optimal attacker and defender strategies of

the rDADs game;

(ii) to approximate the non-linear (hard) problem by formulating computationally tractable

variants based on linear power �ow models.

To address these goals we make the following assumptions:
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pA0q1 Voltage quality: In no attack (nominal) conditions, both 𝒳 and
p𝒳 satisfy the

voltage quality bounds (3.1).

pA0q2 Safety: Safety bounds (3.2) are always satis�ed, i.e., @ p𝑢, 𝜓, 𝜑q P 𝒰𝐵 ˆ Ψ ˆ Φ,

@ xp𝑢, 𝜓, 𝜑q P 𝒳 , 𝜇1𝑁 ď 𝜈 ď 𝜇1𝑁 .

pA0q3 No reverse power �ows: Power �ows from node 0 towards the downstream

nodes, i.e.,
p𝑆 ě 0. This implies that @ px P p𝒳 , p𝜈 ď 𝜈01𝑁 ; similarly, for NPF model.

pA0q4 Small impedance: All power �ows are in the per unit (p.u.) system, i.e.,

𝜈0 “ 1 and @ p𝑖, 𝑗q P ℰ , |𝑆𝑗| ă 1. Furthermore, the resistances and reactances are small,

i.e.,

@ p𝑖, 𝑗q P ℰ , 𝑟𝑗 ď
𝜇2

4𝜇` 8
ă 1, 𝑥𝑗 ď

𝜇2

4𝜇` 8
ă 1,

and the common path resistances and reactances are also smaller than 1, i.e., 𝑅𝑖𝑖 ď
1 and 𝑋𝑖𝑖 ď 1 @ 𝑖 P 𝒩 .

pA0q5 Small line losses: The line losses are very small compared to power �ows,

i.e., @ x P 𝒳 , 𝑧 d ℓ ď 𝜖0𝑆, where 𝜖0 is a small positive number.
5

pA0q1-pA0q2 are standard assumptions. pA0q3 assumes that the DER penetration level

is such that the net demand is always positive. In real-world DNs, both 𝑟𝑗s and 𝑥𝑗s are

typically around 0.01 pA0q4. Also, residential load power factors (
𝑝𝑐𝑗{|𝑠𝑐𝑗 |) are in range of

0.88-0.95. For these values, one can show that 𝜖0 « 0.05 pA0q5. We will denote pA0q1-

pA0q5 by (A0) .

In addition to the aforementioned assumption, we also assume that (a) the node 0 is

an in�nite bus; (b) the voltage 𝜈0 is constant, and (c) the system frequency is constant.

These assumptions are standard in the steady state power �ow analyses, and can be

justi�ed as follows: Our focus is on the security assessment of DNs that have substation

nodes with high enough ramp rates in supplying „ 50 𝑀𝑊 power (typical for medium-

voltage (MV) substations). That is, any supply-demand imbalance of the order of 50𝑀𝑊

can be cleared relatively quickly by the substation; hence the in�nite substation bus as-

sumption.

5
Equivalently, 𝜖0 is an upper bound on the maximum ratio of the magnitudes of line losses and the

power �ows, i.e., 𝜖0 “ maxp𝑖,𝑗qPℰ,𝑃𝑗‰0,𝑄𝑗‰0 max
`
𝑟𝑗ℓ𝑗{𝑃𝑗, 𝑥𝑗ℓ𝑗{𝑄𝑗

˘
. Thus, 𝜖0 can be determined by setting

the values of loads to the corresponding nominal demands, and then computing the line losses and power

�ows for nominal conditions.
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The assumption (b) is typical in OPF formulations and we make it for the sake of math-

ematical convenience. Indeed, as a consequence of attack, there will be a net reduction in

the substation voltage relative to the pre-attack value 𝜈0. This e�ect is due to a higher net

demand after the Stage 3 of the game. To meet this additional demand, higher currents

will �ow through the distribution lines, resulting in even higher drops in the nodal volt-

ages than what we obtained using the computational approach detailed in Sec. 3.3. Thus,

our estimate of the optimal loss is actually a lower bound on the true value of optimal loss

that the defender would face when the substation voltage drops after the attack.

To justify assumption (c), we argue that even large-scale penetration of DERs is not

likely to achieve a generation capacity beyond 50 𝑀𝑊 from a single DN. Even in the

worst case, i.e. when all the DERs are simultaneously disconnected, their impact on the

system frequency will be negligible.

Next, we choose 𝜖 as follows

𝜖 :“ p1´ 𝜖0q´𝐻 ´ 1, (3.11)

where 𝐻 is the height of the tree DN and 𝜖0 is chosen as above. Now, consider another

linear power �ow model (which we call the 𝜖-LPF model):

q𝑆𝑗 “
ř
𝑘:p𝑗,𝑘qPℰ

q𝑆𝑘 ` p1` 𝜖qpq𝑠𝑐𝑗 ´ q𝑠𝑔𝑗q (3.12a)

q𝜈𝑗 “ q𝜈𝑖 ´ 2Rep𝑧𝑗 q𝑆𝑗q (3.12b)

qℓ𝑗 “
⃒⃒
⃒q𝑆𝑗

⃒⃒
⃒
2

q𝜈𝑖
, (3.12c)

and qx :“
”
q𝜈, qℓ, q𝑠𝑐, q𝑠𝑔, q𝑆

ı
is a state of 𝜖-LPF model, and

q𝒳 is the set of all states qx with no

reverse power �ows. (Note that for 𝜖 “ 0, (3.12) becomes (3.6).)

We also note that both LPF and 𝜖-LPF models ignore the line losses term 𝑧𝑗ℓ𝑗 in the

power balance equation (5a), and the term |𝑧𝑗|2 ℓ𝑗 in the voltage drop equation (5b). The

power �ows obtained by ignoring these terms approximate the non-linear power �ow

(NPF) model calculations under the assumption pA0q3, i.e., the line impedances are very
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small |𝑧𝑗| ! 1. Under the assumption pA0q2, i.e. no reverse power �ows, the LPF provides

a lower bound on the line power �ows, and an upper bound on the nodal voltages of

the standard DistFlow model [52],[53]. The main use of 𝜖-LPF model is that it provides

an upper bound on the line power �ows and a lower bound on the nodal voltages; see

Proposition 3 in Sec. 3.3.

We will consider two variants of the rDADs game (3.44)-(3.45):

rzDADs pℒ :“ min𝑢P𝒰𝐵
max𝜓PΨ

k
min𝜑PΦ pLppxp𝑢, 𝜓, 𝜑qq

s.t. pxp𝑢, 𝜓, 𝜑q P p𝒳 , p3.8𝑏q, p3.8𝑐q,

and

r~DADs qℒ :“ min𝑢P𝒰𝐵
max𝜓PΨ

k
min𝜑PΦ qLpqxp𝑢, 𝜓, 𝜑qq

s.t. qxp𝑢, 𝜓, 𝜑q P q𝒳 , p3.8𝑏q, p3.8𝑐q,

where
pLppxq :“ LVRppxq ` LLCppxq, and

qLpqxq :“ LVRpqxq ` LLCpqxq are the loss functions

for rzDADs and r~DADs, respectively. Note that the loss functions
pL and

qL do not have

the line losses term. The optimal loss L of rzDADs and r~DADs are denoted by
pℒ and

qℒ, respectively. Our results in §3.6-3.5 show that (a) rzDADs (resp. r~DADs) help provide

under (resp. over) approximation of rDADs; and (b) the derivation of structural properties

of optimal strategies in both rzDADs and r~DADs is analogous to one another.

We will, henceforth, abuse the notation, and use Ψ and Φ to denote Ψkp𝑢q and Φp𝑢, 𝜓q,
respectively. For a summary of notations, see Table 3.1.
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j j “ ?´1 complex square root of -1

Network parameters

𝒩 set of nodes

ℰ set of edges

𝒢 tree topology 𝒢 “ p𝒩 , ℰq
𝑟𝑗 resistance of line p𝑖, 𝑗q P ℰ
𝑥𝑗 reactance of line p𝑖, 𝑗q P ℰ
𝑧𝑗 impedance 𝑧𝑗 “ 𝑟𝑗 ` j𝑥𝑗 of line p𝑖, 𝑗q P ℰ
𝐻 height of the tree

𝒩ℎ set of nodes on level ℎ P 1, 2, ¨ ¨ ¨ , 𝐻
ℎ𝑖 level of node 𝑖
𝒩 𝑐
𝑖 set of children nodes of node 𝑖

Λ𝑖 subtree rooted at node 𝑖 P 𝒩
Λ𝑗𝑖 subtree rooted at node 𝑖 P 𝒩 until level

ℎ𝑗 for 𝑗 P Λ𝑖
𝒫𝑖 path from the root node to node 𝑖
𝑍𝑖𝑗 𝑍𝑖𝑗 :“ ř

𝑘P𝒫𝑖X𝒫𝑗
𝑧𝑘 common path

impedances between nodes 𝑖 and 𝑗

Power �ow notations

NPF Nodal quantities of node 𝑖 P 𝒩 LPF 𝜖-LPF

scnom𝑖 complex power demand at node 𝑖 ´ ´
𝑠𝑐𝑖 complex power consumed at node 𝑖 p𝑠𝑐𝑖 q𝑠𝑐𝑖
𝑠𝑔𝑖 complex power generated at node 𝑖 p𝑠𝑔𝑖 q𝑠𝑔𝑖
sp𝑖 complex power set-point of DER 𝑖 psp𝑖 qsp𝑖
𝑉𝑖 complex voltage at node 𝑖 p𝑉𝑖 q𝑉𝑖
𝜈𝑖 square of voltage magnitude at node 𝑖 p𝜈𝑖 q𝜈𝑖
𝜈𝑖, 𝜈𝑖 soft lower and upper bounds on square of volt-

age magnitude at node 𝑖

NPF Edge quantities of edge p𝑖, 𝑗q P ℰ LPF 𝜖-LPF

𝑆𝑗 complex power �owing on line p𝑖, 𝑗q p𝑆𝑖 q𝑆𝑖
𝐼𝑗 complex current �owing on line p𝑖, 𝑗q p𝐼𝑖 q𝐼𝑖
ℓ𝑗 square of magnitude of current 𝐼𝑗 pℓ𝑖 qℓ𝑖
x x “ p𝜈, ℓ, 𝑠𝑐, 𝑠𝑔, 𝑆q - state vector px qx

Attacker model

𝛿𝑖 𝛿𝑖 “ 1 if DER 𝑖 is compromised ´ ´
spa

𝑖 attacker set-point of DER 𝑖 pspa
𝑖 qspa

𝑖

𝜓 𝜓 :“ pspa, 𝛿q attacker strategy
p𝜓 q𝜓

Defender model

𝛾
𝑖

max. allowed fraction of load control ´ ´
𝛾𝑖 fraction of load control at load 𝑖 p𝛾𝑖 q𝛾𝑖
spd

𝑖 defender set-point of DER 𝑖 pspd
𝑖 qspd

𝑖

𝜑 𝜑 :“ pspd, 𝛾q defender strategy
p𝜑 q𝜑

Table 3.1: Table of Notations.
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3.3 Bilevel optimization problem

In this section, we consider the sub-game (Stages 2 and 3) induced by a �xed defender

security strategy 𝑢 in Stage 1:

rADs ℒ𝑢 :“ max𝜓PΨ min𝜑PΦ Lpxp𝑢, 𝜓, 𝜑qq s.t. p3.45q

Analogous to the variants of rDADs, rzDADs and r~DADs, we de�ne two variants of the

sub-game rADs: ryADs (resp. r}ADs) with
p𝒳 (resp.

q𝒳 ) in (3.45a). The optimal losses of

ryADs and r}ADs are denoted by
pℒ𝑢 and

qℒ𝑢), respectively.

For simplicity and without loss of generality, we focus on case for 𝑢 “ 0; i.e., no node

is secured by the defender in Stage 1. With further abuse of notation, for a strategy pro�le

p0, 𝜓, 𝜑q, we denote xp0, 𝜓, 𝜑q by xp𝜓, 𝜑q as the solution of NPF model. Similarly, rede�ne

pxp𝜓, 𝜑q and qxp𝜓, 𝜑q. We also drop the superscript 𝑢 from ℒ𝑢,
pℒ𝑢 and

qℒ𝑢.

Following the computational approach in the literature to solve (bilevel) interdiction

problems [102], [72], we de�ne the master-problem rADsa (resp. sub-problem rADsd) for

�xed 𝜑 P Φ (resp. �xed 𝜓 P Ψ):

rADsa 𝜓‹p𝜑q P argmax𝜓PΨ Lpxp𝜓, 𝜑qq s.t. p3.45q,
rADsd 𝜑‹p𝜓q P argmin𝜑PΦ Lpxp𝜓, 𝜑qq s.t. p3.45q.

Similarly, de�ne master- and sub- problems ryADsa and ryADsd (resp. r}ADsa and r}ADsd)

for the variants ryADs (resp. r}ADs).

Sec. 3.3 focuses on bounding the optimal loss for rADs with the losses in ryADs and

r}ADs. The master- and sub- problems are addressed in Sec. 3.3 and Sec. 3.3, respectively.

This leads to a computationally e�cient iterative approach in Sec. 3.4 to solve the sub-

games rADs, ryADs, r}ADs. Figure 3-2 provides an outline of results in this section.
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Sub-problem (Fixed 𝜓)

Lemma 3

Proposition 4

Master Problem (Fixed 𝜑)

Propositions 5 to 7

Theorem 5

Algorithm 10

Theorem 3

Algorithms 2 and 3

Fixed 𝑢
Stages 2, 3

Figure 3-2: Outline of technical results in Sec. 3.6.

Upper and Lower Bounds on ℒ

Theorem 1. Let p𝜓‹, 𝜑‹q, p p𝜓‹, p𝜑‹q and p q𝜓‹, q𝜑‹q be optimal solutions to rADs, ryADs and
r}ADs, respectively; and denote the optimal losses by ℒ, pℒ, qℒ, respectively. Then,

pℒ ď ℒ ď qℒ` 𝜇𝑁

2𝜇` 4
. (3.15)

To prove Theorem 1, we �rst state Lemmas 1 and 2, and Proposition 3 that relates

xp𝜓, 𝜑q, pxp𝜓, 𝜑q, and qxp𝜓, 𝜑q:

Lemma 1. Consider a �xed p𝜓, 𝜑q P ΨˆΦ. The following holds: 𝑠𝑐 “ p𝑠𝑐 “ q𝑠𝑐, 𝑠𝑔 “ p𝑠𝑔 “
q𝑠𝑔, and

q𝑆 “ p1` 𝜖qp𝑆 (3.16a)

q𝜈 ´ 𝜈01𝑁 “ p1` 𝜖qpp𝜈 ´ 𝜈01𝑁q (3.16b)

@ p𝑖, 𝑗q P ℰ
#
𝑆𝑗 “

ř
𝑘PΛ𝑗

𝑠𝑘 ` 𝑧𝑘ℓ𝑘 (3.17a)

p𝑆𝑗 “
ř
𝑘PΛ𝑗

𝑠𝑘 (3.17b)

@ 𝑗 P 𝒩

$
’’’’’’&
’’’’’’%

p𝜈𝑗 “ 𝜈0 ´ 2
ř
𝑘P𝒩 Rep𝑍𝑗𝑘𝑠𝑘q (3.18a)

q𝜈𝑗 “ 𝜈0 ´ 2p1` 𝜖qř𝑘P𝒩 Rep𝑍𝑗𝑘𝑠𝑘q (3.18b)

p𝜈𝑗 “ 𝜈0 ´ 2
ř
𝑘P𝒫𝑗

Rep𝑧𝑘 p𝑆𝑘q (3.18c)

q𝜈𝑗 “ 𝜈0 ´ 2
ř
𝑘P𝒫𝑗

Rep𝑧𝑘 q𝑆𝑘q. (3.18d)
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Lemma 2. For a �xed p𝜓, 𝜑q P Ψˆ Φ,

@ p𝑖, 𝑗q P ℰ , 𝑆𝑗 ď
p𝑆𝑗

p1´ 𝜖0q𝐻´|𝒫𝑗 |`1 . (3.19)

Proposition 3. For a �xed strategy pro�le p𝜓, 𝜑q P Ψˆ Φ,

p𝑆 ď 𝑆 ď q𝑆, p𝜈 ě 𝜈 ě q𝜈, pℓ ď ℓ ď qℓ.

Hence,

LVRppxq ď LVRpxq ď LVRpqxq
LLCppxq “ LLCpxq “ LLCpqxq
LLLppxq ď LLLppxq ď LLLpqxq

,
///.
///-
ùñ Lppxq ď Lpxq ď Lpqxq. (3.20)

Proposition 3 implies that any attack 𝜓 that increases
pℒ in ryADs (relative to the no

attack case), also increases ℒ in rADs and
qℒ in r}ADs, respectively. The converse need not

be true, i.e., an attack that increases ℒ in rADs (resp.
qℒ in r}ADs) need not increase

pℒ in

ryADs (resp. ℒ in rADs). Similarly, any defender response 𝜑 that reduces
qℒ (resp. ℒ), also

reduces ℒ (resp.
pℒ). Again, the converse statements do not apply here.

Proof of Theorem 1. For any x P 𝒳 ,

LLLpxq p3.5𝑐q“
ř

p𝑖,𝑗qPℰ

𝑟𝑗p𝑃 2
𝑗 `𝑄2

𝑗q
𝜈𝑖

pA0q2,pA0q4ď 2

𝜇

ř
p𝑖,𝑗qPℰ

𝑟𝑗
pA0q4ď 𝜇𝑁

2𝜇` 4
. (3.21)

Hence,

qℒ “ qLpqxp q𝜓‹, q𝜑‹p q𝜓‹qqq
ě qLpqxp𝜓‹, q𝜑‹p𝜓‹qqq pby optimality of

q𝜓‹q
ě qLpxp𝜓‹, q𝜑‹p𝜓‹qqq pby Proposition 3q
p3.21qě Lpxp𝜓‹, q𝜑‹p𝜓‹qqq ´ 𝜇𝑁

2𝜇` 4

96



ě Lpxp𝜓‹, 𝜑‹p𝜓‹qqq ´ 𝜇𝑁

2𝜇` 4
pby optimality of 𝜑‹q

“ ℒ´ 𝜇𝑁

2𝜇` 4
.

Similarly, one can show ℒ ě pℒ.

Theorem 1 implies that the value of the sub-game rADs with NPF can be lower (resp.

upper) bounded by the value of ryADs (resp. r}ADs). Our subsequent results show that both

ryADs and r}ADs admit computationally e�cient solutions.

Optimal defender response to �xed attacker strategy 𝜓

We consider the sub-problem rADsd of computing optimal defender response 𝜑‹p𝜓q for a

�xed attack 𝜓.

The following Lemma shows that rADsd is a Second-Order Cone Program (SOCP), and

hence, can be solved e�ciently.

Lemma 3. Let𝒳CPF :“ 𝑐𝑜𝑛𝑣p𝒳 q denote the set of states x satisfying (3.2)-(3.4), (3.5a), (3.5b),
and the relaxation of (3.5c):

For a �xed 𝜓 P Ψ, the problem of minimizing Lpxp𝜓, 𝜑qq subject to x P 𝒳CPF, (3.8b),

(3.8c) is a SOCP. Its optimal solution is also optimal for rADsd.

For �xed 𝜓 (attack) and �xed load control parameter 𝛾 (e.g. when changing 𝛾 is not

allowed), Proposition 4 below provides a range of optimal defender set-points psp𝑑‹ and

qsp𝑑‹ for LPF and 𝜖-LPF models, respectively. Note that, if 𝛾 is �xed, LLCppxq is also �xed.

Then, the defender set-points can be chosen by using LVRppxq as a loss function, instead of

pLppxq. Similar argument holds for
qLpqxq.

Proposition 4. If we �x 𝛾 P Γ in ryADsd, then @𝑖 P 𝒩 ,

𝛿𝑖 “ 0 ùñ
⃒⃒
⃒ psp𝑑‹𝑖

⃒⃒
⃒ “ sp𝑖, = psp𝑑‹𝑖 P rarccot𝐾, arccot𝐾s.

Furthermore, if the DN has identical r{x ” 𝐾 ratio, then

𝛿𝑖 “ 0 ùñ
⃒⃒
⃒ psp𝑑‹𝑖

⃒⃒
⃒ “ sp𝑖, = psp𝑑‹𝑖 “ arccot𝐾. (3.22)
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Similar results hold for r}ADsd.

Optimal attack under �xed defender response 𝜑

Now, we focus on the master problem rADsa, i.e., the problem of computing optimal attack

for a �xed defender response 𝜑. The following Theorem characterizes the optimal attacker

set-point, denoted by sp𝑎‹𝑖 “ Repsp𝑎‹𝑖 q ` jImpsp𝑎‹𝑖 q, when 𝛿𝑖 “ 1 (i.e. DER at node 𝑖 is

targeted by the attacker).

Theorem 2. Consider rADsa for a �xed 𝛿 P 𝒟k (i.e., the DERs compromised by the attacker

are speci�ed by 𝛿 and the only decision variables in rADsa are spa). Then

@ 𝑖 P 𝒩 s.t. 𝛿𝑖 “ 1, sp𝑎‹𝑖 “ 0´ jsp𝑖. (3.23)

Same holds for both ryADsa and r}ADsa.

Proof. If 𝛿𝑖 “ 1, then 𝑝𝑔𝑖 “ p𝑝𝑔𝑖 “ Repsp𝑖q “ Repsp𝑎‹𝑖 q.
We �rst prove the simpler case for ryADsa. From (3.6), one can check that as functions

of p𝑝𝑔𝑖, p𝑃 is strictly decreasing,
p𝑄 is constant, and p𝜈 is strictly increasing. Hence,

pLp𝜓, 𝜑𝑓 q
is strictly increasing in p𝑝𝑔𝑖 (because LVR is non-decreasing as p𝜈 is decreasing; LLC is con-

stant). Hence, to minimize the loss L, the attacker chooses Rep psp𝑎‹𝑖 q “ 0. Similarly,

Imp psp𝑎‹𝑖 q “ ´jsp𝑖. Similarly, we can show that in r}ADsa, qsp𝑎‹ “ 0´ jsp.

For the proof of spa‹ “ 0´ jsp, please refer to the supplementary material at the end

of the document.

Figure 3-3 shows the optimal attacker set-point sp𝑎‹𝑖 for 𝛿‹𝑖 “ 1, and the defender

set-points for the DERs for 𝛿‹𝑗 “ 0.

Thanks to Theorem 5, 𝑠𝑐 and 𝑠𝑔 are determined by 𝛿 and 𝜑 (since optimal spa‹
is given

by (3.23)). Thus, for given p𝛿, 𝜑q, loss function can be denoted as Lpxp
”
0´ jsp, 𝛿

ı
, 𝜑qq;

and rADs can be restated as follows:

ℒ “ max𝛿P𝒟
k
min𝜑PΦ Lpxp𝛿, 𝜑qq s.t. p3.45q, p3.23q.
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p0,´spiq “: spa‹i (when δ‹i “ 1)

Repspiq

spi

Impspiq

Optimal attacker set-point

for [AD], rxADs, and r|ADs

Range of Defender

Set-points pspd‹ (resp. qspd‹)
for rxADs (resp. r|ADs)
when (δ‹i “ 0)

ˆ
Kspi?
K2`1,

spi?
K2`1

˙

ˆ
Kspi?
K

2`1
, spi?

K
2`1

˙
quadrant I

quadrant IV

Figure 3-3: Optimal attacker set-points (Theorem 5) and range for optimal defender set-

points (Proposition 4).

Same holds for ryADs (resp. r}ADs) and ryADsa (resp. r}ADsa). Note that the attacker actions

on DERs may not be limited to an incorrect set-point attack. For example, the attacker

can simply choose to disconnect the DER nodes by choosing spa “ 0 ` 0j. However,

Theorem 5 shows that the attacker will induce more loss to the defender by causing the

DERs to withdraw maximum reactive power rather than simply disconnecting them.

Let Δ𝑗pp𝜈𝑖q (resp. Δ𝛿pp𝜈𝑖q) be the change in voltage at node 𝑖 caused due to compromise

of DER at node 𝑗 (resp. compromise of DERs due to attack vector 𝛿.) Similarly, de�ne

Δ𝑗pq𝜈𝑖q and Δ𝛿pq𝜈𝑖q. We now state a useful result:

Lemma 4. If 𝜑 is �xed, then

@ 𝑖, 𝑗 P 𝒩
#
Δ𝑗pp𝜈𝑖q “ 2Rep𝑍𝑖𝑗pspd

𝑗 ` jsp𝑗qq (3.24a)

Δ𝑗pq𝜈𝑖q “ 2p1` 𝜖qRep𝑍𝑖𝑗pspd
𝑗 ` jsp𝑗qq (3.24b)

@ 𝛿 Ď 𝒟k

#
Δ𝛿pp𝜈𝑖q “

ř
𝑗:𝛿𝑗“1

Δ𝑗pp𝜈𝑖q (3.25a)

Δ𝛿pq𝜈𝑖q “
ř
𝑗:𝛿𝑗“1

Δ𝑗pq𝜈𝑖q. (3.25b)

For a �xed 𝜑 P Φ, let
p𝒟𝑖

k
p𝜑q be the set of optimal attack vectors that maximize voltage

bounds violation under LPF at a pivot node, say 𝑖. Formally,

p𝒟𝑖
k
p𝜑q :“ argmax

𝛿P𝒟
k

𝑊𝑖p𝜈𝑖 ´ p𝜈𝑖q s.t. pxp𝛿, 𝜑q P p𝒳 , p3.8𝑏q, p3.8𝑐q (3.26)
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Also, let

p𝒟‹
k
p𝜑q :“

ď

𝑖P𝒩

p𝒟𝑖
k
p𝜑q (3.27)

denote the set of candidate optimal attack vectors, and
p𝛿𝑖 P p𝒟𝑖

k
p𝜑q denote any vector in

p𝒟𝑖
k
. Similarly, de�ne

q𝒟𝑖
k
p𝜑q, q𝒟‹

k
p𝜑q, and

q𝛿𝑖.
Using Lemma 4, Algorithm 10 computes optimal

p𝛿‹ to maximize LVR for a �xed de-

fender action 𝜑 P Φ [108]. In each iteration, the Algorithm selects one node as a pivot

node. For a pivot node, say 𝑖, a set of target nodes
p𝛿𝑖 is determined by selecting k nodes

with largest Δ𝑗pp𝜈𝑖q (see Algorithm 5 in Appendix). Applying Lemma 4, the �nal nodal

voltage at the current pivot node 𝑖 is given by p𝜈𝑖´Δp𝛿𝑖pp𝜈𝑖q. The attack strategy that max-

imizes LVR is the set
p𝛿𝑘 corresponding to a pivot node 𝑘 that admits maximum voltage

bound violation when DERs speci�ed by
p𝛿𝑘 are compromised. Algorithm 10 repeatedly

calls procedure Algorithm 5, considering each node as the pivot node, and hence, requires

𝒪p𝑛2 log 𝑛q time.

Algorithm 1 Optimal Attack for Fixed Defender Response

1:
p𝛿‹p𝜑q ÐOptimalAttackForFixedResponse(𝜑)

2: procedure OptimalAttackForFixedResponse(𝜑)

3: Compute state vector for no attack pxp0, 𝜑q P p𝒳
4: for 𝑖 P 𝒩 do
5:

p𝛿𝑖 Ð GetPivotNodeOptimalAttackp𝑖, spdq, and calculate Δp𝛿𝑖pp𝜈𝑖q using Lemma. 4

6: Calculate new voltage value p𝜈 1𝑖 Ð p𝜈𝑖 ´Δp𝛿𝑖pp𝜈𝑖q
7: end for
8: 𝑘 Ð argmax𝑖P𝒩 𝑊𝑖p𝜈𝑖 ´ p𝜈 1𝑖q
9: return p𝛿 Ð p𝛿𝑘 (Pick

p𝛿𝑘 which maximally violates (3.1))

10: end procedure
11: procedure GetPivotNodeOptimalAttack(𝑖, spd)

12: p𝐽,𝒩𝑔𝑖 ,𝑚
1q Ð OptimalAttackHelper(𝑖, spd)

13: Randomly choose k´𝑚1 nodes from 𝒩𝑔𝑖 to form 𝒩 1

14: return p𝛿𝑖 P 𝒟k such that
p𝛿𝑖𝑘 “ 1 ðñ 𝑘 P 𝐽 Y𝒩 1

15: end procedure

The following proposition argues that Algorithm 10 computes the optimal attack vec-

tors for ryADsa and r}ADsa.

Proposition 5. For a �xed 𝜑 P Φ, if p𝛿 is the optimal attack vector computed by Algorithm 10,

then p𝛿 is also an optimal attack vector of ryADsa. Same holds for r}ADsa.
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We now show that the e�ect of DER compromise at either node 𝑗 or 𝑘 on the node 𝑖

depends upon the locations of nodes 𝑗 and 𝑘 relative to node 𝑖. The following Proposition

states that if node 𝑗 is upstream to node 𝑘 relative to the pivot node 𝑖 (𝑗 ă𝑖 𝑘), then the

DER compromise at node 𝑘 impacts on p𝜈𝑖 more than the DER compromise on node 𝑗; and

if 𝑗 “𝑖 𝑘, then the e�ect of DER compromise at 𝑗, 𝑘 on p𝜈𝑖 is identical.

Proposition 6. [108] Consider ryADsa. Let nodes 𝑖, 𝑗, 𝑘 P 𝒩 where 𝑖 is the pivot node, spd
𝑗 “

spd
𝑘 , and sp𝑗 “ sp𝑘. If 𝑗 ă𝑖 𝑘 (resp. 𝑗 “𝑖 𝑘), thenΔ𝑗pp𝜈𝑖q ă Δ𝑘pp𝜈𝑖q (resp. Δ𝑗pp𝜈𝑖q “ Δ𝑘pp𝜈𝑖q).

Same holds true for r}ADsa.

Proposition 6 implies that, broadly speaking, compromising downstream DERs is ad-

vantageous to the attacker than compromising the upstream DERs. In other words, com-

promising DERs by means of clustered attacks are more bene�cial to the attacker than

distributed attacks. Consequently, our results (see Sec. 3.5) on security strategy in Stage 1

show that the defender should utilize his security strategy to deter cluster attacks.

We, now, state a result that connects the optimal attack strategies for ryADsa and r}ADsa.

Proposition 7. For a �xed 𝜑 P Φ, the following holds:
1) The sets of candidate optimal attack vectors that maximizes voltage bound violations

under LPF and 𝜖-LPF are identical, i.e.,

p𝒟‹kp𝜑q ” q𝒟‹kp𝜑q. (3.28)

2) Furthermore, assume that 𝜈𝑖 “ 𝜈𝑗 “: 𝜈 and 𝑊𝑖 “ 𝑊𝑗 “: 𝑊 @ 𝑖, 𝑗 P 𝒩 . Also, let

the sets of optimal attack strategies for ryADsa and r}ADsa be denoted by pΨ‹kp𝜑q and qΨ‹kp𝜑q,
respectively. Let p𝜓‹ P pΨ‹kp𝜑q and q𝜓‹ P qΨ‹kp𝜑q be any two attack strategies. Now, if

LVRppxp p𝜓‹, 𝜑qq ą 0 and LVRpqxp q𝜓‹, 𝜑qq ą 0, (3.29)

then the sets of optimal attack strategies for ryADsa and r}ADsa are identical, i.e.,

pΨ‹kp𝜑q ” qΨ‹kp𝜑q. (3.30)
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As we will see in Sec. 3.4, Proposition 7 forms the basis of our overall computational

approach.

3.4 Greedy solution approach

We now utilize results for sub- and master-problems to solve rADs. Consider the following

assumption:

(A1) DN has identical
r{x ” 𝐾 ratio, i.e., @𝑗 P 𝒩 , 𝐾𝑗 “ 𝐾 . In this subsection, we

present an algorithm to solve ryADs and r}ADs under (A0) and (A1), and then propose its

extension, a greedy iterative approach, for solving rADs under the general case.

Under (A0) and (A1), the optimal defender set-points pspd‹
and qspd‹

are as speci�ed

by Proposition 4, and hence �xed. For �xed optimal pspd‹
(resp. qspd‹

), we can solve the

problem ryADs (resp. r}ADs) by using Benders Cut method [72]. However, we present a

computationally faster algorithm, Algorithm 2 that computes attacker’s candidate optimal

attack vectors
p𝒟‹

k
(resp.

q𝒟‹
k
) using Lemma 4.

Lemma5. Under (A0), (A1), for any two �xed p𝛾1, p𝛾2 P Γ, p𝒟‹kp
”
pspd‹, p𝛾1

ı
q “ p𝒟‹kp

”
pspd‹, p𝛾2

ı
q.

Same holds true for q𝒟‹k .

Given pspd P 𝒮 , it can be checked that Algorithm 2, in fact, computes
p𝒟𝑖

k
p pspdq, and

p𝒟‹
k
p pspdq “ Ť

𝑖P𝒩
p𝒟𝑖

k
p pspdq is the set of candidate optimal attack vectors. The cardinality

of the set
p𝒟𝑖

k
(Line 4) in the worst-case can be as high as 𝒪p𝑒𝑛

𝑒 q. Therefore, computing

p𝒟‹
k

can take 𝒪p𝑛 exp p𝑛
𝑒
qq time in the worst-case.

Algorithm 2 computes the set of attacks
p𝒟‹

k
p pspd‹q, and iterates over each

p𝛿 P p𝒟‹
k
p pspd‹q.

In each iteration, since spd “ pspd‹
is �xed, the sub-problem ryADsd reduces to an LP over

the variable 𝛾. Let p𝛾‹pp𝛿q be the solution to the LP. Then,
p𝜑‹pp𝛿q “

”
pspd‹, p𝛾‹pp𝛿q

ı
is the opti-

mal solution to ryADsd. Choosing
p𝛿‹ “ argmaxp𝛿P p𝒟‹

k

Lppxpp𝛿, p𝜑‹pp𝛿qqq, Algorithm 2 computes

the solution to be pp𝛿‹, p𝜑‹pp𝛿‹qq to the problem ryADs. Similarly, we can use Algorithm 2 to

solve r}ADs.

Theorem 3. Under (A0), (A1), let pp𝛿, p𝜑q be a solution computed by Algorithm 2. Then pp𝛿, p𝜑q
is also an optimal solution to ryADs. Similar result holds for r}ADs.
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Algorithm 2 Solution to ryADs for DNs with identical
r{x

1: pp𝛿‹, p𝜑‹, pℒq Ð Greedy-One-Shot()

2: procedure Greedy-One-Shot()

3:
pℒ “ 0,

p𝛿‹ “ 0, p𝛾‹ “ 1, pspd‹ as in Proposition 4

4: Let
p𝒟𝑖

k
“ GetPivotNodeOptimalAttackSetp𝑖, pspd‹q

5:
p𝒟‹

k
“

Ť
𝑖P𝒩 p𝒟𝑖

k

6: For each
p𝛿 P p𝒟‹

k
, compute p𝛾‹pp𝛿q by solving ryADsd as an LP in 𝛾. Let

p𝜑‹pp𝛿q “ pspd‹, p𝛾‹p𝛿qqq
7: Let

p𝛿‹ :“ argmax
p𝛿P p𝒟‹

k

pLppxpp𝛿, p𝛾‹pp𝛿q, pspd‹qq

8: return p𝛿‹, p𝜑‹ “ p𝜑‹pp𝛿‹q, pℒ “ pLppxpp𝛿‹, p𝜑‹qq
9: end procedure

10: procedure GetPivotNodeOptimalAttackSet(𝑖, spd)

11: p𝐽,𝒩𝑔𝑖 ,𝑚
1q Ð OptimalAttackHelper(𝑖, spd)

12: return 𝒟𝑖
k
Ð tp𝛿 P 𝒟k|

p𝛿𝑘 “ 1 i� 𝑘 P 𝐽 Y𝒩 1, where 𝒩 1 Ď 𝒩𝑔𝑖 and |𝒩 1| “𝑀 ´𝑚1u
13: end procedure

Proof. Under (A1), spd “ pspd‹
is �xed (Proposition 4). Then, for any 𝛾 P Γ, by Lemma 5

and Proposition 5, the optimal attack
p𝛿‹ belongs to the set

p𝒟‹
k
p pspd‹q. Algorithm 2 iterates

over the attack vectors 𝛿 P p𝒟‹
k
, computes p𝛾‹p𝛿q by solving an LP, and calculates the loss

pLppxp𝛿, p𝜑‹p𝛿qqq. Finally, it returns the solution corresponding to the maximum loss. Similar

logic applies for optimal solution of r}ADs.

We, now, describe an iterative greedy approach to compute the solution to rADs that

uses the optimal attacker strategy for �xed defender response (refer Algorithm 10).

Algorithm 3 initializes 𝜑𝑐 to the optimal defender response under no attack. In the �rst

step of the iterative approach, the attacker assumes some defender response 𝜑𝑐 to be �xed,

and computes the optimal attack strategy 𝛿𝑐p𝜑𝑐q using the greedy Algorithm 10. Then in

the second step, the defender computes a new defense strategy 𝜑𝑐 optimal for �xed 𝛿𝑐

by solving the SOCP, and updates the defender response. If Lpxp𝛿𝑐, 𝜑𝑐qq ą Lpxp𝛿‹, 𝜑‹qq,
then the current best solution p𝛿‹, 𝜑‹q is updated to p𝛿𝑐, 𝜑𝑐q. Then in the next iteration,

the attacker uses this new defender response to update his attack strategy, and so on

and so forth. If this 𝛿𝑐 has already been discovered in some previous iteration, the al-

gorithm terminates successfully, with 𝛿‹, 𝜑‹ as the required optimal attack plan, and the

corresponding optimal defense. The algorithm terminates unsuccessfully if the number

of iterations exceeds a maximum limit.
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Algorithm 3 Iterative Algorithm for Greedy Approach

1: p𝛿‹, 𝜑‹,ℒq Ð Greedy-Iterative()

2: procedure Greedy-Iterative

3: Let 𝛿‹ Ð 0,ℒ‹ Ð 0, 𝛿𝑐 Ð 0, 𝑖𝑡𝑒𝑟 Ð 0,ϒÐH, 𝜑𝑐, 𝜑
‹,ϒ

4: For 𝛿 “ 𝛿𝑐, compute 𝜑‹ by solving SOCP rADsd (Lemma 3)

5: 𝜑𝑐 Ð 𝜑‹,ℒ‹ Ð Lprxp𝛿, 𝜑‹qq
6: for 𝑖𝑡𝑒𝑟 Ð 0, 1, . . . ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
7: 𝛿𝑐 Ð OptimalAttackForFixedResponse(𝜑𝑐)
8: Ź If 𝛿𝑐 previously found, successfully terminate

9: if 𝛿𝑐 P ϒ then return 𝛿‹, 𝜑‹

10: else ϒ “ ϒY t𝛿𝑐u Ź Store the current best attack vector

11: Compute 𝜑𝑐 by solving SOCP rADsd Lemma 3

12: if Lprxp𝛿𝑐, 𝜑𝑐qq ą ℒ‹ then
13: 𝛿‹ Ð 𝛿𝑐, 𝜑

‹ Ð 𝜑𝑐,ℒ‹ Ð Lprxp𝛿, 𝜑‹qq
14: end if
15: end for Ź Maximum Iteration Limit reached

16: Return 𝛿‹, 𝜑‹,ℒ‹ Ź Return the last best solution

17: end procedure Ź Algo terminates unsuccessfully

Note that in each iteration, the size of ϒ increases by 1, hence, the algorithm is bound

to terminate after exhausting all possible attack vectors.

Proposition 7 and Theorem 3 can be applied for any 𝑢 P 𝒰𝐵 , since if the DN has

identical
r{x ratio, spd

are also �xed.

Lower bound ryADs
pℒ “ max𝜓min𝜑 pLppxp𝜓, 𝜑qq
s.t. px P p𝒳

ryADsa

p𝜓‹ “ max𝜓 pLppxp𝜓, 𝜑𝑓 qq
s.t. px P p𝒳

Upper bound r}ADs
qℒ “ max𝜓min𝜑 qLpqxp𝜓, 𝜑qq
s.t. qx P q𝒳

r}ADsa

q𝜓‹ “ max𝜓 qLpqxp𝜓, 𝜑𝑓 qq
s.t. qx P q𝒳

rADs
ℒ “ max𝜓min𝜑 Lpxp𝜓, 𝜑qq
s.t. x P 𝒳

rĄADsd

𝜑‹ “ min𝜑 Lpxp𝜓𝑓 , 𝜑qq
s.t. x P 𝒳CPF

Proposition 7

pΨ‹
k
p𝜑q ” qΨ‹

k
p𝜑q

𝜑𝑓

𝜑𝑓

convergence 𝜓𝑓

Figure 3-4: Overall computational approach.

Our overall computational approach to solving the problem rADs, thus far, can be

summarized as in Figure 3-4. Given an instance of the problem rADs, we �rst solve the

problems ryADs and r}ADs. For this, we employ an iterative procedure that iterates be-
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tween the master- and sub- problems. For a �xed attacker action we determine the op-

timal defender response 𝜑 for the rADsd using the convex relaxation of (3.5c). Then, for

the �xed defender response 𝜑, we compute the optimal attacker strategies
p𝜓‹ and

q𝜓‹ by

solving ryADsa and r}ADsa, respectively. Proposition 7 provides us an useful result that

𝜓‹p𝜑q :“ p𝜓‹ “ q𝜓‹. This optimal attacker strategy 𝜓‹p𝜑q is then fed back to the master-

problem rADsa. This procedure is repeated until we reach a convergence or we exceed

the maximum iteration limit.

3.5 Security investments in customer-side devices

In this section, we consider the defender problem of optimal security investment in Stage

1. For simplicity, we restrict our attention to DNs that satisfy the following assumption:

(A2) Symmetric Network. For every 𝑖 P 𝒩 , for any two nodes 𝑗, 𝑘 P 𝒩 𝑐
𝑖 , Λ𝑗 and Λ𝑘

are symmetrically identical about node 𝑖. That is, 𝑧𝑗 “ 𝑧𝑘,

⃒⃒
𝒩 𝑐
𝑗

⃒⃒ “ |𝒩 𝑐
𝑘 |, scnom𝑗 “ scnom𝑘 ,

𝜈𝑗 “ 𝜈𝑘, 𝑊𝑗 “ 𝑊𝑘, and 𝐶𝑗 “ 𝐶𝑘. However, all the DERs are homogeneous, i.e., @ 𝑗, 𝑘 P
𝒩 , sp𝑗 “ sp𝑘.

Let 𝐵 be a �xed security budget. Let 𝑢, r𝑢 P 𝒰𝐵 , 𝑢 ‰ r𝑢, be two security strategies.

Strategy 𝑢 is more secure than strategy r𝑢 (denoted by 𝑢 ď r𝑢) under NPF (resp. LPF), if

ℒ𝑢 ď ℒr𝑢
(resp.

pℒ𝑢 ď pℒr𝑢
). Finally, we ask what is the best security strategy 𝑢‹, such

that for 𝑢 “ 𝑢‹, ℒ𝑢 is minimized. Figure 3-5 shows two possible security strategies 𝑢1

(Figure 3-5a) and 𝑢2 (Figure 3-5b), and gives a generic security strategy (Figure 3-5c). If

we compare 𝑢1 and 𝑢2, while transitioning from 𝑢1 to strategy 𝑢2, 3 secure nodes in Λ2

subtree go up a level each, while 3 secure nodes in Λ3 subtree go down a level each. Then,

between 𝑢1 and 𝑢2, which strategy is more secure? In this section, we provide insights

about optimal security strategies under (A2), which help show that 𝑢2 is more secure than

𝑢1.

Algorithm 4 computes an optimal security strategy rzDADs under (A0)-(A2). It initially

assigns all nodes to be vulnerable. Then, DER nodes are secured sequentially in a bottom-

up manner towards the root node. If the security budget is not adequate to secure a

full level, the nodes in that level are uniformly secured and the remaining nodes are not

secured. Under all the assumptions of Algorithm 4, it takes 𝒪p𝑛q time.
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(c) A generic security strategy on a tree DN.

Figure 3-5: Di�erent defender security strategies.

Algorithm 4 Optimal security strategy

1: p𝑢‹ ÐOptimalSecurityStrategy()

2: procedure OptimalSecurityStrategy()

3: 𝑛𝑠 Ð 0, ℎÐ 𝐻 , p𝑢Ð 0 Ź Initialize all nodes to vulnerable nodes

4: For each ℎ P r1, 2, . . . ,𝐻s, let 𝛼ℎ Ð
ř𝐻
𝑗“ℎ |𝒩𝑗 |

5: Let ℎ1 Ð argmaxℎPr1,...,𝐻s:𝛼ℎě𝑀
ℎ

6: Let @ ℎ P rℎ1, . . . ,𝐻s,@ 𝑖 P 𝒩ℎ, p𝑢𝑖 Ð 1.

7: Let 𝒩 1
ℎ1 Ď 𝒩ℎ1 be a set of uniformly chosen 𝑀 ´ 𝛼ℎ1`1 nodes on level ℎ1.

8: For each 𝑖 P 𝒩 1
ℎ1 , p𝑢𝑖 Ð 1

9: return p𝑢
10: end procedure

In the following theorem, we show that the security strategy computed by Algorithm 4

is an optimal solution to the Stage 1 of the rzDADs and r~DADs problem.

Theorem 4. Assume (A0), (A1), (A2). Let p𝑢‹ be the security strategy computed by Algo-

rithm 4. Furthermore, with 𝑢 “ p𝑢‹, let p p𝜓‹, p𝜑‹q be the solution computed by Algorithm 2.

Then, pp𝑢‹, p𝜓‹, p𝜑‹q is an optimal solution to rzDADs. Similar result holds for r~DADs.
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Finally, we state the following result:

Proposition 8. 1) Under (A0), (A1), (A2), p𝒟‹k can be partitioned into at most 𝑁 equiva-

lence classes of attack vectors, one for each vulnerable node considered as pivot node. Any

two attack vectors in the same equivalence class has identical impact on the corresponding

pivot node. Additionally, any two equivalence classes can be considered homomorphic trans-

formations of each other.

2) Under (A0), (A1), if @ 𝑖, 𝑗, 𝑘 P 𝒩 such that sp𝑗 ą 0 and sp𝑘 ą 0, Δ𝑗pp𝜈𝑖q ‰ Δ𝑘pp𝜈𝑖q,
then

⃒⃒
⃒ p𝒟‹k

⃒⃒
⃒ ď |𝑁 |, i.e., if for any pivot node, no two DERs have identical impact on the pivot

node due to their individual DER compromises, then each equivalence class is a singleton set,

and hence, the set for candidate optimal attack vectors is at most of size |𝑁 |.

By Theorem 4, we can compute the optimal security investment
p𝛿‹ in 𝒪p𝑁q, and by

Proposition 8, for �xed
p𝛿‹, we can compute the optimal attacker strategy

p𝜓‹ in 𝒪p𝑁q. Fi-

nally, for �xed
p𝛿‹ and

p𝜓‹, we can compute the optimal defender response
p𝜑‹ in𝒪p𝑝𝑜𝑙𝑦p𝑁qq.

Hence, we can compute the optimal solution for rzDADs, in 𝒪p𝑝𝑜𝑙𝑦p𝑁qq. Same holds for

r~DADs.
Admittedly, our structural results on optimal security investment in Stage 1 of the

game are speci�c to assumption (A2). Future work involves extending these results to

a general radial DN with heterogeneous DER nodes. A key aspect in e�ort will be to

understand how the defender’s net value of securing an individual DER node depends on

its capacity and location in the DN.

Computational Study

We describe a set of computational experiments to evaluate the performance of the iter-

ative Greedy Approach (GA) in solving rADs; see Algorithm 3. We again assume 𝑢 “ 0.

We compare the optimal attack strategies and optimal defender set-points obtained from

GA with the corresponding solutions obtained by conducting an exhaustive search (or

Brute Force (BF)), and by implementing the Benders Cut (BC) algorithm. We refer the

reader to [102], [72], for the BC algorithm adopted here. The abbreviations BC-LPF and

BC-NPF denote the solutions obtained by applying optimal attack strategies from ryADs to
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LPF and NPF, respectively. Importantly, the experiments illustrate the impact of attacker’s

resource (k) and defender’s load control capability 𝛾 on the optimal value of rADs. The

code for this computational study can be obtained by contacting the authors.

Network Description

Our prototypical DN is a modi�ed IEEE 37-node network; see Figure 3-6. We consider two

variants of this network: homogeneous and heterogeneous. Homogeneous Network

(𝒢𝐼) has 14 homogeneous DERs with randomly assigned node locations, loads with equal

nominal demand, and lines with identical
r{x ratio. Each line has impedance of 𝑧𝑗 “

p0.33` 0.38jq Ω. The nominal demand at each node 𝑖 is scnom𝑖 “ 15 𝑘𝑊 ` j4.5 𝑘𝑣𝑎𝑟. The

apparent power capability of each DER node 𝑖 is sp𝑖 “ 11.55 𝑘𝑉 𝐴. The nominal voltage

at node 0 is |𝑉0| “ 4 𝑘𝑉 . The cost of load control is 𝐶 “ 7 $ per 𝑘𝑊 . Heterogeneous

Network (𝒢𝐻) has same topology as 𝒢𝐼 , but has heterogeneous DERs (chosen at random

from 3 di�erent DER apparent power capabilities), heterogeneous loads, and lines with

di�erent
r{x ratios. The locations of DER nodes, the total nominal generation capacity,

and the total nominal demand in 𝒢𝐻 is roughly similar to the corresponding values for

𝒢𝐼 .

Substation
Control
Center

spd
Secure DER Nodes

Compromised DER Nodes

Non-compromised DER Nodes
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spj = spaj
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Figure 3-6: Illustration of the DER failure scenario proposed in [98] on a modi�ed IEEE

37-node network.

DER output vs k. Figure 3-7 compares the DER output (𝑠𝑔) of uncompromised DERs
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that form part of defender response in 𝒢𝐼 and 𝒢𝐻 for di�erent k. When k “ 0 (no at-

tack), there are no voltage violations, and the defender minimizes LLL, which results in

𝑝𝑔 ą 𝑞𝑔. For k ą 0, the voltage bounds may be violated. To limit LVR, the defender

responds by increasing 𝑞𝑔; and the output of uncompromised DERs lie in a neighborhood

of 𝜃 “ arccot r{x. For the case of 𝒢𝐻 (Figure 3-7b), the set-points of the uncompromised

DERs are more spread out to achieve voltage regulation over di�erent
r{x ratios (Propo-

sition 4). In Figure 3-7b the three semi-circles correspond to the uncompromised DERs

with di�erent apparent power capabilities. These observations on the defender response

validate Proposition 4.
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Figure 3-7: Reactive power vs Real power output of DERs.

GA vs. BC-NPF, BC-LPF andBF. Figure 3-8 compares results obtained fromBC-NPF,GA,

and BF on 𝒢𝐼 . We consider two cases with the maximum controllable load percentage

𝛾 “ 50 % and 𝛾 “ 70 %. For each case, we vary k from 0 to |𝒩𝑣| “ 14; and also vary

W{C ratios to capture the e�ect of di�erent weights on the terms LVR and LLC.

In our study, we chose 𝐶𝑖 “ 7 𝑐𝑒𝑛𝑡𝑠{𝑘𝑊ℎ, converted appropriately to the per unit

system.
6

The ratio
W{C “ 2 roughly corresponds to the maximum

𝑊{𝐶 ratio for which the

6
From a practical viewpoint, the weights 𝐶𝑖 can be obtained from the operator’s rate compensation

scheme for load control. For example, North Star Electric [96] provides a compensation of 9.1 𝑐𝑒𝑛𝑡𝑠 to

their customers for 1 𝑘𝑊ℎ of load curtailment. One can argue that the net cost of shedding unit load

should be adjusted to re�ect the fact that the defender supplies additional power during the attack to meet

the consumers’ demand.
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defender does not exercise load control, because the cost of doing load control is too high,

i.e., at optimum defender response 𝛾‹ “ 1𝑁 . In contrast,
W{C “ 18 roughly corresponds

to the minimum
𝑊{𝐶 ratio for which the defender exercises maximum load control (i.e.

𝛾‹ “ 𝛾). We also consider an intermediate ratio,
W{C “ 10.

L versus k. Both LVR and LLC are zero when there is no attack. As k increases, one or

both LVR and LLC start increasing. This indicates that as more DERs are compromised,

the defender incurs LVR, and in addition, he imposes load control to better regulate the

DN. Indeed, after the false set-points (Theorem 5) are used to compromise DERs, the net

load in the DN increases. Without load control, the voltages at some nodes drop below

the lower bounds, increasing LVR. Hence, the defender exercises load control, and changes

the set-points of uncompromised DERs to limit the total loss.

Perhaps a more interesting observation is that as k increases, LLC �rst increases rapidly

but then �attens out (Figures 3-8c and 3-8d). This can be explained as follows: depending

on the
𝑊{𝐶 ratio, there is a subset of downstream loads that are bene�cial in terms of the

value that the defender can obtain by controlling them. That is, if the loads belonging to

this subset are controlled, the decrease in LVR outweighs the increase in LLC, hence, the

defender imposes load control on these downstream loads to reduce the the total loss. In

contrast, controlling the loads outside this subset, increases LLC more than the decrease

in LVR. Hence, the defender satis�es the demand at these loads fully. The LLC increases

until load control capability in the subset of bene�cial downstream loads to the defender

is fully exhausted. The size of this subset depends on the
𝑊{𝐶 ratio. The higher the ratio,

the larger the size of the subset of the loads bene�cial to the defender. Hence, the value

of k, at which the LLC cost curve �attens out, increases as the
𝑊{𝐶 ratio increases.

The cost curve for LVR also shows interesting behavior as the number of compromised

DER nodes increases (Figures 3-8a and 3-8b). The marginal increase in LVR for every

additional DER compromised reduces as k increases. This observation can be explained

by the fact that the attacker prefers to compromise downstream nodes over upstream

ones (Proposition 6). Initially, the attacker is able to rapidly increase L by compromising

more bene�cial downstream nodes. However, as the downstream nodes are eventually

exhausted, the attacker has to target the relatively less bene�cial upstream nodes. Hence,
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Figure 3-8: LVR and LLC vs 𝑀 for 𝒢𝐼 . The results of 𝒢𝐻 are more or less similar to those

of 𝒢𝐼 .
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the reduction in marginal increase of LVR.

In LVR plots, for small k,
W{C “ 2 curves are lower than the

W{C “ 10 curves which

in turn are lower than the
W{C “ 18 curves. But, for larger k, this order reverses. The k

where these lines cross each other decreases, as the 𝛾 increases (see Figures 3-8a and 3-

8b). The reason is for some intermediate value of k, the defender exhausts the load control

completely, and then the L increases at rates in the same order of increasing
W{C values.

Our computational study also validates that the GA is more e�cient than BC method

because GA calculates the exact impact the DER compromises will have on a pivot node.

In contrast, BC overestimates the impact of DER compromises that are not the ancestors

to the pivot nodes. Therefore, the feasible region probed by BC at every iteration is larger

than the feasible region probed in the corresponding iteration of GA. Hence, although

GA converges to a solution in 2-3 iterations, BC in most cases does not converge to the

optimal solution even in 200 iterations.

Concluding Remarks

We focused on the security assessment of radial DNs for an adversary model in which

multiple DERs (in this case, DER nodes) are compromised. The adversary can be a threat

agent, who can compromise the operation of DERs, or a malicious insider in the control

center. We considered a composite loss function that primarily accounts for the attacker’s

impact on voltage regulation and induced load control. The security assessment problem

is formulated as a three-stage Defender-Attacker-Defender (rDADs) sequential game. Our

main technical contributions include: (i) Approximating the rDADs game that has non-

linear power �ow model and mixed-integer decision variables with tractable formulations

based on linear power �ow; and (ii) characterization of structural properties of security

investments in Stage 1 and the optimal attack in Stage 2 (i.e., the choice of DER node

locations and the choice of false set-points).

Future work includes: (a) Extending Theorems 1 and 5 to cases where reverse power

�ows are permissible (e.g., when the DN is not under heavy loading conditions and the

attacker can cause DER generation to exceed the demand); (b) Designing greedy algo-

rithm to solve [AD] and proving optimality guarantees of Theorems 3 and 4 for DNs with
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heterogeneous
r{x ratio, and heterogeneous DERs or loads.

Finally, note that we do not consider cascading failures in our paper. However, our

analysis can be extended to a form of cascading failures within DNs reported by Kundu

and Hiskens [74]. They study synchronous tripping of the loads (speci�cally, plug-in

electric vehicles chargers) leading to over-voltages in the DN. Our result on optimal DER

attack can be used to create voltage violations at some nodes. If these violations are too

high, certain loads may start to trip. After su�ciently large number of loads trip, the

attacker can further manipulate the DER setpoints to their maximum power generation

capacity. In the absence of new loads, this may lead to overvoltages, as described in [74].

Supplementary Material

Parameters Values

𝑟 ` j𝑥 p0.33` 0.38jq Ω
pcnom𝑖 15 𝑘𝑊
qcnom𝑖 4.5 𝑘𝑣𝑎𝑟
sp𝑖 11.55 𝑘𝑉 𝐴
|𝑉0| 4 𝑘𝑉
𝐶 7 $ per 𝑘𝑊

Table 3.2: Parameters of the Homogeneous Network

For a pivot node 𝑖 P 𝒩 , Algorithm 5 computes a sequence of sets of nodes in decreas-

ing order of Δ𝑗pp𝜈𝑖q values. This sequence is used to compute the optimal attacks that

maximize voltage bounds violation at node 𝑖.

Proof of Lemma 1. Recursively apply the power �ow equations (3.5), (3.6), and (3.12),

from the root node to leaf nodes.

Proof of Lemma 2. We apply induction from leaf nodes to the root node.

Base case: For any leaf node 𝑘 P 𝒩𝐿,

𝑧𝑘ℓ𝑘
pA0q5ď 𝜖0𝑆𝑘

p3.17𝑎q“ 𝜖0p𝑠𝑘 ` 𝑧𝑘ℓ𝑘q

6 𝑧𝑘ℓ𝑘 ď 𝜖0𝑠𝑘
1´ 𝜖0

p3.17𝑏q“ 𝜖0 p𝑆𝑘
1´ 𝜖0 .
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Algorithm 5 Helper procedure

1: procedure OptimalAttackHelper(𝑖, pspd
)

2: For each 𝑗 P 𝒩 compute Δ𝑗pp𝜈𝑖q using Lemma 4

3: Create a sequence of sets t𝒩 𝑖
𝑗 u𝑁𝑗“1 such that

i) 𝒩 “ Ť𝑁
𝑗“1𝒩 𝑖

𝑗 , @ 1 ď 𝑗, 𝑘,ď 𝑁, 𝒩 𝑖
𝑗 X𝒩 𝑖

𝑘 “ H
ii) if 1 ď 𝑙 ď 𝑁, 𝑗, 𝑘 P 𝒩 𝑖

𝑙 , then Δ𝑗pp𝜈𝑖q “ Δ𝑘pp𝜈𝑖q, and

iii) if 1 ď 𝑙 ă 𝑚 ď 𝑁, 𝑗 P 𝒩 𝑖
𝑙 , 𝑘 P 𝒩 𝑖

𝑚, then Δ𝑗pp𝜈𝑖q ą Δ𝑘pp𝜈𝑖q.
4: Let, for 𝑗 P r1, . . . , 𝑁 s,𝑚𝑖

𝑗 Ð
⃒⃒
𝒩 𝑖
𝑗

⃒⃒
, 𝑀 𝑖

𝑗 :“
ř𝑗´1
𝑘“1𝑚

𝑖
𝑘.

5: Let 𝑔𝑖 Ð argmin𝑗Pr1,...,𝑁s,𝑀 𝑖
𝑗ě𝑀

𝑗.

6: 𝐽 Ð Ť𝑔𝑖´1
𝑗“1 , 𝒩𝑔𝑖 , 𝑚

1 “𝑀 ´𝑀 𝑖
𝑔𝑖´1

7: return 𝐽 , 𝒩𝑔𝑖 , 𝑚
1

8: end procedure

Now, for any 𝑗 P 𝒩 z𝒩𝐿,

𝑧𝑗ℓ𝑗
pA0q5ď 𝜖0𝑆𝑗

p3.5𝑎q“ 𝜖0
“ř

𝑘:p𝑗,𝑘qPℰ 𝑆𝑘 ` 𝑠𝑗 ` 𝑧𝑗ℓ𝑗
‰

6 𝑧𝑗ℓ𝑗 ď 𝜖0
1´ 𝜖0

“ř
𝑘:p𝑗,𝑘qPℰ 𝑆𝑘 ` 𝑠𝑗

‰
.

Adding

ř
𝑆𝑘 ` 𝑠𝑗 on both the sides:

ř
𝑘:p𝑗,𝑘qPℰ 𝑆𝑘 ` 𝑠𝑗 ` 𝑧𝑗ℓ𝑗looooooooooooomooooooooooooon

𝑆𝑗

ď 1

1´ 𝜖0
“ř

𝑘:p𝑗,𝑘qPℰ 𝑆𝑘 ` 𝑠𝑗
‰
.

Inductive step: By inductive hypothesis (IH) on 𝒩 𝑐
𝑗 ,

𝑆𝑗
(IH)ď 1

p1´ 𝜖0q𝐻´|𝑃𝑘|`2
“ř

𝑘:p𝑗,𝑘qPℰ
p𝑆𝑘 ` 𝑠𝑗

‰

“
p𝑆𝑗

p1´ 𝜖0q𝐻´|𝑃𝑗 |`1 p7 |𝒫𝑗| “ |𝒫𝑘|´ 1q.

Proof of Proposition 3. The inequalities
p𝑆 ď 𝑆 and p𝜈 ě 𝜈 are proved in [58].

The rest of the proof of Proposition 3 utilizes two lemmas. From Lemma 2, for any
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p𝑖, 𝑗q P ℰ ,

𝑆𝑗 ď
p𝑆𝑗

p1´ 𝜖0q𝐻´|𝒫𝑗 |`1 ď
p𝑆𝑗

p1´ 𝜖0q𝐻 “ p1` 𝜖q
p𝑆𝑗 p3.16𝑎q“ q𝑆𝑗. (3.31)

For nodal voltages,

𝜈𝑗
p3.5𝑏q“ 𝜈𝑖 ´ 2Rep𝑧𝑗𝑆𝑗q ` |𝑧|2𝑗 ℓ𝑗
ě 𝜈𝑖 ´ 2Rep𝑧𝑗𝑆𝑗q
p3.31qě 𝜈𝑖 ´ 2Rep𝑧𝑗 q𝑆𝑗q. (3.32)

Applying (3.32) recursively from the node 𝑗 till root node:

𝜈𝑗 ě 𝜈0 ´ 2
ř
𝑘P𝒫𝑗

Rep𝑧𝑘 q𝑆𝑘q p3.18𝑑q“ q𝜈𝑗.

Thus,
p𝑆𝑗 ď 𝑆𝑗 ď q𝑆𝑗 and p𝜈𝑗 ě 𝜈𝑗 ě q𝜈𝑗 . Furthermore,

p𝑆𝑗 ď 𝑆𝑗 ď q𝑆𝑗
pA0q3ùñ

⃒⃒
⃒p𝑆𝑗

⃒⃒
⃒
2 ď |𝑆𝑗|2 ď

⃒⃒
⃒q𝑆𝑗

⃒⃒
⃒
2

ùñ
⃒⃒
⃒p𝑆𝑗

⃒⃒
⃒
2

p𝜈𝑗
ď |𝑆𝑗|2

𝜈𝑗
ď

⃒⃒
⃒q𝑆𝑗

⃒⃒
⃒
2

q𝜈𝑗
ùñ pℓ ď ℓ ď qℓ.

Finally, (3.49) immediately follows from (3.9), (3.10), and (3.15).

Proof of Lemma 3. Let rĄADsd denote the following problem:

rĄADsd r𝜑‹p𝜓q P argmin
𝜑PΦ

Lpxp𝜓, 𝜑qq

s.t. pxp𝑢, 𝜓, 𝜑q P 𝒳CPF, p3.8𝑏q, p3.8𝑐q.
(3.33)

pA0q2 implies that a feasible solution exists for rADsd. Since, 𝒳 Ă 𝒳CPF, a feasible

solution rx P 𝒳CPF also exists for rĄADsd.

Let pr𝜑, rℓq denote the decision variables for rĄADsd. Note that, for a �xed 𝜓, rx is a�ne

in the variables pr𝜑, rℓq, and can be very e�ciently computed using (3.5a) and (3.5b).

Now, L is convex in
r𝜑 (because the LVR is a maximum over a�ne functions, LLC is

a�ne in
r𝜑, and LLL is a�ne in

rℓ. Also, Φ is a convex compact set. Further, for a �xed 𝜑, L
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is strictly increasing in
rℓ (because, LVR is non-decreasing in

rℓ as r𝜈 is a�ne decreasing in
rℓ;

LLC does not change with
rℓ; LLL is strictly increasing in ℓ). From Theorem 1 [52], pr𝜑‹, rℓ‹q

can be computed using a SOCP. To argue that
rℓ‹ satisfy (3.5c), assume for contradiction

that D p𝑖, 𝑗q P ℰ , s.t.
rℓ‹𝑗 ą ⃒⃒⃒

r𝑆‹𝑗
⃒⃒⃒2{r𝜈‹𝑖 . Then, construct p𝜑‹, rℓ1q such that @ 𝑗 P 𝒩 : 𝑗 ‰

𝑖, rℓ1𝑗 “ rℓ‹𝑗 , and
rℓ1𝑖 “ ⃒⃒⃒

r𝑆‹𝑗
⃒⃒⃒2{r𝜈‹𝑖 . Since @ p𝑗, 𝑘q P ℰ , ⃒⃒⃒r𝑆𝑘

⃒⃒⃒2{r𝜈𝑗 is strictly decreasing in
rℓ𝑖,

@ p𝑗, 𝑘q P ℰ : rℓ1𝑘 ě ⃒⃒⃒
r𝑆‹𝑘

⃒⃒⃒2{r𝜈‹𝑗 ą ⃒⃒⃒
r𝑆1𝑘

⃒⃒⃒2{r𝜈1𝑗 . Hence, one can further minimize the loss function

by choosing a new feasible solution p𝜑‹, rℓ1q, thus violating the optimality of pr𝜑‹, rℓ‹q.

Proof of Proposition 4. Let p𝑑𝑖, 𝜃𝑖q denote pspd
𝑖 in the polar coordinates, i.e., 𝑑𝑖 “

⃒⃒
⃒ pspd

𝑖

⃒⃒
⃒ , 𝜃𝑖 “

= pspd
𝑖 .

For 𝛿𝑖 “ 0, psp𝑖 “ pspd
𝑖 . Then from (3.18a), @ 𝑗 P 𝒩 ,

p𝜈𝑗 “ p𝜈 1𝑗 ` 2𝑑𝑖p𝑅𝑖𝑗 cos 𝜃𝑖 `𝑋𝑖𝑗 sin 𝜃𝑖q, (3.34)

where p𝜈 1𝑗 “ 𝜈0 ´ 2
ř
𝑘P𝒩 ,𝑘‰𝑗 Rep𝑍𝑗𝑘𝑠𝑘q ´ 2Rep𝑍𝑖𝑗𝑠𝑐𝑗q. Note that p𝜈 1𝑗 does not depend on

p𝑑𝑖, 𝜃𝑖q.
It is clear from (3.34) that p𝜈𝑗 is greater if 𝜃𝑖 P r0, 𝜋{2s than if 𝜃𝑖 P r´𝜋{2, 0s. Furthermore,

the impedances are positive. Hence, @ 𝑗, B𝑑𝑖p𝜈𝑗 “ 2p𝑅𝑖𝑗 cos 𝜃𝑖 ` 𝑋𝑖𝑗 sin 𝜃𝑖q ą 0. Hence,

B𝑑𝑖LVR ą 0. But, from (3.4), 𝑑𝑖 ď sp𝑖. Hence, 𝑑‹𝑖 “ sp𝑖. Further, B𝜃𝑖p𝜈𝑗 “ 2𝑑𝑖p´𝑅𝑖𝑗 sin 𝜃𝑖 `
𝑋𝑖𝑗 cos 𝜃𝑖q.

B𝜃𝑖p𝜈𝑗

$
’’’’’&
’’’’’%

ą 0 if 𝜃𝑖 P r0, arccotp𝑅𝑖𝑗{𝑋𝑖𝑗qq
“ 0 if 𝜃𝑖 “ arccotp𝑅𝑖𝑗{𝑋𝑖𝑗qq
ă 0 if 𝜃𝑖 P parccotp𝑅𝑖𝑗{𝑋𝑖𝑗qq, 𝜋{2s

Now, arccot𝐾 ď arccotp𝑋𝑖𝑗{𝑅𝑖𝑗q ď arccot𝐾 . Hence,

@ 𝑗 P 𝒩 , B𝜃𝑖p𝜈𝑗

$
’&
’%
ă 0 if 𝜃𝑖 ą arccot𝐾

ą 0 if 𝜃𝑖 ă arccot𝐾

(3.35)

Suppose, for contradiction, 𝜃‹𝑖 R rarccot𝐾, arccot𝐾s. Holding all else equal, for 𝜃𝑖 “ r𝜃𝑖,
let p𝜈pr𝜃𝑖q and LVRpr𝜃𝑖q be the p𝜈 and LVR. From (3.35), for any

r𝜃𝑖 P rarccot𝐾, arccot𝐾s,
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p𝜈pr𝜃𝑖q ą p𝜈pr𝜃‹𝑖 q. Since, LVR ą LLL ě 0, LVRpr𝜃𝑖q ă LVRpr𝜃‹𝑖 q, violating the optimality of
r𝜃‹𝑖 .

Furthermore, under identical
r{x ratio, 𝐾 “ 𝐾 “ 𝐾 , which implies 𝜃𝑖 “ arccot𝐾 .

Claim 1. Theorem 5 also holds for rADsa.

Proof. Now, we prove the case for rADsa by contradiction. Suppose that there exists 𝑖 P
𝒩 s.t. Repsp𝑎‹𝑖 q ą 0. Then we can construct another attacker strategy

r𝜓‹ “ rr𝛿, rspas that

can further maximize L, such that Repsp𝑎‹𝑖 q “ 0, holding all else equal, i.e.,
r𝛿 “ 𝛿, @ 𝑗 P

𝒩 , Imp rspa
𝑗q “ Impsp𝑎‹𝑗 q, @ 𝑗 P 𝒩 : 𝑗 ‰ 𝑖, Rep rspa

𝑗q “ Repsp𝑎‹𝑗 q.
Let pspa, ℓq be the decision variables for rADsa, as for �xed 𝜑, the other decision vari-

ables 𝑃,𝑄, 𝜈 can then be written as a�ne functions of pspa, ℓq from (3.5). Let pspa‹, ℓ‹q
(resp. p rspa, rℓq) be the solution to rADsa when 𝜓 “ 𝜓‹ (resp. 𝜓 “ r𝜓).

Let 𝑓 P R𝑁
` such that, for any p𝑖, 𝑗q P ℰ , 𝑓𝑗pspa, ℓq :“ 𝑃 2

𝑗 `𝑄
2
𝑗

𝜈𝑖
. Let 𝑓 ‹ “ 𝑓pspa‹, ℓ‹q,

𝑓 1 “ 𝑓p rspa, ℓ‹q, and
r𝑓 “ 𝑓p rspa, rℓq.

Since pspa‹, ℓ‹q and p rspa, rℓq are solutions to rADsa, they satisfy (3.5c). Hence, 𝑓 ‹ “ ℓ‹,

and
r𝑓 “ rℓ. Furthermore, it can be checked that 𝑓 1 ą 𝑓 ‹. We want to show that

r𝑓 ą 𝑓 1.

Assume that
r𝑓 ą 𝑓 1. Then,

r𝑓 ą 𝑓 ‹. Hence, Lprxq ą Lpx‹q, (because, LVRprxq ą LVRpx‹q,
LLCprxq “ LLCpx‹q, LLLprxq ą LLLpxq). However, this is a contradiction, as it violates the

optimality of spa‹
. By similar logic, we can show that @ 𝑖 P 𝒩 , Impspa‹

𝑖 q “ ´sp𝑖.
We now prove that

r𝑓 ą 𝑓 1, with the help of an illustrative diagram (see Figure 3-9).

Note that from (3.5), one can show that for any ℓ, 𝑓pRep rspa, ℓqq ą 𝑓pRepspa‹, ℓqq.
Now, consider the p𝑗, 𝑘q𝑡ℎ entry of Jacobian J𝑓 pℓq.

Bℓ𝑘𝑓𝑗 “
𝜈𝑖
`
2𝑃𝑗Bℓ𝑘𝑃𝑗 ` 2𝑄𝑗Bℓ𝑘𝑄𝑗

˘

𝜈2𝑖
´ p𝑃

2
𝑗 `𝑄2

𝑗qBℓ𝑘𝜈𝑖
𝜈2𝑖

6 0
(A3)ď Bℓ𝑘𝑓𝑗

(A4)ă p2𝑟𝑘 ` 2𝑥𝑘q
𝜈𝑖

` p4𝑅𝑖𝑘𝑟𝑘 ` 4𝑋𝑖𝑘𝑥𝑘q
𝜈2𝑖

ùñ 0 ď Bℓ𝑘𝑓𝑗
(A4)ă p𝑟𝑘 ` 𝑥𝑘qp2{𝜇` 4{𝜇2q ď 1

ùñ 0 ď Bℓ𝑘𝑓𝑗 ă 1.

At ℓ “ 0, 𝑓 ą 0, and each entry of Jacobian J𝑓 pℓq is positive and smaller than 1.
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`

y

y = f (Re(spa?), `)

y = f (Re(s̃pai ), `)

y = `

(f ?, `?)

(f̃ , ˜̀)

(0,1)

(0,0) (1,0)

(f ′, `?)

Figure 3-9: Illustrative diagram showing how ℓ changes with spa

Hence, 𝑓 intersects the hyper-plane 𝑦 “ ℓ, exactly once. Furthermore, 𝑓pRep rspa, ℓqq ą
𝑓pRepspa‹, ℓqq. Hence, we can conclude that

rℓ “ r𝑓 ą 𝑓 1 ą 𝑓 ‹ “ ℓ‹.

Proof of Proposition 5. Note that for �xed𝜑 P Φ, maximizing
pLppxpp𝛿, 𝜑qq (resp.

qLpqxpp𝛿, 𝜑qq)
is equivalent to maximizing LVRppxpp𝛿, 𝜑qq (resp. LVRpqxpq𝛿, 𝜑qq). Let

p𝛿‹ be the optimal solu-

tion to ryADsa.
Case (i). LVRppxpp𝛿‹, 𝜑qq “ 0. Then Algorithm 10 computes

p𝛿‹ trivially, becauseLVRppxpp𝛿‹, 𝜑qq ě
LVRppxpp𝛿, 𝜑qq ě 0. Hence, LVRppxpp𝛿, 𝜑qq “ LVRppxpp𝛿‹, 𝜑qq “ 0.

Case (ii). LVRppxpp𝛿‹, 𝜑qq ą 0. Let p𝜈𝑗p𝛿, 𝜑q denote the nodal voltage at node 𝑗 after the

attack 𝛿. Since,
p𝛿 “ p𝛿𝑘 , for some pivot node 𝑘 P 𝒩 (see Algorithm 10),

p𝛿𝑘 maximally

violates (3.1) over all
p𝛿𝑖, i.e.,

@ 𝑖 P 𝒩 , 𝜈𝑘 ´ p𝜈𝑘pp𝛿𝑘, 𝜑q ě 𝜈𝑖 ´ p𝜈𝑖pp𝛿𝑖, 𝜑q, (3.36)

where
p𝛿𝑖 is the optimal pivot node attack as computed by Algorithm 10 for node 𝑖, i.e.,

@ 𝑖 P 𝒩 , @ 𝛿 P 𝒟k 𝜈𝑖 ´ p𝜈𝑖pp𝛿𝑖, 𝜑q ě 𝜈𝑖 ´ p𝜈𝑖p𝛿, 𝜑q. (3.37)
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Let 𝑖 “ argmax𝑗P𝒩 𝑊𝑗p𝜈𝑗 ´ p𝜈𝑗pp𝛿‹, 𝜑qq`. Furthermore, since LVRppxpp𝛿‹, 𝜑qq ą 0,

LVRppxpp𝛿‹, 𝜑qq “ 𝑊𝑖p𝜈𝑖 ´ p𝜈𝑖pp𝛿‹, 𝜑qq (3.38)

6 LVRppxpp𝛿, 𝜑qq “ LVRppxpp𝛿𝑘, 𝜑qq
p3.10𝑎q“ max𝑗P𝒩 𝑊𝑗p𝜈𝑗 ´ p𝜈𝑗pp𝛿𝑘, 𝜑qq`
p3.36qě 𝑊𝑖p𝜈𝑖 ´ p𝜈𝑖pp𝛿𝑖, 𝜑qq
p3.37qě 𝑊𝑖p𝜈𝑖 ´ p𝜈𝑖pp𝛿‹, 𝜑qq
p3.38q“ LVRppxpp𝛿‹, 𝜑qq.

Furthermore, for a �xed𝜑LLCppxpp𝛿, 𝜑qq “ LLCppxpp𝛿‹, 𝜑qq. Hence,
pLppxpp𝛿, 𝜑qq ě pLppxpp𝛿‹, 𝜑qq.

Proof of Lemma 4. Let sp𝑗 be the DER set-point of node 𝑗 before the attack. If sp𝑗 is the

pre-attack set-point, let Δ𝑗psp𝑗q denote the change in the set-point of DER 𝑗 after it is

compromised. By Theorem 5, Δpsp𝑗q “ sp𝑗 ´ spa
𝑗 “ sp𝑗 ´ p0 ´ jsp𝑗q “ sp𝑗 ` jsp𝑗 ; and

by linearity in (3.18a),

Δ𝑗p𝜈𝑖q “ 2Rep𝑍𝑖𝑗Δ𝑗psp𝑗qq “ 2Rep𝑍𝑖𝑗pspd
𝑗 ` jsp𝑗qq.

Again, by invoking the linearity in (3.18a), (3.25a) follows.

Similarly, one can show (3.24b) and (3.25b).

Proof of Lemma 5. The computation of
p𝒟‹

k
p𝜑q depends on Δ𝑗pp𝜈𝑖q values which depend

only on spd
, and not on p𝛾 (see Lemma 4).

Proof of Proposition 6. When 𝛿𝑗 “ 1, i.e., the DER 𝑗 is compromised, only the power

supplied at node 𝑗 changes. Using (3.24a), we get,

6 Δ𝑗pp𝜈𝑖q “ 2Rep𝑍𝑖𝑗Δpspd
𝑗 qq

“ 2Rep𝑍𝑖𝑗pspd
𝑗 ` jsp𝑗qq.
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Now, 𝑗 ă𝑖 𝑘 ùñ 𝒫𝑖 X 𝒫𝑗 Ă 𝒫𝑖 X 𝒫𝑘 ùñ 𝑍𝑖𝑗 ă 𝑍𝑖𝑘.

6 Δ𝑗pp𝜈𝑖q “ 2Rep𝑍𝑖𝑗psp
d
𝑗 ` jsp𝑗qq

ă 2Rep𝑍𝑖𝑘psp
d
𝑘 ` jsp𝑘qq “ Δ𝑘pp𝜈𝑖q

Similarly, we can prove the case for 𝑗 “𝑖 𝑘.

Under the 𝜖-LPF model, Δ𝑗pq𝜈𝑖q “ 2p1` 𝜖qRep𝑍𝑖𝑗psp
d
𝑗 ` jsp𝑗qq. The rest of the proof follows

similarly.

Remark 1. Proposition 6 implies that, broadly speaking, compromising downstream DERs

is advantageous to the attacker than compromising the upstream DERs. The following

illustrative example suggests that compromising DERs by means of clustered attacks are

more bene�cial to the attacker than distributed attacks.

Example 1. Consider the ryADsa with 𝑀 “ 2 instantiated on the DN in Figure 3-1. As-

sume that all loads and DERs are homogeneous, all lines have equal impedances, i.e.,

@𝑖 P 𝒩 , 𝑠𝑐𝑖 “ 𝑠𝑐𝑎, sp
d
𝑖 “ spd

𝑎, sp𝑖 “ sp𝑎, 𝑧𝑖 “ 𝑧𝑎. By Proposition 4, the outputs of all the

DERs are �xed and identical to each other.

Let 𝛼 “ 2pRep𝑧𝑎p𝑠𝑐𝑎 ´ spd
𝑎qqq, and 𝛽 “ 2pRep𝑧𝑎pRepspd

𝑎q ` jpImpspd
𝑎q ` sp𝑎qqqq.

Then 𝜈 values for di�erent attack vectors are given in Table 3.3. The optimal attack com-

promises nodes 𝑖 and 𝑚, which is a cluster attack.

Attacked Nodes 𝜈𝑚 𝜈𝑗 𝜈𝑘
H 𝜈0 ´ 23𝛼 𝜈0 ´ 13𝛼 𝜈0 ´ 20𝛼

t𝑖,𝑚u 𝜈0 ´ 23𝛼 ´ 9𝛽 𝜈0 ´ 13𝛼 ´ 2𝛽 𝜈0 ´ 20𝛼 ´ 4𝛽
t𝑗,𝑚u 𝜈0 ´ 23𝛼 ´ 6𝛽 𝜈0 ´ 13𝛼 ´ 4𝛽 𝜈0 ´ 20𝛼 ´ 3𝛽
t𝑘,𝑚u 𝜈0 ´ 23𝛼 ´ 7𝛽 𝜈0 ´ 13𝛼 ´ 2𝛽 𝜈0 ´ 20𝛼 ´ 6𝛽
t𝑔, 𝑗u 𝜈0 ´ 23𝛼 ´ 2𝛽 𝜈0 ´ 13𝛼 ´ 5𝛽 𝜈0 ´ 20𝛼 ´ 2𝛽
t𝑑, 𝑘u 𝜈0 ´ 23𝛼 ´ 4𝛽 𝜈0 ´ 13𝛼 ´ 2𝛽 𝜈0 ´ 20𝛼 ´ 7𝛽

Table 3.3: 𝜈 vs Di�erent Attack Combinations.

Consequently, our results (see Sec. 3.5) on security strategy in Stage 1 show that the

defender should utilize his security strategy to deter cluster attacks.
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Proof of Proposition 7. For a �xed defender action 𝜑, we have from (3.16b) that @ 𝑗 P
𝒩 ,Δ𝑗pq𝜈𝑖q “ p1` 𝜖qΔ𝑗pp𝜈𝑖q. Hence, the sequence of partitions of the nodes for every pivot

node is the same in both the LPF and the 𝜖-LPF model. Hence,
p𝒟‹

k
p𝜑q “ q𝒟‹

k
p𝜑q.

Now, for any 𝜓1, 𝜓2 P Ψ,

LLCppxp𝜓1, 𝜑qq “ LLCppxp𝜓2, 𝜑qq and

LLCpqxp𝜓1, 𝜑qq “ LLCpqxp𝜓2, 𝜑qq.
(3.39)

Suppose
p𝜓‹ is not an optimal solution to r}ADsa. Then,

qℒpqxp q𝜓‹, 𝜑qq ą qℒpqxp p𝜓‹, 𝜑qq
p3.39q
ðñ LVRpqxp q𝜓‹, 𝜑qq ą LVRpqxp p𝜓‹, 𝜑qq

ðñ max
𝑖P𝒩

𝑊𝑖p𝜈𝑖 ´ q𝜈𝑖p q𝜓‹, 𝜑qq` ą max
𝑗P𝒩

𝑊𝑗p𝜈𝑗 ´ q𝜈𝑗p p𝜓‹, 𝜑qq`
p3.29q
ðñ max

𝑖P𝒩
p𝜈 ´ q𝜈𝑖p q𝜓‹, 𝜑qq ą max

𝑗P𝒩
p𝜈 ´ q𝜈𝑗p p𝜓‹, 𝜑qq

ðñ max
𝑖P𝒩

p𝜈0 ´ q𝜈𝑖p q𝜓‹, 𝜑qq ą max
𝑗P𝒩

p𝜈0 ´ q𝜈𝑗p p𝜓‹, 𝜑qq
p3.16𝑏q
ðñ p1` 𝜖q

⃦⃦
⃦p𝜈0 ´ p𝜈𝑖p q𝜓‹, 𝜑qq

⃦⃦
⃦
8
ą p1` 𝜖q

⃦⃦
⃦p𝜈0 ´ p𝜈𝑗p p𝜓‹, 𝜑qq

⃦⃦
⃦
8

p3.29q
ðñ max

𝑖P𝒩
𝑊𝑖p𝜈𝑖 ´ p𝜈𝑖p q𝜓‹, 𝜑qq` ą max

𝑗P𝒩
𝑊𝑗p𝜈𝑗 ´ p𝜈𝑗p p𝜓‹, 𝜑qq`

ðñ LVRppxp q𝜓‹, 𝜑qq ą LVRppxp p𝜓‹, 𝜑qq
p3.39q
ðñ pℒppxp q𝜓‹, 𝜑qq ą pℒppxp p𝜓‹, 𝜑qq.

Hence, the contradiction that
p𝜓‹ is an optimal solution to ryADsa. Similarly, we can show

that
q𝜓‹ is an optimal solution to r}ADsa.

Proof of Proposition 8. (A0) implies that for any p𝜓, 𝜑q P Ψ ˆ Φ, the node with least

voltage will be one of the leaf nodes due to no reverse power �ows. Therefore, the at-

tacker will prefer to attack some leaf node as the pivot node. (A1) and (A2) imply that

for any two nodes 𝑖, 𝑗 P 𝒩𝐿, the radial network as seen from node 𝑖 is just a homomor-

phic transformation of the radial network as seen from node 𝑗. Hence, the candidate set of

optimal attack vectors for node 𝑖 will be a homomorphic transformation of the candidate

set of optimal attack vectors for node 𝑗. By de�nition, the candidate set of optimal attack
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vectors for pivot node 𝑖 P 𝒩𝐿 forms an equivalence class due to their identical impact

on the node 𝑖. Since there can at most be 𝑁 leaf nodes, the number of such equivalence

classes is ď 𝑁 . The candidate set of optimal attack vectors is just a union over all leaf

nodes 𝑖 P 𝒩𝐿, the candidate set of optimal attack vectors for the pivot node 𝑖.

If for a pivot node, no two individual DER disruptions have identical impact on that

pivot node, then Algorithm 5 computes a unique optimal attack vector for the pivot node.

That is, the equivalence class for the pivot node is a singleton set. Therefore, the candidate

set of optimal attack vectors is atmost of size 𝑁 .

To prove Theorem 4, we �rst introduce Propositions 9 to 11. Consider any security

strategy 𝑢 P 𝒰𝐵 such that

𝑢 “

«
𝑢1
1

𝑢2
2

. . . 1
𝑎

. . . 0
𝑏

. . . 𝑢𝑁
𝑁

ff
. (3.40)

Construct r𝑢 from 𝑢 by only �ipping the bits at nodes 𝑎 and 𝑏 as follows:

r𝑢 “
«
𝑢1
1

𝑢2
2

. . . 0
𝑎

. . . 1
𝑏

. . . 𝑢𝑁
𝑁

ff
, (3.41)

i.e., r𝑢𝑖 “ 𝑢𝑖 @ 𝑖 P 𝒩 zt𝑎, 𝑏u. Similarly, let 𝛿 P 𝒟kp𝑢q such that 𝛿𝑎 “ 0, 𝛿𝑏 “ 1; and

construct
r𝛿 from 𝛿 as in (3.41) such that

r𝛿𝑖 “ 𝛿𝑖 @ 𝑖 P 𝒩 zt𝑎, 𝑏u. Note that,
r𝛿 P 𝒟kpr𝑢q.

We use Propositions 9 to 11 to compare the security strategies 𝑢 and r𝑢 under various

conditions. Refer to Figure 3-5c for the purpose of proofs of Propositions 9 to 11.

Proposition 9. Assume (A0), (A1), (A2). Let 𝑢 P 𝒰𝐵 (resp. r𝑢 P 𝒰𝐵) be as in (3.40) (resp.

(3.41)). If 𝑏 P Λ𝑎, then 𝑢 ď r𝑢.

Proof of Proposition 9. Let p𝛿‹, 𝜑‹q and pr𝛿‹, r𝜑‹q, denote the optimal solutions of ryADs
with 𝑢 “ p𝑢 (resp. 𝑢 “ r𝑢). (A1) ùñ spd‹

is �xed (Proposition 4). Hence, 𝜑‹ depends

only on 𝛿‹, and not 𝑢. Then, let 𝜑‹p𝛿q denote optimal defender response to 𝛿. We want to

show
pℒr𝑢 ď pℒ𝑢.
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Case r𝛿‹𝑎 “ 0. Then
r𝛿‹ P 𝒟kp𝑢q. Thus,

pℒr𝑢 “ pLppxpr𝑢, r𝛿‹, 𝜑‹pr𝛿‹qqq
“ pLppxp𝑢, r𝛿‹, 𝜑‹pr𝛿‹qqq
ď pLppxp𝑢, 𝛿‹, 𝜑‹p𝛿‹qqq,

where the inequality follows due to the optimality of 𝛿‹.

Case r𝛿‹𝑎 “ 1. Let 𝛿 P 𝒟kp𝑢q : 𝛿𝑎 “ 0, 𝛿𝑏 “ 1, @𝑖 P 𝒩 zt𝑎, 𝑏u, 𝛿𝑖 “ r𝛿‹𝑖 . We have assumed

that 𝑏 P Λ𝑎; see Figure 3-5c. Therefore, @ 𝑖 P 𝒩 , 𝑎 ĺ𝑖 𝑏. Hence, by Proposition 6,

@ 𝑖 P 𝒩 , Δ𝑏pp𝜈𝑖q ě Δ𝑎pp𝜈𝑖q.

Then, by Lemma 4, for �xed 𝜑, Δ𝛿pp𝜈q ě Δr𝛿‹pp𝜈q. Hence,

pℒr𝑢 “ pLppxpr𝑢, r𝛿‹, 𝜑‹pr𝛿‹qqq
ď pLppxpr𝑢, r𝛿‹, 𝜑‹p𝛿qqq
ď pLppxp𝑢, 𝛿, 𝜑‹p𝛿qqq
ď pLppxp𝑢, 𝛿‹, 𝜑‹p𝛿‹qqq
“ pℒ𝑢.

Here, the �rst (resp. last) inequality follows due to optimality of 𝜑‹pr𝛿‹q (resp. 𝛿‹). Hence,

𝑢 ď r𝑢.

Remark 2. Starting with any strategy 𝑢1 P 𝒰𝐵 , Proposition 9 can be applied recursively to

obtain a more secure strategy 𝑢 P 𝒰𝐵 : 𝑢1 ď 𝑢, which has the property that if a node 𝑖

is secure, then all its successor nodes (i.e. all nodes in subtree Λ𝑖) are also secured by the

defender, i.e.,

@ 𝑖 P 𝒩 , 𝑢𝑖 “ 1 ùñ @ 𝑗 P Λ𝑖, 𝑢𝑗 “ 1. (3.42)

Proposition 10. Assume (A0), (A1), (A2). Let 𝑢 P 𝒰𝐵 (resp. r𝑢 P 𝒰𝐵) be as in (3.40) (resp.

(3.41)). Let 𝐴𝑢 “ tp𝑖, 𝑗q P 𝒩 ˆ𝒩 | 𝑢𝑖 “ 1, 𝑢𝑗 “ 0, ℎ𝑖 ě ℎ𝑗 ` 1u. If 𝑢 satis�es (3.42), and

p𝑎, 𝑏q P argmaxp𝑖,𝑗qP𝐴𝑢
|𝒫𝑖 X 𝒫𝑗|, then 𝑢 ď r𝑢.
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Proof of Proposition 10. Let 𝑐 “ argmaxp𝑖P𝒫𝑎X𝒫𝑏q
ℎ𝑖, be the lowest common ancestor of

𝑎 and 𝑏. Let 𝑖1, 𝑖2 P 𝒩 𝑐
𝑐 : 𝑎 P Λ𝑖1 and 𝑏 P Λ𝑖2 . From Theorem 3, we know that the optimal

attack 𝛿‹ will be a pivot node attack
p𝛿𝑖 for some node, say 𝑖 P 𝒩 . Let 𝒩 1 “ Λ𝑖1 Y Λ𝑖2 .

Case 𝑖 P 𝒩 1. Now 𝑢𝑗 “ 1 @ 𝑗 P Λ𝑖1zΛ𝑎𝑖1 Y t𝑎u by maximality of |𝒫𝑎 X 𝒫𝑏|. Similarly,

𝑢𝑗 “ 0 @ 𝑗 P Λ𝑑𝑖2 Y t𝑏u. Thus, @ 𝑗 P Λ𝑖1 s.t. 𝑢𝑗 “ 0 there exists a separate node 𝑘 P Λ𝑖2

such that 𝑗 and 𝑘 are homomorphic, and 𝑢𝑘 “ 0 (see Figure 3-5c). Hence, the subtree

Λ𝑖2 is more vulnerable than the subtree Λ𝑖1 , and it will be more bene�cial for the attacker

to target a pivot node in Λ𝑖2 . Now, 𝑖 P Λ𝑖2 , and @ 𝑖 P Λ𝑖2 , 𝑎 ă𝑖 𝑏. Hence, by using

Proposition 6, we get, Δ𝑎pp𝜈𝑖q ă Δ𝑏pp𝜈𝑖q.
Case 𝑖 R 𝒩 1. Then 𝑎 “𝑖 𝑏, and by Proposition 6, we have Δ𝑎pp𝜈𝑖q “ Δ𝑏pp𝜈𝑖q.
We now want to show that

pℒr𝑢 ď pℒ𝑢. The rest of the proof is similar to the proof of

Proposition 9.

Remark 3. Again, starting with any strategy 𝑢1 P 𝒰𝐵 , we can apply Proposition 10 recur-

sively to obtain a more secure strategy 𝑢 P 𝒰𝐵 : 𝑢1 ď 𝑢, in which, if a node is secure, then

all nodes in lower levels are also secured by the defender, i.e.,

@ 𝑖, 𝑗 P 𝒩 , p𝑢𝑖 “ 1 and ℎ𝑗 ą ℎ𝑖q ùñ 𝑢𝑗 “ 1. (3.43)

Thus, Proposition 10 is a generalization of Proposition 9.

Proposition 11. Assume (A0), (A1), (A2). Let 𝑢 P 𝒰𝐵 be such that 𝑢 satis�es (3.43). Let

ℎ1 “ argminpD 𝑎P𝒩ℎ:𝑢𝑎“1q
ℎ. If the secure nodes on level ℎ1 are uniformly distributed over the

level ℎ1, i.e.,
⃒⃒
𝒩 𝑐
𝑗 X𝒩𝑠

⃒⃒ P t𝑇, 𝑇 ` 1u, @ 𝑗 P 𝒩ℎ1 , where 𝑇 P Z`, then 𝑢 is an optimal

security strategy, i.e., @ r𝑢 P 𝒰𝐵, r𝑢 ď 𝑢.

Proof of Proposition 11. Similar to the proof of Proposition 10.

Remark 4. Proposition 11 implies that there exists an optimal security strategy in which

there is a top-most level with DER nodes that are uniformly chosen for security invest-

ment, while all the lower levels are fully secure.

Propositions 9 and 10 capture the attacker preference for the downstream DERs, whereas
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Proposition 11 capture the attacker preference for cluster attacks. Hence, the optimal se-

curity strategy has distributed secured nodes.

Proof of Theorem 4. Let 𝑢‹1 P 𝒰𝐵 be any optimal security strategy. From 𝑢‹1, by se-

quentially applying Proposition 9, Proposition 10, and Proposition 11, we can obtain an

optimal security strategy 𝑢‹2 that satis�es (3.42), (3.43), and has the top-most level with

secure nodes having uniformly distributed secured nodes.

Now, let p𝑢‹ be the output of Algorithm 4. Since in Algorithm 4, nodes are secured

from the leaf nodes to the root node level-by-level, p𝑢‹ also satis�es (3.42) and (3.43). The

Algorithm 4 also secures the top-most level with secure nodes with uniformly distributed

secured nodes, p𝑢‹ is the same as 𝑢‹2 upto a homomorphic transformation.

Finally, we argue that under (A0)-(A2), p𝑢‹ can be combined with previous results to

obtain full solution of rzDADs. Under (A1), the defender set-points are �xed. Since, p𝑢
and pspd‹

are both �xed, we can compute the set of candidate optimal attack vectors
p𝒟‹

k
,

by considering only vulnerable DERs. Then for a �xed 𝛿 P p𝒟‹
k
, the sub-problem ryADsd

reduces to an LP in 𝛾. Hence, Algorithm 2 solves for p p𝜓‹, p𝜑‹q, the optimal solution of

ryADs for 𝑢 “ p𝑢, by iterating over 𝛿 P p𝒟‹
k
. The strategy pro�le pp𝑢‹, p𝜓‹, p𝜑‹q, thus obtained,

is an optimal solution to for DNs that satisfy (A0), (A1), (A2). Similarly, we can solve

r~DADs.

Remark 5. We revisit the security strategies 𝑢1 and 𝑢2 in Figure 3-5: which one is better?

Firstly, we use symmetricity (A2) to argue that securing nodes 2, 4, 5 is equivalent to se-

curing nodes 3, 6, 7. Then, Λ3 subtree of 𝑢2 has more distributed secured nodes than Λ2 in

𝑢1. Hence, strategy 2 is better. Theorem 4 will, of course, give the optimal security strat-

egy p𝑢‹ in which nodes 𝒩𝑠pp𝑢‹q “ t8, 9, 10, 12, 13, 14u, or other homomorphic strategies

of p𝑢‹.

3.6 Sequential game with linear power �ow

In this Stackelberg game, Ψ𝑀 denotes the set of attacker strategies in Stage 1; and Φp𝜓q
denotes the set of defender actions in Stage 2. Formally, the attacker-defender rADs game
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is de�ned as follows:

rADs ℒ :“ max𝜓PΨ𝑀
min𝜑PΦp𝜓q Lpxp𝜓, 𝜑qq (3.44)

s.t. xp𝜓, 𝜑q P 𝒳 (3.45a)

𝑠𝑐p𝜓, 𝜑q “ 𝛾 d scnom (3.45b)

𝑠𝑔p𝜓, 𝜑q “ 𝛿 d spa ` p1𝑁 ´ 𝛿q d spd (3.45c)

Δ𝑓0,𝑚𝑎𝑥p𝜓, 𝜑q “ ´𝐻
𝐵𝐺𝑆0p𝜓, 𝜑q ´ 𝑆

nom
0 , (3.45d)

where (3.45b) speci�es that the actual power consumed at node 𝑖 is equal to the nominal

power demand scaled by the defender’s corresponding load control parameter 𝛾𝑖 P r𝛾𝑖, 1s.

The constraint (3.45c) models the net e�ect of the attacker choice pspa
𝑖 , 𝛿𝑖q in Stage

1, and the defender choice spd
𝑖 in Stage 2 on the actual power generated at node 𝑖. Thus,

(3.45c) is the adversary model of rADs game: the DER 𝑖 is compromised if and only if it

was targeted by the attacker (𝛿𝑖 “ 1). Speci�cally, if 𝑖 is compromised, sp𝑖 “ spa
𝑖 , where

spa
𝑖 P 𝒮𝑖 is the false set-point chosen by the attacker (di�erent from the nominal set-point).

The set-points of non-compromised DERs are governed by the defender, i.e., if DER 𝑖 is

not compromised (𝛿𝑖 “ 0), then sp𝑖 “ spd
𝑖 . Note that our adversary model assumes that

the DER power output, 𝑠𝑔, quickly attain the set-points speci�ed by (3.45c), i.e., the model

does not consider dynamic set-point tracking.

The constraint (3.45d) models the maximum frequency deviation due to the sudden

active power imbalance.

The loss function in rADs is de�ned as follows:

Lpxp𝜓, 𝜑qq :“ LVRpxq ` LFRpxq, (3.46)

where LVR denotes the cost due to loss of voltage regulation; and LFR the cost due to loss

126



of frequency regulation. These costs are de�ned as follows:

LVRpxq :“ ||𝑊 d p𝜈 ´ 𝜈q`||8 (3.47a)

LFRpxq :“ 𝐶pΔ𝑓
𝑡ℎ
´Δ𝑓0,𝑚𝑎𝑥q`, (3.47b)

where 𝑊 P R𝑁
` , and 𝐶 P R`. Here, 𝑊𝑖 is the weight assigned to violation of voltage

bound, and LVR is the maximum over all nodes the weighted non-negative di�erence be-

tween the lower bound 𝜈𝑖 and nodal voltage square 𝜈𝑖; 𝐶 is the cost of unit frequency

deviation, Δ𝑓
𝑡ℎ

is the lower threshold bound with which we will compare the system fre-

quency deviation, and Δ𝑓0,𝑚𝑎𝑥 is the maximum frequency deviation attained as a result

of the sudden supply-demand mismatch.

Now, consider the following simpli�ed and approximate version of the sequential

game rADs:

ryADs pℒ :“ max𝜓PΨ min𝜑PΦ Lppxp𝜓, 𝜑qq
s.t. pxp𝜓, 𝜑q P p𝒳 , p3.45𝑏q, p3.8𝑐q, p3.45𝑑q

where the NPF equations (3.5) are replaced by the LPF equations (3.6). In this section, we

�rst compute the optimal attacker set-points and defender set-points (Sec. 3.6.1), and then

present a greedy algorithm to come up with the optimal solution for ryADs (Sec. 3.6.2).

Following the computational approach in the literature to solve (bilevel) interdiction

problems [102], [72], we de�ne the master-problem rADsa (resp. sub-problem rADsd) for

�xed 𝜑 P Φ (resp. �xed 𝜓 P Ψ):

rADsa 𝜓‹p𝜑q P argmax𝜓PΨ Lpxp𝜓, 𝜑qq s.t. p3.45q,
rADsd 𝜑‹p𝜓q P argmin𝜑PΦ Lpxp𝜓, 𝜑qq s.t. p3.45q.

Similarly, de�ne master- and sub- problems ryADsa (
p𝜓‹p𝜑q) and ryADsd (

p𝜑‹p𝜓q) for the

variant ryADs.
Proposition 12. Let p𝜓‹, 𝜑‹q and p p𝜓‹, p𝜑‹q be the optimal solutions to rADs and ryADs with
the corresponding optimal losses ℒ and pℒ, respectively. Then, ℒ ě pℒ.
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Proof. We �rst prove a preliminary result relating xp𝜓, 𝜑q and pxp𝜓, 𝜑q.

Lemma 6. For a �xed strategy pro�le p𝜓, 𝜑q,

𝑆 ě p𝑆, 𝜈 ď p𝜈, Δ𝑓0,𝑚𝑎𝑥 ě Δ p𝑓0,𝑚𝑎𝑥 (3.48)

Hence,

LVRpxq ě LVRppxq
LFRpxq ě LFRppxq

,
.
- ùñ Lpxq ě Lppxq. (3.49)

Proof. The relationships 𝑆 ě p𝑆 and 𝜈 ď p𝜈 is already proved in [52]. Since, 𝑆 ě p𝑆 implies

𝑆 ě p𝑆, from (3.45d) we get, Δ𝑓0,𝑚𝑎𝑥 ě Δ p𝑓0,𝑚𝑎𝑥.

From Lemma 6, we get,

ℒ “ Lpxp𝜓‹, 𝜑‹p𝜓‹qqq
ě Lpxp p𝜓‹, 𝜑‹p p𝜓‹qqq pby optimality of 𝜓‹q
ě Lppxp p𝜓‹, 𝜑‹p p𝜓‹qqq pby Lemma 6q
ě Lppxp p𝜓‹, p𝜑‹p p𝜓‹qqq pby optimality of

p𝜑‹q
“ pℒ.

Lemma 6 implies that if there is a successful attack strategy for ryADs, then there also

exists a successful attack strategy for rADs. However, the converse need not be true.

3.6.1 Optimal attacker and defender set-points

The following theorem proven in [108] provides the optimal attacker set-points:

Theorem 5 (Optimal attacker set-points). The optimal attacker DER set-points pspa to the

problem ryADs are given as:

pspa
𝑖 “ 0´ jsp𝑖 (3.50)
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Proof. Similar to the proof of Thm. 1 in [108].

Thanks to the Theorem 5, the loss function Lppxp𝜓, 𝜑qq can be written as Lppxp𝛿, 𝜑qq, as

the optimal attacker preferred setpoints are already known.

Now, consider the following de�nition:

De�nition 1. Let 𝒮` :“ t𝑠 P 𝒮 | 𝑠 ě 0u. For a given attacker strategy 𝜓 P Ψ, if there

exists a node that has the least voltage among all nodes regardless of the defender response,

then it is called as the worst-a�ected node, i.e.,

@ spd P 𝒮` : pxp𝜓, rspd, 𝛾sq P p𝒳 , 𝑡p𝜓q “ argmax
𝑖P𝒩

p𝜈𝑖 ´ p𝜈𝑖q.

In this section, we compute the optimal defender setpoints under the following as-

sumptions:

(A3) For a �xed 𝜓 P Ψ, worst-a�ected node 𝑡p𝜓q exists.

(A4) For a given 𝜓 P Ψ, under optimal defender response, the loss of voltage regulation

and the loss of frequency regulation are both positive, i.e., LVRppxp𝜓, p𝜑‹p𝜓qqq ą 0 and

LFRppxp𝜓, p𝜑‹p𝜓qqq ą 0.

Similar to the intuition presented in [108] the optimal attacker strategy in ryADs is to

impose clustered DER compromises on a target pivot node, so that that pivot node has the

least voltage (A3). Further, as we see in Proposition 13, there is a trade-o� for the defender

between LVR and LFR. If the defender minimizes only LVR, then the frequency deviations

will be too high, and other DERs may disconnect. On the other hand, if he minimizes only

LFR, then the voltage quality at all nodes will su�er. Hence, assumption (A4).

The following proposition computes the optimal defender DER set-points under the

knowledge of worst-a�ected node.

Proposition 13 (Optimal Defender Set-points). Assume (A3) and (A4). For a �xed 𝜓 P Ψ,

let 𝑡 be the worst-a�ected node under (A3). Let psp𝑐 denote the optimal defender set-point

under the centralized control strategy. Then

@ 𝑖 P 𝒩 , | psp𝑐𝑖 | “ sp𝑖 and = psp𝑐𝑖 “ =𝜆𝑖𝑡, (3.51)
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where 𝜆𝑖𝑡 “ 𝐶𝐻𝐵𝐺 ` 2𝑊𝑡𝑍𝑖𝑡.

Proof. Under (A3) and (A4), it can be checked that the loss function L can be written as:

Lppxp𝜓, p𝜑‹qq
“ 𝑊𝑡p𝜈𝑡 ´ p𝜈𝑡q ` 𝐶pΔ𝑓 𝑡ℎ ´Δ p𝑓0,𝑚𝑎𝑥q
“ const.`ř

𝑖P𝒩 ´𝐶𝐻𝐵𝐺 psp𝑐𝑖 ´ 2𝑊𝑡𝑍𝑖𝑡 psp𝑐𝑖
“ const.´ř

𝑖P𝒩 𝜆𝑖𝑡 ¨ psp𝑐𝑖
“ const.´ř

𝑖P𝒩 |𝜆𝑖𝑡| | psp𝑐𝑖 | cosp=𝜆𝑖𝑡 ´= psp𝑐𝑖q

It can be checked that
7 L is minimized when | psp𝑐𝑖 | “ sp𝑖, and = psp𝑐𝑖 “ =𝜆𝑖𝑡.

3.6.2 Greedy Algorithm to solve ryADs
We now present a greedy algorithm to solve for ryADs.

Under (A3), we know that for the optimal attacker strategy
p𝜓‹, some node is the worst-

a�ected node. Consider node 𝑡 as a candidate worst-a�ected node, which we call a pivot

node. Assuming that pivot node 𝑡 is a worst-a�ected node for some attacker strategy, we

compute the attacker strategy 𝜓 that will maximize L𝑡 :“ 𝑊𝑡p𝜈𝑡 ´ p𝜈𝑡q ` 𝐶𝐻𝐵𝐺pΔ𝑓
𝑡ℎ
´

Δ p𝑓0,𝑚𝑎𝑥q. For pivot node 𝑡, we know the optimal defender set-points by Proposition 13.

We also know the optimal attacker set-points, thanks to Theorem 5. Hence, the DER set-

points spd
are �xed by (3.8c). Furthermore, since 𝛾 “ 𝛾, the defender strategy 𝜑 “ rspd, 𝛾s

is �xed. Hence, the problem ryADs becomes an integer optimization problem over 𝛿. To

solve this, we present a greedy algorithm to compute the optimal attack vector 𝛿 for the

pivot node 𝑡.

Let Δ𝑖pL𝑡q (resp. Δ𝛿pL𝑡q) be the change in loss function at node 𝑡 caused due to com-

promise of DER at node 𝑗 (resp. compromise of DERs due to attack vector 𝛿). The follow-

ing Lemma computes Δ𝑖pL𝑡q and Δ𝛿pL𝑡q.

Lemma 7. Assume (A3) and (A4). For a �xed 𝜓 P Ψ, let 𝑡 be the worst-a�ected node under

(A3). Let pspa (resp. psp𝑐) denote the optimal attacker (resp. defender) set-points as computed

7
If 𝑎, 𝑏 P W, then 𝑎̄𝑏 is the dot product of complex numbers 𝑎 and 𝑏, and is maximized when |𝑎| and |𝑏|

are maximized, and =𝑎 “ =𝑏.
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in Theorem 5 (resp. Proposition 13). Further, let L𝑡 :“ 𝑊𝑡p𝜈𝑡´p𝜈𝑡q`𝐶𝐻𝐵𝐺pΔ𝑓
𝑡ℎ
´Δ p𝑓0,𝑚𝑎𝑥q.

Then,

Δ𝑖pL𝑡q “ 𝜆𝑖𝑡 ¨p pspa
𝑖 ´ psp𝑐𝑖q (3.52)

Δ𝛿pL𝑡q “
ř
𝑖:𝛿𝑖“1

Δ𝑖pL𝑡q (3.53)

Proof. As seen in Proposition 13, the individual contribution of DER 𝑖when 𝑡 is the worst-

a�ected node is equal to 𝜆𝑖𝑡 ¨ pspd
𝑖 . Since, the set-point changes from pspd

𝑖 to pspa
𝑖 , the change

in the loss L𝑡 is 𝜆𝑖𝑡 ¨p pspa
𝑖 ´ psp𝑐𝑖q. (3.53) follows because L𝑡 is a linear function of pspd

.

The following greedy algorithm can be used to �nd 𝛿 that generate the worst impact.

Algorithm 6 Solution to ryADs under (A3), (A4)

1: p p𝜓‹, p𝜑‹, pℒ˚q Ð Solve(ryADs)
2: procedure Solve(ryADs)
3: for 𝑖 P 𝒩 do
4: p𝜓𝑖, 𝜑𝑖,ℒ𝑖q Ð OptimalAttackForPivotNode(𝑖)
5: end for
6: Compute worst-a�ected node as 𝑡Ð argmax𝑖P𝒩 ℒ𝑖
7: return 𝜓𝑡, 𝜑𝑡,ℒ𝑡
8: end procedure
9: procedure OptimalAttackForPivotNode(𝑡)

10: Compute pspd as in Proposition 13 and pspa as in Theorem 5

11: Sort nodes in 𝒩 in decreasing order of their Δ𝑗pp𝜈𝑡, 𝑓q (computed using Lemma 7), and

choose the top 𝑀 DERs

12: Compute 𝛿𝑡 P 𝒟k such that if a node 𝑖 is chosen, 𝛿𝑡𝑖 “ 1
13: return 𝜓𝑡 Ð r pspa, 𝛿𝑡s, 𝜑𝑡 Ð r pspd, 𝛾s,ℒ𝑡 Ð Lppxp𝜓𝑡, 𝜑𝑡qq
14: end procedure

3.7 A distributed control strategy

Proposed Design

Under nominal conditions, the defender is able to remotely con�gure optimal DER set-

points by solving the OPF problem. However, under our adversarial model, during a con-

tingency, the DER controllers can no longer rely on the set-points received from the con-

trol center as they can also be compromised by the adversary. Thus, our goal is to establish
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a distributed control strategy to enable the non-compromised DERs to reduce defender

loss (i.e., improve voltage and frequency regulation).

Now, we present a distributed control strategy in which we impose that each non-

compromised DER should either contribute to the voltage or frequency regulation (but

not both).

De�nition 2. 1. First the node controllers detect an attack due to sudden drop in local

voltage and frequency, and they set the load control parameter to the minimum load

control parameter 𝛾.

2. Second, the DERs communicate with other nodes to estimate the identity of the worst-

a�ected node in terms of the voltage violation, i.e. the DERs determine the node 𝑡 “
argmax𝑖P𝒩 𝑊𝑖p𝜈𝑖 ´ 𝜈𝑖q.

3. For every node 𝑖 P 𝒩 , the DER controller of 𝑖´th DER has a precomputed partition of

the nodes 𝒩 𝑓
𝑡 and 𝒩 𝑣

𝑡 , such that 𝒩 𝑓
𝑡 X𝒩 𝑣

𝑡 “ H and 𝒩 𝑓
𝑡 Y𝒩 𝑣

𝑡 “ 𝒩 .

4. Finally, each DER con�gures a new DER set-point such that if 𝑖 P 𝒩 𝑓
𝑡 , the 𝑖´th DER

controller contributes to only frequency regulation, otherwise it contributes to only

voltage regulation.

In order to compute the worst-a�ected node, we assume a fairly simple communication

protocol for the secondary distributed control strategy. We assume that the communica-

tion topology is similar to the physical network topology. Every DER controller has the

current best knowledge of the node with the least voltage. Initially, every DER just stores

its own identity and corresponding nodal voltage value. In every iteration, each DER

controller sends updates to its neighbors about the current minimum 𝜈𝑖 value and the

corresponding node 𝑖. Then, the DER controller compares its current best knowledge

with the information it receives from its neighbors, computes the new minimum 𝜈𝑗 value

and determines the corresponding node 𝑗. And, so on and so forth. It can be shown that

this process converges in at most 𝐷 ` 1 iterations, where 𝐷 is the diameter of network

𝒢. For a more detailed discussion of such protocols, we refer the reader to [37], [36].
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The advantage of the proposed design is that during an attack scenario (or more

broadly under a range of contingency situations), the DER controllers need not rely upon

the possibly compromised control center set-points. Moreover, since the DERs use the

distributed control strategy only to communicate with their neighboring DER controllers

(and not with every other DER controller), the communication requirements are relatively

less stringent.

The following proposition computes the optimal defender set-points for non-compromised

DERs should they contribute to either only frequency regulation or only voltage regula-

tion.

Proposition 14. Assume (A3), (A4), (A1). Let psp𝑑 denote the optimal defender set-points

under the distributed control strategy as in De�nition 2. Consider �xed 𝜓 P Ψ. For a node

𝑖 P 𝒩 , assume �xed pspd
´𝑖 P 𝒮´𝑖, where pspd

´𝑖 denotes the vector of all defender set-points

except for node 𝑖. Furthermore, let 𝜑 “ r pspd, 𝛾s. Then,

1. @ 𝑖 P 𝒩 𝑓
𝑡 , pspf

𝑖 P argminxspd𝑖 P𝒮𝑖
LFRppxp𝜓, 𝜑qq, where

⃒⃒
⃒ pspf

𝑖

⃒⃒
⃒ “ sp𝑖, and = pspf

𝑖 “ 0 (3.54)

2. @ 𝑖 P 𝒩 𝑣
𝑡 , pspv

𝑖 P argminxspd𝑖 P𝒮𝑖
LVRppxp𝜓, 𝜑qq, where

| pspv
𝑖 | “ sp𝑖, and = pspv

𝑖 “ =𝑧𝑢 (3.55)

Proof. If node 𝑖 P 𝒩 contributes to only frequency regulation, then LFR can be written

as:

LFRppxq “ ´𝐻𝐵𝐺 psp𝑑𝑖 ` const.

Hence, LFR is a decreasing function of pspd
𝑖 , and will be minimized when psp𝑑𝑖 “ sp𝑖. How-

ever, psp𝑑𝑖 P 𝒮𝑖 implies that Imp psp𝑑𝑖 q “ 0.
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If node 𝑖 P 𝒩 contributes to only voltage regulation, then LVR can be written as:

LFRppxq “ ´2𝑊𝑡𝑍𝑖𝑡 ¨ psp𝑑𝑖 ` const.

Under identical
r{x ratio, =𝑍𝑖𝑡 “ =𝑧𝑢. The rest of the proof follows similarly to the proof

of Proposition 13.

Theorem 6. Assume (A3), (A4), (A1). For a �xed 𝜓 P Ψ, let 𝑡 be the worst-a�ected node.

Let 𝒩 𝑓
𝑡 ,𝒩 𝑣

𝑡 form a disjoint partition of 𝒩𝑁𝐶 (the set of non-compromised DERs), such that

for all 𝑗 P 𝒩 𝑓
𝑡 (resp. for all 𝑘 P 𝒩 𝑣

𝑡 ), psp𝑑𝑗 “ pspf
𝑗 (resp. psp𝑑𝑘 “ pspv

𝑘) is as speci�ed by (3.54)

(resp. (3.55)). Then

𝑗 P 𝒩 𝑓
𝑡 ùñ 0 ď =𝜆𝑗𝑡 ď

=𝑧𝑢
2

𝑘 P 𝒩 𝑣
𝑡 ùñ

=𝑧𝑢
2

ă =𝜆𝑘𝑡 ď =𝑧𝑢

Proof. Under (A3) and (A4), it can be checked that the loss function L can be written as:

Lppxp𝜓, 𝜑qq “ 𝑊𝑡p𝜈𝑡 ´ p𝜈𝑡q ` 𝐶pΔ𝑓 𝑡ℎ ´Δ p𝑓0,𝑚𝑎𝑥q
“ const.`ř

𝑖P𝒩 ´𝜆𝑖𝑡 ¨ sp𝑖,

where 𝜆𝑖𝑡 “ 𝐶𝐻𝐵𝐺 ` 2𝑊𝑡𝑍𝑖𝑡.

Under (A3), (A4), (A1), let pspf
𝑖 and pspv

𝑖 be the defender set-points as in (3.54) and (3.55),

respectively. Let the change in the value of the loss function, holding all else the same, if

the 𝑗´th DER is used for frequency regulation (resp. voltage regulation) be denoted by

Δ𝑓
𝑗𝑡pLq (resp. Δ𝑣

𝑗𝑡pLq). Then the di�erence in these two changes, holding all else equal, is

given by

Δ𝑓
𝑗𝑡pLq ´Δ𝑣

𝑗𝑡pLq “ 𝜆𝑗𝑡 ¨ pspf
𝑗 ´ 𝜆𝑗𝑡 ¨ pspv

𝑗

“ |𝜆𝑗𝑡| sp𝑗pcosp=𝑧𝑢 ´=𝜆𝑗𝑡q ´ cos=𝜆q

“ 2 |𝜆𝑗𝑡| sp𝑗 sin
𝑧𝑢
2
sinp=𝜆𝑗𝑡 ´ =𝑧𝑢

2
q

Clearly, Δ𝑓
𝑗𝑡pLq ą Δ𝑣

𝑗𝑡pLq ðñ =𝜆𝑗𝑡 ă =𝑧𝑢
2

.
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Now, cot=𝜆𝑖𝑡 “ 𝐶𝐻𝐵𝐺`2𝑊𝑡𝑅𝑖𝑡

2𝑊𝑡𝑋𝑖𝑡
“ 𝐶𝐻𝐵𝐺

2𝑊𝑡𝑋𝑖𝑡
` 1

𝑧𝑢
, which decreases when 𝑋𝑖𝑡 increases, or

equivalently, =𝜆𝑖𝑡 increases when 𝑍𝑖𝑡 increases. Now, 𝑍𝑖𝑡 is minimum (resp. maximum)

when 𝑖 “ 0 (resp. 𝑖 “ 𝑡). Hence, =𝜆𝑖𝑡 is minimum (resp. maximum) when 𝑖 “ 0 (resp.

𝑖 “ 𝑡). If =𝜆0𝑡 ď =𝑧𝑢
2
ă =𝜆𝑡𝑡, then there must exist a node 𝑡𝑐 P 𝒫𝑡 where =𝜆𝑖𝑡 changes

from less than
=𝑧𝑢
2

to greater than
=𝑧𝑢
2

. This node 𝑡𝑐 is the critical node which gives us

the partition 𝒩 𝑓
𝑡 “ t𝑖 P 𝒩 : 𝑖 ă𝑡 𝑡𝑐u and 𝒩 𝑣

𝑡 “ t𝑖 P 𝒩 : 𝑡𝑐 ĺ𝑡 𝑖u. Note that

@ 𝑖 P 𝒩 𝑓
𝑡 , =𝜆𝑖𝑡 ă =𝜆𝑡𝑐𝑡 and @ 𝑖 P 𝒩 𝑣

𝑡 , =𝜆𝑖𝑡 ě =𝜆𝑡𝑐𝑡.

Finally, if @ 𝑗 P 𝒩 , =𝜆𝑗𝑡 ă =𝑧𝑢
2

, then𝒩 𝑓
𝑡 “ 𝒩 and𝒩 𝑣

𝑡 “ H. If @ 𝑗 P 𝒩 , =𝜆𝑗𝑡 ą =𝑧𝑢
2

,

then 𝒩 𝑣
𝑡 “ 𝒩 and 𝒩 𝑓

𝑡 “ H.

As per the existing IEEE 1547 DER interconnection guidelines, if the voltages fall below

𝜈, then the DERs should disconnect from the network. Let us denote these defender DER

setpoints by pspd “ 0. Let
p𝜑0 :“ r0, 𝛾s be the defender “Disconnect-DERs" strategy when

pspd “ 0. Furthermore, let p p𝜓‹, p𝜑‹q be the optimal solution to ryADs. Let
p𝜑𝑐 (resp.

p𝜑𝑑) be

the defender strategies when defender set-points are as speci�ed by the centralized (resp.

distributed) strategy. Also, let
pℒ,

pℒ𝑑, and
pℒ0 be the optimal losses corresponding to the

strategy pro�les p p𝜓‹, p𝜑𝑐q, p p𝜓‹, p𝜑𝑑q, and p p𝜓‹, p𝜑0q, respectively. The following proposition

compares the performance of distributed control strategy with that of centralized control

strategy relative to the Disconnect-DERs strategy.

Proposition 15.
pℒ𝑑 ´ pℒ0

pℒ𝑐 ´ pℒ0

ě cos

ˆ
=𝑧𝑢
2

˙
, (3.56)

where 𝑧𝑢 is the impedance per unit length.

Proof. Under the distributed control strategy, node 𝑖 contributes to either frequency reg-

ulation or voltage regulation, depending upon which contribution is larger, i.e., 𝜆𝑖𝑡. psp𝑐𝑖 “
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maxp𝜆𝑖𝑡. pspf
𝑖, 𝜆𝑖𝑡. pspv

𝑖 q. Now, node 𝑖 P 𝒩 𝑓
𝑡 if

𝜆𝑖𝑡 ¨ pspf
𝑖 ě 𝜆𝑖𝑡 ¨ pspv

𝑖

ðù |𝜆𝑖𝑡| sp𝑖 cosp=𝜆𝑖𝑡q ě |𝜆𝑖𝑡| sp𝑖 cosp=𝑧𝑢 ´=𝜆𝑖𝑡q
ðù cosp=𝜆𝑖𝑡q ě cosp=𝑧𝑢 ´=𝜆𝑖𝑡q

Also, if cosp=𝜆𝑖𝑡q ě cosp=𝑧𝑢 ´ =𝜆𝑖𝑡q, then cosp=𝜆𝑖𝑡q ě maxpcosp=𝜆𝑖𝑡q, cosp=𝑧𝑢 ´
=𝜆𝑖𝑡qq ě cosp=𝑧𝑢

2
q. Hence,

pℒ𝑑 ´ pℒ0

“ ř
𝑖P𝒩 maxp𝜆𝑖𝑡 ¨ pspf

𝑖, 𝜆𝑖𝑡 ¨ pspv
𝑖 q

“ ř
𝑖P𝒩 |𝜆𝑖𝑡| sp𝑖maxpcosp=𝜆𝑖𝑡q, cosp=𝑧𝑢 ´=𝜆𝑖𝑡qq

ě ř
𝑖P𝒩 |𝜆𝑖𝑡| sp𝑖 cosp=𝑧𝑢

2
q

“ cosp=𝑧𝑢
2
qř𝑖P𝒩 𝜆𝑖𝑡 ¨ psp𝑐𝑖 “ cosp=𝑧𝑢

2
qp pℒ𝑐 ´ pℒ0q.

3.8 Case study

We present a simple case study to illustrate the main aspects of our distributed control

approach. We consider the 14 node radial network illustrated in Figure 3-10. Each node

represent a DER connected to loads. The DERs are heterogeneous (please refer to cap-

tion of Fig. 3-10). We assume that the DER units closer to the substation are owned by

the utility, and these units possess larger power injection capacities. On the other hand,

downstream DERs (e.g., roof-top PVs) are smaller in their capacities, and are owned by

users. As we have shown in Sec. 3.6, attacks on the downstream nodes cause larger voltage

deviations, while attacks to the larger generators primarily impact the frequency devia-

tions, independent of their location.

The test circuit is homogeneous, i.e., all the lines and loads have similar physical prop-

erties. The impedance per unit length for all lines is 𝑧𝑢 “ 0.1` 0.3j Ω{𝑘𝑚, and nominal

power demand is scnom𝑖 “ 25 𝑘𝑊 ` j7.5 𝑘𝑣𝑎𝑟. DERs supply 50% of the total demand.
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Figure 3-10: Tree topology of heterogeneous 14 nodes. The attacker selects nodes 1, 5
and 6. Using our proposed distributed control strategy, the DERs cooperatively react to

the attacker’s strategy: nodes 2, 9, 10, 11, 12, 13, 14 contribute toward reducing frequency

deviation, whereas, nodes 3, 4, 7, 8 contribute toward maintaining voltage regulation.

The maximum apparent power that generator 𝑖 can produce is sp𝑖 “ 20.7 𝑘𝑉 𝐴 for i=1,2;

14.6 𝑘𝑉 𝐴 for i=3,4,9,10; and 11.8 𝑘𝑉 𝐴 otherwise. The voltage at each node is constrained

to be within 0.95 and 1.05 p.u. Frequency should be maintained above 59.7 Hz (assuming

nominal frequency to be 60 𝐻𝑧) to avoid the LAARS (Load Acting As Resource) tripping.

The bulk generator parameters are M “ 5 𝑠, D “ 5𝑥10´4 𝐻𝑧{𝑘𝑊 , KP “ 5.1, KI “ 2 s.

𝐶 “ 1000 and @ 𝑖 P 𝒩 , 𝑊𝑖 “ 70, where 𝐶 and 𝑊 are the weights for LOFR and LOVR,

respectively.

An attacker compromises the set point information delivered by the control center

after 1000 𝑠, and simultaneously modi�es the setpoints to DERs attached to nodes 1, 5

and 6. The attack causes a frequency and voltage deviation that activates the contingency

response. Note that 𝐶 ą 𝑊 , i.e., frequency regulation is a priority. Using the exchange

of information between DERs about the node voltages described in section 3.6, the worst-

a�ected node 𝑡 is determined to be node 6. Also, we �nd the critical node 𝑡𝑐 “ 3, which

results in the partition of non-compromised nodes as shown in �gure 3-10. As a conse-

quence, nodes 3, 4, 7, 8 start contributing to voltage regulation, and 2, 9, 10, 11, 12, 13, 14

to frequency regulation, as depicted in Figures 3-10 and 3-11. Further, cos =𝑧𝑢
2
“ 0.937.

Hence, Proposition 15 implies that the distributed control strategy performs at least as

good as 86.7% compared to the centralized control strategy.

The minimum voltage level and the grid frequency dynamics are illustrated in Fig-

ure 3-12 for the case without a defense action, i.e., maintaining the nominal set points,

and with the defender response. Note that frequency deviation is rapidly driven to zero
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Figure 3-11: Apparent power set points from the OPF (left) and after the attack (right).

According to the proposed distributed control strategy, each DER either contributes to

voltage regulation or toward reducing frequency deviation.
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Figure 3-12: Dynamic response of the voltage in node 6 and the bulk generator frequency.

An attack occurs at 𝑡 “ 2000 s.

using the centralized and distributed strategies. However, due to the trade-o� between

frequency and voltage regulation, the voltage levels are lower than without any defense

action. Depending on the system operator requirements, the selection of𝐶 and𝑊 will de-

termine the priority to voltage or to frequency regulation. Figures 3-11 and 3-12 compare

the performance of centralized and distributed control strategies. Clearly, the solution

obtained with the centralized strategy performs better than the distributed one, but it re-

quires the central control to process all the information from the entire network. However,

the new set-points may also been compromised. On the other hand, using the proposed

distributed method results in a simple solution where each node only needs to decide to

contribute to frequency or to voltage regulation based on knowing the worst node loca-

tion, which is found using a local communication network. Due to the fact that set-points

are prede�ned, it does not require to solve any optimization problem.
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Chapter 4

Resilience-aware Optimal Power Flow

In the previous chapter, we considered a DN model with an in�nite bus, i.e. the voltage

at the substation node remains constant. However, any supply-demand disturbances in a

DN will lead to change in the substation voltage as well as the system frequency. In this

chapter, we relax the in�nite bus assumption, and allow these parameters to change.

We introduce the Resilience-Aware Optimal Power Flow (RAOPF) problem, and discuss

its relevance to optimal allocation and dispatch of contingency resources in the face of

cyber-physical failures in electricity distribution networks. Our contribution is motivated

by the need to adapt (and extend) the classical Security Constrained Optimal Power Flow

(SCOPF) problem [5, 91] to the contingencies resulting from targeted compromise (attack)

of remotely accessible nodes in distribution networks (DNs), for e.g., security attacks to

DERs or electric vehicle (EV) charging facilities. We model DN as a radial network with

bulk generator (BG) at the substation node as well as spatially distributed DERs. We as-

sume that the BG has a �nite ramp rate; thus, regulation of system frequency becomes

relevant in our formulation (in addition to voltage regulation).
1

The RAOPF problem pro-

vides optimal dispatch of DERs and optimal shedding of controllable loads to limit the

cost of maintaining regulation objectives during attack-induced contingencies.

The underlying challenge that motivates for our work is optimal resource allocation

to improve resilience of DNs to simultaneous component failures that can lead to con-

tingency events. We view DERs and controllable loads as resources that can be used

1
Thus, our formulation is especially relevant to resiliency issues in isolated microgrids.
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(dispatched) after the contingency events. For a given attack (or a compromised set of

components), we say that a resource allocation is more resilient than another if an appro-

priately de�ned post-contingency cost (weighted sum of network costs and the cost of

load control) is less than the cost in the latter case. Furthermore, we say that a resource

allocation is optimal if it minimizes the sum of cost of resource allocation and the “worst-

case” post-contingency cost under a set of failure scenarios. To capture these properties,

we formulate a three-stage optimization problem with network and resource constraints

to evaluate the total cost for a range of resource allocation strategies under security at-

tacks to the DN nodes. We call this formulation as RAOPF to emphasize the resiliency

improving aspect of the resulting allocation. Our solution illustrates important trade-o�s

in allocating spatially distributed resources by accounting for the nature of their contri-

bution (active vs. reactive power) and their spatial location (upstream vs. downstream).

The RAOPF problem is constrained by the power �ow equations which are physi-

cal laws and, therefore, must be satis�ed. The other constraints include technological

speci�cations of BG (droop characteristics), DERs (apparent power capability, active and

reactive power setpoints), EV facilities (charging rate), and loads (controllable versus non-

controllable parts). Finally, the operating constraints, which model the frequency and

voltage regulation as well as line capacities, are imposed in the nominal mode. However,

one or more of these operating constraints may be violated as a result of an adversarial

action of the attacker; in our formulation, such violations result in a contingency. Thus,

we view a contingency as a sudden, unplanned incident caused due to failure of one or

more components that has a direct e�ect on the operating constraints of the DN [22].

To prevent or limit the impact of contingencies, we allow DERs to be allocated at the

nodes of the DN, in addition to the supply by the BG; see Figure 4-1. Any point on the

supply-demand balance line is a resource allocation that determines the amount of power

supplied by the BG and the amount of power supplied by the DERs. If the controllable

loads are also curtailed, then the supply-demand line shifts inwards due to reduction in

aggregate demand. In our formulation, the capacity of an energy resource (BG or the

DERs) in excess of the power supplied by the resource determines the reserves provided

by that energy resource.

142



Resource
allocation

BG supply

Supply-demand
Balance

Flexible
Loads

Supply

Reserves

Total
capacity

DERs

Supply Reserves

Figure 4-1: An illustration of power allocation through a BG and spatially distributed

DERs.

In the post-contingency situation, violations of operational constraint(s) must be con-

tained by the system operator (SO). If such violations are not resolved in a timely manner,

additional components may fail, which can result in new contingencies. For example, sig-

ni�cant loss of DER supply in highly loaded DNs may result in a drop in node voltages

below a critical threshold causing other supply sources to trip, potentially resulting in

a network e�ect (or cascade) [101]. Thus, planning for su�cient resources is essential

so that the SO is able to meet regulation objectives in contingency situations. Typically,

these objectives include voltage regulation (VR), frequency regulation (FR), and capacity

management (CM) [30]. In particular, lack of adequate active power resources can cause

loss of frequency regulation, and the scarcity of reactive power resources can lead to volt-

age �uctuations. In addition, in many situations, the capacity of one or more lines limits

the reallocation of power that is needed to serve demand during contingencies [22, 35].

These factors have been identi�ed as crucial for resilience of electricity grids [9, 22, 131],

and are poised to become signi�cant even for DNs.

In recent years, thanks to technological improvements and reduced cost of deploy-

ment, DERs have emerged as a promising solution for provision of reserves; in particular,

by means of active and reactive power control [30, 128]. These functionalities are enabled

by the appropriate power electronics and allow the DERs to respond to a range of �uc-
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tuations in a fast manner (order of milliseconds) as opposed to the slower response via

traditional means, which is typically in the order of few seconds to few minutes. Thus,

allocation of DERs as reserves to facilitate fast response for meeting regulation objectives

is an important problem in its own right; in this work, we instantiate this problem in the

context of DN resilience.

Our work is also motivated by the SCOPF formulation which is used for contingency

planning in transmission networks. In many transmission systems, the SOs solve some

form of the SCOPF problem for the operational planning and dispatch by considering a

given (a priori known) set of reliability failures [33]. By solving SCOPF, the SO is able to

compute a resource allocation strategy which allows for timely response to any contin-

gency resulting from these reliability failures. [5, 21, 91]. The idea behind our formulation

is similar to SCOPF; the main distinction is that we capture the contingency situations re-

sulting from the action of a strategic attacker to DN components.

We argue that the RAOPF problem can be used by the SO to compute the optimal re-

source allocation as well as response for DNs under strategic disruptions of supply/demand

nodes. The problem is challenging because the individual objectives VR, FR and CM are

not exactly aligned with each other. As a result, there are tradeo�s in the optimal resource

allocation, which our modeling framework captures. Admittedly, the focus of RAOPF is

limited to adversarial compromise of supply/demand DN nodes, and its extension to all

possible N-k contingencies is an open question.
2

Still, RAOPF provides important insights

regarding the structure of the optimal attack and the SO’s strategies (both allocation and

dispatch of reserves).

We formulate the RAOPF problem as a Stackelberg Game consisting of three levels

(stages). The upper level (Stage 0) problem represents the SO’s problem of resource allo-

cation for optimal power �ow and planning of reserves in anticipation of an attack. The

middle level (Stage 1) problem represents a contingency model that captures the impact

of attacker-induced failures on the aggregate supply-demand balance. In the lower level

(Stage 2) problem, the SO controls available reserves to utilize the existing reserves, and

2
If we explicitly enumerated all N-k contingencies, the number of constraints will increase exponentially

with 𝑁 and k. For example, with 𝑁 “ 100 and k “ 10, the number of constraints will be of order 1013,

which makes the problem computationally hard.
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if required, also impose load shedding. In the last two stages of the game, the objec-

tive of the attacker (resp. SO) is to maximize (resp. minimize) the post-contingency cost

(i.e. weighted sum of cost incurred due to violation in VR, FR, and CM) and cost of load

shedding subject to constraints due to power �ow, and DER/load models. In the Stage 0,

the SO’s objective is to minimize the sum of cost of resource allocation and the maximin

post-contingency cost.

The decisions in each of the three stages can be summarized as follows:

– Stage 2: Given a �xed reserve allocation and a �xed contingency, what is the optimal

SO response in terms of dispatch of available resources (and load shedding)?

– Stage 1: Given a �xed reserve allocation, and the assumed attacker model, what is

the optimal attack that maximizes the post-contingency cost, assuming the SO will

respond optimally?

– Stage 0: What should be the optimal allocation of supply resources across the BG and

DERs, assuming the optimal strategies of the attacker and the SO in stages 1 and 2,

respectively?

In Sec. 4.1, we introduce our DN model and operating constraints. Then, in Sec. 4.2,

we formulate the last two stages of the RAOPF problem as a bilevel optimization problem.

Next, in Sec. 4.2, we present our computational approach to the bilevel problem, and eval-

uate its performance with the help of a case study. In Sec. 4.3, we append the Stage 0 to the

bilevel problem and present the complete formulation of the RAOPF problem. Develop-

ing a computationally tractable solution approach to the RAOPF formulation is part of our

ongoing work (and thus, it is beyond the scope of this contribution); however, we present

a few insights on the optimal attacker strategy, and also discuss the main trade-o�s faced

by the SO in minimizing the post-contingency cost. These tradeo�s directly in�uence the

qualitative structure of SO’s resource allocation strategy. While the allocation strategies

that we consider not necessarily optimal (in the sense of our RAOPF problem), we argue

that their qualitative structure is relevant for construction of optimal allocation strategy.
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4.1 Network model with “�nite” substation bus

In this section, we �rst introduce the basic notations in our network model and de�ne

the state variables. Then, we describe the operating constraints, namely the power �ow

equations and operating limits. These constraints also include approximate models that

relate the deviations in the frequency and nodal voltages in pre- and post-contingency

modes (i.e., before and after an adversarial compromise).

Radial distribution network model

We build on the classical model for radial DNs [41, 113, 130] ; see Table 3.1 for notations.

Consider a tree network of nodes and distribution lines 𝒢 “ p𝒩 Ťt0u, ℰq, where 𝒩
denotes the set of all DN nodes. The substation node is labeled as 0. Let 𝑁 :“ |𝒩 |. A

distribution line connecting node 𝑗 to its parent node 𝑖 in the tree network is denoted

p𝑖, 𝑗q P ℰ . Each distribution line p𝑖, 𝑗q P ℰ has a complex impedance z𝑗 “ r𝑗 ` jx𝑗 , where

r𝑗 ą 0 and x𝑗 ą 0 denote the resistance and inductance of the line p𝑖, 𝑗q, respectively,

and j “ ?´1.

We distinguish between two modes, denoted 𝜂 P t𝑜, 𝑐u, where 𝑜 and 𝑐 denote the pre-

and post- contingency modes, respectively. The state vector in mode 𝜂, denoted x𝜂 P R4𝑁
,

is de�ned as:

x𝜂 :“
”
𝑝𝑐𝜂, 𝑞𝑐𝜂, 𝑝𝑔𝜂, 𝑞𝑔𝜂

ı
,

where 𝑝𝑐𝜂𝑗 and 𝑝𝑔𝜂𝑗 (resp. 𝑞𝑐𝜂𝑗 and 𝑞𝑔𝜂𝑗 ) denote the active (resp. reactive) power consump-

tion and generation at node 𝑗. For a given mode 𝜂, let 𝑃 𝜂
𝑗 and 𝑄𝜂

𝑗 denote the active and

reactive power �owing from node 𝑖 to node 𝑗 on the line p𝑖, 𝑗q P ℰ ; 𝑉 𝜂
𝑖 denote the voltage

magnitude of node 𝑖; see power �ow equations in (4.1) below. Throughout this chapter,

x𝜂, 𝑉 𝜂, 𝑝𝑐𝜂, 𝑞𝑐𝜂, 𝑝𝑔𝜂, 𝑞𝑔𝜂, 𝑃 𝜂, 𝑄𝜂
are row vectors of appropriate dimensions.

In our model, the BG is connected to the substation node 0, and any other node 𝑖 P
𝒩 zt0u may or may not have a DER connected to it. Let 𝑓 𝜂0 denote the frequency of the

BG, and 𝑓 𝜂𝑖 denote the frequency of DER at node 𝑖. Throughout, we will assume that the

frequencies of individual DERs are synchronized with that of the BG, i.e. 𝑓 𝜂𝑖 “ 𝑓 𝜂0 . Thus,

we refer the BG frequency as the system frequency, and drop the subscript 0 in 𝑓 𝜂0 . We
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will nominally assume that 𝑓𝑛 “ 60 Hz and 𝑉 𝑛
0 “ 1 pu in the pre-contingency mode.

Constraints

The constraints in our network model comprise of the power �ow equations, voltage/frequency

deviation models, operating limits in the pre-contingency mode, and models of generators

(BG and DERs) and loads (EV and non-EV components).

Linear Power Flows (LPF): For a state x𝜂, the standard LPF model can be written

as [41, 53]:

𝑃 𝜂
𝑗 “

ÿ

𝑘:p𝑗,𝑘qPℰ
𝑃 𝜂
𝑘 ` 𝑝𝑐𝜂𝑗 ´ 𝑝𝑔𝜂𝑗 @ 𝑗 P 𝒩 , 𝜂 P t𝑜, 𝑐u (4.1a)

𝑄𝜂
𝑗 “

ÿ

𝑘:p𝑗,𝑘qPℰ
𝑄𝜂
𝑘 ` 𝑞𝑐𝜂𝑗 ´ 𝑞𝑔𝜂𝑗 @ 𝑗 P 𝒩 , 𝜂 P t𝑜, 𝑐u (4.1b)

𝑉 𝜂
𝑗 “ 𝑉 𝜂

𝑖 ´ r𝑗𝑃
𝜂
𝑗 ´ x𝑗𝑄

𝜂
𝑗 @ p𝑖, 𝑗q P ℰ , 𝜂 P t𝑜, 𝑐u (4.1c)

Here, (4.1a) (resp. (4.1b)) is the active (resp. reactive) power conservation equations; (4.1c)

relates the voltage drop and the power �ows. We will use the notation 𝒳 𝑛
and 𝒳 𝑐

to

denote the sets of states that satisfy (4.1) for 𝜂 “ 𝑜 and 𝜂 “ 𝑐, respectively.
3

Frequency and voltage deviation models: In our model, the ramp rate of BG

is a limiting factor and impacts the deviation in system frequency as well as the devia-

tion in nodal voltages between pre- and post-contingency modes. Following [10, 26], the

change in frequency and substation voltage from the pre-contingency state x𝑛 to post-

contingency state x𝑐 are related as follows:

𝑓𝑛 ´ 𝑓 𝑐 “ ´𝑓𝑟𝑒𝑔 p𝑃 𝑛
0 ´ 𝑃 𝑐

0 q (4.2a)

𝑉 𝑛
0 ´ 𝑉 𝑐

0 “ ´𝑉 𝑟𝑒𝑔 p𝑄𝑛
0 ´𝑄𝑐

0q , (4.2b)

where 𝑓𝑟𝑒𝑔
is the frequency regulation (or droop) constant of the BG that captures the

change in frequency (in Hz) per unit additional active power supplied into the substation

node, and 𝑉 𝑟𝑒𝑔
is the voltage regulation constant of the BG that captures the per unit

3
Note that, in this contribution, we used the LPF model for the sake of simplicity and computational

tractability. However, our main ideas are also relevant to DN with nonlinear power �ows.
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change in voltage per unit additional reactive power supplied into the substation node.

Operating limits: Let 𝑓𝑚𝑖𝑛
𝑖 and 𝑓𝑚𝑎𝑥

𝑖 denote the (given) allowable lower and upper

bounds within which the system frequency should operate for the DER at node 𝑖, and

de�ne f :“ max𝑖P𝒩 𝑓𝑚𝑖𝑛
𝑖 and f :“ min𝑖P𝒩 𝑓𝑚𝑎𝑥

𝑖 . Similarly, let V𝑖 and V𝑖 denote the

lower and upper bounds within which the voltage at node 𝑖 should be maintained. Finally,

let S𝑗 denote the maximum power carrying capacity of line p𝑖, 𝑗q.
Now, we can state the operating limits for the pre-contingency state x𝑛:

f ď 𝑓𝑛 ď f (4.3a)

V𝑖 ď 𝑉 𝑛
𝑖 ď V𝑖 @ 𝑖 P 𝒩 (4.3b)

`
𝑃 𝑛
𝑗

˘2 ` `
𝑄𝑛
𝑗

˘2 ď S𝑗
2 @ 𝑗 P 𝒩 s.t. p𝑖, 𝑗q P ℰ (4.3c)

where (4.3a) and (4.3b) specify the lower and upper bounds for the system frequency and

nodal voltages, and (4.3c) models the capacity of the distribution lines.

In principle, similar regulation requirements can also be stated for the post-contingency

state x𝑐. However, in our framework the post-contingency state is a result of attacker-

SO interaction and thus, cannot be expressed explicitly. Thus, we choose to model the

worst-case contingency (see Sec. 4.2) and consider violations in operating limits in the

post-contingency mode as costs (as opposed to constraints).

Bulk Generator and DERmodel: Let 𝑠𝑔𝑖 :“ 𝑝𝑔𝑖` j𝑞𝑔𝑖 denote the complex power

supplied by the generator at the node 𝑖, where 𝑝𝑔𝑖 and 𝑞𝑔𝑖 denote the active and reactive

power components. The generator output is constrained as follows:

𝑠𝑔𝑖 P 𝒮𝑖,

where 𝒮𝑖 is assumed to be a convex set [28, 130]. We consider the following convex sets

as candidates for 𝒮𝑖:

𝒮𝑐𝑖𝑟𝑐𝑖 :“ tp𝑝, 𝑞q | 0 ď 𝑝 ď pg𝑖,qg𝑖 ď 𝑞 ď qg𝑖, 𝑝
2 ` 𝑞2 ď sg𝑖

2u, or (4.4)

𝒮𝑝𝑜𝑙𝑦𝑖 :“ tp𝑝, 𝑞q | 0 ď 𝑝 ď pg𝑖,qg𝑖 ď 𝑞 ď qg𝑖, 𝐴
𝑝
𝑖 𝑝` 𝐴𝑞𝑖 𝑞 ď 𝑏𝑖u, (4.5)

148



where pg𝑖 denotes the maximum active power bound for the DER output, and qg
𝑖
, qg𝑖

denote the minimum and maximum reactive power bounds. Note that if node 𝑖 has no

DER, we can conveniently choose sg𝑖 “ 0. Finally, we denote the set of feasible set-points

for all the generators (i.e., BG and DERs) by 𝒮 :“ś
𝑖P𝒩 𝒮𝑖.

Load models: For the sake of illustration, we consider that Electric Vehicles (EVs)

connected to the DN are the only nodes vulnerable to compromise by the attacker. With-

out loss of generality, we assume that each node has an EV load and a non-EV load. For

the mode 𝜂, let 𝑠𝑒𝜂𝑖 and 𝑠𝑛𝜂𝑖 denote power consumed by the EV and non-EV load at node 𝑖.

Then, the total power consumed, 𝑠𝑐𝜂𝑖 can be written as:

𝑠𝑐𝜂𝑖 “ 𝑠𝑒𝜂𝑖 ` 𝑠𝑛𝜂𝑖 . (4.6)

Next, we introduce non-EV and EV load models.

Non-EV load model: We assume that non-EV loads are constant power loads.
4

Let sn𝑖

denote the nominal demand of non-EV load at node 𝑖. However, to maintain the operating

limits of the DN in the post-contingency mode, we allow the SO to shed a part of nominal

load. This �exibility is modeled by introducing a parameter 𝛽𝜂𝑖 P r0, 𝛽𝑖s, where 𝛽𝑖 P r0, 1s
denotes the maximum load control capability at the node 𝑖. As an example, 𝛽𝑖 “ 0.1

would mean that a maximum of 10% of the non-EV load at node 𝑖 can be shed. Thus, the

actual power consumed by the non-EV load can be expressed as follows:

𝑠𝑛𝜂𝑖 “ p1´ 𝛽𝜂𝑖 qsn𝑖. (4.7)

For simplicity, we also assume that the SO ful�lls all non-EV demand in the pre-contingency

mode, i.e. 𝛽𝑛𝑖 “ 0 @ 𝑖 P 𝒩 .

EV load model: Typically, EV loads are modeled as constant power loads. For simplic-

ity, we only allow two charging rates for each EV; viz. slow and fast. Let 𝒮𝑒𝑖 “ tse𝑖, se𝑖u
denote the set of charging rates of EV at node 𝑖, where se𝑖 (resp. se𝑖) is the slow (resp.

4
More generally, non-EV loads can be modeled using the constant impedance (Z), constant current (I),

constant power (P) or a general ZIP model. The non-EV power consumption can also change due to fre-

quency deviations. Our network model can be extended to include these general load models.
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fast) charging rate of EV at node 𝑖. Thus, the power consumed by the EV load is given by:

𝑠𝑒𝜂𝑖 “ 𝛿𝜂𝑖 se𝑖 ` p1´ 𝛿𝜂𝑖 qse𝑖, (4.8)

where the binary variable 𝛿𝜂𝑖 “ 0 (resp. 𝛿𝜂𝑖 “ 1) indicates the slow (resp. fast) charging

rate.

Henceforth, we will limit our attention to attacker-induced compromise of EVs, i.e.

we focus on a scenario in which a subset of EVs can be simultaneously compromised

by an external adversary to induce the contingency mode. Before moving further, we

want to emphasize that we selected the speci�c scenario of attack to EVs for the sake

of concreteness. Indeed, our approach can be adopted to other scenarios that require

resource allocation and dispatch on part of the SO to resolve the supply-demand imbalance

created as a result of cyber-physical failures (attack).

4.2 Bilevel problem

In this section, we describe the attacker-SO interactions during the contingency caused

by compromise of vulnerable EV loads. Speci�cally, we consider the contingency caused

by a simultaneous compromise of EV loads from low to high charging rates which results

in a sudden increase in the aggregate demand [13]. The attacker selects the EVs in a

targeted manner to induce violations in one or more operating limits, which can result

in an increased cost of regulation for the SO in the post-contingency mode. To limit this

cost, the SO responds by dispatching the DERs as contingency reserves, and if necessary,

by exercising load control. Thus, the attacker’s (resp. SO’s) objective is to maximize (resp.

minimize) the post-contingency cost (sum of attacker-induced network operating costs

and forced /load shedding).

We model the attacker-SO interaction as a sequential game in which, the attacker

moves �rst, and the SO responds next. We now describe these stages in detail.

Attack stage: Let 𝒟k
:“ t𝛿 P t0, 1u𝒩 | ř𝑖P𝒩 𝛿𝑖 ď ku denote the set of feasible

strategies of a resource-constrained attacker. In our model, the attacker chooses a subset

of EVs to compromise, and sets their rate of charging to 𝛿𝑎 P 𝒟k. Here, 𝛿𝑎𝑖 “ 1 means
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that EV at node 𝑖 is compromised and starts charging at the faster rate; 𝛿𝑎𝑖 “ 0 implies

otherwise. The attacker’s action is constrained as follows:

ÿ

𝑖P𝒩
𝛿𝑎𝑖 ď k, (4.9)

where (4.9) states that at most k EV nodes are compromised. Recalling (4.8), we know

that the attacker’s action determines the e�ective charging rates in the post-contingency

mode:

𝛿𝑐 “ 𝛿𝑎. (4.10)

The resource constraint (4.9) on attacker’s action captures his limited capability in

compromising spatially distributed EVs. We justify this constraint in the following way:

First, the EV nodes are likely to be heterogeneous in their design and manufacturer type.

The attacker may not have speci�c attack paths for each EV type. Second, the process

of EV integration with DNs is gradual in nature, and there aren’t any security regula-

tions that the EV facilities must implement. Some of them may install intrusion preven-

tion/detection tools to safeguard the software controlling the charging rate and/or pre-

venting the EVs from over-charging; however, the remaining facilities will remain vulner-

able. Third, certain electric cars may have a buggy control software that is vulnerable to

a virus, which can compromise certain types of EV facilities [98]. Hence, the number of

facilities that could be compromised simultaneously may be proportional to the number

of electric cars with the buggy control software.

Without much loss of generality, we assume that the EVs when fully charged do not

remain connected to the DN and, hence, are not vulnerable to attack; i.e., the attacker

only targets the EVs that are not fully charged. As a consequence, we do not include the

state-of-charge constraints of the EVs in our model. Furthermore, to induce the maximal

impact in the post-contingency mode, the attacker will only target EVs that were charging

at the slow rate in the pre-contingency mode. Hence, for simplicity, we can assume that

for all EV nodes, 𝛿𝑛𝑖 “ 0 in (4.8), i.e. 𝑠𝑒𝑛𝑖 “ se𝑖.

Note that attacks to other components (e.g., DERs, non-EV loads) can be modeled

in a similar manner. For e.g., in our previous work [111, 113], we considered attacks
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that manipulated DER setpoints. Thus, while the speci�c channel of attack might vary

across di�erent scenarios, the net e�ect is change in network state between pre- and

post-contingency modes (to see this, notice how (4.6)-(4.8) and (4.10) a�ect (4.1) and (4.2)).

Also note that, although issues such as reverse power �ows and overvoltages do not arise

in our model, they may become relevant in other scenarios, for e.g., when the attacker

introduces sudden disconnection of loads or simultaneously turns a large number of EVs

to slow charging rate. We expect that even in such scenarios, the basic nature of attacker-

SO interaction will be similar to our model.

SO response stage: Let 𝒰 :“ 𝒮 ˆ Γ, where Γ :“ ś
𝑖P𝒩 r0, 𝛽𝑖s. In our model,

the SO responds to attacker actions by choosing the set-points of the non-compromised

DERs and, if needed, impose load curtailment at one or more nodes according to a strat-

egy

”
𝑠𝑔𝑐, 𝛽𝑐

ı
“: 𝑢 P 𝒰 . Essentially, the SO chooses new set-points 𝑠𝑔𝑐 of non-

compromised DERs, and load control parameters 𝛽𝑐 to reduce the post-contingency cost.

These choice variables are captured by strategy vector 𝜑.

We make the standard assumption that the SO knows the nominal non-EV (sn) and EV

demand (se). Additionally, we assume that, the SO has full observability of network state;

this can be achieved by continuously monitoring nodal voltages. Under this assumption,

the SO can determine the identity of compromised EVs and use this knowledge to com-

pute the optimal response to attack. Relaxing this assumption would entail designing SO

response with imperfect state information. While this issue is of practical relevance, we

do not pursue it here.

For a �xed resource allocation in the pre-contingency mode (i.e., for given x𝑛), we

can now represent attack and SO response stages in the following maximin (or bilevel)

formulation as follows:

rMaxmins ℒpx𝑛q :“ max
𝛿𝑎P𝒟

k

min
𝑢P𝒰

𝐶losspx𝑛, x𝑐p𝛿𝑎, 𝑢qq

s.t. p4.1q, p4.2q, p4.6q - p4.8q, p4.10q
(4.11)

Here, we model the post-contingency cost as a sum of the cost due to voltage bound

violation (𝐶VR), the cost due to frequency bound violation (𝐶FR), and the cost due to load
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control:
5

𝐶loss
:“ 𝐶VR ` 𝐶FR ` 𝐶LC (4.12a)

𝐶VRpx𝑛, x𝑐q :“ WVR max
𝑖P𝒩

max
`
V𝑖 ´ 𝑉 𝑐

𝑖 , 𝑉
𝑐
𝑖 ´V𝑖, 0

˘
(4.12b)

𝐶FRpx𝑛, x𝑐q :“ WFRmax
`
f ´ 𝑓 𝑐, 𝑓 𝑐 ´ f , 0

˘
(4.12c)

𝐿LCpx𝑛, x𝑐q :“ W
LC ¨ 𝛽𝑐, (4.12d)

where WVR and WFR denote the coe�cients assigned to the voltage and frequency regu-

lation objectives, and the vector W
LC P R𝑁

` represents the cost of unit load shedding after

the contingency. Note that, in (4.12b), the cost of voltage regulation is the de�ned as the

maximum voltage bound violation over all nodes.

Although the rMaxmins problem does not consider nonlinear power �ow, it turns

out that optimal value of this problem is a lower bound of the maximin loss in the post-

contingency mode under nonlinear power �ows [19]. Furthermore, under certain addi-

tional assumptions, we can also use solution to the [Maxmin] problem for an appropriately

modi�ed LPF model to upper bound the maximin loss. For more details on establishing

these bounds, we refere the reader to [19].

Greedy heuristic approach for rMaxmins problem
We now focus on solving the rMaxmins problem which is a bilevel mixed integer linear

program with the inner problem being a linear program. A standard approach to solving

such problems is the KKT-based reformulation approach which gives a single level mixed-

integer linear program (MILP) [92, 142, 145]. In principle, the MILP reformulation can be

used to solve the rMaxmins problem for small-sized networks. However, scaling this

approach to larger networks is not straightforward, and entails �nding reasonable upper

bounds on the Lagrange multipliers in the KKT conditions. In our previous work [111,

113], we have investigated an alternative approach which exploits the properties of linear

power �ows on radial networks to develop a greedy heuristic that is scalable to large-

5
For simplicity, we only focus on voltage and frequency regulation, and do not consider congestion

management (CM) as a regulation objective. That is, we assume that constraints (4.3c) will not be active.
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sized networks. We apply this heuristic to the [Maxmin] problem. With the help of a case

study, we also compare the results obtained from this heuristic with those obtained by the

KKT-based MILP reformulation approach and brute force (when possible).

Before proceeding further, we need to introduce some additional notation. For any

0 𝑎 𝑏 𝑐 𝑖 𝑚

𝑒 𝑑 𝑘

𝑔 𝑗

Figure 4-2: Precedence description of the nodes for a tree network. Here, 𝑗 ă𝑖 𝑘, 𝑒 “𝑖 𝑘,

𝑏 ă 𝑘, 𝒫𝑗 “ t𝑎, 𝑔, 𝑗u, 𝒫𝑖 X 𝒫𝑗 “ t𝑎u.

given node 𝑖 P 𝒩 , let 𝒫𝑖 be the path from the root node to node 𝑖. Thus, 𝒫𝑖 is an ordered

set of nodes starting from the root node and ending at node 𝑖, excluding the root node;

see Figure 4-2. We say that node 𝑗 is an ancestor of node 𝑘 (𝑗 ă 𝑘), or equivalently, 𝑘 is

a successor of 𝑗 i� 𝒫𝑗 Ă 𝒫𝑘. We de�ne the relative ordering ĺ𝑖, with respect to a “pivot"

node 𝑖 as follows:

- 𝑗 precedes 𝑘 (𝑗 ĺ𝑖 𝑘) i� 𝒫𝑖 X 𝒫𝑗 Ď 𝒫𝑖 X 𝒫𝑘.

- 𝑗 strictly precedes 𝑘 (𝑗 ă𝑖 𝑘) i� 𝒫𝑖 X 𝒫𝑗 Ă 𝒫𝑖 X 𝒫𝑘.

- 𝑗 is at the same precedence level as 𝑘 (𝑗 “𝑖 𝑘) i� 𝒫𝑖 X 𝒫𝑗 “ 𝒫𝑖 X 𝒫𝑘.

We de�ne the common path impedance between any two nodes 𝑖, 𝑗 P 𝒩 as the sum

of impedances of the lines in the intersection of paths 𝒫𝑖 and 𝒫𝑗 , i.e., 𝑍𝑖𝑗 :“
ř
𝑘P𝒫𝑖X𝒫𝑗

z𝑘,

and denote the resistive (real) and inductive (imaginary) components of 𝑍𝑖𝑗 by 𝑅𝑖𝑗 and

𝑋𝑖𝑗 , respectively. 𝑍,𝑅 and 𝑋 denote the corresponding matrices of appropriate sizes.

We can use the abovementioned notion of node precedence to describe the structure

of an optimal attack given a �xed SO action (or response).
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4.2.1 Optimal attack for �xed SO response

Following the standard approach [72, 102], we de�ne the master problem rMaxmin-as (re-

spectively, subproblem rMaxmin-ds) for �xed SO action 𝑢 P 𝒰 (respectively, �xed attacker

action 𝑑 P 𝒟k) as follows:

rMaxmin-as 𝑑‹p𝜑q P argmax
𝑑P𝒟

k

𝐶loss px𝑛, x𝑐p𝑑, 𝑢qq

s.t. p4.1q, p4.2q, p4.6q - p4.8q, p4.10q
rMaxmin-ds 𝑢‹p𝑑q P argmin

𝑢P𝒰
𝐶loss px𝑛, x𝑐p𝑑, 𝑢qq

s.t. p4.1q, p4.2q, p4.6q - p4.8q, p4.10q

Recall that the inner problem rMaxmin-ds is a linear program, whereas the outer prob-

lem rMaxmin-as is a mixed-integer program. We now focus on understanding the prop-

erties of the master problem which will help in developing a greedy heuristic for the

[Maxmin] problem.

For a �xed SO response, the cost of load control becomes constant. Hence, the post-

contingency cost, 𝐶loss, only comprises of 𝐶VR and 𝐶FR terms. We make three claims

which provide insights about the attacker’s optimal attack strategy. We refer the reader

to [111, 113] to gain intuition about formal proofs of these claims.

Let Δ𝑗p𝑓q denote the change in the system frequency due to an individual disruption

of EV at node 𝑗. Then, thanks to LPF model, if two EVs are identical, then the change in

system frequency due to individual disruption of the EVs will also be identical regardless

of the location of the EVs in the network:

Claim 1. 𝒮𝑒𝑗 “ 𝒮𝑒𝑘 ùñ Δ𝑗p𝑓0q “ Δ𝑘p𝑓0q.

Claim 1 implies that if the attacker focuses only on maximizing FR, then the attacker

has no preference between attacking one of the two identical EVs regardless of their lo-

cation in the network.

Now, with a slight abuse of notation, let Δ𝑗p𝑉𝑖q denote the change in the voltage at
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node 𝑖 due to an individual disruption of EV at node 𝑗. Our second claim is as follows: if

the EVs at node 𝑗 and 𝑘 are identical, and node 𝑗 is upstream of node 𝑘 relative to node 𝑖

(𝑗 ă𝑖 𝑘), then the impact on 𝑉𝑖 due to individual EV disruption at node 𝑗 will be smaller

than the impact due to individual EV disruption at node 𝑘, that is:

Claim 2. 𝒮𝑒𝑗 “ 𝒮𝑒𝑘 and 𝑗 ă𝑖 𝑘 ùñ Δ𝑗p𝑉𝑖q ă Δ𝑘p𝑉𝑖q.

Finally, let Δ𝐽p𝑉𝑖q (resp. Δ𝐽p𝑓q) denote the change in the voltage at node 𝑖 (resp.

system frequency) due to disruption of EVs at nodes 𝑗 P 𝐽 . Then, our third claim directly

follows from the linearity of LPF model:

Claim 3. Δ𝐽p𝑉𝑖q “
ř
𝑗P𝐽 Δ𝑗p𝑉𝑖q and Δ𝐽p𝑓q “

ř
𝑗P𝐽 Δ𝑗p𝑓q.

In summary, while voltage regulation is a�ected by both spatial structure and extent

of compromise, the frequency regulation is only a�ected by the latter factor.

4.2.2 Greedy Heuristic

Algorithm 7 Pivot node Algorithm

1: Calculate 𝑉 𝑛
(pre-contingency voltage pro�le).

2: for 𝑖 P 𝒩 do
3: for 𝑗 P 𝒩 do
4: Compute Δ𝑗p𝑉𝑖, 𝑓q
5: Sort 𝑗 s in decreasing order of Δ𝑗p𝑉𝑖, 𝑓q Ñ p𝜋1, . . . , 𝜋𝑁q Ź (Claims 1 and 2)

6: Set 𝐽‹𝑖 “ p𝜋1, ¨ ¨ ¨ , 𝜋kq by choosing �rst k nodes.

7: Calculate Δ𝐽‹𝑖
p𝑉𝑖, 𝑓q “

ř
𝑗P𝐽‹𝑖

Δ𝑗p𝑉𝑖, 𝑓q Ź (Claim 3)

8: end for
9: end for

10: Find 𝑖‹ “ argmax𝑘P𝒩
`
𝐿𝑘 `Δ𝐽‹𝑘

p𝑉𝑘, 𝑓q
˘

11: return 𝐽‹𝑖‹ .

Based on our claims in Sec. 4.2.1, we propose our the following greedy heuristic. (This

heuristic was �rst presented in [18].) But �rst, we need to introduce Algorithm 10 which

computes an optimal attack for a given (�xed) SO response, i.e., it solves rMaxmin-as.
Consider an arbitrary “pivot” EV as a candidate node targeted by the attacker, who

aims to maximize the weighted sum of losses due to voltage and frequency bound vi-

olations. (Again, since we are considering SO action as �xed, the cost of load control

can be ignored.) Thus, the attacker’s objective is maximize the a�ne function 𝐿𝑖 “
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WVRpV𝑖 ´ 𝑉 𝑐
𝑖 q ` WFRpf ´ 𝑓 𝑐q. Infact, for compromise of any pivot EV node, the re-

sulting e�ect on (or contribution to) 𝐿𝑖 can be computed very easily, thanks to the linear

power �ow assumption. Let this e�ect be denoted by Δ𝑗p𝑉𝑖, 𝑓q. Now, sort the EV nodes

in decreasing order of the e�ects on 𝐿𝑖 due to their individual disruptions Δ𝑗p𝑉𝑖, 𝑓q, and

pick the top k nodes.
6

Assuming that the attacker will target these k EV nodes, compute

the optimal SO response and the post-contingency loss.

Then, repeat the same procedure with a di�erent node as a pivot node. If the post-

contingency loss with the new node as the pivot node is higher, update the values for the

current best attacker strategy and the current best post-contingency cost. Iterate over the

remaining nodes and repeat the procedure until all the nodes are exhausted.

Now, we can propose our greedy heuristic (GH), which iterates between solving the

master problem (with �xed SO actions) and the subproblem (with �xed attacker actions),

with successively increasing maximin values of post-contingency losses. In the �rst it-

eration, �x the SO response to the pre-contingency values, i.e. 𝑠𝑔𝑐 “ 𝑠𝑔𝑛, 𝛽𝑐 “ 𝛽𝑛, and

compute the optimal attacker strategy as the solution of rMaxmin-as by implementing

the pivot node algorithm. Then, consider this attacker strategy as �xed, and compute

an optimal SO response as well as the post-contingency cost by solving rMaxmin-ds. In

the next iteration, consider the new SO response as �xed, and again compute the opti-

mal attacker strategy. Then, �xing the new attacker strategy, compute the optimal post-

contingency cost. If this cost is smaller than the previously computed post-contingency

cost, we terminate the heuristic. Otherwise, we continue to iterate between the master-

and the sub-problems until we get some attacker strategy twice. Since, the number of op-

timal attacker strategies is �nite, the greedy heuristic is bound to terminate. However, we

observe that the heuristic converges to optimality in few iterations. Indeed, we observed

that our heuristic provides optimal solutions in less than 5 iterations for medium sized

networks of size 37.

6
A similar pivot node algorithm is presented in [74].
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4.2.3 Evaluation of the greedy heuristic

We describe a set of computational experiments to evaluate the performance of the greedy

heuristic (GH) in solving the 2-stage subgame. Speci�cally, we compare the GH solu-

tion against the solutions obtained by the KKT approach mentioned at the beginning of

this section and also brute force (BF). We also evaluate the e�ect of weights on post-

contingency costs for a range of k values; see attacker’s resource constraint (4.9).
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Non EV nodes

Figure 4-3: Modi�ed IEEE 37 Node Network.

Network Setup. Our simulation setup is as follows: We consider a modi�ed IEEE

37 node network as shown in Figure 4-3. Each line has an identical impedance of z𝑗 “
0.01 ` 0.02j, and each node has one DER and one non-EV load. The set of feasible DER

setpoints is given by:

𝒮𝑝𝑜𝑙𝑦𝑖 “ t𝑝` j𝑞 | 𝑝 ě 0, ´𝑎 ď 𝑞 ď 𝑎, 4𝑝` 3𝑞 ď 5𝑎, 4𝑝´ 3𝑞 ď 5𝑎u,

where 𝑎 “ 0.04 is a parameter; see (4.5). In the slow-charging mode, each EV load is

𝑠𝑒𝑛𝑖 “ 2p1 ` 0.33jq𝑎. In the fast-charging mode, each EV draws twice the power drawn

in slow-charging mode: 𝑠𝑒𝑎𝑖 “ 4p1` 0.33jq𝑎. The non-EV demand at each node is sn𝑖 “
0.03 ` 0.01j, and the maximum load control parameter is 𝛽𝑖 “ 0.5, i.e. 50% of the non-

EV load can be shed at each node. For the sake of simplicity, we assume that all DERs,

non-EV loads and EVs are homogeneous. Furthermore, the black node in Figure 4-3 is the

substation node, the grey colored nodes are the nodes with EVs, and the remaining nodes

do not have EVs.
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We assume the following cost parameters: the cost of per unit load shedding, per unit

voltage bound violation, and per unit frequency bound violation is chosen to be W
LC “

1,WVR “ 250,WFR “ 250, respectively; see (4.12). The voltage and frequency regulation

constants in (4.2) are chosen as 𝑉 𝑟𝑒𝑔 “ 0.01 and 𝑓𝑟𝑒𝑔 “ 0.02.
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(b) Post-contingency losses for di�er-

ent weights of regulation objectives.

Figure 4-4: Evaluation of the greedy heuristic.

GH vs. KKT vs. BF. Figure 4-4a shows percentage voltage bound violation´
100max𝑖max

´
V𝑖´𝑉

𝑐
𝑖

𝑉0
,
𝑉 𝑐
𝑖 ´V𝑖

𝑉0
, 0
¯¯

, percentage frequency bound violation´
100max

´
f´𝑓𝑐

𝑓0
, 𝑓

𝑐´f
𝑓0
, 0
¯¯

, and percentage load shedding

`
100
𝑁

ř
𝑖 𝛽

𝑐
𝑖

˘
as the number of

EV nodes compromised increases. The pre-contingency setpoints are chosen to be 𝑠𝑔𝑛𝑖 “
p0.9 ` 0.33jq𝑎. Note that the GH provides an optimal solution in this setting. Also note

that, for the chosen weight parameters and k “ 1, 𝐶VR and 𝐿LC are both zero, but 𝐶FR

is positive, which implies that SO tolerates some frequency bound violation to maintain

voltage regulation and full demand satisfaction. This shows that SO tolerates some fre-

quency bound violation at the expense of no load control. For slightly higher intensity

159



attacks (k “ 2, 3) the SO starts imposing load control. However, as k increases further, the

load control saturates at 15% for k ě 4, although the total load control capability is 50%.

This observation has been detailed in the previous work; see Chapter 3. Intuitively, initial

shedding of downstream loads reduces the post-contingency cost because the active and

reactive power reduction contributes to reduction in both 𝐶FR and 𝐶VR. Indeed, when

the SO exhausts the load control capability of the downstream nodes, control of nodes

that are upstream is not as bene�cial in reducing 𝐶VR. Hence, the saturation in cost of

load control.

In Figure 4-4b, we �xed the W
LC

and varied the WVR{WFR ratio. The di�erent WVR{WFR

ratios correspond to di�erent weights given to voltage and frequency regulation objec-

tives. Note that for WVR{WFR “ 0.1, the SO exerts no load control, but for higher

WVR{WFR, there is load control. This indicates that the load control is more e�ective in

reducing 𝐶VR than in reducing 𝐶FR. Indeed, a reduction in the load reduces both active

and reactive power demand. However, the 𝐶FR is a�ected only by active power reduction

(see (4.2a)), whereas the 𝐶VR is a�ected by both active and reactive power reduction (see

(4.1c)). Hence, load control directly reduces 𝐶VR, and also indirectly reduces 𝐶FR. Again,

the𝐿LC reaches a saturation level after the downstream nodes’ capability of load control is

exhausted. Additionally, as the WVR{WFR ratio increases, the saturation level is reached

for a higher intensity attack; and also attains a higher saturation value.

4.3 Trilevel optimization problem

In this section, we extend the rMaxmins bilevel formulation to a tri-level framework with

the outermost level denoting the resource allocation stage. We call this extended formu-

lation the RAOPF problem:

rRAOPFs ℒ :“ min
x𝑛P𝒳𝑛

𝐶allocpx𝑛q ` 𝐶losspx𝑛p𝑎q, x𝑐p𝛿𝑎‹, 𝑢‹qq

s.t. p4.3q, p4.6q - p4.8q
p𝛿𝑎‹, 𝑢‹q P arg max

𝛿𝑎P𝒟
k

min
𝑢P𝒰

𝐶losspx𝑛p𝑎q, x𝑐p𝛿𝑎, 𝑢qq

s.t. x𝑐 P 𝒳 𝑐, p4.2q, p4.6q - p4.8q, p4.10q

(4.13)
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Stage 1 – CPS optimal attack problem
Objective – Maximize load shedding
Possible targets – Simultaneous failures of k components : EVs / DERs

Stage 0 – Resource allocation problem
Objective – Minimize allocation costs + costs of defender response in Stage 2
Possible allocation strategies – Uniform / heterogeneous

Operating constraints – Power-flow equations
bounds for generation, voltages and line capacities
voltage / frequency deviation models

Network control objectives – voltage regulation, frequency
regulation, congestion management

Stage 2 – Optimal defender response
Objective – Minimize the post-contingency loss + cost of load shedding
Allowed defender responses – DER / BG control, load shedding

Figure 4-5: Modeling framework.

The overall framework of the trilevel RAOPF problem can be summarized as in Fig-

ure 4-5. The rRAOPFs game is a sequential game of perfect information, i.e. each player is

perfectly informed about the actions that have been chosen by the previous players. The

attacker’s (resp. SO’s) objective in the last two stages of the game is to maximize (resp.

minimize) the post-contingency cost (sum of attacker-induced network costs and forced

/load shedding).

As mentioned in Figure 4-5, the SO’s objective in Stage 0 is to determine the resource

allocation (i.e., output of the generators 𝑠𝑔𝑛) that minimizes the total cost of resource

allocation (𝐶alloc) and the maximin post-contingency loss incurred in the last two stages

of the game.

The RAOPF problem (4.13) belongs to a class of mixed-integer non-convex trilevel

problems which are typically computationally hard to solve. However, after the MILP

reformulation of the last two stages (rMaxmins), the overall RAOPF can be shown to

be a Mixed-Integer Bilevel Non-Linear Program (MIBNLP). Although MIBNLP are NP-

hard problems, few computational approaches have been proposed in the literature for

solving of MIBNLP problems based on branch and bound techniques [145]. We do not

focus on implementing these techniques here, but instead focus on simple examples which
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provide us interesting and practically relevant insights on the SO’s allocation/dispatch and

attacker’s strategy.

By way of simple examples, we �rst illustrate the key tradeo�s faced by the SO in

maintaining regulation objectives (Sec. 4.3.1). Next, we describe the structure of optimal

attack in two cases: with and without adequate resources (Sec. 4.3.2). Finally, we present

some insights about resource allocation strategies (Sec. 4.3.3), and compare two qualita-

tively di�erent resource allocation strategies (Sec. 4.3.4).

4.3.1 Insights on optimal SO response

The fact that the regulation objectives VR, FR, and CM are not aligned with each other can

be seen by considering a simple 2 node network in Figure 4-6. It has a BG with 𝑓𝑟𝑒𝑔 “ 0.1

and 𝑉 𝑟𝑒𝑔 “ 0.1. Node 1 has a load with 𝑝𝑐𝑛1 “ 0.4 pu and 𝑞𝑐𝑛1 “ 0.2 pu. Node 1 also

has a DER which can be modeled according to the in Figure 4-7a with apparent power

capability of sg “ 0.4 pu. The pre-contingency output of the DER is set to 𝑝𝑔𝑛1 “ 0.2 pu,

𝑞𝑔𝑛1 “ 0.2 pu. The line parameters are r1 “ 0.2 pu and x1 “ 0.4 pu.

0

1

f reg = 0.1
vreg = 0.1

(a) 2 node network.

0

4

3

6

5

1 2

(b) 6 node network.

Figure 4-6: DN topologies

Now, consider the contingency created by a sudden change of load to twice its pre-

contingency value, i.e. 𝑝𝑐𝑐1`j𝑞𝑐𝑐1 “ 0.8`0.4j. This trade-o� in maintaining the regulation

objectives (FR, VR, and CM) is apparent from the di�erence in optimal DER outputs needed

to address each of these objectives individually. Indeed, the DERs alone may not be able

to completely resolve the contingency; under our assumptions, the remaining supply-

demand imbalance is eventually covered by the BG.

Let Δ𝑝 :“ p𝑝𝑐𝑐1 ´ 𝑝𝑔𝑐1q ´ p𝑝𝑐𝑛1 ´ 𝑝𝑔𝑛1 q be the net change in active power consumed
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gies considered for the 6 node

network.

Figure 4-7: Trade-o�s in in maintaining regulation objectives and DER setpoints for re-

serve allocation.

at node 1. Similarly, let Δ𝑞 :“ p𝑞𝑐𝑐1 ´ 𝑞𝑔𝑐1q ´ p𝑞𝑐𝑛1 ´ 𝑞𝑔𝑛1 q be the net change in reactive

power consumed at node 1. Now, consider the following cases which correspond to the

SO addressing each regulation objective individually (again, see Figure 4-7a for the cor-

responding DER setpoints):

– Using (4.2a), the drop in system frequency can be approximated as 𝑓𝑟𝑒𝑔Δ𝑝. Thus,

to achieve maximum FR, the SO should minimize 𝑓𝑟𝑒𝑔Δ𝑝.

– Using (4.1) and (4.2b), the voltage drop at node 1 can be approximated as rΔ𝑝 `
px ` 𝑉 𝑟𝑒𝑔qΔ𝑞. Thus, to best maintain VR, the SO should minimize this quantity.

– Finally, the power �ow on line (0,1) can be expressed as p𝑝𝑐𝑐1 ´ 𝑝𝑔𝑐1q` j p𝑞𝑐𝑐1 ´ 𝑞𝑔𝑐1q.
Thus, for CM, the SO should minimize r pp𝑝𝑐𝑐1 ´ 𝑝𝑔𝑐1q2 ` p𝑞𝑐𝑐1 ´ 𝑞𝑔𝑐1q2q.

The optimal DER setpoint for each of the abovementioned cases can be expressed in closed

form and are given below (these setpoints are illustrated in Figure 4-7a):

𝑝𝑔𝑐1
‹ ` j𝑞𝑔𝑐1

‹ “

$
’’’’’&
’’’’’%

sg= arctan 0 for maximum FR

sg= arctan
´
px`𝑉 𝑟𝑒𝑔q

r

¯
for maximum VR

sg= arctan
´
𝑞𝑐𝑐1
𝑝𝑐𝑐1

¯
for maximum CM
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Clearly, the optimal response DER setpoints for FR, VR and CM are distinct. Thus, the opti-

mal DER setpoints depends on weight of each regulation objective in the post-contingency

cost; see (4.12). For the chosen parameters in the 2-node network, the DER setpoints and

their corresponding impact on regulation objectives are summarized in Table 4.1.

Network

objectives

Post-

contingency

x1

Objective Values

𝑞𝑔1{𝑝𝑔1 Δ𝑓 Δ𝑉1 r1 p𝑃1
2 `𝑄1

2q
FR 0 0.01 0.22 0.05

VR
px ` 𝑉 𝑟𝑒𝑔q{r 0.041 0.051 0.076

CM
𝑞𝑐𝑐{𝑝𝑐𝑐 0.015 0.119 0.031

Table 4.1: Trade-o�s between FR, VR and CM.

4.3.2 Insights on optimal attacker strategy

Now let us study the structure of optimal attack under no DER response by considering

a 6 node example network as shown in Figure 4-6b. We will de�ne the load and DER

parameters in terms of a constant scalar 𝑎 “ 0.1 pu. Let 𝑏 “ 𝑎{3. Assume that each line

has identical impedance z “ r ` jx, where r “ 0.03 pu and x “ 0.06 pu. At each node

𝑖 P 𝒩 , we assume the non-EV load 𝑠𝑛𝑛𝑖 “ 𝑎 ` j𝑏. Consider the EV load 𝑠𝑒𝑛𝑖 “ 𝑎 ` j𝑏 for

𝑖 P t3, 4, 5, 6u, and the EV load as 𝑠𝑒𝑛𝑖 “ 1.4p𝑎`j𝑏q for 𝑖 P t1, 2u. We assume that if the EVs

are compromised, then their load becomes twice of that of their pre-contingency demand,

i.e., se𝑖 “ 2se𝑖. Let’s consider the pre-contingency DER setpoints to be 𝑠𝑔𝑛𝑖 “ 𝑎 ` j𝑏.

The frequency regulation constant 𝑓𝑟𝑒𝑔
is 1 Hz/pu, i.e. the frequency drops by 1 Hz if the

supply-demand de�cit suddenly increases by 1 pu, and the voltage regulation constant

𝑉 𝑟𝑒𝑔
is 0 pu. The frequency bounds are f “ 59.8, f “ 60.2 Hz. The voltage bounds are

V𝑖 “ 0.9,V𝑖 “ 1.1.

Recursively using the voltage-drop equation (4.1c), we can compute the voltage pro�le

as follows:

@ 𝑖 P 𝒩 , 𝜂 P t𝑜, 𝑐u, 𝑉 𝜂
𝑖 “ 𝑉 𝜂

0 1𝑁 ´
ÿ

𝑗P𝒩
𝑅𝑖𝑗p𝑝𝑐𝜂𝑗 ´ 𝑝𝑔𝜂𝑗 q ´𝑋𝑖𝑗p𝑞𝑐𝜂𝑗 ´ 𝑞𝑔𝜂𝑗 q. (4.14)
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Using (4.14), we can compute the pre-contingency voltage pro�le:

𝑉 𝑛 “
”
0.965 0.938 0.928 0.928 0.923 0.923

ı
.

We can check that this 6-node DN satis�es regulation objectives under any single EV

node attack. For example, when the EV at node 1 or 2 is compromised, the net active

power demand increases by 1.5𝑎 pu. Hence, the frequency only drops to 59.85 Hz, which

is above frequency lower bound. Similarly, if node 5 or node 6 is compromised then the

minimum voltage in the DN is 0.907, which is above the voltage lower bound. In case

of compromise of an EV at an intermediate node 3 or 4, we can similarly ensure that the

regulation objectives are ful�lled, as these nodes are smaller in size than nodes 1 or 2, and

are located upstream to the nodes 5 and 6. Consequently, the impact of EV compromise

at node 3 or 4 will be smaller than nodes 1 or 2 (resp. nodes 5 or 6) in terms of frequency

(resp. voltage) drop. Thus, in the terminology of classical SCOPF problem, this network is

resilient to the N-1 contingencies, each concerning the compromise of a single EV node.

Now, we consider the case when the attacker compromises k “ 2 EV nodes. Let’s

consider three di�erent subcases.

(a) WVR “ 0,WFR ą 0: In this case, the attacker’s goal is to maximize 𝐶FR. Then,

by Claim 1, the attacker’s optimal strategy will be to compromise EVs at nodes 1 and 2

because nodes 1 and 2 have the largest EVs. In this case, the location of EVs in the DN

does not matter from the attacker’s perspective.

(b) WVR ą 0,WFR “ 0: Now, the attacker’s goal is to maximize 𝐶VR. Following

Claim 2, the attacker’s optimal strategy is to compromise EVs at nodes 4 and 6. Since,

the net demand at each node is positive, power only �ows from the substation to the

downstream nodes. As a result, node 6 has the lowest voltage in the DN. Voltages at all

nodes will reduce if EVs are compromised, but the voltage at node 6 will reduce the most

if nodes 4 and 6 are compromised (by Claims 2 and 3). Therefore, we observe that the

attacker chooses to compromise downstream EVs. Note that due to symmetric nature of

the DN, compromising EVs at nodes 3 and 5 is also an optimal attack strategy for this case.

(c) WVR ą 0,WFR ą 0: In this case, the attacker’s goal is to maximize weighted sum
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of 𝐶FR and 𝐶VR. We observe that for a certain range of values for
WVR

WFR
ratio, the optimal

attack strategy is to compromise nodes 2 and 6. The attacker compromises an upstream

node 2 instead of a downstream node 4 to increase the loss of FR even though the loss

in VR may reduce. Additionally, we see that although nodes 1 and 2 have identical EVs,

attacker will choose to compromise node 2 because of his preference for downstream EV

nodes maximizes loss of VR.

Thus, we observe that when the
WVR

WFR
ratio is small, the attacker chooses to compromise

large EV nodes which may or may not be spatially co-located. However, as the
WVR

WFR
ratio

increases the optimal attack starts to target downstream nodes in a clustered manner.

4.3.3 Insights on resource allocation

Next, among the optimal attacker strategies determined in Sec. 4.3.2, we consider the fol-

lowing attack scenarios each involving simultaneous compromise of k “ 2 EV nodes: (a)

nodes 1 and 2 are compromised (i.e. 𝛿 “ r1, 1, 0, 0, 0, 0s), (b) nodes 4 and 6 are compro-

mised (𝛿 “ r0, 0, 0, 1, 0, 1s). For each of these two scenarios, we evaluate the costs due to

loss in VR and FR components of the total post-contingency cost when DER reserves are

not present, and compare these costs with the case when DER reserves are available.

(i) Network with no DER resources

Assume that all the DERs are operating at 𝑠𝑔𝑛𝑖 “ 𝑎 ` 𝑏jpu. At this initial setpoint, there

is no available active or reactive power reserve from the DERs.

Attack scenario (a):

The net increase in active power load is 3𝑎 “ 0.3 pu. This change results in 𝑓 𝑐 “ 59.7

Hz. Hence, some amount of load shedding will be required to bring the frequency back

to the acceptable range.

Attack scenario (b):

Under this attack, if the SO does not respond, then the post-contingency voltages will be:

𝑉 𝑐 “
”
0.952 0.912 0.902 0.898 0.898 0.888

ı
.
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Clearly, the voltage bounds will be violated at nodes 4 and 6, and some load shedding is

required to bring voltages back to acceptable range. Note that, the voltages at nodes 4

and 6 are smaller than the voltages at nodes 3 and 5. This is due to the proximity of load

compromises to nodes 4 and 6.

(ii) Network with DER reserves

Now assume that the pre-contingency DER setpoints are 𝑠𝑔𝑛𝑖 “ 0.5𝑎 ` 𝑏j pu. This gives

us active and reactive power reserves of 0.5𝑎 ` 2𝑏j; see Figure 4-7b. Note that this is

an overestimate of actually available reserves, because if active power reserves are fully

used, then reactive power reserves cannot be used at all and vice versa. We chose this DER

setpoint only for the ease of calculation; it is certainly not an optimal reserve allocation in

the face of 2-sized EV attacks. Under this resource allocation, the pre-contingency voltage

pro�le will be:

𝑉 𝑛 “
”
0.956 0.921 0.908 0.908 0.902 0.902

ı
,

which also satis�es the voltage bounds.

Attack scenario (a):

Again, the total load suddenly increases as a result of EV attacks to nodes 1 and 2. Now,

each DER can rapidly respond to the contingency, and if the SO increases their generation

from the initial setpoint 𝑠𝑔𝑛𝑖 “ 0.5𝑎` 𝑏j to �nal setpoint 𝑠𝑔𝑐𝑖 “ 𝑎` 𝑏𝑗, then the additional

active power injected from the DERs is 6p𝑎 ´ 𝑎{2q “ 3𝑎 pu. Hence, the net change in

active power between pre- and post-contingency situation is 0. As a result, there is no

change in frequency despite two EVs being compromised. Although there is a drop in

voltage because of a net increase in reactive power demand, the voltage bounds are also

satis�ed. Hence, load shedding is not required.

Attack scenario (b):

Due to the compromise of downstream EV nodes, the minimum voltage in DN will violate

the bounds in the absence of a DER response. Fortunately, this situation can be avoided

if the reactive power supply is increased and the setpoints of all DERs are changed to
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0.5𝑎` 𝑎j. The resulting post-contingency voltage pro�le will be as follows:

𝑉 𝑐 “
”
0.97 0.945 0.94 0.93 0.938 0.922

ı
.

Thus, all voltage bounds are met with this DER reserve.

Using this illustrative example, we have tried to argue that with su�cient reserves

as well as appropriate SO response, the DN can withstand contingencies resulting from

compromise of mutiple (k “ 2) EV nodes. In this example, we see that both frequency

and voltage regulation objectives can be maintained without any load control because the

DER reserves were su�cient to provide the active and reactive power supply needed to

avoid the frequency and voltage bound violations.

4.3.4 Further insights on resource allocation stage (Stage 0)

Finally, we study two possible SO strategies for optimal resource allocation in Stage 0.

We retain the same network setup as in Sec. 4.2. First, we focus on “uniform” resource

allocation, i.e., all DERs have identical pre-contingency setpoints. For this resource al-

location, we use the greedy heuristic to compute optimal attacker strategy and the SO

response. Secondly, based on our observations regarding the SO response, we suggest a

feasible “heterogeneous” resource allocation, i.e. DERs having di�erent pre-contingency

setpoints, while keeping the total DER output identical to that of the former case. Fi-

nally, we compare the worst-case post-contingency losses for the two resource allocation

strategies.

Trade-o� between active and reactive power allocation. First, we show that there

exists a trade-o� between active and reactive power resource allocation to meet the ob-

jectives of FR and VR. We assume no load control, i.e. 𝛽 “ 0, and vary the initial DER

resource allocation as shown in Figure 4-8a. Two di�erent values of sg𝑜 are chosen, and

the resource allocation is varied in the increasing order of
𝑞𝑔𝑛𝑖
𝑝𝑔𝑛𝑖

(see Figure 4-8a). For each

combination of sg𝑜 and
𝑞𝑔𝑛𝑖
𝑝𝑔𝑛𝑖

ratio, the optimum maximin post-contingency losses are com-

puted for two attack intensities; see Figure 4-8b.

We can draw some useful observations from this �gure: as the intensity of the attack
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k (i.e., number of compromised EV nodes) increases or the apparent reserves allocated de-

crease (i.e., sg𝑜 increases), the post-contingency voltage bound violation increases. Note

that for both k “ 5 and k “ 8, as
𝑞𝑔𝑛𝑖
𝑝𝑔𝑛𝑖

ratio increases, the voltage bound violation increases

since the reactive power reserves are reduced. The frequency bound violation decreases

initially for higher allocation of active power reserves. Interestingly enough, for k “ 5,

and for large enough
𝑞𝑔𝑛𝑖
𝑝𝑔𝑛𝑖

ratio, we can see the frequency bound violation increases again.

This can be explained as follows: For large enough
𝑞𝑔𝑛𝑖
𝑝𝑔𝑛𝑖

ratio, the reactive power reserve

reduces. Hence, to do VR, the SO increases both active and reactive power output of the

DERs. However, since the attack intensity is small, the net change in active power af-

ter the attack becomes positive and large enough to cause violation of upper frequency

bound.
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Figure 4-8: Post-contingency losses for di�erent weights of regulation objectives.

4.4 Optimal operator response and allocation

Diversi�cation in SO response. Secondly, we show the optimal SO response admits a

diversi�cation strategy, where some DERs supply more active power than reactive power

(i.e. their contribution to FR is more than that to VR), while other DERs supply more

reactive power than active power (i.e. their contribution to VR is more than that to FR).

Consider the 13 node network as shown in Figure 4-9a. For k “ 4, the optimal attacker
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Figure 4-9: Diversi�cation of nodes for voltage vs. frequency regulation.
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strategy is to compromise EV nodes t5, 6, 7, 8u or t9, 10, 11, 12u. Due to symmetricity,

assume that the latter EV node set is compromised. These 4 nodes form the right lateral,

denoted by (r), and the remaining nodes form the left lateral, denoted by (l). Consider

uniform resource allocation, as shown in Figure 4-9c. The pre-contingency output of the

DERs is 90% and 47% of the maximum active and the maximum reactive power output,

i.e., 𝑠𝑔𝑛𝑖 “ 0.9pg𝑖`0.47qg𝑖. Before the attack, the voltages of the nodes in the left lateral

are equal to the corresponding nodes in the right lateral. After the attack, the voltages

in the right lateral fall below that of the left lateral. Hence, the DERs in the right lateral

start contributing to VR, by generating 𝑠𝑔𝑐𝑖 “ p0.5 ` jqsg𝑖. However, rest of the DERs

contribute more to the FR by generating 𝑠𝑔𝑐𝑖 “ p1` 0.33jqsg𝑖. This shows that the DERs

diversify in their roles to contribute to di�erent objectives.

Diversi�cation inDER resource allocation. Finally, we evaluate the pre-contingency

state vector and post-contingency cost for a heterogeneous resource allocation strategy

and compare with the uniform allocation strategy. Recall from our experiment above that

the downstream DERs are likely to contribute more to VR than to FR. Therefore, we may

choose the initial DER setpoints as shown in Figure 4-9c, such that downstream DERs

contribute more reactive power as compared to upstream DERs. Now, consider the fol-

lowing heterogeneous allocation strategy: as the distance of the node from the substation

increases, let us choose a higher reactive power setpoint, and lower active power setpoint.

Note that, we keep the sum total of active and reactive power output of the DERs to be

the same as in the case of uniform allocation. Interestingly, we observe that the post-

contingency losses are identical for both uniform and heterogeneous resource allocation.

However, the pre-contingency voltage pro�le is better for the heterogeneous resource al-

location as opposed to uniform resource allocation. We expect that a better voltage pro�le

will allow the SO to incur lesser costs regulation cost in the pre-contingency state.
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Chapter 5

Leveraging Substation Automation

Systems for Network Resilience

In Chapters 3 and 4, we evaluated the impact of DN-side disruptions on the extent of

loss of voltage and frequency regulation. Consequently, the operator response problem

consisted only of continuous variables. However, the components at DN nodes cannot

continue to operate for too long if the voltage and frequency bound violations are not

quickly addressed. In this chapter, we extend our operator response models to allow for

component disconnections. This can be achieved by either autonomous disconnects due

to activation of local protection mechanisms or by a centralized response by the operator.

5.1 Value of timely disconnects

Despite the recent trends in modernization of electricity Distribution Networks (DNs),

many Distribution System Operators (DSOs) continue to face both strategic and opera-

tional challenges in ensuring a reliable and secure service to their customers. On one

hand, the integration of new supply sources such as Distributed Generators (DGs) and

new monitoring and control capabilities enable �exible DN operations [52, 106, 110, 130].

On the other hand, these capabilities also expose the vulnerabilities of DNs to remote ad-

versaries [77, 97, 98, 109], which can include criminal organizations, terrorist groups, and

even nation states.

Security threats to DNs can escalate in the presence of intermittent disturbances in
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the Transmission Network (TN), or during conditions when the power system is close

to an emergency state [24, 103, 121]. It is well-recognized that signi�cant cyber-physical

failures in TN/DN – individually or in combination – can result in a sudden disruption,

potentially leading to contingencies such as violations in the operating bounds of system

states and/or loss in the functionality of network components. This paper is motivated by

the DSOs’ need for responding to such contingencies in a timely manner to prevent (or at

least delay) the automatic protection mechanisms from triggering and causing extensive

uncontrolled load/DG disconnects (outage). Our main hypothesis is that the operational

�exibility of modern DNs can be exploited to generate a timely response to cyber-physical

failures. We show that such a response can lead to signi�cant reduction in the post-

contingency losses. This capability becomes especially important for DNs facing risk of

correlated failures under which the traditional protection mechanisms may no longer be

adequate or not trigger at all.

More broadly, we contribute to a systematic framework for evaluating DN resilience.

Generically, resilience of a system is de�ned as “its ability to prepare and plan for, absorb,

recover from, and more successfully adapt to adverse events” [93]. Indeed, previous liter-

ature has dealt with issues related to resiliency of power systems [77, 103, 121]. However,

these approaches do not explicitly model the combined e�ects of TN- and DN-side failure

scenarios on the losses faced by the DSO, and hence cannot be directly used to evaluate the

e�ectiveness of available response strategies. In this paper and its companion paper [115],

we develop a simple yet generic approach to address this gap in the literature.

We say that a DN with an operational response capability is more resilient to a class

of cyber-physical failures if the DSO incurs a lesser post-contingency loss when sub-

jected to these failures, relative to the loss under classical protection mechanisms (e.g.

autonomous disconnections). Indeed, de�ning a relevant class of failure scenarios, DSO

response, and acceptable extent of post-contingency loss are all important aspects of the

problem. Also important is a computationally tractable approach to evaluate “worst-case”

post-contingency loss.

We fully address these aspects in the context of a linear power �ow model. We �rst

introduce an attack model to capture DN-side failure scenarios that are relevant to cyber-
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physical security of DNs [98]. We argue that the impact of such security failures may be

aggravated under TN-side reliability failures. To begin with, we model the impact of TN-

side failure as a voltage sag (drop in the substation voltage), and that of DN-side security

failures as supply-demand disturbances at the DN nodes. A plausible attack scenario that

can be studied using this model is one in which a remote control functionality (e.g. DG

management system, DGMS) is compromised by an external attack [98].

To model DSO’s response capability, we consider di�erent operations supported by

modern DNs: remote control by the control center, autonomous disconnects of compo-

nents due to activation of local protection systems, and emergency control by the Sub-

station Automation (SA) systems (Sec. 5.1). We pose a bilevel optimization problem for

evaluating the maximum post-contingency loss when the DSO optimally responds to the

attack, and present a computational approach to solve it. We formulate this problem as

a Bilevel Mixed Integer Problem (BiMIP). In principle, the Benders Decomposition (BD)

algorithm can be applied to solve such formulations. However, it is shown in Sec. 5.2 that

in our problem, only binary variables enter in the coupling constraints. It turns out that,

in such cases, a straightforward application of the BD algorithm does not generate useful

Benders cuts. Our solution approach addresses this issue by formulating an equivalent

min-cardinality disruption problem, and reformulating the coupling constraints to en-

sure that the set of attacks are progressively re�ned in each iteration of the BD algorithm

(Sec. 5.4).

Several papers have used bilevel optimization formulations for vulnerability assess-

ment of TNs to adversarial disruptions [24, 97, 103, 121]. A notable application is the

generalization of the classical N-1 security problem to an N-k problem [24, 121]. These

formulations typically assume the DC power �ow approximation, which enables a KKT-

based reformulation, and leads to single-level Mixed-Integer Program (MIP). In our past

work, we used a similar formulation to assess the security of DNs to remotely induced DG

disruptions [109, 110]. However, that formulation did not consider preemptive tripping

of loads/DGs as a part of the operator’s response strategy, and thus it did not require the

inner problem of the bilevel program to have integer variables. A relatively simple greedy

heuristic gave reasonable performance in that case. In this paper, we deal with a bilevel
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program with mixed-integer variables in the inner problem.

Our main contributions include:

p‹q An approach to evaluate the resilience of DNs based on post-contingency losses

(Sec. 5.1) by modeling the physical impact on a DN due to a class of cyberphysical

failures which consists of disruptions due to DN-side security failures as well as

TN-side reliability failures (Sec. 5.2), and

p‹q an extended Benders Decomposition approach for solving BiMIPs in which the cou-

pling constraints consist only of binary variables (Sec. 5.4), and using this approach

for computing post-contingency losses under di�erent operator response capabili-

ties (Sec. 5.3).

Broadly speaking, the response capabilities of modern DN systems can be classi�ed as

follows: (a) Remote control of nodal demand and/or supply sources by the DSO/control

center; (b) autonomous disconnect operation of individual components; for example, trip-

ping of DGs or loads under nodal violations in operating conditions; and (c) emergency

control at the substation level which is executed by the Substation Automation (SA) sys-

tem, and includes preemptive response actions such as load control and/or disconnection

of components. Please refer to Figure 5-1 for an illustration of these control capabilities.

The autonomous disconnect operation is based on local checks of operating bounds at

the DN nodes. On the other hand, the operator response via the control center or the SA

system utilizes the information from the meters in the DN about node-level consumption,

distributed generation, and nodal voltages.

To describe our modeling approach, we focus on a speci�c attack model: the compro-

mise of remote control capabilities of the control center. Hence, (a) is no longer a viable

response, but (b) and (c) can be used to respond to the attack-induced disturbance. Thus,

it becomes imperative to clearly distinguish these response capabilities and model the

resulting network state.

In our model, the DSO response (c) is comprised of load control and preemptive trip-

ping of components (loads and/or DGs), and can be operationalized via the SA system (re-

fer to (c) in Figure 5-1). The SA systems were recently provided cyber-security reperime-
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Figure 5-1: Attacker-operator interaction.

terisation by the NERC regulations [94]. In comparison, the newer control center opera-

tions such as DGMS are prone to back channel attacks by remote third parties, as evident

from the recent incidents [75]. By evaluating the reduction in loss due to a timely DSO

response, and comparing it with the loss under the autonomous disconnections, we can

estimate the value of the timely response toward improving the DN’s resilience.

We formulate a bilevel problem to model the sequential interaction between the strate-

gic attacker and operator; see [24, 72, 110, 148] for similar formulations. Our problem can

be stated as follows:

ℒMm
:“ max

𝑑P𝒟
k

min
𝑢P𝒰 p𝑑q

𝐿 p𝑢, xq s.t. x P 𝒳 p𝑢q , (P1)

where ℒMm denotes the Max-min (Mm) post-contingency loss used for evaluating DN’s

resilience; 𝑑 an attacker-induced failure; k the attacker’s resource constraint; 𝒟k the set

of attacker’s strategies; 𝑢 an operator response; 𝒰 p𝑑q the coupling constraints that de-

�ne the set of feasible operator responses under the impact of attack-induced failures;

x the post-contingency network state, i.e. the state after the attacker-operator interac-

tion is completed; 𝒳 the set of constraints that model physical constraints (power �ows),

component constraints (loads and DGs), and nodal voltage constraints (Sec. 5.1). For a

given disruption 𝑑 P 𝒟k, the operator’s objective is to minimize the post-contingency

177



loss 𝐿 p𝑢, xq, and the attacker’s objective is to choose an attack that maximizes the post-

contingency loss assuming an optimal response by the operator. Suppose that p𝑑‹, 𝑢‹q is

an optimal solution to this maximin problem which results in the network state x‹. Then

ℒMm “ 𝐿 p𝑢‹, x‹q is the post-contingency loss that is incurred by the operator when he

implements 𝑢‹ in response to the attack 𝑑‹ (Sec. 5.4).

Note that the post-contingency loss ℒMm is a measure of the maximum reduction in

system performance under the class of disruptions in the set 𝒟k; see Figure 5-2. For the

sake of normalization, we denote by ℒmax the loss incurred when all loads and DGs are

disconnected. Then, ℛ
Mm

:“ 100
´
1´ ℒ

Mm

ℒmax

¯
can be considered as a metric of the DN

resilience under operator response (in the set of responses 𝒰 ).
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Figure 5-2: Performance under various response capabilities.

Now suppose that we want to compare the DN resilience under operator response to

the case of autonomous disconnections. To do this comparison, we need to estimate the

maximum loss corresponding to automatic disconnects of DN components (refer to (b) in

Figure 5-1) that would be induced by a maximally disruptive attack in the set 𝒟k (due to

compromise of (a) in Figure 5-1). In Sec. 5.3, we present a simple algorithm to estimate

the uncontrolled cascade-like loss in load/DG connectivity due to operating voltage bound

violations, and in Sec. 5.4, we present an approximate algorithm to estimate the worst-case

operator loss under autonomous disconnections. Let the automatic disconnect actions

be denoted by 𝑢
nr

, resulting network state by x
nr

, and the corresponding loss by ℒ
AD
“

𝐿px
nr
, 𝑢

nr
). Then, the resilience metric of the DN under autonomous disconnections can

be written as ℛ
AD
“ 100p1 ´ ℒ

AD
{ℒmaxq. Naturally, ℛ

Mm
ě ℛ

AD
, and we can evaluate the

relative value of operational response (or equivalently, the improvement in DN resilience)

as pℛ
Mm
´ℛ

AD
q. In Sec. 5.4, we evaluate this quantity for a set of test DNs.

More generally, Figure 5-2 illustrates the evolution of system performance evolves

178



over time after the attacker-operator interaction. Initially, the DN is operating in nominal

conditions. As a result of the TN/DN-side disturbances, the system performance degrades.

If the operator fails to respond in a timely manner (in less than a few seconds), then an

uncontrolled cascade can occur (resulting in a post-contingency loss ℒ
AD

). However, to

regain nominal operation, the operator eventually undertakes secondary control actions

like changing tap settings of transformers, or switching on capacitor banks. Then, the

nodal voltages recover, allowing the disconnected components to be reconnected and op-

erate within safety bounds. In the companion paper [115], we address other aspects of DN

resilience such as microgrid capabilities to further minimize the post-contingency loss, as

well as reconnection of disrupted DGs to enable faster DN recovery.

Network Model

We model the DN as a tree network of node set 𝒩Ťt0u and line set ℰ; see Figure 5-3. We

refer the reader to Table 5.1 for the de�nitions of key notations, and to references [109, 130]

for further details.

Nominal load

pc𝑘 ` jqc𝑘

𝑝𝑐𝑘 ` j𝑞𝑐𝑘
Actual load

𝑝𝑔𝑙 ` j𝑞𝑔𝑙
Actual

generation

Nominal

generation

pg𝑙 ` jqg𝑙

0

v0

𝑖

v𝑖

𝑗

v𝑗

𝑘

v𝑘

𝑙

v𝑙

Power �ow

𝑃𝑖𝑗 ` j𝑄𝑖𝑗

r𝑖𝑗 ` jx𝑖𝑗

impedance

Substation

node

𝒢 “ p𝒩, ℰq

Figure 5-3: DN model.

For the sake of computational simplicity, we model the power �ows using the classical
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Table 5.1: Table of Notations.

DN parameters
𝒩 set of nodes in DN

ℰ set of edges in DN

0 substation node label

𝒢 radial topology of DN, 𝒢 “ p𝒩Ťt0u, ℰq
𝑁 “ |𝒩| number of non-substation nodes in DN

j complex square root of -1, j “ ?´1
vnom nominal squared voltage magnitude (1 pu)

v0 squared voltage magnitude at substation node

Nodal quantities of node 𝑖 P 𝒩
v𝑖 squared voltage magnitude at node 𝑖
pc𝑖 ` jqc𝑖 nominal demand at node 𝑖
pg𝑖 ` jqg𝑖 nominal generation at node 𝑖
𝑝𝑐𝑖 ` j𝑞𝑐𝑖 actual power consumed at node 𝑖
𝑝𝑔𝑖 ` j𝑞𝑔𝑖 actual power generated at node 𝑖
𝑝𝑖 ` j𝑞𝑖 net power consumed at node 𝑖
vc𝑖,vc𝑖 lower, upper voltage bounds for load at node 𝑖
vg

𝑖
,vg𝑖 lower, upper voltage bounds for DG at node 𝑖

𝑦𝑖 0 if DG at node 𝑖 is connected to DN; 1 otherwise

𝑘𝑐𝑖 0 if load at node 𝑖 is connected to DN; 1 otherwise

𝛽𝑖 fraction of demand satis�ed at node 𝑖
𝛽
𝑖

lower bound of load control parameter 𝛽𝑖
Parameters of edge p𝑖, 𝑗q P ℰ
𝑃𝑖𝑗 ` j𝑄𝑖𝑗 power �owing from node 𝑖 to node 𝑗
r𝑖𝑗,x𝑖𝑗 resistance and reactance of line p𝑖, 𝑗q P ℰ
Attack variables
𝑑 P t0, 1u𝒩 𝑑𝑖 “ 1 if DG at node 𝑖 is disrupted; 0 otherwise.

Operator response variables
𝑢 an operator response action
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LinDistFlow model [16]:

𝑃𝑖𝑗 “
ÿ

𝑘:p𝑗,𝑘qPℰ
𝑃𝑗𝑘 ` 𝑝𝑗 @ p𝑖, 𝑗q P ℰ (5.1)

𝑄𝑖𝑗 “
ÿ

𝑘:p𝑗,𝑘qPℰ
𝑄𝑗𝑘 ` 𝑞𝑗 @ p𝑖, 𝑗q P ℰ (5.2)

v𝑗 “ v𝑖 ´ 2 pr𝑖𝑗𝑃𝑖𝑗 ` x𝑖𝑗𝑄𝑖𝑗q @ p𝑖, 𝑗q P ℰ, (5.3)

where eqs. (5.1) to (5.2) are the power conservation equations and (5.3) is the voltage drop

equation.

Without loss of generality, we assume that each node of the DN has a load and a DG.

Furthermore, we consider the constant power model for both loads and DGs.
1

DG model

We assume that each DG is connected to the DN via an inverter. Let sg𝑖 :“ pg𝑖 ` jqg𝑖

denote the nominal complex power supplied at node 𝑖 P 𝒢, where pg𝑖 is the active power

supplied by the DG and qg𝑖 is the reactive power supplied by its inverter. For the sake

of simplicity, we refer to the DG-inverter assembly as simply DG. Now, depending on

whether a DG is connected to the network or not, its actual output is related to its nominal

output as follows:

𝑝𝑔𝑖 “ p1´ 𝑦𝑖qpg𝑖, 𝑞𝑔𝑖 “ p1´ 𝑦𝑖qqg𝑖. (5.4)

According to the IEEE standard rules for interconnection of DGs [70], to ensure safety

as well as proper functioning of the components, DGs are required to disconnect from the

DN if voltage bound violations occur.
2

We model this constraint as follows:

𝑦𝑖 ě vg
𝑖
´ v𝑖, 𝑦𝑖 ě v𝑖 ´ vg𝑖 @ 𝑖 P 𝒩. (5.5)

1
More generally, loads can be modeled using the constant impedance (Z), constant current (I), constant

power (P) or a general ZIP model, or even voltage dependent loads as the load power consumption can also

change due to voltage deviations. Our network model can be extended to include more general load models.

2
Note that the tripping of DGs may also happen for other reasons such as frequency bound violations,

which we consider in the companion paper [115].

181



Load model

In many smart DNs, the operator can change the actual consumption of a connected load

to a fraction of its nominal demand via direct load control in response to supply-demand

disturbances [106]. We model this �exibility as the choice of load control parameter

𝛽𝑖 P r𝛽𝑖, 1s when 𝑘𝑐𝑖 “ 0, and 𝛽𝑖 “ 0 when 𝑘𝑐𝑖 “ 1. Here 𝛽
𝑖
P r0, 1s denotes the

minimum fraction of the load’s nominal demand that should be satis�ed provided the

load is connected. This load control capability can be represented as the mixed-integer

linear constraints:

𝑝𝑐𝑖 “ 𝛽𝑖pc𝑖, 𝑞𝑐𝑖 “ 𝛽𝑖qc𝑖 @ 𝑖 P 𝒩, (5.6)

where

p1´ 𝑘𝑐𝑖q 𝛽𝑖 ď 𝛽𝑖 ď p1´ 𝑘𝑐𝑖q @ 𝑖 P 𝒩. (5.7)

Similar to DGs, the connectivity of loads also depends on the nodal voltages which can

be modeled as follows:

𝑘𝑐𝑖 ě vc𝑖 ´ v𝑖, 𝑘𝑐𝑖 ě v𝑖 ´ vc𝑖 @ 𝑖 P 𝒩. (5.8)

Then, the net actual consumption at nodes is given by:

𝑝𝑖 “ 𝑝𝑐𝑖 ´ 𝑝𝑔𝑖, 𝑞𝑖 “ 𝑞𝑐𝑖 ´ 𝑞𝑔𝑖 @ 𝑖 P 𝒩. (5.9)

We de�ne the network state x P R5𝑁
as x :“ p𝑝, 𝑞, 𝑃,𝑄, vq, where 𝑝, 𝑞, 𝑃, 𝑄, v are

vectors of appropriate dimensions.

5.2 Disruption model

We now discuss a generic cyber-physical failure model that captures the e�ects of DN-

side component disruptions caused by security failures as well as e�ects of disturbances

from the TN.

Our attack model is motivated by the security failure scenarios discussed in [98]. These
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scenarios capture the capabilities of the following threat actors: (i) cyber-hackers of an

enemy nation motivated to disrupt supply to critical facilities, (ii) a malicious adversary

looking to extort ransom money from the utility, or (iii) a disgruntled internal employee

motivated by revenge. In this paper, we are concerned with type (i) actors. Such actors

can leverage existing vulnerabilities in DN cyber architecture such as non-con�dentiality

of control commands, lack of multi-factor authentication, and incorrect �rewall rules that

allow unauthorized access. Particularly, a threat actor can exploit these vulnerabilities to

launch replay attacks [150], or a server-side attack at the control center, or hack operator

credentials, any of which could allow him to perform malicious activities such as mass

remote disconnect of components. We model the DN-side disruptions as nodal supply-

demand disturbances. For example, mass disconnects of DGs (resp. loads) can cause loss

of supply (resp. demand). Additionally, a threat actor could program his attack to be

launched simultaneously with a TN-side disruption. A high-level framework for modeling

impact of cyber-physical disruptions to DN is illustrated in Figure 5-4.

Threat actors Vulnerabilities Threats

Disconnect

commands

DN-side

disruptions

TN-side

disturbances

Supply-demand

disturbances

at DN nodes

Voltage

disturbance at

substation node

Operator response

– Load control, component

disconnections (Part I)

– microgrid islanding,

DN restoration (Part II)

Contingencies

Post-contingency loss

Figure 5-4: Framework for modeling impact of cyber-physical failures on DNs.

DN-side disruption

Our attack model is relevant in the context of smart DNs, with a hierarchical control

architecture as illustrated in Figure 5-1; for further details we refer the reader to [147]. In

this architecture, the main controller resides in the DN control center and performs the

traditional tasks such as the optimization of DN operations and VoltVAR control during

nominal operations. Besides, it also provides �exibility to implement new functionalities

such as DGMS. An attack on the DN control center server can a�ect one or more of these
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functionalities. For the sake of concreteness, we limit our attention to a speci�c attack

scenario in which the attacker targets the DGMS server, with the aim to simultaneously

disrupt multiple DGs connected to the DN. However, our modeling approach is general

in that it can also accommodate other important attack scenarios such as mass remote

disconnects of loads or invalid load control commands [98].
3

Let 𝑑 P t0, 1u𝒩 be a vector denoting the disrupted nodes, where 𝑑𝑖 “ 1 if node 𝑖 is

disrupted, otherwise 𝑑𝑖 “ 0. Let k be the maximum number of nodes that the attacker can

disrupt (i.e. resource constraint), and let 𝒟k
:“ t𝑑 P t0, 1u𝒩 | ř𝑖P𝒩 𝑑𝑖 ď ku denote the

set of feasible attacker strategies. This constraint limits the attacker’s ability to disrupt

an arbitrary number of nodes, and a particular choice of k needs adequate justi�cation.

For the purpose of evaluating a DN’s resilience to security attacks, one can consider that

the existing fail-safe mechanisms employed by the operator (including the in-built “hard”

security checks within the DGMS software) do not permit simultaneous disruption of DG

nodes beyond a certain limit. This limit can be taken as the choice of k.

It is also reasonable to assume that by compromising the DGMS, the attacker can

access information needed to strategically choose the disruption vector 𝑑. This includes

DN topology, line resistances and reactances, nominal nodal demands and DG outputs,

and the value of substation voltage deviation due to TN-side disturbance. Note that this

data is already collected by the DGMS to control DG output (e.g. for Volt-VAr regulation).

Furthermore, our attack model considers that the control center functionalities such as

DGMS are more viable targets for remote external attackers than local substation automa-

tion (SA) systems. Indeed, recent incidents [75] have con�rmed that control center/DGMS

servers can be targets of sophisticated phishing attacks (e.g. through a download of in-

fected email attachments by the human operators who manage these servers). In contrast,

a growing number of distribution utilities are regulated under NERC CIP standards which

secure the substations against remote attacks via reperimetrisation of the substation cyber

architecture [57, 94]. In addition, SA is typically not prone to insecure actions by human

insiders.

3
An attack on a DN control center can also be used to open circuit breakers. We consider this attack in

the companion paper [115].
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Now we model the impact of an attacker’s actions on the DN state. If the attacker dis-

rupts a DG at node 𝑖, then that DG becomes non-operational, and is e�ectively disconnected

from the DN, i.e

𝑦𝑖 ě 𝑑𝑖 @ 𝑖 P 𝒩. (5.10)

The disconnections of DGs and their inverters lead to a sudden drop in active as well

as reactive power supply. Under heavy loading (high demand) conditions, reactive power

often cannot be supplied from the bulk supply sources through the transmission lines.

The reactive power shortfall may be exacerbated by a voltage dip resulting from a TN-side

disturbance, as discussed below. This may result in sustained low-voltage conditions, e.g.

a fault-induced delayed voltage recovery (FIDVR) event [17, 95] and/or result in voltage

collapse.

TN-side disturbance

Our model of TN-side disturbances is motivated by situations such as failure of a trans-

mission line or a bulk generator, which result in low voltage conditions that last for a

prolonged period (several minutes). We model its impact as a sudden drop in the substa-

tion node’s voltage by Δv0, which we assume to be exogenously given (and �xed). Thus,

the substation voltage in the presence of a TN-side disturbance can be written as follows:

v0 “ vnom ´Δv0. (5.11)

Indeed, Δv0 “ 0 indicates no TN-side disturbance.

Note that a TN-side disturbance can also result in a change in frequency away from the

nominal operating frequency of the network. We extend our model to include frequency

disturbances in [115]. Finally, we emphasize that the impact of attack-induced disruptions

on a DN can be quite severe when the DN is simultaneously facing such a TN-side distur-

bance. For instance, the attacker can program the DN-side attack to be launched when a

substation voltage drops at least by Δv0.
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5.3 Substation Automation system capabilities

Recall from Sec. 5.1 that two operator response capabilities that we consider are the au-

tonomous disconnect operations and emergency control by substation automation. Now,

we describe these response capabilities in detail.

Autonomous Component Disconnections

The autonomous disconnect operation is based on local checks of operating bounds at

the DN nodes. This is typically the case for legacy DN management systems where the

operator does not have access to node-level data. Consequently, an operator relying solely

on this response capability does not have the ability to timely detect, accurately identify,

and promptly respond to coordinated supply-demand disturbances in the DN induced by

the attack in our model.

To model the network state under response (b), we adopt and re�ne the cascade algo-

rithm used in [23]. This algorithm is well-suited for modeling forced tripping of network

components under operating bound violations. Speci�cally, Algorithm 8 takes the initial

network state at the start of an attack-induced contingency (denoted x
nr

), and generates

automatic disconnect actions for one or more components, as the state evolves over mul-

tiple rounds of an uncontrolled cascade. Let the vector of variables representing the auto-

matic disconnect actions be denoted by 𝑢
nr
“ p𝛽nr, 𝑘𝑐nr, 𝑦nrq. In each round of the cascade,

𝑢
nr

is updated based on disconnect actions of the DGs that violate the voltage bounds in

that round. These actions are determined by checking (5.5). Then, new power �ows are

computed after each round of disconnection by recomputing x
nr

. Next, the set of all loads

which violate the voltage bounds in (7.25) is computed, and all the loads in this set are

disconnected. Note that the load control parameter 𝛽nr

𝑖 “ 1 throughout the cascading

disconnects of DGs, unless the load becomes fully disconnected, in which case it switches

to 𝛽nr

𝑖 “ 0. Since at least one DG disconnect happens in each round, the algorithm termi-

nates in at most N+1 rounds, where the last round corresponds to load disconnects. The

�nal connectivity vector 𝑢
nr

corresponds to a situation where all the connected compo-

nents satisfy voltage bounds, and can be used to compute the post-contingency state and
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the corresponding loss.

Algorithm 8 Uncontrolled cascade under response (b)

Input: attacker action 𝑑 (initial contingency)

1: 𝑢
nr
, x

nr
Ð GetCascadeFinalState(𝑑)

2: function GetCascadeFinalState(𝑑)

3: Initialize 𝑢
nr
“ p𝛽nr, 𝑘𝑐nr, 𝑦nrq “ p1𝑁 ,0, 𝑑q

4: Compute state x
nr

using eqs. (5.1) to (5.4), (5.6), (7.24), and (5.9)

5: while D 𝑖 such that (5.5) is violated do
6: Set 𝑦nr

𝑖 “ 1, update 𝑢
nr

7: Recompute x
nr

using eqs. (5.1) to (5.4), (5.6), (7.24), and (5.9)

8: end while
9: Compute ℐ “ t𝑖 P 𝒩 | such that p7.25q is violatedu

10: for each 𝑖 P ℐ do
11: Set 𝛽nr

𝑖 “ 0, 𝑘𝑐nr

𝑖 “ 1
12: end for
13: Update 𝑢

nr
, recompute x

nr

14: return 𝑢
nr
, x

nr

15: end function

Now we explain the reason as to why, in Algorithm 8, we consider the disconnection

of DGs before the load disconnects. A sudden voltage drop can be indicative of a fault

within the DN, and therefore DGs supplying power to a fault can be potentially dangerous.

Therefore, according to [70], when voltage bound violations occur, the DGs are supposed

to disconnect within two seconds or less, depending on the extent of voltage drop. On

the other hand, the loads can continue to operate even a minute after mild or moderate

voltage bound violation occurs. Indeed, we can infer this from the fact that the response

time of voltage regulators along the DN feeders is typically around 15 or 30 seconds [17,

136]. However, the disconnect actions of loads happen due to activation of protection

devices which operate based on local measurements, i.e. they operate independent of

each other. Therefore, in the worst-case all loads experiencing voltage bound violations

can disconnect together. Hence, our choice to consider the disconnects of all the loads in

set ℐ within one round is reasonable.

Emergency Response by System Automation

The emergency response capability (refer (c) in Figure 5-1) of modern SA systems is en-

abled by �ne-grained data collection of node-level consumption, distributed generation,
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and nodal voltages. Many of the newer installations of smart meters are already equipped

with data logging and communication capabilities. As a side note, the temporal frequency

of data collected by low-voltage residential meters can vary from 15 minute to 24 hour

intervals, depending on the desired control functionalities, customer privacy levels pro-

vided by the operator as well as the available communication bandwidth between DN

nodes and the SA. However, for the purpose of emergency response, meters installed at

medium voltage to low voltage transformers at DN nodes can be utilized to provide ag-

gregated node-level data from the customer meters in real-time (every second). With this

capability, sudden changes in local DG output can also be detected by the SA, thereby

enabling the operator to identify the attack vector 𝑑. This level of monitoring does not

involve individual customer meter readings, and hence, does not violate privacy regula-

tions.

Thus, the currently available capabilities of collection and processing of node-level

data can be exploited by the operator to implement fast response strategies through SA.

In particular, we consider that node-level data can be used to determine the required

load control (𝛽) and intentional preemptive disconnects (𝑘𝑐, 𝑦), and that this response

is exercised through the SA. Let the set of allowable load control vectors be de�ned

as ℬ :“ ś
𝑖P𝒩pt0u

Ťr𝛽
𝑖
, 1sq. Then, we can denote an operator response strategy as

𝑢 “ p𝛽, 𝑘𝑐, 𝑦q P 𝒰 , where 𝒰 :“ ℬ ˆ t0, 1u𝒩 ˆ t0, 1u𝒩 . Finally, we can denote the set of

response strategies feasible after an attack 𝑑 by 𝒰 p𝑑q :“ t𝑢 P 𝒰 | such that p5.10q holdsu.

Traditional response to voltage regulation

Indeed, other types of classical actions implemented through control of voltage regula-

tors and capacitors as well as network recon�guration can also form part of the operator

response. However, we chose load control and intentional disconnects due to timing re-

quirements. The time-scale of disturbance created by the attack can be very small (few

seconds), and can trigger an immediate cascade of component disconnects due to oper-

ating bound violations. Typically, voltage regulators and capacitor banks require a larger

response time; in fact, frequent activation of these devices is not preferred as they are

subject to mechanical wear and tear [3]. On the other hand, thanks to advancements in
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SA and power electronics based control of loads/DGs, our response strategy can be im-

plemented within a few milliseconds after the information about the timing and extent of

disruption is obtained by the SA. Our modeling approach can be extended to situations

where appropriate changes in the settings of voltage regulators and capacitor banks are

deemed as desirable aspects of operator response; these can be incorporated as integer

decision variables in the inner problem of (P1).

Post-contingency loss

Let 𝐿 denote the post-contingency loss incurred by the operator. We de�ne it as the sum

of following costs: (i) cost due to loss of voltage regulation, (ii) cost of load control, and

(iii) cost of load shedding:

𝐿p𝑢, xq “ WVR ‖vnom ´ v‖
8
`W

LC
ř
𝑖P𝒩 p1𝑁 ´ 𝛽𝑖qpc𝑖

`
´

W
LS ´W

LC

¯ř
𝑖P𝒩 𝑘𝑐𝑖pc𝑖,

(5.12)

where W
LC P R` denotes the cost of per unit load controlled, W

LS P R` and W
LS ě W

LC

is the cost in dollars of per unit load shed, and WVR P R` is the cost of unit absolute

deviation of nodal voltage from the nominal value vnom “ 1 pu. The weight W
LS´W

LC
is

chosen to enable proper counting of the cost of load control when the load is disconnected.

The typical values for the parameters in (5.12) of the cost terms are listed in Table 5.2.

Weights Typical values

W
LC 1

4
ˆ 11 cents per kilowatt hour

WVR
2

100
ˆ 11 cents per kilowatt hour

W
LS

3 dollars per kilowatt hour

Table 5.2: Typical values of cost parameters.

Remark 6. We have included the cost of load shedding, but not the cost of disconnection of

customer-owned DGs because the customers are likely to face more inconvenience if there

is load shedding, in comparison to DG disconnections during a contingency. However, we

can easily account for the cost of DG disconnections in our formulation.

We say that if no components are disconnected after the attacker-operator interaction,
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the DN is in theNo-Disconnect (ND) regime; otherwise, it’s in theComponent-Disconnected

(CD) regime. In the CD regime, the operator incurs an additional cost over the ND regime

in the form of compensation to the consumers whose loads are completely disconnected;

see (5.12). Note that, in our model, the CD regime can result from an uncontrolled cascade

under autonomous disconnections, or from emergency response by the SA system.

5.4 Bilevel mixed-binary optimization problem

Let 𝒳 denote the set of post-contingency states x that satisfy the constraints (5.1)-(5.9).

Then, we can model the attacker-operator interaction in the presence of TN-side distur-

bance by re�ning (P1) as follows:

ℒMm
:“ max

𝑑P𝒟
k

min
𝑢P𝒰 p𝑑q

𝐿 p𝑢, xq

s.t. x P 𝒳 p𝑢q , p5.11q.
(Mm)

Thus, the attacker’s (resp. operator’s) objective is to maximize (resp. minimize) the loss

𝐿 subject to LinDistFlow (5.1)-(5.3), DG and load models (5.4)-(5.9), and the failure impact

captured by 𝑢 P 𝒰 p𝑑q and (5.11). We refer the problem (Mm) as the Budget-k-max-loss

problem, where k is the budget of the attacker and determines 𝒟k.

In the case of autonomous disconnections, for a given attacker action 𝑑, Algorithm 8

allows us to compute the �nal state of operator variables 𝑢
nr

and network state x
nr

. We can

then evaluate the post-contingency loss 𝐿 p𝑢
nr
, x

nr
q for an attack-induced DG disruption

vector 𝑑 P 𝒟k in the autonomous disconnections case by using (5.12). For any given

attack cardinality k, we denote the maximum over no-response post-contingency losses

of all attacks by ℒ
AD

. The optimal attack vector can be computed by simple enumeration

over attacks of cardinality k. However, we will present an algorithm in Sec. 5.4 to estimate

ℒ
AD

.

Solution Approach

To evaluate the post-contingency loss in the case of emergency response by the SA, we

need to solve the bilevel problem (Mm), which has binary variables in both inner and
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outer problems. In general, such BiMIP problems are NP-hard and are computationally

challenging to solve [23, 72]. Our solution approach relies on using the Benders Decom-

position (BD) algorithm to approximately solve (Mm) on a reformulated problem. The

overall approach can be described as follows. First, we argue that ℒMm can be obtained

by solving an equivalent Min-cardinality disruption problem instead. Then, we apply the

BD algorithm, which decomposes the min-cardinality problem into a master (attacker)

problem (an integer program) and an operator subproblem (a mixed-integer program),

and then solves these two problems in an iterative manner, until either an optimal min-

cardinality attack is obtained or all the attacks are exhausted.

Min-cardinality disruption problem

Recall that in problem (Mm), the attacker’s goal is to determine an optimal attack of size at

most k (attack resource). On the other hand, in the min-cardinality problem, the attacker

computes a disruption with as few attacked DN nodes as possible to induce a loss to

the operator greater than a pre-speci�ed threshold target post-contingency loss, denoted

ℒtarget. These two problems are equivalent to each other in the following sense. The

loss ℒMm in (Mm) is non-decreasing in k (due to the inequality constraint

ř
𝑖P𝒩 𝑑𝑖 ď

k). Therefore, if the parameter ℒtarget is gradually increased then the minimum attack

cardinality computed by min-cardinality problem will be non-decreasing in ℒtarget. Thus,

for a �xed budget k, the smallest ℒtarget value at which the minimum attack cardinality

changes from k to k ` 1 will be the optimal value of problem (Mm). By implementing a

binary search on the parameter
100ℒtarget

ℒmax
between 0´100%, we can determine the smallest

ℒtarget at which the minimum attack cardinality changes from k to k ` 1. Conversely, if

we can solve (Mm), then by implementing a binary search on the parameter k between

0 and 𝑁 , we can determine the minimum attack cardinality whose optimal loss exceeds

ℒtarget.

It turns out that application of the BD algorithm to the min-cardinality problem de-

composes the min-cardinality problem into two single-level MIPs, namely the master

(attacker) problem and the operator subproblem. The master problem only has the at-

tack variables, integrality constraints, and the Benders cuts; and its objective function is
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bounded. If the BD algorithm were applied to the budget-k-max-loss problem instead,

the corresponding master problem will have variables 𝑑 and 𝑢 and eqs. (5.1) to (5.11) as

constraints. Besides the computational advantage in solving the min-cardinality problem,

the quantity
100ℒtarget

ℒmax
is relevant from the viewpoint of DN resilience. For example, if we

want to evaluate whether or not a DN is 80% resilient to a k cardinality attack, we can set

ℒtarget “ 0.2ℒmax, and then check if the optimal value of the min-cardinality problem is

smaller than or equal k.

Now, we detail an approach to solve the min-cardinality problem. For given load and

DG connectivity vectors 𝑘𝑐 and 𝑦, we de�ne a con�guration vector as 𝜅 :“ p𝑘𝑐, 𝑦q.
Given an attack vector 𝑑, let 𝒦p𝑑q :“ tp𝑘𝑐, 𝑦q P t0, 1u𝒩ˆt0, 1u𝒩 such that p5.10q holdsu,
i.e. 𝒦p𝑑q denotes the set of all possible post-disruption con�guration vectors that the

operator can choose from. Then, for a �xed attack 𝑑 and a �xed con�guration vector

𝜅 P 𝒦p𝑑q, consider the following linear program:

𝒫 p𝑑, 𝜅q :“ min𝛽Pℬ 𝐿 p𝑢, xq
s.t. 𝑢 “ p𝛽, 𝜅q , x P 𝒳 p𝑢q , p5.11q.

(O-LP)

Note that (O-LP) may not have feasible solutions as the chosen con�guration vector 𝜅

may violate (5.5) or (7.25) in the set of constraints 𝒳p𝑢q. In this case, the value of 𝒫 p𝑑, 𝜅q
is set to8.

Suppose that, for a given DN, we are concerned with a TN-side disturbance Δv0 and

a target ℒtarget post-contingency loss. We say that an attack-induced disruption 𝑑 P 𝒟k

defeats a con�guration 𝜅 P 𝒦p𝑑q if𝒫 p𝑑, 𝜅q ě ℒtarget, and is successful if it defeats every 𝜅 P
𝒦p𝑑q. The above de�nition is analogous to the de�nition of successful attack considered

in [24]. We can now state the Min-cardinality disruption problem as follows:

min
𝑑Pt0,1u𝒩

ÿ

𝑖P𝒩
𝑑𝑖

s.t. 𝒫 p𝑑, 𝜅q ě ℒtarget @ 𝜅 P 𝒦p𝑑q.
(MCP)

If there exists an optimal solution of the problem (MCP), say 𝑑‹, then it is a min-cardinality

disruption corresponding to ℒtarget because it is successful and has minimum number of
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attacked nodes.

However, problem (MCP) is not tractable in its current form because the number of

constraints are equal to the cardinality of set 𝒦p𝑑q which can be exponential in |𝒩|, and

verifying each constraint

`
𝒫 p𝑑, 𝜅q ě ℒtarget

˘
is itself a linear optimization problem. For-

tunately, the BD algorithm can be applied to address this issue.

Benders Decomposition

The algorithm decomposes (MCP) into two relatively simpler mixed-integer (MIP) sub-

problems: attacker subproblem (A-MIP) and operator subproblem (O-MIP). Both these

problems are then solved in an iterative manner. In fact, in each iteration, one needs to

solve (A-MIP), (O-MIP), and the dual of the problem in (O-LP), as discussed below. Fig-

ure 5-5 summarizes the overall approach.

Original BiMIP (Mm)

Min-cardinality

disruption

problem (MCP)

Attacker MIP

min
𝑑

ř
𝑖 𝑑𝑖

s.t. Benders cuts

𝑑𝑖 P t0, 1u

Operator

MIP (O-MIP)

𝐿 p𝑢‹, x‹q
ě ℒtarget

Exit𝑑‹

Operator LP 𝒫p𝑑‹, 𝜅‹q
with reformulated

coupling constraints (O-LP1)

Operator LP (Dual)

min
𝜆ě0

`
𝑏` 𝐵𝑑

‹˘J
𝜆

s.t. 𝐴
J
𝜆 ď 𝑐

yes

no

𝑢‹, x‹

𝑑‹

𝑢‹ “ p𝛽‹, 𝜅‹q, x‹

𝜆‹Jp𝑏` 𝐵𝑑q

ě 𝐿p𝑢‹, x‹q ` 𝜖

Benders cut

Figure 5-5: Computational approach to solve (Mm).

The attacker MIP can be written as follows:

min
𝑑Pt0,1u𝒩

ř
𝑖P𝒩 𝑑𝑖

s.t. set of Benders cuts,

(A-MIP)
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The master problem is initialized with only the integrality and budget constraints on the

attack variables, and without any Benders cut. In each iteration, solving the master prob-

lem (A-MIP), which is a bounded MIP, if feasible, yields an attack 𝑑‹. Then, this attack

vector is used as an input parameter for the operator subproblem (O-MIP). For a �xed

disruption 𝑑‹, the operator subproblem is the same as the inner problem of p𝑀𝑚q:

min𝑢P𝒰 p𝑑‹q 𝐿 p𝑢, xq
s.t. x P 𝒳p𝑢q, p5.11q.

(O-MIP)

The problem (O-MIP) is also a bounded MIP because the load and DGs have bounded fea-

sible space. If (O-MIP) is feasible, it yields an optimal operator response 𝑢‹ and network

state x‹ for the disruption 𝑑‹. If the operator’s loss𝐿 p𝑢‹, x‹q exceeds the target loss ℒtarget,

the algorithm terminates having successfully determined an optimal min-cardinality at-

tack. Otherwise, 𝐿 p𝑢‹, x‹q ă ℒtarget which implies that 𝑑‹ is not a successful disruption.

In this case, we need to generate a Benders cut to eliminate 𝑑‹ from the feasible space of

(A-MIP).

To obtain a Benders cut, we select integer variables from the operator response 𝑢‹ “
p𝛽‹, 𝜅‹q; i.e. select the con�guration vector 𝜅‹, and consider the LP in (O-LP). However,

we encounter an algorithmic issue which is as follows. Recall that in problem (Mm), the

constraints (5.10) involve only the attack variables and operator binary variables. These

constraints model the fact that, in our formulation, the DGs can get disconnected due to

attacker actions as well as the operator response. When we �x these attack variables and

inner binary variables in (5.10), the resulting linear program (O-LP) has constraints of the

form 0 ě 0, 1 ě 0 or 1 ě 1. The values of the optimal dual variables (𝜆‹) corresponding

to these constraints (5.10) turn out to be 0, which are not useful in forming good Benders

cuts. To address this issue, we modify the constraints of (O-LP) to ensure that the refor-

mulated coupling constraints are such that coe�cients of the attack variables (𝑑) and the

coe�cients of inner continuous variables (𝑝𝑔, 𝑞𝑔) are not simultaneously zero. One way
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to achieve this is to replace (5.4) and (5.10) by the following constraints:

𝑦𝑖 ě 𝑑𝑖, (5.13a)

𝑝𝑔𝑖 ď p1´ 𝑑𝑖qpg𝑖, 𝑞𝑔𝑖 ď p1´ 𝑑𝑖qqg𝑖, (5.13b)

𝑝𝑔𝑖 ď p1´ 𝑦𝑖qpg𝑖, 𝑞𝑔𝑖 ď p1´ 𝑦𝑖qqg𝑖, (5.13c)

𝑝𝑔𝑖 ě p1´ 𝑦𝑖qpg𝑖, 𝑞𝑔𝑖 ě p1´ 𝑦𝑖qqg𝑖, (5.13d)

Note that (5.13a)-(5.13d) are equivalent to (5.4) and (5.10).
45

With this replacement, the

values of the optimal dual variables (𝜆‹) corresponding to the constraints (5.13b) will be

non-zero, which ensures that useful Benders cuts will be generated in each iteration of

the BD algorithm. Thus, we reformulate 𝒫 p𝑑, 𝜅q as follows:

𝒫 p𝑑, 𝜅q “ min
𝛽Pℬ

𝐿 p𝑢, xq

s.t. 𝑢 “ p𝛽, 𝜅q , p5.1q ´ p5.3q,
p5.5q ´ p5.11q, p5.13q.

(O-LP1)

Note that problem (O-LP1) with parameters (𝑑‹, 𝜅‹) can be simpli�ed and rewritten

as the following problem whose dual is written alongside:

Primalhkkkkkkkkkkkkkikkkkkkkkkkkkkj
min
𝑤

𝑐J𝑤

𝐷𝑢𝑎𝑙hkkkkkkkkkikkkkkkkkkj
max
𝜆ě0

p𝑏`𝐵𝑑‹qJ𝜆

s.t. 𝐴𝑒𝑞𝑤 “ 𝑏𝑒𝑞 `𝐵𝑒𝑞𝑑
‹

s.t. 𝐴J𝜆 “ 𝑐

𝐴𝑖𝑛𝑤 ě 𝑏𝑖𝑛 `𝐵𝑖𝑛𝑑
‹

(O-LP2)

Here 𝑤 and 𝜆 are the primal and dual decision vector variables; 𝐴 “ r𝐴𝑒𝑞J𝐴𝑖𝑛JsJ, 𝐵 “
r𝐵𝑒𝑞

J𝐵𝑖𝑛
JsJ are matrices and 𝑏 “ r𝑏𝑒𝑞J𝑏𝑖𝑛JsJ is a vector of appropriate dimensions. We

4
Using the constraints (5.4) and (5.13a)-(5.13b) is also equivalent to using (5.4) and (5.10). However,

when the former set of constraints ((5.4) and (5.13a)-(5.13b)) are used, the implementation solver (Gurobi)

assigns non-zero dual variables to the equality constraints (5.4) but not to (5.13b), which results in rendering

of ine�ective Benders cuts. Hence, (5.4) needs to be replaced by (5.13c)-(5.13d).

5
Although for p𝑑𝑖, 𝑦𝑖q “ p1, 1q, the constraints (5.13c) and (5.13d) are equivalent to (5.13b), the imple-

mentation solver assigns non-zero dual variables to the inequality constraints that come up earlier in the

implementation. Hence, these two sets of inequality constraints are placed after (5.13b).
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solve the dual problem (thanks to strong duality, the optimal values are the same) in (O-

LP2) to compute 𝒫 p𝑑‹, 𝜅‹q and an optimal dual solution 𝜆‹. This furnishes a Benders cut,

which is added to master problem in the next iteration. In particular, if the dual problem in

(O-LP2) has an optimal solution 𝜆‹, and its optimal value is𝐿‹, then 𝜆‹J p𝑏`𝐵𝑑q ě 𝐿‹`𝜖
is the desired Benders cut where 𝜖 is a small positive number. Note that 𝑑‹ does not satisfy

this Benders cut constraint because 𝜆‹J p𝑏`𝐵𝑑‹q “ 𝒫 p𝑑‹, 𝜅‹q “ 𝐿‹ ă 𝐿‹ ` 𝜖, where

the �rst equality holds because of strong duality in linear programs.

In each iteration, we eliminate suboptimal attacks from the feasible space of (A-MIP).

Hence, the new master problem obtained by adding a Benders cut is a stronger relaxation

of (MCP). Consequently, we get a progressively tighter lower bound on the minimum

cardinality of the attack as the iteration continues, until we get a successful attack. Since

there are a �nite number of attacks, whether successful or not, the BD algorithm is bound

to terminate.
6

As we will see in Sec. 5.4, the BD algorithm takes signi�cantly fewer number

of iterations in comparison to a simple enumeration.

The choice of 𝜖 in the generation of a Benders cut is an important issue in our im-

plementation of the BD algorithm. If we choose too large an 𝜖 then many attacks (pos-

sibly including the optimal attacks) would be eliminated from the set of feasible attacker

strategies in (A-MIP). If we choose too small an 𝜖, then in each iteration only the current

min-cardinality attack vector is eliminated resulting in performance no better than simple

enumeration over all attacks.

Remark 7. Although we have used linear power �ow approximation in our formulation,

our approach can be generalized to consider the Second Order Cone approximation [90].

In this case, the formulation will be a Bilevel Mixed-Integer Second Order Cone Program

(BiMISOCP) where the operator (inner) problem is an MISOCP. Our solution approach

can, in fact, be generalized to solve the BiMISOCP by using the Generalized Benders De-

composition method [18].

We now o�er some comparative remarks about our solution approach to (Mm) which

– as mentioned earlier – is a BiMIP with con�icting objectives in the inner (operator)

6
For realistically large network sizes (𝑁 “ 118), the BD algorithm terminates in approximately 10

minutes.
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and outer (attacker) problems. In general, one can reformulate a BiMIP into single level

MIP (for example, using high-point relaxation (HPR) problem [92, 140]), and use advanced

branch-and-bound algorithm to solve the problem. Note, however, the HPR is a weak re-

laxation of the original BiMIP due to directly con�icting objectives [69, 72]. More recent

work has developed intersection cuts [55, 56] and disjunction cuts [85, 134] – these ap-

proaches introduce stronger cuts for the HPR problem. However, these approaches are

suitable for BiMIPs in which the inner problem has integer coe�cients in the constraints.

On the other hand, our problem (Mm) has fractional coe�cients. A recent paper by Hua

et. al [69] addresses this issue by applying Generalized Benders decomposition method

but without the min-cardinality reformulation; as a result, the master problem in their

approach needs to handle relatively larger number of variables and constraints. Since in

our solution approach we apply the Min-cardinality reformulation, the resulting master

problem has fewer number of variables and constraints. Another approach by Zeng and

An [145] uses Column Constraint Generation (CCG) method, whose iterations progres-

sively add variables and constraints (particularly, the disjuntive constraints resulting from

the KKT conditions for the inner problem with �xed binary variables). While these ap-

proaches are certainly of interest in solving (Mm), we �nd that our proposed approach

achieves desirable computational performance as discussed in Sec. 5.4.

Estimating worst-case operator loss under autonomous disconnec-

tions

For each cardinality k, we compute the worst-case operator loss under the autonomous

disconnections using simple enumeration. However, that would required evaluating op-

erator loss over combinatorially many (

`
𝑁
k

˘
) attacks. Therefore, we present a randomized

algorithm to compute worst-case operator loss under the autonomous disconnections;

see Algorithm 9.

Essentially, the algorithm aims to achieve the following: for each attack cardinality, it

generates random attacks, compute the operator loss due to autonomous component dis-

connects (using Algorithm 8), and then choose the maximum among all computed losses.

Speci�cally, for a given parameter 𝑍 (number of random permutations) it initializes
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Algorithm 9 Random and approximate worst-case attack under response (b)

Input: 𝑍 (number of random permutations)

1: Initialize 𝑌 “ 0𝑁ˆ𝑍 and 𝑉 “ 0𝑁
2: for 𝑡 “ 1, ¨ ¨ ¨ , 𝑍 do
3: Generate a random permutation 𝜎 of nodes 𝒩
4: Reset 𝑑 “ 0
5: for k “ 1, ¨ ¨ ¨ , 𝑁 do
6: Set 𝑑𝜎pkq “ 1 Ź k cardinality attack

7: p𝑢
nr
, x

nr
q Ð GetCascadeFinalState(𝑑) Ź Refer Algorithm 8 for

GetCascadeFinalState

8: 𝑌 r𝑖, 𝑡s Ð 𝐿p𝑢
nr
, x

nr
q

9: end for
10: end for
11: for k “ 1, ¨ ¨ ¨ , 𝑁 do
12: 𝑉 rks Ð max𝑡Pr𝑇 s 𝑌 rk, 𝑡s
13: end for
14: return 𝑌, 𝑉

the entries of a matrix 𝑌 P R𝒩ˆZ
and a vector 𝑉 P R𝒩

to zero. Next, for each iteration

𝑡 “ 1, ¨ ¨ ¨ , 𝑍 , it chooses a random permutation of the DN nodes 𝒩, and resets 𝑑 “ 0.

Then, it incrementally disrupts a DG belonging to a DN node in the order of the chosen

𝑡𝑡ℎ permutation, thereby obtaining a random attack for each cardinality k. For each attack

generated in this manner, it computes the operator loss using Algorithm 8, and stores it in

𝑌 rk, 𝑡s. After completely computing the matrix 𝑌 , it computes for each attack cardinality

k, 𝑉 rks “ max𝑡Pr𝑍s 𝑌 rk, 𝑡s, i.e. the maximum over the computed losses. As shown in

Sec. 5.4, for any randomly chosen attack of cardinality k ă 𝑁 , if we disrupt one more

DG, then the loss incurred by operator under autonomous disconnections would increase.

This monotonicity of increasing operator loss for increasing attack cardinality cannot be

shown if we simply choose 𝑁 ` 1 random attacks of cardinalities k P t0, ¨ ¨ ¨ , 𝑁u, and

plot the operator loss values vs. k. This is the main idea behind Algorithm 9.

Computational Study

Now, we present computational results to show: (a) the value of timely operator response

compared to autonomous disconnections; (b) comparison of the solutions of our BD ap-

proach with the optimal solution (generated for small networks by pure enumeration);
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and (c) the scalability of our approach to larger networks.

Setup for computational study

We consider three networks: 24 node, and modi�ed IEEE 36 node and 118 node networks.

Each line has an identical impedance of r𝑖𝑗 “ 0.01,x𝑖𝑗 “ 0.02. Half of the nodes have a

DG and half have a load. Hence, the maximum cardinality of an attack in our computa-

tional study will be half the number of the nodes in the DN. Consider a parameter 𝛼 “ 6
𝑁

.

Before the contingency, each DG has active power output of pg𝑖 “ 𝛼, and each load has a

demand of pc𝑖 “ 1.25𝛼. Thus, we assume 80% DG penetration since the total DG output

is 80% of the total demand. The voltage bounds are vc𝑖 “ 0.9, vc𝑖 “ 1.1, vg
𝑖
“ 0.92

and vg𝑖 “ 1.08. The reactive power values are chosen to be exactly one third that of the

corresponding active power value, i.e. a 0.95 power factor value for each load and DG. The

values are chosen such that the total net active power demand in the DN is 0.75 pu, and

the lowest voltage in the network before any contingency is close to vg. The maximum

load control parameter is 𝛽
𝑖
“ 0.8, i.e. at most 20% of each load demand can be curtailed.

For the sake of simplicity, we assume that all DGs and loads are homogeneous. The values

of cost coe�cients are chosen to be W
LC “ 100

pc𝑖
,WVR “ 100 and W

LS “ 1000
pc𝑖

.

All experiments were performed on a 2.8 GHz Intel Core i7 with 16 GB 1600 MHz

DDR3 MacBook Pro laptop.

Value of timely response

Recall that in Sec. 5.1, we used post-contingency loss to de�ne the resilience metric for

operator response (ℛ
Mm

) and autonomous disconnections (ℛ
AD

) cases; and that ℛ
Mm
ě

ℛ
AD

. Figure 5-6 compares the resiliency values for the two cases (response (c) versus

autonomous disconnections) for varying number of nodes attacked, where computation of

ℛ
Mm

(resp. ℛ
AD

) involves using BD algorithm (resp. Algorithm 8). In Figure 5-6, resiliency

curve due to response (b) under random attacks is obtained by using Algorithm 9. We

chose 𝑍 “ 500, and select 10 out of 𝑍 random permutations 𝜎 (see Algorithm 9) to

generate the plot. For a given cardinality k, the worst operator loss under autonomous

disconnections is estimated by choosing 𝑉 rks.
Note that, in Figure 5-6, for random attacks, the DN resilience under autonomous
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disconnections monotonically decreases as the attack cardinality increases. Furthermore,

the worst-case DN resilience due to compromise of less than 20% of nodes is equal to the

corresponding value when all DGs are disrupted, i.e. the operator loss under autonomous

disconnections quickly saturates. Therefore, the algorithmic choice of not computing the

worst-case operator loss under autonomous disconnections by exhaustive enumeration

over all possible attacks in Algorithm 9 is justi�ed.

Indeed, under autonomous disconnections, we �nd that the voltage bound violations

cause even the non-disrupted DGs to disconnect resulting in a cascade. However, un-

der operator response, the SA detects these voltage bound violations, and preemptively

exercises load control and/or disconnects the loads/DGs to reduce the total number of

non-disrupted DGs from being disconnected, and minimize the impact of the attack. The

di�erence between the two resiliency curves gives the value of timely response via the

SA system. The intermediate curves in Figure 5-6 correspond to the DN resilience under

random attacks and autonomous disconnections by the operator. Finally, when both a

TN-side disturbance and a DN attack are simultaneous, the resilience metric of the DN

decreases; see Figure 5-6b.
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Figure 5-6: Value of timely response (𝑁 “ 36).
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Benders Decomposition method vs. Simple enumeration

For a �xed cardinality k, we compute the optimal loss ℒ‹ using simple enumeration over

all disruptions. Then, we use ℒ‹ as the parameter ℒtarget for the problem (MCP). If the

BD algorithm applied to (MCP) computes a successful attack with the same cardinality k,

then indeed we have obtained the optimal attack of cardinality k. Figure 5-7 shows that

our method performs very well in computing optimal attacks. The sub-optimality results

from the introduction of 𝜖 in the Benders cuts; see Figure 5-5.
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Figure 5-7: Accuracy of BD algorithm in computing resilience metric in comparison to

simple enumeration. Regime change from ND to CD is marked.

Scalability of BD algorithm

We tabulate the computational time required by the BD algorithm to compute min-cardinality

attacks for di�erent network sizes and varying values of the resilience metric ℛtarget “
100 p1´ ℒtarget{ℒmaxq; see Table 5.3. Note that even for 𝑁 “ 118 nodes, which has 2118

con�guration vectors, the BD algorithm �nishes computations in «10 minutes. In com-

parison, for 𝑁 “ 36 node network, the simple enumeration method took «2 hours. The

failure cases in Table 5.3 correspond to the cases where there does not exist an attack

vector that exceeds the target loss values.
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Table 5.3: Resiliency metric evaluated using BD algorithm. The realized resilience metric

can signi�cantly fall short of the target resilience metric (ℛtarget “ 100 p1´ ℒtarget{ℒmaxq);
for example, when the attack cardinality changes from 1 to 2, the percentage resilience

for 24-node network decreases sharply from 98.75% to 91.15% (which involves a change

from the ND regime to the CD regime). This means that the 24-node DN is at least 90%

(actual value 91.15%) resilient to k “ 2 cardinality attacks.

Entries are resilience metric of DN (in percentage), number of iterations (written in brackets),
time (in seconds), attack cardinality.
ℛtarget 𝑁 “ 24 𝑁 “ 36 𝑁 “ 118
99 98.75, (3), 0.04, 1 98.96, (11), 0.22, 5 98.52, (27), 1.86, 14

95 91.15, (6), 0.08, 2 93.82, (13), 0.27, 6 94.66, (39), 3.34, 17

90 89.75, (10), 0.16, 3 88.08, (15), 0.34, 8 89.94, (50), 5.44, 26

85 82.41, (11), 0.18, 4 82.93, (17), 0.4, 10 84.96, (69), 9.23, 44

80 74.38, (14), 0.26, 5 76.99, (21), 0.52, 14 79.71, (86), 613.42, 52

75 74.38, (14), 0.26, 5 71.1, (23), 0.59, 16 Failure

65 58.01, (20), 0.41, 9 Failure

55 49.65, (23), 0.47, 12

45 Failure
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Chapter 6

Leveraging Networked Microgrids for

Distribution Network Resilience

In the previous chapter, we leveraged the capability of modern Substation Automation

(SA) systems to enable preemptive load control and component disconnects in response to

attacker-induced disruptions. This response capability allowed the operator to minimize

the post-contingency loss. In this chapter, we consider a radial DN with one or more

microgrids, and extend the operator response model to allow for dispatch of DERs as

well as microgrid islanding. Furthermore, we also consider the problem of restoration of

system performance by reconnection of disrupted components.

6.1 Value of microgrid operations

We model the sequential interaction between a DN operator and an external adversary as

follows [114]:

ℒMm
:“ max

𝑑P𝒟
k

min
𝑢P𝒰 p𝑑q

𝐿 p𝑢, xq s.t. x P 𝒳 p𝑢q , (P1)

where 𝑑 P 𝒟k denotes an attacker strategy, 𝑢 P 𝒰 p𝑑q an operator response strategy, x P 𝒳
the network state, and 𝐿 the composite loss function. In [114], we argued that cyberphys-

ical disruptions to DNs can lead to operating bound violations and cause uncontrolled or

forced disconnects of DN components. Speci�cally, we modeled the impact of attacker-
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induced disconnects of DN components as supply-demand disturbances, and the impact

of TN-side disturbances as voltage deviations at the substation node. Then, we considered

preemptive load control and component disconnects as operator response actions for the

generic setting when the attacker’s (resp. operator’s) goal is to maximize (resp. minimize)

the post-contingency losses. We introduced ℛ
Mm

:“ 100
´
1´ ℒ

Mm

ℒmax

¯
as a resilience met-

ric of the DN, where ℒmax (chosen for sake of normalization) denotes the operator loss

when all DN components are disconnected; see Figure 6-1. Finally, we evaluated the value

of optimal response as the total reduction in post-contingency losses relative to case of

autonomous disconnections, i.e. ℛ
Mm
´ℛ

AD
, where ℛ

AD
“ 100 p1´ ℒAD{ℒmaxq.

In this article, we consider another bilevel formulation:

ℒMG
:“ max

𝑑P𝒟m

k

min
𝑢P𝒰mp𝑑q

𝐿
m
p𝑢, xq s.t. x P 𝒳

m
p𝑢q , (P2)

where the network model 𝒳
m
, and the loss function 𝐿

m
are extended to capture microgrid

operations (Sec. 6.2) and DER dispatch and regulation aspects; the set of attacker strategies

𝒟m

k
and the set of operator strategies 𝒰

m
are also modi�ed to capture attacker-operator

interactions for DNs with DER-powered microgrids (Sec. 6.3). The maximin value of (P2),

ℒMG, denotes the worst-case post-contingency loss incurred by the operator for the given

microgrid and DER capabilities; see Figure 6-1. Then, ℛMG
:“ 100 p1´ ℒ

MG{ℒmaxq can be

viewed as a resilience metric of the DN under the microgrid-enabled operator response.

Furthermore, the relative value of timely microgrid response (or equivalently, the im-

provement in DN resilience due to microgrids) can be evaluated as pℛMG ´ ℛ
Mm
q. We

posit that advances in DER-enabled microgrids and emergency control operations at sub-

station level can be leveraged to implement timely resiliency-improving response actions

(less than a few seconds after a disturbance event).

In [114], we considered three operator response capabilities:

(a) Remote control by the control center during nominal conditions;

(b) Autonomous disconnection of individual components (tripping of DGs or loads un-

der nodal violations in operating conditions); and
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Figure 6-1: Performance under various response capabilities.

(c) Emergency control by a secure Substation Automation (SA) system.

In this paper, we consider the following extension of (c):

(d) emergency control by the SA involving microgrid islanding and DER dispatch.

Analogous to [114], we consider that the SA system can detect the disrupted components

from changes in measurements of net nodal consumption. By using knowledge of the

attack the SA can compute and implement the operator response in a timely manner. For

our purposes, response (d) is an optimal second-stage response in (P2). Our analysis relies

on the premise that such response can be implemented via modern SA systems during

disruptions. Indeed, the continued improvements in SA systems’ disturbance detection

and control capabilities can further assist in restoration operations.

The resiliency of a system also re�ects how quickly it can rebound to its nominal state

after a disruption [93, 114]. Microgrids can provide partial demand satisfaction during the

system restoration process, especially during the time when the DN is fully disconnected

from the TN. We consider an admittedly simple, but practically relevant, multi-period

DN restoration problem in which the disrupted DN components are gradually restored

over several periods; refer to “DN restoration” in Figure 6-1. Our goal in this problem

is to compute an operator strategy in each time period (roughly, on the order of a few

minutes). Such a strategy is comprised of reconnecting disrupted components, modify-

ing the microgrid islanding con�guration, and dispatching the DERs within individual

microgrids.

205



Our modeling approach addresses some key issues regarding microgrid and DER op-

erations. In particular, we allow for the formation of one or more microgrid islands in

radial DNs. When all the microgrids are connected to the transmission network (TN), the

DN is operating in the grid-connected regime. If none of the microgrids are connected to

the TN, then the DN is operating in the fully-islanded regime. In our approach, the DN can

also operate in a partially-islanded regime, in which some of the microgrids are connected

to the TN while other microgrids are not. In both partially- and fully- islanded regimes,

each microgrid can operate as an isolated microgrid or as a part of a bigger microgrid.

To model power �ows in each of the microgrids, we introduce a natural extension of the

LinDistFlow equations. The resulting network model captures DN operations in all the

above-mentioned regimes (Sec. 6.2). We limit attention to linear power �ows mainly for

the ease of exposition.

Importantly, we consider the parallel operation of multiple DERs for the provision of

grid-forming services, which involve providing voltage and frequency references, as well

as maintaining voltage and frequency within operating bounds (i.e. regulation services).

When a microgrid is connected to the TN, the bulk generators provide the grid-forming

services. However, when a microgrid is disconnected from the TN, then at least one DER

within that microgrid must provide the grid-forming services [84]. Depending on the

number of grid-forming DERs within a microgrid, one can consider two modes of DER

operation under islanded regimes namely: Single-Master Operation (with a single grid-

forming DER) and Multi-Master Operation (with more than one grid-forming DER) [84].

Our model is simple and �exible enough to capture both the single-/multi- master modes

of DER operation. In addition to voltage regulation, we also consider frequency regulation,

which becomes important for microgrids due to low inertia of the DERs. By using the

appropriate droop control equations, we capture both frequency and voltage regulation

aspects resulting from multiple DERs operating in parallel within a microgrid.

Our main contributions are as follows:

p‹q We capture the di�erent microgrid regimes as well as DER operating modes by

developing a new mixed-integer linear network model. This modeling approach

enables us to formulate (P2) as a Bilevel Mixed-Integer Problem (BiMIP). In [114],
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we showed that (P1) is also a BiMIP, and can be solved using a Benders Decompo-

sition (BD) algorithm. In Sec. 6.3, we show that this algorithm can be applied to the

extended formulation (P2).

p‹q Our network model is also well-suited for formulating a DN restoration problem as a

multi-period Mixed-Integer Problem (MIP). In our restoration problem, the network

state in any period only depends on the operator response actions in that period,

and the network state in the previous period. We exploit this feature and propose

a greedy heuristic that seeks to reconnect the disrupted components in each period

such that the post-contingency losses for that period are minimized (Sec. 6.4).

6.2 Multi-microgrid network model
In this section, we develop a model of a radial DN with one or more microgrids. This

network model extends the LinDistFlow model [16] to multi-microgrid settings.

We distinguish between two operating stages 𝑜 and 𝑐, which denote the pre- and post-

contingency stage, respectively. The network is initially in 𝑜 stage, and after the distur-

bance event, it enters in the 𝑐 stage; see Sec. 6.3 for details on the disturbance model. Let

𝜂 P t𝑜, 𝑐u denote the operating stage of the network. We de�ne the network state as

x𝜂 :“ p𝑝𝜂, 𝑞𝜂, 𝑃 𝜂, 𝑄𝜂, v𝜂, 𝑓𝜂qJ, where each of these entries are themselves row vectors of

appropriate dimensions, and are described in Table 6.1.

In our DN model, we consider a radial network consisting of one or more microgrids.

We refer to a distribution line p𝑖, 𝑗q Pℳ Ď ℰ as a microgrid connecting line if it connects a

microgrid to the TN or to other microgrids; see Figure 6-2. Here ℳ denotes a given �xed

set of connecting lines. For a connecting line p𝑖, 𝑗q Pℳ, we use 𝑘𝑙𝜂𝑖𝑗 “ 0 (resp. 𝑘𝑙𝜂𝑖𝑗 “ 1)

to indicate that it is in closed (resp. open) state. Based on the states of the connecting

lines, the DN can operate in any of the following “regimes”:

- Grid-connected regime when all connecting lines are closed (i.e 𝑘𝑙𝜂𝑖𝑗 “ 0 @ p𝑖, 𝑗q P
ℳ),

- Fully-islanded regime when all connecting lines are open (i.e. 𝑘𝑙𝜂𝑖𝑗 “ 1 @ p𝑖, 𝑗q P
ℳ), or
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Table 6.1: Table of Notations.

DN parameters
𝒩 set of nodes in DN

ℰ set of edges in DN

0 substation node label

ℳ Ď ℰ set of microgrid connecting lines

𝒩𝑖 Ď 𝒩 nodes belonging to 𝑖𝑡ℎ microgrid

ℳ𝑖 Ďℳ set of lines which if open isolate the 𝑖𝑡ℎ microgrid

j complex square root of -1, j “ ?´1
vnom nominal squared voltage magnitude (1 pu)

fnom nominal system frequency (1 pu)

𝒫𝑖 Ď ℰ lines on the path between node 𝑖 and substation node

DER categories
𝒮 set of DERs

𝒮gf Ď 𝒮 set of grid-forming DERs

𝒮 Ď 𝒮gf set of PQ Inverter (PQI)-controlled DERs

𝒮�xed

pq
Ď 𝒮pq set of PQI-controlled DERs with �xed setpoints

𝒮var

pq
Ă 𝒮pq set of PQI-controlled DERs with controllable setpoints

𝒮utility

gf
Ď 𝒮gf set of utility-owned grid-forming DERs

𝒮 facility

gf
Ď 𝒮gf set of facility level microgrid-speci�c grid-forming DERs

𝒮gi “ 𝒮gf

Ť𝒮var

pq
set of grid-interactive DERs

Nodal quantities of node 𝑖 P 𝒩
v𝑖 squared voltage magnitude at node 𝑖
𝑓𝑖 system frequency measured at node 𝑖
vc𝑖,vc𝑖 lower, upper voltage bounds for load 𝑖
vg

𝑖
,vg𝑖 lower, upper voltage bounds for DG 𝑖

fc𝑖, fc𝑖 lower, upper frequency bounds for load 𝑖

fg
𝑖
, fg𝑖 lower, upper frequency bounds for DG 𝑖

pc𝑖 ` jqc𝑖 nominal demand at node 𝑖
𝑝𝑐𝑖 ` j𝑞𝑐𝑖 actual power consumed at node 𝑖
𝑘𝑐𝑖 P t0, 1u 0 if load 𝑖 is connected to DN; 1 otherwise

𝛽𝑖 fraction of demand satis�ed at node 𝑖
𝛽
𝑖

lower bound of load control parameter 𝛽𝑖
pg𝑖 ` jqg𝑖 nominal generation of DG 𝑖 P 𝒮�xed

pq

𝑝𝑔𝑖 ` j𝑞𝑔𝑖 actual power generated by DER 𝑖 P 𝒮�xed

pq

𝑦𝑖 P t0, 1u 0 if DG 𝑖 P 𝒮�xed

pq
is connected to DN; 1 otherwise

Quantities of DER 𝑠 P 𝒮
𝑗p𝑠q the DN node where the DER 𝑠 P 𝒮gf is located

𝐽p𝑆q Ď 𝒩 the set of DN nodes where the DERs in the set 𝑆 Ď 𝒮 are located

sn𝑠 apparent power capability of microsource 𝑠 P 𝒮gf

pn
𝑠
,pn𝑠 lower, upper active power bounds of microsource 𝑠 P 𝒮gf

qn
𝑠
,qn𝑠 lower, upper reactive power bounds of microsource 𝑠 P 𝒮gf

𝑝𝑛𝑠 ` j𝑞𝑛𝑠 total power supplied by microsource 𝑠 P 𝒮gf

se𝑠 apparent power capability of storage device 𝑠 P 𝒮gf

pe
𝑠
,pe𝑠 lower, upper active power bounds of storage 𝑠 P 𝒮gf

qe
𝑠
,qe𝑠 lower, upper reactive power bounds of storage 𝑠 P 𝒮gf

𝑝𝑒𝑠 ` j𝑞𝑒𝑠 total power supplied by storage 𝑠 P 𝒮gf

𝑘𝑟𝑠 P t0, 1u 1 if DER 𝑠 P 𝒮gf contributes to grid-forming services

𝑝𝑟𝑠 ` j𝑞𝑟𝑠 total power supplied by DER 𝑠 P 𝒮gf

𝑝𝑟ref

𝑠 , 𝑞𝑟
ref

𝑠 active, reactive power references of DER 𝑠 P 𝒮gf

𝑓 ref

𝑠 ,v
ref

𝑠 frequence, voltage references of DER 𝑠 P 𝒮gf

Parameters of edge p𝑖, 𝑗q P ℰ
𝑘𝑙𝑖𝑗 P t0, 1u 1 if p𝑖, 𝑗q is switched open; 0 otherwise

𝑃𝑖𝑗 ` j𝑄𝑖𝑗 power �owing from node 𝑖 to node 𝑗
r𝑖𝑗,x𝑖𝑗 resistance and reactance of line p𝑖, 𝑗q P ℰ
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- Partially-islanded regime when there exists at least two connecting lines such that

one of them is closed and other is open (i.e. D p𝑖, 𝑗q, p𝑚,𝑛q P ℳ such that 𝑘𝑙𝜂𝑖𝑗 “
0 and 𝑘𝑙𝜂𝑚𝑛 “ 1).

Let t𝒩1, ¨ ¨ ¨ ,𝒩|ℳ|u denote the set of disjoint microgrid subnetworks of the DN, where

each 𝒩𝑖 for 𝑖 P t1, ¨ ¨ ¨ , |ℳ|u denotes a connected subnetwork when all connecting lines

are open, i.e. 𝑘𝑙𝜂𝑚𝑛 “ 1 for all p𝑚,𝑛q Pℳ. For each subnetwork 𝒩𝑖, let ℳ𝑖 Ďℳ denote

the set of connecting lines which need to be open for 𝒩𝑖 to be completely isolated (i.e.

autonomously operating). A microgrid island is formed when an individual microgrid or

a connected subnetwork of more than one microgrid no longer receives power supply

from the TN. Also, let 𝒫𝑖 denote the set of lines along the path connecting node 𝑖 to the

substation node. For example, in Figure 6-2, the set of connecting lines for the subnetwork

𝒩1 “ t1, 2u is ℳ1 “ tp0, 1q, p2, 3q, p2, 5qu, and 𝒫5 “ tp0, 1q, p1, 2q, p2, 5qu. Also, if

𝑘𝑙𝜂01 “ 1, 𝑘𝑙𝜂23 “ 0, and 𝑘𝑙𝜂25 “ 1, then the microgrid 𝒩3 is operating as an isolated island,

whereas microgrids 𝒩1 and 𝒩2 are operating together as part of one bigger microgrid

island.

0 1 2

3 4

5 6

𝒩1 “ t1, 2u

𝒩2 “ t3, 4u

𝒩3 “ t5, 6u

ℳ1 “ tp0, 1q, p2, 3q, p2, 5qu

ℳ2 “ tp2, 3qu

𝒫5 “ tp0, 1q, p1, 2q, p2, 5qu

Substation

node

Connecting

Line

Figure 6-2: Multi-microgrid DN model.

Remark 8. The smaller microgrids are typically used for supplying power to a critical

facility (e.g. hospital, university, prison). In our model, these microgrids can be leveraged

to supply power to the DN during emergency conditions (fully- or partially- islanded

regimes).

Now, we describe the constraints related to the power �ows, nodal frequencies and

load connectivity in microgrids. Unless explicitly stated, the following constraints are
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valid for either operating stage 𝜂 P t𝑜, 𝑐u.

1. Power �ows: A connecting line permits power �ow through it if and only if it is closed.

We model this constraint as follows:

⃒⃒
𝑃 𝜂
𝑖𝑗

⃒⃒ ď `
1´ 𝑘𝑙𝜂𝑖𝑗

˘
L @ p𝑖, 𝑗q Pℳ (6.1a)

⃒⃒
𝑄𝜂
𝑖𝑗

⃒⃒ ď `
1´ 𝑘𝑙𝜂𝑖𝑗

˘
L @ p𝑖, 𝑗q Pℳ, (6.1b)

where L is a large constant. This typical modeling trick to use a constraint of the type

|𝑎´ 𝑐| ď 𝑦L where 𝑦 P t0, 1u, enforces an equality 𝑎 “ 𝑐 only when 𝑦 “ 0; otherwise the

equality is not binding. We use this trick repeatedly to model various other constraints of

a similar type.

2. Voltage drop: The voltage drop along a non-connecting line p𝑖, 𝑗q R ℳ is given by

the standard voltage drop equation of the LinDistFlow model [16]:

v𝜂𝑗 “ v𝜂𝑖 ´ 2r𝑖𝑗𝑃
𝜂
𝑖𝑗 ´ 2x𝑖𝑗𝑄

𝜂
𝑖𝑗 @ p𝑖, 𝑗q P ℰzℳ. (6.2)

However, for a connecting line, the voltage drop constraint is active only if it is closed,

and is inactive, otherwise, i.e.

⃒⃒
⃒v𝜂𝑗 ´

´
v𝜂𝑖 ´ 2r𝑖𝑗𝑃

𝜂
𝑖𝑗 ´ 2x𝑖𝑗𝑄

𝜂
𝑖𝑗

¯⃒⃒
⃒ ď 𝑘𝑙𝜂𝑖𝑗L @ p𝑖, 𝑗q Pℳ. (6.3)

3. Nodal frequencies: In islanded regimes, the DER(s) must provide grid-forming and

regulation services [83, 84]. Moreover, a microgrid island can have multiple DERs op-

erating in parallel. We assume that DERs can rapidly synchronize their frequencies to

a common value with the help of power electronics [84]. This value can be regarded as

the island’s frequency. To model that the nodal frequencies within a microgrid island are

identical in steady state, we can write:

𝑓 𝜂𝑖 “ 𝑓 𝜂𝑗 @ 𝑖, 𝑗 P 𝒩𝑘 and @ 𝑘 “ 1, ¨ ¨ ¨ , |ℳ| ,
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which is equivalent to writing:

𝑓 𝜂𝑖 “ 𝑓 𝜂𝑗 @ p𝑖, 𝑗q P ℰzℳ, (6.4)

because if a line p𝑖, 𝑗q is not a connecting line, i.e. p𝑖, 𝑗q P ℰzℳ, then nodes 𝑖 and 𝑗 both

belong to the same microgrid. Generically, frequency of every microgrid island can be

di�erent from the frequency of the TN-connected substation node. Moreover, the fre-

quencies of any two microgrid islands that are not connected to each other can also be

di�erent. We model this constraint as follows:

⃒⃒
𝑓 𝜂𝑖 ´ 𝑓 𝜂𝑗

⃒⃒ ď 𝑘𝑙𝜂𝑖𝑗L @ p𝑖, 𝑗q Pℳ. (6.5)

Finally, we model the constraint that the load gets disconnected (i.e. 𝑘𝑐𝜂𝑖 “ 1) when the

nodal frequency violates the safe operating bounds:

𝑘𝑐𝜂𝑖 ě fc𝑖 ´ 𝑓 𝜂𝑖 , 𝑘𝑐𝜂𝑖 ě 𝑓 𝜂𝑖 ´ fc𝑖 @ 𝑖 P 𝒩. (6.6)

Distributed Energy Resources (DERs)
We now introduce a generic taxonomy of DERs that is relevant to microgrid operations

(see [71]) and a model which captures both single- and multi-master operating modes of

DERs. Please refer to Figure 6-3 for DER categories and Table 6.2 for a comparison of their

capabilities.

Set of DERs (𝒮)

PQI-controlled (𝒮pq)Grid-forming (𝒮gf)

(𝒮utility

gf
) (𝒮 facility

gf
)

(𝒮var

pq
) (𝒮�xed

pq
)

Grid-interactive (𝒮gi) Grid-noninteractive

Figure 6-3: Basic taxonomy of DERs [71].
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Attribute Grid-noninteractive (𝒮�xed

pq
) Grid-interactive (𝒮gi “ 𝒮gf

Ť𝒮var

pq
)

Power

output
�xed

variable/responsive

to grid conditions

Controllable

by response (a)

yes

no (can act as zero output source

while being connected)

Controllable

by response (b)

yes (due to operating bound

violations)

no (LVRT & LFRT available)

Controllable by

response (c)

N/A yes

Controllable by

response (d)

yes yes

(a) Grid-interactive vs. grid-noninteractive DERs

Attribute PQI-controlled DERs with

variable setpoints (𝒮var

pq
)

Grid-forming (𝒮gf)

Grid-

forming

no

yes (under speci�c

islanding conditions)

Output control Remote setpoint control Droop-based control

(b) PQI-controlled vs. grid-forming DERs.

Attribute Utility-owned (𝒮utility

gf
) Facility level (𝒮 facility

gf
)

Ownership Utility Facility

Islanding

condition

microgrid not connected

to TN but can stay con-

nected to other micro-

grid(s) (explained later in

(6.7))

microgrid operates as

an isolated island (ex-

plained later in (6.8))

(c) Utility (operator) owned grid-forming DERs vs. facility level grid-forming DERs.

Table 6.2: Comparison of DER categories.
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DER classi�cation

Our classi�cation is based on the output behaviour and service capabilities of DERs. First,

we distinguish between grid-forming DERs (which provide voltage and frequency ref-

erences) and DERs whose active (P) and reactive (Q) power output is controlled by PQ

inverters. We denote the sets of grid-forming and PQ Inverter (PQI-) controlled DERs by

𝒮gf and 𝒮pq, respectively. Then, there are further two sub-categories of PQI-controlled

DERs: those whose PQ setpoints can be remotely controlled (denoted by 𝒮var

pq
), and others

whose PQ setpoints are �xed (denoted by 𝒮�xed

pq
). Since the output of the DERs belonging

to the set 𝒮�xed

pq
does not vary with the grid conditions, they can be considered as grid-

noninteractive DERs. On the other hand, since the output of the DERs in the sets 𝒮gf and

𝒮var

pq
can change with grid-conditions, we consider them as grid-interactive DERs (denoted

by 𝒮gi); see Table 6.2a. For the sake of clarity, we refer to DERs in set 𝒮�xed

pq
as distributed

generators (DGs). Since the output of these DGs cannot be changed, if operating bound

violations occur, then they need to be disconnected either by remote means or through

autonomous disconnections.

In contrast, the grid-interactive DERs can stay connected to DN as zero output sources

even under �uctuations in the network state. Particularly, we assume that these DERs are

�tted with low-voltage and low-frequency ride through (LVRT and LFRT) functionali-

ties. This allows DERs to stay connected to the DN during temporary voltage and fre-

quency bound violations at nodes. Furthermore, the output of grid-interactive DERs can

be changed by two control mechanisms. In the case of grid-forming DERs (𝒮gf), droop-

based primary control is activated under speci�c islanding conditions. In the case of DERs

in the set 𝒮var

pq
, their active-reactive (PQ) setpoints can be controlled by the SA system;

see Table 6.2b.

Let ℐ Ď 𝒩 be a subset of nodes such that they can form a microgrid island within

the DN. Let 𝒩ℐ denote the corresponding microgrid island. Recall from Sec. 6.2 that a

microgrid island can consist of one or more microgrids. Based on the number of DERs

contributing to grid-forming services, a microgrid island can be in the following operating

modes [84]:
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1. Single Master Operation (SMO): One DER operates as a single grid-forming DER

(i.e.

⃒⃒
𝐽p𝒮gfq

Ş𝒩ℐ
⃒⃒ “ 1), while all other DERs operate in the PQ mode.

2. Multi Master Operation (MMO): More than one DER (but not necessarily all) operate

as grid-forming DERs (i.e.

⃒⃒
𝐽p𝒮gfq

Ş𝒩ℐ
⃒⃒ ě 2).

In the multi-master operation, the output of multiple grid-forming DERs changes based

on nodal voltage and frequency values under the droop control constraints. These con-

straints ensure appropriate power sharing among DERs based on their capacities. The

nodal frequencies (resp. voltages) are used for active (resp. reactive) power sharing. Our

network model for radial DNs is �exible enough to allow DN operations in both SMO and

MMO modes.

Finally, there are two sub-categories of grid-forming DERs, namely utility (or operator)

owned grid-forming DERs and grid-forming DERs belonging to some facilities. Each of

these categories contributes to grid-forming services depending on the speci�c islanding

conditions; see Table 6.2c. Let 𝑘𝑟𝜂𝑠 “ 1 if the islanding condition for DER 𝑠 P 𝒮gf is

satis�ed, and 𝑘𝑟𝜂𝑠 “ 0 otherwise. The two main islanding conditions of interest are as

follows:

1. An utility grid-forming DER contributes to grid-forming services when the node to

which it belongs becomes a part of a microgrid island (i.e. the node is not connected to the

TN). Consider a DER 𝑠 P 𝒮utility

gf
and a microgrid 𝒩𝑘 such that 𝑗p𝑠q “ 𝑖 P 𝒩𝑘. Then, DER 𝑠

contributes to grid-forming if and only if 𝒩𝑘 is not connected to the TN, or equivalently,

at least one connecting line along the path connecting node 𝑖 to the substation is open,

i.e.

𝑘𝑟𝜂𝑠 “ 1 ðñ D p𝑚,𝑛q Pℳ
č

𝒫𝑖 such that 𝑘𝑙𝜂𝑚𝑛 “ 1.

We formulate this condition using the following mixed-integer linear constraints:

𝑘𝑟𝜂𝑠 ě 𝑘𝑙𝜂𝑚𝑛 @ p𝑚,𝑛q Pℳ
č

𝒫𝑖 (6.7a)

𝑘𝑟𝜂𝑠 ď
ř
p𝑚,𝑛qPpℳŞ𝒫𝑖q

𝑘𝑙𝜂𝑚𝑛. (6.7b)

2. The facility level DERs (denoted by 𝒮 facility

gf
) also contribute to grid-forming services
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when the microgrid to which they belong operates as an isolated island (i.e. not connected

to the TN and to any other microgrid). Consider a DER 𝑠 P 𝒮 facility

gf
and a microgrid 𝒩𝑖 such

that 𝑗p𝑠q P 𝒩𝑖. Then, DER 𝑠 contributes to grid-forming if and only if all the connecting

lines connecting the microgrid 𝒩𝑖 to the TN or other microgrids are open, i.e.

𝑘𝑟𝜂𝑠 “ 1 ðñ 𝑘𝑙𝜂𝑚𝑛 “ 1 @ p𝑚,𝑛q Pℳ𝑖.

We formulate this condition using the following mixed-integer linear constraints:

𝑘𝑟𝜂𝑠 ě
`ř

p𝑚,𝑛qPℳ𝑖
𝑘𝑙𝜂𝑚𝑛

˘´ p|ℳ𝑖|´ 1q (6.8a)

𝑘𝑟𝜂𝑠 ď 𝑘𝑙𝜂𝑚𝑛 @ p𝑚,𝑛q Pℳ𝑖. (6.8b)

DER output model

Next, we describe the output model for the DERs. Each grid-forming DER 𝑠 P 𝒮gf consists

of a microsource and a storage device (batteries or �ywheels) [84]. The microsource sup-

plies power (quadrants I or II) in all three regimes. Thus, the output of the microsource is

constrained as follows:

𝐺𝑛𝑠r𝑝𝑛𝜂𝑠 𝑞𝑛𝜂𝑠sJ ď ℎ𝑛𝑠 @ 𝑠 P 𝒮gf, (6.9)

where 𝐺𝑛𝑠 P R6ˆ2
is a matrix and ℎ𝑛𝑠 P R6

is a vector that represents the polytope as

shown in Figure 6-4a.

For the sake of modeling simplicity, we assume that the storage device supplies power

only in the islanded regimes, whereas it consumes power in the grid-connected regime

(quadrants III and IV); see Figure 6-4. One justi�cation for this restriction is that the life

of a storage device signi�cantly degrades with frequent charging/discharging cycles [84].

Indeed, advances in storage technology make them viable sources of power supply even

in grid-connected regime. Still our modeling assumption is relevant to situations where

�xed storage capacity is set aside as contingency reserve to be used in islanded regimes.
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Thus, the output of a storage device is constrained as follows:

𝐺𝑒𝑠r𝑝𝑒𝜂𝑠 𝑞𝑒𝜂𝑠sJ `𝐻𝑠𝑘𝑟
𝜂
𝑠 ď ℎ𝑒𝑠 @ 𝑠 P 𝒮gf, (6.10)

where the 𝐺𝑒𝑠, 𝐻𝑠 P R8ˆ2
are matrices and ℎ𝑒𝑠 P R8

is a vector such that the DER

operates in quadrants III and IV when 𝑘𝑟𝜂𝑠 “ 0; and in quadrants I and II when 𝑘𝑟𝜂𝑠 “ 1;

see Figure 6-4b.

The total output of the DER is given by:

𝑝𝑟𝜂𝑠 “ 𝑝𝑛𝜂𝑠 ` 𝑝𝑒𝜂𝑠 @ 𝑠 P 𝒮gf

𝑞𝑟𝜂𝑠 “ 𝑞𝑛𝜂𝑠 ` 𝑞𝑒𝜂𝑠 @ 𝑠 P 𝒮gf.
(6.11)

On the other hand, PQI-controlled DERs (𝒮pq) consist only of microsource, and do not

have a storage device. Thus, their output is constrained as in Figure 6-4a. We can simply

assume that @ 𝑠 P 𝒮pq, 𝑝𝑒
𝜂
𝑠 “ 𝑞𝑒𝜂𝑠 “ 0.

Real

power

Reactive power

qn

qn

pn

I

II

(a) Microsource model

Real

power

Reactive power

I

IIIII

IV

pe

qe

qe

pe

(b) Storage device model

Figure 6-4: DER output model [110].

Droop control equations

We model the regulation services provided by one or more grid-forming DERs using the

voltage and frequency droop control equations [83]. This allows the DERs to adjust their

active and reactive power outputs based on local voltage and frequency measurements,

thus eliminating the need for explicit coordination among DERs (for the purpose of reg-
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ulation).

The output changes of a grid-forming DER 𝑠 P 𝒮gf depend on whether or not it is

contributing to regulation (i.e. 𝑘𝑟𝜂𝑠 = 1 or 0) based on the islanding conditions (see (6.7)

and (6.8)). Then, the classical voltage droop equation [83] can be re�ned to model the

reactive power output of grid-forming DER as follows (see Figure 6-5a):

⃒⃒
v𝜂𝑖 ´

`
vref

𝑠 ´mq𝑖p𝑞𝑟𝜂𝑠 ´ 𝑞𝑟ref

𝑠 q
˘⃒⃒ ď p1´ 𝑘𝑟𝜂𝑠qL

@ 𝑠 P 𝒮gf, 𝑖 P 𝒩 and 𝑖 “ 𝑗p𝑠q.
(6.12)

eq. (7.22) implies that when a DER provides regulation, it contributes more (resp. less)

reactive power as the voltage drops (resp. rises) relative to a reference value.

Similarly, the classical frequency droop control equation [83] can be re�ned to model

the active power output of a grid-forming DER as follows (see Figure 6-5b):

⃒⃒
𝑓 𝜂𝑖 ´

`
𝑓 ref

𝑠 ´mp𝑠
`
𝑝𝑟𝜂𝑠 ´ 𝑝𝑟ref

𝑠

˘˘⃒⃒ ď p1´ 𝑘𝑟𝜂𝑠qL
@ 𝑠 P 𝒮gf, 𝑖 P 𝒩 and 𝑖 “ 𝑗p𝑠q.

(6.13)

eq. (6.13) ensures proper power sharing in the sense that DERs can adjust their active

power contributions for frequency regulation depending on their individual capacities.

The reference setpoints (𝑓 ref

𝑠 ,v
ref

𝑠 , 𝑝𝑟
ref

𝑠 , 𝑞𝑟
ref

𝑠 ) and the droop coe�cients (mp𝑠,mq𝑠) are

given constants.
1

As in [114], we assume that each node has a DG without loss of generality. Then,

similar to the loads, we model the dependence of DG connectivity on the nodal voltage

and frequency as follows:

𝑦𝜂𝑖 ě vg
𝑖
´ v𝜂𝑖 , 𝑦𝜂𝑖 ě v𝜂𝑖 ´ vg𝑖 @ 𝑖 P 𝒩, (6.14)

𝑦𝜂𝑖 ě fg
𝑖
´ 𝑓 𝜂𝑖 , 𝑦𝜂𝑖 ě 𝑓 𝜂𝑖 ´ fg𝑖 @ 𝑖 P 𝒩. (6.15)

eq. (6.15) implies that a DG will disconnect if the corresponding nodal frequency violates

1
The secondary control of voltage and frequency regulation could change the reference setpoints of the

DERs, namely the voltage, frequency, active and reactive power setpoints [62]. Secondary control may also

include changing the droop coe�cients of the DERs [117]. However, for the sake of simplicity, we consider

primary (but not secondary) control in this paper.
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qn
𝑠
` qe

𝑠 qn𝑠 ` qe𝑠

v𝑖

vref

𝑠

v𝑖

(a) Voltage droop control.

pn
𝑠
` pe

𝑠 pn𝑠 ` pe𝑠

f 𝑖

𝑓 ref

𝑠

f 𝑖

(b) Frequency droop control.

Figure 6-5: Droop control model [83].

safe operating bounds.

The net power consumed at a node 𝑖 is the power consumed by the load minus the

power generated by the DGs and other grid-interactive DERs at that node, i.e.

𝑝𝜂𝑖 “ 𝑝𝑐𝜂𝑖 ´ 𝑝𝑔𝜂𝑖 ´
ř
𝑠P𝒮gi|𝑗p𝑠q“𝑖

𝑝𝑟𝜂𝑠 @ 𝑖 P 𝒩 (6.16a)

𝑞𝜂𝑖 “ 𝑞𝑐𝜂𝑖 ´ 𝑞𝑔𝜂𝑖 ´
ř
𝑠P𝒮gi|𝑗p𝑠q“𝑖

𝑞𝑟𝜂𝑠 @ 𝑖 P 𝒩. (6.16b)

Finally, we summarize the LinDistFlow and connectivity constraints described in [114]

as follows:

𝑃 𝜂
𝑖𝑗 “

ÿ

𝑘:p𝑗,𝑘qPℰ
𝑃 𝜂
𝑗𝑘 ` 𝑝𝜂𝑗 @ p𝑖, 𝑗q P ℰ (6.17)

𝑄𝜂
𝑖𝑗 “

ÿ

𝑘:p𝑗,𝑘qPℰ
𝑄𝜂
𝑗𝑘 ` 𝑞𝜂𝑗 @ p𝑖, 𝑗q P ℰ (6.18)

𝑝𝑔𝜂𝑖 “ p1´ 𝑦𝜂𝑖 qpg𝑖 @ 𝑖 P 𝒩 (6.19)

𝑞𝑔𝜂𝑖 “ p1´ 𝑦𝜂𝑖 qqg𝑖 @ 𝑖 P 𝒩 (6.20)

𝑝𝑐𝜂𝑖 “ 𝛽𝜂𝑖 pc𝑖, 𝑞𝑐𝜂𝑖 “ 𝛽𝜂𝑖 qc𝑖 @ 𝑖 P 𝒩 (6.21)

p1´ 𝑘𝑐𝜂𝑖 q𝛽𝑖 ď 𝛽𝜂𝑖 ď p1´ 𝑘𝑐𝜂𝑖 q @ 𝑖 P 𝒩. (6.22)

𝑘𝑐𝜂𝑖 ě vc𝑖 ´ v𝜂𝑖 , 𝑘𝑐𝜂𝑖 ě v𝜂𝑖 ´ vc𝑖@ 𝑖 P 𝒩 (6.23)

This completes the discussion of our multi-regime microgrid network model with parallel

operation of DERs.
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6.3 Disruption and Operator response models

In [114], we modeled the sequential interaction between the attacker and operator as

a bilevel mixed-integer problem (BiMIP). We now extend this model to include micro-

grid operations and DER dispatch capabilities. Our revised BiMIP formulation considers

multi-regime microgrid operations with multiple DERs/DGs. It also accounts for TN-side

voltage and frequency disturbances as part of the overall disturbance model.

TN-side disruption

We consider TN-side disturbance in our attack model because the DN can face signi�cant

loss if the attacker targets DN during an active TN failure event. In general, a TN-side

disturbance (e.g. failure of a transmission line or bulk generator) can impact the system

frequency as well as the substation voltage of the DN, and this can in�uence the attacker’s

strategy. We model the impact of a TN-side failure as a perturbation in the substation volt-

age and frequency, denoted Δv0 and Δ𝑓 0, respectively. Then, the voltage and frequency

at the substation node in the post-contingency stage can be written as follows:

v𝑐0 “ vnom ´Δv0. (6.24)

𝑓 𝑐0 “ fnom ´Δ𝑓 0. (6.25)

DN-side disruption

For the sake of consistency, we consider the same model of DN-side disruption as in [114],

i.e. an attacker-induced compromise of the DG management system (DGMS) results in

simultaneous disruption of multiple DGs. We model this attack as follows:

𝑦𝑐𝑖 ě 𝑑𝑖 @ 𝑖 P 𝒩. (6.26)

Let k denote the maximum number of DGs that the attacker can disrupt. Then, the set of

all possible attacker strategies, denoted 𝒟m

k
, is given by

𝒟m

k
“ t𝑑 P t0, 1u𝒩 | ř𝑖P𝒩 𝑑𝑖 ď ku.
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Unlike DGs (set 𝒮�xed

pq
), the output of grid-interactive DERs (set 𝒮gi) changes depend-

ing on the grid conditions. In particular, the DER output either changes autonomously

based on the droop control equations, or the DERs are explicitly coordinated by the SA.

The DERs are not vulnerable under our assumed disruption model because they are not

a�ected by the compromised DGMS.

Note that the above-mentioned disruption model can be extended to other types of

attacks, including disruption of loads or circuit breakers. One can model such attacks as

follows:

𝑘𝑐𝑐𝑖 ě 𝑑𝑐𝑖 @ 𝑖 P 𝒩
𝑘𝑙𝑐𝑖𝑗 ě 𝑑𝑙𝑖𝑗 @ p𝑖, 𝑗q P ℰ,

where 𝑑𝑐 P t0, 1u𝒩 and 𝑑𝑙 P t0, 1uℰ denote the corresponding attacks for loads and DN

lines, respectively. Thus, despite its simplicity, our approach to modeling DN-side dis-

ruptions can be applied to capture the physical impact of a broad class of security failure

scenarios. This class includes Distributed Denial-of-Service (DDoS) attacks on the power

grid components that can result in simultaneous failures [49, 120, 144]. Another relevant

attack scenario is motivated by the vulnerabilities of Internet connected customer-side

devices (e.g. smart inverters, air conditioners, water heaters), also known as Internet-of-

Things (IoT) devices [49]. An adversary can hack into these components via a cyberat-

tack, create an IoT botnet, and can access them via the internet. Indeed, recent work in

cyber-security of power systems has identi�ed risk of correlated failures (e.g. simulta-

neous on/o� events) induced/caused by IoT botnets [120]. In our disruption model, the

impact of such an attack can be straightforwardly modeled by load/DG/line disconnects,

leading to a sudden supply-demand disturbance. However, a single point of failure such

as a cyberattack on the DGMS is perhaps a more critical threat to DNs with signi�cant

penetration of DGs.

Remark 9. Another attack model that is well-studied in the literature considers false-data

injection attacks to a (small) subset of sensors in order to inject biases in state estimates,

while being undetected by anamoly detectors [54, 59, 81]. Available results include iden-
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ti�cation and security of “critical” sensors and attack-resilient state estimation. However,

a less commonly studied aspect is that of incorrect control actions that could be imple-

mented as a result of biased state estimation. Based on our previous work [112], one can

argue that our disruption model can be tailored to capture the changes in supply/demand

of network nodes due to disruption of DGs/loads and/or component disconnect actions

that may be induced by successful false-data injection attacks on sensor data used by the

control center.

Remark 10. Our disruption model can be extended to the compromise of grid-interactive

DERs as well; see, for example, [109] we consider in which DERs in 𝒮var

pq
are compromised

by setpoint manipulation.

Operator response model

Recall the response capabilities (a), (b), (c) and (d) from Sec. 6.1. Since our attack model

is concerned with compromised DGMS, we rule out response (a) as an operator response.

We considered (b) and (c) in [114]; see Figure 6-1. Our underlying assumption is that (c) is

not prone to cyberattacks, because distribution utilities are being regulated under NERC

CIP standards [94], which provide speci�c guidelines for secure reperimeterisation of the

substation cyber infrastructure. We consider the response (d) to be executed by the SA,

and thus assume that it is secure.

Also the responses (b) and (c) do not consider grid-interactive DERs or microgrid is-

landing capabilities. In contrast, (d) utilizes both these capabilities, in addition to load

control and preemptive disconnection of components. Particularly, we model the opera-

tor response (d) as follows: 𝑢 :“ p𝑘𝑙, 𝑘𝑟, 𝑝𝑟, 𝑞𝑟, 𝛽, 𝑘𝑐, 𝑦q. Then, the set of all response

strategies, denoted 𝒰
m
, can be de�ned as 𝒰

m
:“ t0, 1uℳ ˆ t0, 1u𝒮gf ˆ pR ˆ Rq𝒮gi ˆ

ℬ ˆ t0, 1u𝒩 ˆ t0, 1u𝒩 . Moreover, given the attacker-induced disruption 𝑑, let the set

𝒰
m
p𝑑q :“ t𝑢 P 𝒰

m
| 𝑒𝑞. (6.26) holdsu denote the set of feasible response strategies avail-

able to the operator after the disruption.

For the sake of simplicity, we consider that in the pre-contingency stage, the DN is in

grid-connected regime and all components are connected. That is, there are no microgrid

islands (𝑘𝑙𝑛 “ 0), and all the loads and DGs are connected to the DN (𝑘𝑐𝑛 “ 0 and 𝑦𝑛 “
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0). Consequently, the grid-forming DERs are not contributing to regulation in the pre-

contingency stage 𝑜, i.e. 𝑘𝑟𝑛𝑠 “ 0 for all 𝑠 P 𝒮 . Recall that we also assumed the output of

the grid-interactive DERs in mode 𝑜 to be zero, i.e. 𝑝𝑟𝑛𝑠 “ 𝑞𝑟𝑛𝑠 “ 0 for all 𝑠 P 𝒮gi. These

are not restrictive assumptions, however, they allow us to straightforwardly compare the

e�ectiveness of each of the response (b), (c) and (d).

Post-contingency costs

The post-contingency loss incurred by the operator, denoted 𝐿
m
, is the sum of the follow-

ing costs: (i) cost due to loss of voltage regulation, (ii) cost of load control, (iii) cost of load

shedding, and (iv) cost of islanding:

𝐿
m
“WVR ‖vnom ´ v‖

8
`WFR ‖fnom ´ 𝑓‖

8

`WLC

ř
𝑖P𝒩 p1𝑁 ´ 𝛽𝑖qpc𝑖

` pWLS ´WLCq
ř
𝑖P𝒩 𝑘𝑐𝑖pc𝑖

`WMG

ř
p𝑖,𝑗qPℳ 𝑘𝑙𝑖𝑗,

(6.27)

where WLC P R` denotes the cost of per unit load controlled, WLS P R` and WLS ě WLC

is the cost in dollars of per unit load shed, WMG is the cost of a single islanding control

action, WVR P R` is the cost of unit absolute deviation of nodal voltage from the nominal

value vnom “ 1 pu, and WFR is the cost of unit absolute deviation of nodal frequency from

the nominal value fnom “ 1 pu; see Table 6.4 for a comparison of the cost coe�cients.

For a given operator response 𝑢 P 𝒰
m
, let 𝒳

m
p𝑢q denote the set of post-contingency

states x that satisfy the constraints (7.28)-(6.25). Then, we can restate our bilevel formu-

lation (P2) as:

ℒMG
:“ max

𝑑P𝒟m

k

min
𝑢P𝒰mp𝑑q

𝐿
m
p𝑢, x𝑐q

s.t. x𝑐 P 𝒳
m
p𝑢q.

(P-MG)

Since (P-MG) is a BiMIP with the same mathematical structure as the BiMIP in [114], we

solve it using the Benders Decomposition algorithm that we developed in [114].
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Computational study

Now, we present computational results to: (i) compare the output value of our BD algo-

rithm with the optimal value (generated for small networks by simple enumeration); (ii)

compare the DN resilience under response capabilities (b), (c) and (d); and (iii) show the

scalability of our approach to realistically large DN network sizes 𝑁 P t24, 36, 118u.

Setup for computational study

We consider three networks: modi�ed IEEE 24-, 36-, and 118- node networks; see Figure 6-

10. The set of connecting lines ℳ are shown with thick edges. The individual microgrid

networks 𝒩1, ¨ ¨ ¨ ,𝒩|ℳ| can be obtained by setting 𝑘𝑙𝑖𝑗 “ 1 @ p𝑖, 𝑗q P ℳ. Each line

p𝑖, 𝑗q P ℰ has an identical impedance of r𝑖𝑗 “ 0.01,x𝑖𝑗 “ 0.02. Half of the nodes have a

DG each and half have a load each. Consider a parameter 𝛼 “ 6
𝑁

. Before the contingency,

each DG has active power output of pg𝑖 “ 𝛼, and each load has a demand of pc𝑖 “
1.25𝛼. The voltage bounds are vc𝑖 “ 0.9, vc𝑖 “ 1.1, vg

𝑖
“ 0.92 and vg𝑖 “ 1.08.

The reactive power values are chosen to be exactly one third that of the corresponding

active power value, i.e. a 0.95 lagging power factor for each load and DG. The values

are chosen such that the total net active power demand in the DN is 0.75 pu, and the

lowest voltage in the network before any contingency is close to vg. The maximum load

control parameter is 𝛽
𝑖
“ 0.8, i.e. at most 20% of each load demand can be curtailed.

For the sake of simplicity, we assume that all DGs and loads are homogeneous. WLC “
100
pc𝑖
,WVR “ 100,WFR “ 100,WLS “ 1000

pc𝑖
,WMG “ 400. Each microgrid has one utility-

owned and one facility level grid-forming DERs. Consider a parameter 𝛾 “
ř

𝑖P𝒩 pc𝑖
8|ℳ| .

Then, each facility level DER has the following parameters: @ 𝑠 P 𝒮 facility

gf
, sn𝑠 “ se𝑠 “ 𝛾,

mp𝑠 “ 0.02, mq𝑠 “ 0.04; and, each utility-owned DER has the following parameters:

@ 𝑠 P 𝒮utility

gf
, sn𝑠 “ se𝑠 “ 2𝛾, mp𝑠 “ 0.1, mq𝑠 “ 0.2. These parameters are chosen such

that the total capacity of grid-noninteractive DGs is 80% of the total demand, whereas

the total capacity of all grid-interactive DERs is 75% of the total demand of all loads.

However, the total capacity of grid-interactive DERs may not be fully available to meet

the demand because the microgrids are typically not of exact uniform size and topology,

and the storage devices supply power only under the speci�c islanding con�gurations.
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Benders Decomposition vs. Simple Enumeration

We evaluate the ability of our implementation of the BD algorithm to compute optimal

attacks in the islanding regime for small (𝑁 P t24, 36u) networks. For each possible car-

dinality of attack we �rst compute the optimal attack with maximum loss using simple

enumeration. Then we �x the maximum loss as ℒtarget for BD algorithm. If the BD al-

gorithm can �nd an attack with the same cardinality, then indeed the BD algorithm has

computed the optimal attack. Otherwise, it has computed a suboptimal attack.
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(b) 𝑁 “ 36

Figure 6-6: System resilience (ℛ “ 100 p1´ ℒ{ℒmaxq) vs. k. Near-optimal performance of

BD algorithm.

The results of the BD algorithm implemented for solving (P-MG) are shown in Fig-

ure 6-6. Naturally, the attack cardinality computed by BD algorithm is greater than or

equal to the optimal min-cardinality computed using simple enumeration. In some cases,

however, the BD algorithm does not obtain the optimal attack. The BD algorithm involves

iteratively eliminating sub-optimal attacks using Benders cuts [114]. Each cut involved

an 𝜖 which results in a tradeo� between the accuracy and computational time. For a very

small choice of 𝜖, the BD algorithm eliminates exactly one sub-optimal attack in each it-

eration, and performs as worse as simple enumeration. For a large value of 𝜖, relatively

more attacks, including optimal attacks are eliminated. Hence, the BD algorithm termi-

nates faster although at some loss of optimality. Still, for both 24- and 36- node networks,

the BD algorithm computes attacks whose cardinalities are at most 8-23% more than the
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cardinalities of the corresponding optimal attacks.

Value of timely response

In [114], we used post-contingency loss to de�ne the metric of resilience for autonomous

disconnections (ℛ
AD

) and operator response without microgrid capabilities (ℛ
Mm

). In Sec. 6.1,

we introduced an analogously de�ned metric of resilience for operator response involv-

ing microgrid islanding and DER dispatch capabilities (ℛMG). Figure 6-7 compares the re-

siliency values for the three cases for varying attack cardinalities, where computation of

ℛMG andℛ
Mm

involves using the BD algorithm to solve the corresponding BiMIPs, andℛ
AD

is computed using Algorithm “Uncontrolled cascade under autonomous disconnections

(response (b))” in [114]. Indeed, under response (d), the SA triggers microgrid islanding

and DER dispatch in a preemptive manner to reduce the impact of the attack. This leads

to a smaller loss in comparison to using just load control and/or component disconnects

(that is, response (c)). Indeed, our computational results validate that ℛMG ě ℛ
Mm
ě ℛ

AD
.

The di�erence between the dashed (green) and solid (red) curves in Figure 6-7 indicate the

value of response (d) relative to response (b). The di�erence between the dashed (green)

and cross-marked (blue) curves indicate the relative value of timely response (d) over re-

sponse (c).
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Figure 6-7: DN resilience under varying attacker-operator interaction scenarios. (The

blue double-sided arrows indicate the value of timely microgrid response relative to the

autonomous disconnections case.)
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Scalability of the BD algorithm

We tabulate the performance of the BD algorithm in terms of its computational time and

number of iterations to compute min-cardinality attacks for di�erent network sizes and

varying values of the resilience metricℛtarget “ 100 p1´ ℒtarget{ℒmaxq; see Table 6.3. We also

note the cardinalities of attacks output by the BD algorithm as well as the corresponding

DN resilience. Note that the 𝑁 “ 118 node network has 2118 possible con�guration

vectors. Still, with ℛtarget “ 80%, the BD algorithm computes an attack in « 1 minute.

In comparison, for the 𝑁 “ 36 node network, the simple enumeration method took « 6

hours.

Table 6.3: Resiliency metric evaluated using the BD algorithm for 24-, 36- and 118-node

networks. The realized resilience metric can signi�cantly fall short of the target resilience

metric (ℛtarget “ 100
´
1´ ℒtarget

ℒmax

¯
); for example, when the attack cardinality changes from

6 to 7, the percentage resilience for the 24-node network decreases sharply from 98.91%

to 91.33%. This means that the 24-node DN is at least 90% (actual value 91.33%) resilient

to k “ 7 cardinality attacks.

Entries are resilience metric of DN (in percentage), number of iterations (written in brackets),
time (in seconds), attack cardinality.
ℛtarget 𝑁 “ 24 𝑁 “ 36 𝑁 “ 118
99 98.91, (15), 0.41, 6 98.95, (10), 0.37, 5 98.95, (8), 2.48, 4

95 91.33, (16), 0.46, 7 94.12, (12), 0.51, 7 94.28, (15), 3.91, 11

90 82.8, (18), 0.57, 9 88.23, (17), 0.91, 11 89.73, (20), 10.62, 16

85 82.8, (18), 0.57, 9 81.9, (20), 1.23, 14 83.49, (29), 28.79, 25

80 78.73, (21), 0.74, 12 71.46, (21), 1.75, 15 79.9, (40), 67.38, 36

6.4 Multi-period network restoration

We recall that the resilience of a system is related to its ability to not only minimize the

impact of a disturbance, but also quickly recover from it; see Figure 6-1. Our attack model

assumes that a compromise of the DGMS leads to remote disconnection of multiple DGs.

However, the actual functionality of disconnected DGs is not compromised. In response

(d), we consider that the SA has the ability to detect and obtain knowledge of the complete

attack. Moreover, the SA can also control DG connectivity. We now discuss how the SA

can restore the disrupted DGs, and bring the DN back to its nominal performance. In this

section, we present a simple MIP that models the process of restoring system performance.
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Our model of the DN restoration process entails progressively reconnecting the dis-

rupted DGs, and eventually restoration to the grid-connected mode of DN operation. We

consider a multi-period horizon 𝒯 :“ t0, 1, ¨ ¨ ¨ ,Mu, where M is the maximum of two

periods: one plus the time period when all disrupted DGs can be reconnected, and the

time period when the TN-disturbance clears. Let a period be denoted by 𝑚 P 𝒯 , where

each period 𝑚 is of �xed time duration (say, a few minutes). Furthermore, the operator

response at period 𝑚 is denoted by 𝑢𝑚. Then, under the assumed detection and response

capabilities of the SA,𝑚 “ 0 coincides with the time of initial post-contingency response,

i.e. 𝑢0 “ 𝑢𝑐. Period 𝑚 “ M denotes the time at which the system performance of the DN

is fully restored.

We consider two types of constraints to model the restoration actions of the operator

across time periods: monotonicity constraints and resource constraints. Consider a period

𝑚 P t1, 2, ¨ ¨ ¨ ,Mu. The monotonicity constraints for period 𝑚 are as follows.

𝑘𝑙𝑚𝑖𝑗 ď 𝑘𝑙𝑚´1𝑖𝑗 @ p𝑖, 𝑗q Pℳ, (6.28a)

𝑦𝑚𝑖 ď 𝑦𝑚´1𝑖 @ 𝑖 P 𝒩. (6.28b)

eq. (7.19) implies that during the restoration process, once a connecting line is closed, it

remains closed until the restoration process is completed. Similarly, (6.28b) implies that

a disconnected DG becomes operational after being reconnected, and then remains op-

erational until the restoration is complete. The monotonicity constraints can be justi�ed

based on the practical consideration that frequently changing the status of connecting

lines can create large �uctuations in nodal voltages and frequencies of the microgrids due

to the low inertia of DERs. Moreover, the battery life of storage devices would reduce due

to frequent changes from charging modes (quadrants III and IV) to discharging modes

(quadrants I and II), and vice versa; see Figure 6-4.

The resource constraint merely limits the number of DG reconnections. Speci�cally,

we consider that during period𝑚, at mostG𝑚
DGs can be reconnected, whereG𝑚

denotes
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the restoration budget for that period:

ř
𝑖P𝒮�xed

pq

𝑦𝑚𝑖 ě
ř
𝑖P𝒮�xed

pq

𝑦𝑚´1𝑖 ´G𝑚. (6.29)

Restrictions on the number of connecting line closing operations can be similarly consid-

ered. eq. (6.29) can also be justi�ed in a way similar to that of monotonicity constraints.

Naturally, the operator wants to avoid a large number of simultaneous DG reconnections

as that could lead to large voltage and frequency �uctuations.

As stated before, we choose M large enough so that all disrupted DGs can be recon-

nected before the last period M, i.e. M ě mint𝑚1|ř𝑚1

𝑚“1G
𝑚 ě ku + 1. Indeed, the TN-

disturbance may clear any time, before or after the DG reconnections. However, since our

analysis is focussed on determining worst-case resilience of the DN, we assume that the

TN-side disturbance clears after the disrupted DGs are fully reconnected. In particular,

we assume that the TN-side disturbance ceases to exist at the last time period. We model

this as follows:

v𝑚0 “

$
’&
’%
vnom ´Δv0 if 𝑚 ‰ M

vnom if 𝑚 “ M

(6.30a)

𝑓𝑚0 “

$
’&
’%
fnom ´Δ𝑓 0 if 𝑚 ‰ M

fnom if 𝑚 “ M.

(6.30b)

Let 𝒴𝑚
m
p𝑢𝑚´1q denote the feasible set of response strategies for 𝑢𝑚, i.e. 𝒴𝑚

m
p𝑢𝑚´1q “

t𝑢𝑚 P 𝒰
m
| such that p6.28q ´ p6.29q holdu. Also, given an operator response 𝑢 P 𝒰

m
, let

𝒳𝑚
m
p𝑢q denote the set of network states x𝑚 which satisfy the constraints (7.28)-(6.14) and

(6.30). Hence, the restoration problem can be posed as follows:
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ℒresp𝑑q :“ min
t𝑢𝑚u𝑚P𝒯

ÿ

𝑚P𝒯
𝐿

m
p𝑢𝑚, x𝑚q

s.t. 𝑢0 P 𝒰
m
p𝑑q

𝑢𝑚 P 𝒴𝑚
m
p𝑢𝑚´1q @𝑚 “ 1, ¨ ¨ ¨ ,M

x𝑚 P 𝒳𝑚
m
p𝑢𝑚q @𝑚 “ 0, ¨ ¨ ¨ ,M

(P3)

Problem (P3) is a Mixed-Integer Problem (MIP), and can be solved using o�-the-shelf MIP

solvers. However, due to the large number of binary variables, it can become computa-

tional expensive to solve for larger networks. In fact, we solve (P3) using a simple greedy

algorithm; see Algorithm 10. In each period, the operator simply chooses that response

which minimizes the post-contingency loss during that time period subject to the mono-

tonicity and resource constraints. Algorithm 10 is based on the feature that the network

state in any period depends only on the operator actions in that period, and the network

state in the previous period. The algorithm returns with the operator actions, resulting

network state, and corresponding post-contingency loss for each time period.

Algorithm 10 Greedy Algorithm

1: 𝑢0, x0 Ð argmin
𝑢P𝒰mp𝑑q

𝐿
m
p𝑢, xq s.t. x P 𝒳 p𝑢q.

2: for𝑚 “ 1, ¨ ¨ ¨ ,M do
3: 𝑢𝑚, x𝑚 Ð argmin

𝑢P𝒴𝑚
m
p𝑢𝑚´1q

𝐿
m
p𝑢, xq s.t. x P 𝒳𝑚

m
p𝑢q.

4: 𝐿𝑚 Ð 𝐿
m
p𝑢𝑚, x𝑚q

5: end for
6: return t𝑢𝑚, x𝑚, 𝐿𝑚u𝑚P𝒯

Figure 6-8 shows the system performance during the restoration of the DN over mul-

tiple time periods for di�erent resource constraints. For each system restoration curve,

we chose G𝑚
to be a constant for all time periods 𝑚 P 𝒯 . One can see that after the

TN-side and DN-side disturbances, the system performance drops. Then, as disrupted

components are connected, the system performance gradually recovers. Also, the post-

contingency losses are higher for larger TN-side disturbances. However, as the restoration

budget increases, the system recovers faster.
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(b) Δv0 “ 0.2.

Figure 6-8: Multi-period DN restoration (𝑁 “ 36).

MIP vs. Greedy Recovery Algorithm

Figure 6-9 shows the comparison of the system performance recovery curves obtained

using Algorithm 10 and by directly solving the large-scale MIP for 𝑁 “ 24 and 𝑁 “ 36

node networks. The TN-side voltage disturbance for both the networks is set to Δv0 “
0.2. In this experiment, we set the time limit of the (Gurobi) solver to 7200 seconds. While

solving the large-scale MIP for 𝑁 “ 36 and G “ 3 we were able to achieve an optimality

gap of 16.54% after 2 hours. However, the Algorithm 10 was able to attain the same system

performance recovery curve using the default solver settings (no presolve and Simplex

method), and compute the near-optimal solution in approximately 10 seconds.

In order to implement the response computed in (P3), the SA may need to coordinate

with the individual microgrid controllers. A detailed description of such a communication

architecture is beyond the scope of this paper. We refer the reader to [60] for a hierarchi-

cal control architecture which can support the coordination between SA and individual

microgrid controllers.
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(a) 𝑁 “ 24.
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(b) 𝑁 “ 36.

Figure 6-9: Near-optimal performance of Greedy Algorithm 10.

Weights Typical values

WLC

1
4
ˆ 11 cents

WVR
2

100
ˆ 11 cents

WFR
2

100
ˆ 11 cents

WLS 3 dollars

WMG 1 dollar

Table 6.4: Typical values of cost parameters.
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(c) 118 node network.

Figure 6-10: Modi�ed IEEE test networks. Connecting lines are indicated by thick edges.

Utility-owned (resp. facility level) grid-forming DERs are indicated by northwest (resp.

vertical) lines.
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Chapter 7

Resource Allocation and Restoration

for Storm-induced failures

Weather-related outages in electricity distribution networks (DNs) continue to show an

upward trend as utilities face the dual problems of deteriorating power grid infrastruc-

ture and higher frequency of natural disasters (such as hurricanes [31, 79]). Prolonged

delays in restoring the power system of Puerto Rico in the aftermath of Hurricane Maria

highlight the importance of strategic planning and e�cient response to such events. This

chapter is motivated by the need for developing a modeling framework that (i) accounts

for estimated locations of component failures in assessing the extent of damage in the DN;

and (ii) enables the design of pre-storm resource allocation strategies as well as post-storm

repair operations. To address this issue, we formulate a two-stage stochastic optimization

problem based on an uncertainty model of storm-induced failures.

7.1 Two-stage stochastic optimization formulation

Our uncertainty model utilizes predictions of storm tracks and surface wind velocities

over a spatial region during the expected duration of the storm (see [139] for a related ap-

proach). Hours or days in advance of a storm, the track forecasts can be obtained by public

sources such as the National Hurricane Center (NHC). For each forecasted storm track, the

surface wind velocity �eld can be estimated using well-known parametric models [68]. We

focus on wind-induced damage (as opposed to �ooding-induced failures), as strong winds
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during a storm are reported to be one of the primary factors for failures of above ground

DN components, such as the failures resulting from falling of trees/vegetation on power

lines and poles [76]. The failure probabilities of DN components are then estimated using

a non-homogeneous Poisson process (NHPP) model, which parametrically depends on

the estimated location-speci�c wind velocities [149]-[7]. Then, these failure probabilities

are used as an input to the two-stage stochastic formulation.

A signi�cant aspect of our formulation is that we allow for the partial DN operation

in situations when bulk supply (from the transmission side) is no longer available and mi-

crogrids can be operationalized during the recovery and repair period. Indeed, extensive

literature is available on the allocation of repair crew and optimal response operations

[11, 126, 132, 137]. These contributions primarily focus on resource limitations, failure

uncertainties, and physical constraints. However, the problem of proactive allocation of

temporary generators in the pre-storm stage has received limited attention in the liter-

ature. This opportunity becomes especially relevant given the technological progress in

portable Distributed Energy Resources (DERs) and microgrid technologies [39]. The sig-

ni�cance of proactive DER allocation in the face of natural disasters has already been

acknowledged by federal agencies [65, 129]. Our formulation allows for strategic place-

ment of DERs at a subset of DN nodes in the pre-storm stage, given the uncertainty in

component failures and the resulting lost load for a particular storm. These DERs can

be used to sustain microgrids in the post-storm stage and to dispatch power to critical

loads [15], while the line repair operations are being completed and the connection to

bulk supply is being restored.

More speci�cally, our two-stage stochastic mixed-integer problem considers the DER

placement decisions in Stage I (pre-storm), and a multi-period repair problem with DER

dispatch within each microgrid in Stage II (post-storm). The objective is to minimize the

sum of the cost incurred in DER allocation and the expected cost of unmet demand during

the time period of repair and recovery operations. For a given DER allocation (placement)

and for a realization of DN component disruptions, Stage II is a deterministic multi-period

problem in which line repair schedules and dispatch within each microgrid are jointly

determined. From a practical viewpoint, each period can be viewed as one work shift
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of the repair crews. In the 0th
period, the subnetworks formed as a result of disruptions

start to operate as microgrids using the available DER supply. In the subsequent time

periods, damaged lines are repaired, permitting connections between smaller microgrids

to progressively form larger microgrids. In the last time period, the DN is connected back

to the main grid, and normal operation is restored. Crucially, the Stage II problem relies

on an estimate of the total number of time periods needed for full recovery. It also utilizes

a novel model of linear power �ow within a microgrid island with parallel operation of

multiple DER inverters. Figure 7-1 summarizes the order of events and decisions in our

formulation.

DER

allocation

(𝑎)

Storm

forecast

Storm

landing

𝑡 “ 𝑡1

Line

failures

p𝑠q

Storm

passing

Line repairs

(𝑦)

(x)

Dispatch

within

microgrids

𝑡 “ 𝑡2
𝑚 “ 0 𝑚 “ M

Reconnect

to grid

Figure 7-1: Timeline of events and decision stages. The DER placement decision (𝑎) is

made before the storm hits the network (𝑡 “ 𝑡1). Uncertainty 𝑠 is realized over the course

of the storm. After passing of the storm (𝑡 “ 𝑡2, 𝑚 “ 0), optimal power �ow and line

repair decisions (𝑥, 𝑦) are made. At 𝑚 “ M (end of repair time horizon), the network is

fully restored.

Our formulation considers a tree DN with nodes and distribution lines𝒢 “ p𝒩Ťt0u, ℰq,
where 𝒩 denotes the set of all DN nodes. The substation node is labeled as 0, and it also

forms the connection to the bulk supply through a transmission network. The set ℰ de-

notes the set of directed edges, such that the edges are directed away from the substation

node. The �rst-stage problem is as follows [4]:

min
𝑎P𝒜

 
𝑔 p𝑎q :“Walloc

𝑇𝑎` E𝑆„𝒫𝐽 p𝑎, 𝑆q
(
, (7.1)

where 𝑎 denotes a resource allocation strategy to be chosen from the set of feasible strate-

gies 𝒜. The uncertainty in the random vector 𝑆 characterizes the random failures of dis-

tribution lines and has a probability distribution 𝒫 de�ned over the set of possible line
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failure scenarios 𝒮 :“ t0, 1uℰ . In (7.1), Walloc is a length-|𝒩| vector of the allocation cost

per unit resource at the nodes, Walloc

𝑇𝑎 is the cost of resource allocation and E𝑆„𝒫𝐽p𝑎, 𝑆q
is the expected cost of unmet demand under allocation scheme 𝑎.

To model the post-storm multi-period dispatch with repair scheduling, we consider an

a priori �xed time horizon with M periods. Let ℳ :“ t0, 1, ¨ ¨ ¨ ,Mu denote the set of all

periods. We denote a period by 𝑚. For a speci�c realization of line failures 𝑠 P 𝒮 , 𝐽p𝑎, 𝑠q
denotes the optimal value of the second-stage problem which is given as follows:

𝐽 p𝑎, 𝑠q :“min
x𝑠,𝑦𝑠

řM
𝑚“0 Wdem

𝑇x𝑚,𝑠

s.t. 𝑦𝑠 P 𝒴 p𝑠q , x𝑠 P 𝒳 p𝑎, 𝑠, 𝑦q ,
(7.2)

where the scenario-speci�c second-stage decision variables x𝑠 “ tx𝑚,𝑠u𝑚Pℳ and 𝑦𝑠 “
t𝑦𝑚,𝑠u𝑚Pℳ respectively denote the collection of dispatch and line repair actions for each

period. For a failure scenario 𝑠 P 𝒮 , 𝒴 p𝑠q denotes the set of feasible repair schedules,

and 𝒳 p𝑎, 𝑠, 𝑦q denotes the set of feasible power �ows under the DER allocation 𝑎, and

chosen line repair schedule 𝑦 P 𝒴 p𝑠q. Calculating E𝑆„𝒫𝐽pp𝑥, 𝑦q, 𝑆q is computationally

intractable for large networks because the number of all possible scenarios grows expo-

nentially (2|ℰ|) for a network with |ℰ| number of edges. Using the sample average ap-

proximation (SAA) method [4], one can obtain an approximate solution to the stochastic

optimization problem. This solution can be obtained by solving the following problem:

min
𝑎P𝒜

"
𝑔 p𝒮p𝑎q :“Walloc

𝑇𝑎` 1

𝐾

ř
𝑠P p𝒮 𝐽p𝑎, 𝑠q

*
, (7.3)

where
p𝒮 Ă 𝒮 is a suitably chosen (preferably small) subset of the set of failure scenarios,

𝐾 :“ | p𝒮|, and 𝑔 p𝒮p𝑎q is the SAA objective value obtained using 𝐾 samples drawn from

the distribution 𝒫 . The set of constraints for the problem will be discussed in Sec. 7.3.

The outline of this chapter is as follows. In Sec. 7.2, we describe the storm wind �eld

prediction and NHPP failure model. In Sections 7.3 and 7.4, we describe the DER place-

ment model, repair scheduling model, DER dispatch model, and LinDistFlow model for

islanded microgrids. Then, we describe our computational results on a 12-node network,
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and end the chapter with description of future extensions to our work.

7.2 Stochastic failure model

Recall that, in general, the probability distribution 𝒫 governing the random vector of line

failures 𝑆 can be supported over t0, 1uℰ . For 𝑆 “ 𝑠, 𝑠𝑒 “ 1 if line 𝑒 has failed, and 0

otherwise. To capture the physical impact of the storm wind �eld on DN components, we

adopt an approach that characterizes 𝒫 by combining: (i) wind velocity prediction model

given forecast of the storm track, and (ii) a Non-Homogeneous Poisson Process (NHPP)

model for prediction of line failure rates.

First, the two-dimensional area of the power network is broken into grids indexed by

ℎ, which form the set ℋ. For example, the area of each grid ℎ is chosen to be roughly

1kmˆ1km. Next, we estimate the wind velocity and Poisson failure rate within each grid

every hour while the storm is passing over the network. In our setup, Poisson rates are

given per unit time (hr) and line length (km). The failure probabilities of distribution lines,

which are roughly of length 1km in our study and can pass through multiple grids, are a

function of the Poisson rates.

Poisson distribution has been used to model power line failure rates under normal

(non-storm) conditions. However, previous studies [7, 149] simulate the total number of

line failures within a region while assuming a spatially-constant velocity in the region at

every time step. Since the failure probabilities di�er signi�cantly across larger networks,

we instead model the failure probability of each line with a Bernoulli random variable.

In our approach, the prediction of velocity measurements 𝑣ℎ,𝑡 in each grid ℎ and time

𝑡 P r𝑡1, 𝑡2s is based on the storm center location at time 𝑡 and three wind �eld parame-

ters: maximum intensity 𝑉𝑡, radius of maximum winds 𝑅𝑡, and shape parameter 𝐵𝑡. The

predicted velocities can be obtained from the classical Holland model which expresses

velocity 𝑣ℎ,𝑡 as a function of distance 𝑟ℎ,𝑡 from the storm center [68]:

𝑣ℎ,𝑡 “ 𝑉𝑡

ˆ
𝑅𝑡
𝑟ℎ,𝑡

˙𝐵𝑡{2

exp

˜
1´

ˆ
𝑅𝑡
𝑟ℎ,𝑡

˙𝐵𝑡
¸1{2

. (7.4)

Then, an estimate of location and time-dependent Poisson failure rates 𝜆ℎ,𝑡 can be ob-
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tained using a quadratic NHPP model [7, 76, 149]:

𝜆ℎ,𝑡 “

$
’&
’%

´
1` 𝛼

´´
𝑣ℎ,𝑡
𝑣𝑐𝑟𝑖𝑡

¯2
´ 1

¯¯
𝜆𝑛𝑜𝑟𝑚 , if 𝑣ℎ,𝑡 ě 𝑣𝑐𝑟𝑖𝑡

𝜆𝑛𝑜𝑟𝑚 , if 𝑣ℎ,𝑡 ă 𝑣𝑐𝑟𝑖𝑡 .

(7.5)

In the above model, the failure rate is 𝜆𝑛𝑜𝑟𝑚 if 𝑣ℎ,𝑡 is below a critical velocity 𝑣𝑐𝑟𝑖𝑡 and

increases quadratically with respect to wind speed above 𝑣𝑐𝑟𝑖𝑡 . Speci�cally, we use the

parameters 𝛼 “ 4175.6, 𝑣𝑐𝑟𝑖𝑡 “ 40 knots, and 𝜆𝑛𝑜𝑟𝑚 “ 0.49 failures/yr/mi, which are

obtained from a previous study [76] and converted to appropriate units. We select these

parameters because they were estimated using historical storm data that includes Cate-

gory 1-3 hurricanes.

The failure rate is given at hourly intervals and measured per hour. Hence, the cu-

mulative intensity function Λℎ per km at grid ℎ from storm arrival (𝑡1
𝑡ℎ

hour) over the

network to its departure (𝑡2
𝑡ℎ

hour) can be approximately calculated by summing the rate

over the time interval:

Λℎp𝑡2 ´ 𝑡1q “
ř𝑡2
𝑡“𝑡1

𝜆ℎ,𝑡. (7.6)

Recall that a line may span multiple grids. Let 𝑙𝑒,ℎ denote the length of edge 𝑒 in grid ℎ.

Then, the cumulative intensity function for line 𝑒 can be computed as:

𝜈𝑒p𝑡2 ´ 𝑡1q “
ř
ℎPℋ 𝑙𝑒,ℎΛℎp𝑡2 ´ 𝑡1q. (7.7)

Then, the probability of line 𝑒 failing during the storm is

𝐹𝑒p𝑡2 ´ 𝑡1q “ 1´ 𝑒´𝜈𝑒p𝑡2´𝑡1q. (7.8)

Finally, the probability of a failure scenario 𝑠 is given by:

Prp𝑠q “
ś
𝑒Pℰ

`
𝑠𝑒𝐹𝑒p𝑡2 ´ 𝑡1q ` p1´ 𝑠𝑒qp1´ 𝐹𝑒p𝑡2 ´ 𝑡1q

˘
(7.9)

which characterizes the failure probability distribution 𝒫 .

Recall that since the SAA method relies on solving the two-stage problem for a subset

of scenarios
p𝒮 , selecting this subset is an important aspect [48]. To obtain

p𝒮 , we begin by

generating 1,000 realizations 𝑠 of the random vector 𝑆 and sort 𝑠 in decreasing order of
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their probabilities Prp𝑠q. Then, we randomly choose a small subset
p𝒮 (ď 10 number of

scenarios) from the 100 most probable of these scenarios. This procedure gives a small set

of scenarios, which is representative of the worst-case failures in the DN. The question of

how well this sample represents the distribution 𝒫 is outside the scope of this paper. Nev-

ertheless, we use the set
p𝒮 as an input to the problem (7.3), the variables and constraints

of which are described in the next section.

A distribution line 𝑒 P ℰ connects a node, say node 𝑗, to its parent node, say node 𝑖, in

the tree network. Here 𝑖 and 𝑗 are the from and to nodes of line 𝑒, which are denoted by 𝑒´

and 𝑒`, respectively. Each distribution line 𝑒 P ℰ has a complex impedance z𝑒 “ r𝑒 ` jx𝑒

where r𝑒 ą 0 and x𝑒 ą 0 denote the resistance and inductance of the line 𝑒, respectively,

and j “ ?´1. Also, let 𝑁 :“ |𝒩|.

7.3 Allocation of Distributed Energy Resources

Let𝒮 denote the set of available, not necessarily homogeneous DERs. In order for a DER to

be deployed at a DN node, an appropriate temporary DER site needs to �rst be developed

at that node. Development may include land acquisition or security provisions to protect

DERs from natural hazards and ensure continued fuel supply for DERs such as diesel

storage or natural gas pipelines [50, 129]. Let 𝒰 Ď 𝒩 denote the subset of nodes where

such DER sites may be developed. Let 𝑢 P t0, 1u𝒰 be a vector, where 𝑢𝑖 “ 1 denotes that

a DER site is developed at node 𝑖; otherwise 𝑢𝑖 “ 0. Let W
SD P R𝒰

` be a cost vector such

that W
SD

𝑖 denotes the cost of developing a DER site at node 𝑖 P 𝒰 .

Let 𝑦𝑔 P t0, 1u𝒰ˆ𝒮 denote a map of DER allocation to DER sites, such that 𝑦𝑔𝑖𝑠 “ 1

denotes that a DER 𝑠 is allocated at site 𝑖. A site 𝑖 P 𝒰 is operational if and only if there is

at least one DER allocated to that site, i.e.

𝑢𝑖 ď
ř
𝑠P𝒮 𝑦𝑔𝑖𝑠 @ 𝑖 P 𝒰 (7.10a)

𝑦𝑔𝑖𝑠 ď 𝑢𝑖 @ 𝑠 P 𝒮, 𝑖 P 𝒰 . (7.10b)

Since there are at most |𝒮| DERs, Equation (7.10b) can be rewritten with fewer constraints

as

ř
𝑠P𝒮 𝑦𝑔𝑖𝑠 ď 𝑢𝑖 |𝒮| @ 𝑖 P 𝒰 .
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Clearly, a DER 𝑠 can be allocated to at most one site, i.e.

ř
𝑖P𝒰 𝑦𝑔𝑖𝑠 ď 1 @ 𝑠 P 𝒮. (7.11)

Let G denote the maximum number of DERs that can be allocated in a DN. Then

ř
𝑖P𝒰

ř
𝑠P𝒮 𝑦𝑔𝑖𝑠 ď G. (7.12)

Thus, the �rst stage decision variable in eq. (7.3) can be de�ned as 𝑎 :“ p𝑢, 𝑦𝑔q, and

the set of feasible resource allocation strategies can be de�ned as 𝒜 :“ tp𝑢, 𝑦𝑔q P 𝒰 ˆ
𝒮 | p7.10q ´ p7.12q holdu.

7.4 Joint multi-period repair and dispatch problem

Multi-period repair scheduling model

We assume that at period 𝑚 “ 0, the uncertainty of line failures due to the hurricane

is completely realized, and the pre-placed DERs are dispatched to supply power. From

period 𝑚 “ 1, the utility crew starts repairing the damaged lines subject to resource

constraints. We choose M large enough to allow all necessary line repairs in the DN to

complete. Furthermore, we assume that the transmission network will take more time

to repair than the DN. Since, the DN performance will not change after the DN repair

until the main grid is connected back, we can constrain that at period 𝑚 “ M, the DN is

connected back to the bulk power grid (see Figure 7-1).

Consider a scenario 𝑠 P p𝒮 denoting the locations of line failures. For each such sce-

nario 𝑠, for 𝑚 P ℳ, let 𝑦𝑙 P t0, 1uℰ𝑠ˆℳ denote the decision variables concerning repair

of failed lines, where 𝑦𝑙𝑚,𝑠𝑒 “ 1 for p𝑒,𝑚q P ℰ𝑠ˆℳ denotes that line 𝑒 is repaired during

the time interval p𝑚´ 1,𝑚s.
Since the repair crew may take some time to reach the failed lines immediately after

the hurricane, there are no lines repaired in the �rst period, i.e.

𝑦𝑙𝑚,𝑠𝑒 “ 0 @ 𝑒 P ℰ𝑠,𝑚 “ 0. (7.13)
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A line can at most be repaired once, i.e.

řM
𝑚“0 𝑦𝑙

𝑚,𝑠
𝑒 ď 1 @ 𝑒 P ℰ𝑠. (7.14)

Furthermore, at most Y number of lines can be repaired during any time period, i.e.

ř
𝑒Pℰ𝑠 𝑦𝑙

𝑚,𝑠
𝑒 ď Y @𝑚 Pℳ (7.15)

Y models the resource constraints with respect to the crew or repair equipment.
1

Finally, we constrain that the DN is connected to the main grid at period 𝑚 “ M, i.e.

𝑦𝑙𝑚,𝑠𝑒 “ 1, 𝑚 “ M, 𝑒 P ℰ, 𝑒´ “ 0. (7.16)

Since the DN is typically connected to the main grid only after complete DN repair, im-

posing the restriction (7.16) as part of worst-case analysis is a reasonable assumption.

Thus, the repair schedule variable for each scenario 𝑠 in eq. (7.2) can be de�ned as

𝑦𝑠 :“ t𝑦𝑙𝑚,𝑠𝑒 u𝑒Pℰ𝑠,𝑚Pℳ, and the set of feasible repair schedules 𝒴 p𝑠q :“ t𝑦𝑙| p7.13q ´
p7.16q holdsu.

For the �xed scenario 𝑠, let 𝑘𝑙𝑚,𝑠𝑒 P t0, 1u denote whether the line 𝑒 P ℰ is operational

at time 𝑚 Pℳ. 𝑘𝑙𝑚,𝑠𝑒 “ 1 denotes that the line 𝑒 is not operational at period 𝑚.

As a result of failures of lines in ℰ𝑠, the state of the lines at period 𝑚 “ 0 is as follows:

𝑘𝑙𝑚,𝑠𝑒 “ 1, 𝑚 “ 0, @ 𝑒 P ℰ𝑠 (7.17)

Since the main grid is also likely to be damaged by the hurricane, we assume that the line

connecting the DN to the substation is rendered disconnected, i.e. for 𝑒 P ℰ such that

𝑒´ “ 0, 𝑘𝑙0𝑒 “ 1, or equivalently 𝑒 P ℰ𝑠. The lines not damaged by the hurricane remain

operational during all periods, i.e.

𝑘𝑙𝑚,𝑠𝑒 “ 0 @𝑚 Pℳ, 𝑒 R ℰ𝑠 (7.18)

1
It is indeed possible that the maximum number of repairable lines may vary across periods. For the

sake of simplicity , we chose a �xed Y.
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A failed line becomes operational after it is repaired, and then continues to remain

operational, i.e.

𝑘𝑙𝑚,𝑠𝑒 “ 𝑘𝑙𝑚´1,𝑠𝑒 ´ 𝑦𝑙𝑚,𝑠𝑒 @𝑚 Pℳz0, 𝑒 P ℰ𝑠 (7.19)

Since, for all𝑚, the variables 𝑘𝑙𝑚,𝑠𝑒 and 𝑦𝑙𝑚,𝑠𝑒 can only take binary values, (7.19) automati-

cally ensures that a failed line can at most be repaired once, i.e. @ 𝑒 P ℰ𝑠,
řM
𝑚“0 𝑦𝑙

𝑚,𝑠
𝑒 ď 1.

Multi-period dispatch model

Henceforth, in the subsequent equations, we will drop the @𝑚 Pℳ, 𝑠 P p𝒮 , for brevity.

DER model

Depending upon whether a DER 𝑠 is allocated at a site 𝑖 P 𝒰 , its contribution to the power

generated at node 𝑖 at any timestep 𝑡 is constrained as follows, i.e.

0 ď 𝑝𝑔𝑚,𝑠𝑖𝑠 ď p1´ 𝑦𝑔𝑖𝑠qpg𝑠 @ 𝑖 P 𝒩, 𝑠 P 𝒮
|𝑞𝑔𝑚,𝑠𝑖𝑠 | ď 𝜂𝑝𝑔𝑚,𝑠𝑖𝑠 @ 𝑖 P 𝒩, 𝑠 P 𝒮

(7.20)

where 𝜂 denotes the tan arccos of maximum power factor.
2

If a DER is not allocated to a

node, its active and reactive power contribution to the node is zero, i.e.

𝑝𝑔𝑚,𝑠𝑖𝑠 “ 𝑞𝑔𝑚,𝑠𝑖𝑠 “ 0, @ 𝑖 R 𝒰 , 𝑠 P 𝒮. (7.21)

In a microgrid island, a DER can adjust its reactive power output depending upon the

voltage of the node to which it allocated, according to a voltage droop control equation

expressed as follows:

⃒⃒
v𝑚,𝑠𝑖 ´ `

vref

𝑠 ´mq𝑠𝑞𝑔
𝑚,𝑠
𝑖𝑠

˘⃒⃒ ď p1´ 𝑦𝑔𝑖𝑠qL,
@ 𝑖 P 𝒰 , 𝑠 P 𝒮,𝑚 ‰ M

(7.22)

where mq𝑠 denotes the voltage droop coe�cient of the DER 𝑠; vref

𝑠 denotes the idle (no

load) terminal voltage reference setpoint of the DER (see Figure 7-2 [26]); and L is a large

2
Typical value for 𝜂 « 1

3 corresponds to a power factor value of 0.95.
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constant.
3

If 𝑦𝑔𝑖𝑠 “ 1, (7.22) simpli�es to 𝑞𝑔𝑚,𝑠𝑖𝑠 “ 1
mq𝑠

`
vref

𝑠 ´ v𝑚,𝑠𝑖

˘
, which models the

standard droop control law that determines the reactive power contribution of DER at

node 𝑖 to help voltage regulation of the islanded microgrid. Such a DER is said to be op-

erating in the voltage source inverter (VSI) control mode [83]. When the DN is connected

to the main grid, the “sti�” AC system of the bulk power grid essentially determines the

terminal voltage of the DER. Hence, the voltage droop equation does not apply at period

𝑚 “ M. Note that, in our model, any DER within an island is capable of operating in the

VSI control mode, thereby contributing to the voltage regulation of the microgrid island,

in parallel operation with other DERs in the same island. Similar equations for frequency

droop control can also be included [27].

Reactive power

pg

qg

qg

Real

power

ηpg

-ηpg

(a) DER output model [130]

𝑞𝑔#𝑞𝑔$𝑞𝑔$ 𝑞𝑔#

v&

v

v#'()

v$'()

(b) Voltage droop control [83]

Figure 7-2: DER model as a voltage source inverter.

Without loss of generality, we assume every node has a load. We consider only the

constant power model for loads.

Load model

Let pc𝑖 ` jqc𝑖 denote the nominal power demand at node 𝑖. Let 𝑘𝑐𝑚,𝑠𝑖 P t0, 1u denote

the load connectivity where 𝑘𝑐𝑚,𝑠𝑖 “ 1 denotes the load at node 𝑖 is disconnected at time

3
This modeling trick to use a constraint of the type |𝑏| ď 𝑘L where 𝑘 P t0, 1u enforces an equality

constraint 𝑏 “ 0 only when 𝑘 “ 0; otherwise the equality constraint is not binding. We repeatedly use this

trick to model various other conditional equalities.
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period 𝑚. When connected, a load’s actual consumption can be scaled down to a frac-

tion of its nominal demand. We model such a �exibility by introducing a load control

parameter 𝛽𝑚,𝑠𝑖 P r𝛽
𝑖
, 1s (when 𝑘𝑐𝑚,𝑠𝑖 “ 0, otherwise 𝛽𝑖 “ 0), where 𝛽

𝑖
P r0, 1s denotes

the minimum fraction of the load’s nominal demand that should be satis�ed provided the

load is connected, i.e.

𝑝𝑐𝑚,𝑠𝑖 “ 𝛽𝑚,𝑠𝑖 pc𝑖 @ 𝑖 P 𝒩
𝑞𝑐𝑚,𝑠𝑖 “ 𝛽𝑚,𝑠𝑖 qc𝑖 @ 𝑖 P 𝒩,

(7.23)

where

p1´ 𝑘𝑐𝑚,𝑠𝑖 q 𝛽
𝑖
ď 𝛽𝑚,𝑠𝑖 ď p1´ 𝑘𝑐𝑚,𝑠𝑖 q @ 𝑖 P 𝒩. (7.24)

The connectivity of a load depends on whether the nodal voltage lies within safe op-

erating bounds, i.e.

𝑘𝑐𝑚,𝑠𝑖 ě vc𝑖 ´ v𝑚,𝑠𝑖 @ 𝑖 P 𝒩
𝑘𝑐𝑚,𝑠𝑖 ě v𝑚,𝑠𝑖 ´ vc𝑖 @ 𝑖 P 𝒩,

(7.25)

where vc𝑖 and vc𝑖 denote the lower and upper voltage bounds for the loads at node 𝑖.

The net actual real and reactive power consumed (denoted by 𝑝𝑚,𝑠𝑖 and 𝑞𝑚,𝑠𝑖 , respec-

tively) at node 𝑖 is given by:

𝑝𝑚,𝑠𝑖 “ 𝑝𝑐𝑚,𝑠𝑖 ´ř
𝑠P𝒮 𝑝𝑔

𝑚,𝑠
𝑖𝑠 @ 𝑖 P 𝒩

𝑞𝑚,𝑠𝑖 “ 𝑞𝑐𝑚,𝑠𝑖 ´ř
𝑠P𝒮 𝑞𝑔

𝑚,𝑠
𝑖𝑠 @ 𝑖 P 𝒩.

(7.26)

Linear Power Flow model for microgrids

We adopt the LinDistFlow model [16] to develop a novel linear power �ow model over

microgrids for a computational advantage.

𝑃𝑚,𝑠
𝑒 “

ÿ

𝑙:𝑙´“𝑒`

𝑃𝑚,𝑠
𝑙 ` 𝑝𝑚,𝑠𝑗 , @ 𝑒 P ℰ, 𝑗 “ 𝑒`

𝑄𝑚,𝑠
𝑒 “

ÿ

𝑙:𝑙´“𝑒`

𝑄𝑚,𝑠
𝑙 ` 𝑞𝑚,𝑠𝑗 , @ 𝑒 P ℰ, 𝑗 “ 𝑒`

(7.27)
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eq. (7.27) denotes the standard power conservation equations for real and reactive power

�ows of the LinDistFlow model.

Since the failed lines are not operational, there are no power �ows on these lines, until

they are repaired, i.e.

|𝑃𝑚,𝑠
𝑒 | ď p1´ 𝑘𝑙𝑚,𝑠𝑒 qL @ 𝑒 P ℰ

|𝑄𝑚,𝑠
𝑒 | ď p1´ 𝑘𝑙𝑚,𝑠𝑒 qL @ 𝑒 P ℰ.

(7.28)

Similarly, the voltage drop equation of the LinDistFlow model along a line 𝑒 will be

enforced only if line 𝑒 is operational, i.e.

⃒⃒
v𝑚,𝑠𝑗 ´ pv𝑚,𝑠𝑖 ´ 2 pr𝑒𝑃𝑚,𝑠

𝑒 ` x𝑒𝑄
𝑚,𝑠
𝑒 qq⃒⃒ ď L𝑘𝑙𝑚,𝑠𝑒

@ 𝑒 P ℰ, 𝑖 “ 𝑒´, 𝑗 “ 𝑒`
(7.29)

Note that, if a line 𝑒 is operational (i.e. 𝑘𝑙𝑚,𝑠𝑒 “ 0), then eq. (7.29) simpli�es to v𝑚,𝑠𝑗 “
v𝑚,𝑠𝑖 ´2 pr𝑒𝑃𝑚,𝑠

𝑒 ` x𝑒𝑄
𝑚,𝑠
𝑒 q, which is the standard voltage drop equation of the LinDistFlow

model [16].

When the DN is connected back to the TN, the substation voltage is assumed to be the

nominal voltage, i.e. for 𝑚 “ M, v𝑚,𝑠0 “ vnom.

Then, we de�ne the dispatch variable for a �xed scenario 𝑠 P 𝒮 in eq. (7.2) as x𝑠 :“
t𝑝𝑔𝑚,𝑠, 𝑞𝑔𝑚,𝑠, 𝛽𝑚,𝑠, 𝑘𝑐𝑚,𝑠, 𝑝𝑚,𝑠, 𝑞𝑚,𝑠, 𝑃𝑚,𝑠, 𝑄𝑚,𝑠, v𝑚,𝑠u𝑚Pℳ, and the set of feasible dispatch

decisions as 𝒳 p𝑎, 𝑠, 𝑦q :“ tx | p7.17q ´ p7.29q holdu. Thus, the SAA problem (7.3) can be

more speci�cally written as:

min
𝑎,x,𝑦

ÿ

𝑖P𝒰
W

SD

𝑖 𝑢𝑖 ` 1

𝐾

Mÿ

𝑚“0

ÿ

𝑖P𝒩
rWLC

𝑖 p1´ 𝛽𝑚,𝑠𝑖 q `W
LS

𝑖 𝑘𝑐
𝑚,𝑠
𝑖 s

s.t. 𝑎 “ p𝑢, 𝑦𝑔q, 𝑦𝑠 P 𝒴 p𝑠q , x𝑠 P 𝒳 p𝑎, 𝑠, 𝑦q @ 𝑠 P p𝒮. (7.30)

where W
LC

𝑖 is the cost of complete load control at node 𝑖; W
LS

𝑖 is the cost of complete

load shedding at node 𝑖; x :“ tx𝑠u𝑠P p𝒮 and 𝑦 :“ t𝑦𝑠u𝑠P p𝒮 . Note that the entries in Walloc are

non-zero only for site development (W
LS

𝑖 ), i.e. the cost of allocating DERs to a site is zero.

This assumption maybe justi�ed by considering that building a site immune to �ooding,
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electrical �res or other storm-induced damage, and with uninterrupted fuel supply will

be more expensive than transportation and installation of DERs at the site.

Illustrative example

0

A

G

HB

C

D

IJ

K

E

F

(a) (b) (c) 𝑚 “ 0 (d) 𝑚 “ 1 (e) 𝑚 “ 2 (f) 𝑚 “ M

Figure 7-3: The sub�gures show (a) nominal DN (white nodes indicate no load control),

(b) pre-storm DER allocation based on storm forecast (blue node denotes DER allocation,

red lines illustrate a disruption scenario), (c) microgrid islands (dotted lines indicate failed

lines that are not repaired, black nodes denote the shed loads), (d) partial line repairs

enable partial load restoration (light gray nodes), (e) line repairs completed leading to

more load restoration, although with further load control (dark gray nodes), and �nally

(f) reconnection to main grid and restoration of nominal performance.

Figure 7-3 provides an illustration of various aspects of our problem formulation. In

Figure 7-3a, the DN is in nominal operating conditions, i.e. each node is connected to the

grid and no load control is exercised.

Based on the storm characteristics determined from the track and wind-�eld forecasts,

we obtain line failure probabilities, and generate failure scenarios. Suppose that the utility

has resources to develop only one DER site in Stage I, and now has to decide its location.

Further suppose that due to the power�ow and voltage drop constraints ((7.27) and (7.29)),

transmitting power over across two lines result in voltage bound violations. Hence, from

any site location, the DERs will be able to meet the demand of nodes which are at most

two hops away from the site. For example, a DER placed at node H can only supply power

to nodes A, G, and H. Note that the nodes A, B, G, H form the largest connected island;

hence, placing a site at node A, can immediately serve demand at 4 nodes. However, the

maximum number of nodes that can be brought back online (considering line repairs) is

eight if the site is developed at node D. Hence, allocating the DER to node D is optimal in

this scenario, although only two loads will be served during the �rst period.

246



In Figure 7-3c, we see that a failure scenario has realized where the set of failed lines

ℰ𝑠 include lines (B,C), (D,E), (D,F), (D,I). The loss of bulk power supply is represented by

DN’s disconnection from the substation, i.e. (0,A) P ℰ𝑠. Consider that the demand at

nodes C and D is relatively small; thus, it is completely met (i.e. 𝑘𝑐𝑚,𝑠𝑖 “ 0, 𝛽𝑚,𝑠𝑖 “ 0 for

𝑖 P tC,Du,𝑚 “ 0, and 𝑘𝑐𝑚,𝑠𝑖 “ 1, @ 𝑖 P 𝒩ztC,Du).
Now, the line repairs are to be scheduled. Suppose that Y “ 2, i.e. at most two lines

can be repaired in each period. Again, looking at the most number of nodes that can be

energized, the lines (D,E) and (D,I) should be repaired in the �rst period, and then lines

(D,F) and (B,C) should be repaired in the next period; i.e. 𝑦𝑙𝑚,𝑠𝑒 “ 1 if𝑚 “ 1 and 𝑒 P t(D,E),

(D,I)u or 𝑚 “ 2 and 𝑒 P t(D,F), (B,C)u. Following this schedule, in the period 𝑚 “ 1,

nodes E, F, I, J are connected. However, due to DER limitations, load control is exercised;

see Figure 7-3d (i.e. 𝑘𝑐𝑚,𝑠𝑖 “ 0 and 𝛽𝑚,𝑠𝑖 ă 1 for 𝑖 P tC,D,E,F,I,Ju). In Figure 7-3e, due to

further line repairs, the loads at nodes B, C and K are energized, although by exercising

even more load control (𝛽𝑚,𝑠𝑖 ą 𝛽𝑚´1,𝑠𝑖 for 𝑚 “ 2 and 𝑖 P tC,D,E,F,I,Ju). However, due to

power �ow constraints, the nodes A, G, and H cannot be energized until complete network

is restored.

Finally, when the transmission network is repaired, reconnecting the DN back to the

substation (𝑦𝑙𝑚,𝑠𝑒 “ 1 for 𝑒 “(0,A) and 𝑚 “ M) restores the nominal operation of the DN;

see Figure 7-3f.

Computational Study

Experimental setup

We use a 12-node test feeder in our computational experiments. 6 randomly chosen nodes

have one load each. The loads are homogeneous. For each node 𝑖with a load, W
LS

𝑖 “ 1000,

W
LC

𝑖 “ 100, 𝛽
𝑖
“ 0.5. The total capacity of available DERs is chosen to be 80% of the

total demand in the network.

To produce predictions of the storm wind �eld 𝑣ℎ,𝑡 using (7.4), we consider two dif-

ferent tracks of a Category 1 storm to account for expected uncertainty in the storm tra-

jectory. The storm tracks we used (hereafter referred to as Track 1 and Track 2) di�er
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Table 7.1: Mean, minimum, and maximum failure probabilities of distribution lines (left
side) and median, minimum, and maximum island size (right side) for the case studies.

Failure probability Size of islands

Mean Min Max Med. Min Max

Track 1 0.63 0.56 0.75 1.58 1.08 4.20

Track 2 0.26 0.21 0.34 3.22 2.11 5.61

primarily in that the storm eye wall (region of maximum winds) is farther away from the

12-node feeder for Track 2, and thus the wind velocities in the DN are lower as compared

to the case with Track 1. We use synthetic values for the Holland parameters (𝑉𝑡, 𝑅𝑡, 𝐵𝑡)

to produce predictions of the storm wind �eld 𝑣ℎ,𝑡 using (7.4). We compute predictions

for wind velocity �elds and line failure probabilities at every hour over the course of one

day, using the procedure described in Sec. 7.2.

We implemented the SAA solution approach for the mixed integer program (MIP)

optimization model (7.3) in JuliaPro. Solutions are obtained using the Gurobi solver, which

employs a branch-and-bound algorithm with heuristics to solve MIPs.

Impact of storm characteristics on DN failures

We generate a total of 𝑆 “ 1000 failure scenarios to examine distributions in frequency

of failures and number/size of islands. The quadratic relationship between 𝜆ℎ,𝑡 and 𝑣ℎ,𝑡

results in a signi�cant increase in probability of failures and decrease in island size if the

test feeder is subject to higher storm velocities (see Table 7.1). An average of 5.96 failures

occur per scenario in Case 1, while only 2.88 failures occur per scenario in Case 2 (see

Figure 7-4a). The smaller median island size under Track 1 corresponds with a larger

number of islands (see Figure 7-4b). In contrast, under normal conditions or mild storms

with the tropical storm (TS) rating, Poisson intensities are uniformly 𝜆𝑛𝑜𝑟𝑚, and the failure

probability 𝐹𝑒 over r𝑡1, 𝑡2s is ă 0.001. Category 2-5 storms have a larger radial region of

high winds, and we can expect much higher failure probabilities in such cases.
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Figure 7-4: Frequency of number of distribution line failures (left) and number of islands

formed (right) in the 12-node network for the two tracks. A total of 1,000 failure scenarios

are simulated to produce the histograms.

Impact of resource constraints on DN recovery

To evaluate the system performance under di�erent resource constraints, we vary G

(number of available DERs) and Y (maximum number of lines repaired in each period).

System performance at a period𝑚 is de�ned as the average percentage di�erence between

the cost of unmet demand and the total cost of complete load shedding, averaged over the

sampled scenarios, i.e.

System performance “ 1

| p𝒮|
ÿ

𝑠P p𝒮

100

˜
1´ 𝐽p𝑎, 𝑠qř

𝑖P𝒩 W
LS

𝑖

¸
. (7.31)

The system performance as a function of 𝑚 for di�erent values of G and Y for two

storm tracks is shown in Figure 7-5. Immediately following the storm (𝑚 “ 0), the sys-

tem performance drops to a minimum, and then improves with each subsequent set of

line repairs. Once all the damaged lines are repaired and prior to reconnection of the bulk

supply, the system performance is almost (but, not fully) restored. The system perfor-

mance is fully restored to 100% following the reconnection to the main grid. Since there

are more failures on average in the DN under Track 1, the system performance at 𝑚 “ 1

is lower than for Track 2.

If G ą 0, even networks with very high failure probabilities will be able to meet a
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(a) Track 1 (b) Track 2

Figure 7-5: Average system performance of the DN under the two track scenarios, varying

G while setting Y “ 1 (top row) and varying Y while setting G “ 1 (bottom row).
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portion of demand given a nonzero DER budget – the network repair time will simply be

longer. Increasing G noticeably decreases the average time required to repair the network

(return to system performance that is close to 100%) under both track scenarios. Similarly,

increasing Y speeds up the system restoration process.
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(c) Scenario 3
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(d) Scenario 4

Figure 7-6: Performance of greedy algorithm for Stage 2.

As noted before, the Stage 2 problem is an MILP for a speci�c scenario. This MILP

consists of a number of binary variables which scales with the square of the number of

edges, which does adversely a�ect the computational time requirements. Since the greedy

algorithm was successful in the case of security failures, we tried a greedy algorithm for

line repairs. The number of binary variables in the MILP at each stage scales only linearly

251



with the number of edges. As a result, the number of nodes visited by branch-n-bound

algorithm reduces signi�cantly. The results shown in Figure 7-6 compare the performance

of the greedy restoration algorithm with the optimal restoration schedule obtained by

solving the large-scale MILP. As we can see, the greedy algorithm performs very well

in many scenarios. The question of why greedy algorithm performs well is part of our

ongoing research work.

7.5 Connections to job scheduling problem

In this section, we argue that the restoration problem in the Stage 2 (7.3) is closely related

to a jobs scheduling problem. To this end, we borrow ideas from [29, 99, 126], and present

some conceptually interesting ideas which can be developed further. This is part of our

ongoing research.

Consider an example as shown in Figure 7-7 to visualize the process of network restora-

tion. In Figure 7-7a, the blue circle denotes an energized core of a DN and the dashed lines

indicate the failed lines which need to be repaired. The numbers indicate the “values” of

the loads connected to the nodes. The repair times of the lines are assumed to be identical.

Assume that load control cannot be exercised. Repair of a line will result in the loads at

the corresponding node to become energized, i.e. power supply to the loads will become

available. As a result, load shedding worth of the value corresponding to the node will no

longer be required.

The operator faces a constraint that only one line can be repaired at a time. Clearly,

in this case the line connected to the node with value 200 will be repaired before the line

connected the node with value 100. A repair schedule is an ordered sequence of lines

which need to be repaired in a sequential manner. Thus, the repair schedule t200, 100u
results in lower post-contingency loss than the schedule t100, 200u.

Now, consider another example as shown in Figure 7-7b which consists of an addi-

tional node of value 400 connected to the node with value 100. In this case, note that a

repair schedule t200, 100, 400u would result in post-contingency loss of 200ˆ 1` 100ˆ
2 ` 400 ˆ 3 “ 1600. However, the repair schedule t100, 400, 200u would result in post-

contingency loss of 100ˆ 1` 400ˆ 2` 200ˆ 3 “ 1500. No other repair schedule results
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(a) Example 1

(b) Example 2

Figure 7-7: Visualizing network restoration.

in a post-contingency loss lower than 1500. Therefore, in the optimal repair schedule the

line connected to load 100 should be repaired �rst because it allows an early power sup-

ply restoration to the node with value 400. Then, the node with value 100 becomes part

of the energized core as the corresponding loads does not contribute to the cost of load

shedding. As a result, the network reduces to an example similar to that in Figure 7-7a

with di�erent values (400 and 200). This naturally motivates a recursive algorithm for

network restoration which we formalize subsequently in Algorithm 11.

Before describing a recursive algorithm, we discuss how to determine the values of

the nodes. Our approach is as follows. Assume that the DN is fully repaired but the bulk

power supply from the TN is not restored. Assume that if a load, say 𝑖, is energized,

then maximum load control parameter will be exercised, i.e. 𝛽𝑖 “ 𝛽
𝑖
. Determine the

optimal subset of loads to which power from the allocated DERs can be supplied subject

to constraints of linear power �ows, maximum load control, operating bounds of the loads

and the DERs, and DER capacities. This can be achieved by solving a simple mixed-integer

linear program (MILP). This part of the problem can be solved for well in advance of the

storm landing, thereby enabling to not consider the loads which cannot be connected after

complete DN restoration (barring the line connecting to the TN).

Next, is a rather simple step, in which we consider a network simpli�cation as illus-

trated in Figure 7-8. In this step, each connected subnetwork whose lines are not disrupted
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by the storm is considered as a single node whose value is the sum of values of the nodes

within the subnetwork. As a result, the reduced graph only consists of lines which need

to be repaired. This idea has been reported previously in [126].

Figure 7-8: Illustration of recursive algorithm.

The second part of the problem concerns with determining optimal restoration sched-

ule. By following the standard terminology in scheduling theory, our problem can be

reduced to 𝑃𝑚|𝑠 ´ 𝑝𝑟𝑒𝑐, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 . Here 𝑃𝑚 represents 𝑚 repair crew teams

with identical capabilities, 𝑝𝑖 “ 1 indicates unit execution time for each job, and

ř
𝑗 𝑤𝑗𝐶𝑗

is the objective which is to be minimized. In this case, the objective is to minimize the

sum of weighted completion time of line repairs. We refer the reader to [29] for the de-

tails on this notation. The problem 𝑃𝑚|𝑠 ´ 𝑝𝑟𝑒𝑐, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 is simpler than the

𝑃𝑚|𝑠´ 𝑝𝑟𝑒𝑐|ř𝑗 𝑤𝑗𝐶𝑗 problem which is proven to be a NP-hard problem in [126]. How-

ever, as shown in [99], the complexity of scheduling problems can drastically change with

subtle changes in the constraints. However, 𝑃𝑚|𝑠 ´ 𝑝𝑟𝑒𝑐, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 is an open

scheduling problem in the literature.

In this section, we assume that all DERs are allocated at a single node or that all DERs

are allocated to a subnetwork whose lines are not vulnerable to the storm-induced dis-

ruptions. This allows us to assume a single energized core before the network restoration

process begins. Now, we present a recursive algorithm for restoration when only one

line can be repaired in each time period, and describe it using an illustrative example

shown in Figure 7-9. In Algorithm 11, OptimalLineRepairSchedule is a recursive pro-
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Algorithm 11 Recursive algorithm for optimal line repair schedule with one line.

1: OptimalLineRepairSchedule(𝒢)

2: procedure OptimalLineRepairSchedule(𝒢 1)
3: if 𝒢 1 consists of exactly one line 𝑒 then
4: return t𝑒u
5: end if
6: if 𝒢 1 consists of a line 𝑒 connecting root node of 𝒢 1 to a subtree 𝐺 then
7: return append(t𝑒u,OptimalLineRepairSchedule(𝐺))

8: end if
9: Let 𝐺1, 𝐺2, ¨ ¨ ¨𝐺𝑘 be the subtrees connected to the root node of 𝒢 1

10: for 𝑖 “ 1, ¨ ¨ ¨ , 𝑘 do
11: 𝐸𝑖 ÐOptimalLineRepairSchedule(𝐺𝑖)

12: Let p𝐴𝑖, 𝐹𝑖q ÐGetHighestAverageSubseqence(𝐸𝑖)
13: end for
14: Let 𝜎1, ¨ ¨ ¨ , 𝜎𝑘 denote a permutation of 𝐹𝑖s in decreasing order of 𝐴𝑖s
15: Merge the lines in 𝜎1, ¨ ¨ ¨ , 𝜎𝑘 with root node of 𝒢 1 to form 𝐺
16: return append(𝜎1, ¨ ¨ ¨ , 𝜎𝑘,OptimalLineRepairSchedule(𝐺)) Ź Lines

sequenced

17: end procedure
18: procedure GetHighestAverageSubseqence(𝐸)

19: Let 𝐸 “ t𝑒1, ¨ ¨ ¨ , 𝑒𝑛u
20: for 𝑗 “ 1, ¨ ¨ ¨ , 𝑛 do
21: Let 𝐴𝑗 Ð averagept𝑒1, ¨ ¨ ¨ , 𝑒𝑗uq
22: end for
23: Let 𝑦 be the largest 𝑗 P r𝑛s such that 𝐴𝑦 “ max𝑗 𝐴𝑗
24: return 𝐴𝑦, t𝑒1, ¨ ¨ ¨ , 𝑒𝑦u
25: end procedure
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cedure which returns the optimal sequence of lines in which they need to be repaired.

Lines 3-8 de�ne the base cases of the algorithm. Lines 9-16 de�ne the recursive step of

the algorithm. Due to recursion, optimal schedules of the smaller subtrees are obtained.

Lines 14-15 show how the optimal schedules for the smaller subtrees can be merged to

obtain the optimal schedule for the larger subtree. The merging steps utilize a subproce-

dure GetHighestAverageSubseqence which identi�es a subschedule for repairing the

most valuable edges in a subtree.

Figure 7-9: Illustrative example for recursive algorithm.

To illustrate the steps of Algorithm 11, consider the example in Figure 7-9. Let 𝒢
denote the network on the left. 𝒢 comprises of two subtrees 𝐺1 “ t800, 500u and 𝐺2 “
t300, 200, 1500u. The recursive algorithm will determine the optimal line repair schedule

for both 𝐺1 and 𝐺2. 𝐺1, in turn, consists of line 800 connected to subtree consisting of

one line 500. Hence, the optimal repair schedule of 𝐺1 returns 800, 500. 𝐺2 comprises

of line 300 connecting subtrees each consisting of one line 200 and 1500, respectively.

These subtrees will be sorted based on their average values and then appended to line

300. Thus, the optimal repair schedule of 𝐺2 will be returned as t300, 1500, 200u. Now,

the highest average subsequence procedure for t800, 500u returns p800, t800uq, where

the second entry denotes the list of lines, and the �rst entry denotes the average of the

values of the nodes connected by these lines. Similarly, the highest average subsequence

procedure for t300, 1500, 200u returns p900, t300, 1500uq. The higher of the two averages

is 900. As a result, the lines t300, 1500u are merged with the root node of 𝒢, followed by

the line 800. Finally, the resulting network on the right remains, for which the recursion

continues.

We would like to clarify that there exists an iterative algorithm in the literature [29]
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which computes an optimal schedule for 1|𝑠 ´ 𝑝𝑟𝑒𝑐, 𝑜𝑢𝑡𝑡𝑟𝑒𝑒, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 . We can

argue using simple interchange arguments presented in [29] that Algorithm 11 also gener-

ates optimal schedules for our problem 1|𝑠´ 𝑝𝑟𝑒𝑐, 𝑜𝑢𝑡𝑡𝑟𝑒𝑒, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 . For 𝑃𝑚|𝑠´
𝑝𝑟𝑒𝑐, 𝑜𝑢𝑡𝑡𝑟𝑒𝑒, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 , we tried the approach as presented in [126]. We �rst gen-

erate an optimal schedule assuming 𝑚 “ 1. Then, in each time period 𝑚 lines would

be repaired in the order speci�ed by the optimal schedule obtained assuming just single

repair team. However, we present a simple counter-example where Algorithm 11 fails to

generate a desired optimal schedule. Consider a contrived example as shown in Figure 7-

Figure 7-10: Counterexample for recursive algorithm with 𝑚 “ 2.

10. In this example, we consider that 𝑚 “ 2 lines can be repaired in each time period.

Assuming that only one line can be repaired in each time step, the optimal schedule ob-

tained by using Algorithm 11 is t𝑎, 𝑏, 𝑐, 𝑑u. Hence, for 𝑚 “ 2, a repair schedule will be

to repair lines 𝑎, 𝑏 in the �rst time period followed by lines 𝑐, 𝑑 in the next time period.

However, the actual optimal schedule is to repair lines 𝑐, 𝑑 in the �rst time period followed

by lines 𝑎, 𝑏 in the next time period. Whether or not a polynomial time algorithm exists

for 𝑃𝑚|𝑠´ 𝑝𝑟𝑒𝑐, 𝑜𝑢𝑡𝑡𝑟𝑒𝑒, 𝑝𝑖 “ 1|ř𝑗 𝑤𝑗𝐶𝑗 is an open problem.

Concluding remarks: To summarize, in this chapter, we developed the following

contributions, to address electricity network preparedness for storm-induced outages:

1. Two-stage stochastic optimization formulation for DER placement in DNs under

uncertainty in component failure locations

2. Model of post-storm microgrid operation with DERs

3. Nonhomogeneous Poisson process (NHPP) model to predict spatially-varying like-

lihood of line failures
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Our 2-stage stochastic optimization problem captures proactive allocation of resources

under uncertainty due to storm-induced disruptions, as well as joint repair and dispatch

actions in the post-storm restoration part. For the Stage 2 problem of network restoration,

we also presented results based on greedy. Finally, we showed that the restoration problem

can be formulated as a job-shop scheduling problem, and presented a recursive algorithm

for a special case of single repair team.
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Chapter 8

Conclusions

In this chapter, we �rst summarize the results presented in this thesis (Sec. 8.1), then de-

scribe our recommendations to improving the resilience of electricity networks (Sec. 8.2),

and �nally conclude with the future work related to the thesis (Sec. 8.3).

8.1 Summary of results

In Chapter 2, we presented an end-to-end framework for semantics-aware attack gener-

ation and implementation on Energy Management System software. We showed how an

attacker could leverage the knowledge of a transmission network to manipulate the crit-

ical parameters of a control algorithm. The �rst part of the e�ort was regarding attack

generation, for which we showed that an optimal attack can generated by solving a bilevel

optimization problem. The second part of the e�ort was to exploit a vulnerability of an

Energy Management System software, to locate the critical parameters in the dynamic

memory space of the control algorithm. We demonstrated the implementation of such

attacks on 5 real world EMS software.

In Chapters 3 to 6, we focused extensively on improving resilience of electricity dis-

tribution networks. Firstly, we showed that the impact of a broad class of cyberphysical

failure scenarios can be modeled as DN-side disruption of multiple components and/or the

disturbances in substation voltage and frequency. developed a quantitative framework to

evaluate the resilience of electricity transmission networks to cyber and physical security

and reliability failures. We adopted the generic de�nition of system resilience which is its
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ability to minimize the impact after a disturbance, as well as to restore the system perfor-

mance back to its nominal value. Secondly, we developed a novel network model which

captures operations of microgrid(s) under various regimes, and single-/multi- master op-

eration of DERs. Thirdly, we considered a range of operator response strategies: from load

control and component disconnects to microgrid islanding and DER dispatch. Fourthly,

we formulated the attacker-operator interactions as bilevel mixed-integer problems (P1)

and (P2), and developed a computational approach to solve these problems using Benders

decomposition algorithm. Finally, we introduced a problem (P3) about restoration of DN

performance over multiple time periods, and presented a greedy algorithm for solving it.

Our computational results for (P1)-(P3) show the value of timely response under vary-

ing operator capabilities in minimizing the impact of disruption as well as speedy system

recovery.

One of the main takeaways is that although we assumed linear power �ows and con-

sidered only basic aspects of microgrid operations, we hope that we have provided a rich

and �exible modeling framework to analyze the DN resilience for more sophisticated at-

tacks and response capabilities. Other cyber-physical security scenarios can be similarly

analyzed by considering a clear demarcation between the vulnerable and the securely

controllable DN components. The computational approach for solving bilevel formula-

tion under linear power �ows can be, in principle, extended to a convex (second-order

cone) relaxation of nonlinear power �ows. We showed the applications of this approach

in terms of optimal resource allocation [110] and security investments into the DN [109].

Finally, the framework may be suitable for resiliency assessment of other smart infras-

tructure networks.

In Chapter 7, we considered the problem of proactive planning and network restora-

tion for improved DN resilience due to weather-induced correlated reliability failures. Our

contributions include: (a) Two-stage stochastic optimization formulation for DER place-

ment in DNs under uncertainty in component failure locations, (b) a model of post-storm

microgrid operation with DERs, and (c) nonhomogeneous Poisson process (NHPP) model

to predict spatially-varying likelihood of line failures. We developed and a solution ap-

proach based on an extension of Benders decomposition algorithm.
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8.2 Recommendations for building resilient grids

To build resilient grids, several measures need to be taken in both cyber and physical as-

pects of power system operations in proactive and reactive manner. First, we consider

the cybersecurity of critical components, which involve the processes that run the con-

trol algorithms, the transmission and distribution substations, and the individual network

components. As the NERC guidelines [94] suggest, proper reperimeterization of the sub-

stations is essential to prevent any cyberattacks on the controllers within the substations.

This involves implementing standard security measures such as role-based access sys-

tems, dual factor authentication, increased personnel awareness [98]. Additionally, in-

trusion detection mechanisms need to be implemented, which will monitor abnormalities

in the communication tra�c as well as sensor data. Hardware-based protection mech-

anisms that can isolate critical control parameters are also desirable. Other measures

include algorithmic redundancy, controller-command veri�cation, and intrusion-tolerant

replication.

Secondly, the critical nodes in the networks, for e.g. the transmission and distribution

substations, need to be hardened. These facilities not only transmit huge amount of power,

but also consist of substation automation systems that are critical for proper network con-

trol. These facilities can be physically protected by security personnel or fencing coupled

with video surveillance capabilities. Additionally, proper precautions need to be taken for

protection against extreme weather conditions such as heat wave, �ooding, hurricanes,

etc. Similar precautionary measures need to be taken to safeguard the critical lines of the

networks.

Thirdly, diversi�cation among resources is desirable so that the grids do not have any

single point of failure. For example, if a DN is operated by centralized control, then the

distribution management system is a single point-of-failure. However, if the devices are

able to operate in a decentralized manner, as shown in Chapter 3, then the resilience of

DN will be higher without requiring huge communication requirements for centralized

coordination.

Finally, strategic allocation of resources in anticipation of adverse events should be
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routinely carried out. Typically, there is some forecasting of the adverse weather events.

Proper tools need to be developed that can take into account the weather forecast data,

and assess the vulnerable components as well as the parts of the network that will be most

impacted by the weather-induced disruptions. Consequently, the most vulnerable parts of

the network should have proper allocation of resources of both portable DERs and repair

equipment.

8.3 Future work

Now, we describe what aspects of our work on resilience of electricity networks can be

improved upon.

We hope that our work in Chapter 6 can help early adoption and long-term deploy-

ment of resilient smart grid technologies, thus ensuring that communities can minimize

the overwhelming impact of cyberphysical failures and quickly recover from it. Ensuring

synergistic interactions between community microgrids involve several technical chal-

lenges. Some speci�c problems of immediate interest include: (i) modeling of multi-

microgrid operations across DNs, (ii) distributed control of individual and inter-connected

microgrids, (iii) optimal sensor placement based on microgrid communication protocols,

control structures and budgetary restrictions.

In Chapter 7, we would like to improve upon the computational aspects of our solution

approach. As stated in Sec. 7.2, the sample
p𝒮 used for SAA may not approximate the

probability distribution 𝒫 well. To obtain a more appropriate
p𝒮 that is representative of

𝒫 , we will use a scenario reduction method such as the forward selection or backward

reduction algorithm [48]. The quality of solutions can be evaluated by calculation of the

optimality gap [73]. To decrease computation time, we plan to consider greedy heuristics

to solve the multi-step Stage II decision problem. Speci�cally, we select a small number

of nodes based on their criticality. A node has high criticality if restoration of its load

has high bene�t on other intermediate nodes. The relative weights of the selected nodes

are based on their criticality. Running the SAA method on the (minimum spanning tree)

subnetwork induced by this smaller set of nodes can lead to a computational speed-up

that allows us to feasibly test the model on larger test feeders.
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Finally, the solution approaches developed in this thesis are likely applicable to the

resilience assessment of other infrastructure networks, e.g. rail transportation, water dis-

tribution, etc. We would like to identify the structural properties of these infrastructure

networks that will help enable fast solution algorithms.
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