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Abstract
When a person views a data visualization (graph, chart, infographic, etc.), they read the text
and process the images to quickly understand the communicated message. This research
works toward emulating this ability in computers. In pursuing this goal, we have explored
three primary research objectives: 1) extracting and ranking the most relevant keywords
in a data visualization 2) predicting a sensible topic and multiple subtopics for a data vi-
sualization, and 3) extracting relevant pictographs from a data visualization. For the first
task, we create an automatic text extraction and ranking system which we evaluate on 202
MASSVIS data visualizations. For the last two objectives, we curate a more diverse and
complex dataset, Visually. We devise a computational approach that automatically outputs
textual and visual elements predicted representative of the data visualization content. Con-
cretely, from the curated Visually dataset of 29K large infographic images sampled across
26 categories and 391 tags, we present an automated two step approach: first, we use ex-
tracted text to predict the text tags indicative of the infographic content, and second, we
use these predicted text tags to localize the most diagnostic visual elements (what we have
called “visual tags"). We report performances on a categorization and multi-label tag pre-
diction problem and compare the results to human annotations. Our results show promise
for automated human-like understanding of data visualizations.
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Chapter 1

Introduction

Whether it is in school, business meetings, or the media, humans are often presented with

graphs, charts, infographics, and other data visualizations. To a computer, these visual-

izations are simply grids of pixel values. To a person, the same visualizations are media

intended to communicate a message. The computer vision research community has created

systems able to understand and caption images of natural scenes, like a photo of a boy play-

ing tennis [13]. However, to our knowledge, there has been little work focused on creating

this understanding in the context of data visualizations.

When a person views a data visualization like the ones shown in Figure 1-1, they read

the text and process the images to quickly understand the overarching story. This research

works toward emulating this ability in computers.

In pursuing this goal, we have explored three primary research objectives: 1) extracting

and ranking the most relevant words in a data visualization 2) assigning a sensible topic

and multiple subtopic tags to a data visualization, and 3) extracting relevant pictographs

from a data visualization.

1.1 Overview

To gain context from a data visualization, a human will often rely on the image’s words.

Noting this tendency, we first focus on extracting and identifying the keywords in these

images. Our ranked text extraction system can be seen in Figure 1-2.
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Figure 1-1: Examples of data visualizations. The middle and right images are special
types of data visualizations called infographics (data visualizations that contain pictorial
elements). Sources: MASSVIS [6] and Visually Datasets.

Figure 1-2: An overview of our system which ranks by importance the text in any visual-
ization. The text is spotted and extracted, then ranked by an importance map.

After extracting and ranking the text embedded in a data visualization, we explore ways

to assign relevant text topics and tags not necessarily found inside the image. More specif-

ically, we build a data-driven system that can predict one of 26 categories (topic) and a few

of 391 tags (subtopics) given an infographic. We explore predictions that leverage both

extracted text and visual features.

After developing the category/tag prediction system, we find that text extracted from

within the infographic is a better topic predictor. We explore whether this extracted text

can guide our visual system. We introduce the problem of visual tag discovery: extracting

iconic images that represent key topics of an infographic. An example of our system that

can assign tags and extract visual tags can be seen in Figure 1-3.

The systems developed through this research work toward general visualization under-

standing, but the work also provides some immediate application areas. For example, rank-

ing extracted text or assigning relevant topics can be leveraged for smarter visualization

tagging to be used in online search. Additionally, our visual tags can provide nice picture

summaries for concise communication and sharing on social media. Although these imme-
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diate application areas exist, we are more motivated by advancing the space of visualization

understanding.

Figure 1-3: An overview of our system for predicting text and visual tags. The text in an
infographic predicts the tags, the visual model fires on the patches that most activate for
this tag, and a segmentation pipeline is run to extract the representative visual elements
from the highly activating regions of the infographic. The result is automatically generated
by our model.
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Chapter 2

Background

In this chapter, we first explain this research’s domain (data visualizations) and primary

tool (neural networks). Because our system heavily relies on data-driven neural networks,

it is also important to understand the datasets we use. Last, we survey related work.

2.1 What are data visualizations?

Data visualizations are visual representations of data (numerical and otherwise) created

to help communicate a message. This definition seems very inclusive because the concept

itself is inclusive! Some examples of data visualizations can be seen in Figure 1-1. Note

the wide variety of styles, designs, and information that can be used: data visualizations

can range from simple pie charts to complicated storyboards. A subset of data visualiza-

tions that we focus on in this research are infographics. Infographics are a type of data

visualization that rely on both visual and textual elements to communicate a message.

With growing amounts of data, navigating and visualizing large datasets to highlight

meaningful trends has become of great interest. For our purposes, we are interested in the

fact that these messages are often complex and require higher-level cognition to process.
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2.2 Neural networks

Neural networks are computational models that can approximate complex, non-linear func-

tions. They are often used in machine learning to create a system that can approximate how

inputs map to outputs for a given task. For example, in computer vision, neural networks

might be used to approximate how the input pixels of an image map to a label for that

image, like a scene category or topic. In between the input and output layers, there are

often many hidden layers. Each of these layers are composed of many “neurons," which

have their own activation functions to process inputs and produce outputs. In feedforward

networks, the outputs from each of these nodes in a given layer will feed into the inputs of

the subsequent layers after being multiplied by tunable weights.

This powerful representation allows neural networks to approximate very complex

functions. In practice, these neural networks will have many layers, making them deep

neural networks. The model’s weights can be trained on a large set of input-output pairs to

then predict outputs on new inputs. In the case of this research, we often have many data

visualizations with a topic label (e.g. sports), and if we later see similar data visualizations

for which we do not have a label, we hope that the network will be able to identify that the

new input is about sports. Neural networks with a convolutional layer are particularly suited

for working with images, due to having fewer parameters to train. Their recent success is

also attributed to larger curated datasets to learn from and better hardware to train on. As a

result, they have gained popularity in the computer vision community, and have shown top

performances on scene recognition, object detection, and other image understanding tasks

[27].

Recently, a particular kind of convolutional neural network, residual networks (ResNet),

have proven to be one of the most successful architectures for image classification [11].

These networks include “shortcut connections" which connect every other layer not only

to the next layer, but also the layer after the next layer. The inventors show these networks

achieve state-of-the-art results for image classification, are easier to train, and can have

many more layers in practice. Because of this success, one of our systems is directly built

on top of ResNet. For a detailed account of deep neural networks, we refer the reader to

18



Figure 2-1: Sample data visualizations from the MASSVIS dataset. Note that the dataset in-
cludes more basic charts and graphs to data visualizations to those that have more complex
features.

Goodfellow et al.’s book, Deep Learning [9].

2.3 Datasets for data visualizations

Because this research uses a machine learning approach, the datasets we use heavily influ-

ence the power of our system. We leverage two datasets: MASSVIS and Visually.

2.3.1 MASSVIS

For ranked text extraction, we use the Massachusetts (Massive) Visualization Dataset (MASSVIS)

[6]. MASSVIS includes 5k images of data visualizations obtained from various sources in-

cluding government, news media, and scientific publications.

Since the initial dataset release, the curators have collected human clicks and captions

on these visualizations, allowing us to train our system and evaluate the results, respectively

[7]. For an account of this dataset’s creation, please refer to [6] and the MASSVIS website.

2.3.2 Visually

For the rest of the research, we seek to address more complex image-understanding tasks,

which requires a larger scale dataset. We curate and use the Visually dataset (http://visual.ly/view)

which includes 29k large infographics.

We scraped 63,885 infographic images from the Visually website, a community plat-

form for hand-curated visual content. Each infographic is hand categorized, tagged, and
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(a) (b)

Figure 2-2: (a) Sample data available from Visually. We scraped over 63K infographics
containing category, tags, and other annotations. (b) A few infographics from the dataset
demonstrating the mix of textual and visual regions, the richness of visual content, and
styles.

described by the designer, making it a rich source of annotated images. Despite the dif-

ference in visual content, compared to other scene text datasets such as ICDAR 03 [19],

ICDAR 15 [16], COCO-Text [28] and VGG SynthText in the wild [10], the Visually dataset

is similar in size and richness of text annotations, with metadata including labels for 26 cat-

egories (available for 90.21% of the images), 19K tags (for 76.81% of the images), titles

(99.98%) and descriptions (93.82%). Viewer likes, comments, and shares were also col-

lected. For a subset of 1193 images, full transcripts are available.

Dataset
# of

categ.
Images per
category

# of
tags

Images
per tag

Tags per
Image

63k
(full)

26
min=184

max=9481
mean=2235

19,469
min=1

max=3784
mean=7.8

min=0
max=10

mean=3.7

29k
(clean)

26
min=118

max=4469
mean=1114

391
min=50

max=2331
mean=151

min=1
max=9

mean=2.1

Table 2.1: Visually dataset statistics. We curated the original 63K infographics available
on Visually to produce a representative dataset with consistent tags and sufficient instances
per tag.

We curated a subset of this 63K dataset to obtain a representative subset of 28,977

images (Table 2.1). Uploaded tags are free text, so many of the original tags are either

semantically redundant or have too few instances. Redundant tags were merged using

WordNet and manually, and only the 391 tags with at least 50 image instances each were

retained. To produce the final 29K dataset, we further filtered images to contain a category

20



annotation, at least one of the 391 tags, and a visual aspect ratio between 1:5 and 5:1. Of

this dataset, 10% was held out as our test set, and the rest of the 26K images were used

for training our text and visual models. For 330 of the test images, we collected additional

crowd-sourced textual tags and visual element bounding boxes for finer-grained evaluation.

For a full account of the dataset creation and more statistics, please refer to Appendix A.

2.4 Related work

Diagram understanding: While the computer vision community has made lots of progress

with models able to localize meaningful objects and describe the visual content of natural

images, digitally born media has received little attention. Most of the work that has been

done on non-natural images has been in diagram understanding. For example, [26] focuses

on parsing the diagrams often associated with geometry questions. More recently, some

have focused on creating systems that can parse a wider range of diagrams including those

about the environment, human body, and solar system [17]. This research leverages graph

structures and neural networks to answer multiple choice questions about diagrams it has

not seen before.

Text topic modeling: Words that are extracted from our visualizations will have se-

mantic meanings. To quantify and compare the semantics of words, Mikolov et al. develops

the notion of word embeddings [20]. Word embeddings are vector representations of words

in a space in which the distance between words is correlated to their semantic similarity.

One such popular word embedding is known as Word2Vec. For example, “happy" and “ex-

cited" might have similar Word2Vec vector representations. With this representation, we

are able to work with the extracted text in a quantifiable way to train our text models.

Human perception of visualizations: There are various works that attest to the impor-

tance of effective visualization design. Many works have shown that an observer’s attention

can be grabbed in a consistent manner based on features like saliency, object importance, or

memorability. For instance, in the infographic domain, [6] found that observers are highly

consistent in which visualizations they find memorable. More importantly, they found that

recognizable objects enhance memorability of the whole infographic [12]. For this reason,
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we are keen to explore ways to identify iconic objects in infographics for our work (Chapter

5).

Multiple Instance Learning: The Multiple Instance Learning approach [8] [3] is

considered a promising approach in weakly supervised machine learning problems. It has

been used successfully in many domains across vision including: tracking [4] [5], action

recognition [2] and category prediction from keywords [29]. Recently, [30] showed that

the framework can be used in conjunction with a deep neural network to predict categories

from noisy metadata scraped from the internet. We use this approach on top of ResNet-50

[11] in our category/tag prediction problem (Chapter 4).

Natural images to digitally-born images: In the same way that natural image com-

puter vision tools will be used in this new domain of data visualization computer vision,

we have hope that advances in the new domain might be able to contribute back to natural

image understanding. For example, [33] show that simpler, abstract images (like clip art)

can be used in place of natural images to understand the semantic relationship between

visual media and their natural language representation.
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Chapter 3

Visually important text extraction

3.1 Problem

To form an initial understanding of a data visualization, a person will usually first read the

image’s words. Often times, the person will quickly scan for visually significant regions

(like the title, legend, or extreme data points) to identify key words. Additionally, these key

words may be the ones they remember and use to query a search engine. In this chapter, we

attempt to identify and extract key words in a visualizations. An example from our system

can be seen in Figure 3-1.

Figure 3-1: A motivating example from our ranked text extraction system. Our goal is to
take in an input image and extract the most relevant key words. Note that appropriate key
words are not only title words, but also other important features (like interesting data points
[Ukraine and Luxembourg])

We detail our system which first extracts all words from the data visualization, then
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produces a ranking in an attempt to identify key words. To evaluate our results, we collect

multiple captions per image from human participants on 202 test images. We then compare

our ranking to how often the extracted words appear in the human captions. We also create

a search and retrieval demo. All results are reported on the MASSVIS dataset.

3.2 Approach

In this section, we detail how the relevant data was collected and explain the two primary

components to our system: text extraction and text ranking.

3.2.1 Data collection

The MASSVIS dataset is rich with manual annotations, eye fixations, memorability scores,

and more. In this work, we leverage the data from one of their BubbleView experiments. In

this experiment, Mechanical Turk workers are asked to caption a blurred data visualization

and can click to deblur regions of interest. The experiment provides us with two valuable

pieces of information for each image: click data for visually relevant regions and human

captions. We use a Visual Importance Predictor trained on these clicks developed in [7].

The system outputs a heat map the same size as the original image with each pixel value

proportional to its predicted importance. An example of a prediction along with it’s ground-

truth click importance can be seen in Figure 3-2.

3.2.2 Text extraction

It is tempting to think that because text displayed on a computer is often easy to highlight,

copy, and paste, it is easy to extract text from an image, but this intuition is missing a key

detail. One must consider that, unlike text-editing software, images store text as an array

of pixels, not as ASCII-encoded characters. For example, consider the difference between

copying and pasting text from a word document, as opposed to trying to copy and paste

text from a photo of a street sign. For our text extraction, we rely almost entirely on the

Gupta et al. Oxford Text Spotter, fine-tuned for natural images [10] as seen in Figure 3-3.
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Figure 3-2: The input, ground-truth importance, and predicted output importance for an
image from the MASSVIS dataset using the Visual Importance Predictor neural network.

Figure 3-3: An example input (left) and extracted text output (right) from the Oxford Text
Spotter.
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We run the Oxford Text Spotter with highest recall, lowest precision setting (most)

so that we can extract the largest number of words possible, even with the additional cost

of some false positives. If the extracted text is not a number or numerical quantity (e.g. a

percent or dollar amount), we do some basic spell checking using Python’s autocorrect

package.

Figure 3-4: Top: Text Spotter at a single scale on an input image with many false posi-
tives. Bottom: A result from our improved system which consolidates results from multiple
scales, effectively eliminating many false positives.

We made a substantial improvement to the system by reducing the number of false

positives. This process involves multi-scale text extraction. We leverage the following

observation: false positives are not detected as consistently as true positives when the image

is fed into the system at different scales. We feed the input image into the system at the

original, 2x, 3x, and 4x scale. We consolidate the results by considering a result the same

across scales if any two text boxes’ intersection over union (IOU) is greater than 70%. If

a detected text box is consistent across all scales, the result is kept. We also keep results

that had less than 0.5 average Levenshtein Distance per letter across scales. The rest were

discarded as false positives. A result from our improved system can be seen in Figure 3-4.
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3.2.3 Ranking

Once we extract the text, we explore the best ways to assign a relevance scores for keyword

identification.

We decide to use the Visual Importance Predictor [7], as this is trained on a metric

which highlights what text people look at. As additional baselines, we also consider two

saliency metrics, DeepGaze [18] and Judd [15].

After viewing the data visualizations, we suspected that text near the top (e.g. the title)

may be good key words. For this reason, we also rank the text by their size and Y-location.

Last, we evaluate a random ordering of the words as a shuffled baseline. We report results

on 202 test images, each with multiple human captions.

3.3 Results

A schematic of our system can be seen in Figure 1-2. We evaluate our results with the

mean Average Precision (AP) metric against words used by at least 7 of the Mechanical

Turk captioners. The quantitative evaluation results can be seen in Table 3.1. Note that the

Visual Importance Predictor from [7] performs better than most other metrics except for

the simple Y-location. DeepGaze produces comparable results while Judd saliency is not

much better than a random ranking.

We suspect that Y-location performs so well because of how our evaluation is con-

ducted. In particular, as described in Section 3.2.1, participants were asked to provide a

short caption of the data visualization, which might bias participants toward reiterating

titles located at the top of the image. If, for example, we instead asked participants to pro-

vide a list of key words from the visualization, our Predicted Importance ranking may have

produced stronger results.

To demonstrate our ranking qualitatively across visualizations and highlight a potential

application, we created a simple retrieval demo. In this demo, a user can search visualiza-

tions that contain a query word. The results are returned in order of the query’s predicted

importance in the visualization. A few results sorted for the search query “Japan" can be

seen in Figure 3-5.
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Method Mean AP
Y-location 0.292
Predicted Importance 0.277
DeepGaze 0.277
Bubble Clicks 0.273
Box Size 0.252
Judd 0.196
Shuffled Baseline 0.183

Table 3.1: The mean AP results for our ranked text extraction method and baselines on
words used by a minimum of 7 participants. The methods are sorted in order of importance.

Figure 3-5: Results for querying “Japan" sampled from the top, middle, and bottom of the
search results. The retrieved image is shown adjacent to its predicted visual importance.
Note that Japan is in a visually important region in the top image, in a moderately important
position in the bottom image, and in a subtle location in the right image. The scores are
achieved by summing the maximum importance heatmap value contained in the query’s
bounding box.
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After building such a system that is able to extract and identify the key words in a data

visualization, we start to explore other ways to leverage the extracted text. Is it possible to

predict the topic of the data visualization from this extracted text, even if the topic word is

not used directly? Can we also use visual features to inform our prediction?
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Chapter 4

Category and tag prediction

4.1 Problem

After viewing an infographic, a person can assign a topic (category) and a few subtopics

(tags) even if those words are not used in the image itself. Inspired by this ability, we focus

on predicting categories and tags on the Visually dataset. Given an infographic as input,

our goal is to predict one category (of 26) and one or more text tags (of 391). An example

of an infographic with its corresponding category and tags is shown in Figure 4-1.

4.2 Approach

Infographics are composed of a mix of textual and visual elements, which combine to

generate the message of the infographic. We train both textual and visual models on the

category and tag label prediction problems. We use a mean Word2vec representation to

transform the extracted words into an input for the text neural network. For visual predic-

tion, we use a patch-based multiple instance learning (MIL) framework.

4.2.1 Text to labels

Given an infographic encoded as a bitmap as input, we detected and extracted the text, and

then used the text to predict labels for the whole infographic. These labels come in two
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Figure 4-1: An example infographic about the soccer player Ronaldo recovering from an
injury to play in the FIFA World Cup. The image’s overall topic or category is “Sports"
while its subtopics or tags would be #world cup, #soccer, and #injury. For a full list of the
26 possible categories, refer to the rows of Figure 4-3. For a full list of the 391 tags, refer
to the table in Appendix A.

forms: either a single category per infographic (1 of 26), or multiple tags per infographic

(out of a possible 391 tags).

Automatic text extraction: We used the previously mentioned Oxford Text Spotter

[10] to discover text regions in our infographics. We automatically cleaned the text using

spell checking and dictionary constraints in addition to the ones already in [10] to further

improve results. We did not apply the multi-scaling presented in Chapter 3 as these images

were very large in their original size. On average, we extracted 95 words per infographic

(capturing the title, paragraphs, annotations and other text).

Feature learning with text: For each extracted word, we computed a 300-dimensional

Word2vec representation [21]. The mean Word2vec of the bag of extracted words was

used as the text descriptor for the whole image (the global feature vector of the text). We

constructed two simple single-hidden-layer neural networks for predicting the category and

tags of each infographic. Category prediction was set up as a multi-class problem, where

each infographic belongs to 1 of 26 categories. Tag prediction was set up as a multi-label
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Figure 4-2: Our proposed approach separately samples and processes visual (left/blue) and
text regions (right/red) from an infographic to predict labels automatically. Multiple image
patches are sampled in a multiple instance learning formulation, and their predictions are
averaged to produce the final classification. Text regions are automatically localized, ex-
tracted, and converted into Word2vec representations. The average Word2vec representa-
tion is then fed into a single hidden layer neural network to produce the final classification.
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problem with 391 tags, where each infographic could have multiple tags (Table 2.1). The

network architecture is the same for both tasks and is depicted in the red box in Figure 4-2,

where the label is either a category or multiple tags. We used 26K labeled infographics for

training and the rest for testing.

4.2.2 Image patches to labels

Separately from the text, we learned an association between the visual features and category

and tag labels.

Working with large images: Since we have categories and tags for all the images

in the training data, a first attempt might be to directly learn to predict the category or

tag from the whole image. However, the infographics are large images often measuring

beyond 1000x1000 pixels. Resizing the images reduces the resolution of visual elements

which might not be perceivable at small scales. In particular, relative to the full size of

the infographic, many of the pictographs take up very little real-estate but could otherwise

contribute to the label prediction. A fully convolutional approach with a batch of such large

images was infeasible in terms of memory use. As a result, we sampled the images using

both random crops of a fixed size and object proposals from Alexe et al. [1]. We ran the

full images resized as a prediction baseline.

Multiple instance learning (MIL) prediction: Given a category or tag label, we ex-

pect that specific parts of the infographic may be particularly revealing of that label, even

though the whole infographic may contain many diverse visual elements. A multiple in-

stance learning (MIL) approach is appropriate in this case. In MIL, the idea is that we

may have a bag of samples (in this case patches) to which a label corresponds. The only

constraint is that at least one of the samples correspond to the label; the other samples may

or may not be relevant.

We used the deep MIL formulation from Wu et al. [30] for learning deep visual repre-

sentations. We passed each sampled patch from an infographic through the same convo-

lutional neural network architecture, and aggregated the hidden representations to predict

a label for the whole bag of patches (depicted in the blue box in Figure 4-2). For aggre-
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gating the representations, we tried both element-wise mean and max at the last hidden

layer before the softmax transformation, but found mean worked better. As in the text case,

we solved either a multi-class category prediction problem, or a multi-label tag prediction

problem.

Feature learning with patches: We sampled 5 patches from each infographic and

resized each to 224x224 pixels for input into our convolutional neural network. For feature

learning, we used ResNet-50 [11], a residual neural network architecture with 50 layers,

initialized by pretraining on ImageNet [25]. We retrained all layers of this network on 26K

infographics with ground truth labels.

4.2.3 Technical details

Text model: For category prediction, the mean Word2vec feature vector of an infographic

was fed through a 300-dimensional fully-connected linear layer, followed by a ReLu, and

an output 27-dimensional fully-connected linear layer (including a background class). The

feature vectors of all 29K training images fit in memory and could be trained in a single

batch, with a softmax cross-entropy loss. For tag prediction, the final fully-connected linear

layer was 391-dimensional and was passed through a sigmoid layer. Given the multi-label

setting, this network was trained with binary cross-entropy (BCE) loss and one-hot encoded

target vectors. Both neural networks were trained for 20K iterations with a learning rate of

1𝑒− 3.

Visual model: We found that bags of 5 patches in batches of 20 infographics performed

best for aggregating visual information from infographics. We also tried bags of 3 patches

in batches of 33, patches of 10 in batches of 10. We used a single patch in a batch of 50

infographics as a baseline. As in the text model, we trained category classification with a

softmax cross-entropy loss with 27-dimensional target vectors, and tag prediction with a

BCE loss applied to 391-dimensional sigmoid outputs. We used a momentum of 0.9 and

weight decay of 1𝑒− 4. Our learning rate was initialized at 1𝑒− 2 and dropped by a factor

of 10 every 10 epochs, for a total of 200 epochs.
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4.3 Results

We evaluate the ability of our full system to predict category and tag labels for infographics.

Predicting the category label is a high-level prediction task about the overall topic of the

infographic. Predicting the multiple tag labels for an infographic is a finer-grained task

of discovering sub-topics. We solve both tasks, and present results of our text and visual

models.

4.3.1 Category prediction

Quantitative results: For each infographic, we measured the accuracy of predicting the

correct ground truth category out of 26, when producing the most confident prediction.

Chance level for our distribution of infographics across categories was 15.4%. We achieved

43.2% top-1 accuracy at predicting the category using our text model (Table 4.1). The

best performing purely visual system was the MIL framework (as in Figure 4-2) applied to

random patches, whose predictions were aggregated using their mean (Vis-rand-mean). We

found that mean aggregation outperformed max aggregation for category prediction (Vis-

rand-mean better than Vis-rand-max). Random crops outperformed object proposals (Vis-

rand-mean better than Vis-obj-mean), which we hypothesize is the case because they were

more consistent, whereas object proposals had diverse aspect ratios and sizes, sometimes

too small to capture meaningful visual features. The patch-based predictions were similar

to or better than the full visualization resized (Vis-resized). A patch-based approach is

naturally better suited for sampling regions for visual tag extraction (Chapter 5). Note

that the visual features are not intended to be comparable to the text features, as the text

tends to contain a lot more information. We also tried to combine text and visual features

directly during training but did not achieve gains in performance above the text model

alone, indicating that it is a sufficiently rich source of information in most cases. More

baselines are provided in Appendix B.

Automatic text extraction: Given that the automatic text extraction system of [10]

was designed for natural images, we benchmarked how well this system performs on in-

fographics images. For this purpose we used the 1193 images in the 63K Visually dataset
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Model Top-1 Top-3 Top-5
Text-mean 43.2% 69.3% 79.4%

Vis-rand-mean 29.4% 51.1% 63.7%
Vis-obj-mean 26.1% 48.8% 61.4%
Vis-rand-max 26.1% 48.7% 62.3%

Vis-resized 23.7% 47.2% 60.0%
Vis-obj-max 20.7% 42.6% 57.0%

Chance 15.4% 33.6% 47.5%

Table 4.1: Results on category prediction. Models sorted in order of top-1 performance.

that contain full transcripts. For word-level matching, we converted both ground truth tran-

scripts and extracted text into bags of words, and found that the extracted text predicts the

ground truth text with a precision of 45.7% and recall of 23.9% (5 of the images failed to

generate any text).

We also measured category prediction performance if we were able to extract all text

accurately and were not limited to the automatically extracted text. Running our text pre-

diction model on the Word2vec representation of the transcript words, we obtain a top-1

prediction accuracy of 52.9%, top-3 of 83.2%, and top-5 of 91.0% (training and testing

on the reduced set of transcript-containing infographics). Compared to the first row of Ta-

ble 4.1, although parsing all the text in an infographic can provide a prediction boost, we

note that not all text needs to be perfectly extracted in order to have a good prediction for

the topic of an infographic.

Top activations per category: To validate that our visual network trained to predict

categories learned meaningful features, we visualize the top 10 patches that received the

highest confidence under each category. We provide the patches with the highest confidence

under the classifier for each of the 26 categories in Figure 4-3. These patches were obtained

by sampling 100 random patches from each image, storing the single patch that maximally

activated for each category per image, and outputting the top 10 patches across all images.

4.3.2 Tag prediction

Evaluation: Each infographic in our 29K dataset comes with an average of 1-9 tags. At

prediction time, we generate 1, 3, and 5 tags, and measure precision and recall of these
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Figure 4-3: The top activating patches per category for all 26 categories from our Visually
dataset. We sampled 100 random patches per infographic from all of our test infographics,
and picked the patches with highest confidence under our visual network trained to predict
category labels. We only picked one patch per infographic to show diversity.
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Model Acc. Top-1 Top-3 Top-5
Text-mean-snap prec 45.2% 26.3% 18.9%

rec 42.0% 49.0% 53.5%
Text-mean prec 27.7% 18.1% 14.0%

rec 16.0% 29.5% 37.2%
Vis-rand-mean prec 12.2% 8.4% 6.9%

rec 6.7% 13.1% 17.8%
Vis-rand-max prec 12.2% 8.4% 6.5%

rec 6.8% 13.0% 16.8%
Vis-resized prec 12.1% 8.2% 6.8%

rec 6.5% 13.1% 17.8%
Vis-obj-mean prec 11.4% 8.1% 6.6%

rec 6.4% 12.6% 17.0%
Vis-obj-max prec 11.1% 8.1% 6.4%

rec 6.1% 12.5% 16.4%
Chance prec 8.7% 6.4% 5.5%

rec 5.1% 10.3% 14.3%

Table 4.2: Results on tag prediction. Models sorted in order of top-1 performance.

predicted tags at capturing all ground truth tags for an image, for a variable number of

ground truth tags.

Quantitative results: We achieved 45.2% top-1 average precision at predicting at least

one of the tags for each of our infographics, since all the infographics in our dataset contain

an average of 2 tags (Table 4.2). Since tags are finer-grained than category labels, it is often

the case that some word in the infographic itself maps directly to a tag. Using this insight,

we add a simple automatic check: if any of the extracted words exactly match any of the 391

tags, we snap the prediction to the matching tags (Text-mean-snap). Without this additional

step, predicting top-1 tag achieves an average prediction of 27.7% using text features. We

provide the visual model scores for reference, although they are not directly comparable.

Text can disambiguate visual predictions: In some infographics, visual cues for par-

ticular tags or topics may be missing (e.g., for abstract concepts), they may be misleading

(as visual metaphors), or they may be too numerous (in which case the most representative

must be chosen). In these cases, label predictions driven by text are key, as in Figure 4-4,

where visual features might seem to indicate that the infographic is about icebergs, ocean,

or travel; in this case, however, iceberg is used as a metaphor to discuss microblogging and

social media. Our text model is able to pick up on this detail, and direct the visual features
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Figure 4-4: Examples of how text and visual features can work together to predict the tags
for an image. (a) In “Microblogging iceberg," visual features activate on the water and
boats and predict #travel. The text features disambiguate the context, predicting #social
media. Conditioned on this predicted tag, the visual features activate on the digital device
icons. (b) In this comic about #love and sex, both textual and vision features predict #hu-
mor, a correct tag nevertheless. (c) In this infographic about “Dog names," most of the
text lists dog names, specialized terms that the text model can not predict the correct tag
#animal from. The visual features activate on the dog pictographs and make the correct tag
prediction.

to activate in the relevant regions.

4.4 User study

4.4.1 Data collection

We designed a user interface to allow participants to both see a visualization all-at-once

(resized), and to scroll over to explore any regions in detail using a zoom lens (Figure 4-5).

Participants were instructed to provide “5 hashtags describing the image." We collected

a total of 3940 tags for the 330 images from 82 Amazon Mechanical Turk workers (an
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Figure 4-5: Task used to gather ground-truth human annotations for text tags. Participants
could scroll over an image to zoom in and inspect parts of it in order to generate a set of
representative tags for the image.

average of 13.3 tags per image, or 2-3 participants/image).

4.4.2 Evaluating the text tags

We compared the collected tags to existing Visually ground truth tags by measuring how

many of the ground truth tags were captured by human participants. Aggregating all par-

ticipant tags per image (2-3 participants per image), we found an average precision of 37%

at reproducing the ground truth tags. After accounting for similar word roots (e.g., #gun

matches #handgun), average precision is 51%. This shows that even without a fixed list of

tags to choose from (the 391 in our dataset), online participants converge on similar tags

as the designer-assigned tags. In other words, the tags in this dataset are reproducible and

generalizable, and different people find similar words representative of an infographic.

Furthermore, of all the tags generated by our participants, on average 37% of them are

verbatim words from the transcripts of the infographics. This is additional justification for

text within infographics being highly predictive of the tags assigned to it.

Knowing that the embedded text performs much better as a predictor of the info-

graphic’s category and tags, we next explore whether the embedded text can be used as

a supervisory signal for the visual features.
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Chapter 5

Visual tag discovery

Text tags as described in Chapter 4 can serve as key words describing this message to

facilitate data organization, retrieval from large databases, and sharing on social media.

Analogously, we propose an effective visual digest of infographics via visual tags. Visual

tags are iconic images that represent key topics of the infographic.

Unlike most natural images, infographics often contain embedded text that provides

meaningful context for the visual content. We leverage the text prediction system devel-

oped in Chapter 4 to predict text tags. We then use these predictions to constrain and

disambiguate the automatically extracted visual features.

This disambiguation is a key step to identifying the most diagnostic regions of an in-

fographic. For instance, if the text on an infographic predicts the category “Environment,"

then the system can condition visual object proposals on the presence of this topic and

highlight regions relating to “Environment." In the case of the infographic in Figure 5-1,

this disambiguation allows our system to focus on the water droplet and spray bottle, as

opposed to the books and light bulb highlighted by “Education."

5.1 Problem

Given an infographic as input, our goal is to identify the input’s visual tags. We evaluate

the quality of visual tags by comparing the system’s output to the image regions humans

annotate as pertaining to a particular text tag on a given image.
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Figure 5-1: Our visual network learns to associate visual elements like pictographs with
category labels. We show the activations of our visual network conditioned on different
category labels for the same infographic. Allowing the text in an infographic to make the
high-level category predictions constrains the visual features to focus on the relevant image
regions, in this case “Environment," the correct category for the image. Image source:
http://oceanservice.noaa.gov/ocean/earthday-infographic-large.jpg

5.2 Approach

We saw in Chapter 4 that the embedded text in an infographic is often the strongest pre-

dictor of the topic matter. Driven by these results, we make label predictions using the text

and then constrain the visual network to produce activations for the target label.

At inference time, we sample 3500 random crops per infographic. To generate each

crop, we sampled a random coordinate value for the top left corner of the crop, and a side

length equal to 10-40% of the minimum image dimension. For each crop, we compute the

confidence, under the visual classifier, of the target label. We assign this confidence score

to all the pixels within the patch, and aggregate per-pixel scores for the whole infographic.

After normalizing these values by the number of sampled patches each pixel occurred in,

we obtain a heatmap of activations for the target label. We use this activation map both

to visualize the most highly activated regions in an infographic for a given label, and to

extract visual tags from these regions.

We first threshold the activation heatmap for each predicted text tag, and identify con-

nected components as proposals for regions potentially containing visual tags. These are

cropped and passed to the SharpMask segmentation network [23]. This step is important

for two reasons: (1) to refine bounding boxes to more tightly capture the contained ob-

jects, and (2) to throw out bounding boxes that do not contain an object. During automatic

cleaning, we throw out bounding boxes with an area smaller than 5000 pixels, with skewed

aspect ratios, or containing more than 35% text (as detected by the pipeline provided by
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Figure 5-2: Samples of visual tags extracted for different concepts.

[31]). Furthermore, SharpMask object proposals covering greater than 85% or less than

10% of the bounding box are deemed spurious and thrown out. Finally, visual tags corre-

sponding to the predicted text tags for an input infographic are obtained by cropping tight

bounding boxes around the remaining proposals (Figure 5-2).

5.3 Results & user study

Results from our visual tagging pipeline can be seen in Figures 5-3 and 5-5. Examples of

visual tags discovered across multiple infographics can be seen in Figure 5-2.

The Visually dataset comes with categories and text tags, but not visual tags. Neverthe-

less, we wanted to evaluate how well our model learns to localize visual regions relevant to

the image-level labels after patch-based MIL training. In order to do this, we crowdsourced

object-level annotations on a subset of the test images.

To evaluate our computational model for visual tag extraction, we separately evaluate

different steps in the pipeline. First, we evaluate how well our visual model can discover

(i.e. activate on) image regions relevant to a text tag. Second, we evaluate the quality of the

final visual tags extracted from an image. We compare our visual tag proposals to human

bounding box annotations for the same image-tag pairs.

5.3.1 Data collection

We designed an interface in which participants are given an infographic and a target text

tag, and are asked to mark bounding boxes around all non text-regions (e.g., pictographs)

that contain a depiction of the text tag (Figure 5-4). We used the designer-assigned text tags

45



(a)

(b)

Figure 5-3: Examples of automatic text and visual tag generation. (a) Text features predict
half the ground truth tags correctly, and the visual model discovers associated visual regions
in the infographic. Unique visual tags are automatically retrieved for each text tag. (b) Text
features predict the ground truth tags correctly, and visual features discover visual tags.
In this specific example, there is not a one-to-one mapping between text and visual tags.
Similar visual areas are activated for these text tags.
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Figure 5-4: Task used to gather ground-truth human annotations for visual tags. Partici-
pants annotated visual regions matching text tags.

from the Visually dataset. If an image had multiple text tags, it would be shown multiple

times but to different users, with unique image-tag pairings. We collected a total of 3655

bounding boxes for the 330 images from 43 undergraduate students. Each image was seen

by an average of 3 participants and we obtained an average of 4 bounding boxes per image.

Our visual tagging task required participants to annotate bounding boxes around objects

or pictographs in infographics that matched a particular text tag. To ensure the task was well

understood and carefully done, we collected the annotations from undergraduate students.

Each of our 43 participants annotated an average of 14.7 images and produced an average

of 85 bounding boxes (with 15 minutes of effort).

5.3.2 Evaluating the visual model activations

Given an image-tag pairing, participants annotated relevant visual regions. Analogously,

given an image-tag pair, we can measure how well our visual model automatically discovers

relevant visual regions. We evaluate whether the high-intensity regions in the activation

heatmap correspond to the participant-generated annotations. Because each image-tag pair

was annotated by 1-3 participants, we report 3 evaluations, measuring how well our model
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captures: (A) all the annotations on an image, (B) only annotations on regions made by

more than one participant, (C) at least one of the annotations on an image. Note that (A)

assumes that the union of all annotations offers a more complete picture; (B) depends on

participant consistency and can generate cleaner annotation data; (C) is the most lenient

setting where we just care that our model picks a reasonable region of an image. While (A)

and (B) can allow us to directly measure the computational limitations of our model, (C)

can help us evaluate how well our model would do in practical settings.

For each image-tag pair, we normalize the activation heatmap from our model to be 0

mean, 1 standard deviation. We compute (i) the mean activation value within the annotated

regions across all images. A mean activation value above 0 indicates that annotated regions

were predicted more relevant than other image regions, on average; (ii) the percent of

images for which the mean activation value in annotated regions was above chance (we

take chance to be the mean activation value); (iii) the percent of images for which the mean

activation value in annotated regions was one standard deviation above the mean. Table 5.1

contains the results.

Evaluation (A) (B) (C)
(i) Mean activation value
(across tags)

0.26 0.36 0.86

(ii) Above chance activa-
tions (across images)

65% 73% 91%

(iii) Most significant acti-
vations (across images)

8% 13% 48%

Table 5.1: Evaluations of how well our model captures: (A) all the relevant visual regions
(i.e., all the bounding box annotations on an image), (B) relevant visual regions agreed on
by multiple participants, (C) at least one of the relevant regions per image.

5.3.3 Evaluating the extracted visual tags

We collected an average of 4 human-annotated bounding boxes per image-tag pair (for the

330 test infographics). Our automatic pipeline generated an average of 1-2 predicted visual

tags per image-tag pair for the same set of infographics, represented as crops from the

image.

48



For each image-tag pair, we measure the intersection-over-union (IOU) of all of our

predicted tags to the human annotations. Specifically, for each predicted visual tag, we

compute its IOU to the nearest annotated bounding box. We then average the IOU values

across all the predicted visual tags for an image-tag pair. The mean IOU over all image-tag

pairs is 0.15.

Our pipeline was constructed for high-precision as opposed to high-recall: For

a predicted visual tag to be generated, (1) it must have activated our visual model for a

given text tag, (2) it must have been fully encapsulated by an image region within the 80th

percentile of the activation map, and (3) it must have been robustly detected by SharpMask

as containing an object. As a result, we only produce 1-2 visual tags per image, since our

motivation is to produce some diagnostic visual elements to represent the image content

rather than extract all visual elements. Figure 5-5 contains some examples. Despite never

being trained to explicitly recognize objects in images, our model is able to localize a subset

of the human-annotated visual regions.
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Figure 5-5: Some sample visual tag extraction results. We show multiple steps of our
pipeline: given a text tag, the activation heatmap indicates the image regions that our visual
model predicts as most relevant. This heatmap is then passed to our pipeline that extracts
visual tags, using objectness and text detection to filter results. The final extracted visual
tags are included. We overlay our proposed visual tags (in blue) with human-annotated
bounding boxes (in red) of relevant visual regions to the text tag.
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Chapter 6

Conclusion

6.1 Contributions and discussion

To this point, the space of complex visual information beyond natural images has received

limited attention in computer vision (notable exceptions include: [32] [17]). We present

a novel direction to help close this gap. We first explore extracting all words from an

image and determining which words are most important to the data visualization. We then

leverage these extracted words to predict the topic of the infographic. Finally, we let the

text guide our system as its prediction is used to look for corresponding visual cues. In

summary, in this research, we

∙ curated a dataset of 29k infographics with 26 categories and 391 tags.

∙ created and evaluated an end-to-end ranked text extraction system for data visualia-

tion retrieval.

∙ demonstrated the utility of a patch-based, multiple instance approach for processing

large and visually rich images.

∙ created and evaluated an end-to-end category/tag predictor for infographics.

∙ introduced the problem of visual tag discovery: extracting visual regions diagnostic

of key topics.
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∙ demonstrated the power of extracting text from within an infographic to facilitate

visual tag discovery.

∙ created and evaluated an end-to-end visual tag extractor for infographics.

6.2 Looking forward

Although we are pleased with the progress achieved through this research, we have only

touched the surface of what we would like to explore in the data visualization understanding

domain.

Icon detection: One area of improvement is our localization and extraction of visual

tags. Once we identify regions pertaining to a given subtopic, we use an object segmen-

tation pipeline tuned for natural images (SharpMask). Also, to train many of our models

in the MIL approach, we take crops considered to have high objectness (using models that

are also trained on natural images). These models perform poorly on our dataset. Creat-

ing an “objectness detector" for infographics, perhaps to be called an “iconness detector,"

may substantially improve the visual tag extraction pipeline to make it a robust system

as opposed to a nice proof-of-concept. This detector might be a sliding window binary-

classifier that takes in an image patch and outputs a probability that the input image is a

valid icon/object in the infographic.

Dense annotation: Recent research has focused on densely annotating natural images

as seen in Figure 6-1a. One can imagine working toward the same goal in data visualiza-

tions. So far, our research has focused on a holistic understanding of the data visualization,

with visual tag extraction being the preliminary exploration into a finer-grained annotation.

A similar system presented in [14] for data visualizations could be a promising research

direction.

Data visualization generation: Through this research, we have developed systems that

can process a visualization as input and output relevant insights. It might be interesting to

consider the flipped task, where we can generate visualizations or visualization elements

from the insights we would like to communicate. In natural images, generative adversarial

networks (GANS) have shown that we can synthesize realistic looking images from a text
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(a) (b)

Figure 6-1: (a) An example of a natural image densely annotated from the pipeline pre-
sented in [14]. (b) An image generated from text using the pipeline presented in [24]. A
natural follow-up for purposes of our research domain is: what would it mean to create
such systems for data visualizations?

description as seen in Figure 6-1b [24]. What if we could generate new icons to place in

visualizations based on the desired object and style? What if we could go even farther and

create an entire visualization from a news article?

Data visualizations are specifically designed with a human viewer in mind, character-

ized by a high-level message. Beyond simply inferring key words and extracting objects

contained within them, a greater understanding of these images would involve a deeper

comprehension of the embedded text, the spatial relationship of the elements, the content

creator’s intent, and more. We believe this research has taken steps toward this greater

understanding, highlighting the potential for computers to work with data visualizations as

well as humans and beyond.
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Appendix A

Visually dataset

Tag selection: The original tags scraped from the Visually website are free text input by

the designer, so many of them are not discriminative, semantically redundant, or have too

few instances.

We first manually remove tags considered not sufficiently informative or discriminative

(e.g. generic tags like “data_visualization”, “fun_facts” or years like “2015”). The list of

manually excluded tags can be seen in Table A.

We merge redundant tags automatically with WordNet and manually. We use Word-

Net’s morphological processing module, morphy (e.g. “dog” and “dogs” are both mapped

to “dog”). We did additional manual mapping to capture subtle semantic equivalences

like “app” and “application.” We also include some mappings to avoid incorrect morphy

outputs (like ensuring “hr” maps to “human_resources” instead of “hour”). The manual

mappings can be seen in Table A. Finally, as described in the paper, we only keep tags

with at least 50 image instances. The trade-off between minimum number of instances and

number of remaining images can be seen in Figure A-1. This process results in the final set

of 391 tags we use for this dataset (Table A.3).

Image sizes: We constrained the images to be between an aspect ratio of 5:1 or 1:5,

inclusive. Of the training images, the widest image is 2840x1000, and the tallest ones (59

such images) are 1000x5000. 4822 are wide images, and 21258 are tall images. 66.5%

images have their aspect ratio within 1:3 if it’s a tall image, or 3:1 if it’s a wide image.

Moreover, 33.9% images are larger than 1000x1500, and of these 23.4% are larger even
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Figure A-1: A graph showing the number of visualizations left and tags included at vari-
ous minimum instance thresholds. Each datapoint is labeled with three values: (number of
visualizations remaining, number of tags remaining, minimum number of instance guaran-
teed per tag). We felt that 50 instances guaranteed was reasonable (datapoint boxed in red)
before further filtering, giving us the final 29k set.

Figure A-2: Histogram of image sizes in the Visually dataset.

than 1000x2500. In Figure A-2 we include a histogram of image sizes.
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analytics data_visualisation data_visualization fun_facts info_graphics infografia infographic
infographic_design infographics millennials statistics stats top_10 2000

2008 2009 2010 2011 2012 2013 2015

Table A.1: Manually removed tags.

Word Synonym(s)
application app, apps, mobile_apps, mobile_app
baseball mlb
basketball nba
blog wordpress, blogging
business small_business
car_accident car_accidents
cell_phone android, sms, mobile_phone, iphone, smartphone, smartphones
cloud_computing cloud_technology
customer customer_experience, customer_service
e-commerce ebay, online_shopping, ecommerce
entrepreneur entrepreneurship
finances personal_finance, save_money, saving_money
football nfl, super_bowl
health health_benefits
home_buying homes_for_sale
human_resources hr
injury personal_injury
marketing ppc, social_marketing, inbound_marketing, online_marketing, inter-

net_marketing, social_media_marketing, content_marketing
movies star_wars
pest pest_control
seo search_engine_optimization
social_media twitter, facebook, google+, linkedin, instagram, pinterest, so-

cial_network, social_networking, social_networks, youtube
survey survey_results
tablet ipad
technology_company apple, samsung, microsoft
television game_of_thrones
travel travel_advice
united_nations undp
web_design website_design

Table A.2: Manually determined tag mappings.
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accident accounting addiction advertising africa agriculture airline
airport alcohol america american animal application architecture

art asia australia auto automobile automotive b2b
b2b_marketing baby banking baseball basketball beauty beer

benefit big_data bike black_friday blog book brain
brand branding brazil budget building business california
calorie camera canada cancer car car_accident car_insurance
career cat celebrity cell_phone ceo charity chart
child china chocolate christmas city cleaning climate_change
cloud cloud_computing coffee college color communication community

company comparison computer congress construction consumer content
cooking cost country coupon credit credit_card crime
culture customer cycling data dating death debt

demographic design designer development diabetes diet digital
digital_marketing disease divorce diy doctor dog drink

drinking driving drug e-commerce earth earthquake economic
economics economy education election electricity email email_marketing
employee employment energy energy_consumption energy_efficiency engagement england

entertainment entrepreneur environment europe event evolution exercise
export fact family fashion film finance finances

fish fitness flight flowchart food football ford
foreclosure france fruit fun funding funny future

gadget game gaming gardening gas gdp gender
geography germany gift global google government graph

graphic graphic_design green growth guide gun halloween
happiness health health_and_safety health_care health_insurance healthcare healthy

healthy_eating higher_education hire history hockey holiday home
home_buying home_improvement hospital hotel house housing how_to

human_resources humor illustration immigration income india industry
inflation information injury innovation insurance interior_design international
internet investing investment io it italy japan

job kid kitchen language law lawyer leadership
learning life lifestyle loan london love management

map marijuana market market_research marketing marriage medical
medicine medium men mental_health military mobile mobile_marketing

mobile_phone mom money mortgage move movie music
nasa nature network new_york new_york_city news nutrition

obama obesity ocean office oil olympics online
parent pest pet phone photography politics pollution

population poster poverty power pregnancy president price
productivity property psychology real_estate real_estate_agent realtor recipe
recruitment recycle recycling relationship religion renewable_energy research
restaurant resume retail retirement revenue roi running

russia safety salary sales savings school science
search seo search_engine security shopping singapore sleep

smoking soccer social social_media software solar solar_energy
space spain spending sport startup strategy stress

student style summer supplement survey sustainability tablet
tax teacher tech technology technology_company television thanksgiving

time timeline tip tourism trade training transport
transportation travel trend turkey tv tweet typography

uk unemployment united_nations united_states university us usa
vacation valentine_day vehicle video video_game virus visualization

war waste water weather web web_design web_development
website wedding weight_loss wellness wine winter woman

work workout workplace world world_cup zombie

Table A.3: The final set of 391 tags for our text and visual tagging problem.
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Appendix B

Category and tag prediction

supplemental material

B.1 Additional baselines

Additional results of our experiments are provided in Table B.1, sorted in order of perfor-

mance. We found that random patches in bags of 5 patches per image, trained in batches

of 20 infographics performed best, which are the results presented in the main thesis. Here

we also report our results on training with patches in bags of 8 (Vis-rand-mean-8patch) and

3 (Vis-rand-mean-3patch). Note that random patches generally outperform object propos-

als [1] for all batch sizes (i.e. Vis-rand better than Vis-obj). In the case where we sampled

object proposal patches, we selected them out of a precomputed 50 patches per image. To

explore whether a larger diversity of sampled patches might improve performance, we pre-

computed 200 patches per image (Vis-200obj-mean-5patch) but did not see improvements

in performance. We tried an additional object proposal framework, DeepMask [22], by tak-

ing the minimum area crop around the DeepMask proposals, but performances were even

lower (Vis-dmask-mean-5patch). These results point to the fact that our network might be

benefiting from larger patches with more context than fitted object patches that have the

additional side-effect of coming in different aspect ratios, which get squashed into squares

during training. This phenomena might be why random crops produced the best results.

As an additional baseline, we trained without the MIL approach, to see if the model
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benefits from looking at patches of the image at higher resolution instead of resizing the

whole image. On each training run we sampled only 1 patch per infographic (Vis-rand-

1patch and Vis-obj-1patch), in batches of 50 infographics. We outperform this baseline

when we use 3 or more patches and aggregate them using either mean or max. We found

that taking the element-wise mean of the hidden representations of all the patches was

more effective than the max, across most settings of our experiment (Vis-rand-mean is

generally better than Vis-rand-max and Vis-obj-mean is generally better than Vis-obj-max).

We hypothesize that this is because any one pictograph or visual element in an image might

not be predictive enough of the category, and additional context is necessary (i.e. taking

multiple patches of the image and averaging their representations).

For category prediction evaluation, we use approximately 200 patches and ensemble

predictions from sets of 1, 3, 5, or 8 patches1. For tag prediction evaluation, we take the

mean or max over the 200 patches at once instead of ensembling.

Model Top-1 Top-3 Top-5
Vis-text-joined 39.2% 63.5% 74.8%

Vis-rand-mean-8patch 29.2% 51.6% 64.2%
Vis-rand-mean-3patch 27.6% 50.8% 62.9%

Vis-200obj-mean-5patch 26.1% 50.0% 63.3%
Vis-rand-max-3patch 24.1% 47.0% 60.4%

Vis-rand-1patch 24.0% 46.1% 59.4%
Vis-obj-max-3patch 23.8% 44.9% 59.8%
Vis-obj-mean-3patch 23.7% 47.4% 59.8%

Vis-obj-1patch 19.8% 41.7% 55.8%
Vis-dmask-mean-5patch 18.7% 41.0% 54.9%

Table B.1: Results on category prediction. Models sorted in order of top-1 performance.

B.2 Common confusions

Figure B-1 shows the confusions of the text model on category assignment to infographics

(choosing the correct out of 26 categories). Categories like “Economy," “Technology" and

“Social Media" are often confused with “Business." Also, the model often gets confused

1For Vis-dmask-mean-5patch, we evaluated on images with as few as 5 patches, so we could not evaluate
with this ensemble methodology.
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Figure B-1: Confusion matrix for category predicted by textual features

between “Computers" and “Technology." This result is understandable given the overlap-

ping semantics of the category labels. The model for category prediction based on visual

features further corroborates these findings as shown in Figure B-2. The visual model con-

fuses “Technology" and “Business" most often. Moreover, a number of classes are often

mis-assigned to “Food" or “Business" category labels.
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Figure B-2: Confusion matrix for category predicted by visual features
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