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Abstract

Infrastructure networks such as natural gas pipelines and water systems are prone to fail-
ures from natural disasters, which result in huge societal and economic losses. To minimize
these losses, inspection crews must rapidly identify failures (e.g., pipeline bursts, waterway
blockages). However, infrastructure agencies often incur high costs and delays due to lim-
ited resources and diagnostic uncertainty about locations and types of failures. This thesis
presents an analytics-driven network inspection approach that leverages data from fixed sen-
sors and Unmanned Aerial Systems (UAS) to reduce diagnostic uncertainty, and determines
optimal routing strategies for both ground crews and UAS.

In our approach, the network is partitioned into smaller regions (subnetworks) based on
the monitoring range of fixed sensors. We use sensor data and relevant physical features
to assign priority inspection levels and predict failure rates for these subnetworks. We
then leverage UAS to localize failures and incrementally update failure rates. The overall
inspection is based on two routing problems: the Aerial Sensor Inspection Problem (ASIP),
which guides UAS-based inspection of subnetworks; and the Prioritized Inspection Routing
Problem (PIRP), which integrates pre-solved ASIP times and failure rates to determine crew
routing strategies.

For pipeline network inspection, we consider a set of monitoring locations that enable
modeling of UAS platform and infrastructure topology constraints, and determine feasibility
of UAS routes. To solve the ASIP for realistic situations, we propose an efficient set-cover-
based heuristic. We show how to obtain crew routing strategies for large-scale network
inspection by integrating ASIP solutions into the PIRP, and solving the resulting Mixed
Integer Programming (MIP) problem.

For drainage network inspection, we find that post-storm fixed sensor alerts are strongly
correlated to the extent of damage in corresponding subnetworks. We present two formula-
tions of PIRP: an adaptive stochastic dynamic program that considers prediction intervals
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of failure rates; and a non-adaptive certainty equivalent MIP that only accounts for mean
failure rates. Solutions to these problems allow us to evaluate the value of integrating sensor
data into inspection operations. We demonstrate the benefits of our approach using real
data on network failures and inspections following Hurricane Harvey in 2017.

Thesis Supervisor: Saurabh Amin
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In recent years, the frequency and severity of natural and man-made disasters have increased,

resulting in significant societal and economic losses. In the U.S., the 2017 hurricane season

was the costliest on record, totaling $306.2 billion in damages [61]. The 2018 season was

not far behind at $91 billion, the fourth highest in recent years [61]. Moreover, the 2018

wildfires in California destroyed nearly 14,000 homes and causing 85 deaths, the most in

over a century [52]. Furthermore, a 2018 cyber-attack on government systems in Atlanta

impacted over 6 million people by disabling basic municipal functions, costing the city nearly

$10 million [22, 59].

These occurrences reveal the particularly vulnerable state of critical infrastructure net-

works such as electric, transportation, gas, and water, to disaster-induced failures. For ex-

ample, vital corridors of a transportation network can be disconnected by debris or damage

from a hurricane, impeding emergency response and rescue efforts. For oil pipeline networks,

the recent "Protecting our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act of

2016" indicates the level of increasing legislation and regulatory pressure by the government

for added protection from failures [63]. For open-channel drainage networks, debris block-

ages can lead to adverse consequences such as levee structural failures, limited access to clean

drinking water, or prolonged flood risks.
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In promoting disaster mitigation and coordination of response efforts, the Federal Emer-

gency Management Agency (FEMA) prescribes four phases: mitigation, preparedness, re-

sponse, and recovery. Of these, the recovery phase often incurs the highest costs for the

aforementioned network agencies. In fact, FEMA's public assistance funding program, which

helps states to clear debris and rebuild infrastructure, had eight of its most expensive years

in the last decade [65]. To reduce recovery costs for a network agency, inspections are an

important part of the response phase, constituting a critical bottleneck for efficient recovery

as shown in Figure 1-1. Inspection operations can lead to significant indirect cost savings

in the recovery phase through earlier failure identification that can refine assessment of the

"scope, extent, and impact of the event" [301. Furthermore, timely and accurate intelligence

can impact the upstream preparedness phase, by deferring the need for agencies to achieve

accuracy in forecasts and risk assessments [70].

Mitigation Preparedness Response Recovery

Inspection

Operations

Opportunities

Available Datal

L- Mobile Sensors

Figure 1-1: Four phases of disaster management and our focus on inspection operations
during the response phase

Additionally, network agencies can achieve direct, sustainable cost savings by streamlin-

ing the inspection process itself. Current inspection operations lack a systematic process to

assign priority levels to inspect various subregions of a large-scale network, given diagnostic

uncertainty about the location and type of failures. This is a key omission, given the limited

inspection resources and strict time constraints to inspect an extensive infrastructure net-

work. Managers typically rely on experience or a priori fixed inspection schedules to dictate

where to send inspection crews. The potential of leveraging available data that reflects the

susceptibility of certain regions of the network to failures has not been fully realized. More-
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over, gaining access to the infrastructure in a post-storm environment is often challenging

due to poor weather, obstructions, and wet terrain that impede travel for inspection crews.

This thesis proposes an analytics-driven approach that leverages data from fixed sensors and

Unmanned Aerial Systems (UAS) to reduce diagnostic uncertainty, and determines optimal

routing strategies for both ground crews and UAS for efficient inspection. We address the

accessibility challenge with the integration of aerial sensors such as unmanned aerial sensors

(UAS) for timely and comprehensive failure identification.

1.1 Post-Disaster Infrastructure Damage Assessment

To facilitate timely identification of failures, network agencies rely on fixed sensors to assist in

localizing them; however, the need for precise isolation and confirmation of actual failure still

exists. For example, using a Supervisory Control and Data Acquisition (SCADA), natural

gas pipeline networks can detect disruptions due to leaks using fixed sensors such as pressure

sensors, flow sensors, or acoustic sensors. Likewise, drainage networks use flood sensors to

measure water elevation levels in the event of a storm. Based on the detection of anomalies

or pre-determined threshold measures, these sensors can send alerts to the SCADA system.

However, technological limitations and budget constraints often limit the network agency's

ability to monitor every critical network component with a fixed sensor. In this thesis, we

consider that the situational awareness from fixed sensor alerts cannot be narrowed beyond

a certain spatial zone, which we call a subnetwork.

Typical inspection methods by infrastructure network agencies responding to disaster

events are resource-intensive, including both aerial patrols and ground-based inspection

crews. Aerial patrols use fixed wing or helicopter assets in order to gain a broad under-

standing of the damage and determine accessibility. After aerial reconnaissance is completed,

inspection crews travel by vehicle from their service station to regions requiring closer inspec-

tion. Once at the region, the crew disembarks to conduct inspection, maneuvering through

the infrastructure network by foot. Throughout the inspection, the crew gathers data in
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the form of photographs, measurements, and geographic coordinates of failures. Once the

inspection is complete, the crew can visit another region or return to their service station,

depending on the time remaining.

% of Total Cost and Total Failures Found

1.00 - 1.00

0.75 .0.75

0.50 -0.500

0

0.25 0.25

0.00 0.00

Dates of Inspection

Figure 1-2: Drainage Network Cumulative Cost and Number of Failures Found by Day.

Unfortunately, ground-based inspections to isolate and confirm the failures are inefficient

and costly. Early identification of failures with higher repair costs can provide the most cost

savings due to the rising costs and risks of deferred maintenance. For example, concrete panel

damages in an open-channel drainage network can cost up to $400K and lead to reduction

of flow or complete blockage if not addressed immediately. Following a major storm event

in 2017, one open-channel drainage network agency spent over $1 million and more than a

month to inspect their 2,500-mile infrastructure. The subsequent removal of debris during

the recovery phase cost approximately $6 million. In Figure 1-2, we show the cumulative

number of failures as well as the cumulative value of failures with repair costs higher than

$10K (based on the median repair cost from inspection data) during post-Harvey inspections

that lasted from late August 2017 to October 2017. Although the majority of failures were

properly identified early in the inspection timeline, the failures with higher repair costs were
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not, with most not found until over a week after inspections began.

1.2 Inspection Crew Routing

1.2.1 Key Challenges

There are two main challenges faced by the network agency in current inspection processes.

First, access to the infrastructure in a post-disaster environment is challenging. Ground-

based crews require adequately favorable weather and terrain conditions to enable access to

the network. However, damages inflicted by the disaster event can often impede the ability

of inspection crews to isolate failures. Flooded roads, debris obstructions, or wet conditions

along the infrastructure can delay or completely obstruct travel for ground-based crews as

shown in Figure 1-3. For example, after the 2015 Exxon Mobil oil spill, inspectors sent out

to the affected area at 11:30 a.m. could not identify the actual leak until 3 p.m., after some

oil had already reached the Pacific [43].

(a) Flooded Roads

Figure 1-3: Limited Access for Inspection Crews
Ike in Texas [11

(b) Damaged Roads

Following Hurricane Harvey and Hurricane

A second challenge for a network agency is to identify regions more susceptible to failures

using available data. Network agencies currently acquire information through pre-installed,

fixed sensors deployed across the network. However, using these fixed sensors to assign

priority levels for inspection has not been fully explored. Furthermore, in order for network

21
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agencies to fully adopt the use of analytics and optimization-driven inspection strategies, they

require proof of quantifiable and tangible benefits. Until this proof of concept is presented,

current inspection processes will continue to rely largely on experience and limited data.

Until recently, the lack of disaster scenario data hampered efforts to provide such a proof of

concept. For example, during Tropical Storm Allison in 2001, one drainage network agency

captured failure information by hand, and only started maintaining a historical database with

Hurricane Ike in 2008. In the past, the lack of standard operating procedures resulted in

often subjective reporting and inconsistent data. Although the quality of data has improved

in recent years, network agencies still require quantifiable benefits that demonstrate the full

potential of integrating available data.

1.2.2 Opportunities

Given the recent emergence of advanced sensors, data-driven approaches have received much

attention in transportation research. In this thesis, we focus on integrating data from fixed

and aerial sensors into routing problems.

First, we use a fixed sensor network to refine the search area to certain subsets of the

network to enable informed, prioritized inspection. For a drainage network, we integrate

data from fixed sensors, along with other geomorphological features, to develop a prediction

model of failures. Despite the rapid rise in data and the opportunities for improvement

through greater efficiency and responsiveness, smart data application for disaster planning

and management is still being figured out. More importantly, the potential of leveraging

available data to assist in focused inspections in a large-scale infrastructure network has

not been fully realized. For example, only recently firefighters leveraged thermal images in

wildfires to see through dense smoke and pinpoint hotspots and inform evacuation routes [58].

In the event of a hurricane, emergency responders are starting to use local data analytics to

identify the location of vulnerable populations, such as the elderly, in order to inform routing

strategies [741. For instrastructure network inspection, this creates a unique opportunity to

explore how to use measurement data from available fixed sensors (e.g., pressure sensors,
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flood sensors). For example, Figure 1-4 shows open source flood sensor measurement data,

available from a flood control agency website [38].

(a) Flood Sensors (b) Flood Sensor Measurements

Figure 1-4: Open Source Flood Sensor Measurement Data

Second, we integrate UAS to improve accessibility and to identify failures at a fraction

of the time required for ground-based inspection crews. For a multi-day inspection, aerial

sensors can also provide updates in the form of identified failures; this information is used to

revise failure rate beliefs in a subnetwork for subsequent inspection crew routing decisions.

Our assertion is that UAS-based inspection can contribute to significant time and cost re-

ductions in post-disaster inspection operations. This is based in part to personal experience

as a senior U.S. Army officer leading a team of UAS operators. Originally used for the

military, UAS served primarily as Intelligence, Surveillance, and Reconnaissance (ISR) plat-

forms to assess friendly, neutral or adversarial forces. Recent technological advances in UAS

have improved its feasibility for many civilian application domains, including remote sensing,

humanitarian response, search-and-rescue, product delivery, security and surveillance, and

civil infrastructure inspection. The primary benefits of UAS in military applications (i.e.,

safety, real-time visual access, ability to reach inaccessible regions), are directly transferable

to post-disaster infrastructure inspection operations. UAS also permit lower altitude flights

to overcome visibility challenges from overhanging vegetation or tree canopies at higher al-

titudes. The key beneficiaries in this domain are FEMA, US Army Corps of Engineers

(USACE), and the infrastructure network agency. While the cost of operating helicopters

is estimated to be anywhere from $1,000 to $2,000 per hour, UAS can provide comparable

or improved services at $200 to $300 per hour, while also reducing the safety risks to the
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inspection crew [531. UAS can also identify failures in a fraction of the time required for

conventional inspection. The total difference in person-hours between conventional inspec-

tions (air or ground) compared to UAS inspections implies significant resource cost savings

as shown in Table 1.1.

Table 1.1: Comparison of Conventional and UAS Person-Hours of Labor

Required Bridge Inspection [62] Census Survey Task [141 Powerline [21]
Aircraft UAS Ground UAS Ground UAS

#Workers 7 3 12 2 4 6
Avg Hours 3.5 5.4 4 1.5 40 3
Person-Hrs 24.5 17.3 26 3 160 18

Most importantly, integrating UAS for infrastructure inspection must account for several

regulatory and operational factors. The current regulatory environment permits the use of

low-cost UAS for disaster response, as evidenced by the recent authorizations granted by

the Federal Aviation Administration (FAA) for infrastructure inspections following a recent

hurricane [79, 60]. In this thesis, we address several operational considerations such as the

design of UAS inspection routes and UAS deployment using ground-based vehicles. We also

address regulatory factors such as operating restrictions, infrastructure network stand-off

distance, and airspace restrictions.

A point of emphasis is that these two sensors (fixed and aerial) serve two different and

distinct roles. Fixed sensors directly provide alerts based on the measured state to refine

search regions and if' applicable, determine an initial estimate of failures. The role of the

UAS is to provide detailed imagery data to identify the location of individual failures.

1.3 Problem Statement and Research Objectives

Motivated by these opportunities, the problem we seek to address is the following: How to

leverage data from sensors, both fixed and mobile, in the design of crew routing strategies to

improve the inspection process, subject to sensor, network, and vehicle constraints?

We are interested in formulating the problem of routing inspection crews to various sub-
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networks and exploring these with UAS to isolate failures. We formulate the inspection

crew routing problem as two distinct routing problems: the Aerial Sensor Inspection Prob-

lem (ASIP) to determine optimal subnetwork inspection routes using aerial sensors, and the

Prioritized Inspection Routing Problem (PIRP) to govern the routing of crews to the subnet-

works over one or more days. Our overall approach (and our modeling focus) is illustrated

in Figure 1-5.

Our Focus

Sensor Sub- Routing of UASand

Alerts Networks Inspection Failure Recovery
Crews Isolation

(PIRP) (ASIP)

Figure 1-5: Process Flow for UAS-enabled infrastructure inspection

The ASIP can be summarized as follows: Given a subnetwork and a number of homo-

geneous UAS, determine the optimal routing strategy for each UAS, where the objective is

to minimize the maximum amount of time to explore the subnetwork, over all UAS. Each

UAS starts and ends its route at a temporary base location within the subnetwork. We

consider two use cases that govern the formulation of the ASIP: First, we use the concept of

a monitoring location, from which the UAS can observe a subset of the network components.

Second, we consider a more restricted case where the UAS must traverse every edge of the

subnetwork.

The PIRP considers the following: Given a set of service stations and a number of

inspection crews and subnetworks, determine the optimal route for each inspection crew,

where the objective is to minimize the maximum amount of time elapsed needed to isolate

the failures, among all subnetworks. Each crew starts and ends its route at its respective

service station. In calculating the total time elapsed, we include the optimal UAS inspection

time for each subnetwork, obtained from the ASIP solution. We also consider two use cases

that govern the formulation of the PIRP: First, we consider a single day inspection where

only a few subnetworks need to be inspected. Second, we consider a multi-day inspection to

complete a network-wide inspection, where we use data inputs from fixed and aerial sensors

25



to prioritize crew routes.

The goals of this thesis are as follows:

1) To design an end-to-end operational approach that integrates UAS and analytics to

address the challenges in post-disaster infrastructure network inspections. Our approach

accounts for the operating environment as well as vehicle, network, and time constraints.

2) To develop a computationally efficient approach to solve the ASIP. The ASIP formu-

lation accounts for infrastructure inspection requirements, network topology, UAS platform

constraints, and sensing requirements.

3) To formulate and solve the PIRP. This formulation combines data-driven methods to

enable a prioritized routing strategy to identify failures over one or several days in a timely

manner.

4) Determine how diagnostic information from fixed sensors can be used to determine

priority regions for inspection, and to predict failures at the beginning of inspection opera-

tions.

5) Determine how realized failure data from aerial sensors can be integrated on a daily

basis to reduce the diagnostic uncertainty of failure estimates.

1.4 Related Work

Our work is primarily related to two streams of literature: post-disaster response and vehicle

routing problems.

In post-disaster response, our work is first related to the extensive literature regarding

post-disaster statistical models. While most articles focus on the prediction model itself

[37, 571, our work is concerned with the integration of the prediction model into a routing

problem. In this manner, our work is relevant to the Learning Enabled Optimization (LEO)
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framework suggested by [69], which is a general framework that involves a continuous cycle

of data analysis, optimization, and validation. Although a cyclical approach is not possible

in our setting due to the lack of longitudinal data, we incorporate a 95% prediction interval

in order to forecast possible failure rates in the PIRP in a drainage network. A considerable

amount of research effort has been dedicated to obtaining reliable prediction intervals to

use for applications such as sales or demand forecasting [32, 42, 6]. We propose using fixed

sensor data along with other geomorphological features to narrow the prediction intervals

for each subnetwork.

The resilience and restoration of critical infrastructure networks in the aftermath of large-

scale disaster events has attracted a high level of interest in the Operations Research and

Management Science fields. Of the 4 phases shown in Figure 1-1, there already exists a

large body of work on the preparedness phase (e.g., resource allocation), response phase

(e.g., search-and-rescue) and recovery phase (e.g., debris clearance) related to Humanitarian

Assistance and Disaster Response [4], supply chain networks [71, 261, electrical power systems

[81], and transportation infrastructure [27]. In particular, the timely removal of debris to

facilitate emergency relief services following large-scale disasters has been a key focus of

study in recent years [23, 13, 3]. Table 1.2 summarizes the different domains covered and the

approaches used. However, little emphasis has been placed on inspection operations [4, 20]

or on quantitative decision-making models that help to bridge the gap between theory and

practice [88]. This thesis fills a crucial knowledge gap by showing the results of an analytics-

driven computational approach, thereby demonstrating the practical impacts of efficient

inspection crew routing strategies. Our work can also be used to provide a higher level

of precision for repair times in the final recovery phase, which some papers assume to be

stochastic [13].

Survey papers for post-disaster response emphasize the need for stochastic models that

explicitly account for information realized over time. Most existing work that does consider

stochastic elements employs a two-stage stochastic programming approach [64, 5]. The ap-

proach we use to model the realization of failure rates over time is similar to [13] where

uncertain debris amounts are realized during clearance activities. By contrast, since our
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Table 1.2: Domains of Study in Post-Disaster Response

Domain Paper Approach

Power Systems Guikema et al. [371 Statistical Regression Models
Nateghi et al. [57]

Resource Allocation Angalakudati et al. [5J 2-Stage Stochastic Programming
Supply Chain Tomlin, B. [75] Discrete Time Markov Process

Simchi-Levi et al. [70] Linear Programming
Qi et al. [67] Continuous Time Markov Process

Debris Removal Celik et al. [13] Partially Observable Markov Deci-
sion Process

Maya Duque et al. [23] Dynamic Programming and Meta-
heuristic

Transportation Peeta et al. 1641 2-Stage Stochastic Programming

problem is sequential with updated estimates of failure rates following inspections, we for-

mulate and solve a stochastic dynamic program as opposed to a partially observable Markov

decision process model. In addition, while negligible transportation times are relevant for

debris clearance problems [7, 13, 12], our inspection approach requires the inclusion of travel

times and routing decisions of the inspection crew, along with the inspection times of aerial

sensors.

Our formulations for the routing of aerial sensors and inspection crews are variants of

classical Vehicle Routing Problem (VRP) formulations. The VRP seeks to find the optimal

set of routes for a fleet of vehicles to serve a set of customers [19]. For the use case considering

monitoring locations, the ASIP is closely related to the Multi-Trip Vehicle Routing Problem

(MTVRP) [72]. Our formulation shares some features of the Green Vehicle Routing Problem

(G-VRP) posed by Erdogan et al. [25]. The G-VRP seeks to minimize the total distance

traveled by a number of alternative fuel vehicles while visiting a set of important locations

that include fueling stations when required. However, in the ASIP, we need to account for the

UAS platform and infrastructure monitoring constraints, e.g., climb/descent rates, operating

restrictions, and required image resolution. For the use case considering travel along the edges

of the subnetwork, the ASIP is most similar to the min max k-Chinese Postman Problem

(min max k-CPP) also known as the min max k-Route Inspection Problem described in [24]

and [2].
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The formulation for the PIRP is closely related to the Multiple Depot Vehicle Routing

Problem (MDVRP) [47] and the Team Orienteering Problem (TOP) [35] for a given day of

inspection with a limited time budget. What differentiates our work is our offline solution

approach to obtain optimal ASIP inspection times, which are used as an input to the PIRP.

For the use case where the PIRP is solved over multiple days, accounting for the uncertainty

of failure rates, the PIRP is similar to the Dynamic Multi-Period Vehicle Routing Problem

(DMPVRP) [85]. The MIP version of the PIRP is considered static in the sense that actual

failure rates are revealed over time but routing decisions are made at the beginning of each

day. The stochastic dynamic program is related to the Stochastic Vehicle Routing Problem

(SVRP) [33, 91 but instead of stochastic demands or travel times, we consider stochasticity

in failure rates.

1.5 Thesis Contributions and Outline

The contributions of this thesis include the following:

1) We propose a detailed end-to-end operational approach which captures the specific

features of UAS technology (operating range, airspace restrictions, cruise speed) as well as the

constraints associated with infrastructure inspections (stand-off distance, image resolution

for failure isolation, and network topology constraints).

2) By deriving a number of theoretical worst-case results, we quantify the time-savings

of our approach over ground-based inspections. We find that the magnitude of time-savings

depends on the trade-offs that exist between what we call the intra-subnetwork travel time

(i.e., within the subnetworks) and the inter-subnetwork travel time (i.e., to and from the

subnetworks).

3) We develop a computationally efficient heuristic to solve the ASIP when considering

monitoring locations. Solving the ASIP can pose a computational bottleneck if we consider

a large number of monitoring locations for a subnetwork. We develop a scalable heuristic
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approach that exploits the covering properties of monitoring locations; in particular, the

number of components that can be observed from each location. Our heuristic is based on

the solution of a weighted minimum set cover problem. We show that our heuristic can solve

a 5-subnetwork scenario within an acceptable time frame for real-world implementation (4.15

seconds). Our heuristic achieves an overall average optimality gap of 0.78% when solving

the ASIP for 10 different subnetworks of varying size.

4) Using Monte Carlo simulation, we demonstrate the performance of our deterministic

ASIP in situations when UAS cruise speeds are stochastic. The stochasticity of cruise speed

(and other factors such as airspace restrictions, obstacles, and visibility) can significantly

impact the times to explore and inspect the subnetworks. We find that accounting for

stochasticity in travel times can significantly increase the overall UAS optimal exploration

time and potentially lead to unobserved network components. This points to the importance

of choosing the proper UAS platform and conservative route planning to avoid costly setbacks

from unidentified failures.

5) We develop quantitative decision-making models that help to bridge the gap between

theory and practice. To enable scalable solutions, we present an approach where the ASIP

is pre-solved offline for a finite number of possible inspection sequences and used as an input

to the PIRP. We formulate two solution approaches for the PIRP. The first is a stochastic

dynamic programming approach, which provides an adaptive policy that leverages the failure

rate interval of each subnetwork; the second is a certainty-equivalent MIP, which computes

a non-adaptive policy that only considers expected failure rates. Both approaches consider

updated failure rate estimates at the end of each day based on actual inspection results by

the UAS.

6) To determine the value of the integrating data from both types of sensors (fixed and

aerial), we show that three quantitative metrics validate the benefits of our approach over

the current status quo. Using data from Hurricane Harvey in 2017, we focus on the following

metrics: first, the time required to complete inspection of the entire network; second, the

cumulative number of failures identified over time; and third, the cumulative value of high-
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cost failures identified over time. Since the UAS inspection time accounts for the majority

of the time savings with improved speed and accessibility, the first metric serves as a value

proposition for the integration of UAS. We show that the integration of UAS leads to a

conservative 67% reduction in overall inspection time (from 27 days to 9 days), which can

result in cost savings of $360,000 just from personnel expenses alone. The second and third

metrics demonstrate the improved rate of failure identification compared to the status quo.

For drainage networks, we show that a practical partitioning approach can provide failure

identification rates comparable to the results of a stochastic dynamic programming approach.

Our proposed approach is not problem-specific and and can be applied to a wide range

of situations that include an array of sensors that detect problems within a region and then

use mobile sensors to identify exact locations of failures. One example is earthquake disaster

response, where a set of diagnostic seismic sensors can assist in identifying subnetworks for

damage inspection for critical infrastructure networks (e.g., gas pipelines). Other applica-

tions include treating social media posts or customer calls as sensors for local government

agencies to monitor events such as wildfires or accidents. In each of these applications, the

procedure in determining the subnetworks using fixed sensors will vary based on the infras-

tructure and type of data available. Additionally, the formulation of the ASIP and PIRP

may differ based on factors such as the network, operating range, airspace restrictions, image

resolution required, and network topology (51].

We structure this thesis in the following manner.

In Chapter 2, we introduce the operational requirements and specific features of the in-

frastructure network, fixed sensors, inspection crews, and UAS platform. We propose the

monitoring location concept. The spatial positioning of these monitoring locations depends

on various factors such as the UAS operating range, airspace restrictions, infrastructure

stand-off distance, required image resolution for failure isolation, and infrastructure net-

work topology. These factors motivate key assumptions in our UAS-enabled infrastructure

inspection approach.

In Chapter 3, we first derive theoretical worst-case bounds in order to quantify the
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maximum time savings that could be achieved using a UAS-enabled inspection approach.

We formulate Mixed Integer Programming (MIP) optimization models to compute the ASIP

and PIRP for a single day. To address the computational challenge in solving the ASIP,

we develop a scalable heuristic approach based on the weighted minimum set cover. We

instantiate our approach on a benchmark pipeline network.

In Chapter 4, we present a priority-based routing approach using predictions of failure

rates within subnetworks. This entails incorporating uncertainties in the distribution of

failure events into a refined multi-day version of the ASIP and PIRP. We present our results

for a stochastic dynamic programming solution and a certainty equivalent MIP formulation,

using data from a drainage network inspection in the aftermath of a hurricane. We propose

three quantitative metrics to evaluate the benefits of our proposed approach: the total time

required to complete inspection, the rate of failures identified over time, and the rate of

high-cost failures identified over time.

Chapter 5 presents a summary of our results and provides recommendations for future

work.
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Chapter 2

Infrastructure Network Inspection

This chapter presents the key requirements and constraints for UAS-enabled infrastructure

inspection. In Section 2.1, we start with a description of how to use fixed sensors to partition

the network into subnetworks, containing the components that are likely to have experienced

failure. In Section 2.2, we describe the generic requirements to route inspection crews,

equipped with UAS, to these subnetworks. We discuss characteristics of UAS in 2.3 and

address several regulatory and operational factors to consider in Section 2.4. Finally, we

present our UAS-enabled infrastructure inspection approach in Section 2.5.

Recall that fixed and aerial sensors serve two different roles. The role of fixed sensors is

to provide alerts based on the measured state to refine search regions. The limitation of fixed

sensors is that it only offers a coarse idea of the actual failure location, requiring a higher

level of detailed inspection. This role is satisfied by the aerial sensor, which can provide

detailed imagery data to identify individual failures. We further discuss each of these two

types of sensors in the following sections.
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2.1 Fixed Sensor-Based Subnetworks

Consider an infrastructure network that is composed of a set of nodes and edges denoted as

(AF, E), representing the intersections and the set of components, respectively. The network

components are prone to failure events that can be random (e.g., pipe bursts) or correlated

(e.g., earthquake induced failures).

The infrastructure network is monitored by an agency using a Supervisory Control and

Data Acquisition (SCADA) system, which routinely collects data from remote fixed sensors

that are pre-installed at certain network locations. When a failure event occurs, a sensor

is capable of detecting the resulting fluctuations in its measured state (e.g., local pressure,

elevation level, or flow). The sensors are capable of sending alerts to the SCADA system

(either directly or using hop-to-hop communication). For cases when the fluctuations are

not directly detectable by a fixed sensor, we consider that the agency can be still alerted

by some other means, e.g., customer calls or social media data. Thus, for our purpose,

any information that helps the agency to identify the area in which one or more failure

events are likely to have occurred, counts as a sensor alert. Note that the number of sensors

is often limited, thus the sensor alerts cannot be used to perfectly isolate the individual

failures in large-scale networks. Furthermore, the sensors' capability to detect fluctuations

is constrained by their detection range. Therefore, in most failure situations, the agency can

only map each failure event to a certain spatial zone, which we call a subnetwork 1681. The

subnetworks are dependent on the type of infrastructure and type of fixed sensor. We focus

on two instantiations of subnetworks, corresponding to a pipeline and drainage network.

Pipeline Subnetworks. For a pipeline network, when a failure of a network component

occurs, a pressure wave spreads through the network and alters the steady state pressure

distribution. A failure event can be detected by monitoring the pressure before the signal

dissipates, i.e., within the detection range. For example, we can assume that each sensor

provides a binary output, i.e., 1 if it detects the failure event, 0 otherwise. If we assume

that each network component failure can be detected by at least one fixed sensor, we can

deduce the set of network components monitored from each sensor location based on the
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shortest distance j31j. This set of components corresponding to a sensor alert make up a

high-priority subnetwork. Figure 2-1 illustrates a network with a set of 64 fixed sensors and

5 high-priority subnetworks.

(a) Network with fixed sensors (circles) and (b) 5 high-priority subnetworks arising from

2 service stations (triangles) fixed sensor alerts

Figure 2-1: Illustration of a fixed sensor network and subnetworks in a pipeline infrastructure

network

Drainage Subnetworks. To assist in its role of inspection and maintenance, the drainage

network agency installs flood sensors at certain locations along the drainage network to

monitor water elevation levels (in feet). These sensors routinely transmit elevation data to

the service station for daily monitoring by the agency. When the elevation level exceeds

a certain pre-determined threshold, designated as the Top of the Bank (TOB), the agency

issues flood alerts in the vicinity of the flood sensor. Flood sensor elevation data is publicly

available [39]. We associate a set of network components upstream of each flood sensor as a

subnetwork. We connect one subnetwork per flood sensor for two reasons: first, we want to

exploit the value to be gained from each carefully calibrated flood sensor, and second, the

flood sensors are generally distributed across the drainage network in a uniform manner as

shown in Figure 2-2a. For our purpose, a subnetwork is a connected subtree, where each

edge of the subtree lies along the shortest path to the nearest downstream flood sensor. We

use the common Depth-First-Search (DFS) algorithm to determine these shortest paths. We

denote the total number of flood sensors as K and therefore let 71,..., TK g E denote the

K subnetworks associated with each flood sensor. Using this approach, we achieve a perfect

partitioning of the network. If a flood alert occurs (i.e., the water elevation exceeds the TOB
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during a time period of interest), we classify the corresponding subnetwork as high-priority.

Otherwise, the subnetwork is classified as low-priority. We denote a high- and low-priority

subnetwork as Th and T, respectively. Using the elevations recorded during the period of

Hurricane Harvey (August 26, 2017 to September 1, 2017), we partition the network into

the high- and low-priority subnetworks as shown in Figure 2-2b.

Acces poit

(a) Flood Sensors (b) Subnetworks

Figure 2-2: Flood sensors are depicted on the left and high-priority subnetworks are shown
in red on the right. We highlight one example subnetwork.

For both types of networks, we assume that the alerts from fixed sensors correspond to

a collection of high-priority subnetworks, where each subnetwork is comprised of network

components that are likely to have undergone (or are prone to) failure. In our approach,

the exact number and location of failures in each high-priority subnetwork is unknown, and

therefore, isolating these failures requires additional inspection.

Motivated by practical considerations [46], we assume that the agency collects the sensor

alerts for a predetermined time interval. Suppose time 0 denotes the time when the disaster

event strikes, and time to represents the first day of favorable weather and channel conditions

to enable access to the infrastructure network. Based on the alerts received during [0, to], let

'T1,..., TK C S denote the K subnetworks that need to be further inspected by UAS. The

agency assigns the available inspection crews to the the K subnetworks at time to. Therefore,

at the start of the inspection process, each subnetwork is assigned to a service station.
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2.2 Inspection Crews

Currently, network agencies do not use the notion of subnetworks, specified by sensor outputs

as described previously. Instead, agencies assign general regions to inspect at the start of

each day based primarily on experience, geographic proximity, contiguity of the network,

and accessibility. These regions are assigned to a set of inspection crews originating from

one or more service stations. Furthermore, infrastructure network agencies have only started

to experiment using aerial sensors such as UAS in a limited role, such as providing images

for construction projects. In our approach, we assume that inspection crews each carry a

number of UAS that will allow timely inspection of the subnetworks. We let U denote the

total number of UAS with each inspection crew.

Let Y denote the set of service stations. Due to excessive setup costs, we will consider

a small number of immutable service stations. For every service station s E Y, we denote

n, the number of inspection crews that are available at station s. Each inspection crew,

starting from a service station, can visit one or more subnetworks prior to returning to the

same station. To visit a subnetwork Tk, k E [1, KJ, a crew needs to first set up a temporary

base, which we denote as bk. In practice, bk can be chosen as the centroid of 7k, or access

points, which are authorized entry points from a road to inspect network components. Let

B := {bk, k c [1, K]} denote the set of all temporary bases. Setting up a temporary base

involves unpacking the UAS and performing pre-flight checks. We also assume that the

inspection crew remains stationary at the temporary base until retrieval of the UAS and can

observe the live video feed of the UAS to identify failures. The crew completes a visit to the

subnetwork upon retrieval of the UAS.

For the purpose of crew route planning, the pairwise travel time between service stations

and temporary bases can be assembled into a travel time matrix which we denote I'. This

consists of inspection crew travel times between every pair of locations (k, 1) in the set YUB.

We let 'Yk denote the time needed by an inspection crew to travel from k to 1. One can

obtain -Ykl by determining the shortest path between k and 1 in the transportation network

and dividing by the empirical average vehicle speed. The temporary base set up time can
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also be included in 'T.i* For convenience, we assume that the time to refuel a crew vehicle is

negligible.

We define an inspection crew tour as a sequence of visits to a subset of B, that starts and

ends its tour at the same service station s E Y. Note that we do not allow a inspection crew

to return to another service station due to accountability and unbalanced workload issues

that might arise. Figure 2-3 illustrates 3 inspection crew tours to 5 different temporary bases

corresponding to the subnetworks from Figure 2-1b.

Figure 2-3: Illustration of inspection crew tours. Starting from a service station, each crew
visits one or more temporary bases (black dots) and returns to its station (triangles)

2.3 Airborne Sensors

In a military context, unmanned aerial systems (UAS) operate as the eyes of the Commander

to "see first, understand first, and act first, decisively" [40]. As UAS technology and its

safety record continues to improve, there is widespread interest for its use in commercial

applications such as aerial photography, surveillance of land and crops, monitoring of forest

fires and environmental conditions, and the recent protection of borders and ports with the

Department of Homeland Security. Recent studies have shown that computer-vision based

methods to extract features of failures using automated image processing is also possible

[83].

For the purpose of infrastructure network inspection, a variety of commercially available
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rotary-wing UAS platforms can be employed; however, it would be impractical to individu-

ally model each one of them. Using data from the Association for Unmanned Vehicle Systems

International (AUVSI) air platform database, we define four representative classes of UAS

based on their Maximum Gross Take-Off Weight (MGTOW) similar to [84]. These represen-

tative UAS sufficiently represent Commercial Off-The-Shelf (COTS) platforms ranging from

the smaller rotary-wing DJI Mavic Pro as shown in Figure 2-4a, to the larger Aeryon Scout.

The representative UAS classes are described in Table 2.1 using MGTOW (kg), mean cruise

airspeed (knots), max airspeed (knots), descent and climb rates (meters per second), and

endurance (minutes).

Table 2.1: Representative UAS

Class ID 1 2 3 4
Notional MGTOW (kg) [0,2) [2,5) [5,9) [9,25]
Mean Cruise Airspeed (kn) 25 20 30 60
Max Airspeed (kn) 40 30 60 100
Descent Rate (m/s) -1.5 -2.5 -2.5 -5.0
Climb Rate (m/s) 2.5 3.5 3.5 5.0
Endurance (min) 30 45 45 60

If using a UAS class with limited endurance, we allow the UAS to return to the temporary

base to replace their batteries before exploring other parts of the subnetwork. Each UAS

requires a deterministic time to replace its battery; we denote this as Tbatt. All UAS are fully

charged for the initial dispatch, and if an inspection crew visits more than one subnetwork,

we can reasonably assume that UAS receive fully charged batteries while enroute to the

other locations.

In addition to these UAS classes, we also consider hybrid models (mixture of gas and

electric) of UAS with an endurance of up to 5 hours as shown in Figure 2-4b. Coupled with

the approval of Beyond Visual Line-of-Sight (BVLOS) operations, this type of UAS can cover

greater distances, improving the cost effectiveness and removing the need for multiple trips

[8]. We consider this type of hybrid UAS for the ASIP use case requiring traversal of every

edge. In this case, the total edge distances of the subnetworks fall well below the maximum

range of a hybrid UAS (100 miles).
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Ak'

(a) Example of Shorter Endurance UAS: (b) Example of Longer Endurance Hybrid
DJI Mavic Pro UAS: Skyfront Perimeter

Figure 2-4: Examples of Unmanned Aerial Systems

In our ASIP formulation, the mean cruise airspeed, denoted VC, is assumed to be deter-

ministic and defined as the speed at which the UAS should operate to maintain optimum

performance [841. Max airspeed, denoted Vmax is the maximum permitted speed. The de-

scent (resp., climb) rate is the vertical speed of the UAS, or the rate of negative (resp.,

positive) altitude change with respect to time. The endurance, denoted as Tmax, is defined

as the maximum length of time that a UAS spends in flight. For rotary-wing UAS with

MGTOW under 9 kgs, the advertised endurance values of different UAS models exhibit rela-

tively less variability; see Figure 2-5. The endurance values shown in Table 2.1 are based on

the average advertised endurance rate for a given class. In practice, the realized endurance

depends on a variety of factors, including payload (which is affected by sensor weight), bat-

tery age, operating environment, etc. However, we ignore these complications and assume a

deterministic Tmax.

Finally, although communication is an important consideration for safe navigation and

connectivity of UAS, we do not explicitly consider the impacts of unreliable or insecure

communication links between the UAS and the operator. Commonly used communication

links for UAS operations are: the uplink control, downlink telemetry, and downlink payload

communications; these links operate at frequencies dictated by the Federal Communications

Commission (FCC). Loss of communication in any of these three links can occur due to loss

of line-of-sight or interference from the environment or adversary. Indeed, cyber-security

risks have been recently identified as an important barrier to employing UAS for monitoring
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Figure 2-5: The Advertised MGTOW and Endurance for 404 Rotary Wing UAS Platforms

strategic areas [451. However, given that our focus in this thesis is on establishing a static

approach for joint routing of inspection crews and UAS-based inspection of physical infras-

tructures, we do not consider (low-level) communication aspects that are inherently dynamic

in nature.

2.4 Inspection Requirements

In this section we discuss the five main factors governing the positioning and routing of

UAS for the purpose of failure isolation. These factors motivate the key assumptions in our

UAS-enabled infrastructure monitoring approach.

The physical network can either be above ground or underground depending on the type

of infrastructure. For example, an open channel drainage network can be observed from above

ground whereas a pipeline network can have portions laid underground. With underground
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portions, in many cases, failure events are detectable from above ground [56]. For example,

hydrocarbon leaks in an underground gas network can be detected above ground using gas

detectors. Other above ground activities that are often main causes of failures include: the

presence of unauthorized digging, excavation by third parties, or soil erosion. We include

such definitive precursors of actual failures in our definition of failure events.

Once an inspection crew sets up a temporary base, up to U UAS are launched to explore

the corresponding subnetwork. For simplicity, we assume that UAS have identical sensing

capabilities and technical characteristics (e.g., cruise speed). In our approach, the UAS

completes inspection of a subnetwork by either 1) visiting a number of vantage points with

a clear and unobstructed view to one or more network components, or 2) traversing each

edge, which can also be viewed as visiting a series of several vantage points directly over

the network components. For both inspection methods, the spatial positioning of the UAS

should account for several factors:

(i) Operating Range

(ii) Airspace Restrictions

(iii) Infrastructure Stand-off Distance

(iv) Required Image Resolution for Failure Isolation

(v) Infrastructure Network Topology

Figure 2-6 illustrates the abovementioned factors influencing the spatial positioning of

these vantage points, which we henceforth refer to as monitoring locations. We first briefly

discuss each of the five factors and provide a formal definition of monitoring locations there-

after.

(i) Operating Range. The maximum operating range is the maximum distance from a

temporary base that the UAS is capable of flying on a round trip mission. We can estimate

this operating range with vca where VC is the mean cruise speed and ra is the en-

durance of the UAS. The operating range is also restricted by Visual Line-of-Sight (VLOS)
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Figure 2-6: Illustration of monitoring locations for a subnetwork. The available monitoring

locations are shown in filled and empty circles and the infrastructure components within

the subnetwork are highlighted with thick lines

requirements, defined by the FAA as keeping unaided visual contact with the UAS in order

to "maintain safe operational control of the aircraft, know its location, and be able to scan

the airspace in which it is operating to see and avoid other air traffic or objects aloft or on

the ground" [281. To the best of our knowledge, the current literature does not suggest a

common quantitative definition of the VLOS range. We came across conservative VLOS

ranges of 930 m [28] to a maximum theoretical range of 1050 m [861. In practice, VLOS can

also vary significantly with local weather and other environmental conditions. We argue that

for the purpose of infrastructure monitoring, the typical size (maximum radius) of subnet-

works is smaller than a conservative VLOS estimate if using UAS with limited endurance.

If using a hybrid UAS with BVLOS approval, the positioning of monitoring locations is not

constrained by the VLOS requirement [45}.

(ii) Airspace Restrictions. All monitoring locations are upper bounded at an altitude

restriction, denoted ra, which is typically 122m AGL (Above Ground Level) to align with

the current FAA Part 107 UAS regulations [29]. One may also need to consider restricted

airspace, which can either be temporary or permanent. Temporary flight restrictions can be
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enforced due to hazardous conditions (e.g., a wildfire) or routine events (e.g., stadium event).

Examples of permanent flight restrictions include airspace in close proximity to population

centers, military operation areas, or airports.

(iii) Infrastructure Stand-off Distance. Each monitoring location must also comply with

the minimum stand-off distance, denoted r8, to the infrastructure network components or

other ground obstacles (e.g., power lines or buildings). Since misjudgment of distance and

speed is a significant flight hazard, stand-off distance provides a safe buffer zone during flight.

Given environmental uncertainty, wind gusts, and UAS platform instability, we assume that

the UAS will operate outside a 30m stand-off distance. This can be viewed as a conservative

estimate based on current best practices as described in [531. Combined with the restriction

imposed by the stand-off distance and altitude restriction, we maintain that any feasible

vertical distance between a monitoring location and ground level, denoted R, is constrained

as:

rs R<ra (2.1)

(iv) Required Image Resolution for Failure Isolation. When camera sensors are used for

the identification of failures, the spatial positioning of monitoring locations also depends on

the required image resolution. To get an idea of the resolution, one can estimate the Ground

Sampling Distance (GSD), defined as the distance between two consecutive pixel centers

measured on the ground [50]. For example, a GSD of 10 cm can be interpreted as one image

pixel representing 10 cm on the ground. Thus, a higher GSD corresponds to lower spatial

resolution. The GSD can be estimated using the following equation:

GSD = xR (2.2)
f cos a

where x is the length of the sensor's pixel size (mm), f is the focal length of the camera's

lens (mm), R is the vertical distance (in) between the camera (or monitoring location) and

ground level, and a is the look angle. Thus, all else equal, a higher altitude R will correspond

to a higher GSD value. A sensor's ground footprint is defined as the total projection of a
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sensor's pixels onto the ground; see Figure 2-7 for an illustration of the GSD and sensor

ground footprint.

m
camera

f

Optics-

R

Ground Footprint

Figure 2-7: Ground Sampling Distance and Sensor Ground Footprint

It is important to note that different failure types may require different GSDs for iden-

tification. Based on Eqs. (2.1) and the (2.2), one can check if the on-board camera on

the UAS is adequate for the inspection task.1 In the context of gas pipelines, two types

of failure events are of interest based on the type of damage: structural damages and full

component disruptions. For structural damage (e.g., leaks), it is critical to achieve high

resolution images (i.e., smaller GSD) in order to identify small hairline fractures (a few mm

in length). To identify such failures, the monitoring locations need to be positioned at lower

altitudes. This would also entail a higher number of monitoring locations to fully explore the

subnetwork. On the other hand, for disruptions, such as pipeline bursts, major gas leaks,

or fire emergencies, a lower resolution can meet the requirements for failure isolation. In

'As an example, for a Sony QX-10 camera with a 1/2.3 inch sensor (6.2 mm by 4.6 mm) that can take
pictures of up to 4,896 by 3,672 pixels, the size of each pixel would be 0.0012 mm by 0.0012 mm. With a
focal length of 25 mm, determining the altitude to fly the UAS to resolve a 0.5 cm feature on the ground
would require a simple rearranging of terms in Eq. (2.2) to solve for R. Assuming a nadir (overhead) aerial
view (a = 0), the UAS would visit monitoring locations at a height of 100 m which also satisfies Eq. (2.1).
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this case, UAS can operate at higher altitudes (with higher GSD), and consequently visit a

smaller number of monitoring locations. In the context of a drainage network, lower altitude

flights along the water channels are required due to visibility challenges from overhanging

vegetation or tree canopies.

(v) Infrastructure Network Topology. Finally, the number of monitoring locations also

depends on the network topology within the subnetwork. For example, given the same

number of network components and ground footprint size, a tree network topology would

likely require more monitoring locations to explore the entire subnetwork in comparison to

a grid topology; see Figure 2-8.

(a) A network with a tree topology (b) A network with a grid topology

Figure 2-8: For the tree topology (left), 6 network components (black line segments) would
require 6 monitoring locations with associated ground footprints (grey). For the grid network
(right), only 2 monitoring locations are needed for the same number of network components.

Considering factors (i)-(v), we are now in a position to formally define monitoring loca-

tions and monitoring sets. Each monitoring location provides a vantage point for the UAS

to observe some of the network components while considering the requirements for each of

the five factors discussed. For every subnetwork Tk, k E [1, Kj, we let Vk denote the set

of monitoring locations that the UAS can visit. Without loss of generality, we assume that

bk E Vk, that is, the temporary base belongs in this set.

From each monitoring location i E Vk, we define a monitoring set, Ck C Tk, as the subset
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Figure 2-9: The Monitoring Set corresponding to a particular monitoring location is

obtained from the sensor ground footprint, which is based on the GSD calculation

of network components that a UAS is capable of monitoring (and isolating). Correspondingly,

for every network component e E 7k, let Vk(e) denote the subset of monitoring locations from

where a UAS can monitor e. We assume that Vk fully "covers" Tk, i.e., all components in 7

can be monitored by visiting a subset of Vk. Figure 2-9 illustrates how a monitoring set is

obtained from the sensor's ground footprint.2 We emphasize that our setup provides us with

the flexibility to consider different types of monitoring sets for each monitoring location,

depending on the five factors.

For each subnetwork 7k, a UAS tour is then defined as a sequence of visits to a subset

of Vk that starts and ends at the temporary base bk. Upon returning to base, the UAS will

either replace its battery for additional tours, or complete its mission. Analogous to the

travel time matrix for inspection crews, we can define another travel time matrix for each

subnetwork Tk; the elements of this matrix are the pairwise travel times between monitoring

2To provide an example of a monitoring set, we turn to the ground footprint from our above GSD

calculation. The sensor ground footprint in this case would be 24.48 m by 18.36 m, acquired by multiplying

the total sensor pixel size (4,896 by 3,672 pixels) by 0.5 cm. Recall that 0.5 cm was the length of the feature

to resolve. Therefore, from a monitoring location i E Vk at a height of 100 m, we can include all network

components within this ground footprint as part of the monitoring set Ci', given that there are no obstacles.
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locations within Vk. We denote this matrix as Tk. Thus, for every ordered pair of locations

(i, i) E V2, let r denote the UAS travel time from i to j. One can obtain rT by determining

the shortest path distance from i to j and dividing by the mean UAS cruise speed, which

also incorporates the climb or descent rate. We do not necessarily impose r =r . The

observation time at each monitoring location can also be incorporated into Tk.

By visiting a subset of monitoring locations Vk such that each network component is

monitored at least once, we claim that UAS will be capable of decisively isolating the failures

in the corresponding subnetwork. This can be achieved if, for example, a trained observer

is inspecting the live video feed to provide near real time feedback. Alternatively, state-of-

the-art software can be employed to provide rapid automated image processing (i.e., identify

failures from the live video feed) with high accuracy. Computer-vision based methods to

extract features from images can achieve accuracy levels of 90-95% for certain types of

failures [551, and the expanding use of unmanned systems in the future will only increase the

amount of training data required to increase accuracy.

Before proceeding further, we summarize the key assumptions that we introduced in

Sections 2.1 through 2.4:

Al Each failure alert obtained by the agency from fixed sensors can be mapped to a

subnetwork, which contains the set of network components that need to be inspected in

order to isolate failure events. The number and location of failures in each subnetwork

is unknown.

A2 Based on fixed sensor alerts (and associated subnetworks) received in the time interval

[0, to], the agency allocates and dispatches inspection crews at time to.

A3 If we do not consider BVLOS operations, the size of the subnetworks for UAS-based

inspection is no greater than the VLOS in radius.

A4 The UAS can monitor all network components in the subnetwork 7k by either visiting

a subset of monitoring locations Vk, or by traversing along every edge.
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A5 All UAS have identical sensing and technical capabilities. Likewise, all inspection crews

have homogeneous capabilities.

A6 The travel times for both the inspection crews and UAS are assumed to be determin-

istic.

A7 The UAS endurance time as well as the time to replace the on-board battery are

assumed to be deterministic.

A8 The communication link between the UAS and operator is secure and reliable, and

does not impose any constraint on the route planning of inspection crews and UAS.

2.5 Proposed Approach

Considering the subnetworks that arise from failure alerts, our focus is to study how joint

optimization of UAS and inspection crew route plans can create efficiency and timely detec-

tion. To do so, we propose an approach that (i) solves the PIRP, which optimally dispatches

inspection crews to the subnetworks to minimize the worst-case time to inspect, and (ii)

solves the ASIP, which optimally routes the UAS to isolate failure locations within a given

subnetwork. These two problems are nested in that the optimal value of the ASIP is taken

as an input in solving the PIRP; see the illustration in Figure 2-10.

Recall that we model our problems based on failures that arrive during the time period

[0, to], i.e., the decision for vehicle dispatches is made in a batch. The failure alert data is

processed and mission planning is completed in preparation of inspection crew dispatch from

each service station at time to. For each subnetwork Tk, k E [1, KI, we denote Ok the amount

of time during which '7k was alerted prior to the dispatch of the inspection crews. Note that

within a given subnetwork, there can be several alerts corresponding to the failure of different

components at different times. However, we are only concerned with the largest such time,

i.e., Vk E [1, K , 0 k is determined by the first alert that is received in '7k. Note that high

values of Ok can occur when the interval [0, to] is large. This may happen in situations when
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A I.

(a) PIRP: Each inspection crew can visit (b) ASIP: From the temporary base
one or more subnetworks. At the end of location, the UAS isolate the failures by

each day, the crew returns to its assigned visiting a subset of monitoring locations or
service station. by traversing each edge.

Figure 2-10: Illustration of the PIRP and ASIP

the inspection crews are not readily available or when inspection crews are engaged in other

jobs and are not positioned at the service station [5]. The timeline of various phases of

inspection operations is illustrated in Figure 2-11. An inspection crew is dispatched from its

service station s at time to and completes the set up of a temporary UAS base at location bk

at time to + 7,s. The optimal UAS inspection time for 7k is denoted *. For this example, the

total time elapsed from failure alert to the completion of inspection for Tk, denoted total,k,

is equal to 6k +7 sk + k. We can see how the optimal value of the ASIP is embedded within

the PIRP, which seeks to minimize the maximum of ttotal,k over all K subnetworks.

ttotal,k

Ok ^Iskk

0 Failure alert to Temp UAS
in Tk Crew base set returns

dispatch at bk,
to Tk UAS

launches

time before dispatch

Figure 2-11: Example Timeline from failure alert for a single day in the case of a single
inspection crew, single subnetwork, and single UAS
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Chapter 3

Network Inspection with Aerial Sensors

In this chapter, our focus is on how to integrate aerial sensors (i.e., UAS) into inspection

operations. Specifically, the problem statement we seek to address is the following: How to

optimally route UAS for the localization of failures within alerted regions (subnetworks) with

the goal of. minimizing the maximum inspection time, subject to constraints due to the oper-

ating environment and sensing requirements? In Section 3.1 we first provide the results of a

worst-case analysis using comparisons between classical vehicle routing problems and adapt-

ing their solutions to our setting. In Section 3.2 we provide a Mixed Integer Programming

(MIP) formulation that provides optimal multi-trip UAS routes for inspecting a subnetwork.

To address the computational challenges of implementing this MIP formulation on a realis-

tic network size, we propose a set-cover based heuristic. Finally, we show the results of a

computational study using our overall proposed approach on a benchmark pipeline network

in Section 3.4.

3.1 Maximum Value of Aerial Sensor-based Inspection

In order to study the advantages of using UAS over ground-based inspection, we derive a

number of theoretical worst-case results. Specifically, we are interested in quantifying the
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time savings that could be achieved using our UAS-enabled inspection approach, compared

to the current ground-based approach. We find that the results depend on the trade-offs that

exist between what we call the intra-subnetwork travel time (i.e., within the subnetworks)

and the inter-subnetwork travel time (i.e., to and from the subnetworks).

In [801, the authors derive worst-case results for a problem called the Vehicle Routing

Problem with Drones (VRPD), where a set of customers demanding parcels are served by

either a truck with limited cargo capacity or a drone with the capacity to carry one parcel

at a time. Our problem differs in that the PIRP is an inspection problem with no vehicle

capacity constraints, the UAS can inspect several network components, and we do not allow

crews to inspect network components in parallel with the UAS.

For this section, we focus on the use case considering monitoring locations and limited

endurance. We refer to a ground-based inspection crew as a vehicle and a temporary base

location within a subnetwork as a base. For simplicity, we make the following assumptions:

Al. For any given subnetwork, we assume that the UAS endurance is sufficient to reach all

of the monitoring locations with one or more trips.

A2. The speed of the UAS is a times the speed of the vehicle (which is set to 1). We

assume that a > 1.

A3. We do not consider altitude for monitoring locations in this study (i.e., ground-based

crews can also visit monitoring locations to complete inspections).

A4. For ground-based inspections, the vehicle travels at the same speed for both intra and

inter-subnetwork travel.

The last assumption implies conservative results since intra-subnetwork travel for ground-

based inspections is typically slower than inter-subnetwork travel. Recall that according to

our UAS-enabled inspection approach, the UAS begins subnetwork inspection only after

the vehicle sets up at a base. The vehicle remains idle at the base until UAS inspection is

complete. We use the following notation for this section:
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" Zk(TSP): The optimal value of the Traveling Salesman Problem for subnetwork k,

which finds the shortest possible route for a vehicle that starts at a base and visits

each monitoring location, prior to returning to the base. We denote the value of a

feasible TSP solution as Zk(TSP).

" Z(VRPa): The optimal value of the Vehicle Routing Problem with n ground vehicles,

which minimizes the total travel time required to visit a set of temporary bases, prior

to returning to the service station. For simplicity, we only assume one service station

for this study.

" Zk(ASIP,,): The optimal value of the ASIP for subnetwork k where u is the number

of UAS available for each vehicle and the speed of the UAS is a times the speed of the

vehicle. We denote the value of a feasible ASIP solution as Z/(ASIP ,e).

" Z(PIRPn,u,K): The optimal value of the PIRP with n vehicles, u UAS and K subnet-

works.

" Z(SQn,K): The optimal value of the status quo inspection approach with n vehicles

and K subnetworks.

Since PIRPn,u,K employs UAS with speeds that are a times the speed of the vehicle,

where a > 1, we expect that Z(PIRPn,u,K) < Z(SQn,K). Our goal is to seek to find a tight

upper bound on the ratio z(PnK) We gradually build up to this ratio by first presenting

our results from the viewpoint of a single subnetwork. We then define the worst case ratio

for a simple case, with one vehicle, a UAS, and one subnetwork. Finally, we use both of

these results to generalize for K subnetworks.

We first present the results for a single subnetwork. For the sake of brevity, we leave out

the subnetwork index, using Z(ASIPu,,) instead of Zk(ASIPu,,), and Z(TSP) instead of

Zk(TSP).

Lemma 1. Z(TSP) <ua
Z(ASIPu,o) -
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Proof. We first start with the optimal ASIP,Q solution. For simplicity, we assume that

all of the monitoring locations must be visited to fully inspect the subnetwork. An op-

timal ASIP,Q solution will consist of u UAS routes (consisting of trips from the base to

each monitoring location and back). Next, we construct a feasible TSP solution (vehicle

inspection route) by combining the u UAS routes into one large route. Finally, we mul-

tiply by a since we the UAS speed is a times the speed of the vehicle. Thus we have

Z(TSP) Z (TSP) <
Z(ASIP,Q) Z(ASIPu,,) -

We show that this bound is tight by considering an example shown in Figure 3-1 with

u monitoring locations (not including the base). All of the edge distances are set to a with

the exception of adjacent edges between the monitoring locations, which are set to 2a.

2a 2a 2a 2a
1 2 -- u 1 2 ... u 1 2 - -

a a a a a a a a

b b b

(a) Example problem (b) Feasible ASIPu,, (c) Optimal TSP

Figure 3-1: Example for ASIP,,

Recall that the vehicle travels at a speed of 1 while the UAS travels at speed a. By

inspection, the optimal TSP solution will visit the monitoring locations in sequence for a

total time of 2ua. A feasible ASIP,, solution has the UAS traveling individually to each

monitoring location and back. Since the ASIP is a min-max problem, and each UAS takes

a total time of 2, Z(ASIPu,,) = 2. Therefore, we have:

Z(TSP) Z(TSP) 2ua
__ __ >_ =__ _ _ -- =aa (3.1)

Z(ASIPu,c,) - Zf(ASIPu,,) 2

It is not too difficult to show that at best, Z(TSP) < a Z(ASIPu,,). This is the case

where the routes for the UAS and vehicle remain the same, and thus the difference is simply
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the speed of the UAS.

We now use our result from Lemma 1 to derive the worst case ratio zRn, ,K), where

we have one vehicle, u UAS, and one subnetwork.

Proposition 2. Z(SQ 1,1) < +a -1 Z(VRP1 )
Z(PIRP,,U,1) - + + ' Z(ASIP,Q)

Proof. We first decompose both Z(SQ1, 1 ) and Z(PIRP,u,1 ) into two components. The first

component is the vehicle route to the base and back, which we denote as Z(VRP1). The result

for Z(VRP1) is the same for both Z(SQI, 1 ) and Z(PIRP,u,1 ). The second component is

the inspection route, which we denote as Z(TSP) and Z(ASIP,,) for the vehicle inspection

and UAS inspection, respectively. Using this decomposition, we have:

Z(SQ1 ,1) Z(VRP) + Z(TSP) (3.2)
Z(PIRP,,I) Z(VRP1) + Z(ASIPu,o)

Z(TSP) - Z(ASIP,a)
Z(VRP1 ) + Z(ASIPu,0 )

Z(ASIPua) Z(TSP) (
Z(VRP1) + Z(ASIPu,o ) Z(ASIP,,0 )

< + '"Z(ASIPuQ) (ua - 1) (3.5)
-Z(VRP1) +Z(ASIPu,a)

u + Ua -1 (3.6)
+1

Equation (3.2) is the decomposition of Z(SQ1, 1 ) and Z(PIRP1,,, 1 ) into their two com-

ponents. Equations (3.3) and (3.4) rearrange the terms to form the ratio Z(TSP) defined

earlier in Lemma 1. Inequality (3.5) is valid since we replace z(TSP) with ua. Here we
recognze tht theratio (ASIPL,,J)

recognize that the ratio Z(VRP)+ZSPu,) is very meaningful as the ratio between the ASIP

and PIRP. To be precise, we introduce a term 0 to be the ratio between the Z(VRPa) and

Z(ASIPu,a); this is a measure of the total inter-subnetwork travel time compared to the

total intra-subnetwork travel time. Substituting for this 3 term, we get equation (3.6).
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Based on our example shown in Figure 3-1, we show that this bound is tight. Since the

result for Z(VRP) is the same for both Z(SQ1, 1 ) and Z(PIRP1,,, 1 ), we have:

Z(SQ 1,1) Z(VRP1 ) + Z(TSP)
Z(PIRP,U,I) - Z(VRP1 ) + Zf(ASIPu,a)

Z(VRP1 ) + 2ua
Z(VRP1 )+ 2

For simplicity, we assume that the base is located at a distance of d from the service

station. Z(VRP) then is equal to 2d (to the base and back). Therefore, we have:

Z(VRPI) + 2ua 2d + 2ua d +ua
Z(VRPI) + 2 2d + 2 d + 1

(3.8)

For this example we can confirm that ~3d, and therefore, z(sQJIJ) > d+ua = 1 uo-1
Z(PIRPI., 1 ) - d+1 i3+1

0

Next we generalize the above result for K subnetworks.

. Z(SQK) na - I Z(VRP1 )
Prpstin3 1 + /3 =

Z(PIRP,u,K) ~ 3 +1 ' E= Zk(ASIPua)

Proof. We again decompose both Z(SQ1,K) and Z(PIRP,u,K) into two components as be-

fore, but in this case we account for K subnetworks. Using a similar decomposition proce-

dure, we have:
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Z(SQ1,K) Z(VRP1 ) + EIK Z, (TSP)

Z(PIRP,u,K) Z(VRP1) + ZK k1 Z(ASIPu,,)

1 _ = (Zk(TSP) - Zk(ASIPu,a))
Z(VRP1) + Z:=i Zk(ASIPu,,)

=1 z= (Zk( AsIPU,a) ( zi s -1)

Z(VARP1 )+ Z,( Zk(ASIPua)

+(na - 1) (Z Z(ASIPu,,)

Z(VRP1) + =1 Zk(ASIPu, )
ua - 1

0+1

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Equation (3.9) is the decomposition of Z(SQ1,K) and Z(PIRP,u,K) into their respective

components. Equations (3.10) and (3.11) rearrange the terms to form the ratio Zk (TSP)
Zk (ASIPu,0 ),

defined in Lemma 1. Inequality (3.12) is valid since we replace Zk(ASIPu) with ua as before.

The 3 term in this case is the ratio between Z(VRP) and EK 1 Zk(ASIPu,,). Substituting

for this term we get equation (3.13).

1 2a 2 4 2c 3

1 b2
bid 

S d

Figure 3-2: Example problem with K 2 subnetworks

Next, we show that this bound is also tight with another example. For simplicity, we

assume that all subnetworks have u +1 monitoring locations that must be visited to complete

a full inspection. We use an arbitrary distance of d for the edges connecting the subnetworks

to service station s as well as adjacent subnetworks. Figure 3-2 shows an example with

K = 2 subnetworks, where each subnetwork consists of 3 monitoring locations (including

the base).
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The result for Z(VRP) is the same for both Z(SQ,K) and Z(PIRP,u,K), and therefore,

Z(VRP) = d(K + 1) by inspection. Thus we have:

Z(SQ1,K) Z(VRP1 ) + EI Zk (TSP)
Z(PIRP,u,K) Z(VRPI) + k_1 Zk(ASIPu,,)

d(K + 1) + 2uaK
d(K +1) + 2K

For this example 3 - d(K- ,1) and we confirm that the bound is tight using substitution:2K

Z(SQK) d(K + 1) + 2uaK ua - 1
Z(PIRP,u,K) d(K+1) + 2K 1 +I

(3.15)

El

-- a=1
a = 1.5

-a=2
-. .=5

0 10 20 30
Distance(d)

I

40 50

Figure 3-3: Relationship Between Distance d and a

We summarize our results by examining the worst-case ratio in different settings. Using

the last example with 1 vehicle, 2 UAS, and K = 2 subnetworks, we focus on the tradeoff

between distance d and a when determining the ratio Z(SQ 1  . Figure 3-3 shows thatZ(PIRP1,2,2)* iue33sosta

the worst case bounds starts at ua when d = 0, and approaches 1 as d becomes large.

Moreover, the value of a influences the magnitude of the worst case ratio. To generalize,
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what we confirm is that more time savings can be achieved if subnetworks are larger and

vehicle distances to the subnetworks are shorter. Furthermore, as the distance to the bases

get larger, the time savings to be gained from the UAS-enabled inspection is diminished.

Using these insights, we can confirm that the advantages of UAS-enabled inspection can be

significant, especially when considering that our results are conservative. We next formulate

and solve the ASIP and PIRP on a benchmark pipeline network.

3.2 Aerial Sensor Inspection Problem

Consider a subnetwork 7k that is alerted during the time interval [O, to]. Recall that the

exact number of failures, and their exact locations in 7k are unknown. Thus, the ASIP

considers optimally dispatching UAS to isolate every network component in 7-k. The u

UAS leave the base bk, visit a subset of monitoring locations in Vk from where they can

inspect the network components, and return to the base either to complete the mission, or

to replace their batteries for further inspection. The objective is to minimize the time to

explore 7Tk, which we formulate as the maximum amount of time, among the u UAS, to

return to the base for mission completion. We choose this min-max objective function for

two main reasons highlighed in [5]. In that work, a min-max objective was widely accepted

by the key stakeholders of a natural gas utility over an alternative objective of minimizing

the overall cost, which was primarily viewed as a symptom of the root problem. Second,

the min-max objective achieves a level of fairness, which complies with union regulations for

equal distribution of labor.

3.2.1 Mixed Integer Programming Formulation

For the sake of brevity in presenting our formulation of the ASIP, we use the notation b to

denote the base bk, TFj as the travel time rij, and as the longest UAS inspection time .

For each pair of monitoring locations i f j E Vk we define a binary variable xij equal to

1 if an UAS goes from i to j, and 0 otherwise. We also define two real variables zij and
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tij. If zij is nonzero, then it represents the cumulative travel time taken by the UAS that

visits node j (coming from node i). Note that this quantity is reset every time an UAS

replaces its battery. If tij is nonzero, then it represents the time traveled so far by the UAS

that is currently visiting node j (which comes from i). This quantity is NOT reset when

an UAS replaces its battery. For every pair of monitoring locations different from the base,

i , j E Vk\{b}, let xij' be another binary variable equal to 1 if an UAS goes from i to j

after replacing its battery at b, and is equal to 0 otherwise. This is similar to the concept

of the replenishment arc as discussed by Boland et al. in [101. Our ASIP can be formulated

with constraints (3.16)-(3.28).

Constraint (3.16) ensures that no more than u UAS are used for inspection. Constraint

(3.17) is the flow conservation constraint, taking replenishment arcs into account. Constraint

(3.18) ensures that each monitoring location is visited at most once. Constraint (3.19) ensures

that each network component is monitored at least once. Constraint (3.20) initializes and

resets the time traveled by an UAS after replacing its battery. Constraint (3.21) enforces

zij to be 0 when there is no UAS that goes from i to j and between 0 and Tma, otherwise.

Constraint (3.22) enforces zib to be 0 when there is no UAS that goes from i to b or that

goes from i to any other node j after replacing its battery at the base b. Constraint (3.23)

updates the time traveled so far by each UAS since the last battery replacement. Constraint

(3.24) initializes the cumulative time traveled so far by the UAS. Constraints (3.25) and

(3.26) make sure that tij = 0 when there is no UAS that goes from i to j (whether directly

or by a replenishment arc). The right hand sides of these constraints constitute a "Big-M",

which makes the corresponding inequalities non-restricting when an UAS goes from i to j.

We illustrate the Big-M upper bound for constraint (3.26) in Figure 3-4. Constraint (3.27)

updates the time traveled so far by the UAS and takes into account the time to replace the

batteries, if required. Since we want to minimize the maximum travel time of the UAS which

is given by min maxiEv\,{\b tib, we can reformulate it by using the variable , along with the

constraint (3.28).

The ASIP solution provides optimal UAS routes that can be described as simple or

multi-trip routes. Consider a subnetwork Tk, k E [1, Kj. We let p represent an UAS simple
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E~ (Xi + Xij) + Xbj (Xji + Xji') + Xjb,
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iEVk(e) (,EVk\{b,i}
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(3.16)

Vj E Vk\{b} (3.17)
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Vj E Vk\{b} (3.20)

(3.21)
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tbj = TbjXbj,

0 < t < ((IVkl - 1)Tmax + (IVk - 2)Tbatt)(Xij + xij),

0 < tib < ((IVkI - 1)Tma. + (IVkI - 2)Tbatt)Xib,

Stij= I tji+ E Tijxij
JeVk\{i} jEVk\{i} jEVk\{l}

+ 5 (Tib + Tbatt'+ Tb3 )Xij',

jEVk\{b,i}

( > tib,
xii E {0, 1},

xi ' E {0, 1},

xi ,

Vi E Vk\{b} (3.22)

Vi c Vk\{b} (3.23)
,i}

Vi E Vk\{b}

V(i,j) E (Vk\{b}) 2 1i saj
Vi E Vk\{b}

(3.24)

(3.25)

(3.26)

Vi E Vk\{b} (3.27)

Vi E Vk\{b}

V(i\J) E V;2
V(i, j) E (Vk\{b}1)21 0j
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Tmax Tmax

b
Tbatt

0 < tib < ((IVk| - 1)rmax + (Vk| - 2)Tbatt)Xib

Figure 3-4: Explanation of Big-M Upper Bound. Here IVkI = 3. If xib= 0 thentib = 0. If
Xib = 1, then tib is at most 2 X Tmax and 1 X Tbatt after having visited node j first

route, defined as a sequence of In monitoring locations (i1 , i 2 , ... , in) where i= in =b, each

monitoring location in p (not including the base) is visited only once with no interim base

visit, and the feasibility requirement is met, i.e., the cumulative travel time E-_ 1 TiM m+i

does not exceed Tmax. We let P denote the set of simple routes. We define a multi-trip route

as a route that contains one or more interim base visits (for replacing the battery), e.g.,

(bk, 1, 2, bk, 3, bk).

Our formulation differs from the G-VRP introduced by [25] in several ways. First, instead

of multiple refueling stations available, there is only one refuel location (temporary base) for

each subnetwork. Second, our formulation involves the notion of a monitoring set. Therefore,

unlike the traditional VRP formulation, there is no need to visit every monitoring location

because of constraints (3.18) and (3.19). Third, instead of using dummy vertices, we use the

concept of replenishment arcs which eliminates the need to set a condition on the number

of refueling visits. Finally, whereas the G-VRP aims to minimize the total distance traveled

by the vehicles, our objective is to minimize the maximum time to observe all network

components.

3.2.2 Set-Cover-Based Heuristic

In order to improve the scalability of the ASIP, we propose a heuristic approach that takes

advantage of the monitoring set constraint (3.19). This heuristic can be described in five

main steps: Solving a weighted set cover problem, initial route construction, improvement
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procedures, route combination, and relocation with base insertion. The improvement proce-

dures consist of the relocation, exchange, and 2-opt procedures, which are three well known

local search algorithms to solve the Traveling Salesman Problem (TSP) and other related

VRPs [17]. Our primary contributions in developing this heuristic are the following: the

initial route construction step using a weighted set cover, the route combination step, and

the relocation with base insert step.

The computation time to solve the ASIP can pose a computational bottleneck because of

the large number of monitoring locations to consider for a typical subnetwork. For example,

one ASIP solution for a subnetwork consisting of 33 edges, took almost 3 hours to solve to

optimality. Utilities that require efficient dispatch of resources in a timely manner cannot

afford to wait this long, and so we next propose a heuristic approach that can promptly

reach optimal or near optimal solutions.

Improvement
Initial Procedures

Se ighed Route 1) Relocation RCombination B IRel tConstruction 2) Exchange
3) 2-Opt

Figure 3-5: Five Steps Used in the Heuristic to Solve the ASIP

Step 1. Weighted Set Cover

Recall that in each subnetwork Tk, k E [1, Kj, the UAS need to visit a subset of monitor-

ing locations in order to isolate every network component in 7k. This implies that, although

each monitoring location does not need to be visited, the UAS need to visit a subset that

forms a set cover. In our context, a set cover is a set of monitoring locations S C Vk such

that each network component in 7k is isolated if each monitoring location in S is visited

by the UAS. A minimum set cover (MSC) is a set cover of minimum cardinality that can

observe every network component in the subnetwork Tk. The MSC problem is known to

be NP-hard but many commercial solvers can solve this problem efficiently using exact or

approximation algorithms.

For the ASIP heuristic, we consider a weighted variant of the MSC problem as discussed

in [15] since distance from the base must also be considered due to limited endurance. For
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each monitoring location i E Vk, we define xi to be a binary variable equal to 1 if i is chosen

as part of the set cover and 0 otherwise. Furthermore, we consider the shortest distance

from the base to monitoring location i, or rb,i as the weights in the objective function. A

set cover S is a weighted MSC if it is an optimal solution of the following problem:

minimize j roizi
iE Vk

subject to E3 X;> 1, Ve E S (3.29)
iCEVk(e)

Xi E {0, 1}, Vi E Vk (3.30)

Constraint (3.29) ensures that for each network component, at least one of the monitoring

locations from Vk(e), is part of the set cover. Note that because this is a minimization

problem and the weights are defined as distances from the base, we can always consider the

base to be part of the set cover (since Tbk,bk = 0). For the remainder of this section, we will

refer to the monitoring locations simply as nodes and bk as b.

The intuition behind the use of the weighted variant of the MSC as opposed to the

unweighted case can be explained using a "pathological" case shown in Figure 3-6, where three

nodes are positioned at the specified unit distances from a base. In general we would prefer

to visit a higher number of closer nodes as opposed to a few nodes farther away. Recall that

we consider the base as a monitoring location and the edges in this graph represent network

components. If we assume that the UAS can effectively isolate adjacent components incident

to the nodes, we can verify that the unweighted MSC solution is {b, 3} but we would prefer

to use the weighted MSC solution {b, 1, 2} in order to minimize the maximum travel time. If

only one UAS is available, the unweighted MSC solution would equate to a total distance of

20, i.e., to node 3 and back, whereas the weighted MSC solution only requires a total travel

distance of 4, i.e., to nodes 1 (resp. 2) and back.

To show that the weighted MSC can lead to a feasible ASIP solution, we highlight one
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1 1
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Figure 3-6: Example network for justifying the use of weighted MSC in the ASIP heuristic

example from Table 3.1. Consider the multi-trip routes from the ASIP solution for 2 UAS

exploring T2 from base node 16: UAS 1 -+ (16, 10, 1, 16), (16, 5, 6, 16), UAS 2-÷ (16, 8, 9, 7,

4, 16), (16, 12, 15, 16). Each UAS requires one interim base visit. The nodes in bold make

up the optimal weighted MSC. Figure 3-7 shows the optimal weighted MSC along with the

topology of T2 . We observe that the weighted MSC will always provide a subset of nodes

from which to generate feasible routes for the ASIP. We use this insight to construct the

initial set of routes.

Step 2. Initial Route Construction

The initial route construction step takes an optimal set cover S from the weighted MSC

problem, the endurance Tma,, and the travel times -ri between each pair of nodes (i, j) c -V

as its input and provides an initial set of simple routes as its output. To accomplish this,

we apply the well known Clarke & Wright Savings Algorithm. Two versions of the savings

algorithm exist; a sequential version, where only one route is expanded at a time, and

a parallel version, where more than one route may be considered simultaneously [16]. We

choose to construct the routes in parallel since it generally provides better results as described

in [48]. For each pair of nodes (i, J) E V , let Sij be defined as the time "savings" gained by

visiting nodes i and j in succession from the base node b and back, i.e., (b, i, j, b) as opposed

to one at a time, i.e., (b, i, b), (b, j, b). Using notation from Section 3.2.1, we let tib denote

the total travel time for the route (b, i, j, b) and tjb denote the total travel time for the route

(b, i, b, j, b). Thus the total savings is given by Sij = tjb - tjb. For example, suppose that the

two nodes i and j were originally visited using two separate routes as seen in Figure 3-8a.
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Figure 3-7: Weighted Minimum Set Cover embedded within the ASIP Solution for subnet-
work 2. The topology is shown on the left with weighted MSC nodes in grey. The matrix

on the right shows the associated monitoring sets with the weighted MSC nodes highlighted

The total travel time in this case is given by tib = (rbi + ri6 + Tby + Tb). Alternatively, if

the two nodes are visited successively in the same route as shown in Figure 3-8b, the total

travel time is t> = (rbi + rij wJb). The total travel time savings is then given by:

Sij = tjb - tib = (rbi - Tib + 'Tbj Tjb) - (Tbi + i + Tjb) = Tib + Tbj - Tij (3.31)

Tb bi TjbTib Thj

b

tjb = (mbi + Tib -+- Thj + b)

(a) Nodes visited one at a time

Ti
Tbi Tjb

b

tfjb = (Tbi+ Tij +b)

(b) Nodes visited in succession

Figure 3-8: Illustration of Travel Time Savings

The intuition behind this savings approach is that pairs of nodes with larger time savings
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should be prioritized when constructing the initial routes. It is also important to note that

this approach works with asymmetric travel times (Tij $ rm) as discussed in 1781. In the

asymmetric case, the routes can be considered to be oriented and so we only calculate the

savings for Sij if i is the last node visited in a route and j is the first of the other. Suppose

we have two oriented routes shown in Figure 3-9a. Since i is the last node visited in one

route and j is the first node of the other, Sij = Tb -- Tib - Tij, which is the difference in the

travel times shown below Figs. 3-9a and 3-9b. Respectively, if k is the last node visited in a

route and I is the first of the other, Sk -- Tkb + Tbl - Tkl, using the difference in travel times

below Figs. 3-9a and 3-9c. Since Skl provides the larger savings, we only select this as a

savings pair and do not consider Sij.

k 1 k I k 1

b b b

(a) (Tbj -TjkTkb ib+-li Tib) (b) (-Tbj + Tjk Tki- + Tli + rib) (c) (Tbi + + Tij Tik -- Tkb)

Figure 3-9: Illustration of Savings Calculation for Asymmetric Travel Times

We calculate the savings Sij for every pair of nodes in S\{b} and sort them in descending

order of magnitude to create a savings list. Starting from the highest savings pair in the

savings list, we construct one or more simple routes based on the following cases for each

pair (i, j), keeping inventory of the nodes that have not been assigned to a route [49]. For

each case, we check for feasibility, to ensure that total travel time for each route is less than

or equal to Tmax.

Case 1: If both nodes in the pair do not already belong to a simple route, create a new

simple route that consists of the pair bookended by the base, i.e., (b, i, j, b), given

that the feasibility requirement is met.

Case 2: If exactly one of the two nodes in the pair (suppose i) belongs to an existing simple

route, then we insert j in that same route only if i is an edge node and the feasibility

requirement is met. If i is preceded by the base, then j is inserted before i, otherwise,
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j is inserted after i. We follow this guideline in order to preserve the integrity of

savings pairs.

Case 3: If both i and j already belong to a simple route, then we skip to the next pair in

the savings list.

Once the savings list is exhausted, if there are any nodes that were not included in a

route, we create a new simple route for each omitted node bookended by the base. The

initial route construction is completed once all of the nodes in S are included within the set

of simple routes. Recall that P denotes the set of simple routes. Note that the Clarke &

Wright Savings Algorithm does not allow for the control of [P1. If [PI < u, we ensure that

more simple routes consisting of only two basenodes, i.e., (b, b) are created until [PI = u. In

the case of more than one UAS, this guarantees an available route to insert a node into for

the upcoming relocation procedure. Otherwise, we risk inequity in UAS workload.

Step 3. Improvement Procedures

The next three procedures attempt to improve T9 through a sequence of moves, which

we define as a modification of nodes either within a route (intra-route) or between routes

(inter-route) to obtain a neighborhood solution out of an existing one. We only consider

feasible moves based on Tmax. We use the relocation, exchange, and 2-Opt procedures in this

order based on computational results on routing problems described in 1661 as well as our

own computational tests on the 5 subnetworks in Table 3.1. After each of these procedures,

we do not remove any simple routes; even if a route is or becomes empty, consisting of only

two base nodes, (b, b), we carry them over until Step 4, thus guaranteeing that [PI > u.

1. Relocation. This inter-route procedure takes the initial simple routes obtained from

Step 2 as an input and for all possible pairs of routes, completes the following two

stages:

a) For each pair of simple routes, choose the route with the maximum travel time

as the "donor" route; the max travel time is set as the incumbent best time to

improve upon.
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b) For each node in the donor route, not including b, remove and insert it into the

other "recipient" route in all of the possible positions between the base nodes. For

each move, compute the maximum travel time between the two routes. Choose the

move that results in a smallest maximum travel time compared to the incumbent

best.

This procedure is shown in Figure 3-10a and is similar to the relocation procedure

described in [78]. We extend it to consider both Tma. and the min-max objective

function of the ASIP. We apply the relocation procedure first since it often produces

the best results of the three improvement procedures as discussed in [66].

2. Exchange. The exchange inter-route improvement procedure as described in 178]

considers every possible pair of routes and attempts to exchange two nodes between

the two routes as shown in Figure 3-10b. For each pair of routes, we exchange all

pairwise combinations of nodes (not including the base). Like the relocation procedure,

we compute the maximum travel time between the two routes after each move. We

choose the move that results in the smallest maximum travel time compared to the

incumbent best.

3. 2-Opt. As a final improvement procedure, we apply the 2-Opt local search algo-

rithm proposed by [17] for the traveling salesman problem. This is an intra-route

improvement procedure that replaces two edges with new ones so that a single route

is maintained. The example shown in Figure 3-10c illustrates a valid 2-opt move. The

edges (i - 1, i) and (j, j + 1) are replaced by edges (i - 1, j) and (i, j + 1), which

then reverses the direction of nodes between i and j [11]. We systematically apply the

2-opt procedure on all pairwise combinations of edges in each route. For each swap,

we accept the new route if it results in a shorter travel time.

Step 4. Route Combination

This step ensures that the number of generated UAS routes accounts for the number

of UAS available and inserts an interim base visit if required. This problem is a variant
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(a) Relocation (b) Exchange (c) 2-Opt

Figure 3-10: Improvement Procedures. For each procedure, the top figure shows the route(s)
prior to implementation and the bottom figure shows the resulting route(s) [661

of the multi-processor scheduling or load balancing problem 136]. In the multi-processor

scheduling problem, n jobs i, 12, ..., jn are assigned to m machines, each job ji has a non-

negative processing time, and the goal is to minimize the maximum load over all machines.

In our problem, the jobs are the set of simple routes that we obtain after Step 3, each with

varying durations less than Tmax, and the machines are the u homogeneous UAS. There are

two additional considerations for our problem: first, if an UAS is assigned n simple routes,

we incur additional time equal to (n - 1)rbatt to account for the battery replacement times;

and second, we also need to consider the possibility of merging two simple routes into one

simple route (with no interim base visit) if the total travel time is within Tmax.

If 1PJ > u, our greedy approach is to successively combine the shortest two simple routes

into a larger route until JP = u. Recall that we will not see a case where JP < u based on

the previous steps. We define an edge node as a node that is adjacent to the base in a route.

It follows that for a simple route there are two edge nodes. We also define an edge node

pair as a combination of two edge nodes where each node in the pair belongs to a different

route. For example, given two simple routes (bk, 1, 2, 3, bk) and (bk, 4, 5, 6, bk), the edge node

pairs would be (1, 4), (1, 6), (3, 4), and (3, 6). It follows that given JPJ routes, with 21PI edge

nodes, the number of edge node pairs is given by:

(2 ) - PI (3.32)
2!(21-P - 2)!
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We subtract 'P from the number of possible combinations of edge nodes since we do

not include edge node pairs where both nodes belong in the same route. Using the savings

pairs from the initial route construction procedure, we attempt to merge the two shortest

simple routes (with the lowest cumulative travel times) by the highest savings edge node

pair, reversing the order of one of the routes, if necessary, to create a merged simple route.

Note that this approach can also work for the asymmetric travel time case (Tij / 7rji) but we

would need to account for the possibility of longer travel times from the reversal of routes.

We choose the merged route that is both feasible and results in the shortest cumulative travel

time. Otherwise, an interim base visit is placed where we would have merged the two simple

routes, resulting in a multi-trip route.

Step 5. Relocation with Base Insert

This final improvement step executes another iteration of the relocation procedure for all

possible pairs of routes (simple or multi-trip) but with the additional consideration of a base

insertion to accompany the inserted node. This could be required in order to validate what

could otherwise be an infeasible route. We follow the same two stages from the relocation

procedure but with routes that can be either simple or multi-trip. Suppose a node k is

removed from a donor route and inserted into a recipient route. If the recipient route is

a multi-trip route, we need to decompose it into one or more simple routes in order to

determine feasibility. If we determine that a simple route is infeasible due to the insertion

of node i, we insert an additional interim base visit according to a greedy approach. We

represent the simple route that received node k, as a sequence of nodes (ii, ... , i1n). We

determine the cumulative travel time to a given node iq and back to the base using the

equation Tiq,b+ Em=1 Tirnim+1, where q = 2, ... , n - 1. If the cumulative travel time exceeds

Tmax, an interim base visit will be inserted before node iq. Indeed, this will result in an

increase in the cumulative travel time for the recipient route (due to the additional travel

time to and from the new interim base and/or the Tbatt), but it can result in an overall

decrease in the maximum travel time over all routes.

By taking advantage of the special structure of the ASIP, specifically, the monitoring set
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constraint (3.19), our heuristic reduces the number of monitoring locations to consider by

solving the weighted set cover problem. We refine the initial simple routes created using the

Clarke & Wright Savings Algorithm with additional improvement steps that consider the

min-max objective function of the ASIP. We also ensure that the final simple or multi-trip

routes account for the number of available UAS. To clarify the steps of our heuristic, we

show how it is applied for one example subnetwork in Appendix A.2.

3.3 Inspection Crew Routing Problem

Given a set of service stations Y and a set of temporary base locations B, the PIRP seeks

to find the optimal route for each inspection crew vehicle (referred hereafter as vehicle)

starting and ending at its corresponding station such that (i) each base corresponding to a

subnetwork is visited, and (ii) the maximum amount of time elapsed from time of failure to

inspection completion among all subnetworks, is minimized. In calculating (ii) we include

the optimal UAS inspection time, *, required for each subnetwork Tk, k E [1, KJ.

For each service station s E Y, and for every pair of locations k 74 1 E B U {s}, we define

a binary variable y', which is equal to 1 if a vehicle that originates from station s goes from

location k to location 1, and 0 otherwise. There is no binary variable y', where k or 1 is

a station different from s; this ensures that a vehicle will return to the service station it

originated from. For every pair of locations k / 1 E B U Y I k Y or 1 Y, we define a real

variable Wkl which represents the time at which a vehicle arrives at location I (coming from

location k). Note that this quantity takes into account the time to travel between service

stations and subnetworks and the time to explore the subnetworks with the UAS. With a

slight abuse of notation, for every base bk E B, we denote *: and 6 4 : k. A MIP

formulation of the PIRP is given in constraints (3.33)-(3.40).

Constraints (3.33)-(3.35) define the classic network flow constraints, while constraints

(3.36)-(3.39) keep track of the arrival times for each vehicle. Specifically, constraint (3.33)

ensures that no more than n, vehicles leave service station s. Constraint (3.34) ensures
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minimize tvlorst
tivorst,Y,w

Subject to

y8s < ns,,

I~ E S ~
lEBU{s}\{k} LEBu{s}\{k}

S S yifk =1,
sEY Etuf{s}\{k}

Ws1 = YslySS1,

0 Wki < M E yk1,
sEY

0 Wks Myfs,

Wkj = E Wik +

LEBuY\{k} IEBuy\{k}

tworst :k + k + Ok,
IEBuY\{k}

yfI E {0, 1},

S YkI yl + Yk sYk, + k,*
1EB\{k} sEY sEY

Vs E Y

V(k, s) E B x y

Vk E B

V(l,s) E B x Y

V(k, 1) E B2 I k # I

V(k, s) E B x Y

Vk E B

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)Vk E B

Vs E Y, V(k,1) E (BU {s})
2

1 k #4

that if a vehicle from service station s enters a subnetwork, it also leaves. Constraint (3.35)

ensures that each subnetwork is visited by exactly one vehicle. Constraint (3.36) initializes

the time traveled by the vehicle if it departs from service station s. Constraints (3.37)-(3.38)

make sure that the arrival time is 0 when no vehicle travels from one subnetwork to another

subnetwork or station. Otherwise, we use a large constant, M, to ensure that there is no

restriction when a location is visited. Constraint (3.39) updates the arrival time by taking

into account the vehicle travel time as well as *. Finally, since we want to minimize the

maximum amount of time elapsed from time of failure to inspection completion among all

subnetworks, we add the variable tworst, along with constraint (3.40).

3.4 Computational Results for Pipeline Network Inspec-

tion

In this section, we first compare our heuristic solutions against the exact solutions of the

ASIP. Next, we solve the PIRP, considering different assignments of inspection crews to

service stations, and different elapsed times from failure alert to inspection crew dispatch.
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We implement the ASIP and PIRP formulations on a case study based on a Kentucky-

based urban water network. We assume that a set of fixed sensors are placed at some nodes

and monitor the edges in the pipeline network, which form the set of vulnerable components

E [44j. Assuming that a failure in a network component can be detected by a sensor if it is

within a given distance [68], the Floyd Warshall algorithm is applied in order to calculate the

shortest distance between each pair of nodes and deduce the set of components monitored

from each sensor location [311. The subnetworks are then provided by partitioning the set

of components depending on the sensors' outputs.

3.4.1 ASIP Results

For the ASIP, we first consider the activation of five subnetworks with sizes ranging from 16

to 33 edges. We label these subnetworks T1 , ... , T5.

For each subnetwork Tk, k E [1, 51, we assume that the UAS monitoring locations, Vk,

are positioned directly above the nodes of the subnetwork induced by 7k, i.e., the set of end

nodes of the edges in Tk. We consider the scenario where an UAS, positioned directly above

a given monitoring location i E Vk, can inspect the adjacent edges of i (i.e., the adjacent

pipelines). Without loss of generality, we restrict the UAS to travel only along the edges of

the given pipeline network and we assume symmetry with respect to travel times . We

place the temporary base within each subnetwork by finding the node that minimizes the

total distance from that node to all other nodes. As a conservative estimate, we assume a

maximum endurance, Tmax, of 1 hour, and a battery replacement time, Tbatt of 5 minutes. By

solving the ASIP instances, we find that the optimal time required to isolate all components

for each subnetwork with 2 UAS is * = (0.88, 1.46, 0.86,0.87,0.63) (in hours). The final

routes for the 2 UAS are shown in Table 3.1. Note that the inspection of subnetwork T2

takes longer because it requires a multi-trip route for each UAS. Also note that due to the

min-max objective function of the ASIP, the final solution can result in extraneous node
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visits for route(s) with shorter duration. For example, for T2 , the visit to node 9 for the

second UAS is one such case.

Table 3.1: ASIP Solutions

Tk Nodes Edges G bk UAS Routes
7T1 31 33 0.88 4 (4,18,24,1,29, 13, 12,11,26, 5,4),

(4, 3, 7, 6, 8, 9, 22, 19, 28, 4)
T2  16 20 1.46 16 (16, 10, 1, 16), (16, 5, 6, 16),

(16, 8, 9, 7, 4, 16), (16, 12, 15,16)
T3  15 18 0.86 6 (6,8,3,15,14,1, 6),

(6, 5, 10, 11, 6)
T4  18 17 0.87 8 (8,10,15,12,14, 8),

(8, 4, 1, 5, 6, 3, 8)
T5  16 16 0.63 11 (11,16,5,4, 7, 10, 11),

(11,8,12,14,1,11)

Using the MIP formulation, it took over 5 hours to achieve the exact solutions for the 5-

subnetwork scenario referred to in Table 3.1. Comparatively, our heuristic was able to obtain

the same optimal solutions in only 4.15 seconds, an acceptable time frame for real world

implementation. Using the same Kentucky based pipeline network, we altogether tested our

heuristic on 10 different subnetworks consisting of up to 37 edges (i.e., components). The

largest of these represents the biggest reasonable size that can be assigned to an inspection

crew given the scale of the network. Computational results show that high quality solutions

can be obtained using the ASIP heuristic for 2 and 3 UAS. Table 3.2 shows our results using

2 UAS. The results for 3 UAS are included in Appendix A.1. The subnetworks are listed in

ascending order based on the number of edges with the 5 subnetworks used in our scenario

highlighted in grey. The overall average optimality gap was 0.78%. All of our problem

instances were solved on a computer with a 2 GHz Intel Core i7 processor and 8 GB of

RAM.

Our computational study for the ASIP shows that our heuristic can provide high quality

solutions within a time frame that meets operational requirements.
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Table 3.2: Comparison of ASIP Exact Solutions with Heuristic for 2 UAS

Subnetwork MIP Heuristic Optimality
Nodes Edges Obj Time (sec) Obj Time (sec) Gap

5 6 0.209 0.02 0.209 0.013 0%
11 10 0.413 0.41 0.413 0.042 0%
16 16 0.635 33 0.635 0.093 0%
18 17 0.869 10 0.869 1.115 0%
15 18 0.857 94 0.857 0.077 0%
16 20 1.464 7742 1.464 1.208 0%
17 22 0.745* 100000 0.745 0.157 0%*
22 29 1.582* 100000 1.611 0.271 2%*
31 33 0.882 10354 0.882 0.608 0%VC
36 37 1.291* 100000 1.369 0.715 6%*

* Figures based on the best incumbent MIP objective value found in 100000 sec limit.

3.4.2 PIRP Results

Using the ASIP solutions from Table 3.1, we consider two service stations, si and s 2, that

are located in the network with station si containing one inspection crew, and station s2

containing two. Each inspection crew travels in a vehicle that carries two UAS. We derive

the travel time by dividing euclidean distances between each pair of locations (k, 1) in the set

Y U B by the average vehicle speed. We assume that the maximum distance can be covered

in 6 hours, and that 0 = (1, 1, 1, 1, 1) for simplicity (i.e., all failure alerts occur one hour

prior to to).

Using the formulation for the PIRP, as described in Section 3.3, we obtain the follow-

ing optimal solution: The single inspection crew from service station si travels along the

route (si, b4 , si), and the routes for the two inspection crews from service station s2 are

(s 2 , b 5 , bi, s2 ) and (s 2 , b2 , b3 , S2). Figure 3-11 illustrates the optimal solution. The longest

time elapsed from time of failure to inspection completion- is 5.87 hours.

From this initial computational study, we can make the following observations: First, we

verify that the overall solutions are sensitive to 0. In general, a subnetwork 7k with a larger

0 k will be visited first. Second, we observe that the PIRP solution tends to compensate for

the magnitude of the UAS optimal inspection times, *. For instance, an inspection crew can
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Figure 3-11: Optimal PIRP solution where all failures alerts occur one hour prior to to.

The arrows depict the routes for the inspection crews, which originate from the two service

stations (triangles) and visit the temporary bases within each subnetwork

take a longer route if UAS inspection times for the subnetworks in that route are relatively

small, and vice versa.

Next, we solve for the PIRP using different values for 6 and n,. Note that we can

use the ASIP solutions as inputs for the PIRP only because we assumed the same number

of homogeneous UAS for each inspection crew. We also consider an alternative scenario

where 0 = (1, 5, 1, 1, 3) meaning that subnetwork T2 (resp. T5) was alerted 5 hours (resp. 3

hours) prior to to. With all else equal, this results in an increase in priority to visit these

subnetworks earlier. Larger values of 6 may arise due to the unavailability of inspection crews

as discussed in Chapter 2, Section 2.5. For each scenario, we also consider the availability of

1 to 2 inspection crews at each service station to assess the impacts of initial crew placement

on the PIRP solution. Table 3.3 shows the resulting optimal values for t,,,,t and inspection

crew routes for each scenario.

Figure 3-12 shows the optimal solution for the PIRP considering the scenario 6

(1, 5,1,1, 3) with 1 inspection crew at service station 1, and 2 vehicles at service station

2. As anticipated, b 2 and b5 are visited first by the crew originating from service station s2.

Surprisingly, the optimal solution sends one of the crews along the longer route (s2, b5, b3, S2).

This is due to the longer UAS inspection time required for T2 . Since the UAS take more time

to explore T2, the crew which visits T2 compensates by traveling to the closer subnetwork

Ti, thus resulting in the shorter crew route (s 2, b2 , b1, S2). This implies that the other crew is
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Table 3.3: Comparison

Time Since Alert Crew Vehicles Obj PIRP
0 Station 1 Station 2 twors Solution

(1,1,1,1,1) 1 2 5.87 (si, b4, si),
(s2,b, bi,s 2), (s2,b2, b3,S2 )

(1, 1, 1,1, 1) 2 2 5.05 (si, b4, si),(si, b3, S)
(s2, b5, s2 ),(s 2 , bi, b2, S2 )

(1, 1, 1, 1, 1) 2 1 7.40 (si, b5, si),(si, b4 ,si)
(s2, bi, b2, b3 , 82)

(1,5, 1,1,3) 1 2 7.52 (si, b4, si),

(s2, b, b3 , s2 ),(s 2 , b 2 , b1, s2 )
(1,5,1 1,3) 2 2 7.52 (si, b4, si), (si, b3,S1 )

(S2, b2 , 82),(82, bi, b5, S2)
(1, 5,1,1, 3) 2 1 8.03 (s1, b5, si),(si, b4,si)

(S2, b2 , bi, b3 , 82)

left to travel along a longer route. The twt for this problem, is 7.52 hours. When allocated

an additional crew at service station 1 (2 crews at both service stations), tU)st remains at

7.52 hours. This is because for both cases, T2 overwhelmingly takes the longest time from

time of failure alert to inspection completion. Indeed, 7.52 hours in this case represents a

tight lower bound for twt regardless of crew allocation since 72 will always be visited first

and take the longest time.

Figure 3-12: Optimal PIRP solution for the case where the failure alert for subnetwork 2

(resp. 5) occurs 5 (resp. 3) hours prior to inspection crew dispatch

Finally, we investigate the impact of inspection crew spatial positions prior to dispatch.
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Of the 5 subnetworks, 'T4 is located near si, and is farther from the rest of the subnetworks,

which are clustered around s2. Therefore, the case where 2 inspection crews are at service

station 1 and only 1 is at service station 2 represents an "unbalanced" situation. In this

case, the additional distance traveled by the inspection crews increases teo0,t to 8.03 hours

compared to 7.53 hours. Although in general, the availability of inspection crews are subject

to numerous factors (e.g., utilization rates), this indicates the importance of proper spatial

allocation, which we consider as part of our future work.

In summary, our results provide insights in the coupling between the ASIP and the PIRP,

the interconnection between UAS inspection time and inspection crew travel times, and the

overall solution's sensitivity to inspection crew spatial positioning and 0.

3.4.3 Stochastic Travel Times

In this section, we evaluate the solution of the ASIP for the case when travel times are

stochastic by employing Monte Carlo simulation on representative network topologies.

Although we solved the ASIP using deterministic values for the travel times, the complex-

ity of real time navigation for UAS warrants a stochastic model to account for environmental

factors (e.g., headwind versus tailwind), the need to circumvent restricted airspace (e.g., tem-

porary flight restrictions), and obstacle or terrain avoidance (e.g., manned aircraft or pow-

erlines). Ignoring the stochasticity of travel times could otherwise lead to over-optimistic or

infeasible solutions. This is especially pertinent for smaller UAS that cannot fully compen-

sate for atmospheric disturbances given their slower speeds and lower propulsion capacity

[18]. Obstacle avoidance as well as atmospheric turbulence prevalent at low altitudes could

also cause the UAS to deviate from the expected travel time between any two locations [82].

Based on the available a priori information with regards to the environment, we can

assume that the cruise speed, denoted as Vc, is a random variable with a known probability

distribution. Specifically, we assume that Vc is an independent and normally distributed

random variable. This assumption is relevant for low altitude flights, where unpredictable
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winds prevent the use of even the simplest wind models [82]. Due to the lack of available

UAS flight data, we use mean cruise airspeed (Vc), and the maximum allowable operating

speed (Vma) from Table 2.1, resulting in the following model for Vc, as described in 184].

~' = , Vma-V (3.41)
o v/ 2x3

Likewise, we also assume that the climb (resp. descent) rates are independent, normally

distributed variables, where the mean value is equal to the climb (resp. descent) rate from

Table 2.1, and the maximum climb (resp. descent) rate is 5 m/s (resp. -3 m/s), respectively,

based on empirical data from the first class of representative UAS.

For each simulation, we determine Tij, between any two locations (i, J) E Vk2 by dividing

the shortest path distance from i to j with Vc. Recall that we do not necessarily impose

rij = Tj. We also incorporate the climb and descent rates into the stochastic travel time

based on the altitude change from i to j.

We now investigate the impacts of these stochastic travel times with notional topologies;

this allows us to assess the impact of not only the random travel times but also the network

topology in the overall ASIP solution. We focus on the tree and extended star topologies for

our representative subnetworks. We select a binary tree with a height of 3, an extended star

consisting of 4 internal nodes with 3 degrees each, an extended star with 10 internal nodes

with 3 degrees each, and an extended star with with 17 internal nodes with 4 degrees each.

Figure 3-13 shows the four representative subnetworks, in the order of decreasing network

density for each subnetwork Tk, k E [1, KI. We calculate the network density by taking the

number of edges and dividing by the number of potential edges, IVk I(IVk - 1)/2.

For each chosen topology, we use 2 of the first classes of UAS shown in Table 2.1 with an

endurance time of 30 minutes. We assume each edge has a distance of 1 km for simplicity,

and we normalize the distances so that the longest distance can be reached given the mean
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Figure 3-13: Representative topologies. Clockwise from top left: extended star (4 internal
nodes with 3 degrees each), binary tree (height of 3), extended star (10 internal nodes with
3 degrees each), and extended star (17 internal nodes with 4 degrees each). The network
densities for each are shown on the top right. The lower right has the lowest density measure

cruise airspeed and endurance of the UAS. Also, we restrict the UAS to travel along the

edges of the graph. For simplicity, we set the operating altitude to 120 m, equivalent to the

maximum allowable altitude for each monitoring location and 80 m for the base location,

since we assume that bk E Vk. Finally, we assume that the UAS can inspect adjacent

components (i.e., edges) incident to a monitoring location (i.e., node).

We employ Monte Carlo simulation to investigate the impacts of the proposed stochastic

travel times on the UAS optimal inspection time, *. For each selected topology, we first solve

the ASIP using our heuristic, assuming deterministic values for Tij. Using the optimal routes

for each UAS as a guide, we attempt to follow each prescribed route using the simulated

random travel times. This results in some incomplete routes, that is, the UAS will not be

able to reach some of the monitoring locations towards the end of the route if the cumulative

travel times are longer than the endurance. Therefore, there is a likelihood of missing

some components in each subnetwork T, k E J[1, K], depending on the composition of the

monitoring set Ck for each missed monitoring location i E Vk. We are concerned with two

measures of performance: first, the distribution of the UAS optimal inspection times, or
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for those UAS flights that successfully observed all components, and second, the number of

missed components for a given UAS endurance. Figure 3-14 shows the histograms showing

the distribution of inspection times based on 1000 simulations.
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I I I 1 1

0.8 1.0 1.2 1.4 1.6
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Figure 3-14: Histograms showing the distribution of 1000 simulated UAS inspection times
on select topologies

We can now make a few key observations. First, we find that each histogram is best ap-

proximated with a log-normal distribution, based on the Akaike Information Criterion (AIC)

compared to other distributions like the Gamma and Weibull. We also note that the lognor-

mal distribution's shape parameter decreases as the network density decreases. Furthermore,

the histogram mean (respectively the mean of the associated log-normal distribution) is larger

compared to the deterministic ASIP optimal value. The difference between these two values

grows as the network density decreases (with differences of 0.046, 0.018, 0.062, and 0.075).

In general, given the same number of nodes (and therefore the same number of potential
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connections), a lower network density will lead to longer inspection times due to increased

travel distances.

-- - Extended Star (4,3)

Binary Tree
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-....-.- Extended Star (17,4)
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Figure 3-15: Probability of missed network components from 1000 simulations given the

endurance

Next, we investigate the impact of UAS endurance on the number of missed components

as a result of the simulated travel times. A network component e is missed if the UAS do

not visit any of the monitoring locations in Vk(e). We used a benchmark endurance of 30

minutes to normalize the distances based on the first category of UAS in Table 2.1. We set

the maximum distance to a node from the base to half of the endurance. Figure 3-15 shows

the probability of missed components from 1000 simulations with different endurance values

ranging from 30 minutes to 1 hour. By using these values, we can represent different UAS

platforms to some extent. For each of the endurance values, we observe the number of times a

network component is missed. We note that the extended star with 4 internal nodes resulted

in very few missed components. This is a direct result of its topology, which requires only half

of the endurance to travel to the 3 internal nodes adjacent to the base and back; by visiting

the internal nodes, the UAS can successfully observe all of the components. As expected, with
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higher endurance values we observe a lower probability of missed components. In general, we

observe that topologies with lower network density measures result in a higher probability

of missed components. We also observe that endurance values higher than 45 minutes result

in virtually no missed components for each of the network topologies shown. This suggests

that class 2 and 3 UAS from Table 2.1 with capable sensors (larger monitoring sets) could

satisfy mission requirements despite the uncertainty from the external environment.

In summary, accounting for stochasticity in travel times suggests that the overall PIRP

solution will likely incur delays in practice, due to longer UAS inspection times. Moreover,

in some situations, following the prescribed route from the ASIP output can lead to missed

network components depending on the endurance of the UAS platform. Thus, in real-world

environments, proper choice of UAS platform and conservative route planning is needed

to avoid costly setbacks from unidentified failures. Still, UAS-based inspection can lead

to significant cost and time savings in comparison to conventional, purely ground-based,

operations.
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Chapter 4

Value of Predictive Failure Analytics for

Priority-Based Routing

This chapter presents an adaptation of our infrastructure inspection approach presented in

Chapter 2 to a drainage network. Specifically, the problem we seek to address in this chapter

is the following: Given an extreme storm event, how to leverage data from flood sensors and

UAS to: 1) reduce diagnostic uncertainty of failures in various subnetworks, and 2) design

optimal inspection crew routing strategies for complete network inspection, subject to time,

vehicle, and network constraints? In Section 4.1 we partition the network into subnetworks

based on the range of fixed sensors. Sensor alerts show strong correlation to the extent of

damage in subnetworks; these alerts help determine inspection priorities and failure rate

predictions. In Section 4.2 we first obtain UAS inspection routes for each subnetwork by

solving auxiliary MIPs. We integrate UAS inspection times and stochastic failure rates for

network inspection, which is solved in two ways: a stochastic dynamic program that considers

prediction intervals of failure rates; and a certainty-equivalent MIP that only accounts for

mean failure rates. These solutions allow us to evaluate the utility of integrating sensor data

into inspection operations. In Section 4.3, we demonstrate the benefits of our approach using

data on drainage network failures and inspections following 2017's Hurricane Harvey.
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The work presented in this chapter is motivated by a data project with a particular

drainage network agency, whose total maintenance budget is approximately $30 million a

year. Delays in the identification of failures such as debris, structural damages, and blockages

heighten the catastrophic effects of prolonged storm-induced flooding (e.g., levee structural

failures, reduction of flow, limited access to clean drinking water, and loss of basic sanitation).

Following a storm event, the main challenge for a drainage agency is to identify regions

more susceptible to failures with higher repair costs while completing a network-wide inspec-

tion. Drainage network agencies currently acquire information through two primary forms of

sensors. First, pre-installed flood sensors deployed across the network can provide water ele-

vation measures to identify regions of high flood risk. However, using flood sensors to assign

priority levels for failure identification has not been fully explored. Second, ground-based

inspection crews can be viewed as mobile sensors, who complete detailed network inspection

to identify failures. However, narrow Right-of-Ways (ROW) require crews to walk along the

water channels, resulting in significant delays. Furthermore, damages inflicted by the storm

along the channels can impede access, leading to additional delays or worse, uninspected

portions of the network.

4.1 Failure Prediction Model

For drainage networks, we also use data collected from existing fixed sensors to inform inspec-

tion crew routing strategies, through priority recommendations. In this section we discuss

our approach to utilize data from flood sensors, located on a drainage network, to partition

the network into high- and low-priority subnetworks. We use flood sensor measures, along

with other geomorphological data, to develop a statistical model for estimating failure rates

in each subnetwork. To achieve this, we rely on available data and results from inspection

operations following Hurricane Harvey in Houston, TX.
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4.1.1 Network and Data

We consider a drainage network consisting of over 2,500 miles of open water channels that

are either natural (i.e., creeks, streams) or man-made (i.e., canals, ditches). During a storm

event, surface runoff, defined as excess storm water that flows across the land instead of

absorbing into the ground, can lead to flooding. The risk of flooding is especially magni-

fied in urban settings, where impervious concrete and pavement surfaces resist the natural

absorption of water. The drainage network's primary role is to ensure proper conveyance

of surface runoff, so it can ultimately reach a river, lake, or other body of water. We refer

to the direction of gravity-induced flow as downstream. The network naturally resembles a

tree-like, or dendritic structure.

The main entity responsible for inspection and maintenance of the drainage network is

the Flood Control District (FCD). In many states, FCDs are special purpose districts created

in response to flood threats, authorized by a number of Flood Control Acts passed by US

Congress [87]. The FCD operates out of a small set of service stations. Inspection crews

travel to a set of access points, which represent authorized entry points off of a road to

access the drainage network. The dispatch of inspection crews from the service stations to

the access points is enabled by a road network. We consider the set of roads to be accessible

(i.e., not flooded or damaged). Otherwise, data collected from sensors or customer calls

can be incorporated as a way to estimate accessibility and travel times of certain road

segments. To determine the travel time along the roads, we use the primary and secondary

road lengths, along with empirical average travel speeds available from the Texas Department

of Transportation [73].

For the estimation of failure rates, we also gather additional data that describes the

physical attributes of each edge of a subnetwork. Each edge is distinguished by the channel

type (man-made or natural), and each channel type is further classified as a water body

type. For example, natural channels consist of the following water types: bayou, creek,

gulch, river, or swamp; man-made channels consist of either canal/ditch or concrete channel.

Using publicly available information from the Soil Survey Geographic Database and the
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Houston-Galveston Area Council, we also collect geomorphological data such as soil type

(i.e., sand, silt, or clay) and various land cover categories (e.g., evergreen forest) within a

500 ft buffer zone around each edge, based on consultation from the network agency [76, 41].

Following a storm event, wind damage can cause extensive damage to vegetation and

buildings, introducing debris to a drainage network such as solid waste, roof material, and

downed tree limbs. Furthermore, rain-induced flooding can introduce additional debris,

which lead to significant reduction in flow or complete blockages. We focus on debris failures,

which include organic or inorganic debris, blockages resulting from slope failure or sediment

build-up, and failed concrete. The timely removal of debris following large-scale disasters

has been a key focus of study in recent years [23, 13, 3]. Therefore, we collect data on

the number of confirmed debris failures found along each edge during inspection operations

following Hurricane Harvey. For each failure, we also account for repair cost estimates

determined by qualified engineers following inspection operations.

The spatial reach for the aforementioned attributes and failure data to consider for each

subnetwork is governed by a distance parameter. We find that 10,000m is ideal to ensure

sufficient coverage of the network (90%). For each subnetwork Tk, k E [1, Kj, we count

up the number of failures along the edges within this distance (along the shortest paths)

from the corresponding flood sensor. We divide the total number of failures by the total

edge distance in Sk, to obtain a failure rate per 1000m for each subnetwork. We denote this

actual failure rate from the data for each subnetwork as Xk, k 1,. .. , K.

4.1.2 Failure Rates and Flood Sensor Data

In this section, we propose an approach to utilize flood sensor data to estimate failure rates

in each subnetwork. A useful hydrologic measure to determine rate of flow is the discharge,

defined as the total volume of water that flows past a certain cross sectional area of the

channel. The discharge, typically measured in cubic feet per second, is estimated from an

empirical elevation-discharge curve, calibrated for each sensor location [77]. For our purpose,
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the discharge corresponding to elevations over the TOB is of interest. Using the publicly

available data from a drainage network agency's website [39], we collect elevation measure-

ments for 133 flood sensors, over the dates coinciding with Hurricane Harvey. Using the

elevation-discharge curves for each flood sensor, we first convert the elevation measurements

to discharge. We then obtain the total volume of water over the TOB (cubic feet) by inte-

grating the resulting discharge curve over the time period between the first TOB overflow

to the final time the elevation receded below the TOB. We denote this total volume as

Vk, k E [1, K]. Additional details on total volume calculation can be found in Appendix

B.1.

We first examine the relationship between the failure rate and the total volume over the

TOB. To do this, we let Pk represent the number of failures and Dk represent the rate of

failures (per 1000m) for all k = 1, ... ,K. If we suppose Pk follows a Poisson distribution,

the probability density function is given by:

Pr(Pk = Pk) = , P! Pk = 0, 1, 2,.... (4.1)

with parameter A) = E(P) = Vr(Pk). The Poisson regression model is derived from

this distribution by parameterizing the relation between Ak and the explanatory variable vk.

This is given by Ak = E(Pk I Vk) = e0+13
1Vk, where 00 and 01 are numeric coefficients. If we

let L(Ek) denote the distance of the edges in subnetwork k, we can model the rate of failures,

using a Poisson regression model of the form:

log (E(L ) +) /1Vk, (4.2)

Using log properties, this is equivalent to the following model, which we use to model the

failure rate per 1000m. Note that L(Rk) is treated as another explanatory variable with a

fixed coefficient of 1.
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Dk = log(E(Pk)) -- i + 1
3 Vk + log(L(Sk)),

Given data from only one storm event, we train our univariate model using the entire

drainage network with the exception of a region called the White Oak Bayou region, which

we reserve for testing based on consultation with the agency. This region represents a good

mix of several physical attributes, such as channel type and water type. For our purpose, the

exact total volume over the TOB is not required for failure rate prediction; in fact, the noise

in the data can lead to overprediction errors. Therefore, we group the total volume over the

TOB into 4 natural bins to create categorical variables representing very low, low, medium,

and high volumes. We observe a statistically significant relationship between Pk and these

total volume categories (p-values of < 0.001 for each category). In general we observe that

higher total volumes over the TOB correspond to higher debris failures, suggesting that

overflow and discharge both impact the number of debris failures.

Uncertainty with respect to actual debris failure rates is a critical aspect in determining

the order of precedence with which to approach subnetwork inspection. In our proposed

approach, the accuracy (or lack thereof) of failure rates can significantly affect the timeliness

of failure identification. For example, given inaccurate failure rates, crews might spend

a longer time in the earlier days of inspection visiting regions with a disproportionately

smaller number of failures. On the other hand, accurate failure rates can assist in focusing

earlier inspection efforts on subnetworks with a higher number of failures. To specify the

uncertainty of failure rates, we use bootstrapped samples from the training data to acquire

a prediction interval based on the Poisson model. The prediction interval defines where a

future observation will fall with a certain probability based on our model. For example, with

a 95% prediction interval of 10,31, we can be 95% confident that a future observation will fall

in this range. A prediction interval provides an alternative to point forecasts and has been

shown to be very useful when decisions are affected by uncertainty [32, 61.

Using our univariate Poisson model, we find the prediction interval to be too large for our

purpose. For example, an upper prediction interval of 6 equates to a rate of 6 per 1000m,
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which would equate to 58 failures in one example subnetwork despite having only 8 actual

failures. To reduce the size of the prediction interval (and hence improve on the accuracy),

we build upon this univariate model by introducing additional explanatory variables.

We develop a multivariate additive Poisson regression model to estimate the failure rate

per 1000m for each subnetwork, using the total volume over the TOB and additional edge

attribute data discussed in Section 4.1.1. Specifically, we choose three additional explanatory

variables that were shown to be statistically significant for predicting debris failure rates:

percent natural channel, percent canal or ditch, and percent evergreen forest. The soil type

and other water types did not turn out to be significant. We let Ck to be a (1 + j) vector,

where the first element is unity for all k subnetworks and j is the number of explanatory

variables.

Therefore, the multivariate Poisson model takes the form:

log(E(P)) =f3'Ck + log(L(&k)), (4.4)

where 3' represents the vector of numeric coefficients.

Given a (1+j) x K matrix of explanatory variables and a 1 x K vector of actual failure rates

from the available data, we obtain coefficient estimates by maximizing the likelihood. We

show the results of a training and test split in Figure 4-1 along with the upper bound of the

prediction interval (lower bound is 0). Of the list of explanatory variables, the total volume

over the TOB stands out as one of the more significant variables in determining the rates of

debris failures. As discussed earlier, this volume is calculated by integrating the discharge

curve, corresponding to the elevation measurements over the TOB. Additional details on the

results of our Poisson models can be found in Section B.2 of the online appendix.

We compare the performance of our univariate and multivariate Poisson models on the

White Oak Bayou test set. To estimate the average generalization error, we perform a 10-fold

Cross Validation (CV) to obtain an overall mean squared error calculated as I > (P-f)
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Test Set: Plot of Observed and Predicted Failures
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Figure 4-1: Multivariate Poisson Regression Results on Test Set

where Dy represents the predicted debris failure rate from the model and n denotes the

number of observations. The multivariate model shows an improvement based on the Cross

Validation results (3.14 MSE for the Multivariate model compared to a 3.91 MSE for the

Univariate model). In Table 4.1, we show the total edge distance, the volume over the TOB,

the actual failure rate, the expected failure rate per 1000m based on the models, and the

upper bound for the prediction intervals for the 11 subnetworks in the region (6 high-priority

and 5 low-priority). We note that there is an improvement in the prediction intervals by

incorporating additional variables.

Henceforth, we assume an uninformative prior, where the range of the failure rate is based

on the 95% prediction interval. Specifically, we consider a uniform discrete distribution given

by P(Dk - dk) -- +1), where hk is the upper bound from the Poisson model's prediction

interval for subnetwork k. This serves as an input to the Inspection Routing Problem, which

we discuss next in Section 4.2.
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Table 4.1: Model Results for the White Oak Bayou Region

Sub- Distance Volume Actual Predicted Rate Pred Interval hk
Network L(Sk) log(vk) Rate Univar Multivar Univar Multivar

7h1 9689 19.91 3.00 0.98 0.90 3 3
Th 17526 23.55 1.76 1.39 1.08 4 3

Th 522 24.51 0.00 2.14 1.50 6 4
Th 24343 24.54 1.03 2.14 1.83 5 3
Th 17729 26.43 1.52 1.73 1.31 5 4
Th 21682 26.22 1.38 1.73 1.39 4 4
T7  18740 26.28 1.17 1.73 1.52 5 4
T 11924 24.49 1.26 2.15 1.32 5 4
7 9895 24.68 0.81 2.15 1.56 6 4

T1 2016 25.41 1.98 2.15 1.45 6 4
7 9474 25.54 2.74 2.15 2.09 5 4

4.2 Prioritized Inspection Crew Routing

In this section, we describe our proposed approach to solve the Prioritized Inspection Routing

Problem (PIRP) for a drainage network, using the subnetworks and failure rate probability

distributions described in Section 4.1.

The overall goal in a drainage network is to rapidly identify not only all failures, but

more importantly the high-cost failures, which we define as having estimated repair costs

of over $10K (based on the median repair cost from inspection data). However, this de-

pends on knowing the estimated repair costs, which is realized only after post-evaluation

of the inspection data by qualified engineers. Therefore, this motivates our choice for the

objective. We focus on a proxy measure to find all failures, since high-cost failures cannot

be immediately confirmed. In the PIRP, our objective is to maximize the number of debris

failures over the inspection operations timeframe, which is discretized into N days. Our goal

is to determine if this objective, combined with the failure rate probability distributions,

can lead to a routing schedule where the net effect is the timely identification of high-cost

failures. We first partition the drainage network into subnetworks, and for each subnetwork,

we determine the a-priori failure rate probability distribution P(Dk), as described in the

previous section. Suppose time 0 denotes the time when the storm event strikes and time to
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represents the first day of favorable weather and channel conditions to enable access to the

drainage network. Based on the flood sensor alerts collected during the time period [0, to],

we consider a collection of subnetworks Tk, k E [1, K], each represented with an access

point. Recall from Section 2.1 that we can refer to these subnetworks as high-priority, Tk,

or low-priority, T!, based on alerts.

We consider a set of service stations denoted as Y. We let n, denote the number of

inspection crews that are available for each day from service station s E Y. For simplicity,

we assume that each crew is equipped with U homogeneous UAS to assist with inspections.

UAS can identify failures across the entire subnetwork at a fraction of the time required for

ground-based inspection crews. As a result of this increased rate of inspection, crews can

complete piecemeal or fractional inspections of subnetworks. This approach would other-

wise be difficult using ground-based crews due to challenges in accessibility and work hour

considerations.

For each day m E [1, NJ, an inspection crew must depart and return to the same service

station within a time budget which we denote as Tm. In practice, Tm can be different for

each day depending on various factors such as weather, accessibility, and worker availability.

For the purpose of network inspection, we designate a set of nodes, B : {bk, k E [1, KII},

as access points. In practice, there can be more than one access point for each subnetwork.

We let the set j contain the edges (k, 1) for each ordered pair of locations in the set Y U B,

assuming a complete graph. The travel time needed by a crew to travel along (k, 1) E

J is denoted by _YkI, which is determined by the shortest paths along the road network

using the empirical average travel speed data. We do not necessarily impose Ykl = Ylk.

Once the inspection crew arrives at an access point, UAS are used to complete inspection.

The inspection crew remains stationary at the access point while UAS travel along the

Right-Of-Way (ROW) to complete inspection; this policy is especially practical when ground

conditions prevent movement by foot to the drainage network. Upon retrieval of the aerial

sensor, the inspection crew can choose to either continue inspection of the same subnetwork

or visit another subnetwork within the remaining time budget.
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The routing of the inspection crew over a transportation network is driven by two deci-

sions: first, the sequence in which to visit the access points (i.e., subnetworks), and second,

for those visited subnetworks, what fraction of the subnetwork to inspect with the aerial

sensor. For each day m E [1, NJ, let R' C Ek denote the set of edges of 7k that have not

been inspected after days 1, ... , m - 1, and let L(R') denote the total length of the edges

in R'.

fmnaxk 2 f, 4
nax.k 1

fmaxk = 2
1/ 22

1/4 2/3 1/1

3/3

f, fk fTax,e 2 tmahe =u o
1/2 1/1

2/4

fk =23 2/2x~

3/4 1/1

4/4

Figure 4-2: Fractional Inspection Sequence Example for a Subnetwork

For each day m, an inspection team may decide to inspect a fraction of a subnet-

work, which we model as a choice index denoted as f' E N that satisfies fan <;speton

a_ k~xk

where f,a,, represents the largest choice index. The largest index choice satisfies: Vm E

[1, N - 11, fma~ _- fmax,k - fkm. This ensures that the entirety of the subnetwork will be

insectd ithat os fmx1 visits. For simplicity, we assume that f M, is the same for all

subnetworks. Figure 4-2 shows an example of the possible sequence of fractional inspections

for a subnetwork with fm 1~ = 4. A choice index of fk' = I would represent an inspection

of 1/4 of the edges in R1 for the first day. The largest choice index for the following day is

given by fmaxk - fmaxk - fk = 3. For smaller subnetworks where the total length L(Rm),

does not exceed the length of the longest edge in the network, we assume the only available
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fraction choice to be f ax,k; in other words, the only choice is to inspect the entire sub-

network. Based on the objective to maximize the number of expected failures, the routing

decisions are based on the failure rate distribution for each subnetwork, which reflects the

current belief. The initial distribution is assumed to be uniform, and with each subsequent

fractional inspection of a subnetwork, we update the respective distribution using a Bayesian

update, which we discuss in Section 4.2.2. Figure 4-3 illustrates a general timeline using our

notation for inspection operations requiring a total of N days after to. Note that in the case

of a drainage network, we set 0 k = 0, k E [1, K] since the information about the delay from

the time of sensor alert to to is embedded in the Total Volume over TOB measure.

Updated Failure Intervals
Determine

Storm Tkh, M Inspection of Inspection of

Event P(Dk) 5 of L(R1) -of L(R1)

Duration over TOB Aerial Sensor Inspection Times
in Tk and 'T

Day 1 Inspection Crew Routing ... Day N

Figure 4-3: Timeline of Inspection Operations for our Proposed Approach

Since the PIRP solution is partially determined by UAS inspection time, we solve a second

routing problem to determine the optimal time required to inspect a chosen fraction of a

subnetwork using available UAS. We call this problem the Aerial Sensor Inspection Problem

(ASIP), and we solve it offline for a finite set of fraction choices. In the next section, we

describe how to solve the ASIP.

4.2.1 Refined Aerial Sensor Inspection Problem

We also integrate UAS as described in Chapter 3 to improve accessibility and to identify

failures at a fraction of the time required for ground-based inspection crews. However, instead

of using monitoring locations, we consider a more restricted case for drainage networks, where

the UAS must traverse every edge of the subnetwork.

Consider a subnetwork Tk with k e [1, K]. Recall that we let Pk (resp. Ek) denote the
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set of nodes (resp. edges) in Tk. For every pair of nodes (i, j) in Mk, we let Tij represent

the distance along the edges from i to j. For each day m E [1, NJ, let E' C Ek denote the

edges chosen for inspection on day m. The set of remaining edges still requiring inspection

satisfies the following: R = Ek, and R'+ = Rn\Em Vm E [1, N - 1]. Based on a chosen

fraction from the PIRP, we denote the corresponding total length to inspect as 'k L(Rm).
f Xmax, k k

The goal of our Aerial Sensor Inspection Problem (ASIP) is to determine the optimal

routing of the UAS in 7k in order to inspect the total edge length requirement L(Rm).
fX , k (Rk

The objective is to minimize the longest time to complete this inspection requirement, over

all UAS. The routing solution of the ASIP provides a subset of edges E' to inspect using

UAS. We denote the total time taken to inspect Em using UAS as *

Due to the tree topology of the network, we allow bypassing behavior. Bypassing can

occur in two cases. First, if an edge was already inspected on a former visit to the subnetwork,

the UAS can travel faster or 'bypass' that edge. Second, if one aerial sensor already inspected

an edge during a current visit, another aerial sensor can bypass that same edge.

For the sake of brevity in presenting our formulation of the ASIP MIP for a given sub-

network and fraction choice, we leave out the subnetwork subscript and use (.A, S) to denote

the set of nodes and edges in the subnetwork being inspected, R to denote the remaining

edges to be inspected, b to denote the base bk, f to represent the chosen fraction index f'

and as the total exploration time kjk- Once an inspection crew arrives at an access point,

a total of U UAS are deployed and travel along the ROW to identify failures. For each edge

e = (i,j) E , we define 2U binary variables xy, xj that are equal to 1 if edge e is traversed

by aerial sensor u traveling from i to j or from j to i, respectively. We also define 2U binary

variables yu, yju that take a value of 1 if an aerial sensor bypasses or travels faster across the

edge from i to j or from j to i, respectively. For each edge e we also define 2U continuous

variables t', t, which represent the cumulative distance at which an aerial sensor arrives at

location j (coming from location i), or arrives at i (coming from j) respectively. Finally,

we introduce a binary variable ze, which takes the value of 1 if e is inspected by an aerial

sensor. For each node i E M, we denote the adjacent nodes as 6(i). Likewise for each edge
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e E S, we denote the adjacent edges as 6(e). For a given fraction choice of a subnetwork to

inspect, we formulate the ASIP with equations (4.5) to (4.12).

minimize (

Subject to

ZTeZe > f L(R)
e fa

(xy + xi- y' - yji) 2ze

U ; = ii y,

tij TbXjjE6(i) jE6(i)

bj" = 7rej Xbj

tg= tji + E -rijxu - r/ -rijyUJ
jEJ(i) jE6(i) jE6(i) jE6(i)

x U y> Y

0 < tu- < MxU,

Xoj E {0, 1},

y .E {o, 1},

ze E {0, 1},

tu. > 0,

Ve = (i, A) E S, = U

Vi E A/\{b}, Vu= 1, ...,I U,1

Vj E J(b),Vu 1, ... ., U

Vi E A/\{b}, Vu= 1, . .. , U

V(i, j)

V(i, j)

Vi C

V(i, j)

V(i, j)

Ve (i, j)

V(i, j)

E , VU

E ,Vu

6(b), Vu

E S, Vu

E , Vu

E , Vu

E SVu

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

= 1, .

- 1, .

=1, .

=1, .

Constraint (4.5) ensures that the UAS inspect at least the minimum distance required

(based on the fraction chosen from the PIRP). Note that the actual length of inspected edges

can be larger than the required length based on the fraction choice. Constraint (4.6) ensures

that an aerial sensor can only choose to bypass an edge if that edge is not being inspected.

Constraint (4.7) maintains flow conservation. Constraint (4.8) initializes the cumulative

time traveled so far by the aerial sensor. Constraint (4.9) updates the cumulative distance
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traveled so far by each aerial sensor. We include the parameter 'q, which is determined by

the ratio between the cruise speed and bypass speed. Constraint (4.10) ensures that y. can

only be 1 if an aerial sensor travels from i to j. Constraint (4.11) enforces tg to be 0 when

there is no aerial sensor that goes from i to j and between 0 and less than a sufficiently large

number M otherwise. Finally, since we want to minimize the maximum travel time over the

available aerial sensor, we use the variable along with constraint (4.12). The ASIP can be

viewed as a modified min-max k-Chinese Postman Problem [24, 21 that allows for bypassing

and takes into account a minimum distance to inspect.

We ensure that the upper bound of Big-M in constraint (4.11) is tight by setting it

to twice the total length of the edges, using the property of tree networks. Using Gurobi

optimization software in Julia, we find our formulation can efficiently reach optimal solutions

for even the largest subnetwork (consisting of 101 nodes and 100 edges), foregoing the need

for heuristics.

We refer to the sequence of non-zero fractional inspections of a subnetwork as an in-

spection sequence. Each inspection sequence consists of up to fmaxk rational numbers that

represent the chosen fractions. Therefore we denote the inspection sequence as { m -I

We illustrate a 3-element inspection sequence {4, }, }} for one subnetwork in Figure 4-4.

Table 4.2 shows the associated fraction choices made and the total required inspection times

with and without bypassing. In this example, we see improvements of 16% to 41% for in-

spection times by introducing bypassing behavior. Due to the tree topology, we note that

the time required to inspect the final remaining portion is the longest despite having the

smallest remaining distance. Therefore, there is an added delay in subsequent inspections if

a portion of a subnetwork is not inspected that day.

Table 4.2: Example Subnetwork Sequential Inspection Times

Day Distance (in) Fraction No Bypass Bypass
m Rm  f m /fm ax C* C*

1 11924 1/4 22.6 14.7
2 8582 2/3 58.7 48.9
3 2763 1/1 85.4 50.3
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Access point Access point Access point

Figure 4-4: Example of ASIP Sequential Inspection for a Subnetwork using 2 UAS

We solve the ASIP offline prior to time to for all possible inspection sequences. Hereafter,

we assume that f=ax = 4 for all subnetworks. For each day m, we store the ASIP solution

times in a K x 5 matrix denoted as Bm with the subnetworks along the rows and the

fraction choices indices along the columns. If a fraction choice index is not available during a

particular sequence, the corresponding ASIP solution time is set as oo. By doing so, we can

retrieve the value of fax for each subnetwork by finding for the largest column index with

a real number. Therefore, Em serves as another input to the PIRP along with the initial

uniform failure rate probability distribution.

4.2.2 Failure Distribution Updates

In the case of a fractional subnetwork inspection, we update the failure rate distribution

based on the realized number of failures.

Consider a subnetwork k with k E [1, K]. On a given day m E [1, N , the failure rate

distribution for this subnetwork, P(Dk = dk), is discrete with finite support on the interval

[0, hmj. Recall from Section 4.1.2 that the a-priori failure distribution for each subnetwork is

given by a uniform distribution, P(Dk- dk) = 1), where h. is the upper bound from the

Poisson model's prediction interval. Suppose UAS complete inspection of Ek corresponding

to a fraction fkm of the total remaining edge length in Rm. For ease of explanation, we

interpret dk and hm as numbers of failures as opposed to the failure rate for the remainder

of this subsection.

Upon completing the inspection, we use a Bayesian update procedure to revise the failure
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rate distribution. To accomplish this, we account for the number of realized failures from the

fractional inspection, which we denote as k E N, where Xk < h'. We update the probability

distribution using the following equation:

Pf-(xk I dk)P(dk)
Pfk(Dk = d( x)) k.

The prior, P(dk), is the probability of dk failures within R' given the prior failure

distribution. The likelihood, Pfk (Xk I dk), is the probability of finding Xk failures after

inspecting fraction f of Rk, given that the actual number of failures is dk. The likelihood
f,'ax,k

is computed using a binomial distribution:

Pfk-(Xk I dk) ( dk) (& ) k (i - fX)) k (4.14)
Xk ma x, k fmax,k

The binomial distribution gives the probability with which Xk failures belong in the

inspected fraction, given that dk failures exist in Rm. Whether or not a realized failure

belongs in the inspected fraction of a subnetwork is a Bernoulli random variable with a

success probability equal to . Finally, the denominator, Pg (X),is computed using

the marginal probabilities for Xk given all of the possibilities for dk. Specifically, this is

computed by Ejk 0 Pfjk(xk I dk)P(dk). Note that if Xk > dk, the likelihood function is 0,

and therefore Pfkn (dk I Xk)= 0, since the realized number of failures exceeds that of the total

assumed failures in the Rm. Once we determine the updated failure distribution for Rm,

we shift the distribution so that the new finite support accounts for the realized number of

failures with possible values in [0, hm-Xkj. Therefore, as subnetworks are partially inspected,

we expect the failure distribution in the remaining uninspected fractions of the subnetwork

to narrow over time. Figure 4-5 shows an example of the probability distribution updates

for one subnetwork. The initial failure rate probability distribution, which we assume to be

uniform, is updated based on the fraction index chosen and realized failures.

Using this failure distribution update procedure, we next describe two solution approaches

to solve the PIRP.
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Figure 4-5: Updating of Failure Rate Probability Distribution for Subnetwork

4.2.3 Solution Approaches

In this section, we describe two solution approaches to solve the PIRP: a stochastic dynamic

program and certainty equivalent MIP. Both approaches use the update procedure for failure

rate distributions as described in the previous section.

Stochastic Dynamic Program Approach. We first present a stochastic dynamic

program to solve the PIRP, incorporating uncertainty in the failure rate of all subnetworks.

Let (Y U B, J) denote the set of nodes and edges representing the service stations/access

points and roads, respectively. The goal of the stochastic dynamic program is to find an

optimal routing policy to inspect K subnetworks over N days that maximizes the number of

expected failures for each day. Each day m E [1, N] has a time budget Tm and contains nm

stages, where each stage is denoted as t = 1, . .. , nm. For brevity, we consider only one day

and leave out the day index for the remainder of this section. Each stage consists of three

components: the states, the decision, and the optimal value.

States. The state, denoted as st, keeps accountability of the ASIP inspection times, the

failure rate distributions, the current location of the inspection crew, and the time remaining

(out of the time budget T), at the beginning of each stage. We denote the collection of ASIP

inspection times as a matrix Et. This contains the ASIP solutions for the next available

fraction choices for each subnetwork 7k, k E [1, K]. Additionally, the matrix provides the

value of fmax,k as described in Section 4.2.1. The collection of failure rate distributions for
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each subnetwork at the beginning of stage t is denoted as Ct. The location of the inspection

crew at the beginning of stage t is either at a service station s E Y or access point bk E B7

and is denoted as It. Finally, the time remaining at the beginning of each stage is denoted as

rt. Therefore the stage-t state variable is highly structured as (Et, Ct, it, rt). This represents

a finite state space, since we only consider a finite set of fraction choices for each subnetwork,

Decision. The second component for each stage is a decision variable denoted yt that

governs which node to visit for stage t + 1, and if it is a subnetwork, what fraction A to
fmax,k

inspect. From a given state st, -we consider a decision leading to state st+1 as feasible if the

inspection crew can visit the selected subnetwork, complete the chosen fractional inspection,

and return to the service station from lt+, within the time remaining, such that rt+1 > 0.

We denote the set of feasible decisions from state st as Y(st). Note that this set of feasible

decisions also includes the decision to stay at a subnetwork for a successive inspection.

Optimal Value. The final component of the stage is the optimal value of expected failures

at st, which we denote as gt(st). We solve the stochastic dynamic program on a daily basis

by maximizing the total expected failures over stages t, t + 1, ... , ni. The objective is given

by the Bellman-style recursion equation of the form:

gt(st) = max F(st, yt) + P(st+Ist, yt)gt+i(st+i) (4.15)
yt~t~si)St+1

where function F(st, yt) represents the expected failures per stage given St and yt, and

P(st+1 Ist, yt) represents the conditional probability of a state st+1 given a decision yt in state

st. Recall from Section 4.2.2 that the decision to inspect a fraction AL of a subnetwork
fmax,k

associated with bk, k E [1, KI will lead to an updated distribution based on the possible

values of dk and Xk. Therefore, P(st+i|st, Yt) is equivalent to Pft(Dk = dk I Xk) from

Equation (4.13), where we use fkt for the stage, instead of fk. Specifically, the decision yt

for the subnetwork to visit and fraction to inspect, prescribes the values of dk and Xk to

consider based on the failure rate distribution of subnetwork k at stage t.
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For each day, we solve the stochastic dynamic program using a recursive algorithm that

computes gt(st) by expansion of a decision tree. To calculate gt(-), we rely on recursive calls

for gt+1('), 9t+2(, - gn(-). Given an initial state st, which begins at the service station, and

a set of feasible decisions Y(st), our optimal policy is to visit the fraction of the subnetwork

that maximizes the expected number of failures. From this decision, we use the actual

realized failures Xk to determine the updated failure distribution for st+1. We continue this

policy at each stage as long as there are feasible decisions available. At the end of each day,

we carry forward the state (7., C,, i., r.) to be part of the first stage of the following day,

and reset rt to the time budget. We continue this procedure until inspection of all of the

subnetworks is complete.
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1 frnax,k
maximize ZIE(D)L(Rk) x 1 x f fk4Zk

yIwz k fmax,k fk=

Subject to

EYs n,

jE6(s)
S yij = yji,

jEb(i) jE6(i)

~~ k Yi 1,
sEY iGb(k)

WsJ = sjY88j,

0 < wi, < T yij,
sEY

0 < wj9 < Tyis,

E Wk= Z Wik + -sYkj yk
jE6(k) ji6(k) jE6(k) sCY

fmax,k

+ 3 -YksYks + A ,5z/k,
SEY fk=O

1 - zY > > yk,

sEY jE6(k)

fmax,k

>3 z~k =1,
fk=O

yej {0, 1},

zk E {0, 1},

wij > 0,

Vs E Y (4.16)

Vs E Y, i E B (4.17)

Vk E B (4.18)

Vs E Y,J C 6(s)

V(i,j) E J | i Y Y, i ( Ys E Y

(4.19)

(4.20)

Vs c Y, Vj E 6(s) (4.21)

Vk E B (4.22)

Vk E B (4.23)

Vk c B (4.24)

Vs E y, Vi # j E {s}Ix B U B 2 U (s}

Vk E B, fk = 0, . ., fmax,k

V(i, j) E J

Mixed Integer Program Approach. Although the stochastic dynamic program can

provide high quality solutions, its direct application is limited due to its complexity. In partic-

ular, each decision leads to a different failure rate probability distribution and consequently,
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the number of possible states that must be considered grows exponentially. Therefore, we

present an alternate certainty equivalent solution approach using an MIP formulation to

solve at the beginning of each day. There are two main differences between this MIP ap-

proach and the stochastic dynamic program. First, we consider the E(Dk) as opposed to the

entire range of values in the failure rate interval from P(Dk). Secondly, the MIP approach

is closer to a myopic policy for each day since each subnetwork can only be inspected once

and the routing decisions are made at the beginning of each day.

For each service station s E Y and for every pair of locations (i, J) such that i j E

B U {s}, we define a binary decision variable y that is equal to 1 if an inspection crew

from service station s travels along the road network connecting i to j, and 0 otherwise.

We define wi to represent the time an inspection crew arrives at location j (coming from

location i). This time includes both the travel time between service stations and access

points, along with the ASIP inspection time for the subnetwork associated with access point

i. We define another binary variable zfk that is equal to 1 if a fraction choice index fk is

chosen for subnetwork k E B. For all subnetworks k on a given day, we consider fmax,k, Rk,

B and P(Dk) as inputs to the MIP formulation, which is given in constraints (4.16)-(4.24).

Constraints (4.16)-(4.18) define the classic network flow constraints, while constraints

(4.19)-(4.22) keep track of the arrival times for each inspection crew. Specifically, constraint

(4.16) ensures that no more than n, inspection crews leave service station s. Constraint

(4.17) ensures that if an inspection crew from a service station enters a subnetwork, it also

leaves. Constraint (4.18) ensures that only one inspection crew can visit each subnetwork.

Constraint (4.19) initializes the time traveled by the inspection crew if it departs from a

service station. Constraints (4.20)-(4.21) make sure that the arrival time is less than the

time budget if travel takes place and 0 otherwise. Constraint (4.22) updates the arrival time

by taking into account the inspection crew travel time as well as A*fk The term Z (kfkZk

for subnetwork Tk gives the time to inspect the chosen fraction index. Constraint (4.23)

forces z to be 1 if subnetwork k is never visited. Finally, constraint (4.24) ensures that only

one fraction index is chosen for each subnetwork.
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4.3 Computational Results for Drainage Network

In this section, we solve the ASIP and PIRP introduced in Section 4.2 and implement the

routing solutions in a computational study involving the White Oak Bayou region. The goals

of this study are threefold: to (i) analyze the performance of our proposed UAS-enabled

inspection approach in comparison to the current ground-based approach, (ii) evaluate the

relationship between the amount of data integration and the quality of the PIRP solution,

and (iii) extract practical insights from our results to improve inspection operations.

White Oak Failures Found By Day

1.2
- All Failures

1 High-Cost

0.2
0

[ * 0 0 2 4 6 810121416182022242628

Day

(a) Service Station, Flood Sensors, (b) Failures and High-Cost

Subnetworks, and Road Network Failures Found by Day

Figure 4-6: White Oak Bayou Region.

The White Oak Bayou region, located near downtown Houston, consists of 146 miles of

both natural and man-made (concrete-lined) waterways monitored by 11 flood sensors. We

consider one service station, with an inspection crew equipped with two UAS. We choose

a conservative parameter of 3 hours for the crew's daily time budget, which we assume is

a continuous block of time. We use average crew vehicle speeds along the primary and

secondary roads (35 mph and 25 mph, respectively). During the dates coinciding with

Hurricane Harvey, from 26 to 29 August 2017, we use flood sensor readings to generate 6

high-priority and 5 low-priority subnetworks using our approach described in Section 4.1.2.

The inspection operations commence a day after, on 30 August 2017 due to adverse weather

conditions that precluded ground movement prior to that time. Figure 4-6a depicts our
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study region along with the flood sensors, priority subnetworks, service station, and road

network. The actual inspection results for the White Oak Bayou study region are shown in

Figure 4-6b. Note that the results of this study region are consistent with the results of the

entire FCD region shown in Figure 1-2. In particular, while debris failures in general were

found early in the inspection timeline, the failures with high repair costs were not. We use

three quantitative metrics to evaluate inspection performance, driven by Figure 4-6b: the

overall duration required to complete inspection, the rate of cumulative failures found over

time, and the cumulative value of high-cost failures found over time.

To solve the ASIP described in Section 4.2.1, we consider a hybrid UAS (gas and electric)

and allow Beyond Visual Line of Sight (BVLOS) operations. By allowing this, the entirety

of a subnetwork can be inspected without the need to refuel or recharge, improving the

cost effectiveness [8]. The total edge distances of the subnetworks fall well below the 100

mile maximum range of a hybrid UAS [541. To address privacy issues, flight operations are

restricted to a narrow width within the ROW. Finally, to ensure high resolution imagery,

we assume an operating altitude of 400 ft Above Ground Level (AGL) and a conservative 5

mph for the inspection cruise speed based on comparable UAS inspections 1341. We assume

a conservative speed of 15 mph when bypassing, and set r7 in constraint (4.9) to 0.7, based

on the bypass speed.

To determine the minimum appropriate level of data required for early identification of

failures and high-cost failures, we consider different levels of data integration in the PIRP.

In contrast to the non-adaptive MIP solution approach that considers expected failure rates,

and the adaptive stochastic dynamic program that considers the full interval of possible

failure rates as described in Section 4.2.2, we also consider two simpler solution approaches.

First, we consider an Unadvised approach, which assumes no data input from either the

flood sensor or predictive model at to. Specifically, we set initial failure rates to be the same

normalized value for each subnetwork. Second, we consider a Hi-Low Priority approach,

which only accounts for data in the form of flood sensor alerts at to. Specifically, these alerts

act as a binary classifier to label each subnetwork as high- or low-priority. We use two classes

of normalized failure rates based on this classification. We summarize our four approaches in
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Table 4.3. Note that the approaches are ordered, where the Unadvised approach represents

the least data integration and the stochastic dynamic program represents the most. Hereafter

we refer to the stochastic dynamic program as the Stochastic approach.

We solve the first three approaches with the MIP presented in Section 4.2.3. For the

Unadvised and Hi-Low Priority approaches, failure rates are updated and appropriately

scaled based on the cumulative number of failures and inspected lengths. For the MIP and

Stochastic approaches, failure rates are updated according to the Bayesian update procedure

described in Section 4.2.2. In the remainder of this section, we describe how to compute

each metric, and discuss the results using the four approaches in Table 4.3.

Table 4.3: Summary of Approaches Reflecting Level of Data Integration

Name of Flood Sensor Failure Rate
Approach Alert Info Distribution
Unadvised x x

Hi-Low Priority / x
Non-Adaptive MIP / (Expected Value)
Adaptive Stochastic / / (Full Distribution)

4.3.1 Inspection Duration

First, we compare the inspection duration using our proposed approach to the actual time-

line. To compute this metric, we solve the PIRP using the four approaches for the level of

data integration, and record the number of days required for complete inspection of each

subnetwork. Recall that the total duration is a conservative estimate based on selected pa-

rameters for the time budget, aerial sensor speed, and inspection crew vehicle speed. Figure

4-7 compares the timeline of our approach to the actual recorded ground-based inspection

dates following Hurricane Harvey. Under the alert period, we show the duration used to

calculate the total volume over the TOB for each flood sensor. For example, Flood Sensor

520 reported a TOB overflow on 26 August at 1130 hours and the water elevation receded

below the TOB on 29 August at 1200 hours. We also include unalerted flood sensors since

their associated subnetworks also require inspection.
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Hurricane Event Alert Period
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Figure 4-7: Timeline of PIRP inspection results compared to ground-based inspection times.
Since subnetworks were not considered in the original inspection, the actual inspection dates
we depict align with when the edges in the subnetwork were inspected. For each subnetwork
corresponding to a flood sensor, the horizontal span of each solution approach represents the
days elapsed from the first inspection to the last.
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Based on our results, we achieve a conservative 67% decrease in inspection time (9 days

compared to 27) for the first two approaches (Unadvised and Hi-Low Priority) and a 70%

decrease (8 days compared to 27) for the last two approaches (MIP and Stochastic). Ground-

based inspections cost an estimated $20K per day based mostly on the cost of crews, so the

reduction of 19 days using our approach could lead to a conservative savings of $380K from

personnel costs alone. Since the UAS inspection time accounts for the majority of the time

savings, this duration metric serves as a value proposition for the integration of UAS.

Next, we observe that each solution approach exhibits a different sequence of subnetwork

inspections in Figure 4-7. Naturally, the Hi-Low Priority approach attempts to visit all of the

high-priority subnetworks as soon as possible. It is important to note that the high- and low-

priorities assigned to the subnetworks in this case do not entail a mandatory precedence; that

is, all high-priority subnetworks do not need to be inspected before low-priority subnetworks.

This is important since we must also account for crew travel time and UAS inspection time.

We find that the Stochastic approach exhibits the most exploratory behavior, which can

be characterized by the number of fractional inspections completed over all subnetworks.

The resulting 18 fractional visits follow the expected behavior in balancing travel time and

inspection time. The MIP approach has the next highest fractional inspections at 15. On

the other hand, the Hi-Low Priority approach exhibits the lowest exploratory behavior with

only 8 fractional visits.

4.3.2 Rate of Failures

Next, we analyze the rate of cumulative debris failures found over time. Using the PIRP

solution, this metric accounts for the daily number of actual failures found over the edges

inspected by UAS.

We again use the four approaches to solve the PIRP and compare with the actual in-

spection results. In the actual post-Harvey inspection timeline shown in Figure 4-8, we note

a distinct plateau between days 5 and 15, when only one failure was identified, reflecting
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Figure 4-8: Total Cumulative Failures Found By Day Compared to Actual Hurricane Harvey

Results

misemployment of limited inspection resources. As expected, we find that the Stochastic ap-

proach performs the best in terms of total area under the curve, followed closely by the MIP

approach, with a difference of 3%. This is a direct result of the objective function, which is to

maximize the expected number of failures over each day. The Unadvised approach performs

the worst when compared with the others, but still offers a significant improvement over

ground-based inspection due to the compressed inspection timeline.

We note that the variability between approaches is a result of choosing different subnet-

works and fractions to inspect for each day. The Unadvised approach tends to visit larger

subnetworks earlier, which generally contain a higher number of failures in this study region.

This is a result of treating each subnetwork the same with respect to the failure rate, leav-

ing the total distance of a subnetwork to be the main differentiator. The Hi-Low Priority

approach on the other hand, places an emphasis on visiting the high-priority subnetworks

before the larger subnetworks, resulting in a nearly inverse result. The Stochastic and MIP

approaches perform well because of a more balanced approach to inspect both high- and
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low-priority subnetworks using updated failure rate distributions.

4.3.3 Rate of Failure Costs

It is important to reiterate that our choice of maximizing the number of expected failures for

the objective is a proxy measure for the more important objective, which is the timely iden-

tification of high-cost failures. Recall that high-cost failure identification can be completed

only as a post-evaluation, after qualified engineers evaluate imagery data from inspections.

To determine the rate of high-cost failures found over time, we focus on identifying failures

with repair costs of higher than $10K (50th percentile of all failure costs). Using the PIRP

solution, we account for these costs for failures found along the edges inspected by UAS.

Value of High-Cost Failures By Day
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Figure 4-9: Cumulative Value of High-Cost Failures By Day Compared to Actual Hurricane

Harvey Results

Inspecting the PIRP solutions using the four approaches, we make the following observa-

tions based on the results shown in Figure 4-9. First, we note that actual Harvey inspection

results did not find the first high-cost failure until halfway through the inspection timeline
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on Day 16, implying a misallocation of inspection efforts. The Unadvised curve is almost

parallel to these actual inspection results, but still offers an improvement attributed mostly

to faster UAS speeds. Using the area under the curve, the Stochastic approach offers an

improvement of $4.3M over the Unadvised approach, or a 41% improvement. We also note

that the benefits of integrating flood sensor alert information (Hi-Low Priority, MIP, and

Stochastic approaches) are mostly captured earlier in the inspection timeline. This is a direct

result of data integration, which ensures that the high-priority subnetworks are visited in

the beginning. The total repair costs in these subnetworks amount to $622,520, mostly for

concrete lining failure expenses associated with project sites affected by Harvey.

Most surprisingly, we find that using a partition of the network based solely on flood sen-

sor alerts (i.e., the Hi-Low Priority approach) can assist in identifying these high-cost failures

at a rate close to the Stochastic approach. The value of the Hi-Low Priority over the Unad-

vised approach is $3.8M, representing a 39% improvement in value. Moreover, the Hi-Low

Priority approach only differs by 4.2% and 0.34% from the stochastic and MIP approaches,

respectively. Therefore, although capturing the most high-cost failures is not directly built

into our model, the net effect is the capture of high-cost failures in post-evaluation based

on assigned priorities. This result lends credence to our approach to partition the network

into high- and low-priority subnetworks, suggesting that high-priority subnetworks contain

a disproportionate amount of high-cost failures.

Based on our computational results, we summarize our key observations for an FCD to

consider in post-storm inspection operations:

Observation 1. (Data Collection) The failure rate in each subnetwork and its relationship

with the total volume over the TOB is statistically significant.

A key finding in our research is the relationship between the failure rate of a subnetwork

and the total volume over the TOB at the flood sensor location. Our statistical model

coefficient for this feature indicates a multiplicative effect on failure rates. This suggests

that the total volume over the TOB, calculated from the elevation-discharge curve, can be

used as a key variable to achieve a more accurate forecast of failure rates. We show that
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this can provide the added benefit of timely failure identification. In Figure 4-8 both of

our approaches that integrate information from the failure rate distribution (i.e., the MIP

and Stochastic approaches) outperform the simpler approaches that do not integrate this

information.

Observation 2. (Method) The Hi-Low Priority approach offers a practical procedure to use

for the timely identification of high-cost failures.

Another key finding in our research is that the alerted subnetworks disproportionately

contain more high-cost failures than non-alerted, or low-priority subnetworks. To determine

whether or not our results were specific to the White Oak Bayou, we also inspect the number

of high-cost failures in two other regions (Greens and Brays Bayou). Whereas the Greens

Bayou is 308 miles in length and consists of more natural channels, the Brays Bayou is 121

miles and consists of more man-made channels. Using our subnetwork approach described

in Section 4.1, we first use flood sensor readings to partition these network into high- and

low-priority subnetworks. Figure 4-10 shows the count of high-cost failures within these

subnetworks.
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Figure 4-10: High-Cost Failures Study With Different Regions

We find that our claim is supported very well; using a paired t-test, high-priority sub-
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networks contain a significantly higher frequency of high-cost failures (p-value of 0.045).

Furthermore, we find that this result is independent of total edge distance in the subnet-

works. That is, our claim is supported even for regions where the total edge distance in

low-priority subnetworks is substantially larger than the total edge distance of high-priority

subnetworks.

Observation 3. (Approach) Total inspection time can be reduced substantially with the

integration of UAS.

By comparing our UAS-enabled inspection timeline with the current ground-based in-

spection timeline, we provide a measurable value proposition with respect to efficiency gained

from the UAS. Our proposed approach suggests a conservative 67-70% decrease in total in-

spection time compared to ground-based inspection as shown in Figure 4-7. We demonstrate

that our approach can lead to a cost-savings of $380,000 just from personnel expenses alone.

It is important to note that this cost saving estimate does not include the potential reduc-

tions in the severe societal and economic losses that the proposed approach could enable. In

other words, this cost saving only quantifies reduction in the inspection costs, which would

be likely dwarfed by the reductions in the costs to local economy, public health, and recovery

efforts. By compressing the inspection timeline, our approach would enable earlier repair

schedules and shorter delays, to avoid the hidden costs of deferred maintenance.

In summary, there are three practical implications of our study for drainage network agen-

cies. First, we find that partitioning of the network into high- and low-priority subnetworks

at the beginning of the inspection timeline can offer the best value for timely identification

of high-cost failures with a low computational requirement. In fact, our results in solving the

PIRP show that the additional effort required to integrate a full statistical model may not

be worth the marginal benefits. This is of particular interest to drainage networks, since the

computational burden of using a statistical approach or stochastic dynamic programming

model can be prohibitive in post-disaster environments due to time, budget, or resource

considerations. Second, our validation of the proposed total volume over the TOB in our

computational study provides valuable insight into how discharge and overflow can assist
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in forecasting the number of failures. FCDs can easily adopt this metric to be captured by

hydrologists and sent to inspection crews for future storm events. Finally, as drainage net-

work agencies continue to look towards adopting UAS as a cost-effective tool for collecting

maintenance-related data and imagery, our study provides conservative benchmarks using

realistic UAS route planning algorithms that can be used to justify investment into this

technology.
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Chapter 5

Conclusion

5.1 Summary of Results

This thesis studied the problem of integrating data from two types of sensors (fixed and

aerial) into post-disaster infrastructure damage assessments in order to reduce time and cost

of inspection. We introduced important features of the UAS platform and the operating

environment in the development of MIP formulations for the ASIP and PIRP, where the

overall objective is to minimize the maximum time elapsed from time of failure alert to time

of failure identification, over all subnetworks.

For gas pipeline networks, we introduced UAS monitoring locations used to observe

network components. Given the significant computation time required for larger instances

of the ASIP, we developed a scalable heuristic based on the weighted set cover problem to

limit the number of monitoring locations to consider. We showed that our heuristic can

achieve quality solutions for 2 and 3 UAS within seconds. From a theoretical standpoint,

we uncovered an important ratio between intra-subnetwork travel time (i.e., within the

subnetworks) and the inter-subnetwork travel time. This shows that more time savings can

be achieved from UAS integration if subnetworks are larger and vehicle distances to the

subnetworks are shorter. We also studied the effect of stochastic travel times on the ASIP
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solution based on performance metrics such as distribution of UAS exploration times and

probability of missed network components. We show that accounting for stochasticity can

significantly increase the overall UAS optimal inspection time and the possibility of missed

network components. This points to the importance of choosing the right UAS platform as

well as conservative route planning to avoid costly setbacks from unidentified failures. Taken

as a whole, we demonstrate that UAS-based inspection can lead to significant cost and time

savings in comparison to conventional, purely ground-based, operations.

For drainage networks, we used geomorphological and fixed sensor data to develop a

statistical model, determining the order of subnetworks to inspect. UAS provided a learn-

ing mechanism in the form of identified failures to update beliefs about failure rates in a

subnetwork for subsequent inspection crew routing decisions. To quantify the benefits of

our approach, we developed three key performance metrics: the total inspection time, the

cumulative number of failures found over time, and the cumulative value of high-cost failures

found over time. We showed that our analytics-driven inspection approach can substantially

reduce overall inspection times by a conservative 67-70%, and most importantly, assist in

the timely inspection of high-cost failures. Surprisingly, we found that the relatively simple

approach of partitioning the network into high or low-priority subnetworks based on flood

sensor alerts alone resulted in good performance. This practical approach provided results

similar to our stochastic dynamic program approach in finding high-cost failures. This re-

sult was primarily driven by a variable that we called the total volume over TOB. From an

operational perspective, this result is promising for implementation, since our results sug-

gest that the marginal benefits to be gained from a stochastic model may not be worth the

computational burden on the network agency.

Our drainage network study has both direct and indirect societal and economic impacts

as informed by our direct collaboration with a certain Flood Control Agency. We prescribe

an innovative and practical analytics-driven inspection approach that integrates flexible diag-

nostic information from fixed and aerial sensors to minimize the loss of property and adverse

health effects. Long-term indirect benefits of interest to agencies like the Federal Emergency

and Management Agency (FEMA) include reduced taxpayer costs for recovery operations
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and lessening the psychological impact on flood victims.

5.2 Future Work

For the ASIP, one can also consider an adaptive model that can adjust to a dynamic oper-

ating environment. Unexpected changes in monitoring requirements, airspace restrictions,

communication strength, and obstacles in the operating environment can impact the UAS

inspection times and performance. One approach could be to formulate the ASIP as a

Markov Decision Process to address dynamic travel times arising from these changes. This

could provide valuable insights to inform and support UAS policy decisions to reduce UAS

exploration time.

For the PIRP, an extension to this work could incorporate uncertainty in travel times

for the inspection crews. For example, one could leverage data from social media, traffic

cameras, flood sensors, and elevation data to build a statistical model that could estimate

travel time, which could be considered infinite along an edge, if flooded or blocked by debris

obstacles. One can also consider using a criticality factor for each subnetwork in the objective

function based on the proximity to population centers or environmentally sensitive areas that

would indicate higher priority over others for earlier inspections.

For our work on drainage networks, an important research direction is to determine how

our approach can be applied to other FCDs from other states, since they utilize similar

flood sensors from the United States Geological Survey (USGS) to monitor their drainage

networks. It would also be of interest to see if our approach can be used for smaller scale

storm events.

As part of future work, we suggest incorporating optimal resource allocation with our

work, considering the high operational costs stemming from sub-optimal allocation of inspec-

tion crews [5]. For example, prior to the realization of uncertainty in a two-stage stochastic

optimization, this approach can help determine the optimal number and location of inspec-

121



tion crews and UAS at various service stations.
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Appendix A

Appendices of Chapter 3

A.1 Results for 7 Subnetworks Using 3 UAS

Along with testing subnetworks of various sizes for 2 UAS, we also test our heuristic to see

how it would perform using 3 UAS. The results show a 0% optimality gap for subnetworks

with nodes ranging from 5 to 17.

Table A.1: Results of ASIP MIP exact solutions for 3 UAS compared to the heuristic.

Subnetwork MIP Heuristic Optimality

No. Nodes Edges Obj Time (sec) Obj Time (sec) Gap

1 5 6 0.209 0.02 0.209 0.014 0%
2 11 10 0.413 2.04 0.413 0.022 0%
3 16 16 0.586 770 0.586 4.122 0%
4 18 17 0.706 34 0.706 0.187 0%
5 15 18 0.857 14851 0.857 0.099 0%
6 16 20 0.825 54 0.825 0.86 0%
7 17 22 0.745 36545 0.745 0.134 0%
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A.2 Example Heuristic Solution

To illustrate the 5 steps in our heuristic, we solve an example problem. In this example,

we solve the ASIP using our heuristic for a subnetwork consisting of 36 nodes (monitoring

locations) and 37 edges (components). We set Tma to 1 hour and u to 2 UAS.

Step 1. Weighted Set Cover. The optimal solution of the weighted set cover is S

{1, 3, 5, 7, 8,12,13,14, 18, 19, 20, 22, 24, 26, 30, 32}, of which 20 is the base node. This step

immediately reduces the overall problem size by limiting the number of monitoring locations

to consider from the original 36 to 16.

Step 2. Initial Route Construction. A portion of the ordered savings list generated from

the Clark & Wright Savings heuristic for this subnetwork is shown in Table A.2. For the

purpose of illustration, only the first 9 rows are shown. Each row shows the time in hours

that could be saved by visiting the node pair in succession as opposed to one at a time.

Table A.2: Savings List from the Clark and Wright Parallel Savings Algorithm

Pair Savings
(1,8) 0.61

(12,13) 0.55
(1,7) 0.40
(7,8) 0.40

(24,26) 0.35
(22,24) 0.33
(22,26) 0.32
(26,32) 0.31
(19,24) 0.29

The following set P of initial simple routes is created following the three cases described

earlier: (20, 7, 1, 8, 5, 3, 20), (20, 14, 12, 13, 20), (20, 22, 24, 19, 18, 26, 30, 32, 20). Each simple

route meets feasibility requirements (the duration of the routes are 0.84, 0.61, and 0.95

hours respectively). Additionally, note that |P > u.

Step 3. Improvement Procedures. All three improvement procedures provide incremen-

tal improvements to one or more simple routes. In the relocation procedure, node 19 is

deleted from the third simple route and inserted into the second. The maximum travel
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time is reduced from the 0.95 hours associated with the initial route pair (20, 14, 12, 13, 20),

(20, 22, 24, 19, 18, 26, 30, 32, 20) to 0.91 hours associated with the new route pair (20,19, 14,

12, 13, 20), (20, 22, 24, 18, 26, 30, 32, 20). The final routes after this procedure are: (20,7,1, 8,

5,3,20), (20, 19, 14,12, 13,20), (20, 22, 24, 18, 26,30,32,20).

In the exchange procedure, three exchanges take place between the second and third

simple routes. First, nodes 18 and 19 are exchanged, followed by 18 and 26, and then 26

and 30. The final routes after this procedure are: (20, 7, 1, 8, 5, 3, 20), (20, 30, 14, 12, 13, 20),

(20, 22, 24, 19, 18, 26, 32, 20). The duration of the routes are now 0.84, 0.67, and 0.83 hours

respectively.

In the 2-Opt procedure, one valid 2-Opt move for the third simple route results in

a reduction in travel time from 0.83 to 0.67. The final routes after this procedure are:

(20, 7,1,8, 5, 3,20), (20,30, 14,12, 13, 20), and (20, 18,19, 24, 22, 26, 32, 20). The duration of

the routes are now 0.84, 0.67, and 0.67 hours respectively.

Step 4. Route Combination. This step entails trying to combine the shorter duration routes

(20, 30,14,12, 13, 20) and (20,18, 19, 24, 22, 26, 32, 20) with the edge node pairs: (30,18),

(30, 32), (13, 18), or (13, 32). Out of the 4 edge node pairs, (13, 18) offers the highest sav-

ings, so we attempt to create a new route (20, 30, 14, 12, 13,18, 19, 24, 22, 26, 32, 20). In

this case, this combined route exceeds Ta and therefore we end up with a multi-trip

route. The final routes after this procedure are: UAS 1 -+ (20, 7, 1, 8, 5, 3, 20), and UAS

2 -+ (20, 30, 14, 12, 13, 20), (20, 18, 19, 24, 22, 26, 32, 20). The duration of the routes are now

0.84, 1.43 hours respectively.

Figure A-1: Illustration of the Relocation with Base Insert Step. With this pair of routes,
the top route is the donor route with the larger cumulative travel time (which includes an

interim base visit). Node 30 is selected to be moved from the donor route into the recipient

route prior to node 7. Since the recipient route's total travel time was longer than the UAS
endurance, a base visit is inserted according to a greedy approach.
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Step 5. Relocation with Base Insert. In Fig. A-1, we show the result of the last step in

our heuristic. In this step, node 30 is relocated. A base visit is inserted due to infeasibil-

ity from endurance limitations. While this results in an increase in the cumulative travel

time for the recipient route from 0.84 to 1.34, it results in an overall decrease in the max-

imum travel time over all routes, from 1.43 to 1.37 hours. The final routes are UAS 1:

(20, 30, 7, 1, 8, 20), (20, 5,3, 20), UAS 2: (20, 14,12,13, 20),(20, 18, 19, 24, 22, 26,32, 20). This

completes the heuristic; the final maximum duration route is 1.37 hours.
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Appendix B

Appendices of Chapter 4

B.1 Elevation and Discharge

Elevation Reading
Sensor 1050

DateTime

Elevation-Discharge Curve

0001TATO 1050/USGS GAGEOWN00

I U0 Sprig re 0,0 W-45

Discharge (cfs)

Discharge Curve

70O

5MM
6000

o

DateTime

Figure B-1: Example Elevation and Discharge Curve

To calculate the total volume over the Top of the Bank (TOB), we first get the elevation

reading for a sensor available from [38]. For each elevation above the TOB, we determine

the discharge using the elevation-discharge curve. This generates a new curve called the

discharge curve that shows the discharge (cfs) for the times when the flood sensor reported

elevations over the TOB. Using the time stamps from the elevation reading data, we integrate
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to get the area under the curve, which is the total volume over the TOB. During Hurricane

Harvey, a few flood sensors ended up getting damaged. For these sensors, we use extrapolated

elevations from the last known reported measurement and follow our procedure.

B.2 Failure Model

We leverage R statistical software to develop and evaluate our statistical models.

Table B.1: Summary of Count Regression Models for Debris Failures

Poisson Model Multivar Univar
(Intercept) -8.263 -6.832

(0.495***) (0.098***)
Low Vol over TOB 0.912 0.461

(0.481*) (0.104***)
Med Vol over TOB 0.866 0.994

(0.452*) (0.108**)
High Vol over TOB 1.056 0.750

(0.461**) (0.113***)
Percentage Natural -0.290

(0.144*)
Percentage Canal/Ditch -0.811

(0.163**)
Evergreen Forest 3.280

(0.554***)
Degrees of freedom 7 4
Log-Likelihood -361.45 -721.59
AIC 738.91 1451.20
10-fold CV MSE 3.14 3.91

' p < 0.01
**0.01 < p < 0.05
*0.05 < p < 0.10

We compare the univariate and multivariate Poisson regression models using two common

penalized-likelihood information criteria: the Log-Likelihood and the Akaike Information

Criterion (AIC), defined as AIC = - ln L + P where ln L is the log-likelihood of the model

and P is the number of estimated parameters. We also performed a 10-fold Cross Validation

(CV), using different training and test splits to attain an overall mean squared error. Using

these metrics, we find that the multivariate model provides a better model. For our purpose,
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the multivariate serves to provide narrower prediction intervals.

With both of our models, we applied the log link and so eh represents a multiplicative

effect of the jth explanatory variable on the response. The signs of the coefficients are

intuitive. For example, channels classified as manmade or canal/ditch typically have lower

rates of failure. Similarly, the positive coefficients associated with the volume over the TOB

variables indicate higher failures rates.
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