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Abstract

Northern California and specially the San Francisco Bay Area where PG&E operates is very susceptible to
earthquakes. United States Geological Survey (USGS) estimates a 63 percent chance that a magnitude-6.7 or
larger earthquake will hit the Bay Area by the year 2036. The chances for a 7.0-magnitude or above are
about 50 percent.

In this thesis, we first present the methodology PG&E uses to generate predicted damages. Then, we
will discuss what data will be available to us and outline how this data is transformed into predicted
damages for pipes.

Then, the thesis go over the method we used to generate the predicted customer service calls per area.
It will first present how PG&E currently estimates the number. Then, it will present a model that can
provide better accuracy for estimating the numbers.

Next, we present a resource allocation model to optimize repair crew allocation between divisions. We
will present how the resource allocation problem can be formulated as a load-balancing problem. We
present different formulations and discuss the run time and benefits/drawbacks of each model. We
formulate a two-stage optimization model and a one-stage optimization model. We ran both models on
different scenarios and we compared the results. We also highlight some key insights we got from
combining the travel and allocation problem in a single stage optimization problem.

We also go over the sources of uncertainty we have in our data. There are three sources of uncertainty
in the model. In this thesis, we will model one of the sources of uncertainties and outline how the other
two can be incorporated into the model in the future.

Finally, we generated ideal outputs for some of the likely USGIS scenarios that PG&E includes in their
emergency response plan.

The results from this model would be a critical input to PG&E's emergency response team during an
earthquake event. The better we are at predicting damage and allocating resources, the better we will
be at minimizing earthquake impact on communities.

Thesis Supervisor: Georgia Perakis
William F. Pounds Professor of Operations Research
MIT Sloan School of Management

Thesis Supervisor: Saurabh Amin
Robert N. Noyce Career Development Assistant Professor
Department of Civil and Environmental Engineering
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1 Introduction

1.1 Overview and Project Motivation

PG&E's gas operations supports over 4.3 million natural gas customer accounts, and the gas infrastructure

consists of 48,000 miles of gas pipeline. Northern California and specially the San Francisco Bay Area where

PG&E operates is very susceptible to earthquakes. United States Geological Survey (USGS) estimates a 63

percent chance that a magnitude-6.7 or larger earthquake will hit the Bay Area by the year 2036. The

chances for a 7.0-magnitude or above are about 50 percent.

In recent years, PG&E has made substantial investments in modeling technology to enable the company to

develop resiliency plans, estimate resource needs, and respond more quickly to keep the public safe. In

cases like the Napa County earthquake, which hit on Aug. 24 2014, the models helped deploy PG&E's field

teams to conduct inspections and make emergency repairs.

PG&E's current earthquake damage model can intake seismic event data, and produce the number of

expected failures in each approximately % square mile size land segment in the region. The traditional

way of organizing response efforts has been to send available resources based on most probable

damage predicted from these models. The goal of this project is to assess whether it is possible to

improve the damage perdition and to improve the resource allocation after an emergency.

The results from this model would be a critical input to PG&E's emergency response team during an

earthquake event. The better we are at predicting damage and allocating resources, the better we will

be at minimizing earthquake impact on communities.
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Figure 1-1: The map shows the major faults and the adds that they will cause a major earthquake

1.2 Current Earthquake Emergency Response Process

The process PG&E currently uses for determining the resources required is semi-manual and depends on

operators' and planners' accumulated knowledge. After an earthquake hits, initial damage estimates for

transmission pipelines and distribution plats will be provided by DASH (Dynamic Automated Seismic

Hazard). Personnel will use the DASH output to estimate shaking, damage at PG&E facilities and assets.

DASH output facilitates rapid identification of potential problem areas for gas assets prior to the receipt

of damage reports from the field. Using the DASH report estimates, the number of damages estimated

and the average repair times, the planning team calculates the number of crews required to restore the

system and decide whether they need to request extra crews from other utilities through mutual aid

agreements.
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The restoration efforts are managed from the Gas Emergency Center (GEC). The team at the GEC keeps

track of discovered leaks, leak reports and the location of the repair crews. Using the output of the

DASH report, the team creates a plan for the leak survey crews to survey the entire affected area based

on likelihood of damage estimated by DASH. At the same time, they manually assign workers to active

leaks that have been identified already. The process is summarized in the figures below:

Response initial Damage Evaluation Ongoing Evaluation & Repair

Activation DASH Directed AK&IM Directed

-2hrs '12hrs 12+hrs

Figure 1-2 Emergency Response Timeline

Gas E egnc Cete Resoe Ongoing

Activate AK&IM Response Team and check in with GEC

Collect required data and contact information

I Review initial damage and leak survey data

Plan AKMM Leak Survey and Patrol

Develop mitigation plans for damaged assets

Figure 1-3 Emergency Response Flow Diagram

There is not official criteria to decide when the systems has been restored. For the purpose of this

project and based on the interviews we have conducted, the system is restored after the following tasks

are completed:
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1- All areas marked by the DASH report and the Integrity Management team are surveyed for leaks. This

task is performed by Leak Survey

2- A field service member ensured that all customer reported incidents (dispatch calls) are made safe.

This task is performed by Gas Service Reps. (GSRs)

3- Relight jobs are completed. This task is performed by GSRs as well

4- All grade 1 leaks are repaired. This task is performed by the Maintenance Crews

Tasks 1 and 4 have their own dedicated crews to do the job. Tasks 2 and 3 are completed by the same

crew type. Since tasks are performed by different crews, the planning for each crew type is

independent of the other crew types.

The model is expected to produce the following:

a. Expected restoration finish time for each task (tasks 2 and 3 are pooled together)

b. Crew allocation by division

c. Where the crews should come from. For example, San Francisco should get five GSRs from San Jose

yard and San Jose should get two GSRs from Oakland.

1.3 Thesis Overview and Contribution

In this thesis, we will first present the methodology PG&E uses to generate predicted damages. Then,

we will discuss what data will be available to us and outline how this data is transformed into predicted

damages for pipes.

Then the thesis will go over the method we used to generate the predicted customer service calls per

area. It will first present how PG&E currently estimates the number. Then, it will present a model that

can provide better accuracy for estimating the numbers. We also highlight how to improve the models if

more earthquake data is available in the future. Our major contribution in this section is studying which

factors predict odor calls and how to estimate the number of odor calls PG&E expects to receive after of

an earthquake. When more data is available, PG&E can use the same methods to estimate the number

of calls rather than the static method they currently use.

In Chapter 4, we will present how the resource allocation problem can be formulated as a load-

balancing problem. We will present different formulations and discuss the run time and
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benefits/drawbacks of each model. More specifically, we create a two-stage optimization model and a

one-stage optimization model. We ran both models on different scenarios and we compared the results.

We also highlight some key insights we got from combining the travel and allocation problem in a single

stage optimization problem.

We will also go over the sources of uncertainty we have in our data. There are three sources of

uncertainty in the model. In this thesis, we will model one of the sources of uncertainties and outline

how the other two can be incorporated into the model in the future.

Finally, we will generate ideal outputs for some of the likely USGIS scenarios that PG&E includes in their

emergency response plan.

We have three contributions in the resource allocation section. First, we formulated the problem to with

earthquakes emergencies in mind. We also ran the model on multiple earthquake scenarios and

presented the results. Second, we present a way to combine the two stages of optimization (allocation

and routing) into a single-stage formulation that takes into consideration the travel times when

allocating jobs to crews. Finally, compared to the model presented by Whipple [10], we assign jobs to

crews rather than divisions. Given how PG&E assign jobs, this formulation is more applicable.

Better allocation of resources will allow PG&E to reduce its restoration time. This will allow PG&E to

mitigate the risk of earthquake impact. Additionally, reducing restoration time is critical to improve

PG&E's public image and show the regulators that PG&E is well prepared for natural disasters such as

earthquakes.

13



2 Literature Review

2.1 Damage Prediction in Pipelines Infrastructure

The ALA (American Lifelines Alliance) [1] presented procedures that can be used to evaluate the

probability of earthquake damage to water transmission systems. They created a model that estimates

that repair rate per unit length of pipes as a function of ground shaking. They identified different

parameters that determines the relation between ground shaking and the repair rate such as pipe age,

pipe material and soil corrosiveness.

Pineda and Najafi [2] examined the seismic damage estimation models for buried pipelines developed

over the last three decades. PGD (Peak Ground Displacement) is what physically causes the damage.

However, it is not easy to estimate given the current widely deployed sensor technologies. Moreover, it

is well documented that PGV (Peak Ground Velocity) is a convenient parameter that is very easy to

estimate and well correlated with pipeline damage. We will examine the relationship between PGV and

odor calls as a proxy for leaks

Most the damage models were originally developed for segmented pipelines. Most of the damages

happen at the joins. HAZUS-MH developed by FEMA [3] suggest that to estimate the damages for

continuous pipelines, we use the same fragility relations of segmented pipelines multiplied by 0.3.

However, their approach is likely overestimating the damages [2].

2.2 Optimization Literature Review

In emergency response, optimization concepts are not a novel approach and have been used in the

industry for a long time. Many papers addressed crew scheduling and crew placement. Yao et al. [4]

develops a model for pre-staging crews and then dispatching the once faults are discovered. A penalty is

applied if crews can not reach the repair site within a the target repair period and the model attempts to

minimize the penalty. Guha et al. [5] develops two algorithms for crew assignment problems. The first

version allows customers to have different priority and tries to minimize the cost incurred by high

priority customers. The second tries to minimize the restoration time for the entire system.

When dealing with uncertainty, many papers use stochastic or robust approaches to deal with the

uncertainty. Herrolean and Leuus [6] provide a good review of the various techniques available for

scheduling under uncertainty. Balwani [7] showed how a stochastic optimization can reduced overtime
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repairs at gas utility by looking at multiple classes of resources. Bertismas-Sim [8] developed an

algorithm using uncertainty sets that takes into account the uncertainty in repair times. The paper

provides a way for tradeoffs between robustness and performance. They also showed that the

formulation is also valid for MIP [9]

Fiedrich and Gehbauer [11] developed an approach that optimized resource assignments by modeling

the dynamic aspects of responding to earthquake emergencies during the early search-and-rescue

operations. This search-and-rescue is analogous to PG&E's locate-and-cap part of the earthquake.

In this thesis, we modeled the problem as a mixed integer program following a similar model developed

by Whipple [10]. A major limitation of the first model we present in this paper is that it assumes there

are no uncertainties in the data set. We then took an approached developed by Bertsimas and Sim [10]

to create a trade-off between robustness and optimality, which also extends to Mixed Integer Programs

[10].
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3 Damage Prediction

3.1 Overview of the Damage Prediction and Data PG&E Currently Uses

In terms of data capability, PG&E have been rapidly improving over the last few years. However, given

the amount of data they have, there is more to be desired when it comes to creating insights from data.

PG&E uses DASH to predict the likelihood of leaks and the number of leaks in every area immediately

after an earthquake, as we will describe later in this chapter.

Right now, PG&E does not have the capability to predict the expected number of customer calls. When

allocating resources, the assumption is that the number of calls they get in an area is proportionate to

the leaks in an area. This assumption is used when planning for resources just after an earthquake event

hits.

PG&E uses a tool called TAMI (Tactical Analysis Mapping Integration) to plot the customer calls on a

map. They can also see where resources are available on the same map and send resources to respond

to customer calls in real time.

The screenshot below show's TAMI's view during the Napa earthquake. The green pins represent

customer calls that have not been resolved yet. The contour plot shows the intensity of the earthquake

and the red diamond in the most-inner area is the epicenter.
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Figure 3-1: Odor calls overlaid on top of Napa earthquake shake map

Using TAMI, PG&E predicts where leaks might be. If many customers call and report gas odors in a

limited geographical area, they create an event (called area odor call) and send leak survey crews to that

area. Odor calls are believed to be an indicator of a leak. This approach relies heavily on the planner's

knowledge and their knowledge of the assets located in areas with potential leaks.

PG&E still have to send a GSR to respond to those calls within a reasonable amount of time (30-60 min

during normal operating procedures). During emergencies, the respond to less critical calls might be

delayed, as resources are limited. A major limitation of PG&E's current approach to customer calls is

that they respond to them after the fact. GSRs can be better utilized and positioned if we can predict

customer calls in advance.

17



3.2 Data Available

The only major earthquake PG&E had some data on was the Napa 6.0 earthquake. There are two types

of damages we are trying to predict. The first one is the leaks in the PG&E transmission and distribution

network. The second is the customer calls that a GSR needs to attend.

The Napa earthquake only caused seven grade-1 leaks (the only type of leaks we are concerned with

during emergencies) and most of them were caused by buildings moving off the base and breaking the

riser coming off the ground. Thus, it was hard to build a prediction model to predict the leaks.

Another intuition we had was to use a similar process to what PG&E uses. We can look at customer odor

calls as a proxy for leaks and establish with the few data points we had if there would be at least a

correlation between the leaks and the density of customer calls. However, with those few data points,

we could not find any statistically significant correlation. Thus, we had to find a different way to get an

estimate that we can use in the optimization model during different expected earthquake scenarios.

Given the limited data we have about leaks, we used the DASH repair rate (the number of leaks per mile

of pipes) to calculate the expected number of repairs in a given area. However, due to the lack of major

earthquake in the last 25 years, we could not verify the estimate.

As for the customer calls, there were enough calls to build a model estimating the expected number of

calls coming from an area affected by the earthquake. To construct our model, we utilized PG&E assets

data, workers data, and leak repairs data. We also used the Napa 6.0 earthquake dispatch data to

predict the number of dispatch calls we expect. Finally, we also used the USGS earthquake scenarios to

build create scenarios which we can use to run and test our model.

3.3 DASH Overview and Leaks Estimates

The current gas pipeline repair estimates is based on a methodology developed for predicting water

pipeline repair rates based on empirical data. It was developed by the American Lifeline Alliance [1].

While the water and gas pipeline share many features, some fundamental differences exist (e.g. gravity-

fed vs pressurized systems); model parameters have been revised in order to reflect those differences

when possible.

The three major components for the damage estimate methodology are inventory data, seismic hazard

data and pipeline damage models.

18



Pipeline Data: The inventory was provided by PG&E. It includes information about 50,000 (7200 miles)

pipeline segments and about 22,000 distribution plat sheets (23,000 miles of pipes).

Seismic Hazard Data: The hazard data include estimated patterns of ground shaking provided by USGS

as well as estates of ground displacement resulting from liquefaction, landslides and fault ruptures.

Pipeline Damage Models: The function form of repair rates is represented in equations 1 and equation 2

for ground shaking and ground failure respectively

Repair Rate = K1 x 0.00187x PGV (3-1)

Repair Rate = K2 x 1.06 x PGD 0319  (3-2)

Peak ground acceleration (PGA) is equal to the amplitude of the largest absolute acceleration recorded

on an accelerogram at a site during a particular earthquake.

Peak ground velocity (PGV) is the greatest speed (rate of movement) reached by the ground. PGV

merely expresses the peak of the first integration of the acceleration record

Permeant ground displacement (PGD) is ground movement during an earthquake. PGD is estimated by

double integrating the PGA.

K1 and K2 : constant scaling factors to reflect the differences when compared to baseline pipes

After an earthquake hits, PG&E uses the repair rate and aggregate the expected number of leaks over a

division to come up with the leaks distribution. The number of dispatch calls is assumed to be ten times

the expected number of leaks. In the next section, we provide an alternative mechanism that can be

used to better predict the number and the location of dispatch calls.

3.4 Model Formation and Implementation for Estimating the Number of Dispatch Calls

As mentioned in the previous section, the number of dispatch calls is assumed to be ten times the

number of expected leaks. We wanted investigate how to better estimate the number of dispatch calls.

In this section, we go over multiple models to estimate the expected number of dispatch calls received

due to an earthquake.

To start building the model, we first wanted to know which calls are caused by the earthquakes. We

started by looking at calls in areas that were impacted by the earthquake. We created a baseline case of

19



how many calls do we expect in a normal day at each hour of the day. We then then looked at the times

where the number of calls was significantly higher than what we expect in a normal day to determine

how many hours after the earthquake we want to consider when counting the dispatch calls received

for a normal day.

By looking at how many calls we revived per hour, we can tell the calls are indeed caused by the

earthquake. For example, during the early morning hours (3 - 7 am), we do not see many calls during a

normal day. However, during Napa, which started around 3:20 am, we can clearly see the spike in the

number of received calls. We see another spike at 8 am when people wake up and see that an

earthquake happened last night (or potentially find a leak and call)

Calls Recived During Napa vs Normal Day
140 - -- -

120

S100 -__ ______

80 -

60 - NapaE
2 40 Avg

20 4--

0 -
1 2 3 4 5 6 7 8 9 101112 13 1415 161718 19 202122 23 24

Hour of the Day

Figure 3-2: Customer calls received during Napa earthquake compared to a normal day

Using the NAPA earthquake data, we divided the affected area into a 0.25 km x 0.25 km squares. We

then tried to correlate the dispatch calls density with the intensity of the earthquakes in those areas. We

divided the data set into the training dataset and a testing dataset. We used the training dataset on

multiple algorithms to create the model.

We first started by trying to create a simple regression model between the Peak Ground Velocity (PGV)

which represents the earthquake intensity and the number of dispatch calls received in an area. The

results of this model are show below:
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Dependent Variable:

#Dispatch Calls: DC

Independent Variables:

Earthquake Intensity (represented as Peak Ground Velocity PGV): PGV

PGV Line Fit Plot

4

+ + a 4

+ +. + +*

20 40 60 80

* Dispatch Calls

* Predicted Dispatch Calls

100

PGV

Figure 3-3: Correlation between earthquake intensity and the number of dispatch calls

Regression Statistics

Multiple R 0.45

R Square 0.20

Adjusted R

Square 0.20

Standard Error 1.91

Observations 1511.00
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ANOVA

Significance

df SS MS F F

Regression 1 1352.65 ###### 372.67 2.20E-74

Residual 1509 5477.15 3.63

Total 1510 6829.81

Intercept

PGV

Coefficients

-0.321

0.052

Standard

Error

0.072

0.003

t Stat

-4.472

19.305

P-value

0.000

0.000

Lower

95%

-0.461

0.046

Upper

95%

-0.180

0.057

Lower

95.0%

-0.461

0.046

Upper

95.0%

-0.180

0.057

It was clear from the results that the earthquake intensity does correlate to the amount of calls we get.

However, it was also clear that there were other missing factors. Given that customers initiate the

dispatch calls, we decided to introduce the customer's density within that area as an independent

variable. This model looks at the effects of both the customer density and the intensity of the

earthquake. In the graph below, the color of the square represents the customers' density, the counter

plot represents the intensity of the earthquake and the dots represents the location of the dispatch calls

PG&E received up to 8 hours after the earthquake.
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Figure 3-4: Customer's density, dispatch calls and earthquake intensity overlaid

The model is formulated as follows:

Dependent Variable:

#Dispatch Calls: D

Independent Variables:

Number of Customers: NC

Land Slide Susceptibility: LS (between 0 - 5)

Peak Ground Velocity: PGV

Soil Corrosiveness: CR

23



The regression output is shown below:

Linear regression model:

DC ~1 + LS + CR*PGV + NC*PGV

Estimated Coefficients:

Estimate

(Intercept)

LS

CR

NC

PGV

CR:PGV

NC:PGV

-0.80312
0.069426

0.23182
-0.0025837

0.048099
-0.016831

0.00045192

0.30648
0.032602

0.098314

0.00056008

0.023644

0.0076699

1.9693e-05

-2.6205
2.1295
2.358

-4.6131

2.0343

-2.1945

22.949

0.0088682

0.033378

0.018503

4.3043e-06

0.042095

0.028354

3.5945e-100

Number of observations: 1511,

Root Mean Squared Error: 1.5

Error degrees of freedom:

R-squared: 0.502, Adjusted R-Squared 0.5

F-statistic vs. constant model: 253, p-value = 1.34e-223

While the model above had relatively good results, some the parameter estimates don't follow with

what one might expect. For example, the number of customer is negatively correlated to the expected

number of calls even though we would expect the correlation to be positive. To further investigate that,

we looked at the effect of the number of customers at different PGV values. The figure below shows the

effect of the number of customers is insignificant when PGV is low. This makes intuitive sense since we

don't expect more calls in areas that were not affected by the earthquake.

24
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Figure 3-5: The effect of the number of customer's when PGV is low

3.5 Results

The table below shows summary results on the training and testing data sets from the different models

we ran. See we describe the models in more details in appendix A

We can see that the pairwise interaction models performs much better than the model with no

interactions. Looking at the data, the variable that explains most of the variance in the number of calls is

the pair-wise interaction between the earthquake intensity and the customers' density. This intuitively

makes sense. Even if an earthquake hits an area hard, there will not be many calls if the area has a very

small number of customers.

3.6 Conclusion and Future Work

We showed that the amount of dispatch calls received from an area is correlated to the intensity of the

earthquake in that area. Given the earthquake used to generate the data had a relatively very low

25

Method R-Square Train R-Square Test

Regression (No interactions) 0.33 0.22

Regression (Pair-wise interactions) 0.50 0.49

Neural Network 0.61 0.50
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impact, it is not clear if those calls would help in finding major leaks in a more severe event or if the

number of calls would be exponentially higher in a major event.

In addition, we suspect that there is a psychological factor as well. We believe that people are more

likely to report a leak if they feel an earthquake even if there was never a leak to begin with. This can be

seen from the Napa data. Most of the reported leaks were not actual leaks.

It would be helpful to revisit the relationship in the future if more earthquake data is available. We

believe that a relationship between the intensity of the earthquake and the amount of customer calls

PG&E gets can be established. Furthermore, the dispatch calls can be used as a proxy to help locate

major leaks early on during the emergency response effort. This would decrease the risk of major

incidents significantly. Finally, in the future, this model can be used as an input to the resource

allocation model during emergencies to improve GSRs allocation. This could give better results than the

current static assumption of dispatch calls to expected leaks ratio.
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4 Resource Allocation Model

4.1 Introduction to Emergency Restoration Tasks

During earthquakes, PG&E stations crews at sites called base camps. The crews operate from those base

camps to serve the divisions they are assigned to. Those locations can be PG&E facilities or can be also

municipal locations such as parks or schools where PG&E can temporary stage crews during the

restoration period. PG&E's main goal is to improve the safety of the system by repairing leaks and

responding to customer calls quickly. They are also interested in reducing service interruptions and

improving their public image.

Currently PG&E uses a manual process to handle crew assignment. The emergency response team uses

their best educated guesses to determine how many crews to assign to each division. Those decisions

are likely to be sub-optimal specially since they usually lack experience to deal with earthquakes since

most of them weren't working at PG&E during the last major earthquake. An understanding of what

damages to expect and how to balance the workload between different divisions will aid the emergency

response team in making restoration plans that ensures the system is restored in the shortest time

possible.

As we mentioned in the process overview section, we consider the system to be restored after 3 types

of tasks are completed. A different crew type handles different tasks. The tasks are:

1- All areas marked by the DASH report and the Integrity management team are surveyed for leaks. This

task is performed by Leak Survey

2- A field service member ensured that all customer reported incidents (dispatch calls) are made safe

and relight jobs are completed. This task is performed by Gas Service Reps. (GSRs)

3- All major leaks (grade one) are repaired. This task is performed by Repair Crews

For the purpose of this thesis, we consider the tasks to be independent. This is not necessarily the case

since repair crews can not repair a leak before it's found by a leak survey crew or a GSR. However, given

that the rate at which leak survey crews find leaks and the number of available GSRs, leak repair crews

should have a backlog of jobs to work with during the emergency.

The model is expected to produce the following:
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a. Expected restoration finish time for each task (tasks 2 and 3 are pooled together)

b. Crew allocation by division: how much of each crew type a yard gets.

c. Where the crews should come from. For example, San Francisco should get 5 GSRs from San Jose

yard and San Jose should get 2 GSRs from Oakland.

The block diagram below summarizes the process, we are modeling the last block in the process:

Travel time between
divisions

Crew availability

-- Restoration time

Workers job-
Shake maps - Estimation A assignments

Mode Mssgnmnl
-- Travel plan

Figure 4-1: Resource allocation model block diagram

4.2 Input Data to the Model

As highlighted in the block diagram (figure 4-1) above, the resource allocation model takes three types

of inputs. A summary of the input data for SA 7.9 scenario will be presented in appendix E. In this

section, we will describe the inputs to the model. We will describe what data was available to us and

what where our assumptions as well.

4.2.1 Worker's availability

We used current worker's shift data to figure out a baseline for the number of worker's available in our

simulation. We assumed that 80% of the worker's are be available during the emergency response. Of

the available worker's, one third is immediately available and the rest will be available after two-hours

of the earthquake. The model can take into consideration that workers are not immediately available to

work on restoring the system when allocating the workforce. During a real event, the worker's

availability should be constructed based on who is actually available to achieve the optimal outcome.
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4.2.2 Expected number of leaks:

The number of leaks were derived from the DASH output as we described in the previous chapter. Using

the repair rate for every plat and the length of pipe in that plat, we can aggregate the number of leaks of

each type of pipes. We used the pre-generated earthquake scenarios as an input to our model since we

did not have earthquakes data to test against. However, given that DASH uses a method that was

originally developed for different kind of pipes, this number is treated like an upper limit.

4.2.3 Repair times:

Another input data to our optimization model is the repair times for leaks. The data we had included

start and end time for repairs, type of soil (clay, loam, rock, sand, or not-specified) and the type of pipe.

The type of soil did not have significant correlation with the repair times. However, the type of pipe did

change the expected repair time. Appendix F have detailed histograms for the repair times. The data is

summarized in the table below.

Type of Pipe Average Repair Time Standard Deviation Sample Size

Steel 257 min 279 818

Plastic 284 min 261 775

All 264 min 302 4945

We ran our model with all pipes data since we did not divide the leaks by the pipes type. However, if

those data are available, the model does allow us to have different types of leaks and different repair

times of each type.

4.3 Problem Formulation

To solve the allocation problem, we modeled the problem as a load balancing work assignment

problem. We used two different optimization approaches. The first model has two-stages and has very

similar structure to Whipple[10] model. The second model handles combines both stages as one

optimization problem.

4.3.1 Baseline Formulation (two-stage optimization)

Stage 1

The goal is to decide how many crews to staff at each location based on the number of estimated repair

jobs in each area after an earthquake. Each repair job is assigned to a division.
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The mathematical model is represented as the following MIP problem:

Objective Minimize C

S.T.

C C
k

YmkXmk < Ck

Xi = 1

Ck* !! Mk

(4-1)

(4-2)

(4-3)

(4-4)

(4-5)

(4-6)

C > mk

Xik E {O,1}

Where C* is defined as

(4-7)
C= Ck x C

C

Constraint (4-1) ensures that no workload Ck exceeds the worst-case load C. Constraint (4-3) ensures

that all jobs are attended. Division capacities and minimum staffing are ensured by constraints (4-4) and

(4-5).
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Notation Description

Decisions Xik Binary variable that indicates if job j is assigned to yard k

Ck Variable representing yard k workload

Ck Number of crews assigned to yard k

C Variable representing total workload

Data Yjk Time it takes to finish job j from yard k

Mk Maximum capacity of yard k

mk Minimum number of crews required to stay in yard k

C* Total number of crews



Since division cover a large area, we have decided to move away from trying to assign a job to division

and instead assume a job will be handled by the division where the leak is estimated to be.

Stage 2

Now that we've decided how many repair crews to station at each division, we can determine how to

reach that allocation. This problem can formulated as a network min-cost flow problem.

Notation Description

Decisions f(v, w) Variable that indicates the number of worker's between divisions v and w

G(V, E) G = (V,E) where V represents divisions and E represents travel routes

c(v, w) Travel costs in hours between two divisions
Data

b(v) Number of crews required (or available) at a division

u(v, w) Road capacity between two divisions

b(v) is calculated as the difference between the current staffing at a division and what it needs

according to the solution of the first formulation

min Z (V,w)E c(v, w) f(v, w)

subject to

ZWEy f(v,w) - ZWEy f(w,v) b(v) v V E V

f(v, w) > 0 V (v, w) E E

f (v, w) u(v, w) V (v, w) E E

(4-1)

(4-2)

(4-3)

After developing the previous formulation and discussing it with PG&E, it didn't make sense to look at

assigning jobs to divisions for multiple reasons. The main reason is that most jobs are automatically

assigned to the division where the leak falls under. Moreover, supervisors operating from the

basecamps are more familiar with their area and assigning having supervisors from different divisions

manage the jobs could add unwanted delays.

Thus, we can determine the best allocation (stage one) by calculating the workload ratio of every

division relative to the total workload and assigning workers based on the relative workload ratio.
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More specifically,

C

Ck =1k

C = ZK Ck

Where Ik is the number of leaks located in division k.

4.3.2 Combining Crew Allocation with Travel (1-stage optimization)

In the previews section, we formulated the problem by decoupling the allocation problem and the crew

routing problem. This could lead to a suboptimal solution. First, it lacks the ability to represent that a

worker can work in multiple divisions. For example, a worker can start by attending the work in their

initial division and then go to a different division once they are done. Moreover, it artificially increases

the available hours by not taking into consideration the wasted travel time.

To model those limitations, we consider traveling between locations as a special job that adds to the

workload of the crew. In addition, unlike the previous formulation, we look at the problem from a crew

standpoint. Our decision variable indicates whether a job is a assigned to a specific crew or not. In

contrast, we assigned jobs to divisions in the previous model.

In this model, we create another decision variable, which indicates which workers need to travel to a

specific location. Workers can not work on a job in division k unless they are based in that location or

they travel there. A sided benefit of this formulation is that we can also assign dummy jobs to crews

who are not going to be available at the beginning of the restoration effort but are expected to show up

few hours after the work had started.

In this formulation, the restoration time is the time it takes the last crew to finish their job. In its

essence, it is a load-balancing problem between crews. In the figure below, the restoration time would

be 24 hours.

TnO 2 4 6 8 10 12 14 16 18 20 22 24
Crew 1 Travel Time Work
crew 2
Crew 3 Not availabl Work
Crew 4 Travel Time

Figure 4-2: Sample output from the resource allocation modelfor each worker
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LP formulation:

Min L

s.t.

Z; Xijk d + Z k Yitik L

XiJk hik - Yik

&Z Yi k 1

>i &k Xik 1

Xik, Yik e {0,1}

for all i e W

for all i,j,k E W,J,K

for all i E W

for all j e J

for all i,j,k E W,J,K

Constraint (4-2) ensures that workers can only do work in their home division or in another division if

they take the trip to that division. Constraint (4-3) limits workers travel to one trip during the planning

period. We impose this constraint for both operation and simplification reasons. Constraint (4-4)

ensures that all jobs are attended. The worst case workload is enforced by constraint (4-1)

One issue with this formulation the size of the MIP. We have O(i xj x k) decisions variables. This leads

to a very long run time when trying to solve the problem to optimality. The solver took more than a day

to reach a 5% gap, which is considered long time for the intended purpose. Even if kept running for

another day, it never found the optimal solution.
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Notation Description

Xiik Binary variable that indicates if worker i is assigned to job j in yard k

Decisions Yik Binary Variable that indicates if worker i travels from home location to yard k

L Variable representing the maximum workload across all workers in minutes

tik time it takes worker i to travel to yard k

Data dk Average time of a job in yard k

hik Parameter that indicates iif worker i home location is yard k

(4-1)

(4-2)

(4-3)

(4-4)

(4-4)



Since the previous formulation was taking a long time, we decided to change reduce the size of the

search space. The data we have only includes average repair times and doesn't indicate how long a

specific job is expected to take. Thus, we modified the formulation slightly to reduce the number of

variables. Instead of having a variable for every crew for every job, we have a variable that indicates the

number of jobs assigned to a crew in a specific location. We also added another term that indicates if a

worker won't be available at the begging of the restoration efforts as suggested by the company. The

modified formulation:

Notation Description

Xik Integer variable representing the number of jobs assigned to worker i in

location k
Decisions

Yik Binary Variable that indicates if worker i travels from home location to yard k

L Variable representing the maximum workload across all workers in minutes

tik time it takes worker i to travel to yard k

dk Average time of a job in yard k

Data hik Parameter that indicates iif worker i home location is yard k

a Expected unavailability of worker i

jk Expected number of jobs in yard k

Min L

S.T

E YXikdk + EL Yikktik + ai L

Xik 200 (hik + Yk)

ZkE Yi k 1

Zi Xik jk

Yik E {O,1}

Xik E Z

for all i E W

for all i,k E W,K

for all i E W

for all k E K

for all i,j,k E W,J,K

for all i,j,k E W,J,K

(1): worst case workload is the sum of jobs assigned to a worker, the travel time, and their initial

unavailability
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(2)

(3)

(4)

(5)
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(2): Workers can not be assigned to jobs unless it's in their home location or they travel. 200 is an

arbitrary large number that we do not expect we will reach. It is just an upper limit of how many works

can be assigned to a worker in one location.

(3): A worker can only travel to one other yard

(4): All jobs in a division must be attended

4.4 Solving the Problem with Uncertainty

The models we presented in the previews section assumes that all the data is available before we run

the model. However, this is clearly not the case especially when running the model during the first few

hours of the restoration efforts. There are three sources of uncertainty in the model. Those sources are:

1. The number of required repairs at each division: The number of damages in each division is

based on the damage model. As mentioned in chapter x, this model was tested only on small-

scale earthquake. However, based on literature review and the small-scale cases PG&E faced, I

can confidently say that this model is close to a worst-case scenario [PGA paepr]. This mean that

by solving for this scenario, our solution will be valid for almost all scenarios.

2. Crew availability: The model right only takes into account available crews or crews expected to

arrive at a certain point in the future. However, if the crews are delayed or they don't show up,

the solution won't be valid. However, given that the optimization solver runs relatively fast, it's

possible to run the model again if new information regarding crew availability becomes available

3. Repair times: In our optimization, we assumed all repairs take a nominal value d,, However, this

will never be the case.

It is important to program those uncertainties into the model. More specifically, we want to ensure our

solutions are always valid despite the variation in repair-time values. Recall from our previous relaxed

model the only constraint using unknown workload (dk) was the following:

E YXikdk + E Yiktik + a Lfor all i E W (1)

To consider all possible value of (dk), we can change this constraint and ensure our optimization is still

valid for all values of (dk)

k Xikdk + EkYiktik + ai < L v i e W, v dk U (1)
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We define Uto be the set of all values dkcan potentially take on. This new constraint ensures that all

solutions from this model are valid. However, the model is no longer a MIP. We can re-model the

formulation back to a MIP using a box constraint.

4.4.1 Robust Optimization Using a Box Constraint

To reformulate the program as an MIP program again, a simple way is to use box constraint. We simply

assume that all dik values fall in the range dik e [lik, uik]. Now our uncertainty set is the following:

Uk = fdIVi,lik dik Uik}

Now our constraint from the previous section:

Ek Xikdk - ELkYigtik + ai 5 L V i E W, V dk U (1)

can be rewritten as follows:

Ek XikUik + Ek Yiktik + ai L Vi E W (1)

In this formulation, we are assuming all repairs take the worst case scenario. This ensures that our

solution is valid and easy to implement. However, given that repair times are likely to be i.i.d, it's

extremely unlikely that all the repairs take the worst case value which lead to a significantly higher and

conservative objective value [8]. In the next section, we present a method to balance robustness and

performance using Bertsimas-Sim uncertainty sets which they presented in their paper "The Price of

Robustness" [8]

4.4.2 Robust Optimization Using Bertsimas-Sim Uncertainty Sets

Bertsimas and Sim [8] proposed an approach that balances robustness with performance. They present

a flexible formulation that offers a way to trade between robustness and performance.

Let dik take values in a distribution in the interval [dik - dlk, dik + d, ]. We introduce parameter F

that indicates the number of leaks that take the worst case. The role of F is to adjust the robustness of

the solution. The goal is to protect against all cases up to F. We will discuss the ideal selection for F in

the next section.

We can represent this uncertainty set as follows:

Uk = {dIVi,dik E [dik - d-k ,dik + dig ]' d- d- k r}
dik
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We can make the constraint robust by dictating the following

dik = dik + d-ik Uik

Where dik is the nominal repair time value and dik is the potential deviation from the nominal value.

The total deviation from the nominal value must be bounded for all d-i and therefore all Uik must

reside in the following uncertainty set:

Uk,u = {U I EVUik [-1,1]; Iuik I [1

Using this representation, the original constraint can now be rewritten as follows:

>k Xikdik + Ek Yiktik + ai + max Zi Xik dik Uik 5 L
uEUk,u

V i E W (1)

The max problem on the right hand side is a liner optimization problem and can be formulated as

follows:

Maximize Zi Xik dik Uik

subject to

Zi Uik < F for all k

0 Uik 1 for all u E U

Following Bertsimas-Sim model, we can show that the problem can be re-formulated as follows:

Min L

S.T.

Ek Xikdik + Lk Yktik + U1 + zi F + Zk Pik Li

Xik 200 x (hik + Yk)

Y> Yi < 1

Ei Xik jA

L L i

for all i E W

for all i,k E W,K

for all i E W

for all k E K

for all i E W

(1)

(2)

(3)

(4)
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Zi + Pik : dSik

Xik Sik

Pik 0

Zi 0

Sik 0

for all i,k E W,K

for all i,k E W,K

for all i,k E W,K

for all i E W

for all i,k E W,K

This new formulation have a robust solution. The solution still can be infeasible for some values

distributions of repair times. Larger r values produce more robust solutions but it will potentially reduce

the optimality of the solution.

In the next section, we will discuss how to choose the values for U and dik by examining the historical

repair times distributions and noting how that led to our decisions for U and dik.

4.4.3 Determining the Robustness of Solution

Determining the ideal parameters values for the robust optimization requires that we look at and

analyze the historical repair data. Fortunately, PG&E has the information about all leak repairs all the

way back to 2009. Using this data, we can try to look at the repair time distribution to determine the

ideal parameters for the robust optimization. The distribution of the leaks' repair time looks as follows:

- T~ m Op

180NO0

140

120

100

80

40

Fi e 4: t100

Figure 4-3: Repair times distribution histogram
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After excluding some outliers, we choose the nominal dik to be the average and the half width to be 2

times the standard deviation. This leads to dtk = 264.61 and dk = 604.1.

To choose F, we ransimulations for each scenario by selecting random draws with replacements from

the repair times' histograms. Then, we can calculate the relative error from the average repair time as

follows:

| dik - dt I
f = Ydik

We ran 10,000 simulations. For each simulation, we used the average number of repairs per worker with

generated using the model from the previous section under different crew availability scenarios and

earthquake scenarios.

To ensure that our solution will be valid with a high probability, we selected F such that in incorporates

a significant portion of the histogram. We believe a 9 5th percentile is sufficiently robust to meet the

operations needs of PG&E. Under the San Andreas 7.9 magnitude earthquake (SA7.9), the 9 5 th

percentile F = 6.18 under the assumption that all crews will be available. Appendix B contains the

simulation results of different scenarios.

4.5 Comparison of Optimization Results

To compare the formulations, we tested them on the SA7.9 scenario. We started by generating the

predicted damages at each division using the shake maps from USGS and the DASH models. The graph

and tables below summarize how the damages are distributed.
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Location Location

Name Repairs Name

Central Coast

De Anza

Diablo

East Bay

Fresno

Kern

Mission

North Bay

North Coast

North Valley

Peninsula

Sacramento

San

Francisco

San Jose

Sierra

Stockton

Yosemite

Santa Rosa

496

1367

22

192

0

0

319

225

129

0

1384

8

563

891

0

0

0

0

Central Coast

De Anza

Diablo

East Bay

Fresno

Kern

Mission

North Bay

North Coast

North Valley

Peninsula

Sacramento

San

Francisco

San Jose

Sierra

Stockton

Yosemite

Santa Rosa
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Appendix D has a map with that shows how where from and to workers traveled. The results of each of

the formulation is summarized in the figure below:

Comparision of the Models'
160
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.. .. . ......~ - . - ~ - - - - . ~
-~

- - -
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-b -,

U Baseline (2-stage) N One-stage .95th Percetnile Robust 0 Intial Allocation

All three models produce very similar results and within margin of error of the data. The results

indicates that the base model allocates more crews to area's that are not the most affected areas by the

earthquake. This happens because in that formulation, we do not consider the travel times when

deciding on the ideal allocation. This artificially increase the time crews who travel to more damaged

area have. Aside from that, there does not appear to be any difference in allocation between the robust

formulation and the deterministic version of the formulation.

We wanted to carry out further investigation on how and when the models could differ; we took into

consideration the changes in the network due to the earthquake. More specifically, we wanted to see

how the effect of inaccessible roads and bridges would affect the results of the two-stage optimization

and the one-stage optimization results.

To get the results, we ran the models again but we modified the time it takes to get through highways

by a factor of two. We also made all bridges in the affected area inaccessible. We got the following

results:

42



SA 7.9 Model's Resutis
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We can see in the data that running the model with increased travel times doesn't move crews around

as much as the other two runs. If we look at De Anza, and the Peninsula divisions, we can see 20%-40%

reduction in the allocation relative to the other two cases. The results suggest that it's not always better

to send crews to the most damaged area's if a significant portion of their time will be wasted in travel.

Tying it all together, if we do not consider travel times when allocating (two-stage optimization), we

might not allocate enough worker's to the most damaged area. This will lead to a sub-optimal solution.

However, if the roads are severely damaged, it might not make sense to send as many workers' to the

area's that are severely damaged since the time they spend traveling could be utilized somewhere else

in the system. Assuming that travel conditions improve after the first few hours, PG&E planners might

consider moving the workers to help in areas that are close to the most damaged divisions. Once road

conditions are improved, they can run another optimization to determine if they need to send more

workers to help. This is extremely relevant in cases where there are major accessibility issues. For

example, the Peninsula area is mainly accessible through bridges that are not going to be available after

a major earthquake.

Another approach PG&E can look into is to fly workers into the most damaged area. Such a decision

should be made when the expected restoration time is too long and many workers are not being utilized

since they can not reach their ideal allocation dentation.
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4.6 Conclusion

We presented a model that be used a guideline for PG&E to allocation their crews after an earthquake

hits. In this model, we accounted for errors. The model should produce a robust solution that is

sufficiently optimal. This will help in improving the restoration time of the over a completely manual

allocation

In our model, we did not consider all the factors that PG&E uses to make their decision. For example, if

possible, PG&E prefers to keep their crews in their home location. In theory, the optimal solution would

be to send worker from division A to division B and send another worker from division B to division C at

the same time. However, this leads to two workers leaving their home division. In such a case, PG&E

would opt to send a worker directly from division A to C and not send anyone from Division B to C.

Some other factors we didn't consider is the potential risk of the leaks. All leaks we consider are

classified as 1 (must be fixed as soon as possible). However, PG&E could send more workers to areas

with less leaks because they have more important customers in that area (e.g. hospitals). Given that not

all factors are present, PG&E is unlikely to follow the results for the model exactly but it can provide a

concrete sense on how should PG&E allocate their crews
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5 Conclusions and Future Work

During the initial stages of the projects, we identified multiple directions where we could have improved

upon in the current process. We have explored some of those areas while we have not talked about

other areas that could affect the restoration effort. In this chapter, we will talk about some of the future

work we identified that PG&E should explore in the future.

5.1 Improvements to the damage prediction model:

As mentioned in chapter 3, we did not have enough data at PG&E to further improve dash or create a

different model that could supplement it. We tried to look at earthquake data from different utilities but

given the limited time of the project, we did not think it was feasible.

PG&E can leverage the data available from earthquakes like Fukushima in Japan or the more recent

August 2016 earthquake in Italy. Even though the infrastructure is likely to be different, it will improve

the damage output currently generated by DASH.

In addition, PG&E should establish a mechanism to capture data related to earthquakes. More

specifically, if an earthquake hits in the future, we recommend that PG&E tags leaks, dispatch calls and

other types of damages related to earthquakes. This would allow PG&E to perform analysis on this data

to improve their damage prediction models in the future.

5.2 Improvements to the resource allocation model:

5.2.1 Decreasing the Uncertainties in Repair Times

Once we have a better granularity of locating damages, we can use repair times that for the specific

types of leaks we expect. In this project, we explored the factors that contribute to repair times such as

the type and size of pipes. Some of those factors were statistically significant. However, our damage

prediction model lacked the specificity to apply those differences to the leaks we expect to happen. So

we had to opt out and use the nominal repair times instead.

We believe that further exploring the repair times data combined with a better damage prediction

model could significantly reduce the uncertainty of the model and lead to better allocation of resources.

5.2.2 Examining the Relation between Crew Availability and Earthquakes

The availability of the crews is currently an input to the model. However, by knowing the work location

of the crews, we can estimate which crews are not going to be available. For example, we could predict

that workers in the affected area won't be available immediately. W We can potentially estimate the
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percentage of crews who are not going to be available. This is useful because PG&E currently does not

have a mechanism to verify who will be available other than the crews calling-in after an earthquake hits

to confirm their availability. This will help PG&E in coming up with an allocation plan as soon as an

earthquake hits.

5.2.3 Increasing the Granularity of the Model

Right now, the workers are assigned to divisions. We have decided to take this route given that the

damage data we have are not granular enough. A model to allocate workers to different yards/base

camps within division based on travel times could further improve the efficiency of the restoration

efforts.

5.3 Other Potential Improvements

5.3.1 Studying the Availability of Base Camps Space and Equipment

Currently PG&E have agreements with different entities to use their facilities as base camps during

emergencies. The location and capacity of basecamps will be decided during the emergency. While the

basecamps capacity is sufficient in theory. In practice, those base camps are shared with different

entities and are very likely not going to provide sufficient space to host all crews in one location.

Similarly, PG&E have contracts to get extra equipment to build the basecamps during emergencies. The

companies that provide the equipment have contracts with most other emergency responders in the

area (e.g. fire department). In the past, there were not enough equipment to meet the demand and

whoever requested the equipment first got it. Those limitations could affect the allocation model results

and should be further explored in the future.

5.4 Conclusion:

Earthquakes damage to utilities is unavoidable. Proper planning and execution during and after the

event ensures that assets are repaired in a timely manner to ensure the public's safety and reduce the

impact on communities.

In this paper, we provided data driven approach to help PG&E improve their earthquake emergency

response planning. Those models will continue to develop as more data becomes available and as part

of the earthquake preparation efforts that this project was part of. Part of the effort was running

simulations on potential earthquake. PG&E can use the output of those simulations during earthquake

emergencies if actual data is not available due to service interruption from earthquakes.
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The model's we developed only looked at the gas business line of PG&E. They can be used in different

service lines and under different types of emergencies as part of PG&E's effort for continuous

improvement.
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Appendix A: Dispatch Calls Regression Models:

(1) Simple Regression Model:

Linear regression model:

DispatchCalls ~ 1 + LNDSLIDE + CORRISVITY

Estimated Coefficients:

Estimate SE

+ NumberOfCus + PGV

tStat pValue

(Intercept)

LNDSLIDE

CORRISVITY
NumberOfCus

PGV

-0.93391
-0.031314

0.0056496

0.007175
0.050087

0.21464

0.03706

0.055687

0.00042551

0.0024637

-4.3512

-0.84496

0.10145

16.862
20.33

1.4454e-05

0.39827
0.9192

1.4232e-58

2.1917e-81

Number of observations: 1511, Error degrees of

Root Mean Squared Error: 1.75

R-squared: 0.326, Adjusted R-Squared 0.324

F-statistic vs. constant model: 182, p-value =

freedom: 1506

3.42e-127
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(2) Pair-wise Interactions:

Number of observations: 1511, Error degrees of freedom: 1506

Root Mean Squared Error: 1.75

R-squared: 0.326, Adjusted R-Squared 0.324

F-statistic vs. constant model: 182, p-value = 3.42e-127

>> mdl = stepwiselm(train,'interactions')

1. Removing LNDSLIDE:NumberOfCus, FStat = 0.015853, pValue = 0.89982
2. Removing LNDSLIDE:CORRISVITY, FStat = 0.1442, pValue = 0.70419

3. Removing LNDSLIDE:PGV, FStat = 0.52634, pValue = 0.46826

4. Removing CORRISVITY:NumberOfCus, FStat = 1.9659, pValue = 0.16109

mdl =

Linear regression model:

DispatchCalls - 1 +

Estimated Coefficients:

(Intercept)

LNDSLIDE
CORRISVITY
NumberOfCus
PGV
CORRISVITY:PGV
NumberOfCus:PGV

LNDSLIDE + CORRISVITY*PGV + NumberOfCus*PGV

Estimate

-0.80312
0.069426

0.23182
-0.0025837

0.048099

-0.016831

0.00045192

SE

0.30648
0.032602

0.098314
0.00056008

0.023644

0.0076699

1.9693e-05

tStat

-2.6205
2.1295

2.358
-4.6131

2.0343
-2.1945
22.949

pValue

0.0088682

0.033378

0.018503

4.3043e-06

0.042095

0.028354

3.5945e-100

Number of observations: 1511, Error degrees of freedom: 1504

Root Mean Squared Error: 1.5

R-squared: 0.502, Adjusted R-Squared 0.5

F-statistic vs. constant model: 253, p-value = 1.34e-223
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Appendix B: Robustness Parameter "F" Simulation Results:

Scenario

#Available

Workers

Scenario

#Available

Workers

Scenario

#Available

Workers

Scenario

#Available

Workers

Scenario

#Available

Workers

SA 7.9

500

250

100

HW 7.0

500

250

100

RC 7.1

500

250

100

SA 7.2

500

250

100

Napa 6.0

500

250

100

50th

percentile

90th

percentile

95th

percentile

98th

percentile

4.05 5.64 6.18 6.84

8.25 10.4 11.09 11.95

20.89 24.16 25.21 26.37

50th 90th 95th 98th

percentile percentile percentile percentile

1.59 2.67 3.15 3.65

3.34 4.81 5.32 5.94

8.94 11.18 11.91 12.77

50th 90th 95th 98th

percentile percentile percentile percentile

0.61 1.21 1.55 2.08

1.25 2.20 2.65 3.16

3.34 4.81 5.34 5.95

50th 90th 95th 98th

percentile percentile percentile percentile

1.94 3.11 3.59 4.11

4.38 6.04 6.59 7.27

11.40 13.89 14.69 15.64

50th 90th 95th 98th

percentile percentile percentile percentile

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.31 0.63 0.96 1.37
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Appendix C: Crew Allocation Results for Different Scenarios:

Allocation SA7.2
250 -- - -- - -- --- _--__- - -

250
200 --------------- *- _ _

150 - ---- -

100 4 - - IL----

50 -- ------

0 . .........

20

200 - ---- - -__ ---- __ __ - - - - -__

150 -- - ---- - - -

100 - - --

- ~ C Ih .0 i> 1etII m

m Baseline (2-stage) a One-stage m 95th Percetnile Robust
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Allocation HW7.0
250 -

200

150 --

100 - -

50 -_-

0

0 Baseline (2-stage) * One-stage 0 95th Percetnile Robust
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Appendix D: SA7.9 Travel Summery Mao

The network graph below shows the number of workers travelling between divisions from running the

optimization model.
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Appendix E: Data used to run the SA7.9 earthquake scenario optimization

1: Worker's Availability: the following table shows the aggregate available repair workforce used for the

model. Note that individual workers had different availability (hours/day) and initial unavailability (how

long before they start)

Location Available Worker's
iName j During Emergencies
Central Coast -25
De Anza 12
Diablo 39

!East Bay 40

Fresno 27
Kern 15
Mission 30
North Bay 43
North Coast 17
North Valley 21
Peninsula 31
Sacramento 54
San Francisco 44
'San Jose 38
Sierra 25
Stockton 22
Yosemite 23
Santa Rosa 32

2: Travel Times: the data represents the travel time in minutes from division (row) to division (col)

From/To Central CoDe Anzn _Diablo East Bay Fresno Kern Mission NorthBay North CoaO North ValPeninsula ISacramenSon Francis San Jose Sierra Stockton Yosemite _Santa Rosa
Central Coo 1 30.5 82.6 70.2 157. 345 46.8 115 242 276 68. 1471 73.1 32.1 178 107 116 129
De Anza 30.5 1 64.8 48.4 158 313V 25 97 248: 258 38.5 1291 43.5' 10.4 161 89.1 98.2 97.1
Diablo 82.2 64.4 1 22 176 279i 40.8 35.8 271 197 38 67.6 30.8 55.4 99.4 51.7 80.3 62.2East Bay -70.5 48.5 22.6, 1 177 275 26.5 43.2 272 211 19.5 81.8 24 40.6 114 71.6 80.7 58.4
Fresno 158 158 177 177 1 451 167 209 1091 333 196 173 188 152 201 127 96.8 234Kern 345 313 280 275 450 1 301 258 546 147; 275' 289 271 31S 318 325 355 217
Mission 47.4 25.4 41. 26.3 170 301 1 73.2 257 

235
1 39.4 1051 38 17.5 137 65.3 74.4 84.7

North Bay 113 95.3 34.91 42.3 207 256 68.8 1 3021 190i 55.5 60! 48.3 86.3 91.8 708 111 39.8
North Coas 242 247 272 272 109 545 257 304 1! 4461 285 285 283 241 307 233 202 329
North Valle 276 258 198 211 333 147 234 190 446' 1 2241 1621 2171 249 190 209 237 227
Peninsula 67.9 38.5 38.4 19.2 195 275 39.3 56.2 285' 2241 1 94.81 9.5 47.4 127 89.9 99.1 58.6
Sacramentc 147 129 68.6, 81.9 171 289 106 61.5 286 162 95.11 11 87.9 120 33.2 48.8 75.3 97.6
San Francis 73.1 43.4 31.4 12.3 188 271' 38 49.3 283 217 9.6 87.9 1 48.3 120 83 92.1 54.6
San Jose 32.7' 10.7 55.9 40.7 152 316 17.3 88.2 241 250 47.5 120_ 48.4 1 152 80.3 89.4 99.2
Sierra 179 161 100 114 201 317 137 93.2 307 191 127 32.9 1201 152i 1 80.4 106 129
Stockton 108 89.7 50.8' 71.6 127 326 66.1 73' 239 210 90.3 49.2 83.2 80.7. 83.9 1 31.7 109
Yosemite 117 98.8 80.8 80.7 96.8 355 7S.2 113 202 237 - .4 76.4 923 89.8 .105 3L3 1 138
Sonta Rosa 129 97.1 63.3 58.5 234 217 85 41.4 329 227 58.9 97.8 S4, 99.1 130 109 138 1

3: Leaks Data: Summarized in section 4.5
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