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Abstract

The widespread deployment of smart meters and ICT technologies is enabling con-
tinuous collection of high resolution data about consumption behavior and health of
grid infrastructure. This has also spurred innovations in technological solutions using
analytics/machine learning methods that aim to improve efficiency of grid operations,
implement targeted demand management programs, and reduce distribution losses.
One one hand, the technological innovations can potentially lead large-scale adoption
of analytics driven tools for predictive maintenance and anomaly detection systems in
electricity industry. On the other hand, private profit-maximizing firms (distribution
utilities) need accurate assessment of the value of these tools to justify investment in
collection and processing of significant amount of data and buy/implement analytics
tools that exploit this data to provide actionable information (e.g. prediction of com-
ponent failures, alerts regarding fraudulent customer behavior, etc.)

In this thesis, the focus on the value assessment of intrusion/fraud detection systems,
and study the tradeoff faced by distribution utilities in terms of gain from fraud
investigations (and deterrence of fraudulent customer) versus cost of investigation
and false alarms triggered due to probabilistic nature of IDS. Our main contribution
is a Bayesian inspection game framework, which models the interactions between a
profit-maximizing distribution utility and a population of strategic customers. In
our framework, a fraction of customers are fraudulent - they consume same average
quantity of electricity but report less by strategically manipulating their consumption
data. We consider two sources of information incompleteness: first, the distribution
utility does not know the identity of fraudulent customers but only knows the frac-
tion of these consumers, and second, the distribution utility does not know the actual
theft level but only knows its distribution.

We first consider situation in which only the first source of information incomplete-
ness is present, i.e., the distribution utility has complete information about the actual
theft level. We present two simultaneous game models, which have same assumption

3



about customer preferences and fraud, but differ in the way in which the distribution
utility operates the IDS. In the first model, the distribution utility probabilistically
chooses to use IDS with a default (fixed) configuration. In the second model, the
distribution utility can configure/tune the IDS to achieve an optimal operating point
(i.e. combination of detection probability and false alarm rate). Throughout, we as-
sume that the theft level is greater than cost of attack. Our results show that for, the
game with default IDS configuration, the distribution utility does not use the IDS in
equilibrium if the fraction of fraudulent customers is less than a critical fraction. Also
the distribution utility realizes a positive “value of IDS” only if one or both have the
following conditions hold: (a) the ratio of detection probability and false alarm proba-
bility is greater than a critical ratio, (b) the fraction of fraudulent customers is greater
than the critical fraction. For the tunable IDS game, we show that the distribution
utility always uses an optimal configuration with non-zero false alarm probability.
Furthermore, the distribution utility does not tune the false alarm probability when
the fraction of fraudulent customers is greater than a critical fraction. In contrast to
the game with fixed IDS, in the game of tunable IDS, the distribution utility realizes
a positive value from IDS, and the value increases in fraction of fraudulent customers.

Next, we consider the situation in which both sources of information incomplete-
ness are present. Specifically, we present a sequential game in which the distribution
utility first chooses the optimal configuration of the IDS based on its knowledge of
theft level distribution (Stage 1), and then optimally uses the configured IDS in a si-
multaneous interaction with the customers (Stage 2). This sequential game naturally
enables estimation of the “value of information” about theft level, which represents
the additional monetary benefit the distribution utility can obtain if the exact value
of average theft level is available in choosing optimal IDS configuration in Stage 1.
Our results suggest that the optimal configuration under lack of full information on
theft level lies between the optimal configurations corresponding to the high and low
theft levels. Interestingly enough, our analysis also suggests that for certain technical
(yet realistic) conditions on the ROC curve that characterizes achievable detection
probability and false alarm probability configurations, the value of information about
certain combination of theft levels can attain negligibly small values.

Thesis Supervisor: Saurabh Amin
Title: Robert N. Noyce Career Development Assistant Professor
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Chapter 1

Introduction

Historically, widespread energy theft is characteristic for developing countries. Indeed,

according to a World Bank report [3], the theft of electricity reaches up to 50in some

jurisdictions of developing countries. For example, according to [34], India loses

more revenue to theft than any other country in the world with one of the states(

Maharashtra) alone losing $2.8 billion per year. Overall the country has transmission

and distribution(T&D) losses of up to 23% making the electricity distribution business

financially unsustainable.

Electricity Theft can have several manifestations. For example, it can occur via

availing unauthorized/unrecorded supply by tapping into conductors, feeders, and

tampering service wires. Or customers can commit theft by damaging and manipu-

lating electric equipment. Moreover there have been instances when the distribution

utility’s employers have made intentional billing errors in favor of fraudulent cus-

tomers. However electricity theft is not the only component of non-technical loss

faced by the distribution utility. In addition to electricity theft, energy diversion

losses ( and equivalently non-technical losses) can occur due to actions of a utility

personnel(administrative losses), customer non-payment and theft by outsiders.

Non technical losses adversely affect the efficiency of distribution system. For

example, the electricity consumption of non-paying parties is paid by other member

of the society. Moreover nontechnical losses are usually covered via either higher

electricity tariffs or higher taxes if the government decides to subsidize the distributor
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for these losses. Sometime these losses are not compensated for prolonged periods of

time. Lastly, when the distribution utility ends up being the net bearer of losses for

prolonged periods of time and no regulatory measures exist to recover these losses, his

incentive to innovate and invest in the network and its maintenance are jeopardized.

In order to reduce non-technical losses, the distribution utility and the regulation

bodies in developing countries should combat losses at each channel [2]. The distri-

bution utility can advance hardware technology initiatives by installing IT-supported

meters at distribution transformer and feeders, Automated Meter Reading (AMR),

and Advanced Metering Infrastructures(AMI). Moreover the distribution utility can

adopt management information systems equipped with data analytics for efficient

detection of fraud and unmetered connections. Furthermore the regulatory body

can impose strengthened enforcement mechanisms for efficient prosecution of theft

and publicize theft for sharper public scrutiny. Lastly, the distribution utility can

fix skewed tariff structures and ensure coordination and transparency in distribution

efforts.

In this thesis, we want to build a business case for the distribution utility to lever-

age high resolution data to improve metering, billing and collection procedures, and

fraud/theft identification complementing traditional detection tools of using balance

meters and physical checks of tamper-evident seals by field personnel. As mentioned

earlier, one of the most important technologies on the consumption side of smart grid

is the Advanced Metering Infrastructure (AMI). AMI are crucial to the modernization

of electricity metering system by replacing old meters by smart meters. Smart meters

provide two-way communications between the utility and the customer. Moreover

AMIs provide several capabilities including monitoring of network-wide and individ-

ual electricity consumption, faster remote diagnosis of outages, remote disconnect

options and automated power restoration [1].

However installation of AMI alone is not the full answer to the widespread problem of

electricity theft. Firstly, while AMI’s are smart, the fraudulent customers are smarter.

For example, many customers tap power lines in front of the smart meters thereby

hindering the ability to identify unmetered consumption. In fact, according to [23],
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the FBI has seen a surge in hacking of smart meters. Moreover the article mentions

that one does not need sophisticated technological skills to compromise these meters

and the fraudulent customers can achieve 50-75% reduction in power by simply plac-

ing a magnet to fake readings or hiring hackers to break into these meters. Secondly,

although AMI’s offer crucial technological advantages, their installation implies that

investigation and utility personals are not visiting residential premises. As a result,

the fraudulent customers are less deterred and more bold in committing theft. [38]

As discussed earlier, distribution utilities across the US are collecting fine-grained

data from their networks, devices and consumers [25]. In fact, electricity customers

generating as much data on the smart grid as they are on social media [21]. Due to

this surge in data collection and rapid progress in AI and big data capabilities, there

has been a proliferation in literature on data-driven anomaly detection systems. The

focus of such works have been on detection of abnormal electricity traces that are

highly correlated with electricity theft. Moreover, these works use a variety of ma-

chine learning techniques, including Support Vector Machines and Extreme Learning

Machines to identify suspicious energy traces [33], [32], [16]. Furthermore there has

been efforts to enable sensor fusion at the scale of electricity distribution to integrate

consumption anomalies in the diagnostic system [30]. Lastly, there has been research

in evaluating a class of theft detection schemes in the presence of strategic fraudulent

customers who can evade the diagnostic system [27]. The survey article [20] provides

a broader description of electricity theft problem.

However there has not been significant number of studies in the smart grid community

about the value of these technologies. In this thesis, we evaluate the value of Intru-

sion Detection System (IDS), characterized by false alarm probability and detection

probability, to the distribution utility for addressing non-technical losses.

1.1 Related Work

Though we are unaware of similar analysis in the energy diversion literature, re-

searchers in other areas have investigated similar problems. Particularly, our work is
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closely related to Inspection Games. Inspection games are a class of attacker-defender

games that account for illegal actions by a strategic inspectee who wants to evade

detection by an inspector. The survey paper by Avenhaus et al. [5] provides an ex-

cellent summary of this topic. A fundamental feature of inspection games is that the

inspector tries to prevent the inspectee from operating illegally in terms of violat-

ing an agreement or a set of rules. The problem is to design an optimal inspection

scheme when the inspector is resource-constrained, and the detection can only be

partial. This class of games is of particular interest to energy diversion problems,

because it allows to extend the standard formulation of statistical detection tests to

the settings when the inspectee is able to manipulate the observations collected by

the inspector.

Similarly, there has been applications of Inspection games for security of IT archi-

tecture using Intrusion Detection Systems (IDS) in [12]. The work assess the value

of IDS in firm’s IT security distinguishing between its ‘out-of-the-box’ and ‘optimal’

configuration and finally shows that an IDS produces positive value only when the

detection rate is higher than a critical value, which is determined by the attacker’s

cost parameters. Although the above framework addresses the optimal configuration

of the IDS, it does not model the relationship between IDS detection probability and

attacker’s efforts. The above limitation is addressed by [13] which presents a sys-

tematic framework for comparing game-theoretic and decision-theoretic approaches

to IT security based on investment levels, vulnerability, and equilibrium payoff. .

The above model also compares the timing of the game showing that the sequential

game results in the maximum payoff to the defender, followed by simultaneous game

which is better than decision theoretic approach for most cases. However the model

assumes a functional form for security breach probability based on attacker’s effort

without any implementation details. Furthermore both the models assume that all

users/customers are attackers and does not reflect the property of incomplete infor-

mation between the defender and users. Since majority of electricity customers are

genuine, incomplete information about the type of customer is a crucial property of

any game theoretical model for electricity theft.
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To model the heterogeneity in customers, [26] proposes a game theoretic frame-

work to analyze the interactions between pairs of attacking/defending nodes using a

Bayesian formulation and evaluates Nash Equilibrium for both static and dynamic

scenarios. However the model does not address (a) the optimal configuration of the

IDS and (b) the interaction between IDS and attacker’s efforts. Lastly, [1] investigates

energy theft in smart utility networks by developing a leader-follower game-theoretic

framework to model the interactions between distribution utility and population of

strategic customers, a fraction of which are fraudulent customers. Furthermore the

work evaluates pricing and investment decisions by a distribution utility in both

unregulated monopoly and perfect competition environment. Although the model

presents a systematic procedure to model electricity theft, it evaluates the equilib-

rium for only a certain type of ROC curves(namely, for exponential distribution)

and assumes a functional relationship between level of investment by the distribution

utility and false alarm probability of the IDS without any implementation details.

Moreover the focus of this work has been on pricing of electricity and level of in-

vestment in AMI-based anomaly detection systems while we are more interested in

configuration of these anomaly detection systems and evaluating the value of infor-

mation in decision making for the distribution utility.

1.2 Focus / Our contribution

In this thesis, we present a bayesian inspection game framework to analyze the prob-

lem of electricity theft (and more broadly, to energy diversion attacks). In this model,

the electricity distribution utility faces two types of consumers: genuine consumers

and fraudulent ones. A genuine consumer’s billed consumption of electricity is the

same as her genuine consumption on average. However, the fraudulent consumers

strategically manipulate their meter readings to under-report their actual consump-

tion. In the absence of detection, the fraudulent consumers can continue to divert

electricity, resulting in increased commercial losses to the distribution utility, and in

some cases tariff increases for the genuine consumers.
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In order to model the investment and operational decision-making process by the

distribution utility, we consider a two stage formulation of its interaction with the

customers. In stage 1, the distribution utility chooses the optimal configuration of the

IDS and in stage 2, the distribution utility chooses the probability of using the IDS

and the fraudulent customer chooses the probability of committing theft. Note that

all the game parameters are known to both the players in stage 2. For both default

configuration of the IDS and a tunable IDS, the distribution utility skips stage 1 and

chooses the probability of using the IDS and the optimal configuration respectively

in stage 2. Furthermore the distribution utility may not have complete information

about the theft level committed by the fraudulent customer in stage 1 and conse-

quently chooses the optimal configuration that maximizes his expected payoff. In

order to evaluate the relevance of IDS technologies in security of smart grid, we seek

to asses the value of IDS for the distribution utility in all the aforementioned config-

urations. The value of IDS is crucial to evaluate the difference between subsequent

investment in smart grid security technologies and the recovered fine and tariff from

fraudulent customers by deterring them from committing energy theft.

Similarly the distribution utilities often have an option to collect additional informa-

tion about the customer and his consumption behavior. Through our game theoretic

framework, we want to determine conditions when it is profitable for the distribution

utility to gain further information. As a result, we define value of information to

be the difference in defender’s payoff between complete and incomplete information

scenarios. Finally we argue that the total value that the distribution utility obtains

from installing/operating an IDS is equal to the sum of value of IDS and value of

information.

We summarize the significant findings of our analysis on equilibrium response of the

distribution utility and fraudulent customer as follows:

i. In the default configuration of IDS, we show that, in equilibrium, the fraudu-

lent customers do not commit theft and the distribution utility does not use the

IDS if amount of theft is less than cost of attack. Moreover we show, provided

amount of theft is greater than cost of attack, that there exists a critical fraction
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of fraudulent customers below which the distribution utility does not use the

IDS and the fraudulent customer always commits theft. Finally, for fractions

greater than critical fraction above, the fraudulent customer is indifferent be-

tween Theft and No Theft and the distribution utility chooses a constant false

alarm probability.

ii. For a tunable IDS, like the default configuration, in equilibrium, the fraudulent

customers do not commit theft and the distribution utility chooses zero false

alarm probability of the IDS if amount of theft is less than cost of attack.

Furthermore, there exists another critical fraction of fraudulent customers below

which the fraudulent customer always commits theft and the distribution utility

chooses a non-zero false alarm probability of the IDS. Finally, like the default

configuration, for fractions greater than critical fraction above, the fraudulent

customer is indifferent between Theft and No Theft and the distribution utility

chooses a constant false alarm probability.

iii. In the optimal configuration of the IDS under perfect information, we show

that, in equilibrium, the fraudulent customers do not commit theft and the

distribution utility chooses zero false alarm probability in Stage 1 and does not

use the IDS in Stage 2 if amount of theft is less than cost of attack. Furthermore,

for amount of theft greater than cost of attack, the distribution utility uses the

IDS in Stage 2 with probability 1. Similarly, the false alarm probability chosen

by the distribution utility in Stage 1 is same as that chosen for a tunable IDS.

iv. In the optimal configuration of the IDS under imperfect information, we show

that in equilibrium, the distribution utility chooses in Stage 1 a false alarm

probability between the optimal false alarm probabilities corresponding to the

two theft levels.

We summarize the significant findings of our analysis on value of IDS and value of

information as follows:

i. The distribution utility always realizes non-negative value of IDS in all valid
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configurations (i.e., default, tunable and optimally configured under both per-

fect and imperfect information) with detection probability greater than equal

to false alarm probability.

ii. In the default configuration of the IDS, the distribution utility realizes a positive

value if amount of theft committed by the fraudulent customer is greater than

cost of attack and the ratio of detection probability and false alarm probability

is greater than a critical ratio defined in terms of cost parameters and theft

level. Additionally, given the amount of theft is greater than cost of attack,

the distribution utility obtains positive value for all fractions of fraudulent cus-

tomers greater than a critical fraction determined by IDS configuration, cost

parameters and theft level.

iii. For a tunable IDS, the distribution utility realizes a positive value if amount

of theft committed by the fraudulent customer is greater than cost of attack.

Moreover the value of IDS increases with increasing fraction of fraudulent cus-

tomers.

iv. For complete information, the value of an optimally configured IDS is same

as that of a tunable IDS. For incomplete information, the expected value of

optimally configured IDS is always less than expected value of a tunable IDS.

v. For incomplete information, the distribution utility always realizes non-negative

value of information. Furthermore, given any probability measure over theft

level and under certain technical (yet realistic) conditions on the ROC curve,

there always exists two theft levels such that the distribution utility obtains

zero value of information.

Outline:

In chapter 2, we present the game-theoretic model and describe the environment in

which the distribution utility and the customers interact followed by classification

of Intrusion Detection System(IDS) available to the distribution utility. In chapter

3, we evaluate the equilibrium response of the distribution utility and customers for
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Intrusion Detection System Parameters
𝛼 False Alarm probability
𝜌p¨q Detection probability

Consumer Model Parameters
f Fraudulent Consumer
g Genuine Consumer
𝑞𝑖𝑗 Average quantity for 𝑗 P

 

𝑎𝑐𝑡𝑢𝑎𝑙, 𝑏𝑖𝑙𝑙𝑒𝑑u
𝑖 P

 

𝑓𝑟𝑎𝑢𝑑𝑢𝑙𝑒𝑛𝑡, 𝑔𝑒𝑛𝑢𝑖𝑛𝑒u
𝜂 Level of theft (or threat)
𝛿f P

 

T,NTu T: Theft, NT: No Theft
𝜋 Fraction of fraudulent customers
𝑣p.q Customer valuation function
C𝜂 Cost of Theft
𝛾 Probability of committing Theft

Distribution Utility Parameters
D Distribution Utility
𝛿D P

 

I,NIu I: Investigate , NI : Not Investigate
Tp.q Tariff Scheme (For ex: 𝑇 p𝑞q “ 𝐴` 𝑝𝑞 )
C𝜌 Cost of Investigation
C𝛼 Cost of False Alarm
F Fine
𝑐p.q Cost of Electricity 𝑐p𝑞q “ 𝑐𝑞

Table 1.1: Game-Theoretic Model Parameters

different configurations of the IDS - fixed, tunable and optimal configuration under

imperfect information. In chapter 4, we utilize the results on equilibrium payoffs of

the games in chapter 3 and determine the value of IDS(fixed, tunable/customizable),

and the value of information on the theft level. Finally, in chapter 5, we discuss

the manager implications of our work and discuss the current practices and future

directions for distribution utilities.
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Chapter 2

The Model

In this chapter, we present a game-theoretic framework to describe the interactions

between distribution utility and a population of electricity customers. An exogenously

known fraction of customers have vulnerable meter connections, and hence commit

electricity diversion attacks. The remaining fraction of customers are genuine, i.e.

they pay to the electric distribution utility for their actual consumption billed ac-

cording to a predefined tariff rate. Next we describe the environment in which the

distribution utility and the customers interact and define the class of Intrusion De-

tection System(IDS) available to the distribution utility. In 2.2 we define the two

games that are both subject to a set of assumptions on the parameters that affect

the players payoff and the IDS.

2.1 Environment

2.1.1 Distribution Utility

Our goal is to model scenarios for electricity theft and evaluate the optimal inspection

strategies for the distribution utility facing a population of customers, a fraction of

which can strategically conduct energy diversion attacks(fraud). In our setup, the

Distribution Utility(Monopolist) is the defender who collects consumption data (e.g.

AMI reading) to decide whether or not to investigate a customer for fraudulent elec-
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tricity consumption. We assume that the defender employs an Intrusion Detection

System which utilizes the classical statistical hypothesis testing to generate alert for

the defender.

Following the classical hypothesis testing paradigm, we say that the distribution util-

ity decides the underlying consumption distribution (ℋ0 or ℋ1 ) of the customer

by observing realizations(meter readings) of electricity consumption which is ran-

dom. The IDS’s detection performance is governed by its false alarm probability and

probability of detection. Thus in our model, the distribution utility acts like the

statistician in classical hypothesis testing problem.

We view electricity theft as the monetary loss due to stolen electricity by fraudu-

lent customers. A fraudulent customer (denoted by f) reports reduced electricity

consumption to the distribution utility while the genuine customer (denoted by g)

reports his/her actual consumption. The main feature of our setup is that the dis-

tribution utility does not know the "type" of the customers. We will model this

information incompleteness as a Bayesian Inspection game; see sec. 2.2.

In the terminology of Bayesian games, we say that the fraction of fraudulent cus-

tomers is common knowledge and each customer is privately informed about her type

(type f or type g). The distribution utility chooses to conduct inspection or not based

on alarm raised by the statistical test. Thus, the distribution utility’s choice is to

either Investigate (I) or Not Investigate (NI) a customer 𝛿D “
 

I,NIu. We allow

randomized strategy, i.e. the distribution utility can choose to investigate with a cer-

tain probability. As we will describe subsequently, the distribution utility’s inspection

strategy is directly related to the detection probability 𝜌 and false alarm probability

𝛼 of the IDS.

We assume that the distribution utility buys electricity from the electricity market

at a marginal cost C and sells it to customers according to a fixed tariff scheme Tp¨q.

For practical purposes and for the sake of convenience, we will consider a two-part

tariff scheme. To deter electricity theft, the customers are subject to a monetary fine

pFq if fraud is confirmed upon investigation by the distribution utility.

However, the distribution utility incurs false alarm cost C𝛼 for falsely investigating
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Figure 2.1: Interaction between a distribution utility and a fraudulent customer

a genuine customer for fraudulent behavior. Lastly, the distribution utility incurs a

cost C𝜌 to carry out an investigation for fraudulent behavior.

2.1.2 Customer

We now provide a (simple but non-exhaustive) classification of fraudulent behavior

or energy diversion attacks that can be committed by strategic customers. Let 𝑞g𝑎

KWh denote the average quantity consumed by a genuine customer and 𝑞g𝑏 kWh the

average quantity reported by a genuine customer. By definition, a genuine customer

consumes and reports the same expected quantity, i.e 𝑞g𝑎 “ 𝑞g𝑏 . Similarly let 𝑞f𝑎 kWh

(resp. 𝑞f𝑏 kWh) is the average quantity consumed (resp. reported) by a fraudulent

customer.

Naturally, 𝑞f𝑎 ‰ 𝑞f𝑏. The folllowing three cases arise:

i. Fraudulent customer reports lesser consumption but consumes same as the gen-

uine customer, i.e. 𝑞f𝑏 ă 𝑞f𝑎 “ 𝑞g𝑎. In this case, the average stolen quantity of

electricity, if undetected, is given by p𝑞f𝑎 ´ 𝑞f𝑏q;

ii. Fraudulent customer consumes more than genuine customer, but reports same,

i.e. 𝑞f𝑎 ą 𝑞g𝑎 and 𝑞f𝑏 “ 𝑞g𝑏 ;

iii. Fraudulent customer draws more electricity than the genuine one, but reports

less than genuine customer, i.e. 𝑞f𝑎 ą 𝑞g𝑎 and 𝑞f𝑏 ă 𝑞g𝑏 ;

In our work, we focus on first case i.e., the fraudulent customer consumes the same

expected quantity as a genuine customer but reports reduced consumption to the

distribution utility.
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We model the fraudulent customer’s level of theft as a fraction 𝜂 P r0, 1s, which is the

ratio of stolen quantity and actual consumed quantity by the fraudulent customer, i.e.

𝜂 “ p𝑞f𝑎´𝑞f𝑏q{𝑞
f
𝑎 “ 1´𝑞f𝑏{𝑞

f
𝑎. Equivalently, i.e. 𝑞f𝑏 “ p1´𝜂q𝑞f𝑎. The fraudulent customer

chooses to either commit Theft(T) or No Theft(NT), i.e. 𝛿f P
 

T, NTu. For a mixed

strategy 𝛾 P r0, 1s, the fraudulent customer randomizes between T and NT. Thus, 𝛾

can be viewed as the probability of committing theft T, PpTq “ 𝛾 and PpNTq “ 1´𝛾.

The fraudulent customer incurs cost of attack C𝜂 if 𝛿f “ T and pays a monetary fine

F if the investigation by the distribution utility successfully detects theft.

A classical way to calculate 𝑞g𝑎 is to maximize genuine customer’s utility as follows:

𝑞g𝑎
˚
“ arg max

𝑞g𝑎
𝑢g
p𝑞g𝑎,Tp.qq (1)

where 𝑢g :“ 𝑣p𝑞g𝑎q´Tp𝑞g𝑏 q, and 𝑣p¨q is the preference function for consuming electricity

(assumed identical for all customers) and Tp¨q is the tariff schedule. Similarly, for a

given theft level 𝜂 and 𝑞g𝑎 “ 𝑞f𝑎 as mentioned earlier, the fraudulent customer chooses

𝛾 to maximize his utility:

𝑢f˚ :“max
𝛾

𝑣p𝑞f𝑎q ´ p1´ 𝛾qTp𝑞f𝑎q ´ 𝛾Tp𝑞f𝑏q ´ 𝛾E𝛿D𝒫p𝑞f𝑎, 𝑞f𝑏, 𝛿Dq

“max
𝛾

𝑣p𝑞g𝑎
˚
q ´ p1´ 𝛾qTp𝑞g𝑎

˚
q ´ 𝛾Tp𝑞f𝑏q ´ 𝛾E𝛿Dr𝒫p𝑞g𝑎

˚, 𝑞f𝑏, 𝛿
D
qs

“𝑢g˚
`max

𝛾

`

𝛾𝑝p𝑞g𝑎
˚
´ 𝑞f𝑏q ´ 𝛾E𝛿Dr𝒫p𝑞g𝑎

˚, 𝑞f𝑏, 𝛿
D
qs
˘

(2)

where 𝒫 be the fine imposed by distribution utility given the fraudulent customer

is committing theft T

𝒫p𝑞g𝑎
˚, 𝑞f𝑏, 𝛿

D
q “

$

’

&

’

%

F` C𝜂 ` 𝑝𝑞g𝑎
˚𝜂 if 𝛿D “ I

C𝜂 if 𝛿D “ NI
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Hence, from (2), the fraudulent customer chooses 𝛾 to maximize,

max
𝛾

𝛾
`

𝑝𝑞g𝑎
˚𝜂 ´ E𝛿Dr𝒫p𝑞g𝑎

˚, 𝑞f𝑏, 𝛿
D
qs
˘

Note that since fraudulent customer always obtains 𝑢g˚ irrespective of 𝛾, 𝛿D and

genuine customers obtain 𝑢g˚ (by definition) , we do not consider it in the payoff

functions and further analysis. Lastly, since 𝑞g𝑎 is the only quantity in the payoff

function, we will denote it by 𝑞 for convenience.

2.1.3 Intrusion Detection System (IDS)

In this section, we introduce the model of an IDS and present its application for our

game-theoretic model.

Broadly speaking, an intrusion detection system (IDS) is ICT product that monitors

or a system to detect fraudulent or malicious activity. In our model, we will focus on

IDS based on Neyman Pearson Decision Theory.

Theorem 1. Neyman Pearson lemma

Let us define two hypothesis ℋ0 and ℋ1 for the random variable Y with realization 𝑦

and associated PDFs as 𝑝𝑦|ℋ0p𝑦|ℋ0q and 𝑝𝑦|ℋ1p𝑦|ℋ1q respectively. We define likelihood

ratio ℒp𝑦q and the Likelihood Ratio Test(LRT) as,

ℒp𝑦q fi
𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ1q

𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ0q

p𝐻p𝑦q“ℋ1

¡
p𝐻p𝑦q“ℋ0

𝜇

The decision maker chooses a decision rule p𝐻 that,

max 𝜌 subject to 𝛼 ď 𝛼0,

where 𝜌 is the probability of detection and 𝛼 is the probability of false alarm (for

continuous 𝑦):

𝜌 :“ Pp p𝐻p𝑦q “ ℋ1|ℋ “ ℋ1q “

ż

𝑦1

𝑝𝑦|ℋp𝑦|ℋ1q𝑑𝑦
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𝛼 :“ Pp p𝐻p𝑦q “ ℋ1|ℋ “ ℋ0q “

ż

𝑦1

𝑝𝑦|ℋp𝑦|ℋ0q𝑑𝑦

where 𝑦1 represents the region that corresponds p𝐻p𝑦q “ ℋ1. Maximization of 𝜌 subject

to the constraint 𝛼 ă 𝛼0 corresponds to using a decision rule with Likelihood Ratio

above the threshold 𝜇 such that,

𝛼 “ Pp𝐿p𝑦q ě 𝜇|ℋ “ ℋ0q “ 𝛼0

Example 1. Normal Distribution

In our numerical illustrations, we assume that both fraudulent and genuine customer

report consumption with underlying normal distribution. Let the average quantity of

electricity reported by genuine customer and fraudulent customer be Yg
𝑏 „ 𝒩 p𝑞, 𝜎2q

and Yf
𝑏 „ 𝒩 p𝑞f𝑏, 𝜎2q respectively. Here both genuine and fraudulent customer are

assumed to have the same variance. The fraudulent customer can reduce the mean of

reported consumption but not change the inherent noise. This assumption simplifies

the analysis of our game-theoretic model which uses the IDS based on LRT.

The Receiver Operating Characteristic (ROC) curve for the normal distribution for

theft level 𝜂 committed by the fraudulent customer is

𝜌p𝛼, 𝜂q “ 𝜑
´

𝜑´1p𝛼q `
𝑞𝜂

𝜎

¯

(3)

where 𝜑 is the standard normal CDF.

Proof. Let the PDF for genuine customers be 𝑓gp𝑥q and that of attacker by 𝑓fp𝑥q

𝜌 “

ż 𝑡

´8

𝑓fp𝑥q𝑑𝑥 and 𝛼 “

ż 𝑡

´8

𝑓gp𝑥q𝑑𝑥

which implies that 𝜌 “ 𝜑p
𝑡´ 𝑞f𝑏?

𝜎2
q and 𝛼 “ 𝜑p

𝑡´ 𝑞
?
𝜎2
q

where 𝜑 is the CDF function of standard normal. Equivalently, equating t in both

𝛼, 𝜌 above,

𝜎𝜑´1p𝜌q ` 𝑞f𝑏 “ 𝜎𝜑´1p𝛼q ` 𝑞
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Figure 2.2: Receiver Operating Characteristic: Gaussian Distribution (different mean
but same variance)

Furthermore, as shown earlier, 𝑞f𝑏 “ p1´ 𝜂q𝑞 and 𝜂 P r0, 1s. Hence, (3) follows.

In Figure 2.2, we can visualize the variation of detection probability 𝜌 probability

with both false alarm probability 𝛼 and theft level 𝜂. Note that for a given false

alarm probability, the detection probability increases with theft level. Similarly for a

given theft level, the detection probability increases with false alarm probability. In

fact, we also observe that for a given theft level 𝜂 ą 0, probability of detection is a

strictly concave function of false alarm probability. In the subsequent chapters and

equilibrium results, we will use the ROC curve (3).

2.1.4 Interpretation of Cost/Payoff Parameters

i. Cost of False Alarm C𝛼: The cost of false alarm is the cost that the distribu-

tion utility incurs in investigating a genuine customer. The cost of false alarm

can have multiple interpretations for the proposed security model. Precisely,

the cost can represent the revenue lost in the form of reduced subscriptions

to electric utility services. This can be attributed to inception of trust deficit

between the distribution utility and genuine customer. Furthermore we can

understand the importance of false alarm costs for outsourced security opera-

tions. For example, the distribution utilities across the US outsource its data

operations to external analytics companies. One can argue that as the number
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of false alarm instance increases, the analytics company enjoys less faith from

the distribution utility and the cost of false alarm, in this case, represents the

cost of the lost subscription or early termination of security contracts.

ii. Cost of Investigation C𝜌 : The cost of investigation is the cost that the distri-

bution utility incurs by investigating the customer after the Intrusion Detection

System indicates fraudulent activity. We interpret the cost of investigation as

the dollar amount the distribution utility pays its investigation/monitoring crew

for perusal of suspected AMI.

iii. Cost of Theft C𝜂 : The cost of theft is the cost that the fraudulent customer

incurs by choosing to commit electricity theft. One can argue that there exists

two types of fraudulent customers: "sophisticated" and "amateur". The "so-

phisticated" fraudulent customers commit theft by cyber-phyiscal means and

the cost of theft represents the investment in technology to hack AMI devices in-

stalled by the distribution utility. The "amateur" fraudulent customers commit

electricity theft by physical measures for example meter tampering and the cost

of theft represents the investment in installation of faulty meters or damaging

the genuine meters. The cost of theft can also represent the social reward that

the fraudulent customer faces, for example: suspicion by the society/neighbors

or guilt of committing crime.

iv. Fine F: The fine is the cost that the fraudulent customer, if committing elec-

tricity theft, pays to the distribution utility on successful investigation. Equiv-

alently, fine represents the revenue distribution utility collects from fraudulent

customers after the IDS raises an alarm to investigate. Importantly, fine is

imposed by the distribution utility to deter the fraudulent customer from com-

mitting theft. Fine can be executed by an increase in fixed fee, or an increased

marginal price of electricity for the customer, or it can be termination of certain

services by the distribution utility. The central idea is that the fraudulent cus-

tomer incurs a cost and the distribution utility obtains a revenue on successful

detection.
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2.1.5 Assumptions

We will make the following assumptions throughout our analysis.

2.1.5.1 Fraudulent Customer

Assumption 1. i. The cost of attack C𝜂 is less than average revenue from a genuine

customer i.e., C𝜂 ă 𝑝𝑞.

This assumption implies that we restrict our attention to case in which the cost

of attack is less than gain obtained from maximum theft (i.e. when 𝜂 “ 1)

ii. Fraudulent Consumer reports less but consumes the same average quantity as

genuine customers i.e., 𝑞f𝑏 ă 𝑞f𝑎 “ 𝑞g𝑎.

This assumption is justified for both LOW type and HIGH type electricity

customers.

(a) Fraudulent "LOW" customers: According to the World Bank Report

on Non-Technical Losses(NTL) [3], fraudulent customers usually represent

customers who do not pay tariff for electricity and consume effectively 50%

more when they commit electricity theft. As a result, we argue that these

LOW type customers, on an average, consume the same as HIGH type

genuine customers.

(b) Fraudulent "HIGH" customers: We argue that although fraudulent

"HIGH" customers save money by paying for part of the total electricity

consumed and consequently face a reduced "effective" tariff rate. However,

we argue that the fraudulent customer does not use the above savings to

increase his electricity consumption. This is because the money saved is

considered a "risky" income by the consumer and electricity consumption

is influenced by permanent increase/decrease in the annual income. As

a result, the fraudulent customer from "HIGH" category will not change

his/her consumption. S/He will consume, on an average, same as a genuine

customer of "HIGH" category but report less to the distribution utility.
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2.1.5.2 Distribution Utility

Assumption 2. i. The cost of investigating a fraudulent customer C𝜌 is less than

the fine that can be imposed by the distribution utility on successful detection

i.e., C𝜌 ă F.

This assumption implies that the maximum amount in the form of recoverable

fine (i.e. for a perfect IDS) exceeds the cost incurred by the distribution utility

in investigating a fraudulent customer upon successful detection.

ii. A two-part tariff schedule for the customer Tp𝑞q :“ 𝑝𝑞 ` 𝐴 where 𝑝 is the

marginal price and 𝐴 is the fixed lump-sump fee.

This assumption is based on a standard practice in pricing implemented by

distribution utilities.

iii. We adopt a linear production cost schedule for the distribution utility 𝐶p𝑞q :“

𝑐𝑞 `𝐵. For convenience, we will assume 𝐵 “ 0

This assumption is made for simplicity and for sake of tractability. Also the

assumption does not change the major insights/results of the game-theoretic

model.

iv. We consider intrusion Detection Systems with ROC curves between detection

probability 𝜌 and p𝛼, 𝜂q, where 𝛼 is the false alarm probability and 𝜂 is the level

of theft, satisfying the following:

𝜌p𝛼, 𝜂 “ 0q “ 𝛼 , 𝜌p𝛼 “ 0, 𝜂q “ 0 , 𝜌p𝛼 “ 1, 𝜂q “ 1

Furthermore 𝜌p𝛼, 𝜂q is strictly concave and strictly increasing in 𝛼 for all 𝜂 with

lim𝛼Ñ0 B𝛼𝜌p𝛼q “ 8 and lim𝛼Ñ1 B𝛼𝜌p𝛼q “ 0

The above properties are satisfied for ROC curve representing the hypothe-

sis testing between normal distributions. Additionally most, if not all, of the

ML/anomaly detection algorithms have ROC curve that satisfy the aforemen-

tioned properties. Finally note that we do not make any additional assumptions

on the dependence of 𝜌p𝛼, 𝜂q on 𝜂.
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2.2 Game

In this section, we will understand the extensive and normal form representation of

the inspection game and model the decision making process using both simultaneous

and sequential framework for the distribution utility. Next, we will discuss the payoffs

for both the players.

2.2.1 Game Setting

In this section, we formulate the sequence of interactions between the distribution

utility and fraudulent customer. Firstly, we present an extensive form representation

of the game, secondly we present an abstract formulation of game timing and finally

we will instantiate the abstract formulation to model various operational as well as

investment aspects of IDS. The above formulations will help us develop deeper insights

regarding the value added by the IDS, value derived from customizing it and finally

value derived from gaining greater information about the customers.

Nature

Genuine

p0,´C𝛼 ´ C𝜌q

I

0, 0

NI

NT

1´ 𝜋

Fraudulent

p0,´C𝛼 ´ C𝜌q

I

0, 0

NI

NT

p´F ´ C𝜂 ,

F ´ C𝜌q

I

p𝑝𝜂𝑞 ´ C𝜂 ,

´𝑝𝜂𝑞

NI

T

𝜋

Figure 2.3: Extensive Form Representation of the Bayesian Inspection Game

2.2.1.1 Extensive Form Representation

Recall that we modeled the distribution utility - customer (both Genuine and Fraud-

ulent) interaction as a Bayesian Inspection game. Figure 2.3 presents the extensive

form representation. Before the distribution utility and customer interact, nature
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assigns fraudulent or genuine type to each customer with probability 𝜋 and 1´ 𝜋 re-

spectively. Subsequently, the fraudulent customer f chooses a pure strategy Theft T

or No Theft NT, i.e 𝛿f “ tT,NTu; the genuine customer g chooses the pure strategy

No Theft NT i.e. 𝛿g “ tNTu; and the distribution utility D chooses a pure strategy

Investigate I or No Investigate NI, i.e. 𝛿D “ tI,NIu.

In the following sections, we will consider mixed-strategy equilibrium for the game.

Following our earlier discussion, the fraudulent customer chooses probability of com-

mitting theft 𝛾, i.e. PpTq “ 𝛾 and PpNTq “ 1 ´ 𝛾. Furthermore, the mixing

probability for the distribution utility is governed by the operating point of the IDS

p𝛼, 𝜌q. Precisely consider the following pair of pure strategies for the distribution

utility and fraudulent customer/genuine customer:

i. Distribution Utility vs Fraudulent Customer

(a) pI,NTq: PpFalse Positiveq “ 𝛼

(b) pI,Tq: PpTrue Positiveq “ 𝜌

(c) pNI,Tq: PpFalse Negativeq “ 1´ 𝜌

(d) pNI,NTq: PpTrue Negativeq “ 1´ 𝛼

ii. Distribution Utility vs Genuine Customer

(a) pI,NTq: PpFalse Positiveq “ 𝛼

(b) pNI,NTq: PpTrue Negativeq “ 1´ 𝛼

Hence, we note that the distribution utility randomizes between I and NI using false

alarm probability and detection probability of the IDS.

In subsequent sections we will consider scenarios where, given an IDS of default

configuration p𝛼0, 𝜌0q the distribution utility chooses to use the IDS or not use the

IDS. Let the probability with which the distribution utility uses the IDS be 𝛽. Then,

the mixing probability between I and NI becomes,

i. Distribution Utility vs Fraudulent Customer
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(a) pI,NTq: PpFalse Positiveq “ 𝛽𝛼0

(b) pI,Tq: PpTrue Positiveq “ 𝛽𝜌0

(c) pNI,Tq: PpFalse Negativeq “ 1´ 𝛽𝜌0

(d) pNI,NTq: PpTrue Negativeq “ 1´ 𝛽𝛼0

ii. Distribution Utility vs Genuine Customer

(a) pI,NTq: PpFalse Positiveq “ 𝛽𝛼0

(b) pNI,NTq: PpTrue Negativeq “ 1´ 𝛽𝛼0

Hence, we conclude that the extensive form representation in Figure 2.3 models the

pure strategies for both distribution utility and fraudulent customer in multiple sce-

narios. Since we are calculating the mixed strategy equilibrium of the inspection

game, we consider the mixing probabilities, p𝛼, 𝜌q and 𝛽 for the distribution utility

and 𝛾 for the fraudulent customer as pure strategies.

In the rest of thesis, we will consider p𝛼, 𝜌, 𝛽q as the decision variable of the distribu-

tion utility and 𝛾 as the decision variable of the fraudulent customer.

2.2.1.2 Abstract Formulation

Consider a two stage game between the distribution utility and the electricity cus-

tomer, who can be both genuine and fraudulent.

i. Stage 1: The distribution utility chooses the optimal operating point of the

IDS: p𝛼0, 𝜌0q

Discussion .

Equivalently, the distribution utility chooses the false alarm probability 𝛼0.

Since the level of theft is revealed in Stage 2, the distribution utility finds the

detection probability 𝜌0 using the corresponding ROC curve. The above model

follows from the Neyman Pearson Theorem described in the earlier chapter.

Although the IDS can use various machine learning/anomaly detection algo-

rithms, we present our results for non-bayesian hypothesis testing whereby the
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distribution utility investigates a fraudulent customer if the reported consump-

tion falls below certain threshold. From the definition of false alarm probability,

the statistical test implemented is:
 

𝐼𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒pIq : Y “ y|y ă p𝜑´1p𝛼0q`
𝑞𝜂
𝜎
qu

where the threshold is 𝜑´1p𝛼0q `
𝑞𝜂
𝜎

We consider a two stage framework to model uncertainties in the decision mak-

ing process of the distribution utility. The uncertainties can be attributed to

both acquiring as well as customizing the Intrusion Detection System (IDS). For

example, the distribution utility does not have complete information about the

level of theft committed by the fraudulent customer and consequently chooses

the optimal configuration by using a probability measure over the possible level

of thefts. Furthermore one can also consider a case where the distribution utility

does not have any information about the level of theft and consequently uses the

IDS in its default configuration. Stage 1 analysis will help us answer questions

related to value of information and value of customization for the distribution

utility.

ii. Stage 2: The distribution utility chooses the probability of using the IDS. 𝛽:

and the fraudulent customer chooses the probability of committing theft 𝛾: in

a simultaneous game

Discussion

Equivalently, the distribution utility chooses the "effective" false alarm proba-

bility after the fraudulent customer reveals the level of theft or the distribution

utility learns the level of theft using machine learning or other cyber-physical

procedures. Furthermore the fraudulent customer chooses the probability of

Theft(T) using information about the current fraction of fraudulent customers

and other cost parameters. Stage 2 analysis helps us gain deeper insights into

the operational aspects of the IDS. For example, the distribution utility will vary

the effective false alarm probability in accordance with the fraction of fraud-
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ulent customers and the level of theft. Additionally, we can answer questions

related to value of IDS using Stage 2 subgame equilibrium.

2.2.1.3 Game Formulation

In this section, we will present the precise formulation of all the games we will consider

in the subsequent sections using the abstract form presented earlier.

i. Game 0 𝒢0 :

In game 𝒢0, the distribution utility does not possess an IDS and consequently

does not investigate, i.e Not Investigate NI is the only strategy. The game

proceed in two stages:

(a) Stage 1: The distribution utility chooses an IDS of zero false alarm prob-

ability 𝛼0 “ 0.

Since, 𝛼0 “ 0, the probability of detection 𝜌0 “ 0. Note that this is

equivalent to No IDS case or No Investigate NT strategy.

(b) Stage 2: The fraudulent customer chooses the probability of theft T.

Note that since the distribution utility chooses a zero false alarm probabil-

ity IDS and it does not have any effect on the payoffs/equilibrium of the

game, we do not analyze the probability of using the IDS 𝛽.

ii. Game 1 𝒢p𝛼0,𝜌0q
𝜂 :

In game 𝒢p𝛼0,𝜌0q
𝜂 , the distribution utility uses an IDS of default configuration

p𝛼0, 𝜌0q. Furthermore the distribution utility does not possess information about

the ROC curve or theft level in Stage 1. The game proceeds in two stages:

(a) Stage 1: The distribution utility chooses the default configuration of the

IDS p𝛼0, 𝜌0q.

Note that since the distribution utility has no information about the ROC

curve, it does not configure the given IDS.

(b) Stage 2: The distribution utility chooses the probability of using the IDS

𝛽. The fraudulent customer chooses the probability of committing theft
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T.

Note that both fraction of fraudulent customers 𝜋 and level of theft 𝜂

becomes common knowledge before Stage 2.

iii. Game 2 𝒢ROC
𝜂 : In game 𝒢ROC

𝜂 , the distribution utility has complete information

about the level of theft committed by the fraudulent customer.As a result, the

distribution utility skips Stage 1 and find the optimal false alarm probability

𝛼˚ in Stage 2. Equivalently, since the distribution utility has information about

theft level, he also finds the optimal detection probability 𝜌˚. Furthermore the

fraudulent customer finds the probability of committing theft 𝛾.

iv. Game 3a p𝒢ROC
𝜂 : In game p𝒢ROC

𝜂 , the distribution utility has complete informa-

tion about level of theft 𝜂 committed by the fraudulent customer.

(a) Stage 1: The distribution utility chooses an optimal configuration of the

IDS 𝛼˚0 using the ROC curve corresponding to 𝜂.

(b) Stage 2: The distribution utility chooses the probability of using the IDS

𝛽. The fraudulent customer chooses the probability of committing theft 𝛾.

v. Game 3b- 𝒢ROC
Pp𝜂q : In game 𝒢ROC

Pp𝜂q , the distribution utility gets information about

of a probability measure over level of theft. For simplicity, we assume that there

exists two levels of theft 𝜂L, 𝜂H with probability 𝜆L and 𝜆H “ 1´𝜆L respectively.

(a) Stage 1: The distribution utility chooses an optimal configuration of the

IDS 𝛼˚0 .

Note that the distribution utility finds the above 𝛼0 using the ROC curves

corresponding to 𝜂L, 𝜂H. Furthermore, as described earlier, although the

distribution utility chooses the false alarm probability in stage 1, the de-

tection probability is determined in Stage 2 when the fraudulent customer

reveals the true level of theft 𝜂L or 𝜂H

(b) Stage 2: The distribution utility chooses the probability of using the IDS

𝛽. The fraudulent customer chooses the probability of committing theft 𝛾.

36



Game Symbol Stage 1 Stage 2 IDS Parameters Theft Level
Game 0 𝒢0 H H H H

Game 1 𝒢p𝛼0,𝜌0q
𝜂 H p𝛽, 𝛾q p𝛼0, 𝜌0q 𝜂

Game 2 𝒢ROC
𝜂 H pp𝛼, 𝜌q, 𝛾q 𝜌p𝛼q 𝜂

Game 3a p𝒢ROC
𝜂 pp𝛼0, 𝜌0q ,Hq p𝛽, 𝛾q 𝜌p𝛼q 𝜂

Game 3b 𝒢ROC
Pp𝜂q pp𝛼0, 𝜌0q ,Hq p𝛽, 𝛾q 𝜌p𝛼q Pp𝜂q

Table 2.1: Game Setting

The difference in game timing between p𝒢ROC
𝜂 and 𝒢ROC

𝜂 is subtle, but important.

Note that, in both cases, the distribution utility finds the optimal configuration of

the IDS. In game p𝒢ROC
𝜂 , the distribution utility is the leader and finds the optimal

false alarm probability in Stage 1 using the equilibrium response of the fraudulent

customer in Stage 2. In game 𝒢ROC
𝜂 , the distribution utility finds the optimal false

alarm probability and the fraudulent customer chooses the probability of committing

theft simultaneously.

2.2.2 Payoffs

In this section, we will first present the normal form representation of the game.

Then, we will derive the payoff function for both distribution utility and fraudulent

customer in all the scenarios/games defined earlier.

2.2.2.1 Normal Form Representation

Figure 2.2 presents the normal form representation of the game. Note that all the

cost parameters of the game are common knowledge and known to both the players

before start of the game.

Explanation:

i. For strategy profile (I, T): Due to successful detection, the distribution utility

collects fine F from the fraudulent customer but incurs cost of monitoring C𝜌.

The fraudulent customer incurs both fine F and cost of attack C𝜂.

ii. For strategy profile (NI, T): The distribution utility does not investigate and
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Distribution Utility
I NI

Fraudulent Customer T p´F´ C𝜂,F´ C𝜌q p𝑝𝑞𝜂 ´ C𝜂,´𝑝𝑞𝜂q

NT p0,´C𝛼 ´ C𝜌q p0, 0q

Distribution Utility
I NI

Genuine Customer NT p0,´C𝛼 ´ C𝜌q p0, 0q

Table 2.2: Normal Form Representation for Distribution Utility vs Fraudulent Cus-
tomer (top) and Genuine Customer (bottom)

loses 𝑝𝑞𝜂. The fraudulent customer obtains revenue 𝑝𝑞𝜂 and incurs cost of

attack C𝜂.

iii. For strategy profile pI, NTq: The distribution utility commits False Alarm and

loses both false alarm cost C𝛼 and cost of investigation C𝜌. The fraudulent

customer does not commit theft and obtains zero payoff.

iv. For strategy profile pNI, NTq: The distribution utility does not investigate I

and obtains zero payoff. The fraudulent customer does not commit theft NT

and obtains zero payoff.

Note that the payoff for genuine customer is equal to fraudulent customer’s payoff

when it commits No Theft NT.

2.2.2.2 Distribution Utility

From the normal form representation and mixing probabilities discussed earlier, we

can write the profit term and the payoff term for the distribution utility as follows,

ΠD
p𝛼0, 𝜌0q “ 𝐴` 𝑝𝑞 ` 𝑢D

pp𝛼0, 𝜌0, 𝛽q , 𝛾q ´ 𝑐𝑞 (4)

where 𝐴 is the fixed fee and 𝑝𝑞 is the variable tariff that the distribution utility collects

from the customer. Additionally, the distribution utility pays 𝑐𝑞 to supply electricity

to the customer. Furthermore, the distribution utility payoff from the inspection
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game for a strategy profile pp𝛼0, 𝜌0, 𝛽q , 𝛾q is:

𝑢D
pp𝛼0, 𝜌0, 𝛽q , 𝛾q “ 𝜋𝛾 p𝛽𝜌0 pF´ C𝜌q ´ p1´ 𝛽𝜌0q 𝑝𝑞𝜂q ´ p1´ 𝜋𝛾q 𝛽𝛼0 pC𝛼 ` C𝜌q

(5)

2.2.2.3 Fraudulent Customers

From the normal form representation 2.2, the payoff for fraudulent customer can be

written as,

𝑢f
pp𝛼0, 𝜌0, 𝛽q , 𝛾q “ 𝛾 pp1´ 𝛽𝜌0q pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq (6)

Remark 1. The utility of a fraudulent customer 𝑢f at equilibrium is always greater

than equal to 0

Proof. From (6), the fraudulent customer will choose 𝛾˚ ą 0 if p1´ 𝛽𝜌0q pF` 𝑝𝑞𝜂q >

pF` C𝜂q and choose 𝛾˚ “ 0 if p1´ 𝛽𝜌0q pF` 𝑝𝑞𝜂q ď pF` C𝜂q. Hence, 𝑢f ě 0
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Chapter 3

Configuration of Intrusion Detection

System

3.1 Game 𝒢0: No IDS

Recall that in game 𝒢0, the distribution utility does not have access to an IDS, i.e.

𝛼0 “ 0 and 𝜌0 “ 0. From (5), we obtain 𝑢Dpp0, 0q, 𝛾q “ ´𝜋𝛾𝑝𝑞𝜂. Similarly from

(6), 𝑢fpp0, 0q, 𝛾q “ 𝛾p𝑝𝑞𝜂 ´ C𝜂q. Since the payoff of fraudulent customer does not

depend on distribution utility’s strategy, it cannot deter the fraudulent customer

from committing theft T. Hence, 𝛾˚ “ 1, and in equilibrium, the player’s payoffs are

𝑢D˚ “ ´𝜋𝑝𝑞𝜂 and 𝑢f˚ “ 𝑝𝑞𝜂 ´ C𝜂

3.2 Game 𝒢p𝛼0,𝜌0q𝜂 : Default IDS

We now consider the case where the distribution utility uses an IDS with "default"

configuration. Here we assume that the default IDS may not be configured in an

optimal manner for the given theft level. This case models a situation when the

distribution utility is not able to configure the underlying anomaly detection algorithm

and its IDS only operates at a particular point on the ROC curve. In the following,

we first find the equilibrium of the game 𝒢p𝛼0,𝜌0q
𝜂 and analyze its behavior with respect

to the level of theft and the default configuration of IDS.
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Under a given default IDS p𝛼0, 𝜌0q, the player payoffs for the Game 𝒢p𝛼0,𝜌0q
𝜂 for a

strategy profile p𝛽, 𝛾q can be written as follows:

𝑢D
p𝛽, 𝛾q “ 𝜋𝛾 p𝛽𝜌0 pF´ C𝜌q ´ p1´ 𝛽𝜌0q 𝑝𝑞𝜂q ´ p1´ 𝜋𝛾q 𝛽𝛼0 pC𝛼 ` C𝜌q (7)

𝑢f
p𝛽, 𝛾q “ 𝛾 pp1´ 𝛽𝜌0q pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq (8)

We know that a strategy profile
`

𝛽:, 𝛾:
˘

is an equilibrium of 𝒢p𝛼0,𝜌0q
𝜂 if and only if,

𝑢D
p𝛽:, 𝛾:q ě 𝑢D

p𝛽, 𝛾:q @𝛽 (9)

𝑢f
p𝛽:, 𝛾:q ě 𝑢f

p𝛽:, 𝛾q @𝛾 (10)

We define three quantities of interest: Critical level of theft 𝜂𝐼𝑐 , critical fraction of

fraudulent customers 𝜋𝑐 and critical detection probability 𝜌𝑐.

𝜂𝐼𝑐 :“
C𝜂

𝑝𝑞
(11)

𝜋𝑐 :“
pC𝛼 ` C𝜌q𝛼0

pC𝛼 ` C𝜌q𝛼0 ` 𝜌0p𝑝𝑞𝜂 ` F´ C𝜌q
(12)

𝜌𝑐 :“
𝑝𝑞𝜂 ´ C𝜂

𝑝𝑞𝜂 ` F
(13)

We claim that in equilibrium, 𝜂𝑐 is the critical fraction of theft level 𝜂 below which

the fraudulent customers do not attack with probability 1. That is, the fraudulent

customers commit theft with non-zero probability only when 𝜂 ą 𝜂𝐼𝑐 . Also, 𝜋𝑐 is the

critical fraction of fraudulent customers such that if 𝜋 ď 𝜋𝑐 and 𝜂 ą 𝜂𝐼𝑐 , the fraudulent

customer always commit theft. However, when 𝜋 ą 𝜋𝐼
𝑐 and 𝜂 ą 𝜂𝐼𝑐 , the distribution

utility (resp. fraudulent customer) choose to investigate ( resp. commit Theft) with

probability 1 if 𝜌0 the default IDS detection probability 𝜌0 ď 𝜌𝑐; however the players

chose randomized (mixed strategy) if 𝜌0 ą 𝜌𝑐. These claims are formalized in the

following proposition.

Proposition 1. Game with Default IDS 𝒢p𝛼0,𝜌0q
𝜂 Equilibrium

Consider the game 𝒢p𝛼0,𝜌0q
𝜂 with a given default IDS specified by p𝛼0, 𝜌0q and for a
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given two-part tariff schedule Tp𝑞q :“ 𝐴 ` 𝑝𝑞. The equilibrium of 𝒢p𝛼0,𝜌0q
𝜂 is unique

and is given by:

p𝛽:, 𝛾:q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p0, 0q if 𝜂 ď 𝜂𝐼𝑐 ,

p0, 1q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐,

p1, 1q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐, and 𝜌0 ă 𝜌𝑐,
´

𝜌𝑐
𝜌0
, 𝜋𝑐

𝜋

¯

if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐, and 𝜌0 ě 𝜌𝑐.

(14)

Proof. Let us re-write (8) as follows:

𝑢f
p𝛽, 𝛾q “ 𝛾 pΦp𝛽q ´ pF` C𝜂qq , (15)

where Φp𝛽q :“ p1´ 𝛽𝜌0qp𝑝𝜂𝑞 ` Fq. Using (7), we can write the derivative of 𝑢D with

respect to 𝛽:

B𝛽𝑢
D
“ 𝜋rp1´ 𝛾qp´pC𝛼 ` C𝜌q𝛼0qs ` p1´ 𝜋qr´pC𝛼 ` C𝜌q𝛼0s ` 𝜋r𝛾p𝑝𝜂𝑞 ` F´ C𝜌q𝜌0s

(16)

Now consider the following cases:

Case (i) [𝜂 ď 𝜂𝐼𝑐 ] We see from (11) that 𝑝𝑞𝜂 ď C𝜂, which implies that Φp𝛽q ď

p1´ 𝛽𝜌0q pC𝜂 ` Fq ď pC𝜂 ` Fq. From (15), 𝑢fp𝛽, 𝛾q ď 0 for any strategy profile

p𝛽, 𝛾q. Thus,we conclude that, in equilibrium, 𝛾: “ 0.

Now, for a strategy profile p𝛽, 0q, we can express (7) as 𝑢Dp𝛽, 0q “ ´𝛽𝛼0 pC𝛼 ` C𝜌q,

which implies that in equilibrium, 𝛽: “ 0.

Case (ii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐

‰

From (15), we see 𝛾 “ 1 is a best response to 𝛽 if and only if,

Φp𝛽q ą F` C𝜂 (17)
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Consider a strategy profile p𝛽, 1q, using (16) we obtain that:

B𝛽𝑢
D
ˇ

ˇ

p𝛽,1q
“ ´pC𝛼 ` C𝜌q𝛼0 ` 𝜋 ppC𝛼 ` C𝜌q𝛼0 ` p𝑝𝑞𝜂 ` F´ C𝜌q 𝜌0q

ă 0

This implies that 𝛽 “ 0 is a BR to 𝛾 “ 1.

Now, substituting 𝛽 “ 0 in (17), we check that F ` 𝑝𝜂𝑞 ą F ` C𝜂; or equivalently,

𝜂 ą 𝜂𝐼𝑐 , which indeed holds for this case. Hence, 𝛾 “ 1 is a BR to 𝛽 “ 0. Thus,
`

𝛽:, 𝛾:
˘

“ p0, 1q is an equilibrium.

To argue uniqueness, assume the contrary. Then, for any 𝛾 P r0, 1q, from (16) we can

write B𝛽𝑢D “ 𝛾𝜋ppC𝛼 ` C𝜌q𝛼0 ` p𝑝𝑞𝜂 ` F´ C𝜌q𝜌0q ´ pC𝛼 ` C𝜌q𝛼0 ă 0, which would

imply that 𝛽 “ 0 is a BR to any 𝛾 ‰ 1. However, from (17) we know that 𝛾 “ 1 is

the unique BR to 𝛽 “ 0, which is a contradiction.

Case (iii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐, 𝜌0 ă 𝜌𝑐
‰

For 𝜌0 ď 𝜌𝑐, we can verify that Φp𝛽q ą F ` C𝜂 for all 𝛽 P r0, 1s. From (15), we

obtain that 𝛾 “ 1 is the BR to any 𝛽. Furthermore, for a strategy profile p𝛽, 1q,

using (16) and the fact that 𝜋 ą 𝜋𝑐, we can write B𝛽𝑢Dp𝛽, 1q
ˇ

ˇ

𝛾˚“1
“ ´pC𝛼 ` C𝜌q𝛼0`

𝜋 ppC𝛼 ` C𝜌q𝛼0 ` p𝑝𝑞𝜂 ` F´ C𝜌q 𝜌0q ą 0. This implies that 𝛽 “ 1 is a unique BR to

𝛾 “ 1. Thus, p𝛽:, 𝛾:q “ p1, 1q is the unique equilibrium.

Case (iv)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐, 𝜌0 ě 𝜌𝑐
‰

Consider a strategy profile p𝛽, 𝛾q P p0, 1q2. Then, for p𝛽, 𝛾q to be an equilibrium, we

necessarily need Φ p𝛾q “ pF` C𝜂q. Solving for 𝛽 we obtain 𝛽: “ 𝜌𝑐{𝜌0 P p0, 1q. From

(16), we put B𝛽𝑢D “ 0. Solving for 𝛾, we obtain 𝛾: “ 𝜋𝑐{𝜋. Thus, p𝛽:, 𝛾:q “ p1, 1q is

the unique equilibrium.

To argue uniqueness for 𝛾 P p0, 1q: Consider the following two cases: (a) If in equi-

librium, B𝑢D

B𝛽
ă 0, then 𝛽: “ 0 and 𝛾p𝛽:q “ 1 which is a contradiction (b) If in

equilibrium, B𝑢D

B𝛽
ą 0 then 𝛽: “ 1 and 𝛾p𝛽:q “ 0 which is a contradiction. Lastly, for

B𝑢D

B𝛽
“ 0, 𝛾: is the unique solution.
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Remark 2. We can obtain the equilibrium payoffs for game 𝒢p𝛼0,𝜌0q
𝜂 by plugging p𝛽:, 𝛾:q

from Proposition 1 into (7) and (8)

𝑢D
p𝛽:, 𝛾:q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

´𝜋𝑝𝑞𝜂 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐

´p1´ 𝜋qpC𝛼 ` C𝜌q𝛼0 ` 𝜋Ψ if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ă 𝜌𝑐

´𝜋𝑐𝑝𝑞𝜂 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ě 𝜌𝑐

(18)

and (19)

𝑢f
p𝛽:, 𝛾:q “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

𝑝𝑞𝜂 ´ C𝜂 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐

pF` 𝑝𝑞𝜂qp1´ 𝜌0q ´ pF` C𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ă 𝜌𝑐

0 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0𝜆𝜌𝑐

(20)

where we define Ψ :“ pp´C𝜌 ` Fq𝜌0 ´ p𝑝𝑞𝜂qp1´ 𝜌0qq

Furthermore using (5) and (4) the total profit collected by the distribution utility is

ΠD “ 𝑢Dp𝛽:, 𝛾:q `𝐴` 𝑝𝑞´ 𝑐𝑞. Throughout the thesis, we will use ΠD in simulations

to show the equilibrium payoff of the distribution utility.

Remark 3. Under a default IDS p𝛼0, 𝜌0q, Proposition 1 implies that the "effective"

operating point in equilibrium is
`

𝛽:𝛼0, 𝛽
:𝜌0

˘

. That is, the distribution utility finds

the optimal operating point on the straight line joining p0, 0q and p𝛼0, 𝜌0q as shown

in Figure 3.1. Moreover, since under the assumptions, the ROC curve is concave

function, the distribution utility has lower detection probability in this case, for a

given false alarm probability; relative to the case when it has a complete knowledge

of ROC curve.

In the following sections, we show the variation of equilibrium strategies and payoff

for both distribution utility (or defender) and fraudulent customer (or attacker) with

theft level and default false alarm probability.
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Figure 3.1: For 𝜂 “ 0.5, the "effective" ROC curve in blue with operating point
p𝛽𝛼0, 𝛽𝜌0q
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Figure 3.2: Equilibrium Strategies for 𝒢p𝛼0,𝜌0q
𝜂 : Variation with fraction of fraudulent

customers 𝜋 for different theft levels 𝜂

3.2.1 Equilibrium Analysis - Level of theft

For game 𝒢p𝛼0,𝜌0q
𝜂 , Figure 3.2a and Figure 3.2b (resp.3.3a and 3.3b) illustrate the

equilibrium strategies (resp. equilibrium payoffs) of a fraudulent customer and dis-

tribution utility respectively when 𝜂 ą 𝜂𝐼𝑐 .

Fraudulent Customer’s Equilibrium Response

As shown in Fig 3.2b, a fraudulent customer commits theft with probability 1 when

the fraction of fraudulent customers is below the critical threshold 𝜋𝑐. A fraudulent
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Figure 3.3: Equilibrium Payoffs for 𝒢p𝛼0,𝜌0q
𝜂 : Variation with fraction of fraudulent

customers𝜋 for different theft levels 𝜂

customer’s equilibrium payoff is constant in this range. However, the equilibrium

payoff is non-decreasing in theft level 𝜂. One interpretation of this result is that when

𝜋 ď 𝜋𝑐, the fraudulent customer does not anticipate investigation I by the distribu-

tion utility.

For 𝜋 beyond the critical fraction 𝜋𝑐, we observe from Fig 3.2b that the probabil-

ity the fraudulent customer commits theft T decreases in the fraction of fraudulent

customers, and increasing theft level. Intuitively, as the fraction of fraudulent cus-

tomers increases, the fraudulent customer is deterred from committing theft due to

an increased probability of investigation. A fraudulent customer is also deterred from

committing theft as level of theft increases, since the distribution utility is more

likely to investigate the fraudulent customer. Finally, from Fig, 3.3b, the fraudulent

customer obtains zero payoff for 𝜋 ą 𝜋𝑐 and 𝜌0 ą 𝜌𝑐 because in equilibrium, the

distribution utility chooses 𝛽 such that the fraudulent customer becomes indifferent

between T and NT.

Distribution Utility’s Equilibrium Response

From Fig 3.2a, we observe that that the distribution utility does not investigate NI

with probability 1 when 𝜋 ă 𝜋𝑐. Additionally from Fig 3.3a, we observe in the above

range, a decreasing payoff with increasing fraction of fraudulent customers 𝜂. One
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of the interpretations of critical fraction is that for 𝜋 ă 𝜋𝑐 the distribution utility

incurs greater false alarm costs than recovered tariff and fine with the given IDS

configuration. Consequently the distribution utility, for a given 𝜂 and 𝜋 ă 𝜋𝑐, does

not investigate and incurs a linearly decreasing payoff with 𝜋. Moreover, following

the above reasoning, we can argue that for a given 𝜋, the distribution utility incurs a

higher loss with greater theft 𝜂 committed by the fraudulent customer.

However, for 𝜋 beyond critical fraction 𝜋𝑐 and a given IDS configuration p𝛼0, 𝜌0q,

we observe in Fig 3.2a that the probability the distribution utility uses the IDS,

or equivalently investigates I, remains constant with increasing fraction of fraudulent

customers 𝜋. Furthermore the above constant probability, for a given 𝜋, increases with

increasing theft level 𝜂. As we have seen earlier, the constant probability follows from

the equilibrium concept that the distribution utility makes the fraudulent customer

indifferent between Theft T and No theft NT. Similarly, we can argue from Fig,

3.3a that the distribution utility obtains a constant payoff for 𝜋 ą 𝜋𝑐. Moreover,

following the equilibrium concept, as the level of theft 𝜂 increases the distribution

utility increases its probability to investigate I thereby reducing the expected theft

of the fraudulent customer. Lastly, from Fig. 3.3a, the distribution utility incurs

greater losses with increasing theft level 𝜂 as the increased detection rate is coupled

with increased false alarm costs. it is worth noting that for a given configuration of

the IDS, the distribution utility does not leverage the concavity of the ROC curve but

rather follows a linear ROC curve. Additionally, the distribution utility, for a given

false alarm probability, does not obtain higher detection probability with increasing

theft level for 𝒢p𝛼0,𝜌0q
𝜂 .

3.2.2 Equilibrium Analysis - Default false alarm probability

Fraudulent Customer’s Equilibrium Response From Fig 3.4b, as we have seen

earlier, the fraudulent customer commits theft with probability 1 below a critical frac-

tion 𝜋𝑐 of fraudulent customers. Note that the definition and interpretation of critical

fraction is same as in Fig 3.2b. Moreover, we observe that for very small default false

alarm probability 𝛼0 “ 0.10, the fraudulent customer always commits theft. Intu-
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Figure 3.4: Equilibrium Strategies for 𝒢p𝛼0,𝜌0q
𝜂 : Variation with fraction of fraudulent

customers 𝜋 for different default false alarm probability 𝛼0

itively, since 𝛼0 is very small, the distribution utility cannot procure enough detection

probability to deter the fraudulent customer. Precisely, following from the ROC curve

p𝜌p.qq defined earlier, the detection probability is bounded above by 𝜌p𝛼0q “ 𝜌p0.1q.

Furthermore, we also observe that for large default false alarm probability, for ex-

ample 𝛼0 “ 1, the fraudulent customer commits theft with larger probability. Note

that for 𝛼0 “ 1, from Figure 3.1, we can conclude that the distribution utility is

using an inefficient IDS (similar to a biased coin toss) and consequently becomes an

inefficient deterrent for the fraudulent customer. Additionally we observe, from Fig

3.5b, that the fraudulent customer obtains a constant payoff below the critical frac-

tion. Although the payoff is constant across the different false alarm probabilities, the

critical fraction is maximum for very small p𝛼0 “ 0.1q and very large p𝛼0 “ 1q default

false alarm probabilities. In fact, for 𝛼0 “ 0.1, the fraudulent customer obtains non-

zero payoff for all fractions 𝜋. Lastly, as we have seen earlier, for 𝜋 beyond critical

fraction 𝜋𝑐, the fraudulent customer commits theft with decreasing probability with

increasing fraction of fraudulent customers. Furthermore, we also observe in Figure

3.5b that the fraudulent customer obtains zero payoff for 𝜋 ą 𝜋𝑐. Again this follows

from equilibrium concept that the distribution utility makes the fraudulent customer

indifferent between Theft T and No theft NT.

49



0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Fraction of fraudulent customers

D
e

fe
n

d
e

r’
s
 e

q
u

ili
b

ri
u

m
 p

a
y
o

ff

 

 

α
0
=0.10

α
0
=0.30

α
0
=0.50

α
0
=1.00

(a)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of fraudulent customers

A
tt

a
c
k
e

r’
s
 e

q
u

ili
b

ri
u

m
 p

a
y
o

ff

 

 

α
0
=0.10

α
0
=0.30

α
0
=0.50

α
0
=1.00

(b)

Figure 3.5: Equilibrium Payoff for 𝒢p𝛼0,𝜌0q
𝜂 : Variation with fraction of fraudulent

customers 𝜋 for different default false alarm probability 𝛼0

Distribution Utility’s Equilibrium Response

From Fig 3.4a, we observe that the distribution utility does not investigate NI with

probability 1 below a critical fraction 𝜋𝑐 of fraudulent customers. Additionally we

observe, from Fig 3.5a, that the distribution utility obtains, in the above range, a

decreasing payoff with increasing fraction of fraudulent customers 𝜋. We observed

a similar effect in Fig 3.2a, 3.3a and can similarly argue that since the distribution

utility incurs greater false alarm costs than recovered tariff and fine for 𝜋 ă 𝜋𝑐, s/he

does not investigate and incurs a linearly decreasing payoff with 𝜋.

However, for 𝜋 beyond critical fraction 𝜋𝑐, we observe in Fig 3.4a that probabil-

ity with which the distribution utility uses the IDS, or equivalently investigates I,

remains constant with increasing fraction of fraudulent customers 𝜋. Furthermore

the above constant probability, for a given 𝜋, decreases with increasing default false

alarm probability 𝜂. As we have seen earlier, the constant probability follows from the

equilibrium concept such that the distribution utility makes the fraudulent customer

indifferent between Theft T and No theft NT. Moreover as the default false alarm

probability increases, the distribution utility uses the IDS with smaller probability to

save false alarm costs. Since the distribution utility uses the IDS with constant prob-

ability, we can argue from Fig, 3.5a that s/he obtains a constant payoff for 𝜋 ą 𝜋𝑐.
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However for very small default false alarm probability(i.e. 𝛼0 “ 0.1), as we have

seen earlier, the distribution utility cannot procure sufficient detection probability

such that the fraudulent customer commits theft with probability 1. As a result, the

distribution utility always uses the inefficient IDS and incurs a linearly decreasing

payoff with 𝜋.

Discussion:

From Figure 3.5a, it is evident that the distribution utility obtains maximum pay-

off from different default false alarm probability over different regimes of fraction of

fraudulent customer. For instance, for 𝜋 ă 0.2 the distribution utility obtains same

payoff from all default false alarm probabilities, for 0.2 ă 𝜋 ă 0.7 the distribution

utility obtains maximum payoff from 𝛼0 “ 0.1 and lastly for 𝜋 ą 0.7, the distribution

utility obtains maximum payoff from 𝛼0 “ 0.3. In fact, the difference in best and

worst distribution utility payoff is „ 10 ´ 15%. Consequently, we expect that if the

distribution utility can configure the IDS, the "optimal" false alarm rate(which also

determines the detection rate) should be determined while accounting for both the

fraction of fraudulent customers and the level of theft. This idea forms the basis of

game with tunable IDS which we consider next.

3.3 Game 𝒢ROC
𝜂 : Tunable IDS

In this section, we consider the case when the distribution utility has the capability

to "tune" or configure the IDS, i.e. choose an optimal false alarm probability 𝛼. As

described earlier in section 2.2.1.3, in game 𝒢ROC
𝜂 , the distribution utility configures

the IDS i.e. choose an optimal false alarm probability with the knowledge of theft

level obtained in stage 2. Furthermore, for game 𝒢ROC
𝜂 , both the distribution utility

and fraudulent customer have complete information about the ROC curve, i.e. 𝜌p𝛼q.

In the following, we will present the equilibrium of game 𝒢ROC
𝜂 and study its behavior

for different levels of theft.
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For 𝜌𝑐 as defined in (13), we define 𝛼𝑐
0 as :

𝛼𝑐
0 :“ 𝜌´1p𝜌𝑐q (21)

Recall that 𝛼𝑐
0 can be viewed as critical false alarm probability, such that the resulting

detection probability 𝜌p𝛼𝑐
0q “ 𝜌𝑐 makes the fraudulent customer indifferent between

T(Theft) and NT(No Theft).

Analogous to 𝜋𝑐 (see (12)), we define another threshold,

r𝜋𝑐 :“
C𝛼 ` C𝜌

C𝛼 ` C𝜌 ` B𝛼𝜌p𝛼𝑐
0qpF` 𝑝𝑞𝜂 ´ C𝜌q

(22)

Under ROC curve 𝜌p¨q, the player payoffs for the Game 𝒢ROC
𝜂 for a strategy profile

p𝛼, 𝛾q can be written as follows (using (5) and (6)):

𝑢D
p𝛼, 𝛾q “ 𝜋𝛾 p𝜌p𝛼q pF´ C𝜌q ´ p1´ 𝜌p𝛼qq 𝑝𝑞𝜂q ´ p1´ 𝜋𝛾q𝛼 pC𝛼 ` C𝜌q (23)

𝑢f
p𝛼, 𝛾q “ 𝛾 pp1´ 𝜌p𝛼qq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq (24)

Proposition 2. Game with Tunable IDS 𝒢ROC
𝜂 Equilibrium

Consider the game 𝒢ROC
𝜂 with a IDS specified by ROC curve 𝜌p𝛼q and for a given

tariff schedule Tp𝑞q :“ 𝐴` 𝑝𝑞. The equilibrium of 𝒢ROC
𝜂 is unique and given by:

p𝛼˚, 𝛾˚q “

$

’

’

’

’

’

&

’

’

’

’

’

%

p0, 0q if 𝜂 ď 𝜂𝐼𝑐
´

𝜒´1
 

1´𝜋
𝜋

pC𝛼`C𝜌q

𝑝𝑞𝜂`F´C𝜌
u, 1

¯

if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

`

𝛼𝑐
0,

r𝜋𝑐

𝜋

˘

if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(25)

where 𝜒 p𝛼q “ B𝜌{B𝛼. Furthermore, for the reported consumption represented by

random variable Y with realization y, the statistical test implemented by the defender

in equilibrium is given by
 

𝐼𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒 pIq : Y “ y|y ă p𝜑´1p𝛼˚q ` 𝑞𝜂
𝜎
qu

Proof. We can re-write (24) as follows:

𝑢f
p𝛼, 𝛾q “ 𝛾 rΦp𝛼q ´ pF` C𝜂qs (26)
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where Φp𝛼q :“ p1´ 𝜌p𝛼qq p𝑝𝜂𝑞 ` Fq

Case (i)
“

𝜂 ď 𝜂𝐼𝑐
‰

For this case, we see from (11) that 𝑝𝑞𝜂 ď C𝜂, which implies Φp𝛼q ď p1´ 𝜌p𝛼qqpC𝜂 ` Fq

ď pC𝜂 ` Fq. Thus, for any strategy profile p𝛼, 𝛾q, 𝑢fp𝛼, 𝛾q ď 0. From (26), we con-

clude that, in equilibrium, 𝛾˚ “ 0.

Now, for a strategy profile p𝛼, 0q, we can express (37) as 𝑢Dp𝛼, 0q “ ´𝛼pC𝛼 ` C𝜌q.

Thus, in equilibrium, 𝛼˚ “ 0.

Case (ii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

‰

The proof consists of two parts:

• For 𝛾 “ 1, 𝛼˚ is the unique BR; where 𝛼˚ P r0, 𝛼𝑐s

• 𝛾 “ 1 is the unique BR of 𝛼˚

Lemma 1. For 𝛾 “ 1, 𝛼˚ is the unique BR; where 𝛼˚ P r0, 𝛼𝑐s is given by,

B𝜌

B𝛼
p𝛼˚q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

𝑝𝑞𝜂 ` F´ C𝜌

Proof. For a strategy profile p𝛼, 1q, from (23);

𝑢D
p𝛼, 1q “ 𝜋 p𝜌p𝛼q pF´ C𝜌q ´ p1´ 𝜌p𝛼qq 𝑝𝑞𝜂q ´ p1´ 𝜋q𝛼 pC𝛼 ` C𝜌q (27)

Solving for FOC 𝑢D
𝛼 p𝛼, 1q “ 0,

𝜌𝛼p𝛼
˚
q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

𝑝𝑞𝜂 ` F´ C𝜌

(28)

Recall that, by assumption on the ROC curve, 𝜌p𝛼q is a strictly increasing, concave

function. Furthermore lim𝛼0Ñ0 𝜌𝛼p𝛼0q “ 8 and lim𝛼0Ñ1 𝜌𝛼p𝛼0q “ 0. As a result, by

Intermediate Value Theorem (IVP), (28) always has a unique solution 𝛼˚

Next, we argue that 𝛼˚ obtained by solving 28 is less than 𝛼𝑐
0 for 𝜋 ă r𝜋𝑐. For

convenience of notation, let us represent the LHS of 28 by 𝑓p𝛼q and RHS by 𝑔p𝜋q. Note
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Figure 3.6: For 𝛾˚ “ 1, characterization of distribution utility’s payoff 𝑢Dp𝛼, 1q for
𝜋 ă r𝜋𝑐, 𝜋 “ r𝜋𝑐, 𝜋 ą r𝜋𝑐

that f is decreasing in 𝛼 and 𝑔p𝜋q is decreasing in 𝜋. Consider 𝛼1, 𝛼2, 𝜋1, 𝜋2 such that,

𝑓p𝛼1q “ 𝑔p𝜋1q, 𝑓p𝛼2q “ 𝑔p𝜋2q Furthermore consider 𝜋1 ă 𝜋2 which means 𝑔p𝜋1q ą

𝑔p𝜋2q and 𝑓p𝛼1q ą 𝑓p𝛼2q. Since f is a decreasing function, 𝛼1 ă 𝛼2. Substituting

𝛼2 “ 𝛼𝑐
0 and 𝜋2 “ r𝜋𝑐, we get, 𝜋1 ă r𝜋𝑐 implies 𝛼1 ă 𝛼𝑐

0. Please note that r𝜋𝑐 is the

fraction of fraudulent customers for 𝛼˚ “ 𝛼𝑐
0.

From (26), we see that for this case, 𝛾˚ “ 1 is and only if,

Φp𝛼q ą F` C𝜂 (29)

Equivalently, (29) implies 𝛼 ă 𝛼𝑐
0. From Lemma 1, 𝛼˚ ă 𝛼𝑐

0. Hence, 𝛾˚ “ 1 is unique

BR to p𝛼˚, 1q. To visualize the result, let us look at distribution utility’s utility for

three cases 𝜋 ă r𝜋𝑐, 𝜋 “ r𝜋𝑐, 𝜋 ą r𝜋𝑐 with 𝛾˚ “ 1 in Figure 3.6.

Case (iii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

‰

Consider a strategy profile p𝛼, 𝛾q such that 𝛼, 𝛾 P p0, 1q2. Then for p𝛼, 𝛾q to be an

equilibrium, we necessarily need Φp𝛼q “ F`C𝜂. Solving above, we obtain 𝜌p𝛼q “ 𝜌𝑐,

equivalently, 𝛼 “ 𝛼𝑐
0. Next we show that 𝛼𝑐

0 is a unique equilibrium response of the

distribution utility. Again,

B𝛼𝑢
D
p𝛼𝑐

0, 𝛾q “ 𝜋𝛾 pB𝛼𝜌p𝛼
𝑐
0q pF` 𝑝𝑞𝜂 ´ C𝜌qq ´ p1´ 𝜋𝛾q pC𝛼 ` C𝜌q “ 0 (30)
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Solving for 𝛾, 𝛾˚ “ r𝜋𝑐{𝜋.

Note that 𝛾˚ P r0, 1q cannot be an equilibrium for 𝜋 P p0, r𝜋𝑐q. Assume the contrary

and let there exist a 𝛾˚ P r0, 1q. But we know, for 𝜋 ă r𝜋𝑐, B𝛼𝑢D “ 𝜋𝛾ppC𝛼 ` C𝜌q

`p𝑝𝑞𝜂`F´C𝜌q𝜌
1p𝛼qq´pC𝛼 ` C𝜌q ă 0 @ 𝛾. Then, 𝛼˚ “ 0. But we know that 𝛾˚ “ 1

is a BR for 𝛼˚ “ 0 which is a contradiction.

Remark 4. : We obtain the equilibrium payoffs for game 𝒢ROC
𝜂 by plugging p𝛼˚, 𝛾˚q

from Proposition 2 into (23) and (24),

𝑢D
p𝛼˚, 𝛾˚q “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

´p1´ 𝜋q𝜅1𝛼
˚ ` 𝜋 p𝜅2𝜌 p𝛼

˚q ´ 𝑝𝑞𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

´p1´ r𝜋𝑐q𝜅1𝛼
𝑐
0 ` r𝜋𝑐 p𝜅2𝜌𝑐 ´ 𝑝𝑞𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(31)

and

𝑢f
p𝛼˚, 𝛾˚q “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

p1´ 𝜌 p𝛼˚qq pF` 𝑝𝑞𝜂q ´ pF` C𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

0 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(32)

where 𝜅1 :“ pC𝛼 ` C𝜌q and 𝜅2 :“ pF` 𝑝𝑞𝜂 ´ C𝜌q Furthermore, like before, using (5)

and (4) the total profit collected by the distribution utility is ΠD “ 𝑢Dp𝛽˚, 𝛾˚q `

𝐴 ` 𝑝𝑞 ´ 𝑐𝑞. We will use ΠD in simulations to show the equilibrium payoff of the

distribution utility.

In the following sections, we show the variation of equilibrium strategies and payoff

for both distribution utility (or defender) and fraudulent customer (or attacker) with

theft level 𝜂.

3.3.1 Equilibrium Analysis - Level of Theft

Figures 3.7a, 3.7b and 3.8a , 3.8b illustrate the equilibrium strategy and player payoffs

for game 𝒢ROC
𝜂 . In Figure 3.9a, we show the variation of effective detection probabil-
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Figure 3.7: Equilibrium Strategies for the game 𝒢ROC
𝜂 : Variation with fraction of

fraudulent customers 𝜋 for different theft levels 𝜂
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Figure 3.8: Equilibrium Payoffs for the game 𝒢ROC
𝜂 : Variation with fraction of fraud-

ulent customers 𝜋 for different theft levels 𝜂
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Figure 3.9: Equilibrium detection probability for the game 𝒢ROC
𝜂

ity with 𝜋 for different levels of theft.

Fraudulent Customer’s Equilibrium Response

As shown in Figure 3.7b, when 𝜋 ą r𝜋𝑐, the fraudulent customer’s probability of com-

mitting theft decreases in 𝜋. Indeed in equilibrium as 𝜋 increases, the distribution

utility becomes more effective in deterring the fraudulent customers. Moreover as

theft level 𝜂 increases, (a) the range of 𝜋 for which 𝛾˚ “ 1 decreases (i.e. 𝜋𝑐 is

smaller) (b) For a given fraction of fraudulent customers 𝜋, the probability of com-

mitting theft decreases with increasing theft. These results follow from the fact that

with increasing theft level, the fraudulent customer derives the same "effective" or

expected theft with a lesser probability of attack, and the defender’s effective proba-

bility of detection improves for the chosen optimal false alarm rate 𝛼˚.

From Figure 3.8b, we observe that the equilibrium payoff for the fraudulent customer

decreases with 𝜋. This can be understood by the fact that as fraction of fraudu-

lent customers increases, the distribution utility improves its detection/investigation

probability becomes more aggressive and the equilibrium payoff for the individual

customer decreases. Furthermore, as seen in Figure 3.8b, the fraudulent customer

derives zero payoff when 𝜋 ą r𝜋𝑐. Indeed from Proposition 2, after r𝜋𝑐, the distribution

utility makes the fraudulent customer, indifferent between Theft T and No Theft NT

and consequently the fraudulent customer derives zero payoff.
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We also make the following interesting observation: As 𝜋 increases, a smaller theft

level produces larger equilibrium payoff for the fraudulent customer. Equivalently,

if the fraudulent customer has the leverage to choose the optimal theft level, then

she should choose smaller theft level as the fraction of fraudulent customer increases.

Moreover, as we have seen earlier, the equilibrium payoff of the fraudulent customer

decreases with increasing 𝜋. We will formally state and prove the above observations

in Section 3.3.2, Proposition 3.

Distribution Utility’s Equilibrium Response

In contrast to default configuration, from Figure 3.8a we observe that the distribu-

tion utility never chooses zero false alarm probability. In fact, from Proposition 2, it

is evident that the distribution utility chooses 𝛼˚ Ñ 0 as the fraction of fraudulent

customer approaches zero, i.e. 𝜋 Ñ 0. Furthermore we observe that for 𝜋 ă r𝜋𝑐 (22),

the distribution utility chooses 𝛼˚ less than the critical false alarm probability 𝛼𝑐
0 (21)

because for small 𝜋, the increase in false alarm costs more than offset the revenue re-

covered in investigation. Furthermore as 𝜋 increases, the distribution utility recovers

larger revenue and consequently chooses higher false alarm probability. Finally, since

𝛼˚ ă 𝛼𝑐
0 for 𝜋 ă r𝜋𝑐, from Theorem 2, the fraudulent customer always commits Theft

T. Hence, we observe in Figure 3.8b, the distribution utility’s payoff decreases with

increasing fraction of fraudulent customers (31).

Like the default configuration, we observe in Figure 3.8a that the distribution utility

chooses a constant false alarm probability 𝛼˚ “ 𝛼𝑐
0 for 𝜋 ą r𝜋𝑐 in order to make the

fraudulent customer indifferent between Theft T and No Theft NT. Furthermore

since the fraudulent customer randomizes between T and NT, he obtains zero payoff

at equilibrium. Consequently we observe that, from Figure 3.8b, the distribution

utility obtains a constant payoff for 𝜋 ą r𝜋𝑐.

Lastly, we also make the following interesting observation: Although the detection

probability increases with increase in theft level from Figure 3.9a, the optimal false

alarm probability 𝛼˚ chosen does not have a monotonic relationship with 𝜂. We will

state the intuitive reason here and rigorously analyze this apparent paradox in section
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4.3.1, Proposition 10. Note that from the definition of ROC curve (more specifically

for normal distribution) that, for a given level of false alarm probability, the prob-

ability of detection increases with increase in theft level 𝜂. We also know that the

probability of detection increases with increase in false alarm probability 𝛼. As a

result as theft level increases, the distribution utility gets higher detection probabil-

ity. However it may be sufficient or insufficient at the current theft level to make

the fraudulent customer indifferent between Theft T and No Theft NT. As a result,

the distribution utility will choose either a higher or lower false alarm probability at

equilibrium.

3.3.2 Hipster effect and Fraudulent Customers

In this section, we want to study the effect of fraction of fraudulent customers on

equilibrium payoff of the fraudulent customer who has leverage to find the optimal

level of theft. Since the level of theft chosen will be the best case for the fraudulent

customer, we can use the following analysis and results to argue for variation of his

payoff for any arbitrary level of theft.

We will use the game-theoretic framework introduced earlier and propose the follow-

ing two-stage formulation. In stage 1, the fraudulent customer chooses the optimal

level of theft 𝜂˚. In stage 2, the distribution utility and fraudulent customer play

a simultaneous game where the distribution utility chooses the optimal false alarm

probability 𝛼˚ for a given ROC curve 𝜌p𝛼q and the fraudulent customer chooses the

optimal probability of attack 𝛾˚. Define Λp𝜂q,

Λp𝜂q :“ pT𝜂𝑞 ` F´ C𝜌q𝜌𝛼p𝛼𝑐p𝜂q, 𝜂q (33)

where 𝛼𝑐p𝜂q “ 𝜑
 

𝜑´1pT𝑞𝜂´C𝜂

T𝑞𝜂`F
q ´

𝑞𝜂
𝜎
u from Proposition 2.

Proposition 3. For a given ROC curve 𝜌p𝛼q, the equilibrium payoff 𝑢f˚ decreases

with increasing fraction of fraudulent customers 𝜋, i.e. for 𝜋L ď 𝜋H, we have, 𝑢f˚
L ě

𝑢f˚
H
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Proof. From Proposition 2, we know that 𝑢f ą 0 for 𝜋 ă r𝜋𝑐 and 𝑢f “ 0 for 𝜋 ě r𝜋𝑐.

Furthermore, we observed that r𝜋𝑐 is a function of 𝜂. Consequently, we claim that

to obtain a nonzero payoff, the fraudulent customer will choose 𝜂 such that 𝜋 ă r𝜋𝑐.

Equivalently, following from (33) and from Proposition 2, optimal 𝜂 must satisfy,

Λp𝜂q ă
1´ 𝜋

𝜋
pC𝛼 ` C𝜌q (34)

Following (34), we define 𝒩 :“
 

𝜂 : 𝜂 P r0, 1s and Λp𝜂q ă 1´𝜋
𝜋
pC𝛼 ` C𝜌qu.

Similarly we define 𝒩L,𝒩H for fraction 𝜋L, 𝜋H respectively, Consequently, the attacker

will obtain for 𝒩 ‰ H,

𝑢f˚
p𝛼˚, p𝛾˚, 𝜂˚qq : “ max

𝜂
𝛾˚p𝜂q pp1´ 𝜌p𝛼˚p𝜂qqq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq

“ max
𝜂P𝒩

pp1´ 𝜌p𝛼˚p𝜂qqq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq

Furthermore, from (34), 𝒩H Ă 𝒩L because 1´𝜋L

𝜋L
pC𝛼 ` C𝜌q ą

1´𝜋H

𝜋H
pC𝛼 ` C𝜌q. As a

result,

max
𝜂P𝒩L

pp1´ 𝜌p𝛼˚p𝜂qqq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq ě

max
𝜂P𝒩H

pp1´ 𝜌p𝛼˚p𝜂qqq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq

This completes the proof of the proposition.

Remark 5. The optimal level of theft is given by,

𝜂˚ “ arg max
𝜂P𝒩‰H

pp1´ 𝜌p𝛼˚p𝜂qqq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq

where 𝛼˚p𝜂q is the unique solution of 𝜌𝛼p𝛼˚, 𝜂q “ 1´𝜋
𝜋

pC𝛼`C𝜌q

T𝑞𝜂`F´C𝜌
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3.4 Optimal Configuration of the IDS

In this section, we consider the extensive form game p𝒢ROC
𝜂 where the distribution

utility chooses the optimal false alarm probability 𝛼˚ for a given ROC curve 𝜌p𝛼q in

Stage 1. Subsequently in Stage 2, both distribution utility and fraudulent/genuine

customer play a simultaneous game p𝒢ROC
𝜂 . As we are considering a two-stage game,

let us revisit the definition of subgame perfect equilibrium to argue for the equilibrium

strategy by the distribution utility and fraudulent customers.

Subgame Perfect Equilibrium: A strategy profile s˚ is a Subgame Perfect Nash

equilibrium (SPE) in game 𝒢 if for any subgame 𝒢 1 of 𝒢, s˚|𝒢1 is a Nash equilibrium

of 𝒢 1.

For finite-horizon games, we can find the subgame perfect equilibrium using a tech-

nique called Backward Induction. Loosely speaking, backward induction refers to

starting from the last subgames of a finite game, then finding the best response strat-

egy profiles or the Nash equilibria in the subgames, then assigning these strategies

profiles and the associated payoffs to be subgames, and moving successively towards

the beginning of the game. Another classical result is that, backward induction gives

the entire set of SPE. Furthermore, every finite extensive form game G has a Subgame

Perfect Equilibrium.

In accordance with the backward induction principle, we will first solve the subgame
p𝒢ROC
𝜂 to find

`

𝛽:, 𝛾:
˘

for a given default configuration of the IDS p𝛼0, 𝜌0q. Subse-

quently, in stage 1, we will find the optimal 𝛼˚0 , 𝜌˚0 for given ROC curve 𝜌p𝛼q and

Stage 2 equilibrium.

3.4.1 Game p𝒢ROC
𝜂 : Perfect Information

In Stage 1, the distribution utility obtains the optimal default false alarm probability

from the following optimization formulation:

max
𝛼0,𝜌0

ΠD
p𝛼0, 𝜌0q “ 𝐴` 𝑝𝑞 ` 𝑢D

pp𝛼0, 𝜌0, 𝛽q, 𝛾q ´ 𝑐𝑞

𝑠.𝑡. 𝜌0 ď 𝜌p𝛼0q, 𝛼0 P r0, 1s
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Since only 𝑢D depends on p𝛼0, 𝜌0q,

ô max
𝛼0,𝜌0

𝑢D
pp𝛼0, 𝜌0, 𝛽q, 𝛾q

𝑠.𝑡. 𝜌0 ď 𝜌p𝛼0q, 𝛼0 P r0, 1s (35)

Remark 6. Under the ROC curve specified by 𝜌p𝛼q, the constraint 𝜌0 ď 𝜌p𝛼q is

equivalent to 𝜌0 “ 𝜌p𝛼q for (35). From (5), we can argue that any p𝜌1, 𝛼0q such that

𝜌1 ă 𝜌0 is dominated by p𝜌0, 𝛼0q.

Optimization Formulation:

ô max
𝛼0

𝑢D
pp𝛼0, 𝛽q, 𝛾q

𝑠.𝑡. 𝛼0 P r0, 1s (36)

where under default IDS specified by ROC curve 𝜌p𝛼q, player payoffs in the game
p𝒢ROC
𝜂 for a strategy profile pp𝛼0, 𝛽q , 𝛾q can be written as follows:

𝑢D
pp𝛼0, 𝛽q , 𝛾q “ 𝜋𝛾 p𝛽𝜌p𝛼0q pF´ C𝜌q ´ p1´ 𝛽𝜌p𝛼0qq 𝑝𝑞𝜂q ´ p1´ 𝜋𝛾q 𝛽𝛼0 pC𝛼 ` C𝜌q

(37)

𝑢f
pp𝛼0, 𝛽q , 𝛾q “ 𝛾 pp1´ 𝛽𝜌p𝛼0qq pF` 𝑝𝑞𝜂q ´ pF` C𝜂qq (38)

In the following result, we show that, in equilibrium, 𝜂𝐼𝑐 is the critical fraction of

theft level 𝜂 below which the fraudulent customers do not attack with probability 1.

The results also shows that r𝜋𝑐 is the critical fraction of fraudulent customers below

which attackers always attacks provided 𝜂 ě 𝜂𝐼𝑐 . Finally, when 𝜋 ą r𝜋𝑐, the attacker is

indifferent between T(Theft) and NT(No Theft) actions for the detection probability

𝜌 “ 𝜌𝑐.

Theorem 2. Game with Optimal default IDS p𝒢ROC
𝜂 Equilibrium

Consider the game p𝒢ROC
𝜂 with a default IDS specified by ROC curve 𝜌p𝛼q and for a

62



given tariff schedule Tp𝑞q :“ 𝐴`𝑝𝑞. The equilibrium of p𝒢ROC
𝜂 is unique and given by:

`

p𝛼˚0 , 𝛽
:
q, 𝛾:

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

p0, 0; 0q if 𝜂 ď 𝜂𝐼𝑐
´

𝜒´1
 

1´𝜋
𝜋

pC𝛼`C𝜌q

𝑝𝑞𝜂`F´C𝜌
u, 1; 1

¯

if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

`

𝛼𝑐
0, 1; r𝜋𝑐

𝜋

˘

if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(39)

where 𝜒 p𝛼q “ B𝜌{B𝛼. Furthermore, for the reported consumption represented by ran-

dom variable Y with realization y, the statistical test implemented by the distribution

utility in equilibrium is given by
 

𝐼𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒pIq : Y “ y|y ă p𝜑´1p𝛼˚0q `
𝑞𝜂
𝜎
qu

Remark 7. We obtain the equilibrium payoffs for game p𝒢ROC
𝜂 by plugging pp𝛼0, 𝜌0, 𝛽q , 𝛾q

from Theorem 2 into (37) and (38),

𝑢D
`

p𝛼˚0 , 𝛽
:
q, 𝛾:

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

´p1´ 𝜋q𝜅1𝛼
˚
0 ` 𝜋 p𝜅2𝜌 p𝛼

˚
0q ´ 𝑝𝑞𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

´p1´ r𝜋𝑐q𝜅1𝛼
𝑐
0 ` r𝜋𝑐 p𝜅2𝜌𝑐 ´ 𝑝𝑞𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(40)

and

𝑢f
`

p𝛼˚0 , 𝛽
:
q, 𝛾:

˘

“

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

p1´ 𝜌 p𝛼˚0qq pF` 𝑝𝑞𝜂q ´ pF` C𝜂q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

0 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(41)

where 𝜅1 “ pC𝛼 ` C𝜌q and 𝜅2 “ pF` 𝑝𝑞𝜂 ´ C𝜌q

Lemma 2. For an increasing, concave ROC curve 𝜌p.q with 𝜌p0q “ 0, 𝜌p1q “ 1 then

𝜌1p𝛼q ď 𝜌p𝛼q{𝛼 for all 𝛼 P p0, 1s.

Proof. Let us first geometrically argue that no tangent to the ROC curve with the

given properties can have a negative intercept. Precisely, let us represent the equation

of tangent at p𝛼, 𝜌p𝛼qq as: 𝑦 “ B𝜌
B𝛼
𝑥`𝐶. We claim that 𝐶 ě 0 for any tangent to the

ROC curve 𝜌p.q above.
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Assume the contrary. Let there exist a tangent that has a negative intercept term.

We know this is possible only if the tangent has its X-intercept ě 0. But this violates

the concavity of the ROC curve.

Lastly substituting 𝑦 “ 𝜌p𝛼q and 𝑥 “ 𝛼, we get the equation as 𝜌p𝛼q “ B𝜌
B𝛼
𝛼 ` 𝐶.

Since 𝐶 ě 0, we get 𝜌p𝛼q ´ B𝜌
B𝛼
𝛼 ě 0

Explanation of Theorem 2:

i. For theft level 𝜂 ď 𝜂𝐼𝑐 , the fraudulent customer does not commit theft and the

defender chooses 0 false alarm probability. Note that since the distribution

utility will not use the IDS in Stage 2, i.e. 𝛽: “ 0, he can choose an arbitrary

default false alarm probability. For convenience, we have taken 𝛼0 “ 0 which

can be interpreted as lack of IDS. We can also posit that the distribution utility

can choose 𝛼0 “ 0 in Stage 1 and then can choose an arbitrary probability of

using the IDS 𝛽. Hence, 𝛽𝛼0 “ 0 at equilibrium.

ii. The effective false alarm probability is same for both sequential game with

complete information p𝒢ROC
𝜂 and simultaneous game with tunable IDS 𝒢ROC

𝜂 , i.e.

𝛽:𝛼˚0 “ 𝛼˚.

iii. The distribution utility always uses the IDS, i.e. 𝛽: “ 1 for an optimally

configured IDS with complete information (p𝒢ROC
𝜂 ). Intuitively, this follows from
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concavity of ROC curve such that for a given effective false alarm probability,

the detection probability of operating on the ROC curve is strictly better than

any linear combination of other operating points. We will rigorously show this

in the following proof of the theorem.

Proof. We can re-write (38) as follows:

𝑢f
p𝛼0, 𝛽; 𝛾q “ 𝛾 rΦp𝛼0, 𝛽q ´ pF` C𝜂qs (42)

where Φp𝛼0, 𝛽q :“ p1´ 𝛽𝜌p𝛼0qq p𝑝𝜂𝑞 ` Fq and 𝜌0 “ 𝜌p𝛼0q

Case (i)
“

𝜂 ď 𝜂𝐼𝑐
‰

For this case, we see from (11) that 𝑝𝑞𝜂 ď C𝜂, which implies that Φp𝛼0, 𝛽q ď

p1´ 𝛽𝜌0q pC𝜂 ` Fq ď pC𝜂 ` Fq. Thus, for any strategy profile p𝛼0, 𝛽; 𝛾q, 𝑢fp𝛼0, 𝛽; 𝛾q ď

0. From (42), we conclude that, in equilibrium, 𝛾˚ “ 0.

Now, for a strategy profile p𝛼0, 𝛽, 0q, we can express (37) as follows 𝑢Dp𝛼0, 𝛽; 0q “

´𝛽𝛼0 pC𝛼 ` C𝜌q. Thus, in equilibrium, 𝛼˚0𝛽˚ “ 𝛼˚𝐼 “ 0.

Case (ii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

‰

Let us define region ℛp𝜋q of false alarm probability 𝛼, under ROC curve 𝜌p𝛼q using

Proposition 1 and (12),

ℛp𝜋q :“
 

𝛼 : 𝛼 P r0, 1s, 𝜋 ă
pC𝛼 ` C𝜌q𝛼

pC𝛼 ` C𝜌q𝛼 ` 𝜌p𝛼qp𝑝𝑞𝜂 ` F´ C𝜌q
u (43)

Plan of the proof

• For 𝛾 “ 1 and for any p𝛼1, 𝛽1q, 𝛼1 ď 1 and 𝛽1 ă 1, there exists an pr𝛼, 1q, r𝛼 ď 1,

which dominates p𝛼1, 𝛽1q.

• For 𝛾 “ 1, p𝛼˚0 , 1q is the unique BR; where 𝛼˚0 P ℛ is given by,

𝜌𝛼p𝛼
˚
0q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

T𝑞𝜂 ` F´ C𝜌

• 𝛾 “ 1 is a unique BR of p𝛼˚0 , 1q
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Lemma 3. For 𝛾 “ 1 and for any p𝛼1, 𝛽1q, 𝛼1 ď 1 and 𝛽1 ă 1, there exists an pr𝛼, 1q,

r𝛼 ď 1, which dominates p𝛼1, 𝛽1q.

Proof. We define r𝛼 :“ 𝛽1𝛼0
1

Assume the contrary, i.e. p𝛽1, 𝛼1q such that 𝛽1 ă 1 and 𝛽1𝛼0
1 ă 1 gives a better payoff

to the distribution utility than pr𝛼, 1q. Recall that 𝜌p𝛼q, by Assumption 2, is strictly

concave and strictly increasing.

Then,

𝜌pr𝛼q “ 𝜌p𝛽1𝛼0
1
q “ 𝜌p𝛽1𝛼0

1
` p1´ 𝛽1q 0q ą 𝛽1𝜌p𝛼0

1
q ` p1´ 𝛽1q 0 (44)

Consider two strategy profiles: pr𝛼, 1, 1q and p𝛼0
1, 𝛽1, 1q. From (37),

𝑢D
pr𝛼, 1; 1q ´ 𝑢D

p𝛼0
1, 𝛽1; 1q “ 𝜋 p𝜌pr𝛼q pF´ C𝜌q ´ p1´ 𝜌pr𝛼qq 𝑝𝑞𝜂q ´ p1´ 𝜋q r𝛼 pC𝛼 ` C𝜌q

` p1´ 𝜋q 𝛽1𝛼0
1
pC𝛼 ` C𝜌q ´ 𝜋 p𝛽1𝜌p𝛼0

1
q pF´ C𝜌q ´ p1´ 𝛽1𝜌p𝛼0

1
qq 𝑝𝑞𝜂q

“ 𝜋 p𝜌pr𝛼q ´ 𝛽1𝜌p𝛼0
1
qq pF` 𝑝𝑞𝜂 ´ C𝜂q ą 0 (45)

From(44) and (45), we can see 𝑢Dp𝛼0
1, 𝛽1; 1q ă 𝑢Dp𝛼˚0 , 1; 1q. A contradiction.

Proposition 4. For 𝛾 “ 1, p𝛼˚0 , 1q is the unique BR; where 𝛼˚0 P ℛ is given by,

𝜌𝛼p𝛼
˚
0q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

T𝑞𝜂 ` F´ C𝜌

Proof. Consider 𝛽˚ “ 1. For a strategy profile p𝛼0, 1, 1q, from (37);

𝑢D
p𝛼0, 1; 1q “ 𝜋 p𝜌p𝛼0q pF´ C𝜌q ´ p1´ 𝜌p𝛼0qq 𝑝𝑞𝜂q ´ p1´ 𝜋q𝛼0 pC𝛼 ` C𝜌q (46)

Solving for FOC 𝑢D
𝛼0
p𝛼0, 1; 1q “ 0,

𝜌𝛼p𝛼
˚
0q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

T𝑞𝜂 ` F´ C𝜌

(47)

By Assumption 2, 𝜌p𝛼q is a strictly increasing, concave function. Furthermore lim𝛼0Ñ0

𝜌𝛼p𝛼0q “ 8 and lim𝛼0Ñ1 𝜌𝛼p𝛼0q “ 0. As a result, by Intermediate Value Theorem,

(47) always has a unique solution 𝛼0
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Moreover, from Lemma 2, we know that

𝜌p𝛼˚0q{𝛼
˚
0 ą 𝜌𝛼p𝛼

˚
0q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

𝑝𝑞𝜂 ` F´ C𝜌

(48)

which implies 𝛼0 P ℛ.

Next, we argue that 𝛼˚0 obtained by solving 47 is less than 𝛼𝑐
0 for 𝜋 ă r𝜋𝑐. For con-

venience of notation, let us represent the LHS of 47 by 𝑓p𝛼0q and RHS by 𝑔p𝜋q.

Note that f is decreasing in 𝛼0 and 𝑔p𝜋q is decreasing in 𝜋. Consider 𝛼1, 𝛼2, 𝜋1, 𝜋2

such that, 𝑓p𝛼1q “ 𝑔p𝜋1q, 𝑓p𝛼2q “ 𝑔p𝜋2q Furthermore consider 𝜋1 ă 𝜋2 which means

𝑔p𝜋1q ą 𝑔p𝜋2q and 𝑓p𝛼1q ą 𝑓p𝛼2q. Since f is a decreasing function, 𝛼1 ă 𝛼2. Substi-

tuting 𝛼2 “ 𝛼𝑐
0 and 𝜋2 “ r𝜋𝑐, we get, 𝜋1 ă r𝜋𝑐 implies 𝛼1 ă 𝛼𝑐

0. Please note that r𝜋𝑐 is

the fraction of fraudulent customers for 𝛼˚0 “ 𝛼𝑐
0.

To sum up, we have shown that (a) 𝛼˚0 always exists and is unique (b) 𝛼˚0 P ℛ

and (c) 𝛼˚0 ă 𝛼𝑐
0, equivalently(from (21)) 𝜌p𝛼˚0q ă 𝜌𝑐. Hence, from Proposition 1,

𝛽:p𝛼˚0q “ 1 under subgame p𝒢ROC
𝜂 . Therefore p𝛼˚0 , 1q is a valid equilibrium.

Lastly, we show that there cannot be any other equilibrium that has a higher payoff.

Assume the contrary and consider the strategy p𝛽1, 𝛼1q for the following cases:

i. 𝛼1 P ℛ such that 𝛼1 ‰ 𝛼˚0 . Consider 𝛼1 ď 𝛼𝑐
0, then from Proposition 1, we

know that 𝛽:p𝛼1q “ 1. However we have shown earlier that 𝛼˚0 is the unique

BR. A contradiction. Consider 𝛼1 ą 𝛼𝑐
0, then from Proposition 1, we know

that 𝛽:p𝛼1q “ 𝜌𝑐{𝜌p𝛼
1q ă 1. Furthermore, from Lemma 3, there exists pr𝛼, 1q

such that it dominates p𝛼1, 𝛽1q, or equivalently 𝑢Dpp𝛼1, 𝛽1q, 𝛾q ă 𝑢Dppr𝛼, 1q, 𝛾q.

However, we have shown above that 𝑢Dppr𝛼, 1q, 𝛾q ă 𝑢Dpp𝛼˚0 , 1q, 𝛾q for all r𝛼.

Hence, 𝑢Dpp𝛼1, 𝛽1q, 𝛾q ă 𝑢Dpp𝛼˚0 , 1q, 𝛾q. A contradiction.

ii. 𝛼1 R ℛ, then from Proposition 1, 𝛽:p𝛼1q “ 0. Furthermore, from (48),

𝑢D
pp𝛼˚0 , 1q, 1q ´ 𝑢D

pp𝛼1, 0q, 1q “

𝜋 p𝜌p𝛼˚0q pF` 𝑝𝑞𝜂 ´ C𝜌qq ´ p1´ 𝜋q𝛼˚0 pC𝛼 ` C𝜌q ą 0
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A contradiction.

Hence for 𝛾 “ 1, p𝛼˚0 , 1q is the unique BR.

From (42), we see that for this case, 𝛾˚ “ 1 is and only if,

Φp𝛼0, 𝛽q ą F` C𝜂 (49)

Equivalently, (49) implies 𝛼0 ă 𝛼𝑐
0. From Proposition 4, 𝛼˚0 ă 𝛼𝑐

0. Hence, 𝛾˚ “ 1 is

unique BR to p𝛼˚0 , 1q.

Case (iii)
“

𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

‰

Consider a strategy profile pp𝛼0, 𝛽q , 𝛾q such that 𝛼0, 𝛾 P p0, 1q and 𝛽 P r0, 1s. Then

for pp𝛼0, 𝛽q, 𝛾q to be an equilibrium, we necessarily need Φp𝛼0, 𝛽q “ F` C𝜂. Solving

above, we obtain 𝛽𝜌p𝛼0q “ 𝜌𝑐.

Lemma 4. For 𝛾˚ P p0, 1q and for any p𝛼0
1, 𝛽1q, 𝛽1 ă 1 and 𝛽1𝜌p𝛼0

1q “ 𝜌𝑐, there

exists an pr𝛼, 1q which dominates p𝛼0
1, 𝛽1q.

Proof. We define r𝛼, 𝜌pr𝛼q “ 𝛽1𝜌p𝛼0
1q

Assume the contrary, i.e. p𝛼1, 𝛽1q such that 𝛽1 ă 1 and 𝛽1𝜌p𝛼0
1q “ 𝜌𝑐 gives a better

payoff to the distribution utility than pr𝛼, 1q. Recall that 𝜌p𝛼q, by Assumption 2, is

strictly concave and strictly increasing.

Then,

𝜌p𝛽1𝛼0
1
q “ 𝜌p𝛽1𝛼0

1
` p1´ 𝛽1q 0q ą 𝛽1𝜌p𝛼0

1
q ` p1´ 𝛽1q 0 “ 𝜌pr𝛼q (50)

Since 𝜌p.q is a strictly increasing function, from (50), r𝛼 ă 𝛽1𝛼0
1.

Consider two strategy profiles: pp𝛼˚0 , 1q, 𝛾˚q and pp𝛼0
1, 𝛽1q, 𝛾˚q. From (37),

𝑢D
ppr𝛼, 1q, 𝛾˚q ´ 𝑢D

pp𝛼0
1, 𝛽1q, 𝛾˚q

“ 𝜋𝛾˚ p𝜌pr𝛼q pF´ C𝜌q ´ p1´ 𝜌pr𝛼qq 𝑝𝑞𝜂q ´ p1´ 𝜋𝛾˚q r𝛼 pC𝛼 ` C𝜌q

´ 𝜋𝛾˚ p𝛽1𝜌p𝛼0
1
q pF´ C𝜌q ´ p1´ 𝛽1𝜌p𝛼0

1
qq 𝑝𝑞𝜂q ` p1´ 𝜋𝛾˚q 𝛽1𝛼0

1
pC𝛼 ` C𝜌q

“ p1´ 𝜋𝛾˚q pC𝛼 ` C𝜌q p𝛽
1𝛼0

1
´ r𝛼q ą 0 (51)
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From(50) and (51), we get 𝑢Dpp𝛼0
1, 𝛽1q, 𝛾q ă 𝑢Dppr𝛼, 1q, 𝛾q. A contradiction.. Hence

r𝛼 “ 𝛼𝑐
0 and p𝛼𝑐

0, 1q dominates p𝛼0
1, 𝛽1q. Next we show that p𝛼𝑐

0, 1q is a valid strategy

profile. Firstly, from (21), 𝜌p𝛼𝑐
0q “ 𝜌𝑐. Secondly, from (22),

𝜋 ą r𝜋𝑐 “
pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` 𝜌1p𝛼𝑐
0qp𝑝𝑞𝜂 ` F´ C𝜌q

Or equivalently,

𝜌p𝛼𝑐
0q

𝛼𝑐
0

ą 𝜌1p𝛼𝑐
0q ą

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

p𝑝𝑞𝜂 ` F´ C𝜌q

where the first inequality follows from Lemma 2. Finally from Proposition 1, equiva-

lently (14), p𝛼𝑐
0, 𝜌p𝛼

𝑐
0qq falls in regime 3 or 𝛽:p𝛼𝑐

0q “ 1.

We now show that p𝛼𝑐
0, 1q is a unique equilibrium response of the distribution utility.

Again,

𝑢D
𝛼 pp𝛼

𝑐
0, 1q, 𝛾q “ 𝜋𝛾 p𝜌𝛼p𝛼

𝑐
0q pF` 𝑝𝑞𝜂 ´ C𝜌qq ´ p1´ 𝜋𝛾q pC𝛼 ` C𝜌q “ 0 (52)

Solving for 𝛾, 𝛾˚ “ r𝜋𝑐{𝜋.

Note that 𝛾˚ P p0, 1q for 𝜋 P p0, r𝜋𝑐qq cannot be an equilibrium. Let D𝛾˚ P r0, 1q,

B𝛼𝑢
D “ 𝜋pC𝛼 ` C𝜌q ` p𝑝𝑞𝜂 ` F´ C𝜌q𝜌

1p𝛼0q𝛾
˚ ´ pC𝛼 ` C𝜌q ă 0 @ 𝛾. Then, 𝛼˚0 “ 0.

But we know that 𝛾˚ “ 1 is a BR for 𝛼˚0 “ 0 which is a contradiction.

In Figure 3.11, the optimal default false alarm probability for small prior 𝜋 ă 𝜋𝑐

and large prior 𝜋 ą 𝜋𝑐.

3.4.2 Game 𝒢ROC
Pp𝜂q : Imperfect Information

As described earlier, the distribution utility in game 𝒢ROC
Pp𝜂q , does not have perfect

information about the theft level 𝜂 committed by the fraudulent customer. Rather,

the distribution utility has a prior (or knows the probability distribution) on theft

level, Pp𝜂q. Precisely, there are two levels of theft 𝜂L, 𝜂H with probabilities 𝜆L and

𝜆Hp“ 1´ 𝜆Lq respectively.
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Figure 3.11: Variation of 𝑢D with 𝛼0 for (a) 𝜋 “ 0.2 (b) 𝜋 “ 0.4

Like in the perfect information game p𝒢ROC
𝜂 earlier, for a given ROC 𝜌p𝛼0q the

distribution utility obtains the optimal default false alarm probability in Stage 1

from the following optimization formulation:

max
𝛼0

ΠD
p𝛼0, 𝜌p𝛼0qq “ 𝐴` 𝑝𝑞 ` E𝜂

“

𝑢D
pp𝛼0, 𝜌p𝛼0q, 𝛽

:
p𝛼0qq, 𝛾

:
p𝛼0qq

‰

´ 𝑐𝑞

𝑠.𝑡. 𝛼0 P r0, 1s, 𝜂 „ Pp𝜂q

Optimization Formulation:

ô max
𝛼0

E𝜂

“

𝑢D
pp𝛼0, 𝜌p𝛼0q, 𝛽

:
p𝛼0qq, 𝛾

:
p𝛼0qq

‰

𝑠.𝑡. 𝛼0 P r0, 1s, 𝜂 „ Pp𝜂q (53)

Note that,

E𝜂

“

𝑢D
pp𝛼0, 𝜌p𝛼0q, 𝛽

:
p𝛼0qq, 𝛾

:
p𝛼0qq

‰

“ 𝜆L𝑢D
L p
`

𝛼0, 𝛽
L
˘

, 𝛾L
q ` 𝜆H𝑢D

Hp
`

𝛼0, 𝛽
H
˘

, 𝛾H
q

(54)

equivalently,

𝛼˚0 :“ arg max
𝛼0

𝜆L𝑢D
L p
`

𝛼0, 𝛽
L
˘

, 𝛾L
q ` 𝜆H𝑢D

Hp
`

𝛼0, 𝛽
H
˘

, 𝛾H
q (55)
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where,

i. 𝛼˚0 is the Stage 1 optimal false alarm probability chosen by distribution utility.

ii. 𝜂L is low theft level

iii. 𝜂H is high theft level

iv. 𝛽H is the equilibrium (subgame) probability of using the IDS for theft level 𝜂H

v. 𝛽L is the equilibrium (subgame) probability of using the IDS for theft level 𝜂L

vi. 𝑢D
H is the equilibrium payoff of the distribution utility for theft level 𝜂H

vii. 𝑢D
L is the equilibrium payoff of the distribution utility for theft level 𝜂L

viii. 𝛾H is the equilibrium probability of committing 𝜂H theft level by the fraudulent

customer

ix. 𝛾L is the equilibrium probability of committing 𝜂L theft level by the fraudulent

customer

Furthermore, under default IDS specified by ROC curve 𝜌p𝛼q, p𝛽:, 𝛾:q is given by

Proposition 1 and player payoffs 𝑢D, 𝑢f for a strategy profile pp𝛼0, 𝛽q , 𝛾q are given by

(37) and (38).

Lemma 5. For 𝜋 ă p𝜋𝑐, where p𝜋𝑐 is the critical fraction of fraudulent customers

p𝜋𝑐 “
C𝛼 ` C𝜌

C𝛼 ` C𝜌 ` 𝑝𝑞𝜂 ` F´ C𝜌

(56)

there exists a unique p𝛼𝑐 P p0, 1q such that,

𝜌pp𝛼𝑐q

p𝛼𝑐

“
1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

T𝑞𝜂 ` F´ C𝜌

(57)

Proof. We first show that for a given ROC curve 𝜌p𝛼q and for any 𝛼1 and 𝛼2 such that

𝛼1 ă 𝛼2, we have 𝜌p𝛼1q{𝛼1 ą 𝜌p𝛼2q{𝛼2. Furthermore, 𝜌p𝛼q{𝛼 achieves its minimum
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value 1 at 𝛼 “ 1 and is unbounded at 𝛼 “ 0.

Consider for notational convenience, Ψp𝛼q “ 𝜌p𝛼q{𝛼. Then,

Ψ1
p𝛼q “

𝛼𝜌1p𝛼q ´ 𝜌p𝛼q

𝛼2
ă 0

where the inequality follows from Lemma 2. Furthermore following from the mono-

tonicity of Ψp𝛼q, it achieves its minimum at 𝛼 “ 1. Therefore Ψ𝑚𝑖𝑛p1q “ 1. Addi-

tionally, using L’Hospital rule,

lim
𝛼Ñ0

𝜌p𝛼q

𝛼
“ lim

𝛼Ñ0
𝜌1p𝛼q “ 8

proving it to be unbounded at 𝛼 “ 0.

From (56), we can see that for 𝜋 ą p𝜋𝑐, 1´𝜋
𝜋

pC𝛼`C𝜌q

T𝑞𝜂`F´C𝜌
ă 1, or equivalently, 𝜌pp𝛼𝑐q

p𝛼𝑐
ă 1.

But we have shown earlier that 𝜌p𝛼q{𝛼 is a decreasing function of 𝛼 and is equal to

1 at 𝛼 “ 1. Hence, (57) has no solution for 𝜋 ă p𝜋𝑐. Lastly, for 𝜋 ă p𝜋𝑐, there exists

a unique p𝛼𝑐 P p0, 1q. The existence follows from Intermediate Value Theorem(IVP)

and uniqueness follows from monotonicity of 𝜌p𝛼q{𝛼.

Discussion: Significance of p𝛼𝑐

Lemma 5 characterizes the existence and uniqueness of p𝛼𝑐 with 𝜋. From Proposition

1, and by monotonicity of 𝜌p𝛼q{𝛼, we argue, using (12), that 𝛼0 ă p𝛼𝑐 implies 𝜋 ą 𝜋𝑐.

Hence we can study the effect of 𝛼0 on the subgame equilibrium p𝛽:, 𝛾:q(Theorem 2)

using p𝜋𝑐, p𝛼𝑐.

Before we outline the lower and upper bounds for 𝛼˚0 (defined in (55)), we will char-

acterize the payoff of the distribution utility for game p𝒢ROC
𝜂 with single level of theft

𝜂. Intuitively, in the forthcoming propositions 5, 6, we show that distribution utility

obtains a higher payoff as 𝛼0 gets closer to 𝛼˚0 . Precisely, we argue for the monotonic-

ity of defender’s payoff for 𝛼0 ă 𝛼˚0 and 𝛼0 ą 𝛼˚0 with both 𝜋 ă r𝜋𝑐 (Proposition 5)

and 𝜋 ą r𝜋𝑐 (Proposition 6).

Proposition 5. For all 𝜋 ă r𝜋𝑐 and for any 𝛼1 and 𝛼2, 𝛼1 ă 𝛼2 ă 𝛼˚ the distri-
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bution utility obtains a greater payoff for 𝛼2 than 𝛼1 such that, 𝑢Dpp𝛼1, 𝛽1q, 𝛾1q ď

𝑢Dpp𝛼2, 𝛽2q, 𝛾2q. Similarly, for 𝛼2 ą 𝛼1 ą 𝛼˚ the distribution utility obtains a greater

payoff for 𝛼1 than 𝛼2 i.e., 𝑢Dpp𝛼1, 𝛽1q, 𝛾1q ě 𝑢Dpp𝛼2, 𝛽2q, 𝛾2q.

Proof. As we have seen in Theorem 2, the BR of the defender is p𝛼˚, 1q where

𝜌𝛼p𝛼
˚
q “

1´ 𝜋

𝜋

pC𝛼 ` C𝜌q

T𝑞𝜂 ` F´ C𝜌

And, from Lemma 2, 𝜌p𝛼˚q
𝛼˚

ą 𝜌𝛼p𝛼
˚q “ 1´𝜋

𝜋

pC𝛼`C𝜌q

T𝑞𝜂`F´C𝜌

Case (i) 𝜋 ă r𝜋𝑐 ď p𝜋𝑐:

Consider 𝛼1 ă 𝛼2 ă 𝛼˚. From Lemma 5, we have 𝜌p𝛼1q{𝛼1 ą 𝜌p𝛼2q{𝛼2 ą 𝜌p𝛼˚q{𝛼˚ ą

𝜌𝛼p𝛼
˚q. Recall from Proposition 1, this implies that 𝛼1, 𝛼2 lie in regime 3, or equiva-

lently, 𝛽:p𝛼1q “ 1 and 𝛽:p𝛼2q “ 1. But for 𝛽 “ 1, since 𝑢D is a concave function, we

know that 𝑢Dpp𝛼1, 1q, 1q ă 𝑢Dpp𝛼2, 1q, 1q.

Next, consider 𝛼2 ą 𝛼1 ą 𝛼˚. From Proposition 1, we know that for 𝛼 ą p𝛼𝑐, 𝛼 is in

regime 2, or equivalently, 𝛽:p𝛼q “ 0 and the payoff 𝑢D “ ´𝜋𝑝𝑞𝜂. Let us consider the

following two cases:

i. For p𝛼𝑐 ď 𝛼𝑐
0, let us consider the following two cases:

(a) 𝛼1 ă p𝛼𝑐, 𝛼2 ą p𝛼𝑐: For 𝛼1 ă p𝛼𝑐 ă 𝛼𝑐
0, we know that 𝛼1 lies in regime 3,

or equivalently, 𝛽:p𝛼1q “ 1. Furthermore, 𝑢Dpp𝛼1, 1q, 1q “ ´p1 ´ 𝜋qpC𝛼 `

C𝜌q𝛼1 ` 𝜋pp´C𝜌 ` Fq𝜌p𝛼1q ´ p𝑝𝑞𝜂qp1´ 𝜌p𝛼1qqq. Lastly, from (57), we can

see that 𝑢Dpp𝛼1, 1q, 1q ą 𝑢Dpp𝛼2, 0q, 1q

(b) 𝛼1 ą p𝛼𝑐, 𝛼2 ą p𝛼𝑐: For 𝛼1, 𝛼2 ą p𝛼𝑐, we have 𝑢Dpp𝛼1, 0q, 1q “ 𝑢Dpp𝛼2, 0q, 1q

as shown above.

ii. For p𝛼𝑐 ą 𝛼𝑐
0, let us consider the following cases:

(a) 𝛼1 ă 𝛼𝑐
0, 𝛼2 ă 𝛼𝑐

0: In this case, we know that for both 𝛼, 𝜌p𝛼q ă 𝜌𝑐 and
𝜌p𝛼q
𝛼
ą 1´𝜋

𝜋

pC𝛼`C𝜌q

T𝑞𝜂`F´C𝜌
. Consequently, both 𝛼 lie in regime 3 and 𝛽:p𝛼q “
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1. Furthermore by concavity of 𝑢Dpp𝛼, 1q, 1q, we have 𝑢Dpp𝛼1, 1q, 1q ą

𝑢Dpp𝛼2, 1q, 1q.

(b) 𝛼1 ă 𝛼𝑐
0, p𝛼𝑐 ą 𝛼2 ą 𝛼𝑐

0: In this case, we know from above that on one

hand, 𝛼1 lies in regime 3 and 𝛽:p𝛼1q “ 1. On the other hand, 𝛼2 lies in

regime 4 and 𝛽:p𝛼2q “ 𝜌𝑐{𝜌p𝛼q. Furthermore, we know from Lemma 4,

p𝛼2, 𝛽
:q is dominated, or equivalently, gives lesser payoff to the distribu-

tion utility than p𝛼𝑐
0, 1q. And p𝛼𝑐

0, 1q lies in regime 3 with 𝛾:p𝛼𝑐
0q “ 1. But

we know that for 𝜋 ă r𝜋𝑐, 𝑢Dpp𝛼, 1q, 1q is a concave function with maxi-

mum at 𝛼˚. Consequently, we infer that 𝑢Dpp𝛼˚, 1q, 1q ą 𝑢Dpp𝛼1, 1q, 1q ą

𝑢Dpp𝛼2, 𝛽
:q, 𝛾:q .

(c) 𝛼1 ă 𝛼𝑐
0, 𝛼2 ą p𝛼𝑐: Again in this case, 𝛼1 lies in regime 3 and 𝛽:p𝛼1q “ 1 and

𝛾:p𝛼1q “ 1. However 𝛼2 lies in regime 2 and 𝛽:p𝛼2q “ 0 with 𝛾:p𝛼2q “ 1.

From discussion 2, we have 𝑢Dp𝛼1, 𝛽
:, 𝛾:q “ ´p1´𝜋qpC𝛼`C𝜌q𝛼1`𝜋pp´C𝜌`

Fq𝜌p𝛼1q ´ p𝑝𝑞𝜂qp1 ´ 𝜌p𝛼1qqq and 𝑢Dp𝛼2, 𝛽
:, 𝛾:q “ ´𝜋𝑝𝑞𝜂. However, from

(57), we can see that ´p1´𝜋qpC𝛼`C𝜌q𝛼1`𝜋pp´C𝜌`F`𝑝𝑞𝜂q𝜌p𝛼1qq ą 0.

Hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(d) p𝛼𝑐 ą 𝛼1 ą 𝛼𝑐
0, 𝛼2 ă p𝛼𝑐: In this case, both 𝛼1 an 𝛼2 lie in regime 4 and

𝛽:p𝛼q “ 𝜌𝑐{𝜌p𝛼q. Therefore, we know 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑐p𝛼q𝑞𝑝𝜂. Lastly,

we know that from Lemma 5 that 𝜌p𝛼1q{𝛼1 ą 𝜌p𝛼2q{𝛼2 and from (12),

𝜋𝑐p𝛼1q ă 𝜋𝑐p𝛼2q. Hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(e) p𝛼𝑐 ą 𝛼1 ą 𝛼𝑐
0, 𝛼2 ą p𝛼𝑐: In this case, 𝛼1 lies in regime 4 and 𝛽:p𝛼q “

𝜌𝑐{𝜌p𝛼q. Furthermore, 𝛼2 lies in regime 2 with 𝛽:p𝛼2q “ 0. The payoffs are

given by, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q “ ´𝜋𝑐p𝛼1q𝑞𝑝𝜂 and 𝑢Dp𝛼2, 𝛽

:, 𝛾:q “ ´𝜋𝑞𝑝𝜂. Lastly,

from (57), 𝜋𝑐p𝛼1q ă 𝜋. Hence, 𝑢Dp𝛼1, 0, 1q ą 𝑢Dp𝛼2, 0, 1q

(f) 𝛼1 ą p𝛼𝑐, 𝛼2 ą p𝛼𝑐: In this case, the payoff 𝑢D “ ´𝜋𝑝𝑞𝜂 for both 𝛼1, 𝛼2.

Hence, 𝑢Dp𝛼1, 0, 1q “ 𝑢Dp𝛼2, 0, 1q

Case (ii) 𝜋 ă p𝜋𝑐 ă r𝜋𝑐

The proof will be same as that for Case (i)
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Case (iii) p𝜋𝑐 ă 𝜋 ă r𝜋𝑐

In this case, as per our argument earlier, there does not exist p𝛼𝑐 P p0, 1q. Let us

consider all the cases:

i. 𝛼1 ă 𝛼2 ă 𝛼˚

From Lemma 5, since 𝛼1 ă 𝛼2 ă 𝛼˚, we have 𝜌p𝛼1q{𝛼1 ą 𝜌p𝛼2q{𝛼2 ą 𝜌p𝛼˚q{𝛼˚ ą

𝜌𝛼p𝛼
˚q. Recall from Proposition 1, this implies that 𝛼1, 𝛼2 lie in regime 3, or

equivalently, 𝛽:p𝛼1q “ 1 and 𝛽:p𝛼2q “ 1. But for 𝛽 “ 1, since 𝑢D is a concave

function, we know that 𝑢Dpp𝛼1, 1q, 1q ă 𝑢Dpp𝛼2, 1q, 1q.

ii. 𝛼1 ă 𝛼𝑐
0, 𝛼2 ă 𝛼𝑐

0: In this case, we know that for both 𝛼, 𝜌p𝛼q ă 𝜌𝑐 and 𝜌p𝛼q
𝛼
ą

1´𝜋
𝜋

pC𝛼`C𝜌q

T𝑞𝜂`F´C𝜌
. Consequently, both 𝛼 lie in regime 3 and 𝛽:p𝛼q “ 1. Furthermore

by concavity of 𝑢Dpp𝛼, 1q, 1q, we have 𝑢Dpp𝛼1, 1q, 1q ą 𝑢Dpp𝛼2, 1q, 1q.

iii. 𝛼1 ă 𝛼𝑐
0, 𝛼2 ą 𝛼𝑐

0: In this case, we know from above that on one hand, 𝛼1

lies in regime 3 and 𝛽:p𝛼1q “ 1. On the other hand, 𝛼2 lies in regime 4 and

𝛽:p𝛼2q “ 𝜌𝑐{𝜌p𝛼q. Furthermore, we know from Lemma 4, p𝛼2, 𝛽
:q is domi-

nated, or equivalently, gives lesser payoff to the distribution utility than p𝛼𝑐
0, 1q.

And p𝛼𝑐
0, 1q lies in regime 3 with 𝛾:p𝛼𝑐

0q “ 1. But we know that for 𝜋 ă r𝜋𝑐,

𝑢Dpp𝛼, 1q, 1q is a concave function with maximum at 𝛼˚. Consequently, we infer

that 𝑢Dpp𝛼˚, 1q, 1q ą 𝑢Dpp𝛼1, 1q, 1q ą 𝑢Dpp𝛼2, 𝛽
:q, 𝛾:q .

iv. 𝛼1 ą 𝛼𝑐
0, 𝛼2 ą 𝛼𝑐

0: In this case, both 𝛼1 an 𝛼2 lie in regime 4 and 𝛽:p𝛼q “

𝜌𝑐{𝜌p𝛼q. Therefore, we know 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑐p𝛼q𝑞𝑝𝜂. Lastly, we know that

from Lemma 5 that 𝜌p𝛼1q{𝛼1 ą 𝜌p𝛼2q{𝛼2 and from (12), 𝜋𝑐p𝛼1q ă 𝜋𝑐p𝛼2q.

Hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

Proposition 6. For all 𝜋 ą r𝜋𝑐 and for any 𝛼1 and 𝛼2, 𝛼1 ă 𝛼2 ă 𝛼˚ the distribution

utility obtains a greater payoff for 𝛼2 than 𝛼1 i.e., 𝑢Dpp𝛼1, 𝛽1q, 𝛾1q ď 𝑢Dpp𝛼2, 𝛽2q, 𝛾2q.

Similarly, for 𝛼2 ą 𝛼1 ą 𝛼˚ the distribution utility obtains a greater payoff for 𝛼1

than 𝛼2 i.e., 𝑢Dpp𝛼1, 𝛽1q, 𝛾1q ě 𝑢Dpp𝛼2, 𝛽2q, 𝛾2q.
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Proof. We will consider the following cases for 𝜋, r𝜋𝑐, p𝜋𝑐.

Case (i) 𝜋 ą r𝜋𝑐 ą p𝜋𝑐

From Theorem 2, we know that for 𝜋 ą r𝜋𝑐, 𝛼˚0 “ 𝛼𝑐
0. Furthermore since 𝜋 ą p𝜋𝑐, we

know that there does not exist a p𝛼𝑐 as defined earlier. Consider the following cases:

i. 𝛼1 ă 𝛼2 ă 𝛼𝑐
0: In this case, we know that both 𝛼1 and 𝛼2 lie in regime 3, i.e.

𝛽:p𝛼q “ 1 and 𝛾:p𝛼q “ 1. Furthermore the payoff is given by 𝑢Dp𝛼, 𝛽:, 𝛾:q “

´p1´𝜋qpC𝛼`C𝜌q𝛼`𝜋pp´C𝜌`Fq𝜌p𝛼q´p𝑝𝑞𝜂qp1´𝜌p𝛼qqq and B𝛼𝑢Dp𝛼, 𝛽:, 𝛾:q “

´p1 ´ 𝜋qpC𝛼 ` C𝜌q ` 𝜋pp´C𝜌 ` F ` 𝑝𝑞𝜂q𝜌1p𝛼qq ą 0 from 𝜋 ą r𝜋𝑐. Hence,

𝑢Dp𝛼1, 𝛽
:, 𝛾:q ă 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

ii. 𝛼𝑐
0 ă 𝛼1 ă 𝛼2: In this case, we know that both 𝛼1 and 𝛼2 lie in regime 4, i.e.

𝛽:p𝛼q “ 𝜌𝑐{𝜌p𝛼q and 𝛾:p𝛼q “ 𝜋𝑐p𝛼q{𝜋. Furthermore 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑐p𝛼q𝑝𝑞𝜂.

Lastly, for 𝛼1 ă 𝛼2, 𝜋𝑐p𝛼1q ă 𝜋𝑐p𝛼2q and hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q.

Case (ii) 𝜋 ą p𝜋𝑐 ą r𝜋𝑐

The proof for this case follows from Case (i) as both situations are equivalent for

the distribution utility.

Case (iii) p𝜋𝑐 ą 𝜋 ą r𝜋𝑐

In this case, we know that there exist p𝛼𝑐 given by (57). Like we have seen in Propo-

sition 5, we will define regimes for 𝛼𝑐
0 and p𝛼𝑐. Consider the following cases:

i. 𝛼𝑐
0 ă p𝛼𝑐: Consider 𝛼1, 𝛼2, such that 𝛼1 ă 𝛼2

(a) 𝛼1 ă 𝛼𝑐
0 and 𝛼2 ă 𝛼𝑐

0: In this case, we know that both 𝛼1 and 𝛼2 lie in

regime 3, i.e. 𝛽:p𝛼q “ 1 and 𝛾:p𝛼q “ 1. Furthermore the payoff is given by

𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´p1´ 𝜋qpC𝛼`C𝜌q𝛼` 𝜋pp´C𝜌`Fq𝜌p𝛼q ´ p𝑝𝑞𝜂qp1´ 𝜌p𝛼qqq

and B𝛼𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´p1 ´ 𝜋qpC𝛼 ` C𝜌q ` 𝜋pp´C𝜌 ` F ` 𝑝𝑞𝜂q𝜌1p𝛼qq ą 0

from 𝜋 ą r𝜋𝑐. Hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ă 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(b) 𝛼𝑐
0 ă 𝛼1 ă p𝛼𝑐 and 𝛼𝑐

0 ă 𝛼2 ă p𝛼𝑐: In this case, we know that both 𝛼1 and

𝛼2 lie in regime 4, i.e. 𝛽:p𝛼q “ 𝜌𝑐{𝜌p𝛼q and 𝛾:p𝛼q “ 𝜋𝑐p𝛼q{𝜋. Furthermore
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𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑐p𝛼q𝑝𝑞𝜂. Lastly, for 𝛼1 ă 𝛼2, 𝜋𝑐p𝛼1q ă 𝜋𝑐p𝛼2q and

hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q.

(c) 𝛼𝑐
0 ă 𝛼1 ă p𝛼𝑐 and 𝛼2 ą p𝛼𝑐: In this case, we know that 𝛼1 lies in regime

4, i.e. 𝛽:p𝛼1q “ 𝜌𝑐{𝜌p𝛼1q and 𝛾:p𝛼1q “ 𝜋𝑐p𝛼q{𝜋. Also 𝑢Dp𝛼1, 𝛽
:, 𝛾:q “

´𝜋𝑐p𝛼1q𝑝𝑞𝜂. Furthermore, we know that 𝛼2 lies in regime 2 i.e. 𝛽:p𝛼2q “

0 and 𝛾:p𝛼2q “ 1. Also 𝑢Dp𝛼2, 𝛽
:, 𝛾:q “ ´𝜋𝑝𝑞𝜂. Since 𝜋 ą 𝜋𝑐p𝛼1q,

𝑢Dp𝛼1, 𝛽
:, 𝛾:q ą 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(d) 𝛼1 ą p𝛼𝑐 and 𝛼2 ą p𝛼𝑐: In this case, both 𝛼1 and 𝛼2 lie in regime 2

i.e. 𝛽:p𝛼q “ 0 and 𝛾:p𝛼q “ 1. Also 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑝𝑞𝜂. Hence,

𝑢Dp𝛼1, 𝛽
:, 𝛾:q “ 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

ii. p𝛼𝑐 ă 𝛼𝑐
0: Consider 𝛼1, 𝛼2 such that 𝛼1 ă 𝛼2

(a) 𝛼1 ă p𝛼𝑐 and 𝛼2 ă p𝛼𝑐: In this case, we know that both 𝛼1 and 𝛼2 lie in

regime 3, i.e. 𝛽:p𝛼q “ 1 and 𝛾:p𝛼q “ 1. Furthermore the payoff is given by

𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´p1´ 𝜋qpC𝛼`C𝜌q𝛼` 𝜋pp´C𝜌`Fq𝜌p𝛼q ´ p𝑝𝑞𝜂qp1´ 𝜌p𝛼qqq

and B𝛼𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´p1 ´ 𝜋qpC𝛼 ` C𝜌q ` 𝜋pp´C𝜌 ` F ` 𝑝𝑞𝜂q𝜌1p𝛼qq ą 0

from 𝜋 ą r𝜋𝑐. Hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ă 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(b) 𝛼1 ă p𝛼𝑐 and p𝛼𝑐 ă 𝛼2 ă 𝛼𝑐
0: In this case, we know that 𝛼1 lies in regime 3,

i.e. 𝛽:p𝛼1q “ 1 and 𝛾:p𝛼1q “ 1. Also the payoff is given by 𝑢Dp𝛼1, 𝛽
:, 𝛾:q “

´p1´𝜋qpC𝛼`C𝜌q𝛼1`𝜋pp´C𝜌`Fq𝜌p𝛼1q´p𝑝𝑞𝜂qp1´𝜌p𝛼1qqq. Furthermore,

𝛼2 lies in regime 2, i.e 𝛽:p𝛼2q “ 0 and 𝛾:p𝛼2q “ 1. Also 𝑢Dp𝛼2, 𝛽
:, 𝛾:q “

´𝜋𝑝𝑞𝜂. Lastly, since 𝛼1 ă p𝛼𝑐, 𝜋pF´C𝜌`𝑝𝑞𝜂q𝜌p𝛼1q´p1´𝜋qpC𝛼`C𝜌q𝛼1 ą 0

and hence, 𝑢Dp𝛼1, 𝛽
:, 𝛾:q ă 𝑢Dp𝛼2, 𝛽

:, 𝛾:q.

(c) p𝛼𝑐 ă 𝛼1 ă 𝛼𝑐
0 and p𝛼𝑐 ă 𝛼2 ă 𝛼𝑐

0: In this case, both 𝛼1 and 𝛼2 lie in regime

2 i.e. 𝛽:p𝛼q “ 0 and 𝛾:p𝛼q “ 1. Also 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑝𝑞𝜂. Hence,

𝑢Dp𝛼1, 𝛽
:, 𝛾:q “ 𝑢Dp𝛼2, 𝛽

:, 𝛾:q

(d) 𝛼1 ą 𝛼𝑐
0 and 𝛼2 ą 𝛼𝑐

0: In this case, both 𝛼1 and 𝛼2 lie in regime 2

i.e. 𝛽:p𝛼q “ 0 and 𝛾:p𝛼q “ 1. Also 𝑢Dp𝛼, 𝛽:, 𝛾:q “ ´𝜋𝑝𝑞𝜂. Hence,

𝑢Dp𝛼1, 𝛽
:, 𝛾:q “ 𝑢Dp𝛼2, 𝛽

:, 𝛾:q
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Let us define two quantities of interest for game 𝒢ROC
Pp𝜂q with default IDS,

𝛼0
H :“ arg max

𝛼0

𝑢D
Hp
`

𝛼0, 𝛽
H
˘

, 𝛾H
q

𝛼0
L :“ arg max

𝛼0

𝑢D
L p
`

𝛼0, 𝛽
L
˘

, 𝛾L
q (58)

Theorem 3. Optimal default false alarm probability for two level of thefts

For given two levels of theft 𝜂H, 𝜂L with probability 𝜆H, 𝜆Lp“ 1´ 𝜆Hq respectively and

a given tariff scheme Tp𝑞q “ 𝐴 ` 𝑝𝑞. Furthermore, let 𝛼0
H and 𝛼0

L be the optimal

default false alarm probability for low 𝜂L and high 𝜂H theft level respectively. Then,

𝛼˚0 P r𝛼0
L, 𝛼0

Hs if 𝛼0
L ă 𝛼0

H and 𝛼˚0 P r𝛼0
H, 𝛼0

Ls if 𝛼0
H ă 𝛼0

L for all 𝜋.

Proof. For simplicity, let 𝛼0
L ă 𝛼0

H, then we show that 𝛼˚0 P r𝛼0
L, 𝛼0

Hs. Assume the

contrary and consider the following cases:

i. 𝛼˚0 ă 𝛼0
L: From Proposition 5 and 6, we know that 𝑢D

Hpp𝛼
˚
0 , 𝛽

Hp𝛼˚0qq, 𝛾
Hp𝛼˚0qq ď

𝑢D
Hp𝛼0

L, 𝛽Hp𝛼0
Lq, 𝛾Hp𝛼0

Lqq. Similarly, from Theorem 2, equivalently (58),

𝑢D
L pp𝛼

˚
0 , 𝛽

Lp𝛼˚0qq, 𝛾
Lp𝛼˚0qq ď 𝑢D

L pp𝛼0
L, 𝛽Lp𝛼0

Lqq, 𝛾Lp𝛼0
Lqq. Taking the weighted

average of inequalities above,

𝜆L𝑢D
L p
`

𝛼˚0 , 𝛽
L
p𝛼˚0q

˘

, 𝛾L
p𝛼˚0qq ` 𝜆H𝑢D

H

``

𝛼˚0 , 𝛽
H
p𝛼˚0q

˘

, 𝛾H
p𝛼˚0q

˘

ď 𝜆L𝑢D
L p
`

𝛼0
L, 𝛽L

p𝛼0
L
q
˘

, 𝛾L
p𝛼0

L
qq ` 𝜆H𝑢D

Hp
`

𝛼0
L, 𝛽H

p𝛼0
L
q
˘

, 𝛾H
p𝛼0

L
qq

which is a contradiction, from (55).

ii. 𝛼˚0 ą 𝛼0
H: From Proposition 5 and 6, we know that 𝑢D

L pp𝛼
˚
0 , 𝛽

Lp𝛼˚0qq, 𝛾
Lp𝛼˚0qq ď

𝑢D
L p𝛼0

H, 𝛽Lp𝛼0
Hq, 𝛾Lp𝛼0

Hqq. Similarly, from Theorem 2, equivalently (58),

𝑢D
Hpp𝛼

˚
0 , 𝛽

Hp𝛼˚0qq, 𝛾
Hp𝛼˚0qq ď 𝑢D

Hpp𝛼0
H, 𝛽Hp𝛼0

Hqq, 𝛾Hp𝛼0
Hqq. Taking the weighted

average of inequalities above,

𝜆L𝑢D
L p
`

𝛼˚0 , 𝛽
L
p𝛼˚0q

˘

, 𝛾L
p𝛼˚0qq ` 𝜆H𝑢D

H

``

𝛼˚0 , 𝛽
H
p𝛼˚0q

˘

, 𝛾H
p𝛼˚0q

˘

ď 𝜆L𝑢D
L p
`

𝛼0
H, 𝛽L

p𝛼0
H
q
˘

, 𝛾L
p𝛼0

H
qq ` 𝜆H𝑢D

Hp
`

𝛼0
H, 𝛽H

p𝛼0
H
q
˘

, 𝛾H
p𝛼0

H
qq
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Figure 3.12: Game 𝒢ROC
Pp𝜂q Equilibrium Response of Distribution Utility for 𝜂L “

0.15, 𝜂H “ 0.72

which is a contradiction, from (55).

We can similarly argue for 𝛼0
L ą 𝛼0

H case.

Discussion

In the plots below, we show the defender’s equilibrium response 𝛼˚0 for two levels of

theft with 𝜆L “ 𝜆H “ 0.5. The red curve corresponds to low theft 𝜂L, the blue curve

corresponds to 𝜂H and the green curve corresponds to the equilibrium response. It

can be verified that the green curve always lies inside the blue and red curve as given

in Theorem 3.

i. The critical false alarm probability is same for both level of thefts i.e. 𝜂L “

0.15, 𝜂H “ 0.724:

This case presents the IDS with same optimal default configuration for both

theft levels. It is evident that both the low and high theft level have the same

critical false alarm probability after a certain threshold for fraction of fraudulent

customers. Furthermore, we observe in Figure 3.12 that the distribution utility,

below the critical fraction, chooses a false alarm probability that is optimally

configured for high theft level fraudulent customers 𝜂H. In the later section

4.3.1, we will further discuss the underlying conditions for same critical false

alarm probability and understand its relationship to value of information.
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Figure 3.13: Game 𝒢ROC
Pp𝜂q Equilibrium Response of Distribution Utility for 𝜂L “

0.5, 𝜂H “ 0.9

ii. The critical false alarm probability for low theft is more than critical false alarm

probability for hight theft i.e. 𝜂L “ 0.5, 𝜂H “ 0.9:

This case presents the non-monotonic behavior of 𝛼𝑐
0 with level of theft 𝜂. In

Figure 3.13, it is evident that the critical false alarm probability 𝛼𝑐
0 is higher

for low theft level fraudulent customer. Furthermore, we observe that for small

fraction of fraudulent customers, the distribution utility "addresses" the high

theft level customers while for large fraction of fraudulent customers, the dis-

tribution utility "addresses" the low theft level customers.

iii. The critical false alarm probability for low theft is less than critical false alarm

probability for high theft i.e. 𝜂L “ 0.2, 𝜂H “ 0.35:

For the given mixing probabilities (or equivalently lack of information on level

of theft 𝜆L “ 𝜆H “ 0.5), we observe in Figure 3.14 that the distribution utility

always addresses the high theft fraudulent customers. One of the interpretations

is that, for the same false alarm probability, the increased theft level is not

sufficient for the distribution utility to detect the fraudulent customers. As a

result, the distribution utility increases its false alarm probability to address the

high theft committed by half of the total population of fraudulent customers.
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Figure 3.14: Game 𝒢ROC
Pp𝜂q Equilibrium Response of Distribution Utility for 𝜂L “

0.2, 𝜂H “ 0.35
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Chapter 4

Value of Information

In this chapter, we utilize the results on equilibrium payoffs of the game 𝒢p𝛼0,𝜌0q
𝜂 , 𝒢ROC

𝜂 ,

and 𝒢ROC
Pp𝜂q to determine the value of IDS(fixed, tunable/customizable), and the value

of information on the theft level. We choose the cost incurred by the distribution

utility under no IDS as the base cost to compute the value of IDS. This corresponds

to the case when the fraudulent customer is able to divert energy at the level 𝜂

without facing any investigation from the distribution utility. We use the following

notation:

𝒱p𝛼0,𝜌0q
𝜂 Value of default IDS with parameters p𝛼0, 𝜌0q and 𝜂(avg. theft level)

𝒱ROC
𝜂 Value of tunable IDS with ROC curve p𝛼, 𝜌p𝛼qq and 𝜂(actual theft level)

𝒱cust
𝜂 Value of customizable IDS rel. for a fixed configuration and known 𝜂

𝒱ROC
info Value of information on 𝜂 with tunable IDS

Table 4.1: Metrics of Value of Information

4.1 Value of Intrusion Detection Systems

Value of default IDS 𝒱p𝛼0, 𝜌0q: For a given fraction of customers 𝜋 and average

level of theft 𝜂, the value of fixed IDS with parameters p𝛼0, 𝜌0q, denoted by 𝒱p𝛼0,𝜌0q
𝜂
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is defined as follows:

𝒱p𝛼0,𝜌0q
𝜂 “ 𝑢D

p𝒢p𝛼0,𝜌0q
𝜂 q ´ 𝑢D

p𝒢0
q

From 3.1 and Proposition 1

𝒱p𝛼0,𝜌0q
𝜂 “ 𝜋𝑝𝑞𝜂 ` 𝑢D

p𝛽:, 𝛾:q (59)

4.1.1 Default IDS

The following result characterizes 𝒱p𝛼0,𝜌0q
𝜂 :

Proposition 7. For a given 𝜋 and 𝜂, the equilibrium value of fixed IDS p𝛼0, 𝜌0q is

given by:

𝒱p𝛼0,𝜌0q
𝜂 “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

0 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐

´p1´ 𝜋q𝜅1𝛼0 ` 𝜋𝜅2𝜌0 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ď 𝜌𝑐

p𝜋 ´ 𝜋𝑐q𝑝𝑞𝜂 if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ą 𝜌𝑐

(60)

where 𝜅1 :“ C𝛼 ` C𝜌 and 𝜅2 :“ ´C𝜌 ` F ` 𝑝𝑞𝜂, 𝜌𝑐 given by 13 and 𝜋𝑐 given by 12.

Furthermore for any 𝜋 P r0, 1s and 𝜂 P r0, 1s, 𝒱p𝛼0,𝜌0q
𝜂 is non negative at equilibrium.

i. 𝒱p𝛼0,𝜌0q
𝜂 ą 0, if and only if the IDS configuration satisfies

𝜌0
𝛼0

ą
p1´ 𝜋q

𝜋

C𝛼 ` C𝜌

F` 𝑝𝑞𝜂 ´ C𝜌

(61)

ii. For given 𝜂, the IDS is always valuable, i.e. 𝒱p𝛼0,𝜌0q
𝜂 ą 0 for any 𝜌0{𝛼0 ě 1, if

𝜋 ą
pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` p𝑝𝑞𝜂 ` F´ C𝜌q
(62)

Proof. By substituting 𝑢D from (18) in (59), we obtain (60). Furthermore for 𝜂 ď 𝜂𝐼𝑐

and 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď 𝜋𝑐, we obtain that value of IDS is zero. For 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą 𝜋𝑐 and 𝜌0 ď
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Figure 4.1: Variation of minimum IDS configuration 𝜌0{𝛼0 with (a) Fraction of fraud-
ulent customer 𝜋 (b) Theft level 𝜂

𝜌𝑐, from definition of 𝜋𝑐 (see (12)), we obtain 𝜋𝜅2𝜌0 ą p1 ´ 𝜋q𝜅1𝛼0 if 𝜋 ą 𝜋𝑐 and

consequently the value of IDS is strictly positive. Analogously, for 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą

𝜋𝑐 and 𝜌0 ą 𝜌𝑐, since 𝜋 ą 𝜋𝑐 the value is strictly positive. Hence, 𝒱p𝛼0,𝜌0q
𝜂 is non

negative at equilibrium.

i. From (60), we can observe that, in equilibrium, 𝒱 ą 0 if and only if 𝜋 ą 𝜋𝑐 and

𝜂 ą 𝜂𝐼𝑐 . Hence using 𝜋 ą 𝜋𝑐 from (12), we get (61)

ii. Any valid IDS will have 𝜌0 ě 𝛼0. By substituting the lower bound 1 on 𝜌0{𝛼0

into (61) and rearranging, we obtain the conclusion in (62)

Discussion The above result (part (i)) gives a useful lower bound on the ratio 𝜌0{𝛼0

for the IDS to have non-zero value to the distribution utility. Thus, the ratio 𝜌0{𝛼0

can be viewed as an indicator of "quality" of the IDS. For a given average level of

theft 𝜂, from (61), we obtain that with decreasing 𝜋, the distribution utility needs

a better quality IDS(i.e. higher 𝜌0{𝛼0) to derive a positive value form it. At a first

glance, this result may seem counterintuitive. However, note that as 𝜋 reduces, the

false alarm cost increases and this requires a better IDS. Also, from (61), we obtain

that with increasing theft level 𝜂, the distribution utility can derive a positive value
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Figure 4.2: Value of default IDS 𝒱p𝛼0,𝜌0q
𝜂 with fraction of fraudulent customer 𝜋 for

different (a) Theft level 𝜂 (b) Default IDS configuration p𝛼0, 𝜌0q

with lower 𝜌0{𝛼0. Indeed as 𝜂 increases, the distribution utility’s payoff increased

due to successful investigation. Consequently, a positive expected payoff even from a

smaller 𝜌0. These points are illustrated in Fig 4.1a and 4.1b respectively. For example,

for 𝜋 “ 0.1 in Fig 4.1a, all IDS configurations above the corresponding lower bound

provides a positive value to the distribution utility.

4.1.2 Tunable IDS

Next, the following result characterizes the value of tunable IDS (𝒱ROC
𝜂 ) where the

assumption is that the 𝜂 is known to the distribution utility (i.e. Game 𝒱ROC
𝜂 ).

Proposition 8. For a given ROC curve 𝜌p¨q, the equilibrium value of IDS under

knowledge of 𝜂 is given by,

𝒱ROC
𝜂 “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if 𝜂 ď 𝜂𝐼𝑐

´p1´ 𝜋q𝜅1𝛼
˚ ` 𝜋𝜅2𝜌 p𝛼

˚q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

´p1´ r𝜋𝑐q𝜅1𝛼
𝑐
0 ` r𝜋𝑐𝜅2𝜌𝑐 ` 𝑝𝑞𝜂 p𝜋 ´ r𝜋𝑐q if 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

(63)

where 𝜅1 “ pC𝛼 ` C𝜌q and 𝜅2 “ pF` 𝑝𝑞𝜂 ´ C𝜌q Furthermore, at equilibrium, the value

of IDS is non-negative for all 𝜂, 𝜋, and is strictly positive for 𝜋 P p0, 1s and 𝜂 P p𝜂𝐼𝑐 , 1s
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where 𝜂𝐼𝑐 is given by 11. Lastly, the value of IDS 𝒱 increases with increasing fraction

of fraudulent customers 𝜋 if and only if 𝜂 ą 𝜂𝐼𝑐 .

Proof. By substituting 𝑢D from (40) in (59), we obtain (63). We first show that 𝒱ROC
𝜂

is always non-negative and is strictly positive for 𝜂 ą 𝜂𝐼𝑐 and positive 𝜋

• For 𝜂 ď 𝜂𝐼𝑐 , we obtain the value of IDS as zero.

• For 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐, the value of IDS is greater than zero if ´p1´ 𝜋q𝜅1𝛼
˚ `

𝜋𝜅2𝜌 p𝛼
˚q ą 0, or equivalently,

𝜋 pF` 𝑝𝑞𝜂 ´ C𝜌q 𝜌 p𝛼
˚
q ą p1´ 𝜋q pC𝛼 ` C𝜌q𝛼

˚

𝑜𝑟
𝜌 p𝛼˚q

𝛼˚
ą

pC𝛼 ` C𝜌q

pF` 𝑝𝑞𝜂 ´ C𝜌q

From Proposition 2, the above inequality is equivalent to,

𝜌 p𝛼˚q

𝛼˚
ą
B𝜌

B𝛼
p𝛼˚q

Finally from Lemma 2, 𝜌p𝛼q{𝛼 ą 𝜌1p𝛼q for all 𝛼. This proves that value of IDS

is positive for 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐

• For 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐, 𝒱ROC
𝜂 ą 0 if r𝜋𝑐 pF` 𝑝𝑞𝜂 ´ C𝜌q 𝜌𝑐 ą p1´ r𝜋𝑐q pC𝛼 ` C𝜌q𝛼

𝑐
0.

Recall the definition of r𝜋𝑐 from (22),

r𝜋𝑐 “
pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` 𝜌1p𝛼𝑐
0qp𝑝𝑞𝜂 ` F´ C𝜌q

ą
pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q `
𝜌𝑐
𝛼𝑐
0
p𝑝𝑞𝜂 ` F´ C𝜌q

(64)

where the inequality follows from 𝜌𝑐{𝛼
𝑐
0 ą 𝜌1p𝛼𝑐

0q (using Lemma 2). Simplifying

(64), we obtain r𝜋𝑐 pF` 𝑝𝑞𝜂 ´ C𝜌q 𝜌𝑐 ą p1´ r𝜋𝑐q pC𝛼 ` C𝜌q𝛼
𝑐
0. Hence, 𝒱ROC

𝜂 ą 0

for 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐

Next, we show that 𝒱ROC
𝜂 is increasing in fraction of fraudulent customer 𝜋.

• For 𝜂 ď 𝜂𝐼𝑐 , the value of IDS is zero for all 𝜋
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Figure 4.3: Value of tunable IDS 𝒱ROC
𝜂 with fraction of fraudulent customers 𝜋 for

different levels of theft 𝜂

• For 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐, the value of tunable IDS 𝒱ROC
𝜂 can be rewritten as follows:

𝒱ROC
𝜂 “ 𝜋 pF` 𝑝𝑞𝜂 ´ C𝜌q 𝜌 p𝛼

˚
q

„

1´
p1´ 𝜋q pC𝛼 ` C𝜌q𝛼

˚

𝜋 pF` 𝑝𝑞𝜂 ´ C𝜌q 𝜌 p𝛼˚q



(65)

“ 𝜋 pF` 𝑝𝑞𝜂 ´ C𝜌q r𝜌 p𝛼
˚
q ´ 𝜌1 p𝛼˚q𝛼˚s (66)

From Proposition 2, for 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐, 𝛼˚ increases with 𝜋. Let us define

Γp𝑥q “ 𝜌p𝑥q ´ 𝜌1p𝑥q𝑥. Then, Γ1p𝑥q “ ´𝜌2p𝑥q. Recall that 𝜌p𝛼q is strictly

concave in 𝛼. Hence, Γ1p𝑥q ą 0, or equivalently, Γp𝑥q is increasing in x. To

sum up, we obtain that r𝜌 p𝛼˚q ´ 𝜌1 p𝛼˚q𝛼˚s is increasing in 𝜋. Thus, 𝒱ROC
𝜂 is

increasing in 𝜋 for 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ď r𝜋𝑐.

• For 𝜂 ą 𝜂𝐼𝑐 , 𝜋 ą r𝜋𝑐, the first two terms of 𝒱p𝜂, 𝜋q are independent of 𝜋. Fur-

thermore the third term increases linearly with 𝜋. Hence, 𝒱 increases with

𝜋.

The above proposition can be visualized in Fig. 4.3. It is evident that value of

tunable IDS 𝒱ROC
𝜂 is always positive and increasing in 𝜋 for 𝜂 ą 𝜂𝐼𝑐 . Moreover 𝒱ROC

𝜂

is increasing in theft level 𝜂.
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4.2 Value of Customization

In this section, we briefly define value of customization of the IDS and describe its

relevance for choosing the configuration of the IDS.

Value of customization 𝒱cust
𝜂 : The value of customization is defined as the difference

in distribution utility’s payoff between using the IDS of given configuration p𝛼0, 𝜌0q

(from Proposition 1) and using a tunable IDS with optimal false alarm probability

for a given ROC curve 𝛼˚(from Proposition 2). For a given fraction of fraudulent

customers 𝜋 and level of theft 𝜂,

𝒱cust
𝜂 :“ 𝑢D

p𝛼˚, 𝛾˚q ´ 𝑢D
p𝛽:, 𝛾:q (67)

By definition of 𝛼˚, we obtain 𝒱𝑐𝑢𝑠𝑡 ě 0. Equivalently,

𝒱cust
𝜂 “ 𝒱ROC

𝜂 ´ 𝒱p𝛼0,𝜌0q
𝜂

where 𝒱ROC
𝜂 is given by Proposition 8 and 𝒱p𝛼0,𝜌0q

𝜂 is given by Proposition 7.

4.3 Value of Information

In this section, we discuss the value of information that the distribution utility obtains

from gaining perfect knowledge of theft level committed by the fraudulent customer.

As discussed earlier, the distribution utility in Game p𝒢ROC
𝜂 finds the optimal config-

uration of the IDS, i.e. 𝛼˚0 in Stage 1 for single theft level while in Game 𝒢ROC
Pp𝜂q the

distribution utility finds 𝛼˚0 in Stage 1 with imperfect information of theft level, i.e.

Pp𝜂q. By studying value of information, we aim to compare the payoff obtained by

distribution utility in the two games. In subsequent sections, we first present the

dependance of critical false alarm probability on theft level, then evaluate the value

of information and its dependence on theft level and finally we visualize the obtained

results and discuss their implications.
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4.3.1 Critical False Alarm Probability and Theft Level

In this section, we will analyze the relationship between critical false alarm probability

and level of theft committed by the fraudulent customer. Recall the definition of 𝜌𝑐

from (13), the critical probability of detection that makes the fraudulent customer

indifferent between theft T and no theft NT. Firstly, we argue in the following lemma

the relationship between critical probability of detection 𝜌𝑐 and level of theft 𝜂.

Lemma 6. 𝜌p𝛼𝑐, 𝜂q is strictly increasing in 𝜂

Proof. Following (13), for a given 𝜂,F,C𝜂 we can write 𝜌p𝛼𝑐, 𝜂q

𝜌p𝛼𝑐, 𝜂q “
𝑝𝑞𝜂 ´ C𝜂

𝑝𝑞𝜂 ` F
,

B𝜂𝜌p𝛼𝑐p𝜂q, 𝜂q “
F` C𝜂

p𝑝𝑞𝜂 ` Fq2
ą 0 (68)

Now for two levels of theft 𝜂L ă 𝜂H, using (68) and (13), 𝜌p𝛼0
L, 𝜂Lq ă 𝜌p𝛼0

H, 𝜂Hq,

where 𝛼0
L and 𝛼0

H are obtained by substituting 𝜂L and 𝜂H in (13) for 𝜌𝑐 and,

𝜌p𝛼0
L, 𝜂Lq “

𝑝𝑞𝜂L ´ C𝜂

𝑝𝑞𝜂L ` F
and 𝜌p𝛼0

H, 𝜂Hq “
𝑝𝑞𝜂H ´ C𝜂

𝑝𝑞𝜂H ` F
(69)

Recall that ROC curve for normal distribution as a function of 𝛼 and 𝜂,

𝜌p𝛼, 𝜂q “ 𝜑p𝜑´1p𝛼q `
𝑞𝜂

𝜎
q

where 𝜑 is the CDF function for standard normal.

Let us define

𝜏p𝜂q :“ 𝜑´1p
𝑝𝑞𝜂 ´ C𝜂

𝑝𝑞𝜂 ` F
q ´

𝑞𝜂

𝜎
“ 𝜑´1p𝛼𝑐q (70)

Note that, since 𝜑 is strictly increasing, there is a one-to-one relationship between

critical false alarm probability and 𝜏p𝜂q.

The next lemma focuses on properties of 𝜏p𝜂q.
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Proposition 9. Properties of 𝜏p𝜂q

Under
𝜎

𝑞
ď

pF` 𝑝𝑞q2

?
2𝜋𝑝𝑞pC𝜂 ` Fq exp

ˆ

´

erf-1p´2𝑝𝑞´C𝜂

𝑝𝑞`F
` 1q

¯2
˙ (71)

and

F` 2C𝜂 ą 𝑝𝑞 (72)

i. D a unique 𝜂1 P pC𝜂{𝑝𝑞, 1q such that, 𝜏p𝜂1q “ 𝜑´1p𝑝𝑞´C𝜂

𝑝𝑞`F
q ´

𝑞
𝜎

ii. D a unique 𝜂0 P p𝜂1, 1q, such that, 𝜂0 :“ arg max
𝜂PpC𝜂{𝑝𝑞,1s

𝜏p𝜂q

Proof. We first show that 𝜏p𝜂q is concave given (72). Since 𝜏p𝜂q is a continuous, twice

differentiable 𝒞2 in pC𝜂{𝑝𝑞, 1q,

B2𝜏

B2𝜂
“ ´2

?
2𝜋p𝑝𝑞q2 exp p𝜁2q

F` C𝜂

pF` 𝑝𝑞𝜂q3
´
?

2𝜋𝑝𝑞 exp p2𝜁2q𝜁
F` C𝜂

pF` 𝑝𝑞𝜂q2

where

𝜁 “ erf-1
ˆ

p2C𝜂 ` F´ 𝑝𝑞𝜂q

F` 𝑝𝑞𝜂

˙

Note that if 𝜁 ą 0 then B2𝜏
B2𝜂
ă 0. Lastly, 𝜁 ą 0 follows from (72).

Next, we show that 𝜏 1p1q ă 0. Note that,

𝜏 1p𝜂q “
?

2𝜋𝑝𝑞
C𝜂 ` F

pF` 𝑝𝑞𝜂q2
exp

˜

ˆ

erf-1p´2
𝑝𝑞𝜂 ´ C𝜂

𝑝𝑞𝜂 ` F
` 1q

˙2
¸

´
𝑞

𝜎
(73)

From (73) and (71), 𝜏 1p𝜂q|𝜂“1 ă 0.

i. Note that lim𝜂ÑC𝜂{𝑝𝑞 𝜏p𝜂q Ñ ´8 which is strictly less than finite 𝜏p1q. Since

𝜏p𝜂q is a continuous concave function with 𝜏 1p𝜂q|𝜂“1 ă 0, D𝜂 such that 𝜏p𝜂q ą

𝜏p1q. Hence, using Intermediate Value Theorem(IVT), there exists a 𝜂1 ‰ 1

such that 𝜏p𝜂1q “ 𝜏p1q. Lastly, the uniqueness follows from the concavity of

𝜏p𝜂q.
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ii. From 73, lim𝜂ÑC𝜂{𝑝𝑞 𝜏
1p𝜂q “ 8 and 𝜏 1p𝜂q|𝜂“1 ă 0 as shown earlier. As a result,

by IVT, there exists 𝜂 such that 𝜏 1p𝜂q “ 0 proving the existence of 𝜂0. Lastly,

the uniqueness of 𝜂0 follows from concavity of 𝜏p𝜂q.

Discussion

The above proposition for existence and uniqueness of 𝜂0, 𝜂1 hold for "sufficiently"

high fine and "sufficiently" small standard deviation of electricity consumption. Note

that the conditions on fine and standard deviation are sufficient but not necessary,

i.e. we can have unique 𝜂0, 𝜂1 for "small" fine and "large" variance. Furthermore

the above conditions are technical (but realistic assumptions). For example, the

distribution utility does impose stricter laws (or "large" fine) against electricity theft

and electricity customers, after accounting for external factors, do not exhibit large

variance in consumption.

Proposition 10. For given 𝜂L ă 𝜂H, with 𝜏p𝜂q satisfying conditions (72),(71) and

𝛼0
L, 𝛼0

H given by (69), Then,

i. In the regime 𝜂L P pC𝜂{𝑝𝑞, 𝜂1q, 𝛼0
L ă 𝛼0

H.

ii. In the regime 𝜂L P r𝜂0, 1q, 𝛼0
L ą 𝛼0

H.

iii. In the regime 𝜂L P r𝜂1, 𝜂0q, we define 𝜂𝑐 ą 𝜂L as,

𝜑´1p
𝑝𝑞𝜂𝑐 ´ C𝜂

𝑝𝑞𝜂𝑐 ` F
q ´

𝑞𝜂𝑐
𝜎
“ 𝜑´1p

𝑝𝑞𝜂L ´ C𝜂

𝑝𝑞𝜂L ` F
q ´

𝑞𝜂L

𝜎

Then, 𝜂𝑐 ą 𝜂L. Furthermore,

(a) if 𝜂H P p𝜂L, 𝜂𝑐q, 𝛼0
L ă 𝛼0

H.

(b) if 𝜂H P r𝜂𝑐, 1q, 𝛼0
L ě 𝛼0

H.

where 𝜂0, 𝜂1 as defined in Proposition 9.

Proof. We know from (72),(71) in Proposition 10, 𝜏p𝜂q is concave and reaches maxi-

mum at 𝜂0 such that 𝜏p𝜂0q ě 𝜏p𝜂1q “ 𝜏p1q
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i. In the regime 𝜂L P pC𝜂{𝑝𝑞, 𝜂1s, either 𝜂H ď 𝜂1 or 𝜂H ą 𝜂1. From the concavity

of 𝜏p𝜂q, definition of 𝜂0 ie 𝜏p𝜂0q ą 𝜏p𝜂1q “ 𝜏p1q and lim𝜂ÑC𝜂{𝑝𝑞 𝜏p𝜂q “ ´8, we

know that 𝜏p𝜂q is increasing in 𝜂 ă 𝜂1 and equivalently, 𝛼0
L ă 𝛼0

H. Furthermore

for 𝜂 ą 𝜂1 since 𝜏p𝜂q is concave, E 𝜂 P p𝜂1, 1q such that 𝜏p𝜂q ă 𝜏p𝜂1q. Finally,

since 𝜏p𝜂Hq ą 𝜏p𝜂1q ą 𝜏p𝜂Lq, 𝛼0
L ă 𝛼0

H.

ii. In the regime 𝜂L P r𝜂0, 1q. Following from concavity of 𝜏p𝜂q, it is decreasing in

𝜂 for 𝜂 P r𝜂0, 1q. Hence, 𝛼0
L ą 𝛼0

H.

iii. In the regime 𝜂L P r𝜂1, 𝜂0q, there exists a unique 𝜂𝑐 such that 𝜏p𝜂𝑐q “ 𝜏p𝜂Lq.

This follows from concavity of 𝜏p𝜂q and that 𝜏p1q ă 𝜏p𝜂Lq. Furthermore, from

definition of 𝜂0, we know 𝜏p𝜂𝑐q ă 𝜏p𝜂0q. Hence, 𝜂𝑐 ą 𝜂0.

(a) 𝜂H P p𝜂L, 𝜂𝑐q: From our argument in (i), since 𝜏p𝜂q is concave, E 𝜂 P p𝜂L, 𝜂𝑐q

such that 𝜏p𝜂q ă 𝜏p𝜂Lq. Hence, 𝛼0
L ă 𝛼0

H

(b) 𝜂H P r𝜂𝑐, 1q: We know that 𝜏p1q “ 𝜏p𝜂1q ă 𝜏p𝜂Lq “ 𝜏p𝜂𝑐q as 𝜂1 ă 𝜂L.

Furthermore since 𝜂0 ă 𝜂𝑐 and by concavity of 𝜏p𝜂q, we know that 𝜏p𝜂q is

decreasing in 𝜂 or equivalently, 𝜏p𝜂Hq ă 𝜏p𝜂Lq and 𝛼0
L ą 𝛼0

H.

Discussion

We can visualize the proposition in the following example:
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Figure 4.4: Variation of 𝜏p𝜂qwith 𝜂
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The variation of critical false alarm probability 𝛼𝑐
0, or equivalently 𝜏p𝜂q with 𝜂 is

crucial to understand the properties of the IDS and ultimately argue for optimal

configuration of the default IDS for heterogeneous fraudulent customers. As we have

seen in Lemma 6, the critical probability of detection increases with increase in theft

level 𝜂. Equivalently, it means that the distribution utility increases the probability

of detection of the IDS as the fraudulent customer commits more theft 𝜂. This is

intuitive because the critical probability of detection is the probability that makes

the fraudulent customer indifferent between theft T and no theft NT. Furthermore,

we know from the definition of ROC curve (more specifically for normal distribution)

that, for a given level of false alarm probability, the probability of detection increases

with increase in theft level 𝜂. We also know that the probability of detection increases

with increase in false alarm probability. Consider two levels of theft 𝜂L and 𝜂H such

that 𝜂L ă 𝜂H. Also let 𝛼0
L, 𝛼0

H be the critical false alarm probability for low level

theft 𝜂L, high level theft 𝜂H respectively. Two cases can arise, as shown in Figure 4.5.

• As theft level increases from 𝜂L to 𝜂H, the probability of detection for 𝛼0
L in-

creases from 𝜌p𝛼0
L, 𝜂Lq to 𝜌p𝛼0

L, 𝜂Hq. However the distribution utility needs

an even higher detection probability to make the fraudulent customer indiffer-

ent between theft and no theft actions. Consequently, the distribution utility

chooses a higher false alarm probability, i.e., 𝛼0
L ă 𝛼0

H. This corresponds to

case (i), case(ii)(a) in Proposition 10.

• As theft level increases from 𝜂L to 𝜂H, the probability of detection for 𝛼0
L

increases from 𝜌p𝛼0
L, 𝜂Lq to 𝜌p𝛼0

L, 𝜂Hq. However the distribution utility needs a

lower detection probability to make the fraudulent customer indifferent between

theft and no theft actions. Consequently, the distribution utility chooses a lower

false alarm probability, i.e., 𝛼0
L ą 𝛼0

H. This corresponds to case(ii)(b), case(iii)

in Proposition 10.
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Figure 4.5: ROC and False Alarm Probability with theft level 𝜂

Finally, we justify studying the behavior of critical false alarm probability as the

distribution utility chooses it as the equilibrium false alarm probability (from Theorem

2) for fraction of fraudulent customers 𝜋 beyond r𝜋𝑐(22).Consequently, it helps us argue

for actions of the distribution utility independent of 𝜋.

4.3.2 Definition and Discussion

Intuitively, value of information is the amount a decision maker would be willing

to pay for information prior to making a decision. Before we define the value of

information, recall the definition of two games p𝒢ROC
𝜂 , 𝒢ROC

Pp𝜂q

i. Perfect Information p𝒢ROC
𝜂 : In Stage 1, the distribution utility sets a fixed

configuration of the IDS 𝛼˚0 with their respective ROC curves 𝜌p𝛼, 𝜂Lq and

𝜌p𝛼, 𝜂Hq. In Stage2, the distribution utility and fraudulent customer play a

simultaneous game p𝛽:, 𝛾:q with complete knowledge of theft level 𝜂 and prior

𝜋 (Theorem 2).

ii. Imperfect Information 𝒢ROC
Pp𝜂q : In Stage 1, the distribution utility sets a fixed

configuration of the IDS 𝛼˚0 using probability distribution P over theft level.

In Stage2, the distribution utility and fraudulent customer play a simultaneous

game p𝛽:, 𝛾:q with complete knowledge of theft level 𝜂 and prior 𝜋 (Theorem

3).
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Like before, consider two theft levels 𝜂L ă 𝜂H with mixing probability 𝜆L, 𝜆Hp“ 1´𝜆L

respectively. Furthermore, recall from (58), the definition of 𝛼0
L and 𝛼0

H such that

𝛼0
L is the optimal false alarm probability (Game p𝒢ROC

𝜂 ) for low theft level 𝜂L and 𝛼0
H

is the optimal false alarm probability (Game p𝒢ROC
𝜂 ) for high theft level. Furthermore,

similar to Theorem 3, 𝑢D
L and 𝑢D

H is the distribution utility’s payoff for low theft level

and high theft level respectively.

Definition 1. Value of Information 𝒱ROC
info :

The value of information is defined as the difference in distribution utility’s payoff

between using an optimally configured IDS under imperfect information 𝒢ROC
Pp𝜂q and

an optimally configured IDS under perfect information p𝒢ROC
𝜂 .

𝒱𝑖𝑛𝑓𝑜p𝜋,Pq :“𝜆H
`

𝑢D
Hpp𝛼0

H, 𝛽H
q, 𝛾H

q ´ 𝑢D
Hpp𝛼

˚
0 , 𝛽

H
q, 𝛾H

q
˘

`𝜆L
`

𝑢D
L pp𝛼0

L, 𝛽L
q, 𝛾L

q ´ 𝑢D
L pp𝛼

˚
0 , 𝛽

L
q, 𝛾L

q
˘

(74)

where P is the bernoulli probability distribution over 𝜂 (
 

𝜂L, 𝜂Hu with
 

𝜆L, 𝜆Hu prob-

ability), p𝛽H, 𝛾Hq and p𝛽L, 𝛾Lq is the subgame equilibrium given 𝛼0 chosen in stage 1

for high theft level and low theft level respectively.(Refer Theorem 3)

Remark 8. The value of information is always non-negative, 𝒱𝑖𝑛𝑓𝑜 ě 0. Equivalently,

the distribution utility obtains a higher payoff from Game 3a p𝒢ROC
𝜂 as compared to

Game 3b 𝒢ROC
Pp𝜂q for all 𝜋.

Proof. Assume the contrary, i.e. there exists 𝛼0
L, 𝛼0

H, 𝛼˚0 such that 𝒱𝑖𝑛𝑓𝑜 ă 0. Then

we necessarily need, from (74), either 𝑢D
Hp𝛼0

H, 𝜋, 𝜂Hq ă 𝑢D
Hp𝛼

˚
0 , 𝜋, 𝜂

Hq or 𝑢D
L p𝛼0

L, 𝜋, 𝜂Lq ă

𝑢D
L p𝛼

˚
0 , 𝜋, 𝜂

Lq. But from (58), we know that 𝑢D
L p𝛼0

L, 𝜋, 𝜂Lq ě 𝑢D
L p𝛼0, 𝜋, 𝜂

Lq and

𝑢D
Hp𝛼0

H, 𝜋, 𝜂Lq ě 𝑢D
Hp𝛼0, 𝜋, 𝜂

Lq for any 𝛼0. A contradiction.

Proposition 11. Value of Information

Given two levels of theft 𝜂H ą 𝜂L with probability 𝜆H, 𝜆Lp“ 1 ´ 𝜆Hq respectively and

(72), (71) hold, then for 𝜂L ą 𝜂1, there exists 𝜂H such that value of customization
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𝒱𝑖𝑛𝑓𝑜 “ 0 for 𝜋 ą r𝜋Γ where

r𝜋Γ “ max
𝜂Pt𝜂L,𝜂Hu

pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` 𝜌1p𝛼𝑐
0p𝜂q, 𝜂qp𝑝𝑞𝜂 ` F´ C𝜌q

where 𝜂1 ‰ 1 is, from Proposition 10,

𝜑´1p
𝑝𝑞𝜂1 ´ C𝜂

𝑝𝑞𝜂1 ` F
q ´

𝑞𝜂1
𝜎
“ 𝜑´1p

𝑝𝑞 ´ C𝜂

𝑝𝑞 ` F
q ´

𝑞

𝜎

Proof. Recall from Proposition 10, that 𝜏p𝜂q is non-monotonic and concave for 𝜂 P

r𝜂1, 1s with 𝜏p𝜂1q “ 𝜏p1q. Hence, there exists 𝜂L, 𝜂H P p𝜂1, 1q
2 such that 𝜏p𝜂Lq “

𝜏p𝜂Hq. Furthermore since, 𝛼𝑐
0 “ 𝜑p𝜏p𝜂qq, both 𝜂L and 𝜂H theft level will have same

critical false alarm probability 𝛼𝑐
0. From Theorem 2, the equilibrium response of

the distribution utility for 𝜋 ą r𝜋𝑐 in both low level theft 𝜂L case and high level

theft 𝜂H case is 𝛼𝑐
0, i.e. 𝛼0

L “ 𝛼𝑐
0 and 𝛼0

H “ 𝛼𝑐
0. From proof of part(i), we know

that 𝛼˚0 P r𝛼0
L, 𝛼0

Hs or 𝛼˚0 “ 𝛼𝑐
0. Equivalently, 𝑢D

L p𝛼
˚
0 , 𝜋, 𝜂

Lq “ 𝑢D
L p𝛼0

L, 𝜋, 𝜂Lq and

𝑢D
Hp𝛼0

H, 𝜋, 𝜂Hq “ 𝑢D
Hp𝛼

˚
0 , 𝜋, 𝜂

Hq. Hence, 𝒱𝑖𝑛𝑓𝑜 “ 0. Finally the fraction of fraudulent

customers 𝜋 should be greater than, from (22),

r𝜋Γ “ maxt
pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` 𝜌1p𝛼𝑐
0, 𝜂

Lqp𝑝𝑞𝜂L ` F´ C𝜌q
,

pC𝛼 ` C𝜌q

pC𝛼 ` C𝜌q ` 𝜌1p𝛼𝑐
0, 𝜂

Hqp𝑝𝑞𝜂H ` F´ C𝜌q
u

Simulations

In the plots below, we show the % value of information and payoff of the distribution

utility for both complete and incomplete information scenarios in part(a) and part(b)

respectively.

i. When critical false alarm probability is same for both level of thefts i.e. 𝜂L “

0.15, 𝜂H “ 0.724: We can visualize Proposition 11 for the above theft levels. Like

we discussed, we observe that the value of customization is zero after a critical

fraction of fraudulent customers, Figure 4.6b, 4.6a. This case emphasizes the
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Figure 4.6: Value of Information for 𝜂L “ 0.15, 𝜂H “ 0.724
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Figure 4.7: Value of Information for 𝜂L “ 0.5, 𝜂H “ 0.9

idea of optimally using the IDS with default configuration for distinct theft

levels.

ii. When critical false alarm probability for low theft is more than critical false

alarm probability for hight theft i.e. 𝜂L “ 0.5, 𝜂H “ 0.9: This case emphasizes

the non-monotonic behavior of 𝛼𝑐
0 with level of theft 𝜂. From Figure 4.7a, it

is evident that the distribution utility obtains a greater payoff from the perfect

information case and the incremental payoff(„2%) is constant for fraction of

fraudulent customers greater than a critical fraction. Furthermore, the incre-

mental payoff is negligible for small fractions of fraudulent customers. This is
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intuitive as the distribution utility is hesitant to use the IDS (equivalently small

false alarm probability) for small fractions and hence, the optimal tuning does

not create a substantial benefit. However we observe that as the fraction of

fraudulent activity increases, the distribution utility is penalized more heavily

for installing the non-optimal IDS configuration.
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Chapter 5

Manager Implications, Discussions

and Extensions

Big data revolution is already making a significant impact in the electric power in-

dustry, and is expected to enable fully cyber-enabled operations in many traditional

distribution utilities. On one hand routine data collection about customer’s consump-

tion patterns and health of grid infrastructure is creating valuable opportunities in

the form of demand response programs, outage management and grid management.

On the other hand, the emerging cyber-physical security threats can potentially com-

promise safety critical elements of the grid and/or cause economic losses, e.g. energy

diversion, fraud in demand response, and distribution energy generation etc. In this

work, we study the economic implications of attacks to vulnerable devices located in

customer premises (e.g. AMIs, feeder connecting devices), and specifically focused

on distribution utility’s incentives to impact fraudulent customers who strategically

manipulate their meter readings.

So far data analytics in energy sector is in relative infancy. The distribution

utilities in the UD and Europe are primarily focused on using fine-grained data to

ensure reliable supply of electricity and execute demand response programs that are

tailored to preferences of different customer classes. For example, several data an-

alytics companies such as EnerNOC, Opower, and Bidgely have found business in

providing energy management solutions to distribution utilities. Few large utilities,
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for example PG&E have developed “in-house” analytics teams comprising of expe-

rienced data scientists to enhance their business and engineering operations using

insights from data. Unfortunately, many distribution utilities are still hesitant to act

on the insights/alerts generated by analytics solutions because of insufficient economic

incentives or lack of understanding of how valuable these solutions are.

Indeed, there has been some recent research on the profitability and implementa-

tion aspects of analytics solutions for the distribution utilities. However, limited work

has addressed the question of value of these solutions in strategic environments. In

this work, we consider a specific example of energy diversion attacks, that contribute

to non-technical losses for distribution utilities. We expect that due to the combined

deployment of off-the-shelf IT devices in customer premises and inadequate security

levels of these devices, the threats of energy diversion attacks (and similar attacks

such as fraud in DR programs) is expected to increase, especially when energy prices

are high. Our modeling approach is motivated by these threats, and incorporates the

effect of strategic interactions between the distribution utility and customers in the

value assessment of IDS/ fraud detection systems.

In this work, we take a game-theoretic approach to assess value of IDS/fraud de-

tection systems by modeling the interactions between a distribution utility and cus-

tomers. Standard economic principles dictate that without an accurate assessment

of value proposition in adoption of new technological solutions, traditional businesses

are likely to delay the transition to these technologies. The value of technological

solutions such as intrusion/fraud detection technologies is especially difficult due to

following reasons: (a) their tuning require accurate understanding of customer be-

havior (b) they should give reasonable detection accuracy even when the data is noisy

and/or manipulated by strategic customers.

Below we provide three main recommendations from our study for inspection of

energy diversion attacks and value assessment of IDS.

i. Is NTL significant for investment in IDS?

The distribution utility must first evaluate whether it faces significant non-

technical losses. For example, if the average theft level committed by the fraud-
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ulent customer is insignificant, or the fraction of fraudulent customers is small,

the distribution utility is better off by not investing in costly fraud detection

systems but relying on traditional methods of inspection. This is supported

by our finding that the losses from more intense inspection may not offset the

cost of investigation and the cost of false alarm, even though the cost of IDS is

relatively modest.

ii. Incentives to reduce NTL

We find that in a range of situations, the distribution utility may not have incen-

tives to investigate fraud, and more broadly, limit non-technical losses. Despite

the fact that electricity distribution is a regulated industry, distribution utilities

tend to recover NTL’s by requesting tariff revisions, which inherently forces the

genuine customers to cross-subsidize the fraudulent ones. One of the primary

reasons of this problem is that a significant portion of demand is inelastic, and

consequently customers do not change their consumption substantially to an

increased tariff. Our work provides one way to evaluate the “value of IDS” and

“value of information” about theft levels. We believe that these valuations can

help in more informed regulatory impositions regarding investment in IDS/fraud

detection technologies. In Proposition 7, we show that an IDS of a fixed default

configuration , is valuable only if it can guarantee a minimum “quality” thresh-

old, where we define quality of an IDS as the ratio of detection probability and

false alarm probability. The threshold accounts for the tradeoff between gain

from fraud deterrence and cost of investigation and false alarms. In contrast,

Proposition 8 provides that the distribution utility obtains reduced value of in-

formation for certain conditions on heterogeneity of theft levels committed by

the fraudulent customer.

iii. Outsourcing vs Insourcing

As mentioned earlier, the distribution utility can leverage consumption data

to address non-payment and energy theft by either outsourcing or insourcing

the required data analytics capabilities. By outsourcing, the distribution utility
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can benefit from the capabilities of analytics service providers and can efficiently

address generic energy diversion problems. The outsourcing may be especially

beneficial to traditional utilities that may not have the capabilities or lack the

requisite expertise to handle large amounts of data. On the contrary, the dis-

tribution utility should insource data analytics capabilities if sharing data with

third party analytics providers raises data privacy and security issues. The dis-

tribution utility should prefer insourcing if it posses the knowledge of specific

types of fraud/theft that are typical in distribution networks/feeders that are

managed by it. In our framework, IDS with default configuration represents

outsourcing by distribution utility who does not possess the means to configure

or tune the configuration offered by the analytics services provider. In con-

trast, IDS of tunable configuration represents another scenario in which the

distribution utility chooses an detection probability and false alarm probability

combination after accounting for the tradeoff between gain from fraud deter-

rence and investigation costs, and even the knowledge of average theft level that

it faces.
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Appendix A

Background Concepts

A.1 Decision Theory

The distribution utility has to decide the underlying distribution (ℋ0 and ℋ1) of the

customer by observation of the random variable representing electricity consumption.

In this section we introduce the two decision making framework in statistics - bayesian

and frequentist.

A.1.1 Non-Bayesian Hypothesis Testing

Null Hypothesis Significance Testing

We can run a null hypothesis significance test through the following steps:

• Design an experiment to collect data and choose a test statistic Y to be com-

puted from the data. The key requirement here is to know the null distribution

𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ0q To compute power, one must also know the alternative

distribution 𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ1q.

• Decide if the test is one or two-sided based on ℋ1 and the form of the null

distribution.

• Choose a significance level 𝛼 for rejecting the null hypothesis

• Run the experiment to collect data 𝑦1, 𝑦2, ..., 𝑦𝑛.
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• Compute the test statistic Y.

• Compute the p value corresponding to Y using the null distribution.

• If 𝑝 ă 𝛼, reject the null hypothesis in favor of the alternative hypothesis.

Neyman Pearson Decision Theory

Let us define our two hypothesis ℋ0 and ℋ1 and associated PDFs as 𝑝𝑦|ℋ0p𝑦|ℋ0q and

𝑝𝑦|ℋ1p𝑦|ℋ1q respectively. We define likelihood ratio ℒp𝑦q and the Likelihood Ratio

Test(LRT) as,

ℒp𝑦q fi
𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ1q

𝑝𝑦|ℋpY “ 𝑦|ℋ “ ℋ0q

p𝐻p𝑦q“ℋ1

¡
p𝐻p𝑦q“ℋ0

𝜂

We will choose a decision rule p𝐻 such that,

max 𝜌 subject to 𝛼 ď 𝛼0

where 𝜌 is the probability of detection and 𝛼 is the probability of false alarm defined

as (in continuous case),

𝜌 :“ Pp p𝐻p𝑦q “ ℋ1|ℋ “ ℋ1q “

ż

𝑦1

𝑝𝑦|ℋp𝑦|ℋ1q𝑑𝑦

𝛼 :“ Pp p𝐻p𝑦q “ ℋ1|ℋ “ ℋ0q “

ż

𝑦1

𝑝𝑦|ℋp𝑦|ℋ0q𝑑𝑦

where 𝑦1 represents the region that corresponds p𝐻p𝑦q “ ℋ1. We state here without

proof that the Neyman-Pearson Lemma states that to maximize 𝜌 subject to the con-

straint corresponds to using decision rule with Likelihood Ratio above the threshold

𝜂, such that,

𝛼 “ Pp𝐿p𝑦q ě 𝜂|ℋ “ ℋ0q “ 𝛼0

Although we have presented for the continuous case, the same analysis is extensible

to discrete distributions.
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A.1.2 Bayesian Hypothesis Testing

Let us define our two hypothesis ℋ0 and ℋ1 and associated PDFs as 𝑝𝑦|ℋ0p𝑦|ℋ0q and

𝑝𝑦|ℋ1p𝑦|ℋ1q and priors 𝑃0 and 𝑃1 respectively. Define r𝑃 pℋ𝑖,ℋ𝑗q fi r𝑃𝑖𝑗 = "profit" of
p𝐻 “ ℋ𝑖 when the correct hypothesis is H “ ℋ𝑗. 6 find the function p𝐻pYq

p𝐻pYq “ arg max
𝑓pq

𝜙p𝑓q , 𝜙p𝑓q fi Er r𝑃 pH, 𝑓pYqqs

By law of iterated expectation, we have,

𝜙p𝑓q “
ÿ

𝐸r r𝑃 pℋ, 𝑓pYqq|Y “ 𝑦s 𝑃Yp𝑦q, r𝜙p𝑓, 𝑦q “ 𝐸r r𝑃 pℋ, 𝑓pYqq|Y “ 𝑦s

Furthermore since we know that 𝑃Yp𝑦q ě 0, maximizing 𝜙p𝑓q to find p𝐻p𝑦q is equiv-

alent to maximizing r𝜙p𝑓, 𝑦q to find the optimal p𝐻 at all 𝑦.

p𝐻p𝑦q “ ℋ0, r𝜙p𝐻0, 𝑦q “ r𝑃01 𝑝𝐻|𝑌 p𝐻1|𝑦q ` r𝑃00 𝑝𝐻|𝑌 p𝐻0|𝑦q

p𝐻p𝑦q “ ℋ1, r𝜙p𝐻1, 𝑦q “ r𝑃11 𝑝𝐻|𝑌 p𝐻1|𝑦q ` r𝑃10 𝑝𝐻|𝑌 p𝐻0|𝑦q

The defender will maximize the expected profit for every value of 𝑦 by choosing

maxtr𝜙p𝐻0, 𝑦q, r𝜙p𝐻1, 𝑦qu

A.2 Game Theory

A.2.1 Strategic Form Game

Definition 1.(Strategic Form Game) A strategic form game is a tripletă ℐ, p𝑆𝑖q, p𝑢𝑖q𝑖Pℐ ą

where

• ℐ is a finite set of players, ℐ “ 1, ..., 𝐼.

• 𝑆𝑖 is a non-empty set of available actions for player i.

• 𝑢𝑖 : 𝑆 Ñ R is the utility (payoff) function of player i where 𝑆 “
ś

𝑖Pℐ 𝑆𝑖.
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A.2.2 Nash Equilibrium / Mixed Strategy Nash Equilibrium

Definition 2. (Nash Equilibrium). A (pure strategy) Nash equilibrium of a strategic

form game ă ℐ, p𝑆𝑖q, p𝑢𝑖q𝑖Pℐ ą is a strategy profile 𝑠˚ P 𝑆 such that for all 𝑖 P ℐ, we

have

𝑢𝑖p𝑠
˚
𝑖 , 𝑠

˚
´𝑖q ě 𝑢𝑖p𝑠𝑖, 𝑠

˚
´𝑖q 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑖 P 𝑆𝑖

Definition 3. (Mixed Strategy Nash Equilibrium). A mixed strategy profile 𝜎˚ is a

mixed strategy Nash equilibrium if for each player i,

𝑢𝑖p𝜎
˚
𝑖 , 𝜎

˚
´𝑖q ě 𝑢𝑖p𝜎𝑖, 𝜎

˚
´𝑖q 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎𝑖 P Σ𝑖

where Σ𝑖 is the set of probability measures over the pure strategy (action) set 𝑆𝑖.

A.2.3 Bayesian Game

Definition 4. (Bayesian Games). A Bayesian game consists of

• ℐ is a finite set of players, ℐ “ 1, ..., 𝐼.

• 𝑆𝑖 is a non-empty set of available actions for player i.

• A set of types for each player 𝑖 : 𝜃𝑖 P Θ𝑖

• A payoff function for each player 𝑖 : 𝑢𝑖p𝑠1, ..𝑠𝐼 , 𝜃1, ..𝜃𝐼q

• A (joint) probability distribution 𝑝p𝜃1, 𝜃2, ..., 𝜃𝐼q

Importantly, throughout in Bayesian games, the strategy spaces, the payoff functions,

possible types, and the prior probability distribution are assumed to be common

knowledge.

Definition 5. (Bayesian Nash Equilibrium): The strategy profile 𝑠pq is a (pure

strategy) Bayesian Nash equilibrium if for all 𝑖 P ℐ and for all 𝜃𝑖 P Θ𝑖, we have that

𝑠𝑖p𝜃𝑖q P arg max
𝑠𝑖1P𝑆𝑖

ÿ

𝜃´𝑖

𝑝p𝜃´𝑖|𝜃𝑖q𝑢𝑖p𝑠𝑖
1, 𝑠´𝑖p𝜃´𝑖q, 𝜃𝑖, 𝜃´𝑖q (75)
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or in non-finite case, we have,

𝑠𝑖p𝜃𝑖q P arg max
𝑠𝑖1P𝑆𝑖

ż

𝑢𝑖p𝑠𝑖
1, 𝑠´𝑖p𝜃´𝑖q, 𝜃𝑖, 𝜃´𝑖q𝑃 p𝑑𝜃´𝑖|𝜃𝑖q (76)

Theorem 4. : Consider a finite incomplete information (Bayesian) game. Then a

mixed strategy Bayesian Nash equilibrium exists.
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