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Abstract

With vast improvements in computational power, increased accessibility to big data, and rapid
innovations in computing algorithms, the use of neural networks for both engineering and business
purposes was met with a renewed interest beginning in early 2000s. Amidst substantial
development, the Softplus and Rectified Linear Unit (ReLU) activation functions were introduced
in 2000 and 2001 respectively, with the latter emerging as the more popular choice of activation
function in neural networks. Notably, the ReLU activation function maintains a high degree of
gradient propagation while presenting greater model sparsity and computational efficiency over
Softplus. As an alternative to the ReLU, a family of a modified Softplus activation function - the
"Smoothing" activation function of the form g(z) = p log(1 + e z/) has been proposed.
Theoretically, the Smoothing activation function will leverage the high degree of gradient
propagation and model simplicity characteristic of the ReLU function, while eliminating possible
issues associated with the non-differentiability of ReLU about the origin. In this research, the
performance of the Smoothing family of activation functions vis-d-vis the ReLU activation
function will be examined.

Thesis Supervisor: Robert Freund
Title: Theresa Seley Professor in Management Science at MIT Sloan School of Management
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Chapter 1: Introduction

This thesis seeks to evaluate the performance of the Smoothing family of activation functions vis-

a-vis the ReLU activation function for neural networks. This chapter will first provide a brief

overview of the history of neural networks hitherto while highlighting the importance of neural

networks as a machine learning technique. Thereafter, the chapter delves into the mathematical

theory between behind a neural net employing the gradient descent algorithm, upon which the role

of the activation function will be expounded upon. The chapter closes with an introduction of the

ReLU activation function and the Softplus / Smoothing activation function.

1.1 Neural Networks Overview

A neural network is a machine learning technique capable of handling both supervised (with

continuous or categorical responses) and unsupervised learning tasks (See Figure 1-1).

Figure 1-1: Neural Networks as a Machine Learnine Technique.

Supervised Machine Learning Unsupervised Machine Learning

- Continuous Response K-Means Clustering
Linear Regression Regression Trees Hierarchical Clustering
K - Nearest Neighbors NmiiW Nft" Nowd Nk

Categorical Response

Logistics Regression Classification Trees
K - Nearest Neighbors MNuJ I f

Unlike conventional machine learning techniques, however, neural networks are capable of

building representations of unstructured data from simpler representations (See Figure 1-2) [1].

This empowers neural networks to recognize complex, nonlinear patterns from unstructured data

(such as images, sounds, and text). Indeed, variants of neural networks algorithms have found

widespread adoption in image recognition, voice-to-text translation and textual recognition

purposes, across applications such as autonomous driving, voice-activation, machine translation

and gaming behavior within the engineering, healthcare and finance industries.
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Figure 1-2: Neural Networks as Artificial Intelligence Method 121.
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An indicative example of how neural networks developed progressively complex representations

from simpler representations within unstructured datasets can be conveyed in the case of image

recognition. Consider the case of an image recognition neural network with three hidden layers

(See Figure 1-3):

Figure 1-3: Representation Learning from Neural Networks - Image Recognition [31.

CAR PERSON ANIMA Oiatput 0
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(conier $URI 0
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Final Output: Classification
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Layer 2: Curvatures

Layer 1: Edges

Inputs: Pixel Values

* From the visible / input layer, the first hidden layer of the neural network extracts abstract

features such as edges and corners.
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" Feeding the abstract features (i.e. edges and corners) into the next hidden layer, the second

hidden layers captures the more complex features of corners and contours.

* The corners and contours are in turn fed into the third hidden layer, where object parts are

captured by the neural net model. The data collected by the third layer is then fed into the

final layer where the image gets classified into one of several possible classes.

Beyond engineering applications tackling unstructured data (such as image recognition as shown),

the concept of deriving complex representations from simpler structured data is equally applicable

within business domains. A simple example cited by Andrew Ng [4] discusses how property prices

might be more accurately predicted using a neural network as compared to linear regression.

Critically, the neural network captures more complex, non-linear interactions between the original

representation of the dataset within its hidden layers, thereby giving a more robust prediction of

the property price (See Figure 1-4 and Figure 1-5).

Linear Regression 2-Layer Feedforward Neural Network

Figure 1-4: Learnine with Linear Regression. Figure 1-5: Learning With Simple Neural Net.

Using Unear Regression.... 
G

Scenario: UnoP ROE snPrO:
Predicting Predicting

Property Prices Property Prices
Vu~ahres

It is interesting to note that the earliest neural networks - or "cybernetics", originated as early as

the 1940s with the intention to mimic biological intelligence. This first wave of interest in neural

networks tapered off in the 1960s due to the limited capabilities of available algorithms.

Enthusiasm in employing neural networks to understand human cognition was revived in the 1980s

before unrealistic expectations about the capabilities of the technique caused its second decline.

In the early 2000s, with vast improvements in computational power, increased accessibility to big

data, and rapid innovations in computing algorithms, the third era of neural networks - commonly

termed the "Deep Learning" era, saw the adaptation of neural networks for both engineering and

18



business purposes. Indeed, while neural networks are likewise capable of managing structured

data, neural network proved to be particularly robust in handling unstructured data. Modem deep

learning research is strongly motivated by the development of machines that can improve on

human judgment in processing both structured and unstructured data by being faster, more

consistent, more accurate, and less biased.

1.2 Feedforward Neural Networks, Cost Gradient Descent Algorithm

1.2.1 Network Models and Forward Propagation

For the purpose of studying neural networks for business applications', this study will focus on

feedforward neural networks. A feedforward neural network is effectively presented using a

network diagram. Figure 1-6 presents the network of a 3-layer (conventionally, the input layer is

not counted) feedforward neural network and the common nomenclature used to describe it:

Figure 1-6: Example 3-Layer Feedforward Neural Network

jput Hidden ' Hidden Output

[]Ill a [2] F

I2 " V' 1I

'ILII 1 apre

A I
Ix ta3 ~I

x 1 II
4411 4 1> 1

( Input Node
Input Nodes are Nodes in the Input Layer. Each
input node corresponds to an independent
variable in the input data.

Q a-Hidden Node
Hiden Nodes are Nodes in the Hidden Layers.
- (f1refers to the layer housing the node
- n refers to the node position (top to bottom)

within the layer

Output Nod
Output node provides the final output of the
model. A single node implies one output value.

* The Zeroth Layer is known as the Input Layer. The number of nodes corresponds to the

number of independent variables in our dataset. In this case, the 4 nodes imply that the

Variants of deep learning networks, such as convolutional neural networks or recurrent neural networks, would be
more appropriate for image recognition or machine translation / speech recognition tasks, respectively. For this study,
business applications entail prediction / classification tasks using a structured dataset, such as predicting property
prices or estimating propensity of credit default.
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dataset contains 4 independent variables. Note that we do not count the input layer when

describing the number of layers in a neural network.

* The First and Second layers are known as the Hidden Layers. The number of hidden layers,

as well as the number of nodes within each hidden layer, are hyperparameters set prior to

running of the model. A neural network model with 2 or more hidden layers is considered

a "deep learning network".

* The Third Layer is the Output Layer. In the case of a binary classification problem (which

shall be the case going forward in this example), the single node in the output layer

highlights that we have a single output value (i.e., 1 or 0 for a binary classification).

Each node in the hidden and output layers holds a set of parameters (a vector O) and a bias term

(a constant b), as well as an activation function. Each node performs two operations (See Figure

1-7):

Figure 1-7: ODerations Within a Node.

Dissecting a Node

Linear Aciat
MultiplicationAtvaon

Input xi- Opu a0 J

* Linear Multiplication and Addition of a Bias Term. The product sum between the vector

c for the node and the vector of inputs from the previous layer is first obtained (For the

first layer, the "vector of inputs from the previous layer" refers to the vector of the

observation xfrom the input layer; For the second layer, this refers to the output of the

nodesfrom the previous layer.). Thereafter, the product sum is added to the bias term b of

20
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The output node comprises 2 operations:
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z

(a). Linear Multiplication. Obtain the product-
sums of inputs x1, x2 , x3 and weights wj, 2, W3,
plus constant b.

a = g(z)

(b). Activation. Apply the activation function
onto the linear product to obtain the output a.

The promulgation of the nodal operations across
all layers is known as Forward Propagation.



the node. We label the output from the linear multiplication and addition of the bias term

as z.

0 Application of the Activation Function onto the Product z. The product is then put through

an activation function, from which we obtain the output for the node a, i.e. a = g(z), where

g(z) is the activation function.

A forward propagation entails passing the initial observation (the vector x) through nodes of every

layer in the neural network model to obtain a final output from the neural network model.

1.2.2 Cost and Loss

Cost and Loss. Critically, training a neural network involves attaining the best values for the

parameters co, b for each of the nodes in the model. This way, the model produces predictions /

classifications that are closest to the true label of a given observation. The metric used in

determining the "goodness" of the parameters is Loss (denoted by L; used to consider the goodness

of parameters for 1 observation) or Cost (denoted by J; the average of costs over a set of

observations, used to consider the goodness of parameters over a set of observations) (See Figure

1-8). For this study in particular, we will use the cross-entropy logistic loss for our cost

calculations.

Figure 1-8: Overview of Lost and Cost Functions.

Understanding Loss and Cost Cost: Avernae Loss over m Train Examples
Across m training examples, the average loss, or

(I)I a[Neural L)LOW= cost J, is calculated as follows:
Network L (y(, am )

__ Cost,J = L(y, aIM)

If aNL = - [y (t ) .lo g ( a [ ,l]( ) ) + ( 1 - y ( ) . lo g ( 1 - a ( LI M) ]

Where y(), a( KM refers to the actual and output value for
Cs the i-th training example
Cost

How do we Minimize Cost I then?
We do so by optimizing pwrwneiwt of te

E -nmdel This is achieved using a method called
if urX2  [Wrk > Gradient Descent.

The calculation of cross-entropy logistic cost is given as:
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Loss, L(y, a[L]) = -[y. log(a[L]) + (1 - y). log[(1 - aL])]

where y is the true label (1 or Ofor a binary classification task) and a[L] is the output value of
the model for a given observation.

Over m observations, the calculation for Cross-Entropy Logistic Loss, J is given:

Cost, J(y, a[L]) = !1[y. log(a[L]) + (1 - y). log( - a[L])]

To summarize, the cost function penalizes a wrong prediction by the model (i.e. cost value is higher

when a[L] is further away while actual label y). In achieving a model that can best predict the true

label, training a model will therefore involve obtaining the set of parameters o, b for each node in

the model which will minimize the cost incurred across observations within the training set.

1.2.3 Cost Gradient Descent Algorithm

The cost gradient descent algorithm is used to optimize the parameters c, b for each node in the

model. The concept of cost gradient descent works by considering the tangential gradient, -- of

the cost profile with respect to a parameter wi or b. Figure 1-9 considers a univariate case: If the

current value of wi corresponds to a point where the cost gradient is negative, a step is taken in

the positive direction. By increasing the size of (i, we arrive at a lower cost; Conversely, if Wi

corresponds to a point where the cost gradient is positive, we decrease wi arrive at a lower cost.

Figure 1-9: Cost Gradient Descent Overview.

Batch Gradient Descent Overview

Scenario 2: /
] .> 0

a<,

d

Imin

l iniutia i)
toew

Batch Gradient Descent:
To adjust each parameter wi, we first determine

-IL, the rate of change of cost Jwith respect to

each w. We then adjust w1 using:

(dinew = L i,initial - a
where a = learning rate (* a small positive value)

Descending the Gradient:

Scenario 1: Gradient -<0; - a >0:
- fw.t. ,nitiaz is negative sloping
* ne will be > Winitial to arrive a lower !

Scenario 2: Gradient >0; - a -<0:do.. dw..
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The size of the steps taken when optimizing the parameters is dependent on (1) the size of the cost
gradient: the larger the cost gradient, the larger the step size, and (2) the learning rate (denoted by
a): a hyperparameter set prior to running the model. In implementing a neural network, each

parameter is continuously adjusted via iterations of the cost gradient descent method using the
equation below:

t.i,new ~ (i,old -

In practice, the cost profile is more complicated than depicted in Figure 1-9: (1) The cost profile

might contain local minimums which do not reflect the true global minimum value of the cost
profile, see Figure 1-10. (2) Moreover, over multiple independent variables, the cost profile is

often a function of more than 1 or 2 parameters (Figure 1-11).

Generally, an optimization process can be considered robust if the local minimum of the cost

profile is close to global minimum point. However, in the event that the local minimum is much

higher than the global minimum point, the optimization will require further enhancements.

Figure 1-10: Cost Profiles with Multiple Minimums.
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(a) Loss Function with Multiple Minima
In practice, the loss function might have many local
minima. A gradient descent process might lead us
into a local minimum instead of a global minimum.

- (Example A) If the local minimum is close to
global minimum, the optimization can still be
considered robust.

- (Example B) If the local minimum is not close to
global minimum, we require further
enhancement to the optimization process.



Fieure 1-11: Bivariate (3-D) Cost Profile Representation.
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A specific technique used to enhance the location of the global minimum for large datasets

involves utilizing a stochastic gradient descent (or mini-batch training) approach, whereby only a

number of observations randomly selected from the training set are used for each iteration of the

cost gradient descent. (In contrast, a cost gradient descent using all examples in the training set for

each iteration is known as batch training.) Empirically, mini-batch training allows the parameters

to "escape" local minimums more quickly, thus enabling the neural network to arrive at the global

minima of the cost profile more effectively.
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1.2.4 Basic Theory on Deriving Cost Gradients using Back Propagation

Referencing the example in Figure 1-6: The calculation of the cost gradients - - involves using

the chain rule. In general, for any layer 1, the cost gradient can be expressed as follows:

d] _ dj dal dz 11

dw11 dall] dzUI 'a)1

dl _ d] dall] dz 1
1

dbW - da 1 ] dz 11 "db11]

Particularly, for parameters in the third (output) layer (i.e. / = L or 3),

dl dl da[L] dz[L]

d _y[L] da[L] az[L] dw[L]

dl( d- da[L I dz[L]

db ] da[L] dz y [L]- [L]

Given Cross-entropy Logistic Cost, J E [y.1log(a[L]) + (1 - y). log(1 - aELI)]

dl 1

da[L] m aL []

m a[L] (1- a[L])
1 (y ya[] aL+y[]

_ 1 y-a[L]

m \a[L](1- a[L]))

* The activated value is given as a = g(z), whereby g(z) is the activation function for the

output layer node. In the case of a binary classification problem, we use the Sigmoidal

activation function, g(z) =1 for the output layer node. Therefore,
1+ e

d[L] = 1+ ez)-. (-1). (ez). (1

25



e-z

1+ e-z 1+ e-z

1+ e-z 1 [L]
1+ e-z 1+ e-z

= (1 - a[L]). a[L]

* The node output z[L] is given as Z[L] = [L]Ta[ 2] + b[L]. Of note, ,[L]T refers to the

transpose of the vector of parameters for the output layer node. The matrix multiplication

o[L]T a[ 2 ] therefore represents the product sum between the elements of the vector w[L] and

a[2]. Concurrently, a[L- 1] or a[2] refers to the activated value from the previous layer

while b[L] refers to the bias term for the output layer node. Given these, we obtain

dz[L]

do>[L]

dz[L]

dbiL1

Piecing everything together, we obtain:

dl = - L(1y- [L] [a [L] [2]d)L] _ 1 L ( 1 a[L] ~ (i -a ). a L] a1

- [(y - a[L]). a[ 2 ]] and
m

- ( yaL a[L] [L]
db[~L] \a 1a[L 1)) a[L] )[]

- [(y - a[L])]
m

For parameters in the second (hidden) layer (i.e. I = 2), we build on the chain rule to calculate the

cost gradients:

dl -dl da[7] dz[ 2]

dto[2= da[2 ] dz[21* w2

d] _ dl da[ 2 ' dz[ 2
]

db[2 - da[2] dz[ 2 ] 'db[ 2 ]
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d L dl -d] da[L] dz[LI d] da[LI
* The component d[ 2] can be expressed as = .da[2 . whereby -L] .d-[L have

already been derived previously. For d ,[' we get dz[L]
dda[

2 ]

*As with the node in the output layer, we consider the activation function used in the second

layer to calculate d . In this study, we consider both the ReLU and the Smoothing

activation functions:

(a) For ReLU, a = g(z) = max{O, z}= { ,f z > 0O, if z 50

da[2] 1 if z > 0
dz[

2
] ) ifz 0

(b) For Smoothing, a = g(z) =y log (1 + ep)

_ ep

1+01U

z

z
1+ ey

1

1+e P

* Finally, a[2] [2 ]Tall] + [2]

dz[
21

dz[ 2]

dh[2]

Likewise, we piece the components together to derive the cost gradients. The cost gradients

obtained will then be used to derive the step adjustments for the parameters of nodes within the

second hidden layer. Using this approach, we can further build on the chain rule to derive the cost

gradients for parameters in the first hidden layer using:
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dl di da[1'I dz[1]
df d[ dall dz[[ 1]

dTO dl da[ 1d1 d[1]

As seen, the derivation of the cost gradients for the second layer d' involves the computation of

dl da[L]d[ d[L] from the output layer, and the derivation of the cost gradients for the first layer dida[L] 'd[]da[IL

dl da[2]
require the computation dz[2] from the second layer. In a model with more hidden layers,

the process can be repeated to derive cost gradients for every layer of the feedforward neural

network. This process of working out the cost gradients beginning from the output layer and all

the way to the first layer is known as back propagation.
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1.3 Softplus, ReL U and the Smoothing Activation Functions

With the intention of mimicking biological intelligence through neural networks, activation

functions serve as decision gates determining if a "neuron" (or a node) should be "triggered". The

activation function of a node considers the linear multiplication product (which we derive by

obtaining the product sum between a vector of parameters and a vector of inputs and then adding

a bias term for the node) and controls the final output from the node accordingly. In back

propagation, the derivative of the activation function with respect to its input (i.e., -a ) must be
dz

calculated to determine the cost gradients.

1.3.1 The Softplus Activation Function, g(z) = ln(1 + ez)

Introduced in 2000, the Softplus [5] activation function represents an improvement over the

activation functions of choice thitherto 2. Comparatively, the Softplus activation allows for a larger

rate of learning for larger input values, vis-a-vis the sigmoid / tanh activation function which

saturates (i.e. gradient becomes near zero) when the input value becomes too positive or negative.

I Fivure 1-12: Thei iamaid Activatinn Funcftinn V 1ionur 1-1'e Tha C nnie A px arin% Viinp-rni I

- - - - - - - - - - - - - - - - - - - - - -- -7---- 00
I.--

-3. 101 12

2 Namely, the sigmoid function and tanh function. Nevertheless however, the sigmoid function retains its usefulness
as an activation function for the final output layer in the case of binary classification neural network model.
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1.3.2 The ReLUActivation Function, g(z) = max{0, z}

The ReLU activation function was introduced in 2001. It became the default choice of activation

function for neural networks[6] [7] [8]. In a landmark 2011 study [9], it was empirically established

that the ReLU, rather unintuitively, performed better than the Softplus activation function. This

was despite the Softplus function being differentiable at every single point, which was necessary

for the back propagation to work. The relatively superior performance of ReLU was attributed to

the sparse nature of the function, which (1) reduces non-positive elements within the input matrix

to zero, and (2) computes both the output values and cost gradients in a simple manner. This

contrasts with the Softplus function, whereby each forward / backward propagation computation

involves the use of an exponential and/or a logarithmic function which adds to the computational

burden.

Concurrently, while the ReLU is not differentiable at the point x = 0, the use of ReLU as an

activation function is not necessarily hindered as (1) the computation of d- rarely takes place at
dz

the origin of the activation-input graph, (2) and in the event that computation of d does occur at

the origin, an arbitrary value of 0 or 1 (the gradient for a positive or non-positive input value,

respectively) can be assigned. Nevertheless, one notable problem with the ReLU lies in the flatness

of the activation function for negative input values. To overcome this, a Leaky RELU was

proposed in 2013 [10]. The Leaky RELU assigns a small d value of 0.01 for negative input values,

thus ensuring that the model continues to train even with negative input values.

However, the superiority of ReLU is not unchallenged. In a separate study by Zheng, Yang, and

Liu [11], it was shown that Deep Neural Networks using the Softplus activation function

outperforms the ReLU activation function for deep neural networks under certain hyper-

parametrizations.
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Figure 1-15: The ReLU Activation Function. Figure 1-16: The Leaky ReLU Activation Function.

S=max _Vx y =max(0.01xx)

-- 2

1.3.3 The Smoothing Activation Function, g(z) = i ln(1 + el)

The Smoothing activation function is the subject of interest for this study. Of note, (1) the

Smoothing activation function is equivalent to the Softplus activation function for p = 1; (2) As [L

approaches 0, the Smoothing activation function approaches the ReLU activation function (See

Figure 1-17).

Importantly, the Smoothing activation is differentiable (with a non-zero gradient) across its entire

domain, thus allowing the model to continue training across all input values. This property might

enable a neural network model employing the Smoothing activation function to train at a faster

rate when compared to a neural network employing a ReLU activation function. However, using

a Smoothing activation function for the hidden layers still incurs the additional computational load

highlighted for the Softplus model.
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Figure 1-17: The Smoothing Activation Function (With ReLU for Comparison).
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Chapter 2: Feedforward Neural Network Model Architecture

This chapter will guide readers through the code architecture for a feedforward neural network -

the neural network model used for our experiments. Importantly, tailored features have been

augmented into the code to enhance the data manipulation and collection process. For

reproducibility, a copy of the code used has been appended in Appendix A.

2.1 Architecture Overview

The code architecture of the neural network model is presented in Figure 2-18. The initial setup

standardizes the input data and initializes the parameters (depending on the number of hidden

layers and the number of nodes in each hidden layer as required) in the model. Then, the modules

performing the function of (1) forward propagation, (2) computing of the cost using the values of

the parameters at the end of every iteration, and (3) back propagation over a certain number of

iterations are developed separately. At the same time, intermediate values during the forward

propagation will be captured to compute cost gradients during the back propagation process.

Finally, the performance of the model is assessed by tracking cost values at the end of each

iteration.

Figure 2-18: Architecture for Feedforward Neural Networks (Binary Classification).

Semp
*Standardize Input daa 4
*Split Dat Into Train and Test

sets; Split Train and Test Sets
Into Inputs and fTue Labels.

* Scans Input data for (1)
number of Independent
variable, nx and (2) number of
output variables, ny.

Reads number of hidden
layers and number of nodes In
each layer, and initialize the
parameters (1 weight per
node to node connection, and
I bias term per node in the
hidden and output layers) for
the model.

Forward
Pirpagation

* Obtain Mini-latch

e For every hidden layer In the
model, implement linear
multiplication and activation
(using the choice of activation
function).

- Cache Intermediate values

Feedforward Neural Networks Architecture (Bin=r Classification)

Input Layer Hidden Layers Output Layers 4

4

r Compute Cost
S.For final outpu layer,

Implement linear
multiplication (including the
addition of the bias term) and

ng sgmold
function).

Compare A[L'wIth true labels
and compute Costs.

4P akPropagation
Starting withcfrom the final

gradients Aand A for each
layer.

Using required earning rate
(Fiad or Verable), update
parameters for each layer.

Loop Iterations
Repeat Forward Propagation,
Compute Cost, and Back
Propagation for required
numbers of Iterations
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2.2 Matrix Implementation

To leverage the efficiency of parallel computing, input values, intermediate linear multiplication,

activation values, parameters, and cost gradients are represented and processed in their matrix

forms. We begin with the observed values of all independent variables. These values are presented

in a matrix form denoted as X. Each column in X represents an independent variable while each

row entry in X corresponds to an observation.

Figure 2-19: Representation of Observation Data in Matrix Form.

n. Columns of Independent Variables

Age Gender Income E.g.

Observation I X11  X12  X13 . .

Observation 2 X21  X2 2  X23 . ... X2nx

a Observation 3 X31  X32  X33 ...... X x
[m rows, nx columns]

$ Observation m XmI Xm2 Xm3 Xmnx

In the first hidden layer, the linear multiplication operation is performed using a matrix

multiplication between input values X and the matrix of parameters &[i, followed by a

broadcasted addition of the product X(AdLI by the vector of bias terms bh11. Of note, the

dimensionality of the matrix of the parameters for first hidden layer w[1l, and b11 1 is such that: (1)

For o[P, the number of rows is equal to the number of nodes in previous layer (i.e. number of

independent variables or columns in the input data X), while the number of columns is equal to

the number of nodes in the first layer, and (2) For b111, the number of elements is equal to the

number of nodes in the first layer.

Figure 2-20: Linear Multiplication Operation in Matrix Operation for 11, Hidden Layer.

Mulptrtion x = Ixw' [m rows, n. columns] [nx rows, columns [m rows, columns
# nodes in 10 hidden layer) # nodes in 1P hidden layer]

Broadcasted X +(2) Additi... :f Xw~l + b =l All
Bias Termn [m rows, columns [I rows, columns [m rows, columns# nodes in jM hidden loyer # nodes in I't hidden loyer) # nodes in Il hidden layer)
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To complete the forward propagation process, the operation in the previous paragraph is repeated

for each successive layer. Likewise, the dimensionality of the matrix of the parameters for each

layer wMEl, and b11 is such that: (1) For wI 1f, the number of rows is equal to the number of nodes

in previous layer, while the number of columns is equal to the number of nodes in the current layer,

and (2) For b 111, the number of elements is equal to the number of nodes in the current layer3 .

Figure 2-21:Generalized Linear Multiplication in Matrix Operations.

m.,," All-'] [ V] XW ](1) M.,,,,,,e.,,on: A [11 = Xwo 1
(lilc to M rows, columns - [rows - nodes in pr'evious laer [M rows, columns - # nodes
nodes in prevous layer) columns - # nodes in current in current hidden layer)

hidden layer)

Broadcasted
(2) Add,,,... :f Xw11 + b =] All

Bias Term m rows, columns nodes t s rows, columns - te b oda Im rows, columns rodes
in current hidden layer) in current hidden layer) in current hidden ~layr

The use of matrix operations is likewise applied for the backward propagation process 4. Beginning

dl d]with the final layer, we compute the cost gradients , . Since we are using

function, the cost gradients were found to be -I = -Z(A[L] ) 0 (AL )
dto M db

Y), where 0 indicates an element-multiplication between the two matrices.

Figure 2-22: Backward Propagation in Matrix Representation.

dto[L I (A[L-1])T (A[L] - y)
[row = # nodes in previous layer, [rows = # nodes fm rows, 1 column]
columns = # nodes in current layer = 11 in previous hidden

layer, m columns)

dl 1
(2) db[L] = - (A .1 - Y)

[1 row, columns = fm rows, I column]
# nodes in current layer =1)

the sigmoid

I (A[L] -
M

I Given that the matrix operation AB for the 2-Dimensional matrices A and B is only possible if the 2 nd dimension
(number of columns) of A is equal to the first dimension (number of rows) of B, the matrix operations will only be
possible if the dimensions of the parameter matrices have been initialized correctly as intended. This is a common
technique used in ensuring that a neural network has been set up correctly.
' As with forward propagation, a common technique used to ensure that the neural net was properly set up lies in lies
in ensuring that the cost gradient - and for each layer have the same dimensions as the matrix of parameters w
and b for that layer.
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The process is repeated (using the appropriate d, - for the choice of activation function in the

hidden layers, and building upon the chain rule.) as we back propagate across the layers.
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2.3 Additional Augmented Features

In addition to the essentials discussed above, the following were augmented into the code:

2.3.1 Mini-Batch Training with Replacement

This mini-batch creator module enables mini-batch training with replacement. This module takes
in a batch size and outputs a random mini-batch (of the required size) from the training set. The
mini-batch is randomized at every iteration to ensure that a different set of observations is used to
train the model.

Batch training can be enabled using a batch size equal to the number of observations in the training
set.

2.3.2 Optimized Learning Rates (Fixed and Variables)

The model will leverage a study by Freund, Grigas, and Mazumder [12] to initialize the optimal
learning rates a: For the set of experimental runs conducted in the study, we will use both constant
learning rates (i.e. the same learning rate across iterations) and variable learning rates (i.e. the
learning rate changes with each iteration). Under the recommendations in [12], the optimal
learning rates are given in Table 1:

Table 1: Learnine Rates for Different Learning Model Parameters.
Fixed a Variable a

4nc

(_max)2

n = Number of Observations in Training Set

Emax = Maximum Singular Value for the
Matrix of Input Values augmented with a
column of 1-s (as the left most column).

c = Learning Factor, an Arbitrary Constant
Used to Refine the Learning Rate (a range of
values will be explored)

4nc

Id~ .>i2 * (Emax)2

n = Number of Observations in Training Set

imax = Maximum Singular Value for the Matrix
of Input Values augmented with a column of 1-
s (as the left most column)

dJ dJ
I 1w' -12 is the 1-2 Norm for the Cost Gradients
at the Respective Iteration

c = Learning Factor, an Arbitrary Constant Used
to Refine the Learning Rate (a range of values
will be explored)

I
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c.log2
R 2 .v +

R2 = Maximum Value of the Row Sums of
the Square of the Input Training Set Matrix

I= Number of Training Iterations

c = Learning Factor, an Arbitrary Constant
Used to Refine the Learning Rate (a range of
values will be explored)

c.log2

R 2 .V1--

R2 = Maximum Value of the Row Sums of the
Square of the Input Training Set Matrix

i = Current Iteration

c = Learning Factor, an Arbitrary Constant Used
to Refine the Learning Rate (a range of values
will be explored)

2.3.3 Cost Calculation with Average of Parameters over Past 100 Iterations

The code is augmented with an exploratory module that calculates the cost associated with the
5average of parameter values over the past 100 iterations

2.3.4 Data Standardization

The data standardization process, which serves to enhance the training process, is described as

follows: For each independent variable, each observed value is deducted by the mean of all

observations (for that independent variable), and then divided them by the standard deviation of

all observations (for that independent variable). This converts each observed value into number of

standard deviations away from the observed mean value.

5 The exploration yielded an interesting finding which we further discuss in Chapter 6 - The study examining the use
of "averaged parameters" to arrive at a more optimal set of model parameters was recommended for a separate study.
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Chapter 3: Scope of Experiment

This chapter provides an overview of the datasets used in the study and a description of the

experimental design for this study.

3.1 Overview of Datasets

The experiment uses 3 datasets. These datasets were chosen for their relevance in the business

domains, particularly healthcare, banking, and finance.

3.1.1 Framingham Heart Study Dataset

The Framingham Heart Study [13] began in 1948 as an initiative to identify factor contributing to

coronary heart disease. The dataset comprises a study population of 3,658 observations, and

captures 15 independent variables detailing the demographics (such as age, gender, educational

level, etc.) and biometrics (such as Body Mass Index, cholesterol levels, heart rate, etc.) of each

individual in the study population. The response variable "TenYearCHD" indicates the onset of

coronary heart diseases within a ten year period.

3.1.2 Bank Churn Modelling Dataset

The Bank Churn Modelling dataset [14] was obtained from Kaggle, an online community with

open datasets for data scientists. This dataset comprises 10,000 observations collated over different

banks in Europe, and captures 10 independent variables covering demographics (such as the

country, gender, and age) and banking related details (such as length of tenure with the bank, the

number of products with the bank, whether the client owns a credit line, etc.) of each individual in

the study population. The response variable "Exited" indicates if a particular individual eventually

leaves the bank as a client.

3.1.3 German Credit Risk Dataset

The German Credit Risk Dataset [15] was collated by the Department of Statistics and

Econometrics at the University of Hamburg. Covering a study population of 1000 individuals, the

dataset collects 30 independent variables detailing the demographics (Gender, marital status, age,
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type of employment, etc.) and economic background (car ownership, amount of savings in bank,

property ownership) for each individual in the dataset. The response variable "RESPONSE"

indicates if the individual has a good or bad credit rating at the time of the study.

3.2 Experimental Design

Each dataset is split into a training set and a testing set comprising 75% and 25% of the

observations respectively. In assessing the performances of the Smoothing activation function in

a holistic manner, we will train neural networks encompassing a range of the following

hyperparameters:

" Number of Hidden Layers. Both shallow neural networks (with I hidden layer) and deep

neural networks will be used in the study. The number of nodes in the hidden layers used

for each of the datasets is shown in Table 2.

Table 2: Number of Hidden Layers Used for Each Dataset.

Number of Nodes in Hidden Layers
DatasetNumber ofDataset Independent Variables Shallow Neural Deep Neural

Network Network

15
Framingham (*18 after conversion of 13 13, 8
Heart Study categorical variables into

binary variables)

10
Bank Churn (*13 after conversion of 8 8, 5

Modelling categorical variables into
binary variables)

30
German Credit (*51 after conversion of 35 35, 24

Risk categorical variables into
binary variables)

" Type of Activation Function. The Smoothing activation functions and the ReLU activation

function will be used to train the neural networks. For the Smoothing activation function
z

g(z) = i ln(1 + ea) in particular, we will examine activation functions for A =

0. 5, p = 1, and i = 2.
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To recap, the Smoothing activation function for i = 1 is equivalent to the Softplus

activation function.

* Batch Training or Mini-Batch Training. The neural networks developed will include

models using batch learning and models using mini-batch learning. A batch size of 16 will

be used for mini-batch training.

* Learning Rate Type. As highlighted in Table 1, neural networks employing both fixed and

variable learning rates will be used in this study.

* Learning Rate Multiple. A range of learning rate multiple will be used to examine the

characteristics of the activation functions over a range of learning values.

* Number of Iterations. Each model will undergo 10,000 iterations.

A summary of the possible permutations for the hyperparameters is shown in Table 3. About 176

models were trained for each dataset.

Table 3: Permutation of Hyperparameters for Neural Networks.

Hyperparameters Option 1 Option 2

Number of
1 2

Hidden Layers

Type of Activation
FunctionSoftplus ReLUFunction

Batch / Mini-Batch Batch Mini-Batch of

Training Learning Size 16

Learning Rate Type Fixed Variable

Learning Rate Multiple 0

0

Option 3

Smoothing

(p =0.5)

Option 4

Smoothing

(p=2)

Covers a range of values:

Between 0.000125 to 2 for Batch Learning

Between 1 to 800 for Mini-Batch Learning

Number of Iterations 10,000

Using the cost profile generated by the neural networks, the relative performances of the different

activation functions will be examined and presented in the next chapter. Beyond ascertaining the
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performance of the Smoothing activation function in comparison with the ReLU activation

functions, interesting observations and insights will be noted for further studies.
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Chapter 4: Analysis of Experimental Results

This chapter highlights and discusses findings from out experimental results.

4.1 Performance of Smoothing Activation Functions

We used 2 measures in evaluating the relative performances of the different neural network

models: (1) The minimum cost on the training set achieved at the end of 10,000 iterations will be

used as a proxy of how well each neural network model was able to fit the observations; (2) By

further examining the cost descent profile by each model where appropriate, we also qualitatively

evaluate the rate which a neural network model was trained.

4.1.1 Analysis of Results for Shallow (2-Layer) Neural Networks

I. Batch Learning with Fixed Learning Rates. Under batch learning conditions with fixed learning

rates, the performances of 2-layer neural network models using the Smoothing activation functions

relative to models using the ReLU activation function varied across datasets. Table 4 presents the

minimum cost on the training set achieved by each of the model at the end of 10,000 iterations:

* Neural network models using the ReLU activation function were able to achieve the lowest

costs on the respective training sets of the Bank Churn Modelling and German Credit Risk

datasets.

* Neural network models using the Softplus activation function achieved the lowest cost on

the training set for the Framingham Heart Study dataset, albeit neural networks using other

activation functions were also able to achieve costs that were nearly as low (i.e. within

10%) as what the Softplus activation model achieves.

* The performance of the Smoothing activation functions (including Softplus) across the

datasets are generally inconsistent. While models employing the Smoothing activation

functions were able to achieve near-minimum costs on the training set of the Framingham

Heart Study dataset, the costs achieved for other datasets were generally inferior to what

models using the ReLU activation functions were able to achieve.
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Table 4: Shallow Networks - Minimum Cost Achieved on Training Set (Batch Learning, Fixed a Models).
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
a = 0.5 p=2

4ic

Framingham (X.)2' C =1 0.330 0.315 0.328 0.342

Heart Study 4nc , c =2 0.329 0.315 0.326 0.319

Bank Churn (m")2, C =1 0.324 0.328 0.390 0.398

Modelling 4ni c =2 0.323 0.395 0.397 0.394

4nc1

German (Z) 2 , c= 0.014 0.134 0.048 0.305

Credit Risk 4nc 1CreditRisk (Z,,, c=- 0.061 0.356 0.264 0.407

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.

A closer inspection of the cost profiles generated by the different models on the Framingham

Dataset (where models using the different activation functions were able to achieve similar

performances) further revealed that the model using the ReLU activation function was able to

converge towards its eventual minimal cost value more rapidly (See Table 5).

Table 5: Cost Profiles (Framingham Heart Study Dataset, Batch Learnine, Fixed a).

Cost over Iterations

Near attainment of Minimal Cost
I I I I I

2000 4000 6000 e000 10000

Iteration

(Above) Cost Profile for Model with ReLU
Activation Function: Cost attains near minimal-value
at about 2000 iterations.

a

3-

~

a

3-

Cost over Iterations

-~Trof Cat

0 2000 4000 6000 3000 10000

Iteration

(Above) Cost Profile for Model with Softplus
Activation Function: Cost gradually attains minimal
cost over 10000 iterations.
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Cost over Iterations 
cost over Notations
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I I I
0 2000 4000 6000 000 10000

Iteration

(Above) Cost Profile for Model with Smoothing p = (Above) Cost Profile for Model with Smoothing p =
0.5 Activation Function: Cost gradually attains 2 Activation Function: Cost gradually attains minimal
minimal cost over 10000 iterations. cost over 10000 iterations.

Results taken from a 2-Layer Neural Network with Batch Learning, a = ()2 ; c =1
= TI)2
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II. Batch Learning with Variable Learning Rates. The results are largely similar to results from

batch learning models with fixed learning rates: Performances of 2-layer neural network models

using the Smoothing activation functions relative to models using the ReLU activation function

varied across datasets. Table 6 presents the minimum cost on the training set achieved by each of

the models at the end of 10,000 iterations:

" In all cases, neural network models using the ReLU activation function were able to

achieve the lowest or near-lowest (within 10% of lowest) costs on the training set of all 3

datasets.

" The performance of neural network models using the Smoothing activation function were

more inconsistent: Models using the Softplus and the Smoothing (ji = 0.5) activation

functions were able to achieve the lowest cost on the training set on the Framingham Heart

Study dataset. On the Bank Churn Modelling and German Credit datasets however, models

using the Smoothing activation functions (including the Softplus activation function) were

generally observed to achieve training costs that were significantly inferior to models using

the ReLU activation function.

Table 6: Shallow Networks - Minimum Cost Achieved on Training Set (Batch Learning. Variable a Modelsi.
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
it =0.5 p =2

4nc 1

Framinghain II2.*q.)2, C1 0.307 0.302 0.318 0.323

Heart Study 4nc - 1

.(Z. 2 32 0.308 0.308 0.306 0.340

4nc 1

Bank Churn * =16 0.335 0.413 0.386 0.372

Modelling 4nc 1
Al_, 12 *X.)

2 c = 0.333 0.395 0.395 0.353

4nc

IAA2* (Z.)2'" ,1 0.446 0.451 0.463 0.445

German 8000
Credit Risk , c --C= 1 0.331 0.401 0.392 0.412

Ij~db 2* F.T'4000

4nc 1
____ _ 12 * X.)2' 2000' 0.140 0.292 0.245 0.331

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.
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On the German Credit Risk Dataset with a learning factor of c = 1 particularly, (whereby the

family of Smoothing activation functions were observed to register significantly inferior costs on

the training set), it was observed from the cost profiles from models using the family of Smoothing

activation functions experienced a momentary slowdown in the training process (See Table 7).

Table 7: Cost Profiles (German Credit Risk Dataset. Batch Learning, Variable al.

C-

Cost over Iterations

0 2000 4000 8000 8000 10000

Iteration

Cost over Iterations

C)C.

I I IT

0 2000 40 00 8000 10000

Iteration

(Above) Cost Profile for Model with ReLU: (Above) Cost Profile for Model with Softplus:
Generally smooth cost descent Relatively moderate and momentary slowdown in cost

descent at -900-th iterations

Cost over IteratIons Cost over Iterations

- 'rt ColrPCon

o C;

0 200 400 600 600 10000 0 200 4=0 600 em0 1000

(Above) Cost Profile for Model with Smoothing p = (Above) Cost Profile for Model with Smoothing p =
0.5: Relatively gradual and momentary slowdown in 2: Relatively steep and momentary slowdown in cost
cost descent at -1200-th iterations descent at -400-th iterations

Results taken from a 2-Layer Neural Network with Batch Learning, a = 2 , c
2 * (linx)2 4000
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III. Mini-Batch Learning with Fixed Learning Rates. Except for scenarios with a lower learning

factor, models using the ReLU activation functions generally achieved the lowest cost on the

training sets across all datasets. Nevertheless, it should be noted that (1) The Smoothing family of

activation functions generally comparable performances, if not the best, against the ReLU

activation function on the Framingham Heart Study dataset, and (2) On the Bank Churn Modelling

dataset, neural networks using the Smoothing g = 2 activation function further achieved

comparable performances when compared with neural networks using the ReLU activation

function (Table 8).

Table 8: Shallow Networks - Minimum Cost Achieved on Trainine Set (Mini-Batch Learnine, Fixed a Models).

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
___ __ __ _ ___ __ __ __ __ ___ __ __ __ ___ __ __ __ I = 0.5 pi=2

2  c =1 0.669 0.564 0.636 0.460

Framingham c = 200 0.392 0.387 0.383 0.399

Heart Study clog2 c = 400 0.376 0.381 0.381 0.381

c = 600 0.373 0.380 0.380 0.378

c.log2
,c = 1 0.587 0.510 0.544 0.505

clog2 c = 200 0.338 0.423 0.412 0.415
Bank Churn R2.:.fi+i' ____

Modelling clog2 c = 400 0.336 0.410 0.406 0.345

, c = 600 0.335 0.409 0.404 0.345

, c =1 0.675 0.609 0.633 0.607

clog2 , c = 200 0.216 0.409 0.393 0.422
German W

2
ffi 717______________________77________

Credit Risk , c = 400 0.058 0.357 0.256 0.408

clog2 c = 600 0.021 0.246 0.124 0.385

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.

In addition, an examination of the cost profiles generated by the neural networks across the datasets

reveals the following:

* On both the Bank Churn Modelling (Table 9) and German Credit Risk (Table 10)

Modelling Dataset, the cost descent was direct for neural networks using the ReLU
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activation function. This was not the case for neural networks using Smoothing activation

functions, where a plateau in the cost descent could be observed.

On the Framingham Heart Study dataset (See Table 11), the cost descent process was
observed to be slower for neural networks employing the ReLU activation function.
Significantly, the neural networks using the Smoothing activation functions for g = 1 (i.e.,
the Softplus activation functions) and p = 0.5 achieved a comparable minimum train cost
with a lower number of iterations.

Table 9: Cost Profiles (Bank Churn Modelline Dataset. Mini-Batch Learning. Fixed a1.

Cost over Iterations

- t Thinoal

0 2000 4000 6000 6000 10000

Iteration

Cost over Iterations

1C

!k -

go

0 2000 4000 6000 6000 10000
Iteration

(Above) Cost Profile for Model with ReLU: (Above) Cost Profile for Model with Softplus: Cost
Generally direct and rapid cost direct plateau observed

Cost over heratlons Cast over Iteratlane

- Tiurco TIRaCag
a onlg TOMC a 8M raio st

-A~WqsP Awstqs P

S- -Plateau
Plateau

I I I I I I I I I

0 2000 4000 6000 8000 10000 0 2000 4000 000 6000

Iterato Iteration

(Above) Cost Profile for Model with Smoothing p = (Above) Cost Profile for Model with Smoothing P =
0.5: Cost plateau observed 2: Cost plateau observed
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* Results taken from a 2-Layer Neural Network with Mini-Batch Learning, a = , c =600
Table 10: Cost Profiles (German Credit Risk Dataset, Mini-Batch Learning, Fixed a).

Cost over Iterations Cost over Iterations

-- CO TrucC"
i em bTraCd ;amI a

Plateau

I I ei Cl

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

Iteration Iteration

(Above) Cost Profile for Model with ReLU: (Above) Cost Profile for Model with Softplus: Cost
Generally direct and rapid cost descent plateau observed

Cost over Iterations Cost over Iterations

Ta - Br.Tr CM
P1e A,.Cmft ra Coo

Pe Plateau /Slow Cost Descent *8"

C;PlateauA

U' I 0 |||

CO C

0 2000 4000 6000 0000 10000 0 2000 4000 6000 8000 10000

Iteration Iteration

(Above) Cost Profile for Model with Smoothing p = (Above) Cost Profile for Model with Smoothing t =
0.5: Relatively gradual and momentary slowdown in 2: Cost plateau observed
cost descent at -1200-th iterations

Results takenfrom a 2-Layer Neural Network with Mini-Batch Learning, a = 2 c =600
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Table 11. Cost Profiles (Framinaham Heart Study Dataset, Mini-Batch Learning. Fixed a).

Cost over Iterations

C;

0 0a

C;

0 2000 4000 6000 8000 10000

Itration

(Above) Cost Profile for Model with ReLU:
Minimum cost achieved at -4000-th iterations

Cost over Iterations
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II I I I |

0 2000 4000 6000 8000 10000

Ieration

C

C

40.
Slower Cost Descent

Cost over Iterations
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- POP P
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Iteration

(Above) Cost Profile for Model with Softplus:
Minimum cost achieved at -3000-th iterations

Cost over Iterations
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C;

I I '
0 2000 40 00 0, 10000

Iteration

(Above) Cost Profile for Model with Smoothing p = (Above) Cost Profile for Model with Smoothing i =

0.5: Minimum cost achieved at -2000-th iterations 2: Minimum cost achieved at -4000-th iterations

Results taken from a 2-Layer Neural Network with Mini-Batch Learning, a = c.IiTT, c =600
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IV. Mini-Batch Learning with Variable Learning Rates. As with the case for Mini-Batch Training

with fixed learning rate, the performance of neural nets employing the ReLU activation function

were found to be superior in all cases across all datasets with the exception of scenarios with very

low learning rates (i.e., c =1) (See Table 12). Said superiority, however, was more pronounced for

the Bank Churn Modelling and German Credit Modelling datasets - Neural network models using

the Smoothing activation functions were able to achieve comparable cost values for the

Framingham Heart Study dataset.

Table 12: Shallow Networks - Minimum Cost Achieved on Training Set (Mini-Batch Learnin, Variable a1.
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
it =0.5 =2

, c =1 0.647 0.503 0.593 0.436

FrLoga c = 200 0.376 0.381 0.381 0.381Framinghiam r
2

i+T1______

Heart Study clog2c =400 0.371 0.379 0.380 0.378

_____ , c = 600 0.367 0.379 0.379 0.378

,c =1 0.544 0.501 0.511 0.504

Bank Churn c =200 0.336 0.410 0.406 0.420

Modelling cog2c = 400 0.330 0.408 0.402 0.417

clog2
c = 600 0.336 0.409 0.403 0413

, c =1 0.692 0.682 0.689 0.664
German clog c = 200 0.068 0.354 0.268 0.402Credit Risk R

2
.,Vj? ________ ________ ________

clg NA NA

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.

Unlike the case for Mini-Batch Training with fixed learning rate, the rate of convergence for neural

networks using the ReLU activation function were found to be largely similar to the rate

convergence for neural networks using the Smoothing activation functions (See Table 13). Taking

into account that neural networks using the Smoothing activation functions attained a train cost

that was comparable to that attained by neural networks using the ReLU activation function, the

performances of models using either activation function are deemed to be comparable.
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Table 13: Cost Profiles (Framineham Heart Study Dataset, Mini-Batch Learning, Variable a).
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4.1.2 Analysis of Results for Deep (3-Layer) Neural Networks

I. Batch Learning with Fixed Learning Rates. Using batch learning with fixed learning rates,

neural networks using the ReLU activation functions achieved the lowest for both the Bank Churn

Modelling and German Credit Risk datasets. In addition,

" For the Framingham dataset, when using a learning factor of c =2, the neural network

model using the Softplus activation function was able to fit the training set data better. At

the same time, however, the family of Smoothing activation functions were not consistent

in achieving a train cost that is near the minimum achieved by the Softplus activation

function.

* For the Bank Chum Modelling dataset, neural networks using the Smoothing activation

functions achieved minimum costs on the training set that were comparable to the

minimum achieved by the neural networks using the ReLU activation function (Table 14).

Table 14: Deep Networks - Minimum Cost Achieved on Trainine Set (Batch Learning. Fixed a Models1.
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
p 0.5 p 2

4nc

Framingham (ZX)2, c 1 0.221 0.250 0.288 0.346

Heart Study 4nc c =2 N 0.210 NA 0268
( c)21 (Vi-bk so conve) (Unibk to c=2a2)

4nc

Bank Chum ( )2, c =1 0.320 0.320 0.337 0.321

Modelling 4n, c =2 0.311 0.319 0.322 0.314

4nc C 1 NA

German (Zmx
2 , C = 0.002 0.170 (,,s,,e<,,,,,,, 0.391

Credit Risk 4nc ,c 0.070 0.415 0.380 0.577

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.

In noting that the neural networks using each of the different activation functions achieved

comparable results on the Bank Chum Modelling dataset, the cost profiles generated by these

models were further analyzed.

54



* Using a learning factor of c = 1, an analysis of the costs profiles revealed that the cost

descent for the neural network model using the ReLU activation functions was faster, while

the neural networks using the various Smoothing activation functions suffered a plateau in

their cost descent during the training process (See Table 15).

Table 15: Cost Profiles (Bank Churn Modelling Dataset. Batch Learning. Fixed a) - (A).

Cost over terallone

Slight Plateau Observed; but
Ultimately Rapid Cost Descent

0 2000 4000 6000 6000 10000

8
a

a
a

a
a

a

a
a

Cost over Iterations

Plateaus Observed;
Slower Cost Descent

0 2000 4000 6000 6000 10000

(Above) Cost Profile for Model with ReLU: (Above) Cost Profile for Model with Softplus
In spite of slight cost plateau, rapidly achieved near-
minimal cost at about 500 iterations.

Cost over Iterations Cost over Iterations

* T S f TfWCWt

dlwe Cost DeseM SMe Cos DWesent C

0 00 400 80 00 00 0 20 00 j0 800 k1000

d 4i

d d

Slower Cost Descent =lor CoDescent

onth aining setr e Baaeak Ch rObdsi g a a et e erved; s rv ha h

o d
0 2000 4000 am0 60 10000 0 2000 4000 "M0 so00 10000

(Above) Cost Profile for Model Smoothing p = 0.5 (Above) Cost Profile for Model Smoothing P = 2
*Results taken from a 3-Layer Neural Network with Mini-Batch Learning, a =(Z)2' c=1

* Using a learning factor of c = 2 (where each model respectively produced their lowest cost

on the training set for the Bank Churn Modelling dataset) however, we observe that the

cost descent for the neural network model using the Softplus activation function attained a
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faster cost descent, and with less fluctuations in the cost profile. This highlights a very

specific instance whereby the Softplus function performed better than the ReLU activation

function (See Table 16).

Table 16: Cost Profiles (Bank Churn Modelling Dataset, Batch Learning, Fixed a) - (B).

C-

3 -

A !-

C;

Cost over Iterations

Greater Fluctuations observed in
cost profile

0 2000 4000 6000 000 10000

hatci

M-
6-

a

Cost over Iterations

0 2000 4000 6000 6000 10000

brato

(Above) Cost Profile for Model with ReLU: (Above) Cost Profile for Model with Softplus:
Greater Fluctuations in Cost Profile, with near- In spite of slight plateau, achieved near-minimal cost at
attainment of minimal cost at -1800 iterations. -1000 iterations.

Cost over IteratIons Cost over IteratIons

o - Tr* -O kTrC

i . a .

d C;

0 2000 4000 6000 000 10000 0 2000 4000 000 6000 10000

(Above) Cost Profile for Model Smoothing i = 0.5: (Above) Cost Profile for Model Smoothing p = 2:
Achieved near-minimal cost at -4000 iterations. Achieved near-minimal cost at -4000 iterations.

* Results taken from a 3-Layer Neural Network with Mini-Batch Learning, a - 4n , c = 2
c-rax)2
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II. Batch Learning with Variable Learning Rates. With batch learning and variable learning rates,
neural network models using the ReLU activation function continue to dominate in terms of

performance, being able to yield the lowest cost across all 3 different datasets. On the Framingham

Heart Study and Bank Churn Modelling datasets, neural networks using a Smoothing activation

function was able produce minimum costs that were comparable with neural network models

employing the ReLU activation function. Particularly,

* On the Framingham Heart Study Dataset, the Softplus and Smoothing (p = 0.5) activation

functions were able to achieve minimum costs on the training sets that were within 10% of

what the ReLU activation function could achieve.

* On the Bank Churn Modelling, each of the Smoothing activation functions were able to

achieve minimum costs on the training sets that were within 10% of what the ReLU

activation function could achieve.

* On the Bank Chum Modelling dataset, none of the neural networks using a Smoothing

activation function produced a minimum cost that could compete with the neural network

using a ReLU activation function (See Table 17).

Table 17: Deep Networks - Minimunm Cost Achieved on Training Set (Batch Learning, Variable a Modelsl.
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
p_ = 0.5 pi=2

Framingham 4n12z c =S 0.291 0.311 0.319 ,,

Heart Study 4n1
da .tudy C 1 0.295 0.323 0.329 0.346

dW dbI2*(,.~2 6

4 > c =1 , , 0.484 NA 0.370

Bank Churn 4n =_ 1 .
Mdlng I*.AIz -*Z)2 4 (~kt ovV 0.334 0.356 0.339Modelling Nd 2(z3 r.deb..,,

4n NA

,I C.2, 3 0.319 0.325 0.329 g,,C.,,,,

4n1

German *(Z..)2' C3 0.300 0.415 0.413 0.421

Credit Risk 4n
C redit .isk n( a ' 1 0 .4 6 4 0 .4 7 9 0 .4 8 8 0 .4 6 5IAA 25 64

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.
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Examining the cost profiles generated off the Framingham Heart Study dataset (for c = , where

ReLU, Softplus, and Smoothing g = 0.5 models produced their best cost results), it was observed

that the rate of cost descent for the ReLU model was slightly faster than the models using the

Softplus and Smoothing (g = 0.5) activation functions (See Table 18).

Table 18: Cost Profiles (Framineham Heart Study Dataset. Batch Learning, Variable a.

Cost over Iterations
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(Above) Cost Profile for Model with ReLU:
Cost was -0.31 at about 4000-th iterations
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(Above) Cost Profile for Model with Softplus
Cost was -0.35 at about 4000-th iterations

bralan-

(Above) Cost Profile for Model Smoothing p = 0.5 Model Smoothing p = 2 did not converge
Cost was -0.35 at about 4000-tb iterations

* Results taken from a 3-Layer Neural Network with Mini-Batch Learning, a -- n C
*E,2(r..)2 32
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Likewise, for the Bank Churn Modelling dataset (for c = -, where similarly the ReLU, Softplus,

and Smoothing p = 0.5 models produced their best cost results 6), it was shown that rate of cost

descent was noticeably slower for neural networks employing the Smoothing activation functions

(See Table 19).

Table 19: Cost Profiles (Bank Churn Modelling Dataset, Batch Learning, Variable a.

- TmIca
- ptKT1aCO

0 2000 4000 6000 8000 10000

Iteration

Cost over Iterations
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- Ton cost

- DW Tr Cs

Plateaus Observed;
Slower Cost Descent
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(Above) Cost Profile for Model with ReLU (Above) Cost Profile for Model with Softplus

Cost over IteratIons
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Slower Cost Descent

0 2000 4000 em0 em0 10000
Iteration

(Above) Cost Profile for Model Smoothing t = 0.5 ModelSmoothing p =2 did not converge

* Results takenfrom a 3-Layer Neural Network with Batch Learning, a = 4n , c =
dagh12* .) 32

6 As an interesting side note, a bump was observed in the training costs associated with the averaged parameters for
neural networks using the Smoothing activation function (R = 0.5 and p = 1). The investigation of how averaging
parameters from past iterations is broadly proposed as an area for further study in Chapter 6.
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III. Mini-Batch Learning with Fixed Learning Rates. Focusing on the learning factors of c = 400

and c = 600 (whereby each mode produced better results relative to c = 1 and c = 200),

* The neural networks using the ReLU activation function were able to achieved the lowest

cost on the training set on both the Bank Churn Modelling and German Credit Risk

datasets.

* On the Framingham Study dataset however, the neural networks using the Softplus and

Smoothing (g = 0.5) activation functions outperformed the ReLU activation function for c

= 400 and c = 600 respectively (See Table 20).

Table 20: Deep Networks - Minimum' Cost Achieved on Trainine Set (Mini-Batch Learnine, Fixed a Models).
Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
po=0.5 p1=2

, c 0.669 0.588 0.642 0.485

Franingham 2  c = 200 0.431 0.430 0.424 0.431

Heart Study c ,og2 c = 400 0.431 0.418 0.393 0.430

,___ 2  c = 600 0.431 0.394 0.385 0.429

,2
.i c =1 0.586 0.517 0.554 0.506

clog , c= 200 0.495 0.429 0.418 0.428Bank Churn R 2 .VIT C

Modelling c ,102 c = 400 0.343 0.412 0.407 0.425

clog2
_,R
2

.Vfi+iT c = 600 0.333 0.353 0.405 0.408

clog2
, c = 1 0.676 0.613 0.643 0.607

clog2 c=200 0.605 0.606 0.519 0.607German R 2 .VIT_ I

Credit Risk c ,ogz c = 400 0.048 0.417 0.380 0.475

clog2 c = 600 0.003 0.382 0.178 0.428
________ _ R R

2
. iIi-+I'

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.

Examining the cost profiles on the neural network models on the Framingham Heart Study dataset

for the learning factors c = 400 and c = 600, it was observed that the models using the ReLU

activation function and the Smoothing (p = 2) activation functions encountered a plateau in their

respective training processes (See Table 21, Table 22).
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Table 21: Cost Profiles (Framinuham Heart Study Dataset, Mini-Batch Learning, Fixed a), c=400.
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* Results taken from a 3-Layer Neural Network with Mini-Batch Learning, a - ,R2m c = 400



Table 22: Cost Profiles (Framingham Heart Study Dataset. Mini-Batch Learning, Fixed a), c=600.
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IV. Mini-Batch Learning with Variable Learning Rates. Using mini-batch learning with variable

learning rates,

e The neural network with the Softplus and Smoothing (g = 0.5) activation functions

achieved the lowest cost on the training sets of the Framingham Heart Study and Bank

Churn Modelling datasets respectively.

* Nevertheless, the models using the ReLU functions was still able to achieved comparable

training cost values on the Bank Chun Modelling dataset.

e Neural Networks using the ReLU activation function achieved, by far, the lowest cost on

the training set of the German Credit Risk dataset (Table 23).

Table 23: Deep Networks - Minimum Cost Achieved on Trainine Set (Mini-Batch Learning, Variable a Modelsi.

Minimum Cost Achieved on the Training Set (Batch Learning)

Dataset Learning Rate, a ReLU Softplus Smoothing, Smoothing,
p = 0.5 p =2

c.logZ
, c =1 0.647 0.532 0.607 0.447

clog2 c = 200 0.431 0.422 0.394 0.431
Framingham R2.___________

Heart Study c ,og2 c = 400 0.431 0.384 0.383 0.386

clog c =600 0.415 0.378 0.382 0.379____ ____ __ 
2
.V i Cj I

, c =1 0.543 0.507 0.519 0.506

Bank Chum 2 c =200 0.341 0.363 0.358 0.426

Modelling c ,ogz c =400 0.339 0.336 0.329 0.505

c ,og2 c = 600 0.337 0.345 0.332 0.365

, c =1 0.693 0.687 0.691 0.674

clogr c=200 0.055 0.437 0.402 0.440German R
2
.1 =+=

Credit Risk c.g c =400 0.002 0.427 0.189 0.432

, c = 600 0.001 0.388 wUneNA 0.432R 2.,(Un -+Ito Ornuge)

* Blue indicates best performing model among models with the same set of hyperparameters (i.e., for each row);
Green indicates model with comparable cost performance with best performing model; Red indicates marked
inferiority in cost performance against best performing model; Bold indicates best result for dataset.
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Examining the cost profiles generated off the Framingham Heart Study, it was revealed that the

training process using a neural network with the ReLU activation function was characterized by a

plateau in the cost profile (See Table 24).

Table 24: Cost Profiles (Framingham Heart Study Dataset. Mini-Batch Learning, Variable a).
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64

6

:2

3C

C;

- ftTranCog

- AV~WapP



On the Bank Churn Modelling dataset, a sizeable cost plateau in the initial iterations of the training

process can be observed for the neural network using the ReLU activation function. While plateaus

were also observed for other neural networks, it is noteworthy to point out that plateau for the

ReLU-activated network occurred at a much higher cost value (See Table 25).

Table 25: Cost Profiles (Bank Churn Modelling Dataset. Mini-Batch Learning. Variable a).
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4.2 Computational Time Across Activation Functions

Beyond analyzing relative cost performances, we further consider the computational time

associated with each activation function. Table 26 compares the time7 required to train a neural

network model for 10,000 iterations using the various activation functions.

Table 26: Average Computational Time for 2-Layer, 3-Layer Neural Networks.
Dataset Average Computational Time for 10,000 Iterations (Mins)

Model Framingham Heart Bank Churn German Credit Risk
Study I Modelling

2-Layer Neural Network

ReLU 3.48 4.13 2.46

Softplus 6.62 8.94 5.13

Smoothing p = 0.5 6.84 8.72 4.49

Smoothing p =2 6.77 8.86 4.15

3-Layer Ne ral Network

ReLU 5.04 6.44 5.11

Softplus 12.04 12.67 10.62

Smoothing p = 0.5 11.60 13.38 10.98

Smoothing p =2 10.31 12.72 8.02

It was shown that for all cases, neural network using the ReLU activation function required about

half the time to complete 10,000 iterations as compared to neural networks using any of the

Smoothing activation functions. As such, it can be seen that the ReLU activation function is

computationally faster.

As covered in the literature review, the superiority of the ReLU activation function in terms of

computational efficiency might be attributed to the sparse nature of the model: During forward

propagation, the ReLU activation function reduces all negative values within a input matrix into

zero, thus reducing the resources required to perform further computations onto the output

I The computational time required were measured off a computing device with an Intel i7-8550U CPU @ 1.80GHz
with 16 GB RAM on a 64 bit Windows 10 operating system (No GPU),

66



damatrices. Concurrently, during backward propagation, the calculation of the - component of the

cost gradient only requires a simple assignment of the values 0 or 1 (depending on whether the

respective input matrix value is positive or negative) as opposed to working with the logarithmic

and exponential functions. The simplicity of the mathematical operations involved in the forward

and backward propagations when using a ReLU activation function theoretically allows neural

networks to complete their computations within a shorter time.
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Chapter 5: Assessing the Suitability of Neural Networks in

Business Applications

This chapter performs an additional analysis: The performance and suitability of neural networks

within the context of business applications will be evaluated.

5.1 Benchmarking Logistic Regression for Business Applications

As a machine learning technique for business applications, logistic regression serves as an

appropriate benchmark for the evaluation of neural networks. Critically, a logistic regression can

be interpreted as a "1-layer feedforward neural network". In using a logistic regression model as

benchmark therefore, we ascertain if there is value in introducing additional hidden layers into a

1-layer feedforward neural network for common business applications.

Importantly, against substantial development in the deep learning field, logistic regression remains

a popular machine technique used in modelling common business scenarios. The reasons are as

follows:

" Modelling Efficiency. Unlike logistic regression, the deployment of a neural network

requires a deliberate hyper-parameterization process. Optimizing the performance of a

neural network entails exploring a range of values for the numerous hyperparameters such

as learning rates, type of activation functions, number of iterations (to prevent over or

undertraining while ensuring that we economize the computational load), the number of

hidden layers, and the number of nodes in each hidden layer. Comparatively, the

development of a logistic regression model is relatively simpler and less time consuming.

" Computational Simplicity. A logistic regression model is computationally simpler. This

leads to shorter training and computational time when deploying a logistic regression

model. Case in point, the training of a logistic regression models for each of the 3 datasets

used in our study took less than 10 seconds in each instance. This contrasts favorably

against the time required to train a neural network model (See Table 27): For the 3 datasets

used in the study, the average time required to train a 2-layer neural network lies between
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4 to 6 minutes', while the average time required to train a 3-layer neural network lies

between 8 to 12 minutes. The computational time increases by an order of 2 to 3 when we

use a 2 or 3-layer neural network model instead of a logistic regression model.

Table 27: Averaae Computational Time for 1-Laver, 2-Laver Neural Networks.
Dataset Average Computational Time for 10,000 Iterations (Mins)

Model Framingham Heart Bank Churn German Credit Risk
Study Modelling

2-Layer Neural 5.93 7.68 4.09Network__________ __________ _______ ___

3-Layer Neural 9.77 11.28 8.55Network__ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

" Performance. Fundamentally, the inclusion of hidden layers within a neural network

(which entails the use of nonlinear activation functions) allows a neural network model to

capture nonlinear patterns. This empowers the model to formulate complex, nonlinear

relationships commonly observed in unstructured data. Nevertheless, despite being a linear

model, logistic regression has shown to be robust even when managing certain unstructured

data. (Particularly, logistic regression is known to achieve an accuracy of more than 90%

on the MNIST image recognition dataset.) Coupled with the fact that a logistic regression

model is computationally simpler, a logistic regression model might be deemed as "good

enough" when applied to business applications (whereby we commonly deal with

structured and/or binary data).

" Interpretability. In the case of using logistic regression model for a binary classification

problem, the coefficient assigned to an independent variable can be readily interpreted as

the increase in odds (i.e., the relative probability of a positive observation versus a negative

observation) given a unit increase in the value of the independent variable, assuming all

other independent variables remain constant.

Particularly for business applications, the interpretability provided by a logistic regression

model is critical towards convincing business owners and stakeholders towards justifying

business decisions. Comparatively, interpreting and making sense of nodal parameters

across the hidden layers of a neural network might entail a more labored and involved

S The computational time required were measured off a computing device with an Intel i7-8550U CPU @ 1.80GHz
with 16 GB RAM on a 64 bit Windows 10 operating system (No GPU),
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effort. Indeed, deep learning networks have found wider applications in engineering

applications such as image recognition and machine translation, whereby the

interpretability of model parameters is less critical than the final accuracy provided by the

model.

To benchmark the performance of the neural networks developed in this study against that of a

logistic regression model, a code for a logistic regression network was developed (See Appendix

B9). This logistic regression network was then applied to the 3 datasets used in the study and the

results analyzed in the next section.

9 The logistics regression network was able to reproduce outputs generated by a Generalized Linear Model (GLM)
function in base R.
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5.2 Model Performance: Logistic Regression versus Neural Network

Table 28 presents performance metrics - Area Under the Receiving Operating Characteristic

Curve (AUC) and minimum costs achieved (for both the training and testing sets, at the end of

10000 iterations), using a shallow neural network model, a deep neural network (a 3-layer neural

network model), and a logistic neural network. Of note, the performance metrics presented for the

shallow neural network and the deep neural network are indicative of neural networks with

hyperparameters that gave the near-lowest cost and near-highest AUC values, i.e., neural networks

using hyperparameters that produced inferior performance metrics are not shown here.

Table 28: Minimum Cost Performance for Logistic Reeression and Neural Network Models.

Dataset and Minimum Test Cost Achieved
Model Observation MetricSet Framingham Bank Churn German Credit

Heart Study Modelling Risk

Minimum Cost 0.3772843 0.4287479 0.4283163
Training Set

Logistic AUC 0.7465124 0.7658065 0.8472478
Regression

(I-Layer Neural Corresponding 0.3761477 0.4268085 0.5384435Network) Testing Set Test Cost

AUC 0.7145916 0.7759654 0.7596154

Minimum Cost 0.3736599 0.3185538 0.3918045
Training Set

AUC 0.7536119 0.8811262 0.8718605

Shallow Neural Corresponding 0.3752478 0.3517152 0.534829Network Testing Set Test Cost
(2-Layer Neural

Network) AUC 0.7205689 0.8542265 0.7717651

ReLU, Softplus, Smoothing p = 0.5,
Minibatch Training, Batch Learning, Minibatch Learning,Hyperparameters Variable Learning Fixed Learning Variable Learning

Rate x300 Rate x 2 Rate x 100

Minimum Cost 0.3792733 0.331755 0.4269322
Training Set

AUC 0.7453476 0.8674127 0.8525287

Deep Neural Corresponding 0.3749311 0.3431166 0.5394947
Network Testing Set Test Cost

(3-Layer Neural AUC 0.7170619 0.8529271 0.7647585Network) __________________________________

Smoothing gs= 2, Smoothing jp = 0.5, Softplus,
Minibatch Training, Minibatch Training, Minibatch Training,Hyperparameters Variable Learning Variable Learning Variable Learning

Rate x 600 Rate x 300 Rate x 400
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For all datasets, the neural network models were able to achieve a superior AUC and lower cost

values relative to the logistic regression model. The degree of improvement, however, varies

across datasets.

Notably, the use of a neural network on the Bank Churn Modelling dataset produced mark

improvements in both AUC and costs values: (1) The AUC value for the training and testing sets

were 0.766 and 0.776 respectively using the logistic regression model; The same values for a 2-

layer neural network were 0.881 and 0.854 respectively. (2) The training set and testing set cost

values using a logistic regression network were 0.429 and 0.427 respectively; The same values of

a 2-layer neural network were 0.319 and 0.352 respectively.

The improvements were less significant for the German Credit Risk dataset: (1) The AUC value

for the training and testing sets were 0.847 and 0.760 respectively using the logistic regression

model; The same values for a 2-layer neural network were 0.872 and 0.772 respectively. (2) The

training set and testing set cost values using a logistic regression network were 0.428 and 0.538

respectively; The same values of a 2-layer neural network were 0.392 and 0.535 respectively.

Compared to the neural network models used on the other datasets, the neural network model gave

negligible improvements for the Framingham Heart Study dataset: (1) The AUC value for the

training and testing sets were 0.741 and 0.715 respectively using the logistic regression model;

The same values for a 2-layer neural network were 0.753 and 0.721 respectively. (2) The training

set and testing set cost values using a logistic regression network were 0.377 and 0.376

respectively; The same values of a 2-layer neural network were 0.374 and 0.375 respectively.

Comparing the performances between the 2-layer neural network and a 3-layer neural network,

the latter model produced slightly inferior AUC and cost values across all datasets. However, it

was opined that the degradation in performance metrics from the addition of a hidden layer into

the network were not significant enough for us to conclude that a 3-layer neural network model is

definitely inferior to a 2-layer neural network model.

Importantly, the results suggest that the structural properties of the independent variables of the

dataset might play an important role in determining if AUC and cost performances can improve

using a neural network model. Theoretically, the independent variables in the Bank Churn
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Modelling dataset might hold complex, nonlinear relationships between them - relationships that

a neural network was able to capture while a linear logistic regression model was not able to. This

accounts for the marked improvement in performance when applying a neural network model onto

the Bank Churn Modelling dataset. Conversely, the independent variables in the Framingham

Heart Study dataset and the German Credit Risk dataset might not have the same degree on

nonlinearities among them. This might account for the lack of improvement in performance when

implementing a neural network model onto the said datasets.

5.3 Considerations Beyond AUC and Cost Metrics

In spite of the observed improvements in both AUC and costs metrics, it is premature to

recommend the use of a neural network over a logistic regression model within the finite

experimentation encompassed by this study:

" Deploying a neural network capable of registering a superior improvement requires an

extensive and tedious process of using the correct hyperparameters (learning rates, type of

activation functions, batch size, number of iterations, the number of hidden layers and the

number of nodes in each hidden layer). In comparison, the use of a logistic regression is

significantly simpler.

" As highlighted, the computational time required to train a neural network model is

significantly longer for a neural network model as compared to the training of a logistic

regression model. Depending on the time-sensitivity and nature of the business application

as well as the computational power available, it might or might not be appropriate to

recommend a neural network model over a logistic regression model.

" The interpretability of the model parameters is comparatively more intuitive for a logistic

regression model as compared to a neural network model. The interpretation process for

the latter, in particular, is further convoluted by the sheer number of possible combinations

for the hyperparameters (1) number of hidden layers and (2) number of nodes in each

hidden layers.
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* The degree of improvement that can be yielded through using a neural network model

might depend on the structural properties of the independent variables of the dataset, i.e.,

whether the independent variables between the independent variables exhibit complex,

nonlinear relationships them. The utility of deploying a neural network over a simpler

machine learning technique (i.e., logistic regression model) therefore hinges on the nature

of the dataset being used.
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Chapter 6: Summary, Way Ahead, and Conclusion

6.1 Key Experimental Findings

For most cases, neural networks using the ReLU activation function were able to fit the

observations across all datasets with comparable, if not better, cost results when compared to

neural networks using the Smoothing activation functions. Coupled with the observation that (1)

neural networks using the ReLU activation function take a shorter amount of time to train and (2)

neural networks using a Smoothing activation function could not consistently produce better, if

not comparable, results for most cases, we cannot recommend the Smoothing activation functions

over the ReLU activation function at this juncture.

Nevertheless, in noting that a Smoothing activation function can indeed outperform the ReLU

activation function under certain hyper-parameterization and for certain dataset (i.e., the 3-layer

neural network models with mini-batch learning, on the Framingham Heart Study dataset), further

efforts might be invested into profiling the type of data that would be suitable for neural networks

using a Smoothing activation function.

In the broader scheme of things, it is opined that we remain cautious towards the application of

neural networks for business applications (particularly those encompassed within the scope of this

study). While neural networks have proven to be capable of improving predictive / classification

capabilities, the interpretability, computational efficiency, and hyper-parameterization efficiency

of neural networks remain inferior to simpler Machine Learning techniques such as logistic

regression.

6.2 Areas for Further Study

It is recommended that the following areas receives further investigation.

6.2.1 Activation Function Selection Through Examination of Independent Variables

As highlighted, the Smoothing activation function was observed to outperform the ReLU

activation function for certain datasets, and under certain hyper-parameterization. It is thus

recommended that a further study characterizing the structural properties of the independent
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variables of the datasets be conducted, towards selecting the optimal choice of activation function

(and/or hyper parameters, including the value of g when using a Smoothing activation function).

6.2.2 Averaging Parameters over Iterations for Optimization

The feedforward neural network code used for the study included a module to compute the training

and testing set costs associated with the average of model parameters for the past 100 iterations.

While originally intended to register averaged values off fluctuating cost profiles, the module has

yielded unexpected results - for a very narrow set of hyperparameters, the cost performances

associated with the average of model parameters for the past 100 iterations is more optimal than

the cost performances associated with actual model parameters for each respective iteration.

Table 29 and Table 30 highlights two such instances whereby the cost values associated with the

average of all model parameters for the past 100 iterations performs better than the actual cost

value for each respective iteration.

Table 29: First Example of Averaged Parameters Outperformed Actual Parameters for Iteration.
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Table 30: Second ExamDle of Averaged Parameters OutDerformed Actual Parameters for Iteration.
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It is noteworthy to point out that the phenomenon could only be observed on the Framingham

Heart Study and the Bank Churn Modelling datasets under batch learning conditions, suggesting

that the structural properties of the independent variables of the dataset and the batch size might

play a part in yielding such an observation.

Ultimately however, the underlying explanation for the observation could not be established within

the finite scope of this study. It is recommended that we invest further effort into the investigation

of said observation, towards possibly unveiling a novel approach in optimizing model parameters.
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Appendix A: Code for Feedforward Neural Network

A-1



Master Code for Neural Net (Framingham data Example)

(Setup) Call Libraries for Functions to be Used

In [ ]:

# CaLL on the Library caret for data spLitting functions
library(caret)

# CaLL on the Library ROCR For ROC/AUC anaLysis
library(ROCR)

(1) DATA PREPARATION AND STANDARDIZATION
The Data presentation and Standardization tasks include:

(a) Import Data / Modify Structure of Data.
Beyond importing the data, we examine the dataset for categorical values and convert them in
a binary form (i.e. of 1s and Os). This is the form compatible with neural nets.

(b) Split Data into Train and Test Set.
In this instance, we adopt a 75% / 25% split for the train and test set.

(c) Split Train and _TestData into Input and Label Sub-Sets.
For the Train and Test set, we separate the independent variables from the true labels.

(d) Standardize Data.
We standardize the dataset (i.e for train set, deduct each value in a particular column by the
mean of all values for that column, and dividing the resultant value by the standard deviation
of all values for that column)

In [ ]:

## (1)(a) Import Data / Modify Structure of Data
data = read. csv("framingham. csv")

# Examine data structure
str(data)
head(data)

# What is the naive modeL accuracy?
print(pasteO("Naive Model Accuracy: ", 100*round(l - (sum(data$TenYearCHD)/
nrow(data)), 4), "%"))

localhost:8888/nbconvert/html/Thesis Codes/3rd Run/Master Code for Neural Net (Framingham data Example).ipynb?download=false
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Master Code for Neural Net (Framingham data Example)

In [ ] :

## We note that the independent variabLe "Education" is categoricaL
# We need to convert these into binary dummy variabLes (one for each factor
LeveL) to make it compatibLe with neuraL nets
# To do this, we use the command "modeL.matrix" on the education variabLe
# Note: We convert the dataset object into dataframe to make the dataset ea
sier to manipuLate

educationvariables = as.data.frame(model.matrix(- 0 + education, data = da
ta))
head(educationvariables)

In [ ]:

## We then repLace the education variabLe with the binary dummy variabLes

# Obtain index of coLumns before/after the education coLumn
indexbefore c(1:(which(colnames(data)=="education")-1))
indexafter = c((which(colnames(data)=="education")+1):ncol(data))

# We do a cbind or coLumn bind to get back the originaL dataset in the form
we want
# (i.e. With aLL categoricaL data converted into dummy variabLes)
data = cbind(data[,c(index-before)],educationvariables,data[,c(index_after
)])
head(data)

In [ ]:

# (1)(b) SpLit Data Set in Train and Test Set
set.seed(15071)
split = createDataPartition(data$TenYearCHD, p = 0.75, list = FALSE)

train = data[split,]
test = data[-split,]

head(train,6)
head(test,6)

# Examine dimensions of Train / Test data
cat("Number of Training Examples in Train Set:", dim(train)[1])
cat("\nNumber of Training Examples in Test Set:", dim(test)[1])

localhost:8888/nbconvert/html/Thesis Codes/3rd Run/Master Code for Neural Net (Framingham data Example).ipynb?download=false
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Master Code for Neural Net (Framingham data Example)

In [ ] :

#(1)(c) SpLit Data into Independent VariabLes and LabeLs
# This is because we onLy feed the independent variabLes into the network
# We wiLL isoLate the actuaL LabeL coLumn (CoLumn name of "TenYearCHD") sep
arateLy
# Thereafter, we convert aLL to matrixes with as.matrix

traininput = as.matrix(train[, -which(colnames(train)=="TenYearCHD")])
trainlabels = as.matrix(train[,which(colnames(train)=="TenYearCHD")])

test_input = as.matrix(test[, -which(colnames (test)=="TenYearCHD") ])
testlabels = as.matrix(test[,which(colnames(test)=="TenYearCHD")])

In [ ]:

# 1(d) *Data Standardization
# We convert the training data into a standard normaL distribution using th
e mean and variance

# train mean is the vector of means across the 17 input variabLes
trainmean = colMeans(x = train-input, na.rm = FALSE)
trainmean

# trainvariance is the vector of SAMPLE variance across the 17 input varia
bLes
trainvariance = apply(traininput, 2, var)
trainvariance

# We standardize the input datasets
# We use sweep to broadcast in R
# MARGIN = 2 means we "sweep" across the coLumns (every vaLue is deducted b
y coLumn mean)

# First, we deduct away the mean
traininput = sweep(traininput, MARGIN = 2, train_mean, "-")
test_input = sweep(testinput, MARGIN = 2, train-mean, "-")

# Next, we divide by the sampLe std dev
traininput = sweep(traininput, MARGIN = 2, sqrt(trainvariance), "/")
testinput = sweep(testinput, MARGIN = 2, sqrt(train variance), "/")

head(train_input)
head(testinput)
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Master Code for Neural Net (Framingham data Example)

(2) Feeder Modules
The feeder modules are integrated in (3) to give the complete, integrated feedforward neural

network function,

(a) Initialize Correct Number of Parameters for Model

(i) Extract n x (# of Independent Variables) and ny (# of Output Variables) from Train Data.

(ii) Initialize Parameters._

(b) Create Modules to Perform Forward Propagation

(i) Forward Propagation Part 1: Linear Multiplication Function

(ii) With 2(b)(i), perform Forward Propagation (Linear Multiplication + Activation)

(iii) Implement 2(b)(ii) across all layers

(c) Create Module to Compute Cost

(i) Compute Cost

(d) Create Modules to Perform Backward Propagation

(i) Back Propagation Part 1: Backward Linear Multiplication Function

(ii) With 2(d)(i), perform Backward Propagation (Backward Linear Multiplication + Activation)

across all layers
(iii) Implement 2(d)(ii) across all layers

(e) Create Modules to Update Parameters and Create Batch for Mini-Batch
Training

(i) Update Parameters
(ii) Create Mini-Batch for current iteration

(f) Create Module Predict Labels using the Final, Optimized parameters

(i) Predict Labels
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Master Code for Neural Net (Framingham data Example)

In [ ]:

## (2)(a)(i) Extract n-x (number of independent variabLes) and ny (number
of output variabLes) from train data

# This function measures:
# The dimensions of the training exampLes "n-x" (i.e. number of independent
variabLes)
# The dimensions of the output Layer, "ny" (= 1 for Logistic regression /
cLassification probLem)

FirstLastLayersDimensions = function(X, Y){

n-x = dim(X)[2]
n_y = dim(Y)[2]

firstlastlayersdimensions = list("n-x" = nx, "ny" = ny)

cat("\ndimension of independent variables in X is",nx)
cat("\ndimension of output in Y is", ny)

return(firstlastlayers dimensions)

}
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Master Code for Neural Net (Framingham data Example)

In [ ]:

## (2)(a)(ii) "InitiaLizeParameters" creates matrixes of parameters (WL, b
L) of randomized vaLues for each Layer
# Using the rnorm function, we generate random numbers from the distributio
n N(0,1)

InitializeParameters = function(firstlast_layers dimensions, hiddenlayer
s_dimensions){

# InitiaLize the List of parameters
parameters = list()

# Retrieve nx and ny from firstLastLayers-dimensions
n_x = firstlast_layers dimensions[["nx"]]
n_y = firstlast_layers dimensions[["n_y"]]

# hiddenLayers dimensions is the vector of numbers indicating the numb
er of nodes in each of the Layers

# The seed wiLL be set in the main integrated function

# We first add the number of nodes in the zeroth-Layer and finaL Layer
to the List

layersdimensions = c(nx, hiddenlayers dimensions)
layersdimensions = c(layers_dimensions, ny)

# Length(hidden-Layers-dimensions) is thus the number of Layers (excLud
ing zeroth Layer, but incLuding output Layer)

L = length(layersdimensions)

for (1 in 1:(L-1)){

# Create parameters W for Layer L
assign(pasteO('W', 1), matrix(rnorm(layers-dimensions[l] * layers_d

imensions[l+1], mean=O, sd=1) * 0.01,
nrow = layers dimensions[l],
ncol = layers dimensions[l+1]))

# Create parameters b for Layer L
assign(pasteO('b', 1), matrix(o, nrow = 1, ncol = layersdimensions

[1+1]))

# Paste the created paramters onto the List "parameters"
parameters[[paste0('W', 1)]] = eval(parse(text = pasteo('W', 1)))
parameters[[pastee('b', 1)]] = eval(parse(text = pasteO('b', 1)))

}

return (parameters)

}
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Master Code for Neural Net (Framingham data Example)

In [ ]:

## (2)(b)(i) Forward Propagation part 1 - Linear MuLtipLication Component
# This function performs the Linear muLtipLication portion of a node

ForwardLinearMultiplication = function (Aprev, W, b){

cache=list()

Z = sweep(Aprev %*% W, MARGIN = 2, b, FUN="+")

# We store the foLLowing vaLues in a cache
# (because the backward propagation might require them, or data might b

e used for further anaLyses)
cache[["Z"]] = Z
cache[["Aprev"]] = Aprev
cache[["W"]] = W
cache[["b"]] = b

return (cache)

}
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Master Code for Neural Net (Framingham data Example)

In [ ]:

## (2)(b)(ii) Forward Propagation part 2 - Linear MuLtipLication + Activati
on Component
# This functions does exactLy what a node does
# Note that it caLLs on the previous function "ForwardLinearMuLtipLicatio
n"

ForwardLinearandActivation = function(Aprev, W, b, activation, miu){
if (activation == "sigmoid"){

cache = ForwardLinearMultiplication(Aprev, W, b)
Z = cache[["Z"]]

A = 1/(1 + exp(-Z))

} else if (activation == "relu"){

cache = ForwardLinearMultiplication(Aprev, W, b)
Z = cache[["Z"]]

A = Z * (Z > 0)

} else if (activation == "smoothing"){

cache = ForwardLinearMultiplication(Aprev, W, b)
Z = cache[["Z"]]

A = miu * log(1 + exp(Z/miu))
}

cache[["A"]] = A

return(cache)

}
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Master Code for Neural Net (Framingham data Example)

In [ ]:

# (2)(b)(iii) ImpLement Forward Propagation across aLL Layers

ForwardModel = function(X, parameters, activation, miu){

# L refers to the number of Layers in the modeL (this excLudes the 0-th
Layer)

L = floor(length(parameters)/2)
caches = list()

# InitiaLize X, the originaL train-input as the first A-prev
A_prev = X

# For L-1 times, we use the smoothing/reLu function as activation
for (1 in 1:(L-1)){

# At the beginning of every Loop, the output of a Layer A
# becomes the A prev of the next Layer

cache = ForwardLinearandActivation(Aprev,
parameters[[pasteG("W",l)]],
parameters[[pasteo("b",l)]],
activation,
miu)

A_prev = cache[["A"]]

caches[[pasteO("Layer_",l)]] = cache

}

# For the finaL L-th Layer, we use a sigmoid function
A = A-prev

cache = ForwardLinearandActivation(Aprev,
parameters[[paste0("W", L)]],
parameters[[pastee("b",L)]] ,
"sigmoid",

miu)

caches[[pasteO("Layer_",L)]] = cache

return(caches)

}
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In [ ] :

# (2)(c) Compute Cost

# AL refers to the activation of the finaL Layer
# Y refers to true LabeLs
# We wiLL caLL AL from the "caches" generated off the forward propagation

moduLe 2(b)(iii)
# i.e. caches[["LayerL"]]f["A"]]

Compute_Cost = function(AL, Y){

# m ins the number of training observations
m = dim(AL)[1]

cost = (-1/m) * (sum(Y*log(AL) + (1-Y)*log(1-AL)))

return(cost)

}
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In [ ]:

# (2)(d)(i) Backward Propagation Function Part 1: Linear Portion
# dZ is the cost gradient with respect to the Z (i.e. dJ/dZ, to be obtained
from the next moduLe)
# RecaLL that dJ/dZ = dJ/dA x dA/dZ, whereby dA/dZ wiLL depend on the activ
ation function, since A = g(Z)

# To obtain cache in this moduLe, we caLL upon"caches" generated
# from the ForwardModeL 2(b)(iii) for each Layer

BackwardLinearMultiplication = function(dZ, cache){
Aprev = cache[["Aprev"]
W = cache[["W"]]

# InitiaLize List for output
gradients=list()

# Obtain number of training sampLes
m = dim(Aprev)[1]

# CaLcuLate cost gradients dW, db and dAprev for current Layer

dW = (1/m) * (t(Aprev) %*% dZ)
db = (1/m) * colSums(dZ)
dA-prev = dZ %*% t(W)

gradients[["dW"]] = dW
gradients[["db"]] = db
gradients[["dA-prev"]] = dA-prev

return(gradients)

}
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In [ ]:

# (2)(d)(ii) Backward Propagation Function Part 2: LinearBackward and Acti
vation Backward Portion
# cache refers to the output of our forwardactivation function 2(b)
# we obtain cache by caLLing "caches" (to be covered in our main integrated
function

BackwardLinearandActivation = function(Y, dA, cache, activation, miu){

# Note dJ/dZ = dJ/dA * dA/dZ
# dA/dZ wiLL depend on what function you use

if (activation == "relu"){
Z = cache[["Z"]]
dZ = dA * (1 * (Z > 0))
gradients = BackwardLinear_Multiplication(dZ, cache)

} else if (activation == "sigmoid"){
A = cache[["A"]]
dZ = A - Y
gradients = BackwardLinearMultiplication(dZ, cache)

} else if (activation == "smoothing"){
Z = cache[["Z"]]
dZ = dA * 1 / (1 + exp(-Z/miu))
gradients = BackwardLinearMultiplication(dZ, cache)

}

return (gradients)

}
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In [ ]:

# (2)(d)(iii) ImpLement Backward Propagation Function 2(d)(ii) across aLL L
ayers

BackwardModel = function(AL, Y, caches, activation, miu){

# CaLcuLate number of Layers L (this excLudes the zero-th Layer)
L = length(caches)

# InitiaLize List of gradients for output
gradients-library = list()

# Initiate backward propagation for the L-th Layer (i.e. output Layer)
# The initiaL dA can be set to zero here: Since the L-th Layer uses the

sigmoid function,
# we wiLL compute dZ using dZ = A - Y directLy

cache = caches[[paste0("Layer_",L)]]
gradients = BackwardLinearandActivation(Y, dA = 0, cache, activation

= "sigmoid", miu)

# Store the gradients into gradientsLibrary
gradients library[[paste0("Layer_",L)]] = gradients
#gradientsLibrary[[LayerL]]

# Backpropagate for remaining Layers
for (1 in rev(1:(L-1))){

# Update the cache to be used
cache = caches[[pasteO("Layer_",l)]]

# RecaLL that the singLe BackwardLinearMuLtipLication step spews
out your dA-prev

# We pump this dA into the next cycLe of backward propagation
dA = gradients[["dA-prev"]]
gradients = BackwardLinearandActivation(Y, dA, cache, activation

miu)

# Store gradients into gradientsLibrary
gradientslibrary[[pasteo("Layer_",l)]] = gradients

}

return(gradientslibrary)

}

localhost:8888/nbconvert/html/Thesis Codes/3rd Run/Master Code for Neural Net (Framingham data Example).ipynb?download=false

4/18/2019

13/26



Master Code for Neural Net (Framingham data Example)

In [ ]:

# (2)(e)(i) Update Parameters

UpdateParameters = function(parameters, gradients-library, learningrate,
i, weightedcounts, method){

# str(gradientsLibrary)
L = floor(length(parameters)/2)

#str(gradientsLibrary)

for (1 in (1:L)){
# Retrieve gradients from gradientsLibrary
gradients = gradients library[[pasteo("Layer_",l)]]

dW = gradients[["dW"]]
#cat("\nDim dW:",dim(dW))
db = gradients[["db"]]
#cat("\ndb: ", db)

# Update Parameters
parameters[[pasteo("W",l)]] = parameters[[pastee("W",l)]] - learnin

g_rate * dW
parameters[[pasteo("b",l)]] = parameters[[pasteO("b",l)]] - learnin

g_rate * db

}

return(parameters)

}
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In [ ] :

# (2)(e)(ii) Minibatch Creator

CreateBatches = function (X, Y, batchsize){
# X is the originaL training exampLes
# batch_size refers to the number of training exampLes in each batch

# m is the totaL number of training exampLes
m = dim(X) [1]

# We first shuffLe the training exampLes in X randomLy
# drop=FALSE prevents R from converting shuffLedY, a matrix into a Low

er dimensionaL object
permutation = sample(m)
shuffled_X = X[c(permutation),,drop=FALSE]
shuffledY = Y[c(permutation),,drop=FALSE]

# We hardcode the number of batches to be just 1
# i.e. AppLying mini-batch training with repLacement
# ALternativeLy, we can set number-of batches to be fLoor(nrow(X)/batch

_size)
# (on top of the necesssary adjustment to correctLy capture the "spiLLo

ver" batch)
numberofbatches = 1

minibatchX = shuffledX[l : batchsize,,drop=FALSE]
minibatchY = shuffledY[l : batchsize,,drop=FALSE]

# After creating the mini batches, we a new List "mini-batches" to stor
e both Xminibatches and Yminibatches

minibatches = list("numberofbatches" = numberofbatches,
"minibatchX" = minibatch_X,
"minibatchY" = minibatchY)

return (minibatches)

I
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In [ ] :

# (2)(f)(i) Function to predict LabeLs using the trained parameters
# We use back the forward propagation function 2(b) heLp us generate A_L

PredictLabel = function(parameters, X, ny, activation, L, threshold = 0.5
miu){

Output = ForwardModel(X, parameters, activation, miu)
A = Output[[pasteO("Layer_",L)]][["A"]]

Y_prediction = matrix(0, nrow = dim(X)[1], ncol = ny)

# predictions is a string of TRUE/FALSE
for (i in 1:dim(X)[1]){

if (A[i,1] > threshold){
Y_prediction[i,1] = 1

}
}

prediction-data = list("Yprediction" = Y-prediction, "A" = A)

return(prediction-data)

}

(3) Create Integrated Function to Create
Feedforward NN Model
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In [ ]:

DeepNeuralNet = function (Xtrain, Ytrain, Xtest, Ytest, hidden_layers

_dimensions, learningrate,
numiterations, batchsize, activation, miu){

# Set seed to repLicate resuLts
set.seed(1)

# HeLper 2(a): Find n_x, ny (dimensions for input/output data) and Ini
tiaLize parameters

firstlastlayers dimensions = FirstLastLayersDimensions(Xtrain, Y_
train)

parameters = InitializeParameters(first lastlayersdimensions, hidden

_layersdimensions)

# We aLso initiaLize a set of parameters for our averageP caLcuLations
# Note these are just "pLacehoLders" to make sure the dimensions of the

parameters are correct
# The initiaL vaLues are inconsequentiaL since their weight (towards ca

LcuLating average P)
# wiLL zero for the first Loop
parameters average = InitializeParameters(first lastlayersdimensions

hiddenlayersdimensions)

# InitiaLize Cost vectors for train and test set
Coststrain = c()
Coststest = c()

# InitiaLize "BEST" Cost vectors for train and test set
BestCoststrain = c()
BestCoststest = c()

# InitiaLize "Average Parameters" Cost vectors for train and test set
AverageP_Coststrain = c()
AverageP_Coststest = c()

# InitiaLize "Weighted Parameters" Cost vectors for train and test set
# Here we used the average of the parametrs for the Last 150 iterations

as an exampLe
P_150_Coststrain = c()
P_150_Coststest = c()

# InitiaLize List for parameters storage
parametersstore = list()

# Note we store number of Layers in a variabLe L first
L = floor(length(parameters)/2)

# Set up Loop for each iterations
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for (i in 1:numiterations){

# HeLper 2(e)(ii): Create mini-batches for each Loop
BatchesStore = CreateBatches(Xtrain, Ytrain, batch-size)

# Retrieve number of batches created
# Note that for mini-batch training with repLacement, we hard-fix t

he number of batches to be 1
numberofbatches = BatchesStore$numberofbatches
# retrieve the store of Xminibatches and Yminibatches
X_minibatch = BatchesStore$minibatch_X
Y mini batch = BatchesStore$mini batchY

# HeLper 2(k): Create mini-batches for each Loop
BatchesStore = CreateBatches(Xtrain, Ytrain, batch-size)

# Retrieve number of batches created
numberofbatches = BatchesStore$numberofbatches
# retrieve the store of Xminibatches and Yminibatches
X_minibatch = BatchesStore$minibatch_X
Y_minibatch = BatchesStore$minibatch_Y

# HeLper 2(e): Perform Forward Propagation
caches = ForwardModel(Xmini batch, parameters, activation, miu)

# HeLper 2(i): Perform Backward Propagation
# We use the AL from the cache to initiate the backward propagatio

n
gradientslibrary = BackwardModel(A_L, Ymini batch, caches, activ

ation, miu)

# HeLper 2(j): Update Parameters
# If using a variabLe Learning rate, we can additionaLLy insert a L

ine to modify the Learning rate
# For instance, when using a variabLe Learning rate for minibatch L

earning,
# We can set "Learningrate" = Learning rate / sqrt(i+1) <<As per t

he expression>>
parameters = Update Parameters(parameters, gradientslibrary, learn

ingrate, i, weighted-counts, method)
parameters_store[[pastee("Iter:",i)]] = parameters

### HeLper 2(h): Compute Cost

## (I) For ReguLar Gradient Descent
# Compute Cost for train set
TrainRun = ForwardModel(Xtrain, parameters, activation, miu)
A_L_train = TrainRun[[pasteO("Layer_",L)]][["A"]]

Cost-train = ComputeCost(AL train, Ytrain)
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Coststrain = c(Costs train, Cost_train)

# Compute Cost for test set
TestRun = ForwardModel(Xtest, parameters, activation, miu)
A_L_test = TestRun[[pasteO("Layer_",L)]][["A"]]

Costtest = ComputeCost(AL test, Ytest)
Coststest = c(Coststest, Cost-test)

## (II) Keep Track of "BEST" Cost for Train Set, and caLcuLate corr
esponding test cost

BestCoststrain = c(Best_Costs-train, min(Costtrain, BestCosts_t
rain[length(Best_Costs train)]))

# BE CAREFUL - we don't simpLy take the minimum of Costtest and Be
stCoststest[Length(BestCosts-test)] here

# We are finding out the test cost for the parameters that give the
Lowest cost for the train set thus far

if (Best_Costs train[length(Best_Costs train)] != Cost train){
# If Costtrain did not perform better, we maintain the Last Be

stCoststest vaLue
BestCosts test = c(BestCoststest, BestCosts_test[length(Bes

t_Costs test)])

} else {
# If Cost train performs better, we add corresponding testcost

vaLue to List BestCoststest
BestCoststest = c(BestCoststest, Cost-test)

}

## (III) Compute Cost for Average of parameters for aLL past iterat
ions

# CaLcuLate the Average of Parameters for aLL past iterations
for (1 in 1:L){

parameters average[[paste0("W",l)]] = ((i-1)/i) * parametersav
erage[[pasteO("W",l)]] + (1/i) * parameters[[pastee("W",l)]]

parameters average[[pasteO("b",l)]] = ((i-1)/i) * parametersav
erage[[paste0("b",l)]] + (1/i) * parameters[[pastee("b",l)]]

}

# Compute Cost for train set
Average_P_TrainRun = ForwardModel(Xtrain, parametersaverage, ac

tivation, miu)
Average_PAL_train = AverageP_TrainRun[[pasteO("Layer_",L)]][[

"A"]]

Average_P_Costtrain = ComputeCost(Average_PA_L_train, Y-train)
Average_P_Costsjtrain = c(AveragePCoststrain, Average_PCosttra

localhost:8888/nbconvert/html/Thesis Codes/3rd Run/Master Code for Neural Net (Framingham data Example).ipynb?download=false

4/18/2019

19/26



Master Code for Neural Net (Framingham data Example)

in)

# Compute Cost for test set
Average_P_TestRun = ForwardModel(Xtest, parametersaverage, acti

vation, miu)
Average_PAL_test = AverageP_TestRun[[paste0("Layer_",L)]][["A"

Average_P_Costtest = Compute_Cost(Average_P_AL_test, Ytest)
Average_P_Coststest = c(Average_PCosts test, Average_PCosttest)

## (IV) Compute Cost for Average of parameters for past 150 iterati
ons

# For the first 150 iterations, the parameters are no different fro
m (C)

if (i <= 150){
parameters_P_150 = parametersaverage

} else {

# ... From 151th Loop onwards, we take away 1/150 of the (i-150)
-th iteration and add back

for (1 in 1:L){

parametersremove = parameters store[[paste0("Iter:", (i-150

))] ]

parametersP_150[[paste0("W",l)]] = (parametersP_150[[past
e0("W,1l)]] -

(1/150) * parameters_r
emove[[pastee("W",1)]] +

(1/150) * parameters[
[paste0("W",1)]])

parametersP_150[[pasteo("b",l)]] = (parametersP_150[[past
e0("b",l)]] -

(1/150) * parameters_r
emove[[paste0("b",l)]] +

(1/150) * parameters[
[paste0("b",l)]])

}
}

# Compute Cost for train set
P_150_TrainRun = ForwardModel(Xtrain, parameters_P_150, activati

on, miu)
P_150_A_L_train = P_150_TrainRun[[paste ("Layer_",L)]][["A"]]
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P_150_Costtrain = ComputeCost(P_150_A_L_train, Y-train)
P_150_Coststrain = c(P_150_Coststrain, P_150_Costtrain)

# Compute Cost for test set
P_150_TestRun = ForwardModel(Xtest, parameters_P_150, activation

, miu)
P_150_A_L_test = P_150_Test_Run[[pasteO("Layer_",L)]][["A"]]

P_150_Costtest = ComputeCost(P_150_AL_test, Ytest)
P_150_Coststest = c(P_150_Coststest, P_150_Cost_test)

}

# CompiLe Output: We capture needed for ROC/AUC and Cost AnaLyses
output=list()

# HeLper 2(f)(i): With the optimized parameters, predict both the train
and test set with threshoLd 0.5

#(i) For train data
predictiondatatrain = Predict_Label(parameters,

X_train,
firstlast_layers dimensions[["n_

Y"]],
activation,
L, threshold = 0.5,
miu)

Ypredictiontrain = prediction datatrain[["Yprediction"]]

#(ii) For test data
predictiondatatest = Predict_Label(parameters,

X_test,
firstlast_layers dimensions[["n_

Y" ]]
activation,
L, threshold = 0.5,
miu)

Y_predictiontest = predictiondata test[["Yprediction"]]

# Print a simpLe train/test error
cat("\nTrain accuracy: ", (1-((sum(abs(Ypredictiontrain - Y-train)))/

length(Yprediction_train)))*100,"%")
cat("\nTest accuracy: ", (1-((sum(abs(Ypredictiontest - Y-test)))/len

gth(Ypredictiontest)))*100,"%")

# Store output in a List - might be usefuL for further anaLysis

output=list("Costs-train" = Costs-train,
"Coststest" = Costs_test,
"BestCosts train" = BestCosts train,
"BestCoststest" = BestCoststest,
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"Average_PCoststrain" = Average_ PCosts_train,
"Average_PCoststest" = AveragePCosts-test,
"P_150_Coststrain" = P_150_Coststrain,
"P_150_Coststest" = P_150_Costs test,
"A-train" = predictiondatatrain[["A"]],

"Atest" = predictiondatatest[["A"]],
"parameters" = parameters,

"parametersstore" = parameters-store)

return(output)

}

(4) Run Model!

In [ ]:

## Depending on the type of modeL (batch, or mini-batch) and

## type of Learning rate (fixed or variabLe, and with what Learning factor)

## We compute our Learning rate differentLy
## Here, we cited the exampLe of caLcuLating fixed Learning rate for batch

Learning

# (A) CaLcuLate fixed Learning rate for Batch Learning

# Create train-augment (add coLumn of 1-s beside originaL training set matr

ix)
trainaugment = as.data.frame(traininput)
trainaugment$intersect = rep(1, nrow(traininput))

trainaugment = trainaugment[,c(19,1:18)]

# Obtain max singuLar vaLue

maxd = max((svd(trainaugment))$d)

# Determine Learning rate

alphabatch_Al = (4 * nrow(traininput)) / maxd**2

cat("\nLearning Rate for Batch Learning:", alphabatchAl)
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In [ ] :

# Set Hidden Layer Dimensions - Here we set a singLe hidden Layer with 13 h
idden nodes
hiddenlayers dimensions = c(13)

# Run ModeL
starttime = Sys.time()

Results_Al = DeepNeuralNet(train_input, trainlabels, testinput, testla
bels, hidden_layers dimensions,

learning-rate = alpha_batchAl, numiterations =
10000,

batchsize = 16, activation = "smoothing", miu =

3)

endtime = Sys.time()
TimeTaken = difftime(endtime, start-time, units ="mins")

cat("\nTimeTaken: ", Time_Taken, "min", "\n")
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In [ ] :

## (OptionaL) PLot ROC curve for Train and Test Data Set
# To pLot the ROC for the modeL, we use the prediction function under the R
OCR Library

# (1) Train Data (Note that we don't use A_L_train directLy because the ord
er is jumbLed up)
A_train = ResultsA1[["Atrain"]]

# Now for the prediction function
predtrain = prediction(A_train, trainlabels)

roc.perftrain = performance(predtrain, measure = "tpr", x.measure = "fpr"

)
plot(roc.perf train)
abline(a=G, b= 1)

# We dispLay the AUC VaLue
auc.perftrain = performance(pred_train, measure = "auc")
cat("\nTrain AUC: ", auc. perf-train@y. values[ [1]])

# (2) Test Data
A_test = ResultsA1[["Atest"]]

# Now for the prediction function
predtest = prediction(Atest, test-labels)

roc.perftest = performance(pred_test, measure = "tpr", x.measure = "fpr")
plot(roc.perf test)
abline(a=O, b= 1)

# We dispLay the AUC VaLue
auc.perftest = performance(pred_test, measure = "auc")
cat("\nTest AUC: ", auc.perftest@y.values[[1]])
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In [ ]:

# PLot Loss over iterations
Coststrain = Results A1[["Coststrain"]]
Coststest = Results_A1[["Coststest"]]
BestCoststrain = Results_A1[["Best Coststrain"]]
BestCoststest = ResultsAl[["BestCoststest"]]
Average_PCoststrain = Results A1[["AverageP_Coststrain"]]
Average_PCoststest = ResultsA1[["AverageP_Costs_test"]]
P_150_Costs_train = Results_A1[["P_150_Coststrain"]]
P_150_Coststest = Results_A1[["P_150_Coststest"]]

# PLot Costs for Train Set
plot(Costs_train, type="1", lty=1, lwd=1, main = "Cost over Iterations",

xlab = "Iteration", ylab = "Cost", col = "cyan")
lines(Best Coststrain, col="black", type="l", lty=1, lwd=1)
lines(Average_PCosts train, col="red", type="l", lty=1, lwd=1)

lines(P_150_Costs_train, col="brown", type="l", lty=1, lwd=1)

legend("topright",
legend = c("Train Cost", "Best Train Cost", "Average P", "P_150"),
col = c("cyan", "black", "red", "brown"),
lty = c(1,1,1,1), cex=0.7)

# PLot Costs for Test Set
plot(Costs_test, type="l", lty=1, lwd=1, main = "Cost over Iterations",

xlab = "Iteration", ylab = "Cost", col = "cyan")
lines(Best Coststest, col="black", type="l", lty=1, lwd=1)

lines(Average_PCoststest, col="red", type="l", lty=1, lwd=1)
lines(P_150_Coststest, col="brown", type="l", lty=1, lwd=1)

legend("topright",
legend = c("Test Cost for Corr. Train", "Test Cost for Best Corr. Tr

ain", "Average P","P_150"),
col = c("cyan", "black", "red", "brown"),
lty = c(1,1,1,1), cex=0.7)
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In [ ] :

# (OptionaL) Investigate Minimum Cost for Test and Train Set

cat("\nMinimum Train Cost: ",min(Costs train), "@", which(Coststrain == mi
n(Coststrain)), "iteration.")
cat("\n The Corresponding Test Cost is ", Costs test[which(Coststrain == m
in(Coststrain))])
cat("\n")

cat("\nMinimum Test Cost: ",min(Costs test), "@", which(Costs test == min(C
oststest)), "iteration.")
cat("\n The Corresponding Train Cost is ", Coststrain[which(Coststest ==

min(Coststest))])
cat("\n")
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Master Code Logistics Regression

(Setup) Call Libraries for Functions to be Used

In [ ]:

# CaLL on caret for data spLitting and ggpLot2 functions
library(caret)

# CaLL on ROCR for ROC/AUC anaLysis
library(ROCR)

(1) DATA PREPARATION
(a) Import Data / Modify Structure of Data.
This includes converting categorical data into binary (1s and Os) form.
(b) Split Data into Train and Test Set.
(c) Split Data into Input and Label Sets.
(d) Standardize Data.

In [ ]:

# (1)(a) Import Data / Modify Structure of Data
data = read.csv("framingham.csv")

str(data)
head(data)

# What is the naive modeL accuracy?
cat("Naive Model Accuracy is", 1 - sum(data$TenYearCHD)/nrow(data))

In [ ]:

# We note that the independent variabLe "Education" is categoricaL

# We need to convert these into binary dummy variabLes (one for each factor

LeveL) to make it compatibLe with neuraL nets
# To do this, we use the command "modeL.matrix" on the education variabLe

# Note: We convert the into dataframe makes it easier to manipuLate

educationvariables = as.data.frame(model.matrix(- 0 + education, data = da

ta))
head(education variables)
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In [ ] :

# We then repLace the education variabLe with the binary dummy variabLes cr
eated
# Obtain index of coLumns before/after the education coLumn
indexbefore = c(1:(which(colnames(data)=="education")-1))
indexafter = c((which(colnames(data)=="education")+l):ncol(data))

# We do a cbind or coLumn bind to get the data in the form we want
data = cbind(data[,c(index_before)],educationvariables,data[,c(indexafter

In [ ]:

# (1)(b) SpLit Data Set in Train and Test Set
set.seed(15071)
split = createDataPartition(data$TenYearCHD, p = 0.75, list = FALSE)

train = data[split,]
test = data[-split,]

head(train,6)
head(test,6)

# Examine dimensions of Train / Test data
cat("Number of Training Examples in Train Set:", dim(train)[1])
cat("\nNumber of Training Examples in Test Set:", dim(test)[1])

In [ ]:

#(1)(c) SpLit Data into Input VariabLes and LabeLs
# RecaLL that we wiLL onLy feed input variabLes into the network
# We wiLL isoLate the actuaL LabeL "TenYearCHD" separateLy
# Convert aLL to matrixes with as.matrix

traininput = as.matrix(train[,-which(colnames(train)=="TenYearCHD")])
trainlabels = as.matrix(train[,which(colnames(train)=="TenYearCHD")])

testinput = as.matrix(test[,-which(colnames(test)=="TenYearCHD")])
testlabels = as.matrix(test[,which(colnames(test)=="TenYearCHD")])

cat("Dimensions of train input: ", as.character(dim(traininput)), "\n")

cat("Dimensions of trainlabels: ", as.character(dim(trainlabels)), "\n")

cat("Dimensions of testinput: ", as.character(dim(testinput)), "\n")
cat("Dimensions of test_input: ", as.character(dim(test_labels)), "\n")
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In [ ] :

# 1(d) Data Standardization
# We convert the training data into a standard normaL distribution using th
e training mean and variance

# train mean is the vector of means across the 17 input variabLes
trainmean = colMeans(x = train-input, na.rm = FALSE)

trainmean

# trainvariance is the vector of SAMPLE variance across the 17 input varia

bLes
trainvariance = apply(traininput, 2, var)
trainvariance

# We standardize the input datasets
# We use sweep to broadcast in R
# Sweep = 2 means we sweep by coLumns(everyvaLue is deducted by coLumn mea
n)

# First, we deduct away the mean
traininput = sweep(traininput, MARGIN = 2, train_mean, "-")

traininput

testinput = sweep(testinput, MARGIN = 2, trainmean, "-")

# Next, we divide by the sampLe std dev
traininput = sweep(traininput, MARGIN = 2, sqrt(trainvariance), "/")
testinput = sweep(testinput, MARGIN = 2, sqrt(train variance), "/")

(2) HELPER FUNCTIONS
- (a) Initialize Parameters w
- (b) Calculate Sigmoid
* (c) Calculate ypred
- (d) Run Single Iteration of Forward & Backward Propagation
* (e) Iterate through (2)(d) and extract cost value over iterations
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In [ ] :

# (2)(a) "InitiaLizeParameters" creates a vector (or matrix with 1 coLumn)
of n zeros
# where n is eventuaLLy the number of input variabLes in our training examp
Le
# we use "b" for w_0, the bias term here

InitializeParameters = function (no of input_variables){
set. seed(1)
w = matrix(O, nrow = no_ofinput variables, ncol = 1)
b =0

parameters = list("w" = w, "b" = b)

return (parameters)

}

In [ ]:

# (2)(b) "Sigmoid" appLies the sigmoid function onto an given input

Sigmoid = function(z){
return (1 / (1 + exp(-z)))

}
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In [ ]:

# (2)(c) "Predict" caLcuLates the predicted LabeL (0 or 1) from the finaLiz
ed parameters after training
# The initiaL threshoLd is set to 0.5

PredictLabel = function (w, b, X, threshold = 0.5){
# Note: This creates a matrix that stores the predicted LabeL (e or 1)

in a singLe coLumn
# Note: The size of the coLumn, dim(X)[1] is the number of training exa

mpLes, or rows in X
Y_prediction = matrix(0, nrow = dim(X)[1],ncol = 1)

# Compute the vector A that stores the output from the sigmoid function
A = Sigmoid(X %*% w + b)

# We run a for Loop to compare with the threshoLd
for (i in 1:dim(X)[1]){

if (A[i,1] > threshold){
Y_prediction[i,1] = 1

}
}

return (Yprediction)

}
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In [ ]:

# 2(d) Propagate runs a singLe iteration of the forward and backward propag
ation across m training exampLes

Propagate = function(w, b, X, Y){

# We store the number of training exampLes in variabLe m
m = dim(X)[1]

# Forward Propagation - We caLcuLate A and cost across the m training e
xampLes

# "*" gives eLement wise muLtipLication
A = Sigmoid(X %*% w + b)
cost = -1/m * (sum(Y*log(A) + (1-Y)*log(1-A)))

# Backward Propagation
# For simpLicity, we designate dJ/dw as dw, dJ/db as db
dw = 1/m * (t(X) %*% (A-Y))

db = 1/m * (sum(A-Y))

gradientsandcost = list("cost" = cost, "dw" = dw, "db" = db)

return (gradientsandcost)

}
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In [ ] :

# 2(e) Iterations the propagate function for numiterations times
# We aLso keep track of costs to study how the process of optimizing the pa
rameters

gradientdescent = function (w, b, X, Y, num iterations, learningrate, pri
ntcost = TRUE){

# InitiaLize List that wiLL store cost vaLues
costs = c()

for (i in 1:num iterations){
# Perform 1 iteration and retrieve cost gradients
gradientsandcost = Propagate(w, b, X, Y)
dw = gradientsandcost[["dw"]]
db = gradientsandcost[["db"]]
lastcost = gradientsandcost[["cost"]]

# Update parameters for iteration
w = w - learningrate * dw
b = b - learningrate * db

# Record the costs every 100 iterations
if (i %% 10 == 0){

costs = c(costs, last_cost)

}

# If print cost is True then we print the cost every 10 iterations
if (i %% 10 == 0 & print_cost == TRUE){

print(paste0("Cost after ", i, " iterations: ", lastcost))

}
}

parametersandcosts = list("w" = w, "b" = b, "costs" = costs)

return (parametersandcosts)

}

(3) Perform Logistic Regression Model with Integrated
Function
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In [ ]:

logregmodel = function(Xtrain, Y train, Xtest, Ytest, numiterations =
2000, learningrate = 0.5, printcost = False){

# InitiaLize parameters w and b with heLper function 2(a)
parameters = InitializeParameters(dim(Xtrain)[2])
w = parameters[["w"]]
b = parameters[["b"]]

# Perform gradient descent over numiterations using heLper function 2
(e)

parametersandcosts = gradientdescent(w, b, Xtrain, Ytrain, num_ite
rations, learning rate, printcost = TRUE)

w_final = parametersandcosts[["w"]]
b_final = parametersand_costs[["b"]]
costs = parametersandcosts["costs"]

# With the optimized parameters, we use heLper function 2(c) to predict
both the train and test set with threshoLd 0.5

Ypredictiontrain = PredictLabel(wfinal, bfinal, X-train, threshold
= 0.5)

Y_predictiontest = PredictLabel(wfinal, bfinal, Xtest, threshold =
0.5)

# Print a simpLe train/test error
cat("Train accuracy: ", (1-((sum(abs(Ypredictiontrain - Y-train)))/le

ngth(Ypredictiontrain)))*100,"%")
cat("\nTest accuracy: ", (1-((sum(abs(Ypredictiontest - Y-test)))/len

gth(Ypredictiontest)))*100,"%")

# Store output in
modeloutput=list(

a List - might be usefuL for further anaLysis
"costs" = costs,
"Ypredictiontrain" = Y-predictiontrain,
"Ypredictiontest" = Yprediction test,
"w-final" = w-final,
"bfinal" = b-final,
"learningrate" = learningrate,
"num iterations" = num iterations)

return (model_output)

}

Run Model and See Results!
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In [ ] :

# CaLcuLate fixed Learning rate for

# Create train-augment (add coLumn of 1-s beside originaL training set matr
ix)
trainaugment = as.data.frame(traininput)
trainaugment$intersect = rep(1, nrow(traininput))
trainaugment = trainaugment[,c(19,1:18)]

# obtain max singuLar vaLue
maxd = max((svd(trainaugment))$d)

# determine Learning rate (We use a Learning factor of 1 here)
alpha = (4 * nrow(train input)) / maxd**2

In [ ]:

# This considers the resuLt for the defauLt case, whereby we use a threshoL
d of 0.5
answer = logregmodel(traininput, trainlabels, testinput, testlabels,
numiterations = 100, learningrate = alpha, print-cost = False)
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In [ ] :

# To pLot the ROC for the modeL, we use the prediction function under the R
OCR Library
# EssentiaLLy, we Leave behind the Last step of the predict function, such
that we onLy caLcuLate A

# The A is a vaLue between 0 to 1 suggesting the "propensity of contracting
CHD within 10 years"
# A wiLL be fed into the first argument of the "prediction function"
# The second argument to be fed is the actuaL prediction testLabeLs

w_final = answer[["w final"]]
b final = answer[["b final"]]

A_test = (testinput %*% wfinal) + bfinal

# Now for the prediction function

pred = prediction(Atest, testlabels)

roc.perf = performance(pred, measure = "tpr", x.measure = "fpr")
plot(roc.perf)
abline(a=0, b= 1)

# This quantifies AUC vaLue = -0.714 (same vaLue as using a gLm() function
in R)
# Note that this is consistent with the assignment on Logistics regression
back in 15.071 (0.71459)
auc.perf = performance(pred, measure = "auc")
cat("AUC Value:", as. character (auc. perf@y. values))

In [ ]:

# PLot Loss over iterations
costs = answer$costs
plot(costs$costs, type = "1", main = "Cost over Iterations", xlab = "Iterat
ion x 10", ylab = "Cost")
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