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Abstract

The Pacific Gas and Electric Company (PG&E) operates and maintains 48,000 miles of natural gas
pipeline, serving over 4.3 million customer accounts. Along with water, electric power, and
transportation services, these lifelines serve critical functions throughout multiple communities.

Considering PG&E provides services in both densely populated and seismically active areas, the
organization has invested extensively in modeling technology to help estimate resource needs and
develop resiliency plans in the event of an earthquake. This thesis aimed to develop a damage
prediction model to improve emergency response time and restoration efficiency.

The machine-learning based model built upon currently used predictive algorithms, while adding
features necessary to account for distribution branch lines and above-ground meter sets. Research and
analysis showed factors beyond ground-motion prediction equations could be used to estimate pipeline
damage and were consequently included. Furthermore, the model incorporated real-time data acquired
throughout repair and restoration efforts in order to improve the predictive performance. Historical
incidents were examined in the data aggregation phase in order to develop the training set.

For this paper, damage was defined as the number of leaks predicted in a given plat, as defined by
PG&E's mapping services. Leaks were categorized in three separate bins, ranging from 0 leaks, 1 to 5
leaks, and 6 or greater leaks. Multiple classification algorithms were chosen and evaluated against a
custom scoring metric designed to discriminate and penalize false negatives. The best results were
achieved using a series of five logistic regression algorithms, executed at 2, 4, 8, 12 and 24 hours
following event occurrence.

Results were designed to accompany currently used seismic hazard reports in a ranked table, displaying
areas with the highest to lowest probability of experiencing damage. An additional web application was
designed to query specific plats for prediction results.
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1 Introduction to the Earthquake Damage Prediction Project at PG&E

1.1 Company Overview

Incorporated in 1905, Pacific Gas and Electric (PG&E) Company provides natural gas and electric services
to over 16 million people throughout the state of California. With a 70,000-square-mile service territory,
roughly two thirds the size of the state, PG&E relies on an extensive network of infrastructure to safely
carry out the transmission and delivery of energy [1]. Regulated utilities in the state of California do not
own production facilities, and instead receive 91% of their natural gas from a series of interstate pipelines.
These lines originate from basins in Canada, the Rocky Mountains, and Texas, before reaching California
and entering local storage, transmission, and distribution systems [2].

PG&E provides 2.6 BCF of natural gas on a daily basis to a variety of customers ranging from residential to
large-scale industrial consumers and electric generators. In order to accomplish this, they utilize 7,000
miles of transmission pipeline operating between 600 and 60 pounds per square inch gauge (psig). A
series of compressors are used to maintain the appropriate pressure while moving gas through the
system. The distribution system comprises of 48,000 miles of pipeline, along with a series of regulators
and meter stations that enable natural gas to reach the final customer. Beyond enabling the use of natural
gas at the consumer level, the transition point between transmission and distribution systems (60 to 0.25
psig) also includes the addition of ethyl mercaptan. This odorant provides a warning system for gas leaks,
as natural gas on its own is odorless [3, 4].

S10cKNNl

1WU GY DLOAD1
IN MPUNcU-+ 

NA AWL
YO-E

FRUSK

Figure 1: PG&E service territory labeled by division
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1.2 Current Post-Earthquake Response

The responsibilities incurred as a pipeline operator are heavily regulated at the Federal and State level.
Geographically, however, PG&E faces unique challenges beyond what is typically seen by an investor
owned utility. In 2002, the United States Geological Survey (USGS) formed a series of working groups to
specifically examine the likelihood of a major earthquake occurring in the San Francisco Bay Region (SFBR).
They concluded that there is a 62% probability of an earthquake with a moment magnitude (M) greater
than 6.7 occurring before 2031. To give context on the associated damage, the report cites two previous
earthquakes of M6.7 (1994 Northridge, CA) and M6.9 (1995 Kobe, Japan) which resulted in $20B and
$147B in damages respectively [5].

PG&E utilizes an internal document known as the Gas Emergency Response Plan (GERP), which is an annex
to the Company Emergency Response Plan (CERP). This document outlines detailed emergency response
guidance for personnel to safely and efficiently respond to gas system emergencies and restore operations
to their normal state. Developed and maintained through Gas Emergency Preparedness (GEP), the GERP
provides an excellent overview and is augmented through company earthquake-specific documentation
such as the Asset Knowledge and Integrity Management Earthquake "Playbook."

PG&E maintains five emergency levels which dictate the activation of various emergency procedures. The
levels are numbered and range from "routine" to "catastrophic" and are driven based on the severity of
the event, number of affected customers, injuries/damages, and other factors that are listed in detail in
the GERP. An earthquake with a magnitude of 6.0 or greater will drive the organization to stand-up the
Gas Emergency Center (GEC) and Operations Emergency Center (OEC). The GEC is located in San Ramon
and OECs are formed at the divisional level. PG&E gas operations are split among 15 divisions as seen in
Fig. 1. Based on the location of the damage and severity of the event, multiple OECs can be established.
If needed, PG&E will also establish the Emergency Operations Center (EOC) in the General Office in San
Francisco. This center will control the management of both gas and electric assets during an emergency.

In regards to the distribution system, the response following an earthquake can be viewed as two largely
independent, but parallel processes. They include the Distribution Integrity Management Program (DIMP)
team, which provides guidance on where to survey for leaks, and the Gas Service Representative (GSR)
team, which immediately responds to emergencies tasked through Dispatch. Fig. 2 is an illustrative
example of how information flows among the relevant parties and Appendix A provides a detailed
narrative regarding to roles and responsibilities of the aforementioned teams. Information regarding the
Dynamic Automated Seismic Hazard (DASH) model currently used to aid emergency responders is also
presented in Appendix A and Appendix B.
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Figure 2: Information flow following an earthquake (flow chart non-exhaustive and relates only to applicable
aspects of this specific project)

1.3 Thesis Motivation

In order to provide the safest and most reliable service, PG&E has invested extensively in modeling

technology to help estimate resource needs and develop resiliency plans. Seismic events are

unpredictable, which makes timely data acquisition and analysis a critical component in responding

quickly and effectively after a large event.

Gas Control aims to be the front line for public and employee safety and system reliability. Damage to

natural gas infrastructure can be catastrophic, resulting in inhalation, fire, and even explosive hazards.

Additionally, restoration of electrical systems cannot be completed until the area has been swept to

ensure no gas leaks are present. Effective identification and efficient restoration is critical to ensure

people are not displaced for lack of basic needs.

To ensure this is accomplished, Gas Operations has the strategy to "transform data into intelligence to

operate predictively and proactively in order to identify and mitigate risks in real time" (PG&E Gas

Operations vision statement). The proposed improvements to the model directly align with this strategy.

Additionally, important emergency response and restoration efforts are being driven through models

originally designed for water pipes (discussed further in Section 3.2) [3]. They represent an adequate

baseline but there is significant room for improvement as more data becomes available. Ample time has
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passed since the last earthquake with a moment magnitude greater than 6.0 occurred in Northern
California (American Canyon 2014), meaning there is now the opportunity to examine the results and
develop hypotheses for new prediction methods.

Also, the current model only takes into consideration damage to below-ground, main lines. Assets such
as service lines and meter sets have not been considered. PG&E has made great efforts to map all of their
assets in order to have them digitally available. With the increase in information and ease of access, it is
reasonable to suggest that a model can be effectively created to take such things into consideration.

Lastly, financial concerns provide incentives for improving emergency response efforts. Failure to
accurately account for assets damaged in the event of an earthquake can lead to future issues and possible
incidents that fall within company control. Beyond the personal injury and loss of life, potential property
destruction and gas loss related to damaged pipelines cannot be ignored. Since 1997 gas utilities in the
state of California have lost $662.5M as a result of faulty pipelines [6], which is a considerable sum but
only a fraction of the potential multi-million-dollar fines and lawsuits possible, as seen from the 2010 San
Bruno explosion [7].

1.4 Thesis Hypotheses

The literature findings, interviews with PG&E employees, and careful review of company, city, and state
post-earthquake after-action reports helped create a holistic understanding of the elements involved in
lifeline damage during a seismic event. Based on these findings, we hypothesized that additional,
unimplemented factors could improve the performance and scope of the existing damage prediction
model. Mainly, currently available data could be used more efficiently. Secondly, by incorporating real-
time data from customers and first responders, the predictive power of the model could significantly
increase. New data, available throughout the life an event, provides invaluable information and should be
included to enhance model effectiveness. Such analytically driven operations can then be used to
optimally allocate resources for restoration efforts.

1.5 Literature Review

1.5.1 Introduction

Building robust infrastructure to handle the stressors induced during earthquakes is not a new concept,
but there are many assets that remain susceptible to ground shaking and rupture. Actions can be taken
to retrofit facilities, and rigid pipeline material such as cast iron can be replaced with more flexible plastic
and steel. Unfortunately, earthquakes tend to inflict damage in new and unpredictable ways. Before
examining potential methods to better predict damage to natural gas pipelines, it was critical to review
the most current ground motion prediction equations and fragility models, along with empirical data from
past events within the PG&E service territory. Following this, predictive analytic concepts and machine
learning methods were examined as tools for improving emergency response operations in the event of
an earthquake.

1.5.2 Damage Prediction Tools and Models

Government, academic institutions, and private organizations routinely use a Federal Emergency
Management Agency (FEMA) developed software known as Hazards U.S - Multi-Hazard (HAZUS-MH).
Extensive studies and evaluations of the software's effectiveness have been conducted, indicating its
prominent use as the standard risk assessment and loss estimation software. The tool is designed to
examine the effects of floods, earthquakes, hurricanes, and tsunamis, while providing insight on the
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physical, economic, and social impacts of the disaster. Of note, Lewis County, Washington and Vancouver,
British Columbia (using software adapted for international use) have used the modeling software in
conjunction with USGS probabilistic ground motion data to predict possible earthquake damage. These
predictions have since been used to develop emergency response plans and retrofit vulnerable
infrastructure to withstand ground motion and failure effects. In 2014 (American Canyon earthquake) the
city of Napa used the software to cross-reference their damage inspections with HAZUS-MH predicted
results to validate their findings [8].

FEMA publishes user and technical manuals for the software, detailing the methodology used to predict
damage, personal injury and death, and the resulting economic losses. Sources and expert opinion
regarding asset and building Inventories, demographics, and economic parameters are listed to provide
additional information to the user to understand the final predictions and recognize the potential
uncertainty involved. Section 8.4 of the Multi-Hazard Loss Estimation Methodology (Earthquake Model)
Technical Manual [9] details damage functions (fragility models) for buried pipeline. The functions used
are the same as those designed for oil pipelines and potable water pipelines. The extent of the damage is
described through a repair rate, which primarily results from the buckling of the pipe wall. This means
that peak ground velocity (PGV) and flexibility of pipe material and welds have been designated as major
indicators for predicting leaks. Specifically, polyethylene pipes with fused joints, ductile iron and steel
pipes with ball and spigot or arc welded joints are considered the least vulnerable to damage from ground
shaking [10]. Repair rate equations have been listed in Appendix C. Peak ground disturbances (PGD) such
as a major ground rupture often result in the breaking of the pipe, which is more difficult to mitigate
through material selection. Instead minimizing pipe placement over major faults has been employed, but
this is more applicable to transmission lines and not further explored in this document.

PG&E also uses fragility models based on water systems while accounting for pressurization differences
[3,11]. Their repair rate equations are listed in Appendix C, along with scaling factors designed to reflect
current pipeline materials. Of note, the effectiveness of ductile pipes in withstanding ground motion can
be negated through corrosion, and as a result, soil corrosiveness factors have also been included in
company damage prediction calculations.

1.5.3 Historical Events

All studies have not been listed, but several key resources are worth mentioning in order to best
understand the data collection phase of the project. Major events within PG&E's service territory were
examined in order to accurately assess the risks associated to their infrastructure and customer base. The
last two earthquakes in the region to have warranted activation of the Emergency Operations Center
(EOC) occurred in 1989 (Loma Prieta earthquake) and 2014 (American Canyon earthquake). The San
Francisco earthquake of 1906 was studied less extensively based on the drastic changes in building and
pipeline construction, but it still provided important historical records. Regarding the 1906 earthquake,
Douglas G. Honegger's report compares leak data with soil deposits and peak ground acceleration [12].
Numerous internal company reports were also provided for this thesis, of which many are publicly
available. Of note, Steven H. Phillips and J. Kris Virostek compiled an extensive after-action report for the
Loma Prieta earthquake [13], which provides a critical review of the event. Additional resources from the
California Seismic Safety Commission [14] highlight additional lessons learned. Finally, Hope Seligson and
MMI Engineering conducted several in-depth studies regarding the effectiveness of the currently used
earthquake damage prediction model at PG&E based on the 2014 American Canyon Earthquake, along
with methods for expanding model coverage [3, 15, 16].
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1.5.4 Machine Learning Applications

Applying predictive analytics and machine learning principals in an effort to improve major utility
operations has been on-going for some time. Poisson regression algorithms were initially used to
identify most-likely points of failure [17] for utilities during weather events, and PG&E continues
to invest in new data driven improvement projects designed to drive everyday operations such
as vegetation clearance schedules [18]. Many times, these applications are utilized by electric
power providers, which can take advantage of rapidly developing, and numerous observation
points associated with above-ground lines stretching vast distances.

Less frequent occurrences, however, are also being studied through predictive analytics.
Landslides in particular are often discussed and multiple studies have been conducted to examine
predictive spatial features that may provide valuable warnings regarding susceptible areas.
Decision trees and support vector machines (SVMs) have been explored with successful results
[19, 20] along with various other algorithms using Geographical Information Systems (GIS) [21].
Beyond this, traditional machine learning applications for the use of aiding earthquake recovery
are often focused on remote sensing image analysis to assess damages [22].

Additional statistical methods for natural disaster early warning have been discussed in the realm
of sentiment analysis and natural language processing in filtering Twitter and social media posts
regarding earthquakes and wild fires [23, 24].

1.6 Thesis Contribution and Outline

This thesis makes several important contributions, in which the methodology and results are described
throughout the next several chapters. Model benefits described in this work include:

1) Expanding the currently used model to include branch lines and above-ground assets

Taking into consideration these lines and above-ground assets (such as meter sets) greatly expands the
robustness and impact of the model. Previous methodologies perform well on below ground transmission
lines but are ill-equipped to make predictions on such components of the distribution system. This a
critical and novel addition in PG&Es tool set to effectively and safely restore operations following an
earthquake.

2) Improving predictive power through the incorporation of additionalfeatures and real-time data

This is the first time that machine learning techniques have been used to predict gas line damage following
an earthquake. Previous models have solely relied on ground motion prediction equations based on
empirical evidence and expert opinion. This model utilizes such equations, along with crowd-sourced
information to actively train during an event in order to improve predictive power.

3) Eliminating manual procedures by automatically compiling data from multiple internal and external
sources

Immediately following an event, information is compiled from multiple internal and external datasets in
order to begin implementing the model. Prior to this, multiple departments had to rely on informal
information transfer and latency before having the information required to make the most informed
decision.
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4) Establishing a framework for future model development

The tool and methodology are data-driven and will improve following each event. While the results of this
thesis are promising, they are largely based on the data acquired from a single event. As soon as new
information is acquired, whether from historical events covered by other utilities, or in real-time
immediately following the next emergency response, the described model framework can be utilized to
make damage predictions among affected plats.

In order to reach these benefits, Chapter 2 of this thesis presents the data sources used and the
transformation techniques required to create a mineable dataset. Information from internal company
servers, Federal Emergency Management Agency (FEMA) simulations, and United States Geological
Survey data had to be compiled and transformed. GIS modeling techniques then improve data
interpretation and provide meaningful outputs based on PG&Es current operating procedures. Lastly, the
manual compilation and analysis is automated through Python script in order to integrate with other
PG&E systems in a timely and hands-off manner.

Chapter 3 shows the methodology used for developing the predictive model, highlighting various machine
learning techniques to optimize performance. Model evolution is described through the development of
both a static and dynamic, iterative model that updates and improves throughout the duration of an
event. Hypothesized predictor variables are consequently added and removed as individual algorithms
and their respective hyperparameters are tuned against a custom performance metric. Finally, the results
are reviewed and compared for final model selection.

Chapter 4 examines the model output and describes how it can be effectively implemented within PG&E's
Gas Emergency Center (GEC). Proposed uses include providing leak probability predictions to the
Distribution Integrity Management Program (DIMP) to drive the deployment of Leak Survey crews and to
use aggregated predicted leaks on a divisional level to feed the Maintenance and Construction (M&C)
resource optimization model.

This thesis concludes with alternative model use recommendations and areas of future work in chapter 5.
Additional algorithms that were not discussed in this document and unexplored datasets could provide
benefit to the organization in the future if additional time and resources can be afforded.

2 Data Collection and Resources

2.1 Data Sources

Prior to model development we had to construct a database from PG&E asset information and historical
records from previous earthquakes. These records include reports from industry, government, and
academia, focused on documenting the impact of specific earthquakes and reviewing measures that can
be taken in the future to minimize damage and loss of life. The below paragraphs outline specific data
sources used and the reasoning behind their inclusion.

Predicting the number of leaks that may occur in each plat requires an understanding of the assets present
in the area and their function. Based on empirical data from previous earthquakes, the focus of this thesis
is on the distribution system, as it is more vulnerable to the effects of an earthquake and largely present
in heavily populated areas. The distribution system will refer to lines downstream of the regulator stations
and less than 60 psig. These lines form a below-ground network, often running alongside other utilities
such as electric, water, and telecommunications, in order to deliver natural gas from the transmission
system to the customer. Smaller diameter service lines then connect the distribution main lines to a gas
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meter at the service tee through branch or service lines. This point represents the boundary between
utility and customer owned facilities. See Fig. 3 [25] for an illustration of the distribution system
components.

Imnage taken from Cabot Oil and Gas
Corporation published June 2nd, 2014 via
https/welisaidcabotcom/natural-Wa-
distribtuion-expandin-northeast-pa/

Your Home

Figure 3: Illustration of the gas distribution system and terminology

For our dataset, we were unable to attain the length of the service lines. Based on the number of accounts
and size of the service territory, documenting this number is still an on-going process. To mitigate this
missing set, we were able to identify the length and material of all main lines, and the number of service
taps within each plat. With these data we could get a reasonable sense of the assets in the area.

Ground displacements, which will be discussed later in the chapter, can have a significantly different
impact on the system depending on the type of pipe present. Sufficient flexibility or the ability to force
soil movement around the pipe is dependent on the material composition and construction techniques.
This required us to identify and differentiate between welded steel pipelines and those constructed of
medium to high-density polyethylene [14]. Our final dataset includes the breakdown of pipeline material
within each individual plat.

Thirdly, Field Automation System (FAS) data provided a record of every call PG&E received, from both
customers and first responders (Fire, Police, EMT, etc.) during the 2014 American Canyon earthquake. In
the event of an emergency, customers notify the PG&E Call Center if they smell gas (or think they smell
gas), are concerned and want a representative to check their appliances or have manually shut-off the gas
and need a qualified technician to restore the service. The customer level of knowledge regarding the
distribution system and their own gas appliances varies widely, resulting in a high ratio of calls to actual
confirmed leaks. Therefore, calls alone are not a consistent proxy for determining gas leaks, but can often
occur in response to excessive shaking (different building structures may react more violently with lower
peak ground acceleration (PGA) values based on the type of construction and soil composition on which
they are built) and other factors that may be helpful in predicting gas leaks. Therefore, the call data was
collected and included within the dataset of potential predictor variables.

Census data was also pulled from the ArcGIS "living atlas," an extensive database of global geographic
information from Esri. The data came from a 2012 census, which was assumed to be an accurate
representation of the population in the Napa Valley in August of 2014. Population was split into tracts and
later utilized to normalize additional data such as customer calls. This was done to avoid assigning higher
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weights to the call values from more populous regions, where multiple calls could be in reference to a
single incident.

Red-tagged building data from the Earthquake Engineering Research Institute (EERI) Napa Valley
Reconnaissance Survey and predicted building damage from the HAZUS-MH software was also collected.
These data were used to evaluate the hypothesis that building damage could act as a predictive feature
in determining the location of gas leaks. The reasoning behind using both predictive values and historical
records is listed in Section 3.

Historic leak rates were further identified as a potential predictor for leaks during an earthquake. Aside
from material strength, things like corrosion and age of pipe can cause performance degradation. Without
having access to the age of each pipe segment or the direct corrosive effects, we decided to look at
previous survey results to account for such factors. This allowed us to identify plats that were more likely
to contain pipes with minor, existing leaks or those that are more susceptible to future leaks.

It should be noted, any large natural gas distribution system may contain several hundred leaks of various
magnitudes at any given time. Plats are surveyed periodically to identify and fix such leaks and are graded
based on their severity and required repairs. A Grade-1 leak is determined to be hazardous to the public
and must be repaired immediately. These would include events such as construction equipment rupturing
a line (dig-ins) to non-hazardous leaks of any size, but that occur within 5 feet of a residential building.
Grade-2 leaks require a scheduled repair within 15 months and periodic surveillance based on the
condition they may become hazardous over time. Grade-3 leaks are considered non-hazardous with the
reasonable expectation they will remain that way. Regardless, they still require re-inspection every 15
months [8]. Identifying plats with previous leaks (both in quantity and severity) could be used to improve
model prediction power after an earthquake. This hypothesis was also consistent with an internal PG&E
report that identified previous leak survey timing as a "better predictor of leak rate post-earthquake than
peak ground acceleration" [26]. With this in mind we added the previous survey date, and the number
and type of each historical leak for each plat in the dataset.

USGS and PG&E's Geosciences Department provided historical geological data for the project. For below
ground assets, ground shaking does not typically inflict damage unless it induces significant soil failure,
but permanent ground displacement is important to identify and understand when looking to predict
damage. Through efforts between PG&E and InfraTerra Inc., we were able to assign landslide, liquefaction,
and surface rupture susceptibility values to each specific plat. Details on the equations and accompanying
factors as a function of PGA can be found in Appendix B. PG&E uses these factors to create Earthquake
Prioritization (EP) values that determine which plats should be surveyed first following an earthquake.
Scores are then normalized to 100 but can exceed that value if the PGA values are recorded above 0.5 g
[27].

The direct PGA values from historic events have also been included in the dataset. As previously described,
they correlate with permanent ground displacement, but can also be useful in predicting above ground
damage. Masonry from chimneys and collapsed cripple walls have been documented as crushing and
severing both meter sets and service tees, resulting in Grade-1 gas leaks. An internal memorandum [16]
from MMI Engineering provides a detailed analysis on pre-1950 home construction in the San Francisco
Bay area and the likelihood of collapsed cripple walls causing gas leaks on above-ground assets. The report
further provides recommendations for incorporating this concept into the current system and what data
sets would have to be compiled to make it possible. The recommendations are set for review and possible
implementation, but to date no action has been taken.
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During an actual event, these PGA values are received by PG&E directly though USGS ShakeMaps. They
are inserted into internal algorithms to determine repair rates and make damage estimations. Building on
this automatic transfer of information, we examined an additional feature of the USGS service (not
previously used by PG&E), which involved crowdsourced information. The "Did You Feel It?" program [28]
includes data collected from the general populace through an online survey. The survey answers are
compiled and entered into an algorithm to determine the Community Decimal Intensity (CDI), which can
be thought of as a separate intensity measurement. In the American Canyon earthquake, over 40,000
people responded to the survey, mostly within the first two hours. If addresses are included, USGS creates
a geocoded map to indicate where the CDI values originated. The affected areas are then segregated into
a grid (one-kilometer resolution) and are formed using UTM coordinate boundaries. For this dataset, the
centroid of each affected area was chosen and matched with a corresponding plat. As mentioned in
section 1.5.4, crowdsourcing information in the event of a natural disaster can be used to aid first
responders.

Additionally, a historical set of reported leaks from the 2014 American Canyon earthquake was compiled.
Without these data, the model would be unable to effectively learn. To accomplish this, we pulled data
from SAP to account for the Leak Survey team reports, FAS to account for dispatched Gas Service
Representative (GSR) reports, and the Gas Incident Management Tool (IMT) to account for major leaks
that required responses from Maintenance and Construction (M&C) crews.

Through Leak Survey reports, we noted the teams were able to survey all plats with predicted damage
within 6 days of the 2014 American Canyon Earthquake. Taking data from 24AUG2014 through
29AUG2014 in SAP, we were able to create a list of confirmed leaks, and the time in which they were
discovered. Based on Leak Survey procedures, each documented leak already included the plat from
which it was found.

It is important to note that leaks requiring minor repairs such as tightening, lubricating and adjusting (TLA
leaks) were not included. These leaks exist throughout the service area and pose no safety hazard.
Differentiating between pre-existing TLA leaks and those caused by the earthquake was not conducted in
this analysis.

The FAS datasets served two important functions. Firstly, the data contained leak information that was
not recorded in the Leak Survey reports. This is because GSRs and Dispatch utilize a separate system with
their own requirements. These confirmed leaks were added to the SAP data discussed above. The second
function (as previously described) relates to accessing customer phone call records in order to predict
areas that may experience leaks.

Thirdly, data was collected from historical IMT records. IMT was utilized by dispatch to record incidents
that required immediate action and met other reporting thresholds required by the California Public
Utilities Commission (CPUC). These reports typically correspond to dig-ins, requests for qualified gas
representatives by local fire and law enforcement, and other events that could result in significant
damage, injury, or media attention. Notifications that result in IMT documentation most often originate
through dispatch and will have an associated FAS record and work order as well. However, there are
exceptions, and as such, IMT records were reviewed to complement the dataset compiled from FAS and
Leak Survey reports. Using this methodology, we could effectively cross-reference all of the available
resources to ensure we had the most accurate and comprehensive view of the leaks that occurred during
the 2014 American Canyon earthquake.
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2.2 Model Resolution

Based on available data limitations and unique damage profiles presented from each recorded
earthquake, we felt it would be unwise to predict damage to individual main and service lines. For
example, the 2014 American Canyon earthquake presented surface disruptions that were previously
thought not to occur during earthquakes of that particular magnitude. Examples were discussed in an
interview with members of the PG&E Geosciences Department (conducted March 1st, 2017) and are
referenced throughout this work. Additionally, we did not have the asset data and positioning to attempt
such levels of granularity. To provide meaningful results within our capabilities, we decided to examine
individual plats. For this analysis in the Napa region, the average plat formed a rectangle approximately
400x600 meters. Plat size is dependent on the density of assets in the region and will therefore vary from
region to region. The assumption is that plats are already used in the PG&E system for directing Leak
Survey and other maintenance efforts, were small enough to provide meaningful direction to GSRs and
other small crews and could be aggregated easily enough to input divisional leak totals to the resource
optimization model.

Once limitations on granularity were set, it was important to transform the series of descriptive locational
references into a singular system. For example, FAS data provided positions in terms of latitude and
longitude (World Geodetic System 1984), IMT provided individual addresses, and census data came in the
form of tracts. Addresses were geocoded and grouped along with geographic coordinates and stored as
point data. Using ArcGIS software, these points were graphed along with a plat boundary layer and stored
as polygon features. Intersecting the multiple layers allowed us to assign point values, such as confirmed
leaks and customer calls to the plats in which they occurred.

While examining multiple layers stored as polygon features, we utilized the "tabulate intersection" tool,
also available through ArcGIS software. In the case of determining population per plat, we examined the
plat boundaries and census tract boundaries. The percentage of tract occupied by each plat was multiplied
by the tract population in order to determine the population for each individual plat. For this calculation,
tract and plat population were assumed to be uniformly distributed over their respective areas.

2.3 Summary of Data

A summary table of the original hypothesized independent variables is available in Appendix F. It is
important to note that the table listed in Appendix F was an early representation and does not include
imputed data or the elimination of independent variables through model iteration. From the available
resources, a master dataset was constructed utilizing the plat names as indices. Plats were chosen based
on the DASH model output, which provided a list of plats that could have possibly been affected by the
earthquake. Using this list, independent variables were assigned from the variety of sources mentioned
above. Finally, the dependent variable, represented by the number of leaks, was assigned to each
corresponding plat. Preprocessing steps were taken based on the algorithm of choice. Chapter three will
examine such steps and the decision points and methodology used throughout the evolution of the model.

3. Model Development

3.1 Overview

The methodology behind development can be summarized in five steps:

(1) Data and knowledge collection and analysis (described in Chapter 2)
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(2) High-level solution design and feature selection

(3) Model type and algorithm selection

(4) Technical validation through training and testing

(5) Implementation

Chapter 3 focuses on steps (2) through (4) and details the specific methods and considerations used in
accomplishing these tasks.

3.2 Incorporating Existing Architecture

Once an earthquake occurs, PG&E uses the DASH model to understand the event's impact to gas
distribution assets. This output aids decision makers when allocating and assigning resources to areas of
concern. The model not only identifies high-risk areas, based on the algorithm described in Appendix B,
but also the repair rate, measured per 1000 feet of pipe. The repair rate is adopted from the American
Lifeline Alliances (ALA) damage model for water pipes and takes into consideration damage equations as
a function of ground shaking (peak ground velocity measured in inches per second) and ground failure
(permanent ground displacement or PGD, measured in inches) [3]. The report itself is generated within
15 minutes of an event, without review from the Geosciences Department. It is immediately distributed
to Gas Emergency Preparedness and Readiness (EP&R) and Integrity Management personnel via company
email. Within 90 minutes, a reviewed DASH report is distributed for any earthquake rated as M5.0 or
greater. For events measuring less than M5.0 (but greater than M3.0) the report is only made available
through the DASH homepage on the PG&E intranet [29]. Throughout the life of an event, the DASH output
can be revised and re-sent if significant changes are found. For reference, a 1 9 th version of the DASH report
was sent out approximately 48 hours after the start of the 2014 American Canyon earthquake.

The DASH model is an important tool for Integrity Management personnel, but it is not the only input
analyzed when considering potential areas of pipe failure. Following an event, DIMP also reviews
additional data sources to better predict which plats need to be surveyed. According to the Asset
Knowledge and Integrity Management (AK&IM) "Playbook," other important sources include police, fire
department, and customer phone calls through dispatch and customer care and billing (CC&B), building
damage through online sources and local city governments, and historic survey schedules and leaks from
DIMP internal resources. There is no clear method for gathering these data or protocol for sharing the
above information. Instead, the above items are listed in appendix I of the "AK&IM Playbook" and are
meant to help guide DIMP decision makers and GEC personnel as a supplementary checklist.

Since PG&E has extensive knowledge and experience understanding the geological features of their
service territory, we chose to build on the framework they have developed by incorporating information
that is readily available and already recommended for consideration. The system our model augments
currently involves a manual, human assessment of the data and can be taxing for even the most
experienced decision maker. Using DASH as the core feature, while including additional variables into an
inclusive model, we aimed to improve the predictive performance.

An additional benefit to building on the existing framework, is that the model output was already
providing information on a per plat basis, and the front-end interface was familiar for emergency response
employees. Emergency management relies on significant training and familiarity with the tools available.
Large-scale changes without adequate time and resources to retrain personnel could result in degraded
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response efforts. With that in mind, the idea of gradually introducing a new system was an important

characteristic of the newly proposed damage prediction model.

3.3 Model Assumptions and Limitations

Analysis of the dataset and discussions with PG&E personnel drove us to identify several limiting factors

and make a series of assumptions. The most important limitation involves the historical data used to train
the model. We were limited on the information available to the 2014 American Canyon earthquake.
Information from the 1989 Loma Prieta earthquake was restricted to macro level after-action reports and

personal accounts. The information gathered from the 1989 event influenced predictor variable choices
but could not be relied upon for plat level accuracy when building historical datasets for model training.

Furthermore, certain areas damaged in the 1989 earthquake resulted in line replacement instead of

repair. Individual leaks were not catalogued on pipes designated for replacement because it was seen as

a wasted effort if the line was to be removed. As a result, extensive data regarding leak reports are missing
from that event.

Secondly, using information from a single earthquake assumes future earthquakes will act in a similar
manner. This is an important assumption to note because the 2014 American Canyon earthquake
registered as a M6.0, which is considered relatively mild in comparison to future earthquakes projected
for the region. As a comparison, the 1906 San Francisco earthquake measured M7.9, which released
approximately 700 times the energy as the 2014 American Canyon earthquake (as denoted by the
expression 10(1 (79-60)) used for evaluating magnitude relationships). Developing a model based on a
single event of this magnitude may reduce robustness.

Thirdly, historical USGS ShakeMap data used for model development came through the DASH report and
was updated multiple times throughout the 2014 American Canyon earthquake. Generally, as more
sensor data becomes available and field inspections identify various points of ground disruption, the
estimates are revised to reflect the most up to date information. The 2014 American Canyon earthquake
created problems for geologist because it occurred along an unknown fault. The model assumes future
earthquakes will occur along more studied faults, resulting in more accurate results at an earlier time. To
account for this our model uses DASH data from version 19, which came out 48 hours after the start of
the event. With this assumption we maintain that PG&E will have more accurate USGS data immediately
after an earthquake occurs during future events.

Lastly, the model assumes that internet will be available during the earthquake. Multiple datasets and
field updates are required to generate the necessary inputs, and without server access and an ability to

distribute data the model cannot be used. The current DASH model is more advantageous in this situation.
DASH inputs can be simulated through USGS estimates of likely scenarios, of which multiple simulations
have been run and damage reports produced. In the event of limited technological availability, PG&E
personnel can refer to a scenario that most closely reflects the current situation, and reference hard copy
print-outs while guiding initial emergency responses. The dynamic model description later in this chapter
and future recommendations appearing in chapter 5 will make it apparent why our proposed model is not

afforded the same simulation capability.

3.4 Pre-processing Data

Prior to model development we had to further process the dataset to make it usable for our learning
algorithms. Clustering methods that use Euclidean distance measures and others that learn feature
weights based on an optimized gradient descent algorithm (logistic regression and support vector
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machine) are sensitive to feature scales. Using the StandardScalar function available through the Skelarn
package in Python, the features were rescaled to reflect a mean of 0 and a standard deviation of 1 [30].

Missing values also required attention. As with feature scaling, tree-based algorithms are insensitive to
such issues, but other potential algorithms need complete datasets in order to function. Simply
eliminating plats with incomplete data was not considered based on the relatively small dataset currently
available. Standard imputation methods often involve replacing missing numbers with the mean or mode
of the attribute values, or estimating a distribution from the current data, and assigning and replacing the
missing value accordingly [31]. We chose to use a k -nearest neighbor impute approach because the data
is organized geographically. For example, attributes present in row 1 are assumed to be similar to
attributes presented in row 2 based on their proximity. The plats in which they represent are typically
adjacent to one another. By looking at the data from three adjacent plats (k=3, using a Euclidean distance
metric) we replaced the missing value with the average data from the three nearest rows.

3.5 Classification and Regression Trade-offs

Understanding we had historic leak data available from the most recent earthquake, we decided to
construct a model using supervised learning techniques. From this point we could examine classifying the
number of leaks into group memberships, or treating the number of leaks as a continuous, target variable.
The latter would provide a highly-specific output for use in the newly developed resource optimization
model and could be accomplished through regression analysis.

A graphical analysis of the relationships between various features and the data distribution using a
scatterplot matrix was initially used in an exploratory effort to identify possible relationships. With no
obvious results, we implemented a random forest regression, as it is less sensitive to outliers and requires
minimal tuning. In the random forest, a series of individual decision tress are constructed and the final
output is the averaged result of the individual predictions. With this algorithm, not all features are
considered while determining the best splitting point, but instead, a randomly selected subset of features
is evaluated over multiple iterations. The increase in bias is offset by the reduced model variance (through
averaging), thus yielding better results in comparison to individual trees. Branches are then split by
minimizing the mean squared error (MSE). This value is the average of the sum of squared errors (SSE)
between the predicted outcomes and the actual number of leaks [32, 33] shown in Equation (1).

MSE = (yg - y(1)

Where, N is the number of points,

yi is the predicted value, and

yi is the actual value of point i

The coefficient of determination (R-squared) for the initial trials showed poor results. The mean value
representing fit to the regression line was 0.465 with a standard deviation of 0.024. This was further
characterized by extreme overfitting, as the mean training set value was 0.907 with a standard deviation
of 0.004. While a continuous value could be beneficial to the organization, company representatives
encouraged developing a model with grouped outputs, consistent with DASH. Knowing the exact number
of leaks would not drastically alter response efforts but relaying the data in a tiered manner could impact
resource allocation.
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Grouping results into bins also serves as a positive reminder of the level of uncertainty present in the
predictions. A 2015 review of the distribution system damage with the predicted DASH results from the

2014 American Canyon earthquake recommended exercising caution when interpreting model results. In

the executive summary it states that precise repair locations cannot be predicted and estimates should

be "used to guide regional repair planning" [15]. While the aim of the proposed model is to improve upon

the current system, the task is challenging based on the inherent uncertainty and limited training data.

For our model structure, the predicted number of repairs was initially classified into five separate

categories: 0, 1, 2-3, 4-5, and 6-10. In order to validate our best assumptions for bin sizes we held

interviews with gas control personnel and subject matter experts. Following these discussions bins were

reduced to three distinct groups, as displayed in Table 3.1.

Table 3.1: Bin numbers and corresponding number of leaks

NUMBER OF LEAKS BIN ASSIGNMENT
0 0

1-5 1
6+ 2

The model assigns each plat with a value of 0, 1 or 2, corresponding to 0 leaks, 1-5 leaks, or 6 or greater

leaks respectively. Through interviews we determined plats experiencing greater than 5 leaks would be

candidates for a shut-in, which is consistent with our upper-level bin choice. A shut-in allows PG&E to

turn-off gas services to entire Emergency Shut-in Zones (ESZ). These zones can be as small as three plats

but can affect 10,000 customers at any given time. Therefore, the decision to use them often requires

catastrophic damage.

Once bin values were adjusted and assigned, the decision was made to use a classification algorithm to

predict the damage (in number of leaks) on a per plat basis. The end result of the model was designed to

display the plats affected by the earthquake, and a value (0, 1, or 2) corresponding with the predicted

level of damage.

3.6 Performance Metric for Algorithm Comparison

In order to assess the performance of individual algorithms, we had to decide on an appropriate scoring

metric. A preliminary analysis of the data showed a large imbalance between the classes. The approximate

breakdown is 88% class-0 membership, 8% class-1 membership and 4% class-2 membership. A lazy

algorithm could achieve an accuracy score, defined as the number of true predictions divided by the total

number of predictions, of 88% by always predicting class-0 (assuming a similar distribution in the data

generated from the next earthquake). As is typical with datasets exhibiting heavy imbalance, accuracy was

not considered as a representative performance metric.

Alternatively, precision and recall values were examined to assess model performance. Recall (REC) is

defined as the number of true positives divided by the total number of positive samples. Precision (PRE)

is defined as the number of true positives (TP) divided by the sum of true positives and false positives (FP)

[34]. Since our model was built on a multi-class classification problem, traditional terminology may be

inaccurate or misleading. In our example, a false prediction is instead noted as an "error."

The confusion matrix below (Fig. 4) provides an illustrative example of how model results are displayed.

The term TP represents a "true positive," or a correct prediction. In this context, a leak is neither negative
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or positive. but instead, the prediction is positive (correct) or it is an error (incorrect). The subscript refers
to the class. Consequently, the term E represents an "error," and the subscript refers to its row/column
position in the confusion matrix. For example, E0 ,1 refers to an error, where the true value is a class-0,
but the predicted value is class-1. Using Fig. 4 as an example, the PRE of class-1 is defined as:

TP, 
(2)

(TP1 + E0 ,1 +E 2 ,1 )

and the REC of class-2 is defined as:

TP, 
(3)

(TP2 + E2,1 +E2, 0)

Predicted Label

0 1 2

0 TPO E0 ,1  E0 ,2]
True Label 1 E1,0  TP1  E1,2

2 E2 ,0  E2 ,1  TP2

Figure 4: Confusion Matrix for 3-class classification algorithm

Often times the precision and recall scores are combined through their harmonic mean as a better
assessor of performance. This is known as the F1 score and is defined as twice the product of (2) and (3)
divided by the sum of (2) and (3) [34].

However, this particular case required an additional level of detail not satisfied through the use of
traditional recall, precision, and F1 scoring metrics. In the example described above, the class-2 recall
score does not differentiate between E2,0 and E2,1 . In practice those errors do not result in the same
consequences. For example, predicting a plat had between 1-5 leaks (class-1) would warrant a response
from emergency personnel. Upon verification that the scene is more damaged than initially predicted,
additional assets can be requested. Conversely, if a plat is predicted to have 0 leaks (class-0), when more
than 6 leaks are present (class-2), gas will be released over a greater period of time as no assets would be
directed to respond. The longer gas is released, the greater the probability for it to develop into an
inhalation, fire or explosive hazard. We aimed to minimize the time of gas blowing, and therefore, did not
assume all false predictions carried the same weight.

To account for this factor, individual results from the confusion matrix were applied against a penalty
matrix. Consequences of a false prediction were assigned weights on a ten-point scale, penalizing errors
that fail to predict a leak more than predictions that incorrectly assign a leak(s) to a plat when none are
actually present. Penalty severity is then determined based on the consequences of the error. Misses
between adjacent classes are less harmful then failing to distinguish between a class-0 and a class-2. In
the model, the results of the confusion matrix were unraveled and presented as a [1x9] matrix. The dot
product was then taken between the unraveled confusion matrix and a [9x1] penalty matrix, resulting in
a final score. Algorithms with lower scores are considered better performers. An example of this process
is shown in Fig. 5.
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Figure 5: Confusion matrix applied against penalty matrix to evaluate algorithm performance

The penalty matrix for this model assigns a 0 to all true predictions. The model is never penalized for a
correct prediction. w1 , w2, and w4, are assigned a value of 1 because they over predict the damage. From
a safety standpoint this is not a bad result. An argument can be made that resources are being used
inefficiently, but the plats they are assigned will require inspection at some point regardless. Therefore,
they have not been penalized harshly. w3 is assigned a value of 5 because it fails to predict leaks
categorized as class-1 (1-5 leaks), and w5 is assigned a value of 10 because it fails to predict leaks
categorized as class-2 (6 or more leaks), with the latter being a more egregious error. Finally, w6 is
assigned a value of 1 because it still predicts damage, but to a lesser extent. Assets will still respond to the
plat and upon further inspection can begin mitigating the problem or requesting further assistance. The
weights were chosen based on input from gas operations subject matter experts. The penalty matrix
described is shown below:

[0 115 0 110 1 OI

This scoring metric will vary greatly depending on the number of samples tested. Therefore, it must be
noted that It is only used as a comparison tool in evaluating the various learning algorithms.

For model evaluation the data was split into training and testing sets using 10-fold cross validation. This
involves randomly splitting the data into 10 sets without resampling, using nine folds to train and saving
the final fold for testing. This process is repeated until 10 separate models have been produced. The
performance is then assessed as the average result of the 10 models. This method is advantageous to
holding out a testing set because it becomes less sensitive to data partitioning. To further improve the
evaluation process, we also utilized a stratified method to account for label imbalance. This ensured that
each fold preserved the class proportions represented in the entire dataset.

3.7 Static Model

Initial model development was based on a static framework. We made the assumption that all of the data
required to make predictions regarding plat damage was immediately available at the onset of the event.
By treating the problem in this manner, we could work backwards in time in order to identify critical
decision points. Starting with a baseline performance (prediction power with all the data available), we
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could selectively remove points of information based on their actual availability in time to determine
model impact. This process is described in detail in section 3.8.

Predictor variables were separated into distinct categories as described in Table 3.2. This organizational
method was based on the different datasets from which the information was available and allowed us to
select and discard particular features, while still maintaining categorical representation. Appendix E
further provides detailed explanations for each feature that was explored and its source.

Table 3.2: Categories and associated features used in developing the predictive model

CATEGORY FEATURES
DASH EP PGA LS LQ Fault Value
HISTORICAL SURVEYS Grade No. leaks Time Since Last Survey - -
CENSUS Population No. Buildings Building Type - -
INFRASTRUCTURE Length Material No. Service Taps - -
COMPONENTS
BUILDING DAMAGE HAZUS Reported - - -

COMMUNITY DECIMAL Value No. - - -

INTENSITY (CDI) Responses
CALLS Customer PD/FD/EMT - - -

Where,
Length = Pipe length in feet
Material = Pipe material
No. Service Taps = Number of above ground service taps
Grade = Leak severity from most recent survey based on [8]
Time Since Last Survey = Number of days since the plat was last surveyed. PG&E surveys plats on a
scheduled basis for leaks in order to ensure they continuously provide safe and reliable services. Plat
surveys range from 1 to 3 years.
No. Building = Number of buildings located within the plat
Building Type = Building inventory has been broken into 33 distinct types per the HAZUS-MH building
inventory used by FEMA for predicting building damage. Major categories such as residential, community,
industrial, agriculture, government and education buildings are further divided to reflect their size and
construction nuances.
EP = Earthquake Prioritization Value (See Appendix B)
PGA = Peak ground acceleration
LS = Landslide susceptibility (See Appendix B)
LQ = Liquefaction Susceptibility (See Appendix B)
Fault Value = If the plat falls along fault line and earthquake magnitude is greater than 6.0, a 1 is assigned,
else 0.
HAZUS = Number of buildings damaged as predicted through HAZUS-MH software
Reported = Number of buildings damaged as reported from actual observers
Value = CDI value
No. Responses = Number of individuals responding through DYFI program
Customer = Number of received phone calls by PG&E for emergency or odor concerns from customers
PD/FD/EMT = Number of calls from Police Department (PD), Fire Department (FD) Emergency Medical
Technicians (EMT) calling to report gas related issues
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Each category is composed of multiple features that could be used individually, in total, or in combination
in the predictive model. As the hypothesis states, they have been chosen based on previous research,
after-action reports, and company interviews. For example, under the "Building Damage" category we
can receive information through the FEMA developed HAZUS software and/or reports from city and state
driven damage surveys. For our model we examined the Earthquake Engineering Research Institutes
(EERI) post-earthquake reconnaissance survey for the 2014 American Canyon earthquake to represent
"reported" damage. This information was used to identify buildings that were damaged, the extent, and
where they were located. In actuality, these data would not be available for several days after the event,
but we decided to examine its importance and impact on the model's predictive power. If the predictive
software (HAZUS-MH) accurately reflected the actual damage, then these predictions could be used as a
feature within the damage model pipeline. This is based on the hypothesis that building damage increases
the probability of above-ground pipe damage. Ultimately, it was not included in the final model, and an
explanation is presented in chapter 5. Final features chosen for model development are presented in
Appendix D.

Once the basic structure of the dataset and model was complete we could begin looking at simulating
real-world events. We examined how data would become accessible, at what point in time, and how it
would affect model results. This was accomplished through the dynamic model.

3.8 Dynamic Model

The categories chosen for the prediction model can be separated into three distinct periods based on their
availability: prior to the event, at the onset of the event, and post event.

Prior: This includes knowledge of the infrastructure, previous leaks through historical surveys, and census
data regarding population and building types. Without knowledge of the earthquake characteristics, such
as intensity and location, very little can be inferred from these categories alone. Basic assumptions remain
valid, such as more service taps and more pipes increase the chance of multiple leaks in a single area.
Additionally, plats that have historically exhibited an above-average number of leaks (whether it is based
on soil corrosiveness, pipeline material, sheer number of assets, etc.) or those that have not been
surveyed in several years are more likely to exhibit leaks post-earthquake. Independent of whether they
were caused by shaking or ground disturbances, these leaks will result in PG&E response efforts and
resource expenditures.

Onset: After an earthquake, PG&E utilizes data from USGS ShakeMaps, which provide "near real-time
maps of ground motion and shaking intensity following significant earthquakes" [35]. These data provide
the input for internal company damage prediction algorithms, including peak ground acceleration,
velocity, and disturbance. These same values are also available as input for building damage models
available through the HAZUS-MH software. Current PG&E damage modeling efforts (excluding the use of
HAZUS-MH) would typically conclude at this point. Once all of the USGS data has been received as input
for DASH, normally 60-90 minutes after the event [29], additional predictive efforts would seize. Only if
significant changes were reported would these models be amended and redistributed throughout the
organization (as seen through DASH version 19).

Post: Throughout the emergency response, PG&E receives phone calls from both customers and first
responders regarding known and perceived gas related incidents. Calls range from fire department
personnel requesting to secure gas services to customers misinterpreting garbage odors as hazardous gas
leaks. Additionally, USGS provides an online platform for individuals to report earthquakes through an
online survey. Results from the "Did You Feel It" (DYFI) questionnaire are inputted into an algorithm to
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estimate event intensity. During the 2014 American Canyon earthquake, this program received over
40,000 responses. As time progresses, more data points are produced and can be used to help localize
areas experiencing significant damage.

The dynamic model takes into consideration all three periods over an iterative process. Streaming data
from the 2014 American Canyon earthquake has been segregated into 2, 4, 8, 12 and 24-hour periods.
This includes calls received and USGS questionnaire responses. New developments force the algorithm to
update the weights assigned to the independent variables. As a result, the final product can be described
as series of individual, time-dependent models, with each taking advantage of the most up-to-date
reports. In this case, small datasets also provide a useful advantage. PG&E's entire service territory is
divided into approximately 22,000 separate plats. During an earthquake, only as small fraction of these
will be affected. Prior to any dimensionality reduction, the resulting datasets still remain modest in size
and can be executed without considering time delays or limits in computational power. This not only
ensures multiple iterations can be run over the life of the event, but if desired, the model can be re-trained
in real-time using information from plats with confirmed leaks.

A more detailed analysis is described in the results section, but early trials showed incorporating updated
data from field personnel and customers improved model performance. Interestingly enough, the
greatest impact is seen within the first two-hours of the event. This enables PG&E to use this information
to develop an action plan and request mutual aid in the same amount of time it takes to activate the
emergency control centers.

3.9 Algorithm Selection

There are a multitude of learning algorithms available to choose from and each one maintains its own
strengths and weaknesses. Having created the necessary datasets segregated over specified time periods
after the event, we examined the predictive capabilities of logistic regression, support vector machine
(SVM), k-nearest neighbor (KNN), and random forest models.

Logistic Regression: This classification model predicts the probabilities of class labels. To accomplish this,
the model establishes a linear relationship between the predictor variables and the inverse of the log-
odds ratio. The odds ratio is defined as the probability (p) of an event divided by the quantity one minus
the probability of an event. This can be written as

p (4)
(1-p)

By taking the logarithm of this ratio, input values are unrestricted and can span the range of real numbers.
However, since the model needs to determine the probability, the inverse of the log-odds ratio is required.
This can be written as

(1+e-z) (5)

where z = 1 .W1  (6)

The output of the sigmoid function, or the probability of class inclusion given features x parameterized by
w, then becomes the cost function of the model.
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The weights are then determined using a gradient ascent (or descent) optimization algorithm by
maximizing (or minimizing) the log-likelihood (cost) function described above. The log of the equation

makes determining the partial derivative with respect to each weight much easier. This allows us to

identify the gradient and update the weights by moving away until reaching the global maximum (or
minimum).

Support Vector Machine (SVM): SVMs are best described visually using a two-dimensional feature space,

with each feature value represented as a specific coordinate. Fig.6 shows two classes separated by a

decision boundary or hyperplane. In this example, you can visualize how multiple hyperplanes could exist

that would still effectively separate the two classes. In order to determine the optimal boundary, which

can be defined as

wTx + b = 0 (7)

Where, wT is the weight vector
and x is the input vector

the algorithm maximizes the distance between the boundary and the support vectors. The vectors are the

individual coordinates that lie on the hyperplanes defining our margin. In this case, the colored-in items

represent support vectors used to determine the maximum margin.

x2

Figure 6: Graphic representation of support vector machine

2
The margin is defined as - which can be shown through Fig. 6 as well. The dotted lines represent the

"positive" and "negative" hyperplanes and are defined as:

wTx + b = 1 and
wTx + b = -1

(8)

(9)
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Samples are categorized as -1 and 1 instead of 1 and 0. By subtracting the two equations and normalizing
by the length of vector w, written as

yF_ 1 wj2  (10)

we have defined the margin in which we look to maximize.

Non-linearly separable problems can also be solved with SVMs using a kernel function. This function
transforms the data to a higher-dimensional feature space. Once transformed by a mapping function, the
data becomes linearly separable.

Both the logistic regression and SVM classifier use a "one versus rest" technique in order perform on
multi-class problems. In this way, individual classes are treated as the positive sample, and all other classes
are grouped together to represent the negative class. This process is repeated for all individual classes,
where a confidence score is produced and then compared against other iterations prior to determining
the sample class.

K-Nearest Neighbor (KNN): The KNN algorithm is a non-parametric model that requires the use of the
training set for each new prediction. Unlike the logistic regression model and linear SVM mentioned
above, this algorithm does not construct an internal set of rules. Instead, the training data is stored and
used to classify new instances. This memory-based approach can be computationally intensive for large
datasets but was appropriate for this work.

Each new instance is compared against a number (k) of neighbors in n-dimensional space, depending on
the number of predictor variables chosen. The theory is that instances surrounded by a majority of one
class will belong to the same class with a high degree of probability. There are many different metrics
available for determining the closest set of neighboring data points, but the most common method is to
use the Euclidean distance. This method requires the dataset to be normalized in order to ensure specific
predictor variables are not disproportionally influencing the classification.

Random Forest: The final algorithm explored in the project is a series of decision tree classifiers that have
been built from randomly selected samples of the initial training set. These new training sets are
assembled and compared against a randomly selected number of predictor features, resulting in a series
of trees with unique predictions. The results are then combined with the class receiving the majority of
votes chosen for the ultimate prediction.

Decision trees themselves can be thought of as a way to partition the dataset, such that each decision
point maximizes the purity of the subsequent set. For example, if node "A" is comprised of 10 samples
belonging to class-1 and 10 samples belonging class-2, it would be very difficult to make a prediction.
However, if node "A" is split based on an additional criterion resulting in sub-node "B" with only class-1
membership and sub-node "C" with only class 2 membership respectively, the problem is much easier as
the new nodes are considered pure. With real-world datasets, it may be unreasonable to expect pure
nodes from both a computational and time perspective, and as a result, algorithm parameters can be set
to establish a maximum number of nodes along with a purity threshold.
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The random forest can be implemented very easily because it does not require any data pre-processing.
It also takes advantage of a series of predictions, that by themselves may be flawed, but when aggregated
can overcome their individual errors.

Preliminary test results using the four algorithms indicated over-fitting. This was expected for the KNN
and random forest based on the nature of the algorithms but was also evident while comparing training
and test set performance with the logistic regression model and SVM. Outside of cross-validation
techniques, it was recognized that potentially irrelevant features could also be eliminated to help reduce
over-fitting. Earthquakes in the San Francisco region resulting in major damage to the natural gas
distribution system are very limited and data from these events are often missing or non-existent. The
end result is a relatively small set of data points with a large number of possible predictive features.
Reducing the ratio of features to observations was important for generalizing the results.

At this point it is important to comment on the project holistically and summarize the overall process. As
previously noted, quantitative and qualitative information was collected from engineering damage
assessments and employee interviews to media reports and customer phone calls to best determine
predictive features. The approach to this initial phase was to collect as much information as possible while
on site, allowing for model refinement to occur at a later date, independent of location. The data was
then compiled into a useable set with the understanding that specific features could be removed
throughout the process with various selection techniques. Alternatively, features could have been added
sequentially, but the former allowed for the examination of all the features together. This process was
seen as a better alternative to guessing which additional predictors would have the largest, positive effect.

Many methods exist, and for this work both sequential backward selection (SBS) and a random forest
were used for identifying relevant features. SBS sequentially removes a predictor variable and creates a
new classifier with the subset of features. This process continues and each classifier is evaluated against
a pre-determined metric, such as predictive performance or error rate [36]. The random forest classifier
helps reduce the number of features by looking at the decrease in impurity across all individual trees for
a specific feature. This means that specific nodes, once split, are better at separating data points, and are
therefore more effective at predicting the class of new observations. Once the impurity decrease values
are summed the results can be ordered and normalized to indicate the most important features.

By using a Random Forest, we were able to examine the initially chosen predictor variables and identify
the most useful ones in terms of predictive performance. A normalized graph displaying feature
importance is shown in Fig 7. It is important to note, however, that the results were based on a single
earthquake of modest magnitude. In an effort to make the tool as robust as possible, not all of the features
were eliminated. This opens the possibility for new data to be effortlessly incorporated into the model
during the next major event. A clear example involves the location of gas lines in relation to major fault
lines. The American Canyon earthquake in 2014 occurred along a previously unknown fault, which is
atypical and unlikely for future events.
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of possible values) were evaluated against the custom performance metric described in section 3.6.
Hyperparameter examples include regularization values (logistic regression and SVM), number of
neighbors and distance metric (KNN), and tree depth, number, and information gain function type
(random forest). Using this method in conjunction with cross validation techniques yielded the optimized
set of parameters for each model.

As mentioned in section 3.8, part of the overall damage prediction improvement project involved using
real-time data to adjust initial predictions. This requires feature weights to change throughout the event,
as specific information becomes more accurate and readily available. Therefore, the model can be
interpreted as a number of unique, individual algorithms depending on the time into the event. In our
case, we utilized four distinct datasets, that were trained and validated over five time-periods. Each
algorithm was executed at 2, 4, 8, 12 and 24 hours after the start of the earthquake., resulting in 20 distinct
models. These periods were chosen for several reasons, including internal company response metrics,
recognizing the earliest information is the most volatile and requires the most attention, as well as the
need to establish realistic time periods between running the model and using the data to direct resource
allocation.
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3.10 Results

The four learning algorithms were run against historical data from the 2014 American Canyon earthquake,
using the custom designed scoring metric in order to evaluate performance. Trials were run 500 times for
each CAT I-IV dataset at time intervals of 2, 4, 8, 12, and 24 hours. It should be reiterated that the scoring
metric is dependent on the size of the data set and class population. For example, based on the penalty
matrix, a dataset with twice the number of observations could perform better, but still incur a greater
overall penalty and appear less valuable. Therefore, it was important to ensure that class representation
was balanced throughout the training and testing phases. This ensured the score was indicative of the
algorithm and not an imbalanced set. With this in mind, final scores were compared such that the lowest
value equated to the highest performing model.

The KNN and random forest algorithms performed similarly and each consistently erred when predicting
plats with one to five leaks (class-1). Overall, the algorithms heavily favored predicting zero leaks had
occurred. Based on an emergency response scenario, it was important for the model to err on the side of
caution. These prediction failures resulted in scores approximately 30 - 60% greater (worse performer)
compared to the logistic regression and SVM model scores.

The latter two models performed similarly to one another and were chosen for further exploration.
Ultimately the logistic regression model was chosen based on overall performance and the immediate
interpretation of results. Each outcome was assigned a probability, which could be relayed to the decision
maker. Plats could then be sorted based on the interpreted confidence level, and leak survey assignments
adjusted if outside information not present in the model became available.

The logistic regression model was used with L2 regularization and inverse strength of 0.01 to 0.1.
Depending on the time into the event and the dataset being used, different hyperparameters were chosen
through a grid search optimization function. Treating the overall model as series of algorithms executed
throughout different points of the earthquake response allowed for adjustments to be made in line with
the arrival of new information (characterized by the dynamic model). The average score of the 20
individual logistic regression models (based on category of predictor variables and time interval) was 37.93
with a standard deviation of 0.65. As indicated scores were relatively close, with a difference of 2.46
between the best and worst performing algorithm.

Section 3.9 discussed the partitioning of data between four categories, which was done to provide options
based on the level of difficulty and effort required to implement within the organization. At that point it
was hypothesized datasets with additional information would perform better, but this was not the case.
While CAT 11 features at 24 hours into the event provided the best predictive model, CAT I features were
overall the most useful. Adding features during later time intervals did, however, lower the standard
deviation for the scores produced throughout the 500 trials.

Overall the algorithms using datasets from later time intervals did prove to be more effective in mean
performance. For example, algorithms trained with historical data that was available at the 24-hour mark
performed better as a whole, but less significantly than anticipated. Incorporating real-time data is most
effective in the first 2 hours following an event, at which point the benefit begins to taper. Full results are
shown in Table 3.3 below:
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Table 3.3: Results of the logistic regression model at various time steps using L2 regularization

Time CAT I CAT I CAT III CAT IV

Avg. Score Std. Avg. Score Std. Avg. Score Std. Avg. Score Std.

2 Hrs 37.592 8.761 39.256 9.677 38.622 9.769 39.256 9.007

4 Hrs 37.724 8.426 37.938 8.964 37.106 8.470 38.738 9.391

8 Hrs 37.621 8.275 38.148 9.312 37.818 6.439 37.920 6.282

12 Hrs 37.232 8.744 37.820 9.982 37.468 6.656 38.476 6.157

24 Hrs 98 8.694 36.800 9 8 0 37 6.480 38.082 6.515

Establishing a method of comparison between the proposed model and the one currently in place is
difficult because the two models do not share the same performance metrics. For example, the current
system identifies a value known as an "earthquake prioritization" (EP) number. This number is derived
from an internally developed algorithm that considers geological factors (peak ground acceleration,
landslide and liquefaction susceptibility, and fault location) along with pipe material. The plats are then
ranked from highest to lowest, with the higher value indicating a greater likelihood for damage. High-risk
plats above a company determined EP threshold are then surveyed for leaks. Additionally, this system
only takes into consideration main distribution lines, and does not consider branch lines or meter sets in
the assessment. The proposed model considers all portions of the distribution system, while incorporating
features of the current systems as a subset of predictor variables.

Based on this, measuring model impact can be done in two specific ways. The first method treats the
newly developed model as if it were currently being utilized by PG&E. To simulate this scenario, the main
input currently used by PG&E (EP value) was used in our proposed model as the sole predictor variable.
This resulted in a mean score of 80.798 and standard deviation of 8.128, marking an approximately 74%
degradation in performance when compared to our proposed model with additional predictor variables.
The EP values used in the historical dataset were from the 1 9 th iteration of DASH, which occurred 48 hours
after the onset of the event. This was done in a conservative effort to account for irregularities in the
earthquake. The assumption was future earthquakes will occur along known fault lines, which will in turn
lead to more representative EP values within the first 90 minutes following an event.

Further building on this method, we can also assess the benefits of the overall model development and
addition of dynamic variables. By treating features used to calculate the currently used EP value as
individual predictors instead, we can see how the model design improves upon current performance. For
example, extracting pipe material and PGA and using them as unique parameters instead of features of
the EP algorithm allows us to see immediate improvements. This technique yields a means score of
40.261, which is an improvement of approximately 67% from relying strictly on the EP value. Furthermore,
when comparing the mean score of 40.261 with the average performance of the 20 models (37.592) we
can assess the benefit of adding dynamic data. Here we see an improvement of 6.8% as such predictors
as phone calls are included.

The second method of comparison shows a visual representation of the model output as it would relate
to emergency response efforts. The value of the model is derived from the amount of time saved in
identifying potentially hazardous leaks. Therefore, it is beneficial to examine the time periods and success
rates for identifying plats with leaks. The implementation of the model and how it relates to PG&E's
emergency response operations will be discussed in detail in chapter 4.
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For reference, Fig. 8 shows how the service territory is covered between individual plats. The left most

image depicts PG&E service plats as they relate to the Sonoma and North Bay Divisions. The image to the

right represents the area of interest for this study with the satellite imagery removed for clarity.

Figure 8: Plat map overlay with service area satellite imagery and plat map with background removed

For illustrative purposes, 129 plats (with a balanced class representation) were randomly selected for a

test dataset. The predictor variables came from CAT I data collected two hours after the onset of the

event. The set contained 114 true class-0 plats, 11 true class-1 plats, and four true class-2 plats. The

breakdown is shown in the confusion matrix in Fig. 9 below.

Predicted Label

0 1 2

0 102 11 1]
True Label 1 3 6 2

2 0 1 3

Figure 9: Confusion Matrix of model results from selected trial

Fig. 10 visually displays these results as they apply to the location of specific plats. In this simulation 12

of the 15 plats were identified as having leaks by the proposed model. Three were correctly identified as

having leaks but were predicted as the wrong class. 12 plats were erroneously classified as having leaks

when they were true class-Os. Fig. 10 showcases the results using a color-coded map.
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Figure 10: Color-coded plat map results for proposed model

In comparison, Fig. 11 shows the predicted results used by the DASH model and the resulting leak survey
response during the 2014 American Canyon earthquake. In this real-world representation, seven of the
15 plats with leaks were correctly identified, eight plats were missed, and 11 plats were predicted to have
leaks when none were actually present.
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Figure 11: Color-coded plat map results from DASH model
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This second method of comparison is useful because it translates the results from a confusion matrix and

customized scoring metric into a real problem. By analyzing the simulated scenario using historical
response efforts as a baseline, the value of the model is better understood. A summary of the results is

shown in Table 3.4. While the proposed model predicts more plats than the past system, the number of

plats surveyed for damage when none existed is extremely close in both cases. This precludes the

argument that the proposed model identified more plats correctly based on the number of predictions

and not on the methodology described throughout the paper. It is further important to note the proposed

model's performance was evaluated based on information two hours after the onset of the event,
whereas the actual model was evaluated over a course of 48 hours. PG&E's response efforts are not

strictly based on DASH but take into account many other pieces of information. By examining the data

after two days of emergency operations we have a better sense of the effectiveness of the current system

as a whole. In that regard, it should still be noted that the proposed model has the potential to save a

significant amount of time in deciding which plats should be surveyed following an event.

Table 3.4: Summary of results between proposed model and current model

DESCRIPTION PROPOSED ACTUAL
MODEL MODEL

NUMBER OF PLATS IDENTIFIED FOR SURVEY 24 18

PLATS INCORRECTLY CHOSEN FOR SURVEY (NO 12 11

DAMAGE)

PLATS CORRECTLY IDENTIFIED (PREDICTED AND 12* 7
CONFIRMED LEAKS)

PLATS MISSED (DAMAGED BUT NOT PREDICTED) 3 8

TIME AFTER EVENT ONSET (HOURS) 2 48**

* 9 plats were predicted correctly by class; one plat was predicted to be class-1

when it was class-2, and two plats were predicted to be class-2 when they were

class-1. The total of 12 is listed to reflect similarities with the actual model, which

does not differentiate between the number of leaks when listing EP values that

prioritize survey efforts.
** 48 hours represents the time an actionable survey plan was established, corresponding

with the release of DASH version 19. It does not represent when plats were surveyed

4 Implementation of Model Results

4.1 Forming a Tool for the Decision Maker

In order to implement the model within the organization it was important to identify existing methods

and resources that could be built upon rather than replaced. When dealing with issues as sensitive as

emergency response, major changes often require extensive periods of retraining and validation. By using

current training and readily available information, a new model could be streamlined into the current

emergency response procedures.
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Internal company literature produced from the Asset Knowledge and Integrity Management teams was
heavily used throughout model development. The literature provides checklists to aid the Integrity
Management Programs in identifying potential leaks. These lists further contain the source, format, and
responsible parties for multiple datasets internal and external to the organization. The initial model,
influenced heavily from said checklists, required manually pulling and formatting data from the various
sources. Automating the entire process was critical, as time and resources could be saved by consolidating
the efforts of multiple engineers and geologists across the company.

Once the series of algorithms were chosen and tuned, the model was rewritten to consolidate data from
the Geosciences, Leak Survey, and Gas Distribution Control Center and formatted from Geographic
Information Systems (GIS), Customer Care and Billing (CC&B), and SAP datasets. The information was used
to create an independent variable matrix using the plat reference numbers as indices. In this way, each
plat within the range of potential earthquake damage would have the predictor data immediately
available. An example of this matrix exported as an excel file can be seen in Appendix F.

Determining a way to communicate the data to the appropriate parties for action was considered
following these steps. Continuing development as an augmentation instead of a drastic overhaul of
procedure, the chosen method for distributing the predictions was through the currently used DASH
system. The project did not receive permission to alter the DASH file at the time of this writing, and so the
resulting predictions were stored separately and designed to mimic the current report issued to the leak
survey teams. A screen shot of the dataset is provided in Fig. 12, showing the class probability chosen for
specific plats. The color-coding relates to the probability of class membership, with green indicating most
likely and red indicating least likely.

Plats ClassO Classi Class2 Max

0 2639-H08 0A69501 0,22718 0 30332 ClassO

1 2639-08 0.564764 0.2097 0.225666 ClassO

2 2639-J08 0580021 0.209281 0210698 ClassO

3 2640-HO 1 0.544185 0211449 0.244366 ClassO

4 2640-101 0.573376 0.211761 0.214863 ClassO

5 2640-JOl 0M61382 0,220607 0,21801 ClassO

6 2640-J02 0.54376 0226926 0229313 ClassO

7 2708-17 0.624345 0.203368 0.172287 ClassO

8 2708-18 0.582381 0230635 0.186984 ClassO

9 2708-J6 0.570355 0.212577 0.217068 CLss

Figure 12: Final model output screenshot

The "Plats" column in Fig. 12 is a placeholder for the "Map #" column on the DASH report. Each class
shows the probability for each prediction rather than a final prediction (as seen in the "Max" column in
Fig. 12). This design was used because the algorithm is a tool for the decision maker and not a directive.
Based on both the tremendous uncertainty involved with earthquake damage and cultural nuances within
the organization, presenting data in this manner was ultimately decided as the preferred method. Chapter
5 will discuss future iterations on the design in detail.
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SVMs can be presented in a similar manner, assuming confidence scores are required by the decision

maker. In this case, probabilities have not been assigned, but the distance from the hyperplane has been

inserted as a proxy for the confidence of the prediction. Using a "one-versus-rest" approach for multiclass

classification, the results of the decision function in the scikit-learn (vO.19) library for Python can be

ordered and sorted. With this information, Leak Survey teams can inspect the plats most likely to be

damaged while awaiting further information to arrive and provide more insight on the state of other plats.

Additionally, a web application was designed to allow decision makers to query specific plats and receive

a prediction. This design was a simple add-on feature to take advantage of the database of predictions,
while providing information to members unable to receive the DASH report. Fig. 13 shows a screenshot

of the application. The predicted class is shown along with a specific score. The score in this case is based

on the probability of the prediction. Alternative scaling and normalization methods can be employed
based on user desires. For example, a probability of 0.333 can be reflected as a score of 0 to display the

ineffectiveness of the prediction for a 3-class model.

Plat Entered:

2710-J03

Prediction:

The predicted class is 1 (Score: 64)

Search a dlrtplat

Pacific Gas and
Electric Company

Figure 13: Web application screenshot

4.2 Resource Optimization

Beyond informing Leak Survey teams of plats with predicted leaks, results can also be funneled into

resource optimization models currently being developed by Mohamed Kurdi and Bryan Hennessy [37].

Identifying how many assets need to be relocated from adjacent divisions to help with repairs is a difficult

task. During an earthquake, local emergency center leaders often rely on past experiences when deciding

the number of resources needed to restore service. Not only can this distributed approach be inefficient,

it can lead to erroneous and costly requests for mutual aid from neighboring utility companies. Having

estimates in the number of leaks over the entire service area can help leaders make more informed

decisions. It has been proposed to use the model to average the number of leaks predicted in the area

and then determine the required number of M&C and GSR crews required to address the damage.
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4.3 Current Status

Taking the predictive model from theory to practice is currently on-going. DIMP has been identified as the
most probable user of the data in order to help drive leak survey efforts. Outside of the Geosciences
Department, they are the most familiar with the DASH reports and are able to integrate the results of the
new model into current operating procedures. Secondary users include leadership at the EOC and OEC to
help drive overall emergency response strategy. PG&E is continuously working to improve emergency
response procedures and conducts, annual, multi-day company-wide exercises to prepare for future
earthquakes. The predictive model was proposed at the August 2017 Exercise following observation of
current operating procedures. The next step will be implementing the model within the 2018 training
scenario in parallel with the DASH reports in order to compare the effectiveness. This means simulating
multiple data sources and will require further analysis and research. Additional next steps are detailed in
Section 5.

5 Conclusions and Future Work

5.1 Interpretation of Results

The newly proposed model shows promising results and we are cautiously optimistic about its future
impact on PG&E's emergency response procedures. Recapping the efforts previously described, the model
serves four major functions:

1) Expands current model to include branch lines and above-ground assets

2) Improves predictive power through the incorporation of additionalfeatures and real-time data

3) Eliminates manual procedures by automatically compiling data from multiple internal and external
sources

4) Establishes framework for future model development

Historically, distribution main lines perform well during seismic events, which is why it was critical to
include branch lines and meter sets in the model. With the removal of cast iron pipes in favor of steel and
plastic, lateral movement induced from a seismic event (barring major ground disturbances) does not
have a major effect on the structural integrity of the distribution system [38]. Additionally, the California
Seismic Safety Commission describes the impact of building damage and pipe corrosion on gas safety
during earthquakes, highlighting the need to incorporate additional predictors such as inspection dates
and building density into the model. Thirdly, consolidating information into a single, searchable database
greatly improves efficiency and leverages knowledge from across the organization.

The fourth feature, however, is arguably the most important model contribution. It has been noted
multiple times throughout this document that the model was developed using information from a series
of events spanning from 1906 to 2014, but quantitative data used for training and testing the algorithms
came from a single event - The 2014 American Canyon earthquake. Records from the 1989 Loma Prieta
earthquake (the most recent event above M6.0 to occur before the American Canyon earthquake in
PG&E's service area) were not available for use. Therefore, the results of this model should be used
cautiously with future events, which may also present peculiarities. However, ceasing damage prediction
improvement efforts based on this fact was not considered because developing a framework to accept
future observations could have a tremendous impact. The model is designed to continuously improve
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based on new observations. Data from the next event can be immediately placed into the model, which
will improve performance and lead to more powerful predictions in the future.

Further analyzing the model results we can also see an important financial benefit for the organization.
The goal of the project was to ultimately reduce the time gas escapes from distribution assets following
future earthquakes. This metric has been explored in chapter 3, which described temporal and spatial
predictive improvements through the incorporation of additional predictor variables and real-time data.
These enhancements to data driven operations improve safety and reduce the risk for critical
infrastructure damage stemming from unnoticed or untended gas leaks. In order to quantify said
improvements, historical incident costs in the state of California were examined over a 20-year period
relating to infrastructure damage events that resulted in:

1) Fatality or injury requiring in-patient hospitalization
2) $50,000 or more in total costs, measured in 1984 dollars
3) Highly volatile liquid releases of 5 barrels or more or other liquid releases of 50 barrels or more
4) Liquid releases resulting in an unintentional fire or explosion

These criteria are determined by the Pipeline and Hazardous Materials Safety Administration (PHMSA),
which establishes national policy, sets and enforces standards, educates, and conducts research to
prevent incidents relating to the transportation of energy [39].

Following data compilation and appropriate geographic and asset filtering, we established a per incident
cost of $284,423, given the event met the criteria above [40]. As the model was designed to identify leaks
and not necessarily resulting incidents, a probability was assigned for each class indicating the likelihood
a major incident would result. Based on historical notes and discussions class-1 bins were given a 0.5
probability of resulting in an incident, and class-2 bins were assigned a 0.75 probability. Using these values,
each plat could be assigned a predicted cost based on the model classification.

Building on this methodology, plats were further assigned "vulnerability scores" (Vs) based on their
characteristics. Highly-rural areas would be less likely to suffer damages as extreme as urban centers or
areas with critical infrastructure. Three major categories were examined, to include:

1) Population
2) Gas Distribution Assets
3) High-Consequence Areas (HCAs)

The HCAs include schools, government buildings, hospitals, and emergency centers. Census data from
2012 was used and overlaid with PG&E plat maps to determine the features of each plat. Fractional values
were achievable based on size and shape differences between county tracts and utility plats. For example,
a census tract may contain several plats or portions within its boundaries. Once complete, scores between
1 and 10 were assigned to indicate feature criticality. The table below shows the assigned values aligned
with scaled and normalized feature scores. Using the SUMPRODUCT function in Excel, each plat row was
multiplied by the criticality array and summed, resulting in a unique Vs between 0 and 1.
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Table 5.1: Example plat data with criticality matrix

PLAT FEATURES WITH CRITICALITY WEIGHTS

PLAT Hospital Clinic Government Emergency Grade University Building Population Service
NUMBER Services Services School Total Taps
2639-H08 0.0000 0.0663 0.0471 0.0014 0.0997 0.0000 0.2717 0.1799 0.4282

N/A 10 10 4 8 2 2 6 8 5

The Vs allowed us to differentiate between plat importance when examining the results of the model. By
taking the average cost and multiplying the value by 1 plus the Vs we accounted for regions that are
considered more critical for emergency response operations. For example, a class-1 plat with a Vs of 0.15
that was misidentified can be assigned a cost of $163,543 USD. This is shown in equation 11, where the
initial cost is the result of the average incident value after the probability of occurrence is taken into
consideration.

Plat Cost = $142,211.5x(1 + Vs) (11)

By taking the derived plat values and comparing them with the results of Table 3.4 model value can be
quantitatively represented through cost savings. Values for plats that had leaks but were not identified
can be summed to determine the total cost of incorrect predictions. Using the testing sample previously
described from this historical dataset, improved predictive performance resulted in approximately 5.5
times less cost. Table 5.2 displays the results.

Table 5.2: Financial improvement from proposed model

COST SAVINGS (USD)

TOTAL COST PROPOSED MODEL $ 796,384.40

TOTAL COST PG&E MODEL $ 4,373,003.63

5.2 Future Work

While the predictive performance of the model will be improved following the collection of new
observations during the next major event, there are steps that can be taken immediately to improve upon
the work.

Class imbalance concerns may be mitigated through techniques including over sampling, under sampling,
and a combination of the two. Considering the relatively small size of the dataset, Synthetic Minority Over-
Sampling Technique (SMOTE) could potentially improve the current results. In this method, decision
boundaries along the minority class are relaxed as additional samples are generated. Additional samples
are generated along line segments joining selected samples and their k-nearest neighbors. The difference
between a selected feature vector and its nearest neighbor is then multiplied by a random number
between 0 and 1 and added to the originally chosen feature. This generates an additional point between
the two selected features [41]. This application was briefly considered during model development and
used in several experimental cases but those cases have not been presented in this work. Future iterations
may consider use of this technique after a more robust assessment.

Secondly, there are numerous techniques available for predictive analytics that have not been discussed
in this paper. While it is not beneficial to provide an exhaustive list, we would like to bring attention to
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the use of Poisson regression techniques. Dealing with relatively rare occurrences resulting in non-
normally distributed and skewed leak datasets make Poisson regression a potentially attractive tool. The
output would provide counts instead of probability of class ownership, which could be beneficial, but
would also remove discretionary decision-making responsibilities from the response crew. For example,
analyzing the probabilities of class ownership not only provides a prediction, but gives the decision-maker
a sense of the prediction quality. Regardless, the technique has been used in weather forecasting
applications along with traffic accidents and flood occurrence predictions [42, 43]. Applying such a method
is worth pursuing and comparing results through future iterations.

Examining data from the 1994 Northridge Earthquake just outside of Los Angeles, California could provide
additional observations for the model. The Southern California Gas Company was not contacted during
this research but could be used to build more robust datasets. Other more recent events have occurred
but have fortunately been off-shore (2010 Eureka) or in more remote regions were damage to the natural
gas distribution system was not recorded (2003 San Simeon).

Outside of California, Alaska has recorded 3 events with magnitudes of 6.0 or greater within the last three
years. These could provide valuable insights as well into features that may help predict damage to
distribution lines. Internationally, recent data from Mexico and Japan could also lead to improvements.
The issue with using information from outside PG&E's service territory and adjacent areas is that
infrastructure changes (line material, housing construction, population density, etc.) may skew results and
lead to observations that would normally not occur in the Northern and Central California Region.

Without other historical observations, live event data can also be incorporated into the model to build
larger training sets in real-time during an earthquake. Currently, the proposed model does not receive
feedback from the leak survey teams regarding the number of leaks discovered in each plat. The reporting
system can be linked with the model to provide additional training points. Once enough points have been
accumulated, the model can be re-trained using the new data. This idea was further explored using semi-
supervised learning techniques. If live information from the leak survey teams could populate the training
set with a small number of labeled samples, an algorithm can be used that takes advantage of the
geometry of both labeled and unlabeled data [44]. Graphical methods and label propagation algorithms
were not pursued in depth but are worth studying further for future model iterations.

Thirdly, HAZUS-MH predictive data was not incorporated into the final model because the results were
not beneficial. It is suspected that user error contributed to this fact. Our efforts to replicate building
damage results from the 2014 American Canyon FEMA assessment were unsuccessful, suggesting further
training is warranted. Future iterations may benefit from the inclusion HAZUS-MH software.

Finally, based on model performance using CAT I and 11 data, the project did not incorporate CDI
information into the final model. PG&E already uses USGS ShakeMap data, and so implementation would
come through the same channels. For this report, the data was manually entered in order to evaluate the
effectiveness. It is recommended to include this feature in future modifications. Crowdsourcing data can
be an effective means to assessing the severity of the situation from the perspective of individuals in the
damaged area and may provide more useful information than below-ground sensors. During the 2014
American Canyon earthquake, DYFI recorded 25,000 responses within one hour of the event, leading us
to believe that actionable insights can be gained in near real-time through this system.
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Appendix A

Emergency Event Roles

Distribution Integrity Management Program (DIMP):

Once the GEC is activated, DIMP personnel are recalled to San Ramon to provide direction to Leak Survey
and field crews to mitigate damage to the distribution system. Within 60-90 minutes, a report from the
Dynamic Automated Seismic Hazard (DASH) model is reviewed by the Geosciences Department and
emailed to critical personnel. For a detailed explanation of the model please see Appendix B. The report
indicates which plats are predicted to have suffered the most damage. The model uses an algorithm that
takes data from USGS sensors, inventory (e.g. pipe length and material), and geological survey data (e.g.
liquefaction/landslide/soil corrosiveness) to make this prediction. Each affected plat is assigned an
Earthquake Prioritization (EP) value, with the highest score indicating the most damage. These scores are
then sorted, reviewed by DIMP, and Leak Survey personnel are sent out to assess the damages.

Leak Survey has limited vehicle assets (Picarro trucks) that are used to help localize major leaks. Even with
the use of these trucks, personnel are still required to survey the area on foot, with hand-held monitoring
devices. Leaks are reported in "A-Forms," which appear in SAP and are refreshed every night. Phone calls
and emails are also used to relay data back to the GEC. If major leaks are discovered, Leak Survey will
notify the GEC and Maintenance and Construction (M&C) to mitigate the situation. They are not equipped
or qualified to handle major leaks and will require additional crews or pipeline engineers (PLEs) to make
assessments and perform major repairs. Information from the field is then considered and plat survey
assignments are reassessed to reflect the situation.

Gas Service Representatives (GSR):

Concurrent to the tasking of Leak Survey personnel, PG&E maintains a call center to respond to customer
needs. Important or timely calls are filtered through this center and sent to the Dispatch team, located in
San Ramon. In addition to customer calls, dispatch can receive calls directly from police, fire, and other
emergency response agencies. Based on the call, the appropriate work center is notified to respond.
Routinely, Dispatch directly assigns personnel based on their knowledge of the individuals work schedule
and proximity to the customer, without needing to rout tasking through the GSR supervisor. In large
events, such as an earthquake, Dispatch can make the decision to instead route assets to the OEC and
allow the Incident Commander (IC) to make the assignments.

Regardless of the situation, a GSR will be assigned because they are the quickest to respond. Even if it is
known that the situation will require a M&C crew, a GSR will be notified and act as the first responder.
They maintain their own vehicles and can rapidly deploy as needed. The GSR will be assigned a job through
the Field Automation System (FAS), which is fed into SAP. If the leak is deemed hazardous and requires an
immediate repair (Grade 1), Dispatch will use the Incident Management Tool (IMT) to log the event and
assign a crew. It is important to note that as of March 1st, 2017 the IMT system is being replaced by the
Emergency Management (EM) tool. This tool is designed to streamline the process and allow Dispatch and
Gas Control (GC) to have access and awareness to the same information.

Once Dispatch assigns a representative or crew to respond to an event, they do not follow-up or track
their progress. Information regarding the status of a response is either accessed through SAP/FAS or
received via a phone call or email. As previously noted, information from Dispatch and the GSRs is present
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on the DIMP emergency response check-list (described Chapter 3), but GSRs are not required or instructed
to share their status or results of their response calls.
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Appendix B

Dynamic Automated Seismic Hazard (DASH) Description

The first actions taken after an earthquake are directly informed by the Dynamic Automated Seismic
Hazard (DASH) model. When internet is available the model results are distributed to emergency
personnel after being reviewed by the Geosciences department. If unavailable, emergency responders
refer to a series of designated scenarios, previously generated by the model, based on major fault lines
and USGS predictions of earthquake magnitude and location likelihood. DASH provides two critical data
points that help drive the emergency response: repair rates per 1000 feet of pipe and survey prioritization
values per plat. The repair rates are calculated using the American Lifelines Alliances (ALA), empirical data-
based methodology for determining water pipeline damage estimates. These equations are listed in
Appendix C, along with those used by the FEMA developed software HAZUS-MH.

In PG&E's case, model parameters have been adjusted to reflect material differences and gravity-fed
versus pressurized lines. Survey prioritization values, known as Earthquake Prioritization (EP) Values,
assign a specific number to a geographic area impacted by the earthquake. The size of each area, known
as a plat, is dependent on the number of assets involved and is used in daily operations to assign
maintenance tasks along specified pipeline segments. For example, a plat in the center of San Francisco
may only be 50x75 meters, but in a rural community it can be as large as 800x800 meters. All of PG&Es
service territory is divided among approximately 22,000 individual plats. After an earthquake, an
algorithm assigns each affected plat a score based on the values below:

EP plat sheet = ((LS value + Liq value + fault value)/3 + 1) x PGA

Where,

Fault value = 1.0 when fault lines (Historic/Holocene) cross plat sheet and

M = 6.0 or greater

Fault value = 0.0 if no fault crosses the plat sheet, or when fault lines

(Historic/Holocene) cross plat sheet with M < 6.0

PGA = peak ground acceleration in %g

LS value and Liq value from Table B.1 and represent landslide susceptibility (LS value) and liquefaction

susceptibility (Liq value)

Leak survey teams use these initial EP values to determine where they send their assets. Any plat that
receives a value greater than 40 must be surveyed [29]
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Table B.1: Liquefaction and landslide values used by PG&E for determining EP values

Hazard Uquefcton-Lateral Landslide Values
Spreading Values

ShakeMap Moderat. Low to Moderate to Moderate L to
PGA(g) to High Moderats High & Known Moderate

0.05 0 0 0 0 0 0
0.10 0 0 0 .2 0 0
0.15 .1 0 0 .4 0 0
0.20 .2 0 0 .6 0 0
0.25 .3 .1 0 .8 0 0
0.30 .4 .2 .1 1.0 .1 0
0.35 .6 .25 .15 1.0 .2 0
0.40 .8 .33 .2 1.0 .4 0
0.45 1.0 .4 .25 1.0 .6 0
0.50 1.0 .5 .3 1.0 .8 0
0.55 1.0 .6 .35 1.0 .9 0
0.60 1.0 .8 .4 1.0 1.0 .1
0.65 1.0 1.0 .47 1.0 1.0 .2
0.70 1.0 1.0 .53 1.0 1.0 .4
0.75 1.0 1.0 .6 1.0 1.0 .6
0.80 1.0 1.0 .7 1.0 1.0 .8
0.85 1.0 1.0 .8 1.0 1.0 .9
0.90 1.0 1.0 1.0 1.0 1.0 1.0
0.95 1.0 1.0 1.0 1.0 1.0 1.0
1.00 1.0 1 1.0 1.0 1.0 1.0 1.0
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APPENDIX C

Damage Prediction Equations as Expressed Through Repair Rates

FEMA HAZUS-MH Model

Table C.1: Repair rate calculations used in HAZUS-MH software. Table modified directly from Table 8-
21 in HAZUS-MH Technical Manual Version 2.0

PGV Algorithm PGD Algorithm

R. R. a 0.0001 x PGV(2.25) R. R. a Prob[liqpxPGD(0 .56 )

Pi Ty Multiplier Example Multiplier Example

Steel Pipe w/ Steel Pipe w/
Brittle Pipeline 1 gas weld 1 gas weld

Steel Pipe Steel Pipe

Ductil Pipeline 0.3 w/Arc weld 0.3 w/Arc weld

Where,

R.R. = Number of repairs per kilometer

Prob[liq] = Conditional liquefaction probability relationships derived from type of deposit
and sediment distribution. Tables are also available for public use. For purposes of this thesis
they have not been copied over into this appendix.

PG&E Model

Table C.2: Repair rate scaling factors adapted to account for PG&E inventory and pipe pressurization

(table taken directly from [3] without alterations)

KI
Corrosive Non Unknown Corrosive Non- Unknown

Pip. Soils Corrosive Soils Soils Corrosive Soils
Material Soils Soils

CastIron 1.4 0.7 1.0 1.4 0.7 1.0
Steel 0.9 0.3 0.6
Plastic (PE) 0.3 0.3

(1) R.R. = K1 x 0.00187x PGV
Where,
R.R. = Estimated number of repairs per 1000 feet of pipe
K1 = Constant scaling factor used to reflect differences in expected performance from the
baseline pipe (small diameter cast iron pipe, with cement joints) resulting from ground
shaking; determined by pipe material, joint type, diameter, and soil corrosivity
PGV = Peak ground velocity, in inches/second
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(2) R.R. = K2 x 1.06 x PGD0 -319

Where,
R.R. = Estimated number of repairs per 1000 feet of pipe
K2 = Constant scaling factor used to reflect differences in expected performance from the
baseline pipe (small diameter cast iron pipe, with cement joints) resulting from ground
shaking; determined by pipe material, joint type, diameter, and soil corrosivity
PGD = Peak ground displacement, in inches
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Table D.1: Model Features

Where,
EP = Earthquake Prioritization Value
PGA = Peak Ground Acceleration
LIQ = Liquefaction susceptibility value
LS = Landslide susceptibility value
PIPEP = Length of plastic pipe (ft)
PIPES = Length of steel pipe (ft)
CALLS = Number of calls PG&E received from customers
and emergency services personnel

TAPS = Number of service taps
POP = Population
BLDGS = Number of buildings
CDI = Community Decimal Intensity as calculated through
the USGS 'Did You Feel It" (DYFI) program
SURVEY DATE = Number of days since plat was
last surveyed
PREV. LEAKS = Previous number of leaks found in plat
from most recent survey results

Category Features

CAT I EP PGA LIQ LS FAULT PIPEP PIPES CALLS

CAT 11 EP PGA LIQ LS FAULT PIPEP PIPES CALLS TAPS POP BLDGS

CAT III EP PGA LIQ L FAULT PIPE_P PIPE_S CALLS TAPS POP BLDGS CDI CDI RESP

CAT IV EP PGA LIQ LS FAULT PIPEP PIPES CALLS TAPS POP BLDGS CDI CDI RESP SURVEY PREV.
DATE LEAKS
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APPENDIX E

Notes from Author to PG&E Personnel Regarding Model Construction

The below information represents notesfrom the author to PG&E personnel describing features
of the model. Color coded headers were in place to correlate with additional spreadsheets that
were used while presenting model development efforts to management and engineering teams.

PLAT NUMBER

2639-H08

Description: PG&E separates their service territory into plats, based on the density of assets. For example,

a plat in San Francisco may be 50m x 50m, but a plat in Napa could be an area closer to 600m x 800m. The

number and letter combination are simply a naming mechanism used by the organization.

Author Notes: Data uploaded directly from PG&E mapping. The shapefile used is considered very accurate.

EP PGA IUQVALUE LSVALUE FAULTVALUE
32 0.235 0.3 0.8 0

Description: EP value refers to the "Earthquake Prioritization" value assigned through the DASH model.

The EP value is the end product of an algorithm designed to predict pipeline damage based on the intensity

of the earthquake and location and properties of the asset. The algorithm uses the peak ground

acceleration (PGA) from USGS ShakeMaps, a liquefaction susceptibility value (LIQ.VALUE), a landslide

susceptibility value (LS_- VALUE), and a proximity to fault (FAULTVALUE) to predict damage to the

pipeline. The susceptibility values indicate whether or not the pipe is located in an area that is predisposed

to liquefaction or landslides following a seismic event. Other factors are used in the algorithm, but the

ones listed above are seen directly in the output generated by the DASH model.

Author Notes: The output is taken directly from DASH. Throughout an event, multiple iterations are

produced based on USGS analysis and updated sensor information. The DASH output used in this model

is version 19 of the 2014 American Canyon event and is considered the most accurate. The reason we

chose to use such a late revision is because the Napa earthquake was a unique case and occurred along a

previously unidentified fault. The model assumption is that a major event will occur along a known line,

and the initial reports will be more accurate. However, it is also known that the liquefaction value can

erroneously assign damage. During the Napa earthquake, liquefaction did not occur, and plats covering

areas predicted to experience liquefaction were assigned EP values that did not reflect actual damage.

This is a point of uncertainty within the model.

52

I



LENPIPEP LENPIPES TOTAL LEN % PLASTIC 0/STEEL

1209 805 2014 60.02979146 39.97020854

Description: These values are an extension of the above elements and are also outputs of the DASH model.

LENPIPEP (ft.) denotes the total length of plastic pipe in the plat, LEN_PIPES (ft) denotes the total

length of steel pipes in the plat, TOTALLEN (ft.) is the summation of the two lengths, and the percentage

blocks refer to each material's respective contribution to the total amount of pipe in the plat. It is

important to note that these values only refer to the distribution lines. There are currently no datasets

available with to the total length of service and branch lines.

Author Notes: The data is a direct output from DASH and is considered accurate.

REDjDG BLDG_NORMALIZED

4 0.01656692

Description: The REDBLDG column refers to the number of buildings that were red-tagged as a result of

the earthquake. Red tags indicate that a structure is not safe to occupy. Following an earthquake, multiple

organizations and academic institutions conduct damage surveys to collect information on the impact of

the event. The data for the Napa earthquake comes from the Earthquake Engineering Research Institute

(EERI) reconnaissance survey. The goal of the model is to populate this column with predictive data from

FEMAs HAZUS-MH model. The survey results are currently acting as a proxy for this data until it can be

obtained. The BLDGNORMALIZED is calculated by dividing the number of red-tagged buildings by the

total number of buildings in the plat.

Author Notes: The data in this column was collected post-event and is therefore considered accurate. As

mentioned above, this column could be populated from predictive analysis using the HAZUS-MH model.

Literature regarding the accuracy of this model suggests it has a tendency to over-predict building

damage. By using USGS data from the event and updating the building inventory to better reflect

structures within PG&Es service territory we aim to mitigate the over-prediction.

RES11_TOTAL I RES2JTOTAL RES3AITOTAL RES3BTOTAL REM3ChL RWL=TOTAL

RES3EkTOTAL RES3F-TOTAL RES4LTOTAL RIiB..TOAL L RE U TC I W cO.TOVAL

COM2L-TOTAL COM3LTOTAL COM4LTOTAL COM5LTOTAL COM61-TOTAL CQM7ILr rTk

COM8LTOTAL COM9LTOTAL COM101 TOTAL INDILTOTAL IND21-TOTAL IND3L-TOTAL
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- I
IND4ITOTAL IND5LTOTAL IND6LTOTAL AGRIITOTAL RELIL TOTAL GOVILTOTAL

GOV21_TOTAL EDUI_ TOTAL EDU2ITOTAL Building Total

Description: The codes represent building types as they are referenced in the FEMA damage prediction

software HAZUS-MH. The tables below are extracted from the HAZUS User's Manual and provide a

description for each code. FEMA lists the building types per census tract, which is why fractional numbers

appear in the model. Building Total refers to the complete number of buildings estimated in each plat.

This value is used to normalize the red-tagged building data.
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Single family dwellings

RESII
RES2I Muanuifactured hiousHig

RES3AI Duplex - I to 2 units

RES3BI Duplex - 3 to 4 units

RES3CI Duplex - 5 to 9 iunits

RES3DI Duplex - 10 to 19 units

RES3EI Duplex - 20 to 49 units

RES3FI Duplex - more than 50 units

RES4I Teniporamy lodging

RES5I histitutional donitories

RES6I Nursing homes

COMli Retail trade

COM21 \holesale trade

COM3I Personal and repairs services

Professional and tecimical
COM14I

services

COMM Banks

COM6I Hospitals

COM7I Medical office and clinic

COM81 Entertaininent and recreation

COM91 Theaters

COM101 ar garages

IND I I Heavy induistial

IND2I Light industrial

IND31 Food/drugs/chemicals



Author Notes: The number of building were taken from each tract and then assigned to individual plats.

This was done in the same manner as the population calculation. The total number of buildings in the tract

is multiplied by the percentage of area the individual plat covers. The sum of all these areas (depending

on how many tracts an individual plat covers) is then taken. This data assumed building density and make-

up are uniformly distributed within the tract. This will create additional uncertainty in the model.
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IND4I Metal/minerals processing

1rND5I High technology

IND6I Construction facilities and offices

AGRII Agriculture facilities and offices

Churches and non-profit
RE LlI

organizations

GOVII Government - general services

GOV2I Government - emergency

response

Grade schools and administrative
EDUlI

offices

EDU21 Colleges and universities



CDI NRESP NRESPNORMALIZED
7.6 3 0.055530258

Description: The Community Decimal Intensity (CDI) is the result of an initiative from the USGS known as

"Did you Feel it?" The data is collected from the general populace through an online survey. The survey

answers are compiled and entered into an algorithm to determine the CDI. It can be thought of as another

intensity measurement. In the Napa earthquake, over 40,000 people responded to the survey, most of

which within the first two hours. If addresses are included, USGS creates a geocoded map to indicate

where the CDI values originated. The size of the area is 1 km x 1 km and is formed using UTM coordinate

boundaries. For this dataset, the centroid of the area was chosen and matched with a corresponding plat.

The number of responses is indicated in the NRESP column. NRESPNORMALIZED is the normalized value

of the number of responses per plat population. It is the calculated by taking the number of responses

and dividing by the plat population.

Author Notes: Responses are considered accurate based on the number of participants. Irregular

responses are filtered out through the summation of total responses and further examined by USGS

personnel. As mentioned above, the geocoded areas are larger than traditional plats and are based on

the location of the responses. This means that aggregated responses, assigned to an individual plat, may

have come from a neighboring area. Additionally, plat population was calculated using the tabular

intersection tool in ArcGIS. PG&E does not maintain datasets with this information. In order to calculate

the plat population, the plat map was overlaid on top of 2012 census tract data. The percentage of the

tract that the plat occupies was then multiplied by the total tract population. This process was done until

the entire plat area was accounted for. This method does well for population densities that are evenly

distributed within the tract, but not for large, rural areas for population density is biased towards a specific

area.

MAX CDI (Neighbor) MAX NRESP (Neighbor) N-NRESPNORMALIZED
7.5 5 0.090954734

Description: The MAX CDI (Neighbor) is the largest CDI value attained by each plat, while it was acting in

a neighbor capacity. This terminology is explained in the "Confidence" section below, but in brief,

"neighbor" refers to any plat that is adjacent to the plat in consideration. The CDI value used for the model

falls within a single plat (as a point value) but could have been calculated using data from adjacent plats

because USGS and PG&E use different grid systems. The MAX NRESP (Neighbor) represent the maximum

number of responses the plat received while acting in a neighbor capacity. The N-RESPNORMALIZED is

the value for the number of responses divided by the total population of the plat.
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Author Notes: Based on the nature of the CDI geolocation methodology, it cannot be definitively

determined if the CDI value came from a single plat. The UTM grid and plat maps are not the same size

and do not overlap in the same manner. The CDI value used in the model is represented on the map as a

point value, located at the centroid of the 1 KM by 1 KM UTM square. Therefore, it is conceivable that the

responses, and subsequent CDI values were actually calculated from one of the plats eight neighbors. The

graphic below shows and example:

The red circle represents the point value of the CDI. It falls within a single plat,
8 1 2 each represented as a black square. The neighboring plats are numbered, which

prevent plat neighbor "1" from having that specific identity multiple times. The
7 3 red square shows the UTM box used by USGS. The shaded red parts show that

while the CDI centroid falls within a single plat, the data used to calculate the CDI

6 5 4 could have come from any of the neighboring plats. To account for this, each of

the eight neighboring plats was assigned the same CDI value. Plats with missing

data were then filled with the highest value they received while acting as a neighboring plat. Plats with

CDI values already assigned by USGS were not altered, even if they received a higher value during the

neighbor calculation. This was to maintain the integrity of the original data.

This is a very conservative approach to the problem, in which there are many solutions. An average of the

plats CDI values while acting in a neighboring capacity could also be used to handle missing data points.

The most conservative approach was chosen based on the severity of a potential gas leak. Over predicting

the number of leaks is seen as a better result than failing to predict.

CALLS POP CALLS NORMALIZED
6 1053.7515 0.005693942

Description: CALLS refer to calls received from dispatch. They are from customers and emergency

response organizations (e.g. Police and Fire) requesting assistance from PG&E. POP refers to the

population of the plat from which the calls came, and CALLSNORMALIZED is the number of calls divided

by the total population. By doing this we are weighting multiple calls from sparsely populated plats more

heavily to increase the accuracy of the prediction.

Author Notes: Call data is taken directly from FAS. The raw feed has been scrubbed for the Napa region

and is considered accurate. Population data is from the 2012 census and is likely to have increased in the

last 5 years.
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Description: The Days Since Survey (5 YR) column refers to the last time the plat was surveyed, under the

five-year schedule. Notice that some plats extend beyond five years because they were delinquent in

surveying. The Days Since Survey (1 YR) is the same measure, but for plats on a one-year inspection

schedule. Some of these extend beyond 1 year for the same reason. It is not clear why the same plat may

have the different service schedules. It appears that different assets may be checked at different times,

but this has not been confirmed. More interviews need to be conducted to figure out why this occurs.

Author Notes: Data provided through DIMP (Distribution Integrity Management Program) and there is a

high-level of confidence in the accuracy. It is unclear why data is missing for certain plats.

PREVIOUS LEAKS
(2008-2013) Grade 1 Grade 2 Grade 2+

40 2 35 3

Description: PREVIOUS LEAKS (2008-2013) represents the number of leaks found by the Leak Survey

teams between the years 2008 and 2013. They have been further broken down into Grade 1 (requiring

an immediate repair), Grade 2 (requiring repair within 18 months), and Grade 2+ (requiring repair within

90 days). Grade 2+ no longer exists at PG&E.

Author Notes: Data provided through DIMP and there is a high-level of confidence in the accuracy.

2008 GR1 2009 G R1 2010 GR1 2011GR1 2012 GR1 2013 GR1

2008 GR2 2009 G R2 2010 GR2 2011GR2 2012 GR2 2013 GR2

2008 GR2+ 2009 GR2+ 2010 GR2+ 2011GR2+ 2012 GR2+ 2013 GR2+

Description: These columns indicate the year and leak grade that was found during leak survey

inspections. GR1 indicates a grade 1 leak, GR2 indicates a grade 2 leak, and GR2+ indicates a grade 2+

leak. The definitions for each are listed in the previous description. A number that is bold and red is a

recorded leak that does not fit within the time of the last survey. This can be accounted for through call

outs from GSRs or other employees that required a leak survey check.

Author Notes: Data provided through DIMP and there is a high-level of confidence in the accuracy. An

issue that arose considered missing data points. It is unclear if the missing cells are meant to represent

zero leaks or un-recorded information. The assumption made was that if any of the columns contained a

data point, the missing cells in the row were filled with zeroes. These points are later refined after

examining survey dates. Blank cells that are outside the leak survey dates have been labeled as "NA," and

the data is considered non-available. If every column was blank, then it was assumed the data for that

plat is missing. In this instance, "NA" has been recorded. On occasion, a leak will appear, but there will be

no recorded leak survey within the year the leak was found. These data are kept because they could have

resulted from a call-out from dispatch or M&C.
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ICE TAPS

352

Description: The SERVICE TAPS are the number of meter connections within each plat. The meter sets are

often a point of failure during a seismic event, and having this data was seen as potentially valuable for

the model.

Author Notes: The dataset was compared with the Gas Distribution GIS portal, which is updated daily. A

random sample of plats was compared between the two datasets to assess the accuracy of the set used

for the model. The model set was consistent with the daily updated values. The difference was general on

the order of +/- 7%. This level of error was seen as acceptable for use in the model. This will serve as a

source of error in the model because the numbers reflect current service taps. We were unable to obtain

the number of service taps present in August of 2014.
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APPENDIX F

Example of Independent Variable Matrix with Plat Indices

FAULT VALUE
1

LEN PIPE P 1LEN PIPE S 1TOTAL LEN I% PLASTIC % SSTEEL RED BLDG BLDG NORMALIZED RESILTOTAL

2639-HOB 20 0.203 0 0 0 1209 805 2014 60.02979146 39.97020854 0 0 126.5686945

2639-108 21 0.218 0 0 0 293 237 530 55.28301887 44.71698113 0 0 107.18115

2639-JO8 23 0.226 0.1 0 0 0 37 37 0 100 0 0 19.9735

2640-H01 21 0.203 0.2 0 0 336 118 454 74.00881057 25.99118943 0 0 60.3302

2640-101 23 0.228 0.1 0 0 2 128 130 1.538461538 98.46153846 0 0 60.03

2640-J01 25 0.247 0.1 0 0 0 212 212 0 100 0 0 15.138

2640-JO2 27 0.25 0.3 0 0 0 0 0 NA NA 0 0 15.138

2708-17 25 0.21 0 0.6 0 123 0 123 100 0 0 0 52.775

RES2LTOTAL R O-TOTAL 3 TAIJOTAL S3CLToTAL ROILTOTAL RES83EJOTAL 6N11EiOTA NE4LTOTAL. R5LQTAL - _ _TOTAL COMILTOTAL 90M2I _TTAL COMN3_TOTAL COM4ITOTAL

50.1595968 248943245 2.08 0.8 0-16 0 0 1.6043245 4.8008649 0 1.6164331 0.W95139 12895139 2.5764331

43.14256 2.39015 1.716 0.66 0.132 0 0 1.33415 3.96283 0 1.37377 0.69113 1.08713 2.16577

113982 0.1815 0.001 0.035 0.007 0 0 0.1255 0.2211 0 0.2800 0.1571 0.1781 0.3229

26. 07 1.2104 0.8489 0;3265 0.0653 0 0 0.688 1.966 0 0.786 0.4035 0.0994 1,1778

38.272 0.23 0 0 0 0 0 0.23 0.046 0 0.874 0.506 0.506 0.874

96012 9956 0 0 0 0 0 0.08 00116 0 0.2204 0.1276 0.1276 0.2204
9.6512 9056 0 0 0 0 0.08 00116 0 0.2204 0.1276 0.1276 0.2204

3.2 2.6 1 04 0.12 0.25 0.025 0 035 0.125 0.025 0.7 0.475 0.625 1.125

COMLSLTOTAL COMITOTAL COM7IFTOTAL COMJLTOTAL COMT91OTAL COM.1OLTOTAL INDILTOTAL 1ND2*JOTAL IND3TOTAL TAL 4 NDTOTAL 1 L4088 INDOlTOTAL AGRII TOTAL RELiLTOTAL
0.16 0 0.48 2.5695139 0 0 0.48 0.32 0.9712437 0 0 0.6460543 11303788 1.1269192

0.132 0 0.396 2.14313 0 0 0.396 0.204 0.82879 0 0 0.54781 0.95796 0.94664

0.007 0 0.021 0.2341 0 0 0.021 0.014 0.1863 0 0 0.1057 0.1822 0.1378

0.0653 0 0D959 1.1218 0 0 01959 0.1306 0.4928 0 0 0.3102 0.5411 0.5131

0 0 0 0.506 0 0 0 0 0.598 0 0 0.322 0.552 0.368

0 0 0 01276 0 9 0 0 0.1508 0 0 .0812 0.1202 0.09
0 0 0 0.1276 0 0 0 0 0.1508 0 0 0.0812 0.1392 0.0128

0.1 0.025 0.4 0.925 0 0 0.125 0.15 0.25 0 0 0.425 0.35 0.3

OViLTOTAL GOVLTOTAL EDULTOTAL EDI2_TOTAL Bu~ildg Total MAX CDI (Neighbor) MAX NRESP (Neighbor) N-NRESPNORMAUZED CDI NESP NRESPNORMAU2ED CALLS POPULATION CALLSNORMALIZED

0.32 0.0308649 0.32W6043 0 203.807283 0 0 0 0 0 0 0 473.3787611 0

0.264 000283 528381 0 172.99961 0 0 0 0 0 0 0 400.56737 0

0.014 0.0111 0.0917 0 33.9977 0 0 0 0 0 0 0 73.133A 0

Q.1306 0.007 0.1796 0 98,2776 0 0 0 0 0 0 0 224.697A 0

0 0.046 0.322 0 104.282 0 0 0 0 0 0 0 151.172 0

0 0.0116 0.0812 0 26.2972 0 0 0 0 0 0 0 54.9724 0

0 0.0116 0.0812 0 26.2972 0 0 0 0 0 0 0 54.9724 0

0.025 0 0.15 0 66.025 0 0 0 0 0 0 0 127.575 0

2008 G 2009 G 200GR1 20116P, 1 20 20G136 2MAR 6GM
848 440 402 35 3 0 1 0 0 0 1 0 26

844 439 10 0 7 3 0 0 0 0 0 0 0 4

846 NA NA NA NA NA NA NA NA NA NA NA NA NA

853 NA NA NA NA NA NA NA NA NA NA NA NA NA

7 834 440 3 1 2 0 0 1 0 0 0 0 0 1
846 NA NA NA NA NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA NA

201OGR2 2011GR2 2012GR2 2013GR2 008GR2 0096GR2 O1OGR2 011GR2 012GR2 013GR2 SERVICETAPS FASLSAWS IMTLEAKR LSLEAKS TOTA

2 1 5 1 0 2 0 0 0 1 352 0 0 0 0 0
2 0 1 0 0 1 1 0 1 0 29 0 0 0 0 2

NA NA NA NA NA NA NA NA NA NA 3 0 0 0 0 0
NA NA NA NA NA NA NA NA NA NA 80 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0
NA NA NA NA NA NA NA NA NA NA 18 0 0 0 0 0

NA NA NA NA NA NA NA NA NA NA 0 0 0 0 0 0
NA NA NA NA NA NA NA NA NA NA 5 0 0 0 0 0

* Not all of the variables were used in model construction but were compiled into a single dataset
for later segregation. Leak values were documented in green and separated based on their
source. Once confirmed, the number of leaks were summed and used to create the appropriate
classifier. These values would then be removed from the matrix, leaving only the predictor
variables and corresponding classifier for training the model.
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