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Abstract

This thesis studies routing in a general single o-d network and information structure
induced by any two heterogeneous information systems. To model the asymmetric
information environment, we formulate a Bayesian congestion game, where travelers
subscribing to one information system is seen as one population. We study properties
of Bayesian Wardrop Equilibrium, where each population assigns their demand to
routes with the lowest expected cost based on their belief. We show that if population
beliefs about the state and the signal received by the other population are based on
a common prior, as the population sizes change, qualitative properties of equilibrium
strategies change, resulting in three distinct regimes. In the intermediate regime,
the equilibrium edge load does not vary with the relative population size, and both
populations face identical cost in equilibrium. In the other two regimes, the "minor"
population has lower cost in equilibrium. We also introduce a metric to evaluate the
impact of information. The relative population size effects the equilibrium outcome
(edge load, costs) if and only if the impact of information on either population is
tightly bounded by its size. Finally, we compute the bounds on the equilibrium
social cost, and provide a sufficient condition for the bounds to be tight. Although
we consider a more general information environment, the worst case inefficiency of
equilibrium is the same as that in complete information games.

Thesis Supervisor: Saurabh Amin
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Overview of the Problem

The recent advancements in information systems such as Google Maps/ Waze, Apple

Maps, etc. allow travelers to be better informed about traffic conditions. Information

systems send signals about traffic conditions to their subscribed travelers based on

historical and current measurements of the network. However, signals may not be

accurate about the network state due to reasons such as difficulties in data collec-

tion, noisy data source, and limitations of estimation methods. Different information

systems provide signals with different accuracy, which leads to an inherently hetero-

geneous information structure among the travelers. Therefore, in analyzing travelers'

route choice decisions, it is important to consider their private information and be-

liefs. This thesis addresses the following question: How do the relative sizes of traveler

populations effect the equilibrium structure and costs (both individual and social)?

We model traffic routing under information heterogeneity as a Bayesian conges-

tion game. Our model considers a network with single origin-destination pair. The

random state of network is drawn from a set of states by a commonly known prior

probability distribution. Costs on each edge are state-dependent increasing functions

of the traffic load on that edge. The network faces non-atomic travelers with inelastic

total traffic demand. There are two heterogeneous information systems, each sending

a noisy signal of the state to its subscribed travelers. Travelers subscribed to one infor-

13



mation system receive the same signal, and are modeled as one population. The joint

distribution of the state and signals received by two populations is the common prior,

which is known by both populations. Each population updates their beliefs about the

state and the signal received by the other population from the common prior using

Bayes rule. We study properties of Bayesian Wardrop Equilibrium (BWE), where

populations assign demand on routes with the smallest expected cost based on their

private beliefs.

1.2 Related Work

We first discuss some related work that considers informational aspects in modeling

route choices. The article by Liu et al. (2016) studies the effect of information het-

erogeneity for a two-route traffic network when a fraction of population has complete

information about the traffic accidents, and the rest has no information. The paper

focuses on studying a "subjective" belief structure, where travelers are only aware of

the accuracy of the information system they subscribe to, but assume the other trav-

elers are not informed. Our set up is more general as we consider any network with

single o-d pair, and any two information systems with arbitrary accuracies. In our

game, accuracies of both information systems are common knowledge, and the pri-

vate beliefs are derived from a common prior. Notably, the recent work by Acemoglu

et al. (2016) studies the effect of information heterogeneity in the case when travelers

have non-identical information sets about the available edges. The authors define

Informational Braess Paradox (IPB) as a phenomenon where travelers who receive

information about additional routes may be worse off than those who do not. They

find an intuitive suffcient and necessary condition on network topology to ensure that

the IBP does not occur. Our work is complementary to Acemoglu et al. (2016) in

that we adopt Bayesian framework to study the effects of noisy signals about the

network state when the two different information systems introduce an asymmetric

information structure in travelers' route choice. We also discover similar phenomena,

where travelers with more accurate information have higher cost. Additionally, a

14



more general set up of congestion games, where cost functions are player-specific, is

studied in Milchtaich (1996). The player-specific cost functions can be a result from

private beliefs or player specific preferences. Milchtaich (1996) proves the existence

of pure Nash equilibrium when atomic players have the same demand. Best-response

improvement path can be cyclic, which implies that there may not exist a potential

function. We consider non-atomic players, thus pure equilibrium always exists. In our

model, the difference in the expected costs among populations with different signals

(types) is due to their private beliefs, although the preferences (or valuation of travel

times) are homogeneous cross the traveler populations. A weighted potential function

exists in our game since type-specific cost functions are related via the common prior.

We next review the literature on the congestion games. The well-known results

include the existence of a potential function in every congestion game Rosenthal

(1973), and the isomorphism between congestion and potential games Monderer and

Shapley (1996). Population games with non-atomic players are shown to be the

limiting case of finite player games in Sandholm (2001), and convergence results of

evolutionary dynamics are provided. The paper Sorin and Wan (2015) compares the

equilibria, potential functions and evolutionary dynamics of the congestion games

with non-atomic players, atomic splitable players and atomic non-splittable players.

Our model reduces to the classical congestion game with non-atomic players when

one population takes all the traffic demand which results in homogeneous information

structure.

We note that our setting is different from the literature on Bayesian congestion

games with finite players. For example, the paper Gairing et al. (2005) studies a finite

player Bayesian routing game with linear cost functions and type-dependent weights.

The authors show that under their modeling assumptions, every weighted Bayesian

congestion game has a pure Nash Equilibrium. Mixed equilibrium, social cost and

computational complexity are also studied. However, their paper does not focus on

effect of information structure. In more related work, the article van Heumen et al.

(1996) studies an extended Bayesian potential game with finite players, in which a

subset of players have access to private information. The authors show that a pure

15



Nash Equilibrium exists when the game has a common prior. In a follow up work

Facchini et al. (1997), the authors impose additional conditions on players' utility

functions to show that their game is a weighted potential game if and only if the

utility function can be written as a coordination function plus a "dummy function".

They also provide an example to show that pure Nash Equilibrium may not exist

when there is no common prior. Our model contributes to the existing literature

by incorporating the information heterogeneity to congestion games with non-atomic

players, and studying the effect of the relative population size. The equilibrium

characterization and the analysis of value of information in our paper cannot be

obtained by straightforward application of the known results due to the key difficulty

arised by the interaction of two populations with asymmetric information.

1.3 Main Contributions

Our main results are as follows: We show that the Bayesian congestion game has

a weighted potential function, and any Bayesian Wardrop equilibrium is a feasi-

ble strategy profile that minimizes the potential function. As the population sizes

change, qualitative properties of equilibrium strategies change, resulting in three dis-

tinct regimes. Specifically, the demand assigned to each edge in equilibrium does not

depend on the population sizes in one regime, but changes as population sizes vary

in the other two regimes. The intuition is that the impacts of information on popula-

tions' equilibrium strategies are fully achieved in one regime, but tightly constrained

by the demand of either population in the other two regimes. A crucial step in our

mathematical argument is constructing a convex optimization problem that can di-

rectly compute the aggregated demand assigned to each route by both populations

in equilibrium. The equilibrium regimes are derived from the tightness of constraints

in optimum, which reflect the impact of information on equilibrium strategy profiles.

We define the relative value of information as the difference in the average cost

of two populations in equilibrium. For any two heterogeneous information systems,

we study how relative value of information changes as the population sizes vary.
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We find the connection between the relative value of information and the first order

differentiation of the potential function in equilibrium with respect to the population

size. By applying results of perturbation analysis in Bonnans and Shapiro (2013),

Fiacco (1984), Rockafellar (1984) and Milgrom and Segal (2002), we show that the

expected costs of two populations are equal in one regime, while in the other two

regimes, the population with smaller demand has lower expected cost. Interestingly,

the regime with equal population costs is the same regime where the equilibrium

edge load does not change with the relative population size. This is because in

that regime, the expected costs on the set of routes used by both populations are

equal in equilibrium. However, in the other two regimes, some routes with high cost

are taken by the population with higher demand but not by the population with

smaller demand. Thus, the population with smaller demand has lower expected cost.

Furthermore, if one population is informed, and the other population is uninformed,

three regimes reduce to two, and the cost of the informed population is no higher

than that of the uninformed population. Notably, the relative value of information

decreases as the size of informed population gets larger. If both populations are

informed, the "better informed" population can have higher cost if its size is large

enough.

Finally, we study how equilibrium social cost changes as population sizes vary.

We demonstrate examples where equilibrium social cost can be non-convex and non-

differentiable in population sizes. We provide bounds on the equilibrium social cost,

and a sufficient condition, in which the bounds are tight. Additionally, when the

condition is satisfied, the equilibrium social cost attains a minimum for a continu-

ous range of relative population size. We also present analysis on the worst case

inefficiency of BWE, which is related to the well-known notion of "price of anarchy"

in previous work, e.g. Roughgarden (2003), Koutsoupias and Papadimitriou (1999),

Milchtaich (2004), Acemoglu and Ozdaglar (2007). Although our model considers a

heterogeneous information structure, the worst-case inefficiency is the same as the

complete information case in Roughgarden (2003).

The rest of the thesis is organized as follows: Chapter 2 analyzes a simple example,
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in which some travelers have complete information, while others are uninformed.

Chapter 3 introduces the model environment and formulates the game. Next, we

present equilibrium characterization in Chapter 4. Finally, the analysis of relative

value of information is in Chapter 5, and the equilibrium social cost and ineffiency is

studied in Chapter 6.
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Chapter 2

Motivating Example

In this chapter, we describe a simple two route example to illustrate the main ideas

in our paper. Then we analyze the equilibrium in this simple example. Finally, we

study the expected population costs and the social cost in equilibrium.

2.1 Two Route Model

Consider an origin-destination pair of nodes connected by two parallel routes, r1

and r2. Assume that the set of network states is S = {a, n}, where the state a

represents an incident on route r1, and the state n represents the nominal (i.e. no

incident) condition. The route r1 faces an incident with probability p. Each route's

cost function (travel time) is an affine function of the flow through it, i.e.

r1

C'(Yi) = a{fi + bi, s = a, EI d

= 
a f + bi, s = n.

c2(f2) = a2f 2 + b2 -

For simplicity, we will assume in this example that a n < a2 < a and b1 = b2 = b.

The network is subject to a unit demand comprising of two traveler populations

I = {1, 2}. The population demands are denoted by A' = A and A 2 = 1 A.

Each population receives a noisy signal, t', of the network state from its subscribed

19



information system. The signal space of population i is T = {a, n}. We assume that

population 1 receives the correct state information with probability 1 (i.e. complete

information), and population 2 receives a or n with probability 0.5 independently of

the state (i.e. no information).

2.2 Equilibrium

Let us study how equilibrium strategies and route flows change with respect to A.

Let qg(ti) denote the demand assigned to route r1 by population i when receiving

signal t'; the remaining demand A' - q (t') is assigned to route r2 . Since signal

t 2 is independent with states, we have q1(a) = q,(n) = q'. Any feasible demand

assignment must satisfy the constraints: 0 < q(t') K A and 0 < q? 2 1 - A. We

represent a feasible routing strategy profile as qi = (q1 (a), q1 (n), q ).

The expected costs on route r for population 1 receiving signal t', denoted E[c, (q) It'],

can be written as follows:

ca (ql(a) +q ) , t' - a,
E[c1(q)jt1] = 12cn (ql (n) + q )t'i = n.

E[c 2(q)I]t' = c2 (1 - q1(t) - q1), Vt' E T'.

For population 2, the expected route costs E[cr(q) It 2 ] can be expressed as:

E l1()t2] = P. -Ca (ql(a) + q 2) + (1-P) - Cn (ql (n) + q 2),

E[c2(q)It 2] = p - c2(1 - q1(a) - q2) + (1- p) -c2(1 - q1(n) - q ).

This routing game with asymmetric information structure admits a Bayesian Wardrop

equilibrium; see Definition 1 in Sec. 3.2. Let q* = (q*'(a), q*'(n), q*2) denote an

equilibrium. Each population with each signal can either assign all the demand on

one route, or split on both routes. There are in total 3 x 3 x 3 = 27 cases. We now

mention the case that hold in equilibrium (see Sec. 4 for general results on equilibrium

characterization).
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Thus, the expected costs on both routes are equal for each population in equilirbium.

Consequently, both populations split their demand on both routes. It is easy to check

that all equilibria induce an identical route flow in each state.

Notice that if A E [0,A], we have q*1(n) - q* 1(a) = A, i.e. population 1 shift all its

demand from r1 to r 2 on receiving incident information. However, if A E (A, 1], we

have q*1(n) - q*1(a) = A < A, i.e. only part of demand is shifted to r 2 on receiving

incident information.

2.3 Equilibrium Costs

Let us calculate the expected cost of each population in equilibrium. If A E [0, A), the

expected equilibrium cost of population 1, denoted C*1(A), can be written as follows:

C*l(A) = pE[c2 (q)la] + (1 - p)IE[c 1 (q)In] = b + C + C 1 A,

where

_ a 2 (a (1 - p2 ) + ap 2)
a1 - -p a 2

1 p(l - p)aCe(at + a2 ) + p(l - P)a2(a1 + a 2)

dl + a2

The expected costs of population 2 in equilibrium is as follows:

C*2 (A) = E[ci(q) t2] = E[c 2 (q)|t 2 ] = b + + 02(l - A),

where

02 a2P(1 - p)(a' - a1)
d + a 2

On can check that C* 2(A) - C*1(A) = 02(1 - A) - C 1A > 0, thus the population 1

benefits from receiving information over population 2 which is uninformed. However,

if A e [A, 1], the expected cost of both populations are identical in equilibrium, because

22



First, there exsits a critical threshold fraction of population 1, denoted A, which

distinguishes the equilibrium behavior between the cases A E [0, A) and A E (A, 11.

For this two-route example, let us define:

A a2a+
- a ( + a2 ai+a2

On one hand, if A E [0, A), the routing game admits a unique equilibrium:

q*'(a) = 0

q 1 (n) = A

I*2 + a 2  dI + C2 di + C2

where a, = pca + (1 - p)a" is the average slope of route ri's cost function. This

equilibrium is obtained by solving the following conditions:

E[c1 (q*)Ia] > E[c2(q*)Ia], E[c1 (q*)In] < E[c2 (q*)In], E[c,(q*)|t2] = E[C2(q*)It2

Thus, population 1 faces unequal route costs in equilibrium. Consequently, in state

n, population 1 assigns all its demand on route r,, and in state a, it assigns all its

demand to route r2 . Population 2 splits on both routes.

On the other hand, if A C [A, 1], the game admits multiple equilibria. The set of

equilibrium strategy profiles can be described as follows:

q*1 (a) = X,

q,1 (n) =A + x,

*2 _ a2

a,- + a2

where max T0, A - <; x < min , A - A . This set of equilibria is ob-

tained from the following condition:

E[ci(q*)Ia] = E[c2 (q*)Ia], lE[c 1(q*)In] = E[c 2 (q*)In], E[ci(q*)1t2 ] = E[c 2 (q*)t 2 ]_
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the expected costs for r1 and r2 equalize for each population:

C*1(A) = C* 2(A) = b + 1 -2
01 +02'

and consequently,

the incident on r1 .

of two population

V*(A) = C*2 (A) -

the population 1 does not get any benefit of being informed about

We define the relative value of information V*(A) as the difference

costs in equilibrium:

(A = 1 p{ ( -p) [a2(a - a) - A(ac + a2)(aC' + a2)], VA E [0, A),
C*V(A) = [02

0, VA E [A, 1].

Note that for A E [0, A), V decreases linearly in A.

Finally, the equilibrium social cost is simply the average expected cost in equilib-

rium:

C*(A) = AC*l (A) + (1 - A)C* 2 (A) = (01 + 0 2 ) A 2 -202 A + + b + C 2 ,
b - 0102

b + C + -,7 , 

Note that the equilibrium social cost is a quadratic function of A if A C [0, A), but

does not change with A E [A, 1]. Furthermore, for A E [0, A), we can write:

&C*(A)-
A 2(01 +0 2 ) A - 202 < 0,OA

and check that C( = 0 when A = A. Thus, the social cost C*(A) monotonically

decreases with A in the range A E [0,A), and attains the minimum value in the range

[A, 1]. That is, increasing the share of the informed population decreases the social

cost but only up to the threshold A; beyond this fraction, the social cost does not

change.

2.4 Numerical Experiment

We illustrate the abovementioned results using the network parameters in Table 2.1.

23
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Table 2.1: Parameter values for the 2 - route example.

The threshold A for this example is 4/15. Fig. 2-la shows the equilibrium strategy

(q* (a), q*1(n), q*2 ). Fig. 2-1b shows the equilibrium flow on r1 in each state.

SA=O.1E [0,)-
-A = 0.4 E (A,1) 0140 s21)

- A = 0.7 E (A, 1) 06 700.67,.7)

0.0.

0 .. 5. 0. 33 6.4

0.~6 0)

04 0.6 .80.8

____ A
A

1

0.8

0.6

Z 0.4

0.2

(a)

Figure 2-1: Equilibrium strat(

0 0.2 0.4 0.6 0.8 1
A

(b)

gy and route flow.

Next, we plot the expected population costs and the social cost in equilibrium.

These costs are normalized by the socially optimum cost, denoted C, which is the

minimum average social cost achievable by a fully informed social planner.
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Symbol Value Units

,n 1 min/(veh- hr-1 )

3 min/(veh- hr- 1)

C2 2 min/(veh- hr- 1)

b 20 min

D 1 103veh/hr

p 0.2

-f (n,t2)

-- fl* (a, t2)

I



1.003 1.0025
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1.001 -1.002

0.999 -1.0015
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0.995 1.0005
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0 02 0.4 0.6 08 1 0 0.2 04 0.6 0.8 1
A A

(a) (b)

Figure 2-2: Equilibrium population costs and equilibrium social cost

From this simple example, we analytically characterized the effect of the relative

population sizes A on the equilibrium structure, population cost and social cost. In

this article, we generalize these results to the environment in which two populations

with asymmetric information about the network state but identical prefernces route

their flows on a network.
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Chapter 3

Model

Our modeling comprises of a network with an unknown state and state-dependent

edge cost functions. Two information systems measure the network state with dif-

ferent levels of accuracy and induce information heterogeneity among populations of

travelers with identical preferences.

3.1 Environment

We model the transportation network as a directed graph g = (V, S) with a single

origin-destination pair. Let V denote the set of vertices, and F the set of edges. Let R

denote the set of routes connecting the origin and the destination. The network is in

an environment with a random state s, which is drawn by a fictitious player "Nature"

from a finite set S according to a prior distribution 0 E A(S). The cost function of

any edge e c S in state s, denoted c'(-), is a positive, increasing', and differentiable

function of the demand assigned to the edge e. Let C denote the set of cost functions

of all edges in all states.

We introduce a set of two information systems, denoted I = {1, 2}. Each traveler

is exclusively subscribed to one information system. Travelers are modeled as a

continuous player set with a fixed total demand D. We call the set of travelers

1Results in this article can be extended to the case with non-decreasing cost functions. For
simplicity of our discussion, we focus on the case with increasing cost functions.
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subscribed to the information system 1 (resp. information system 2) as population 1

(resp. population 2). Let us denote A as the population size parameter, and denote

the fraction of population i's demand as A', where A' = A, A2 = 1 - A. Thus, the

demands of populations 1 and 2 are AD and (1 - A)D, respectively.

Each information system i c I sends a noisy signal t' of the state s to population

i. The finite signal space of information system i is denoted as T. Note that IIT1

T 2 and |SI need not be equal. The joint distribution of the state s and the signals

t1 , t2 is denoted 7r c A(S x T' x T2 ), which satisfies the constraint that the marginal

probability distribution on the state is equal to the prior distribution on state, i.e.

for any s E S,

SZ r(s, t1, t2) = 0(s). (3.1)
t1Efl t2 ET2

The probability that population 1 and 2 receiving signals t' and t 2 conditional on the

state s E S, denoted p(t 1 , t2 Is), can be expressed as:

p(t1, t2 s) = 7 (sti, ti), Vs E S, V (tit2 ) T. (3.2)
0(s)

3.2 Bayesian Congestion Game

In the framework of Bayesian games (see Harsanyi (1967)), the notion of type captures

the private information received by each population. In our model, the private infor-

mation of population i is the signal t'. The type space of population i is T. Based

on V, population i generates a belief about the state s and the other population's

type t-, denoted pi(s, t-It) E A(S x Ti).

Each population routes its demand through the network based on its belief Pi (s, trjti).

Population i's strategy is a map from the type (or signal) space V to a I7-dimensional

vector, denoted q'(t') = (q'(ti))rE , where qg(t) is the demand assigned by popula-

tion i to route r when its type is t. We say that a strategy profile q = (q', q2 ) is
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feasible if it satisfies the following constraints:

q (t) = A D, Vt T , Vi I, (3.3a)
rE7Z

qz (tz) ;> 0, Vr E R, Vt" E T , Vi E I. (3.3b)

The constraint (3.3a) ensures that the demand of each population is routed, and the

constraint (3.3b) imposes that demand assigned on each route is nonnegative. Let

Qi(A) denote the set of all feasible strategies of population i when the population size

parameter is A. From (3.3a)-(3.3b), we note that the set of feasible strategy profiles,

defined as Q(A) A Q1 (A) x Q2 (A), is a convex polytope.

We are now ready to define the Bayesian congestion game F. Formally,

A
F = (I, S, T, Q(A), C, p),

where:

I: Set of populations, I ={1, 2}

S: Finite set of states with prior distribution 0 E A(S)

7- = (Tl)iEx: Set of population type profiles (t1 , t2 ).

Q(A) = (Q (A))iEr: Set of feasible strategy profiles when the population size param-

eter is A, with q = (ql, q2 ) E Q(A)

C = {c- ()}eEE,sEs: Set of state-dependent edge cost functions

= (yp): M' is population i's belief about the state s and the other population's

type t-'

Importantly, our model assumes that the joint distribution ir is common knowl-

edge. In addition to 7r, the set of network states S, the type sets jT| and IT21, the

network graph (V, 8), the total demand D, the population parameter A, and the set of
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ex ante interim ex post
Nature draws s Populations: -k'now their types Realize costs

Population i receives t -obtain beliefs pi(s, t- Itz )
-play strategies

Figure 3-1: Timing of the game.

cost functions C are also common knowledge. The signal t' is the private information

of population i.

The game is played as shown in Fig 3-1. In the ex ante stage, Nature draws a

realization of the network state s E S according to the prior distribution O(s). Signals

(types) t1 and t2 are realized according to the conditional probability distribution

p(t', t2 |s) in (3.2). In the interim stage, each population forms belief p (s, t-'It'), and

both populations choose their strategies q' simultaneously.

For any i E I and t E T, beliefs are obtained by Bayesian update on the common

prior:
. r(s P, t-')

(s, t- It") = r(t,) Vs E S, Vt" E TZ
Pr(ti) (3.4)

where Pr(t) = EsEs t-iE- 7(s, tt)

For a given strategy profile q = (ql, q 2 ) C Q(A), the induced route flow is

f A (fr(t, t2 ))rE,(t t2)ET, where fr(t1 , t2 ) is the aggregated demand assigned by

populations with type profile (tl, t2 ) on route r:

fr (t1, t2) = ql(t1) + q (t2 ), Vr E R, V(tl, t2) C T. (3.5)

Note that the dependence of f on

nience.

The induced edge load is w =

on edge e assigned by populations

We(t 1 , t 2) = (ql(tl) + q ( 2))
r3e

q is implicit and is dropped for notational conve-

(We(t1, t 2 ))eeS,(tt2)eT, where We(t 1 , t 2 ) is the load

with type profile (t1 , t2 ):

3Ef(t, t2), Ve G E, V(t, t2) E T, (3.6)

The corresponding cost of edge e C S in state s C S is c'(we(t)). The cost of route
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r C R, denoted c,(q(t)) is:

c",(q(t)) = 3 c"(we(t)), Vr E R, Vs C S, Vt E T. (3.7)
eEsr

The expected cost of route r based on the interim belief p'(s, t- It') is given by:

E[cr(q)|ti] = i(s,t-iti)CS(We(tit-i))
sES t-'eT-i e~r

- 'ETi r s~c(we(ti, t- 2 )), Vr E R, Vt E t , V' C ,
sS8 t~e- Pr (ti) Ce

(3.8)

where We(t', t-') is given by (3.6).

We now define the equilibrium concept of the game F:

Definition 1. Bayesian Wardrop Equilibrium (BWE)

A strategy profile q* : T -+ Q(A) is a Bayesian Wardop Equilibrium (BWE) if for

any i c I, and any t' c T:

Vr E R, q*(t') > 0 -> E[cr(q*)t] < <E[ci(q*)|ti], Vr' C R. (3.9)

Equivalently, in a BWE, each population i with type t' assigns its demand only on

the routes that have the smallest expected cost based on the interim belief P1(s, t-Iti).

We can define interim game2 IG(F) = (I, Q(A), ), where:

I = UieiT2 : population set. Each type can be viewed as a population.

Q(A) Q ti (A)): strategy set. Each type t C T has strategy set Q (A)

Q (A)

{ }c^ I, l : cost function set. The cost of type t taking route r is F,' (q)
C -Er LEZrER

E [cr(q) I t].
2 Since the game has common prior, the ex ante game exists and is equivalent to the interim

game.
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IG(IF) is a congestion game with type-specific cost function E[c,(q) ti]. It is shown

in Milchtaich (1996) that generally there may not exist a potential function in a

congestion game with player-specific cost functions. In our model, the type-specific

cost function E[c,(q)jti] is based on ti's belief, which is obtained from the common

prior 7r in (3.2). We show in Sec. 4.1 that due to the existence of common prior

r, the type-specific cost functions E[cr(q) t'] are related so that a weighted potential

function exists in IG(F).

IG(P) is a complete information population game. A strategy profile ^* E Q(A) is

a Wardrop equilibrium of IG(), if for any r Ec7 R and any V G 1, q^*'(tP) > 0 implies

that () is the smallest among all routes, i.e. i* satisfies (3.9). Therefore, q* is

BWE in r if and only if q^* = ((q*'(t))t , (q* 2 (t2 ))t 2 ) is a Wardrop equilibrium

in IG(F). In rest of the article, we will refer to the Bayesian congestion game F and

the interim game IG(F) interchangeably. We consider each type t' as a population.

Consequently, a strategy of t' can be viewed as a IRI-dimensional vector qi(ti) =

(q'(ti)) , and a strategy profile can be viewed as a 7ZI x (IT1 + I T2) dimensional

vector.
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Chapter 4

Equilibrium Characterization

In this chapter, we study the equilibrium structure of the game F. In Sec. 4.1, we

show that F is a weighted potential game, and that any equilibrium strategy profile is

an optimum of a convex optimization problem. In Sec. 4.2, we study the qualitative

properties of BWE when the population size parameter A varies from 0 to 1.

4.1 Weighted Potential Game

We adopt the definition of a weighted potential game with continuous player set from

Sandholm (2001):

Definition 2. Game F is a weighted potential game if there exists a continuously

differentiable function 4)(q) Q(A) -+ R and a set of positive, type-specific weights

{ (ti I}t'EV,i E such that:

O(<b(q (t))
= ^(t')E[c,(q)It'], Vr E R, Vt' E 'T, Vi E I.

Lemma 1. Game F is a weighted potential game with the weighted potential function

(J(q) as follows:

/ESe1 t(tT)+ t(t2)

<(q) Y 7r (s, t', t) cs (z) dz, (4.1)
sES eES t16E-1 t2ETZ72
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and the positive type-specific weight -y(t') = Pr(t') for any t' E T, i E I.

Proof. To show that 1(q) is a weighted potential function of F, we write the first

order derivative of 1(q) with respect to qg(ti):

- E 7 r(s, ti, t2) c" (we(t , t-))
sES t- eEr

( Pr(t)E[c(q)|t], Yr E R, Vt E T, Vi E I. (4.2)

We immediately obtain that 4)(q) satisfies Definition 2 with 7(t') = Pr(ti), Vti E

T, Vi E I.

Note that (D(q) is a continuous and differentiable function of q. Following (3.5)

and (3.6), 1 can be equivalently expressed as a function of the induced route flow f
or the induced edge load w:

1D(f) E J3 S r (s,t) c'(z)dz. (4.3)
sES eEC tET

(W) Sr (st)] cs (z)dz. (4.4)
sES eEC tET

For any feasible strategy profile q C Q(A), we note that 4b(q) 41(f) tD(w), where

f and w are the route flows and edge loads induced by q.

We will need the following lemma subsequently:

Lemma 2. 4I(w) defined in (4.4) is continuously differentiable and strictly convex in

w.

Proof. Since each cs(we(t)) is differentiable in we(t), we conclude from (4.4) that D (w)

is twice differentiable with respect to w. The first order partial derivative of 1(w)

with respect to we(t) can be written as:

8We(t) = (s, t)c (w (t)) Ve C S, Vt E T,
sES
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and the second order derivative of <b(w) can be written as follows:

O ee(t) {we,(' if e = e' and t = t',
Ve,e Es, Vt,t'T.

otherwise.

ESES 7 (s, t) " ,

0,7

Since for any e E ., s C S, c' is an increasing function of we, E s r (s, t) d>.e EIE (SIOdw,(t)

Thus, the Hessian matrix of 4(w) is a matrix with positive elements on the diagonal

and 0 for all other entities, i.e. it is positive definite. Therefore, D(w) is strictly

convex in w. E

Theorem 1. A strategy profile q = (q', q2 ) is a BWE if and only if it is an optimal

solution of the following convex optimization problem:

min <D(q) (OPT-Q)

s.t. q E Q(A),

where Q(A) is the set of feasible strategy profiles satisfying the constraints in (3.3).

We can write the Lagrangian of (OPT-Q) as follows:

(4.5)L (q, p, v) = <t(q) + y Ae D -E (t)
iEI t'ET' rE-7 / rEIZ iEI tiC-ri

where p = (pjt)tEri,iE and v = (Vfl)rER,tiE-r,iEI are Lagrange multipliers associated

with the constraints (3.3a) and (3.3b), respectively.

Proof. We first show that a minimum of (OPT-Q) is a BWE. For any optimal solution

q, there must exist p and v such that (q, p, v) satisfies the following KKT conditions:

KKT

DqI(t ) -DqV(t )

viq .(t2) = 0,

;>

Vr CzR, Vt CT, ViEiC,

Vr E R, Vt E r, Vi E i,

Vr E R, Vt C, Vi E I.
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Using (4.2) and (4.6), we obtain that:

qi (ti) - Pr(t')E[c,(q)|ti] = p' + v, , Vr E R, Vti c T, Vi (E 21.

From (4.7), we see that for any r E R, any t' E T, and any i E I, if q (t') > 0,

the corresponding Lagrange multiplier vi = 0, and Pr(t)E[r(q)t] = pt. However,

if q(t') = 0, Pr(ti)E[cr(q)jti] p' + vu ;> p". Thus, if q.(t') > 0 for a r E 7Z, ti

Tt , i E I, then:

Pr(t)E[c,(q)j t '] = pt < Pt + vt'l = Pr(t)E[r'(q)It'], Vr' E R,

which implies that E[cr (q) It] < E [cr (q) It'] for any r' E ). Recalling Definition 1, we

conclude that q is a BWE if it is an optimal solution of (OPT-Q).

Next, we show that any BWE q* is an optimal solution of (OPT-Q). We define

a pair of Lagrange multipliers (p, P), where f!t = minrcE Pr(t)E[cr(q*)It'], and ri =

Pr(t)E[r(q*)Iti] - ft. We can easily check that (4.6) and (4.8) are satisfied by

such (q*, p, ). Since q* is a BWE, from Definition 1, if q*(ti) > 0, E[cr(q*)|ti] =

minre JE[c,(q*)jtf]. Thus:

F = Pr(t)E[cr(q*)|ti] - fzt i = Pr(tt ) E[cr(q*)Iti] - minE[cr(q*)It] 0.
,ER

Consequently, (4.7) is also satisfied by (q*, p, P). Recall (D(q) = <D(w), since w is an

affine function of q (see (3.6)) and 4D(w) is strictly convex in w (Lemma 2), 'D(q) is a

convex function of q. Additionally, Q(A) is a convex polytope, (OPT-Q) is a convex

problem. Thus, KKT conditions are sufficient for optimality, and q* is an optimal

solution of (OPT-Q). l

The existence of BWE follows directly from Theorem 1. We denote the set of

equilibrium strategy profiles as Q*(A). For any BWE q* E Q*(A), we define sets

M(q*) and N(q*) as the set of p* and v* such that (q*, P *, v*) satisfies the KKT

conditions.
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Next, we show that the equilibrium edge load w* induced by any q* E Q*(A) is

identical.

Corollary 1. The BWE edge load w* is unique.

Proof. For any q* E Q*(A), <b(q*) = 4b(w*) is identical. Since D(w) is strictly convex

in w (Lemma 2), we conclude that w* is unique. 0

Proposition 1. For any q* E Q*(A), M(q*) and N(q*) are singleton sets with ele-

ments of I*, v*:

*= min Pr(ti)E[cr(q*)jti], Vti E T, Vi E 1. (4.9)

vl"* =Pr(t')E[C,(q*)lt4] - [i*, Vr Cz R, Vt' E t', Vi E I. (4.10)

Furthermore, both p* and v* are identical for any q* E Q*(A).

Proof. First, we argure by contradiction that Linear Independence Constraint Qual-

ifications (LICQ) defined in definition 3 in Appendix A is satisfied in (OPT-Q). We

denote the set of constraints that are tight at optimum in (3.3b) as B A {qr*(ti)

q*i(ti) = 0, Vr E R, Vti c TV, Vi c 1. Assume that LICQ does not hold, the set of

equality constraints (3.3a) and the elements in the set B are linearly dependent.

Since the equality constraints (3.3a) and the inequality constraints (3.3b) are each

comprised of linearly independent affine functions, there must exist a type P such

that the left hand side of the equality constraint Er q, (P) is linearly dependent

with the elements in the set B, which implies that q*((P) E B for all r E R, i.e.

q*i()= 0, Vr E R. However, this violates the equality constraint rEl? q*i(i) = A'D

in (3.3a); hence we arrive at a contradiction.

We know from Proposition 10 in Appendix A that if LICQ holds, for any q* E

M(q*) and N(q*) are singleton. From the proof of Theorem 1, we know that for any

q* E Q*(A), (q*, A*, v*) satisfies the KKT condition, where p*, v* are defined in (4.9)

and (4.10). Furthermore, the equilibrium edge load induced by any q* G Q*(A) is

identical (Corollary 1). From (3.8), p* and v* are identical for any q* E Q*(A). El
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Proposition 1 connects the smallest expected route cost for each type t' at equi-

librium with the unique Lagrange multiplier p"*. This result will be used again when

we discuss the relative value of information in Chapter. 5.

Theorem 1 shows that the equilibrium strategy profile can be solved as the solution

of a convex optimization problem (OPT-Q). However, characterizing q* as A varies

directly from (OPT-Q) is difficult. On one hand, feasible set (and hence the optimal

set) of (OPT-Q) changes with A; see (3.3a)-(3.3b). On the other hand, we observe

from two route example in Chapter 2 that the induced route flow may be identical for

a certain range of A. We approach the question of characterizing Q*(A) by studying

how the set of equilibrium route flows change with A. We proceed in two steps: First,

we represent the set of feasible route flows as a polytope. For any feasible route flow,

we characterize the set of feasible strategy profiles that can induce it in Proposition

2. Next, we study how the equilibrium route flows change with A via an auxiliary

optimization problem (Proposition 3)

We define F(A){f E RIIX ITI If satisfies (4.11) }, where:

fr(t 1 , t2 ) + fr (, F2) = fr(ti, ) + fr(f, t2 ), Vr E R, Vt 1 , EE T 1 , and Vt2 , 2 E -2

(4.11a)

fr (tl, t2) = D, V (t1, t2 ) ECT (4.11b)
rEI.

fr (t1, t 2 ) > 0, Vr E R7, V (tI, t2) E T, (4.11c)

D - min fr(t1, t 2 ) AD, Vt2 E T2, (4.11d)
OET

D - min fr(t', t 2 ) < (1 - A) D, Vt C T. (4.11e)

Proposition 2. The set of feasible route flows is F(A) defined in (4.11). F(A) is a

convex polytope.

Furthermore, For a feasible route flow f E F(A), any feasible strategy profile q
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that induces f can be written as:

q = f(t1, 2 ) - f 2(t") Xr7, Vr E r, Vt E T, (4.12a)

q (t2 ) = fr(P, t2 ) Xr, Vr E R, Vt 2 C T 2. (4.12b)

where () is any type profile in T, and (Xr)r7Z is any |R|-dimensional vector

satisfying the following constraints:

, 
Xr AD, (4.13a)

rEIZ

max (fr(',t 2 ) - fr(t', j)) y, m (f,(i, t 2 )), Vr E R. (4.13b)ti ET Et2 'TV

Proof. First, we show that any route flow f = (fr(t))rEZ,tET induced by any q E Q(A)

satisfies (4.11). Following (3.5), we obtain:

fr(t1, t2 ) + fr(il, 2) =ql4t1) + q (t 2 ) + q (11)+ q2tj)

=fr(tl, t2) + fr(t, t2 ), Vr E R, Vt1, P c T, and Vt 2 , E T2,

which implies that f satisfies (4.11a). From (3.3a) and (3.3b), f must satisfy (4.11b)

and (4.11c). Additionally, for any t2 C T2

D - mmn fr(t1 ,t2) % D - q(t2) - m in q (t') AD - min q (t1) < AD.
tE EtIET 1  tOET

rE7Z rEIZ rE1Z rElZ

Therefore, f satisfies (4.11d). Analogously, f must also satisfy (4.11e). Thus, the

route flow f induced by any q C Q(A) satisfies the constraints (4.11a)-(4.11e).

Next, we show that for any f satisfies (4.11), there exists a feasible strategy profile

q E Q(A) that induces it. Since f satisfies (4.11), for any type profile (i', 2) E T,

consider any x satisfies (4.13):

X AD > D - min f(tt2)=5 max (f(f, ) - f(t1, P)).

rElZ e b E T rEiZleT ,

Analogously, we can obtain ZriZ Ar :5 Er mint2,EV7- (fr(f't2)) . Additionally, from
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(4.11a), we have:

fr(f, t2) + fr(tI, 2) - fr(p, 2) (3)q(t1I) + 2(t2) (3gb) 0,

fr (f, t2 ) fr(p, 2) fr(t , 2),

min f (t I, t2 2 max (f,(fl, )
t 2 ET2 t1E71

Thus, the set of x satisfying (4.13) is non-empty.

f, (t1, 2)) ,

For any Q satisfying (4.13),

consider the corresponding 4 in (4.12). 41 satisfies (3.3a):

= S (fr(tI, j2)
rER

- fr(W, 2 ) + ) () E
rER

S(4.13a)

and 1 satisfies (3.3b):

(4.13b)

ql (P) = fr(tl, P) - f,(il, P) + kr > 0, Vr C R, Vt C T'.

Similarly, we can show that 42 also satisfies (3.3a) and (3.3b). Thus, 4 is feasible.

To check that 4 induces the route flow f:

qI(tI) + 2 (t2 ) = fr(t1, 2 ) - fr(',t 2 ) + fr(Pt 2 ) (4 f(t', 2 ), Vr E R, t E T , t2 C T2 .

Therefore, for any f satisfies constraints (4.11), there exists feasible strategy profiles

that can induce f.

Actually, (4.11d) and (4.11e) are equivalent to the following affine constraints:

Vtlr C 7-,

A, Vt2r E T

t2 T2.

2,t E T'.

Thus, F is a convex polytope.

Finally, we show that for any feasible route flow f E F(A), the set of feasible
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(4.14)

(4.15)

1

1

f,(t'r

fr(t1 , t2)

, t <2) < A,
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strategy that can induce f is in (4.12). For any route r E R, the system of equations in

(3.5) contains IT I x IT2 equations in IT'I+IT2 l variables, {q (t 1 )}t1, q2 (t2 ) t2C'7-2.

For any given F E VT, P E T2 , the following equations are linearly independent:

l'(t) + q 2 (2 ) = fr(t, j2), Vt C T1.
r r (4.16)

q'(P)+ q (t2 ) = fr(P, t2), Vt2 E T2 \ {j2}.

Any constraint for that r in (3.5) can be derived from (4.16):

qr(t') +q|(t 2) = (ql(P) + q (2)) + (q(f) + q(t2)) - (ql(t1) ++ t2(t 2 ))
(416) f (t' f) + fr( 1

, t
2
) - 2 fr(ff2)

(4.1a) f (t', t2), Vt E 7,t 2 E T2.

Thus, for any r, (3.5) contains IT1 I+ 1'1 - 1 linearly independent equations and

IT'I + IT2 I variables. From the rank-nullity theorem, the dimension of its null space

is 1. Any solution of (3.5) can be expressed as (4.12), where P E TE, P E T2 are any

given type of population 1 and 2, and X, E R is a free variable.

From (4.14) and (4.15), to ensure that q is a feasible strategy profile, (Kr)r must

satisfy (4.13). We know from previous discussion that when f C F(A), such X exists.

Consequently, the set of feasible strategies that can induce f is in (4.12).

Any given (P, P) E T determines a set of basis in (3.5). The set of feasible

strategies represented by (4.12) is identical for any chosen (f, P). l

The constraints (4.11) can be understood as follows: (4.11a) captures that aggre-

gated flows assigned by the same set of types are equal. (4.11b) ensures that all the

demand D is routed, and (4.11c) guarantees that the demand assigned to any route

is nonnegative. (4.11a), (4.11b) and (4.11c) are unrelated to A.

Next, we interpret (4.11d)-(4.11e). For any q E Q(A), we define J4(q) as follows:

Z) D minl q (t ) max (q.(a)-J~~~(q)ma ( D rri(P)ET - q(t))

41



where V is any type in 'P.

Ji(q) is the summation over all r of the maximum difference in the demand

assigned to route r by type 0 comparing to any type P E Ti. Jf(q) evaluates the

impact of signals on population i's strategy.

Ji(q) can be rewritten in terms of the induced flow f:

(f) - '(q) = max(fr(i, i-') - fr(tih-)),
rE1Z

= D - i fr(ti, f~i)) (4.17)

where (P, i) is any type profile in T. Thus, constraints (4.11d) and (4.11e) can be

restated as:

1 (f) < AD, (4. 11d')

j2(f) (1 - A)D. (4.11e')

Constraints (4.11d') and (4.11e') ensure that the impact of signals on each popula-

tion's strategy (Ji(f)) is bounded by its demand.

We note two cases: On one hand, if gq(ti) is identical for all t' E Ti, the information

received by population i does not effect population i's strategy, then Jf(f) is 0. On

the other hand, note that for any i E I:

Ji(q) = A'D min q (ti) = 0, Vr E R. (4.19)

The second case plays a key role in distinguishing equilibrium regimes in Sec. 4.2.

We next present the auxiliary optimization problem for solving equilibrium route

flows.

Proposition 3. Any feasible route flow f E T(A) is a BWE route flow if and only if

42



f is an optimal solution of the following convex optimization problem:

min 4(f) (OPT-T)

s.t. f E T(A),

where 1b(f) is given by (4.3), and F(A) is the set of feasible route flow vectors defined

by (4.11).

Proof. We first show that in any BWE, the route flow f* is an optimal solution of

(OPT-F). By definition, f* is induced by an equilibrium strategy profile q* E Q*(A),

and from Theorem 1, (I(f*) = J(q*) = minqEQ4 (q). Now assume that $(f*) >

minfey $(f), then there exists a feasible route flow f E F(A), which is induced by

a feasible strategy q c Q(A), such that D(q) = (f) < (f*) = D(q*). This is a

contradiction, because by Theorem 1, q* must minimize 4(q). Thus, f* minimizes

Next, we show that any optimal solution of (OPT-F) say f* is an equilibrium

route flow. Since f* C F(A), it can be induced by a feasible strategy profile q E Q(A).

Now assume that q is not a BWE, then there exists an equilibrium q*' C Q(A) and an

induced flow f*' E F(A), such that D(*') = d(q*') < D(q) = D(f*). This contradicts

the fact that f* minimizes (f).

To sum up, f E F(A) is BWE route flow if and only if f minimizes (f). El

Proposition 3 forms the basis of our further investigation. Note that among the

constraints (4.11) which define the set of feasible route flows, f E F(A), only (4.11d)

and (4.11e) depend on the relative populationm size A. We show in section 4.2 that the

tightness of these constraints leads to the qualitatively different equilibrium regimes

(Theorem 2).
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4.2 Equilibrium Regimes

In this section, we study how BWE changes when the relative population size A

changes. Let ft denote an optimal solution of a simpler optimization problem:

min $(f)

s.t. (4.11a), (4.11b) and (4.11c)

That is ft minimizes potential function 4)(f) and satisfies the constraints that are

independent of A. Following the same analysis in Corollary 1, since (1(w) is strictly

convex in w, any ft induces identical edge load wt. The optimal solution set, denoted

yt, can be written as:

{ f satisfies (4.11a), (4.11b) and (4.11c). (4.20)

re fr (t) = wt (t), Ve E S, t E T

Recall the two-route example in Chapter 2, there is a range of A such that the equilib-

rium route flow does not change with A. We will show next that we can find a range

of A such that the equilibrium edge load does not change with A, and w*(A) = wt.

From (4.20), TF is a bounded polytope. We define A and A as follows:

A min {J'(f') , (4.21)
D fteyt

max _2(ft). (4.22)
D ftErt I

Since yt is a bounded polytope, and J(ft) is continuous in ft, we know that A and

A can be attained on the set Ft. From (4.17), (4.21) is equivalent to a linear program
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as follows:

1
A = -min z

D

s.t. D- (f i(t ,t2)) Z, Vtg E T', t2 C 7

f E C t.

Similarly, A can also be obtained from a linear program.

The next lemma shows that A and A are valid thresholds of A.

Lemma 3. 0 K A A K 1.

Proof. First, we show that A, A E [0, 1]. Since A is attainable on the set yt, there

exists ft C Ft such that:

= f ( .1) D - in (t1' t2) D -I (tI, t2) = ,

A=-Jf\ rD E n / \ rE /l 0

Similarly, we can check that A K 1.

Next, we show that A K . For any ft E F, we obtain:

A > 1 1 2(ft (4_17) m i f ( , t2 )D D rt2 T2

M a (f ( , f ) ( 

f (t4, ) 17) (4.21)
(#'Wli 2\7'( !qht) > A.

DrER iET

Thus, 0 A A < < 1. E

The thresholds A, A divide the range [0, 1] into three regimes, we denote [0, A),

[A, A] and (A, 1] as regime A1 , A2 and A3 respectively. The next result shows that

these regimes are distinguished based on whether or not the constraints (4.11d) and

(4.11e) are tight in equilibrium.

Theorem 2. The set of equilibrium route flow F*(A) for A in regime A1 and A 3 are
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as follows:

f minimizes (f),}

F*(A) f s.t. (4.11a), (4.11b), (4.11c), (4.11d) if A is in regime A1,

(4.11a), (4.11b), (4.11c), (4.11e) if A is in regime A3 .

(4.23)

Furthermore, in regime A1 and A 3, constraints (4.11d) and (4.11e) are tight in equi-

librium respectively. Additionally, in regime A 2, F*(A) C Ft, where .Ft is given by

(4.20).

Proof. [Regime A,]: First, we show by contradiction that the constraints (4.11d) are

tight for any equilibrium route flow. Assume that for a A E [0,A), there exists an

equilibrium route flow f*(A) such that (4.11d) is not tight. From Proposition 3,

f*(A) is an optimal solution of (OPT-F). Since (OPT-F) is a convex optimization

problem, f*(A) is still an optimal solution if we eliminate (4.11d). Note that there

exists f t E FI such that \ is attained in (4.22). We obtain:

1 _ (Lemma 3) (Regime A 1)
2> A > A.

D

D j2(f t)

Thus, f t minimizes 5(f) and satisfies constraints (4.11a), (4.11b), (4.1lc) and (4.1le).

Additionally, (ft) = 4(f*(A)). Following Corollary 1, ft and f*(A) must induce

the same equilibrium edge load vector wt. Recall the definition of Ft in (4.20),

f*(A) E Ft. From (4.21), we have:

AK D I(f*(A)).

Recall our assumption that (4.11d) is not tight, we obtain:

J(f*(A)) <A < A < Jl(f*(A)),D D
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which is a contradiction. Thus, (4.11d) is tight in equilibrium for any A in regime A1 .

Finally, since (4.11d) is tight in equilibrium, we have:

2 (4.7)Smax (f(, 2 ) - f(E, t2)) min f*(t,jF) = D-jl(f*(A)) = (1-A)D.
t 2ET 2  mE ,T

rCZ7Z rElt'ET

Thus, (4.11e) is satisfied when (4.11d) is tight, and hence can be drop without chang-

ing the optimal solution set in (OPT-F).

[Regime A 2 ]: Now we define two additional thresholds A' and A' as:

=A' max(lf )

- m ax J 2(f t).
D fteyt )

From the definition of A and , we can check that A < A, and ' k A. We now

consider any A E [A, A']. Since the set F1 in (4.20) is a bounded polytope, and A,

A are the minimum and maximum of the continuous function j 1 (f*(A)) on Ft, we

know from mean value theorem that we can find a ft E Ff satisfying:

I1-
A= - DJ (f')

D

that is (4.11d) is tight, and such ft also satisfies constraints (4.11e). By definition

of ft, ft minimizes (f) and satisfies constraints (4.11). Thus, ft is an equilibrium

route flow, * (A) n Ft # 0. Since the equilibrium edge load vector is unique, and the

edge load induced by fI is wt, we must have w*(A) = wt. Furthermore, from (4.20),

Ft includes all route flows that can induce wt and satisfy (4.11a)-(4.11c). Therefore,

F* (A) C Ft for any A E [A, ']. Similarly, we can argue that for any A E [A', A],

F*(A) C Ft .

Next, we consider two cases: If A' > A', our previous discussion has cover all

A E [A, A]. If A' < A', consider any A c (Af, A'), any ft E F satisfies constraints

(4.11d) and (4.11e), hence is equilibrium route flow. F*(A) = Ft for A E (A, A').

Consequently, for both cases, we obtain that F*(A) C Ft in regime A2.
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[Regime A 3]: Analogous to the proof given for regime A1 , we can argue that (4.Ile)

are tight in any equilibrium for any A in regime A 3, and (4.11d) can be dropped from

the constraint set. El

In regime A 1 , the impact of information on population l's strategy in equilibrium

is maximal, Jl(q*) = Jl(f*) = AD. Jl(q*) increases as the demand of population 1

increases. In regime A3 , the impact on population 2's strategy is maximal J2 (q*) =

J2(f*) = (1 - A)D. j 2 (q*) increases as the demand of population 2 increases.

The tightness of constraints (4.11d)-(4.11e) results in different mototonicity of the

value of potential function in equilibrium, and different qualitative properties of both

equilibrium edge loads and equilibrium strategy profiles in different regimes, which

are shown next.

We define T(A) as the value of potential function in equilibrium. T(A) is the

optimal value of 4(q).

T(A) = (I(q*(A)). (4.24)

Proposition 4. In regime A1 , T(A) monotonically decreases with A. In regime A 2 ,

TI(A) does not change with A. In regime A3 , TI(A) monotonically increases with A.

Proof. [Regime A1 ]: From Theorem 2, constraint (4.11d) is tight in equilibrium. Con-

sider A' and A such that 0 < A' < A < A. Any equilibrium route flows f*(A') and

f*(A) satisfy:

J1(f*(A')) = A' < A = -l(f*(A)).
D D

f*(A') satisfies constraints (4.11a)-(4.11e), thus is a feasible solution of optimiza-

tion problem in (4.23) with parameter A in regime A1 . However, f*(A') is not an op-

timal solution when the population size parameter is A, because constraint (4.11d) is

not tight. Since f*(A) is an optimal solution, we must have TI(A') = J(f*(A)) > I(A).

[Regime A 2 ]: From Theorem 2, F* (A) C Tt for any A c [A, A]. Since equilibrium

edge load vector is unique, w*(A) = wt. I(A) = 1(wt), which does not change with

[Regime A 3]: Following similar analysis in regime A 1 , I(A) monotonically in-

creases with A in regime A 3. LI
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Corollary 2. In equilibrium, the edge load vector w*(A) does not change with A if

and only if A is in regime A 2 . Furthermore, in regime A 2 , w*(A) = wf.

Proof. From the analysis in Proposition 4, we know that w*(A) = wt in regime A2 .

In regime A, or regime A3 , since xP(A) changes with A, and 1D(w) is strictly convex

with w, w*(A) must change with A. L

The next proposition shows that the tightness of constraints (4.11d) (resp. (4.11e))

results in one-to-one correspondence between q* and f* in regime A, (resp. A3 ).

Proposition 5. In regimes A, or A3 , any equilibrium route flow vector f* E F*( A)

is induced by a unique equilibrium strategy profile q*. Specifically,

" In regime A,,

q*I(t1) = f*(t1, t2 ) - min f*(t , t2), Vr E 7Z, Vtl E T1, Vt2 C T2
tl OET 

(4.25)
q*2(t2) = min f,*(t 1, t2 ), Vr (E R, Vt2 E T2 .q( t tET'

" In regime A 3,

q* 1(t) = min f* t', t 2 ) Vr E 7Z, Vt' c T,
t 2 -2  

(4.26)
q*2(t2) = f(t',t2) - min f*(t, t2), Vr E R, Vt E T, Vt 2 C 72

t 2
ET 2

Proof. Recall from Proposition 2, for any equilibrium load vector f* E F* (A) and any

given F C T', P C T2, equilibrium strategy profiles that can induce f*(A) can be writ-

ten in (4.12). Since constraint (4.11d) is tight in equilibrium (Theorem 2) in regime

A,, there is unique X that satisfies (4.13), X = (maxtier (f*(V, F) - f,*(ti))),rE.

Following (4.12), the corresponding strategy profile is:

*1(tl) = f,*(t', F2 ) - f,*(fl, 2) + max (f*(i', P) - f*(t', 1))qr ti ET,

= f*(t',tF) - min f,* (t',F),
t'ET'
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which is identical for any given 2 E -72. Analogously, q, 2 (t2) can be written as:

q,*2 (t2) = f*(p , t2 ) - max (f,* (P, fr) - (t', 2)
t1ET1

= f*(p, t2 ) _ fp, i2) + min f*(tI, 2 )
t 1E T'

(3.E5)

(q* I () + q*2(t 2)) (q*1(P) + q*2 (j2)) + min q*1(tl) + q*2(i2)

= q*2(t 2 ) + min q*1(t1 )
r t' ET'

min5 f* (t 1, t2),
tI ET'

Following similar analysis, in regime A 3 , X is unique, and q* can be written in (4.26).

Proposition 5 can be simplified as follows when the origin and destination are

connected by a parallel route network.

Corollary 3. g = (V, S) is a parallel route network. For any A G [0,1], the equi-

librium route flow f* is unique. In regime A1 and A3 , the equilibrium strategy q* is

unique.

Proof. For a parallel route network, we immediately obtain the uniqueness of f* from

Corollary 1. The uniqueness of q* in regime A1 and A3 follows from Theorem 5

immediately. D

We now have a general discussion on equilibrium properties in each regime. From

Theorem 2, we know in regimes A1 , Jl(f*) = Jl(q*) = AD. The impact of infor-

mation is maximal on the strategy of population 1 in equilibrium. Each equilibrium

route flow can only be induced by a unique equilibrium strategy profile. From (4.19),

we obtain mintieTl q,*'(t') = 0 for any r E R. That is for any route r E R, there

exists at least one type t1 , which does not assign demand on r. Recall the two-route

example in Chapter 2, we can see that the impact of information on population 1's

equilibrium strategy is indeed maximized, since population 1 switches all the demand

from r, to r2 when signal changes from n to a. Following similar analysis, in regime
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A 3 , j2(f*) = j 2 (q*) = (1 - A)D. The impact of information on population 2's equi-

librium strategy is maximized, and for any route r E R, there exists at least one type

t2 , which does not assign demand on r. On the contrary, in regime A 2 , the impact

of information is not necessarily tightly bounded by the demand in equilibrium. As

we can see in the two-route example, jl(f*) = Jl(q*) = A < A, there are multiple

equilibria that induces an identical equilibriuim route flow.

The threshold A is the minimum fraction of population 1 at which the impact of

the received signal on population l's strategy is fully achieved in equilibrium. For

A < A, Jl(q*) linearly increases with A, i.e. 7l(q*) = AD. Analogously, 1 - A is

the minimum fraction of population 2 at which the impact of the received signal on

population 2's strategy is fully achieved in equilibrium. For A > A, J2 (q*) linearly

decreases with A (increases with 1 - A), i.e. 3 2 (q*) = (1 - A)D. For A E [A, A], the

impacts of the received signal on both populations' strategies are fully achieved in

equilibrium.

We continue to study the two route example in Chapter 2. Consider two in-

formation systems such that pl(tl = als = a, t 2 ) = p(t = n~s = n,t2 ) = 0.8;

P2(t2 = als = a, t) = p2 (t2 = nIs = n, t') = 0.6. The rest parameters are the same

as the parameters in Table 2.1. Fig. 4-la shows that the optimal value of the poten-

tial function decreases in regime A 1 , does not change in regime A2 , and increases in

regime A 3 . Fig. 4-1b shows the equilibrium route flow split fraction (the ratio of the

demand assigned to each route and the total demand) does not change with A if and

only if A is in regime A2 . The thresholds are A = 0.1382, A = 0.9693.
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Figure 4-1: Optimal value of potential function T(A) and equilibrium route flow
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Chapter 5

Relative Value of Information

In this chapter, we study how does difference between the average costs of two pop-

ulations in equilibrium changes with the relative population size. In section 5.1, we

study the special case when one population is uninformed.

We define the B WE population cost as the expected equilibrium cost of travelers

of a given population:

C*l(A) Pr(t') E E[c,(q*) t>]q*(t) ) (5.1)

where the last equation is from Definition 1, each type t' only assigns demand on

routes which incur the lowest expected cost E[c,(q*) ti]. Since all equilibrium strategy

profiles induce identical equilibrium edge load, thus incur identical cost (Corollary 1),

we immediately obtain that C*(A) is identical in all equilibria.

We define the relative value of information V*(A) as the difference between equi-

librium cost of population 1 and 2:

V*(A) A C* 2 (A) - C*'(A).

V*(A) evaluates the value of information provided by information system 1 relative

to that provided by information system 2.

Theorem 3. Given any two information systems, the relative value of information
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V*(A) is non-increasing in A. Furthermore, V*(A) > 0 in regime A,, V*(A) = 0 in

regime A 2, and V*(A) < 0 in regime A3 .

Proof. We first prove that T(A) is differentiable in A. <D(q) and constraints (3.3a)-

(3.3b) are differentiable with respect to q and A. The set of equilibrium strategy

profiles Q*(A) is nonempty and bounded. For any q* E Q*(A), the Lagrange multi-

pliers (p*, v*) in (4.9) and (4.10) are bounded. From Proposition 12, we know that

T (A) is directionally differentiable. We obtain the right-hand-side derivative, denoted

T'(A+) as follows:

T (A + e) - 'I(A) (A.3)
T (A+) = lim = Dz= 4(A) mm max

-+O+ eq*EQ* (A) (A*,V*)
E(M(q*),N(q*))

OL(q*, p*, v*)
OA

min max - p
q*EQ* (A) (pA*,v*) /

E(M(q*),N(q*)) t1ET' t2 /

where D,=1 T(A) is the directional derivative defined in Definition 4 in Appendix A for

the direction z = 1. Analogously, given direction z = -1, the left derivative X'(A-)

can be written as:

- WT(A + T)- (A)
T'(A-) = lim =( -Dz=- 1 (A)

(A.3) . L(q*, P*7=3 - mm max
q*EQ *(A) ( *,V*) A

E(M(q*),N(q*))

=max min
q*EQ*(A) (pA*,V*) OA

E(M(q*),N(q*))

v*))

max min - D.
q* E- Q* (A) (t *,V*) )2E

E(M(q*),N(q*)) t ET 2E

Proposition 1 ensures that sets M(q*), N(q*) are singletons. Corollary 1 shows that

the cost of all BWE is identical. x'(A+) is equal to x'(A-), and can be written as
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follows:

,P'(A+) = IF'(A -) =.p0 - 4*2

\tlET' t22ET2

Therefore, T(A) is differentiable. The derivative of T(A) in A, denoted P'(A), is as

follows:

'I"(A) ( min Pr(t')E[c,(q*)|tl] - 1 minPr(t2)E[c,(q*)t2] D
ti ET1 t2ET2

= (C* (A) - C*2 (A)) D = -V*(A) - D,

'(A)
- V*(A) =- D

D

From Proposition 4, T(A) decreases with A in regime A1 , does not change in

regime A2 and increases in regime A3 . Therefore, V*(A) > 0 in regime A 1 , V*(A) = 0

in regime A2 , and V*(A) < 0 in regime A 3

Finally, recall the convex optimization problem (OPT-Q). The constraints (3.3a)

and (3.3b) are affine in both q and A. (D(q) is convex in q, and independent with

A. A takes value in the convex domain [0, 1]. The problem satisfies the conditions

of Proposition 11 in Appendix A, thus we obtain that T(A) is convex in A. ' ,(A) is

non-decreasing in A, and we conclude that the relative value of information V*(A) is

non-increasing in A.

We consider the two route example. The two information systems are pl(t =

als = a, t2 ) =p(t1 = ns = n, t2 ) = 0.8; p2 (t2 = als = a, t1) = p2 (t 2 = ns = n,t1 ) =

0.6. That is the probability of population 1 to receive the correct state is 0.8, and

the probability for population 2 is 0.6. Other parameters are the same in Table 2.1.

Fig. 5-1 shows the equilibrium population cost . The thresholds are A = 0.1382,

\ = 0.9693.
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Figure 5-1: Equilibrium population costs.

Notice that when A > A, population 1, which is better informed has higher cost

than population 2, which is less informed. We say that information has negative value

if the better informed population is worse off.

Recall that when A > A, 3 2 (q*) = (1 - A)D. From (4.19), for each r C 7, there

exists at least one P E T 2 such that P does not assign demand on route r. The

set of routes, on which type P assign demand, must have lower cost than that of r.

Therefore, the intuition behind the negative value of information is that the demand

of the less informed population is low, such that the less informed population only

assigns demand on routes with lower cost given the stragety of the more informed

population.

5.1 Non-negative Relative Value of Information

we next provide a sufficient condition, in which negative value of information does

not happen.

Proposition 6. If population 2 is not informed, i.e. for any t' E T and s C S,

Pr(t2 Is, t1 ) = Pr(t2 ), Vt 2 E T2, then A = 1. Thus, V(A) ;> 0.

Proof. We first show that the interim beliefs p(s, t1lt2) in (3.4) are identical for any
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t2 C 2:

p(st1 It2) = 7r(s,t, t 2 ) _ Pr(t2Is, t1) - Pr(s, t')
Pr(t2 ) Pr(t2 )

= Pr(s, t') = 3r (s, t1, t 2 ), Vs E S,Vt1 E T1 , Vt 2 ET
t2 E' 2

Therefore, for any equilibrium strategy profile q*, q* (t2 ) is identical across all

P E 72. J 2 (q*) = 2(f*) = 0 for any A. From the definition of A in (4.22), for any

ft C i,
(4.22)1 1

-
-max{D J2(ft)}=1. D ftert

Following Theorem 3, we obtain V*(A) > 0 for any A. E

When population 2 has no information about the state, signals have no effect on

population 2's strategy, i.e. j 2 (q*) = 0. Regime A3 degenerates to a singleton {1}. In

regime A 1 , the informed population has lower cost than the uninformed population.

When the fraction of informed population exceeds A, two populations have the same

cost.

Proposition 6 shows that population 2 being uninformed is a sufficient condition

for A = 1. However, it is not a necessary condition. Fig. 5-2 shows equilibrium

population cost for the case where D = 10, p = 0.2, c(l) = l + 15, c(l) = 31 + 15,

c2 (l) = 201 + 30; pl(tl = als = a, t 2 ) = p(t - njs = n, t2 ) = 0.8; p2 (t2 = als =

a, t1 ) =p 2 (t2 = ns = n, t') =0.6. The thresholds are A = 0.0227, = 1.

1.02

0.99

0.98

0.97 LII
-C*1

0.96'
0 0.2 0.4 0.6 0.8 1

A

Figure 5-2: Equilibrium population cost C* (A)
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Since the slope of population 2 is sufficiently high, the expected cost of route 2

is higher than that of route 1 for both t2 = a and t2 = n. Although population 2 is

informed, since both types of population 2 route all demand on r1 , signal t2 has no

impact on the strategy of population 2 in equilibrium. We obtain \ = 1.
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Chapter 6

Equilibrium Social Cost

In this chapter, we study how equilibrium social cost changes when the relative pop-

ulation size changes. We provide bounds of equilibrium social cost in Sec. 6.1, and

study the worst case inefficiency of equilibrium in Sec. 6.2

For any feasible strategy profile, the average social cost C(q) is the expected cost

incurred by a traveler of any population across all network states:

C(q) = - Pr(t) E E[c(q) ti]q (tP). (6.1)
iE1 t ET' rElZ

We define the equilibrium social cost C*(A) as the average social cost in equilibrium:

C* ( A) = ( Pr (Pi) E 1E [Cr (q*)t P] q**(ti ).
iEI OVT rEIZ

C* (A) is identical for any BWE.

We first present an example to show that the social cost can be non-differentiable

and non-convex in A. The game setup is the same as the two-route example in

Chapter 2. (6(a) = 0.6, D = 3, c'(l) = 1 + 15, ca(l) = 31 + 15, c2 (l) = 21 + 20;

p1(t' = ajs = a, t2 ) p'(t = njs = n, t2 ) = 0.8; p 2 (t2 = afs = a, t') = p2(t2

nIs = n, t') = 0.6). Fig. 6-1 shows the equilibrium social cost. The thresholds for

this example are A = 0.2088, \ = 0.9769.
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Figure 6-1: Expected social cost C* (A)

Since the equilibrium social cost is non-convex and non-differentiable with respect

to A, it is difficult to study the property of equilibrium social cost in general. In this

section, we are interested in studying the bounds on the equilibrium social cost, and

the bound on the inefficiency of equilibrium.

6.1 Bounds on Equilibrium Social Cost

Consider the socially optimal strategy qOP (A), i.e. the feasible strategy that minimizes

the social cost.

C'' t (A) A min C(q) = C(q*'(A)). (6.2)
qEQ(A)

Naturally, COt(A) < C*(A) for all A.

We study how COPt(A) changes with A via a modified game, I m, which is defined

similarly to F, except with edge cost function Es as follows:

9 (we -C;( We)) ) c(we)
(ce(we) + We- easeWe ae e we

E'(we) is the maginal cost function of edge e in the original game F. IFm is also a

weighted potential game. Let <D' (q) denote the weighted potential function of r m , and
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T' (A) as the optimal value of the potential function of F', I' (A) A minqEQ(A) 1m (q).

Lemma 4. The socially optimal strategy qoPt(A) is the BWE strategy of the modified

game. Furthermore, COPt(A) = Ix" (A).

Proof. Proof of Lemma 4. Following (4.1), the potential function of F"m, denoted

(q), can be written as:

E re q'(t')+q2(t2)
"m (q) = >r(s, tI, t2 ) j e(z)dz

sES eE& t1ET' t2E'2

r(s, tt2)c8 (We(t, t2)) 1 2 )
sES eES t1ET1 t 2 ET2

= E3 >3 Pr(t') E3E[c,(q) t]q'(t)
iEI tleTl rEIZ

(6.1)
= D - C(q).

The equilibrium of the modified game minimizes the potential function 4'(q), thus

minimizes C(q). Therefore, C"Pt(A) = -Ld'(A). Any social optimal strategy qOP'(A)

is a BWE for the marginal game F"'.

All our results so far are applicable for the modified game F"'. Following similar

discussion in Sec. 4.2, there exists thresholds 0 < A m < A m < 1, which creates three

regimes A"n = [0, Am ), A' [Atm , >m, and Am = (A m , 1].

Corollary 4. For any A, COP(A) < C*(A). Furthermore, CPt(A) decreases with A in

Am", does not change in A", and increases in Am

This result directly follows from Proposition 4 and Lemma 4.

We define the minimum equilibrium social cost, denoted C as follows:

C*in A mn C*(A).
AE[0,1]

We define Ain as the set of A that attains C Recall Corollary 2, w*(A) does not

change with A in regime A 2 , thus C*(A) does not change. Similarly, CoPt(A) does not

change with A in regime A' of the modified game.
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Proposition 7. The minimum B WE social cost C* jn satisfies:

CoPt C* < CL

where C~2 is the equilibrium social cost for A in regime A2 , and Cop is the optimal

social cost for A in regime A'.

Proof. By the definition of C,*in, we know that C*n CL. From Corollary 4, the

minimum of CP't(A) is achieved for A in A'. Thus,

C 0 > C"Pt(Amin) ;> C2 .

We next show that the bounds presented in Corollary 4 and Proposition 7 are

tight.

Proposition 8. If cost functions can be written as:

c'(we) = h'(We) +e- e, Ve E 8,s ES,

where h' is a homogeneous function with degree k > 1, and {/e}eE8,sES satisfies:

> e =osS Vs S, VrER.
eEr

then COPt (A) = C*(A). Additionally, C = C = C Minimum equilibrium social

cost is achieved in regime A 2, and it is equal to the socially optimal cost.

Proof. Since h'(-) is a k-th order homogeneous function of we, we know from Euler's

homogeneous function theorem that the marginal cost function can be written as:

dhs (z) k
Z dz k h(z).
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Thus, the marginal cost function can be expressed as:

As (we)
6'(we) = he(we) + 0'3:+We ) = (k +1) - h'(we) + 0.

For any feasible strategy profile q c Q, the expected social cost C(q) in (6.1) can be

written as:

q17t')+q2C

r' (tl+q2 t2

=A z rw(s, tI, t2)i
eEE t2ET 2 t1ET 1 sES

tr(s, tt2)i
eES t2 E2t'ET sES

k + 1 E E (l1 t2- kD- zz (s, t',t2)
eES t2 ET 2 t'ET1 sES

k E r (s, t, t 2)

eE9 t2 ET2 1 
ET' sES

(k + 1) P(q) - k r(s, t)-
SES tET

10
F,9, q (tl)+q

/

(k + 1) - h'(z)dz

/e3dz

(h'(z) + 03:) dz

/3'dz

(6.3)

Following (6.3), when the free flow travel time is identical across all routes, C(q) can

be simplified as:

C(q) = (k + 1)-i- (q)-k-
\sES

: z r(s,tl,t2
\t'ET

1 t 2 ET 2

s (3 ) (k + 1)
D

Since the equilibrium strategy profile q* minimizes 1(q), q* also minimizes C(q).

Thus, C*(A) = C' t (A). The minimim equilibrium social cost is achieved in regime

A2. Therefore, 0* = C0*- AA A2 ~i min O 1:1

Fig. 6-2 shows the equilibrium social cost C*(A) and COP'(A) (D = 10, c"(l) =

1+15, c'(l) = 31+15, c2 (l) = 2l+20; p1 (t' = als = a, t2 ) =pi(t' = nis = n, t2) = 0.8;

P2(t2 = als = a, t) = p2 (t 2 = nis = n, t1 ) = 0.6). The thresholds are A = 0.1521,

A = 0.9662. COPt(A) is a lower bound of C*(A). Amin is in regime A1 .
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Figure 6-2: BWE social cost C* (A) bounded by COPt(A).

Fig. 6-3 presents the case where the free flow travel time on two routes are

identical. (D = 1, c(l) = 1 + 20, c'(l) = 31 + 20, c2 (l) = 21 + 20; pl(t' = als =

a, t 2 ) = (tl= nis = n, t2 ) = 0.8; p2 (t2 = als = a, t') = p2(t2 = nis = n, t) = 0.6).

The thresholds are A = 0.1382, A = 0.9693. The bound C"(A) is tight, and Cj, is

achieved in the full range of regime A 2 -
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Figure 6-3: BWE social cost C* (A)
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6.2 Bounds on the Inefficiency

We evaluate the inefficiency of BWE by the worst case of fraction . Since the

equilibrium cost is unique, gp$() is identical in all equilibria. Proposition 13 from

Roughgarden and Tardos (2004) presents the bound of efficiency loss of Wardrop

Equilibrium with complete information. We next show that the results in Proposition

13 hold in our game with heterogeneous information structure.

Define the pigou bound K(C) as:

y -c(y)
K(C) = sup sup ,

cEC X>O,y O X - c(x) + (y - X) - c(y)
(6.4)

where C is the set of edge cost function {Ce(We)}eES,sS.

Proposition 9. For any given A, we have C(A) (C), and the bound is tight.
If~(A -h edge) andt thetn bondistiht

If the edge cost functions c;(we) are affine functions for all e E s E S, we have

C*(A) < 4
Cort(A) - 3'

Proof. Proof of Proposition 9. Following Definition 1, we obtain:

3 q*Z(t)E[c,(q*)|ti] = AVD min E[cr(q*)|t' ] < qO qt(t)E[c(q*) ti], Vt' c -P,Vi C i.
rElZ rEJZ

(6.5)

Define f ot as the route flow vector induced by optimal social cost strategy qOP't, and
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w" as the induced edge load vector. Following (6.5), we have:

EE
SES eEE tET

r (s, t)w*(t) c'(w*(t)) = E r (st)f'(t)
sES rER tET \eEr

= E Pr(t')
tlET'

q*1 (tl)E[cr(q*)tl] + E Pr(t2 ) q* 2 (t 2 )E[cr(q*)|t2)
\rER 2E7T2 \rE

This leads to:

C"Pt(A) =
sES

+ 1: Pr(t 2)
t2 ET2

sEse
sES eEE

5 qot2(t2)E[c,(q*)|t2](r E1Z

Ir (S, t) W'Pt (t)c'(W*(t)).
tET

(6.6)

7r(s, t) c' (we*(t)) wtET(t)
eEE teT

(we*(t))w*(t) - W(t)cs (weP*(t)) + (we(t) - wOP (t)) cs (we(t))
(We'~ ~ ~ c M(we'()- s* M) W* W

Sr(sE c0 eC
sES eES tET

+ 5r(s, t) (w t (t) - w*(t)) cs (w*(t))
sES eEE tET

(6.6)
(6>6) (~z C eTrs, t)c'(w*(t))w*(t)
sES eEZ tET

. I min
sES,eEC,tET

(6.4) C*(A)
- r,(C)

wOP(t)ce (wep t (t)) + (we*(t) - wept (t)) ce (we(t))

&c- (We()) we*(t)I

Consider affine cost functions, for any e E S and s E S,

assuming C-e(We)= aswe + 0', we have:

Wep*t W (cs (W*(0)) - cs (wOP'(t)) )

=as e't I sw*( -wP( s *(t) 2

ewo*(t ) (W*(t ) . o W
-4

15WM'(*0
-4eee
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(6.5)

tI ETl

E(s, t) f7"'(t)
sES rER t(ET

Thus, OtA s(0).

Pr(tl) Eq,*t(t1)E[Cr(q*)|tI1]

(Ee (we() M
\eEr /



Thus, we obtain:

C* (A) = >3> > w(s, t)w*(t)c' (w*(t))
sES eES tET

(6.6)
7r (s, t) w'"P (t) c' (w*(t))

sES eEE tET

= >3>1> ir (s, ( ( + >3>3>3 r(s, t)w"P (t) (cS (w*(t)) - c' (w' t(t)))
sES eEE tET sES eEE tET

(6.7)
< >r(s, t)w"P'(t)c3(w"P'(t)) + >3>3

sES eCE tET sES eEE tET
1

= COP(A) + I C*(A).
4

Therefore, C*(A) < 1. Since the game with one population, one state is a specialCOPt(A) - 3

case of our game, the bound is tight follows Proposition 13. lI
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Chapter 7

Conclusion

7.1 Summary of the Results

This thesis models network routing in a heterogeneous information environment as a

Bayesian congestion game. We study how does Bayesian Wardrop equilibrium change

when the relative size of two populations with asymmetric information changes. Our

results hold for a general single o-d network with state dependent increasing edge cost

functions and an information environment induced by any two different information

systems with a common prior. Due to the existence of common prior, the Bayesian

congestion game has a weighted potential function, and the set of Bayesian Wardrop

equilibria can be solved as the optimal solution of a convex optimization program.

The equilibrium edge load is unique. We show that the qualitative properties of

equilibrium strategies change as the relative population size changes, resulting in

three distinct regimes. Interestingly, the equilibrium edge load does not vary with

the relative population size, and both populations face identical cost in equilibrium if

and only if the relative population size is in the intermediate regime. In the other two

regimes, the "minor" population has lower cost in equilibrium. Additionally, we define

a metric to evaluate the impact of information. The impact of information on the

minor population is tightly bounded by its size in the two side regimes, which results

in the effect of relative population size on equilibrium edge load and costs. Finally,

we provide the bounds on the equilibrium social cost, and a sufficient condition for
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the bounds to be tight. We obtain the same worst case inefficiency of equilibrium as

the well-known results in the literature for complete information games.

The results in the thesis are applicable to games with more than two populations.

Three equilibrium regimes exist when we perturb the relative population size between

any two populations, and keep the sizes of the remaining populations as constants.

Analogously, there is an intermediate region of population sizes, where the equilibrium

edge load does not depend on the population sizes, and the costs of all populations are

identical in equilibrium. If one population is uninformed, all the other populations

have no higher cost than the uninformed population regardless of the population sizes.

Furthermore, our results can be extended to the case where the edge cost functions are

non-increasing instead of increasing. The equilibrium edge load may not be unique,

but the cost on each edge is unique in equilibrium. The equilibrium characterization,

impact of information and cost analysis follow directly from our discussion in Chapter

4- Chapter 6. The expression of regime thresholds do not change, but the computation

is more complex, since the edge load in the intermediate regime may not be unique.

7.2 Future Work

Based upon the current results, we propose the following directions for future work:

First, common prior may not exist in real world applications as populations may not

know the accuracy of the information received by others. It would be interesting to

study how robust our results in the information environment without common prior.

Another extension of our work is to take into account the off-equilibrium strategy

and the learning procedure. Using a dynamic model, we could study if travelers can

learn towards equilibrium when the game is repeated and the realization of cost is

stochastic.
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Appendix A

Review of Perturbation Analysis

We provide a brief review on results of perturbation analysis of optimization problem.

For detailed discussion, see Fiacco and Kyparisis (1986), Fiacco (2009), Milgrom and

Segal (2002), Bonnans and Shapiro (2013) and Wachsmuth (2013). We first define

the parametric nonlinear optimization problem as follows:

min 4)(q, A)
q

s.t. gj(q, A) > 0, Z = 1, ... , m, (A.1)

hj(q,A)=0 j=1,...,p,

A E [0, 1],

The Lagrange function associated with (A.1) is:

m p

L(q, p, v, A) = <D(q, A) - E Pi ugj(q, A) + 3v hj (q, A). (A.2)
i=1 j=1

We define the set of optimal solutions as Q*(A). For any optimal solution q* E Q*(A),

we define M(q*) and N(q*) as the set of Lagrange multiplier /* and v* associated

with the optimal solution q*.

We first review the constraint qualification that ensures uniqueness of Lagrange

multipliers at optimum.

Definition 3. (Wachsmuth (2013)) Linear independence constraint qualification, i.e.
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LICQ(q, A), holds at q if the set of vectors {Vqgi(q, A)|gi(q, A) = 0, i 1,. .. m} and

{Vqhj (q, A)} =1,...,p are linearly independent.

Proposition 10. (Theorem 2 in Wachsmuth (2013)) For any optimal solution q* c

Q*(A), if LICQ(q*, A) holds, M(q*) and N(q*) are singleton sets.

The next two propositions show the convexity and directional derivative of WI(A).

Definition 4. The directional derivative of T(A) at A in direction z is:

D, T(A) = lim .
A+e) A E->0+ E

Proposition 11. (Corollary 2.2 in Fiacco and Kyparisis (1986)) The optimal value

function T(A) is convex with respect to A if <D(q, A) and -gi(q, A) are jointly convex

in q and A for any i = 1,...,m, hj(q, A) is linearly affine in q for any j = 1,...,p.

Proposition 12. (Proposition 6 in Fiacco (2009)) Assume that <b(q, A) is convex in

q for each A E [0, 1], and the problem functions are once continuously differentiable

in q and A. If A & (0, 1) and the set of points satisfying KKT condition is nonempty

and bounded, then in a neighborhood of A, TI(A) is continuously and directionally

differentiable in \ and in any direction z:

DxP(X) = min max VAL(q*, p*, v*, A)z, (A.3)
q*C-Q*(A) (11*,V*)

E(M(q*),N(q*))

where M(q*) and N(q*) are the sets of Lagrange multiplier p* and v* associated with

the optimal solution q* E Q*(A).
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Appendix B

Review of Price of Anarchy

We provide a brief characterization of efficiency bound of Wardrop Equilibrium. For

detailed analysis, see Roughgarden and Tardos (2004). Define the pigou bound K(C)

as:

y c(y)
K(C)= sup sup

c~C q>O,y>o q - c(q) + (y - q) - C()

where C is the set of cost functions.

Proposition 13. Roughgarden and Tardos (2004) The worst case ratio of equilibrium

cost and social optimal cost c* <K (C), and the bound is tight. If C contains allCOPt (A) -

affine functions, we have C*(A <-
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