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Abstract

This thesis develops three data-driven models of a commercially operating gas turbine,
and applies inference techniques for reliability prognostics. The models focus on

capturing feature signals (continuous state) and operating modes (discrete state) that

are representative of the remaining useful life of the solid welded rotor. The first

model derives its structure from a non-Bayesian parametric hidden Markov model.

The second and third models are based on Bayesian nonparametric methods, namely

the hierarchical Dirchlet process, and can be viewed as extensions of the first model.

For all three approaches, the model structure is first prescribed, parameter estimation

procedures are then discussed, and lastly validation and prediction results are pre-

sented, using proposed degradation metrics. All three models are trained using five

years of data, and prediction algorithms are tested on a sixth year of data. Results

indicate that model 3 is superior, since it is able to detect new operating modes, which

the other models fail to do.

The turbine is based on a sequential combustion design and operates in the 50Hz

wholesale electricity market. The rotor is the most critical asset of the machine and

is subject to nonlinear loadings induced from three sources: i) day-to-day variations

in total power generated by the turbine; ii) machine trips in high and low loading

conditions; iii) downtimes due to scheduled maintenance and inspection events. These

sources naturally lead to dynamics, where random (resp. forced) transitions occur

due to switching in the operating mode (resp. trip and/or maintenance events). The

degradation of the rotor is modeled by measuring the abnormality witnessed by the

cooling air temperature within different modes. Generation companies can utilize

these indicators for making strategic decisions such as maintenance scheduling and

generation planning.

Thesis Supervisor: Saurabh Amin
Title: Assistant Professor, Civil & Environmental Engineering
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Chapter 1

Introduction

In this thesis, three probabilistic reliability modeling approaches are presented. The

structures of all three models are discussed and their practical applications are an-

alyzed using data from gas turbine (GT) assets. Although the focus in this thesis

is GT-centric, the models are general enough to be applicable to other dynamical

systems. The first model is non-Bayesian parametric (NBP) and the remaining two are

Bayesian nonparametric (HDP). Results from the three approaches will be discussed

and compared.

The models are developed for a real-world GT operating according to the Brayton

thermodynamic cycle. The GT forms the part of a commercially operating Combined

Cycle Gas Turbine (CCGT) plant, where the hot exhaust from the GT is used to

power a steam power plant (operating according to the Rankine cycle). The CCGT

operates in the 50 Hz wholesale electricity market, and is a part of the generation

fleet of a large electricity producer in Europe. The electricity producer (i.e., the

GenCo) continuously collects data from sensors and controllers that are embedded

in the GT for the purpose of performance monitoring, maintenance scheduling, and

generation planning. In particular, the data provided is a continuous stream of data

from 153 sensor-control signals at 5 min intervals for a period of six years (2009-2014).

The objective is to model both intra-day and day-to-day dynamics of the feature signals
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that are indicative of the condition of GT's rotor, which is the most critical fixed asset

of the machine. The day-to-day dynamics are modeled as random switches between

a fixed number of operating modes (OMs), and are assumed to be generated from

a discrete-time stochastic process. The intra-day dynamics of the asset's condition

is assumed to evolve according to a linear regression model, dependent on the day's

OM for NBP-HMM (model 1) and HDP-HSMM (model 2). In contrast, for the

HDP-SLDS-HMM (model 3), the emission structure imbeds the regression model

directly. Thus, the system can be viewed as a hierarchy, with each level observing

dynamics with a different structure.

1.1 Gas Turbine Overview

Gas turbines are internal combustion engines that are heavily relied upon to generate

mechanical energy with chemical energy inputs. A typical gas turbine has five stan-

dard components: inlet, compressor, diffuser, combustor, and turbine (with exhaust).

Figure 1-1 presents a schematic of the GT used in this study. Gas turbines produce

two streams of energy. The first energy stream is used to power an output shaft, while

the second stream is used by the gas turbine, itself, to power the compressor. Gas

turbines can be viewed as partially self-sustaining in that part of the energy produced

is recycled to power internal components.

The process by which gas turbines generate energy can be viewed as a cycle which

converts gaseous energy into mechanical energy. Large amounts of clean, unimpeded

airflow is provided to the gas turbine by the air inlet. This air, which initially has

atmospheric pressure is then converted into high-pressure air. With multiple stages

of rotor blades and stator vanes, the compressor incrementally increases the impact

pressure (velocity) of the supplied air. The diffuser, through its divergent duct design

converts most of the impact pressure of the air output from the compressor into static

pressure air. This low velocity, high static pressure air enters the combustor which

burns the fuel-air mixture, while the cooling system and liners keep parts safe from the

10



Figure 1-1: Gas turbine components

high flame temperatures produced from the combustion. The gaseous mixture is then

run through a convergent duct which accelerates the gas, reducing the static pressure,

as well as decreasing the temperature to feed into the turbine. The turbine has the

"reverse" deign of the compressor, in that it extracts mechanical energy from the

gaseous energy to drive the output shaft, and feeds power back into the compressor.

After the gas has passed through the turbine, it exits through the exhaust [1].

The Brayton cycle summarizes the main thermodynamic processes that take place

in a gas turbine. It begins with adiabatic compression in the inlet and compressor,

followed by constant pressure fuel combustion. This is followed by adiabatic expansion

in the turbine, with which some force is taken out of the air to drive the compressor,

after which the remaining force is used to accelerate the output shaft. Finally, the

cooling of the air at constant pressure returns the cycle to its initial condition [2].

1.1.1 Developing a GT Model

We would like to construct a model for the evolution of the degradation proxy signals

by defining the dependency on observed feature signals and mode transitions. Because

there are no maintenance activities that target the rotor directly, we cannot directly
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observe how long the rotor stays "healthy" before it drops below a certain degradation

threshold. Instead we must infer, from the features (i.e. observable signals) that are

correlated with the degradation of the rotor, how the dynamics of degradation of the

rotor are changing. The data is obtained from sensors placed in various locations

inside and in the ambient areas outside of the turbine. The sensors capture four

types of readings: pressure, power, vibration, and temperature. The data can be

organized in three buckets: process, refrigeration, and vibration. Process data refers

to data collected by sensors on parts of components which are critical to maintaining

thermodynamic parameters so that the turbine is working efficiently. Refrigeration

data comes from sensors which are placed in ducts/ cavities in which cooling air

passes through for neutralizing high temperatures generated by certain processes. And,

vibration data is collected by sensors which measure movements of components in

units of mm/s.

1.1.2 Intra-Modal Dynamics

The gas turbine Operation Concept (OC) dictates the governance of temperature and

mass air flow of gas turbine, as a function of power output, using limit points. Because

the OC is idealized, and not observed in practice, it allows us to define a distance

metric characterizing how 'far' the systems operating conditions for a given period are

from the idealized. More importantly, it induces a mapping from a particular operating

condition to a particular operating mode (OM). At any given time, the system resides

in a particular mode, completely characterizing the operating performance of the

system at that time.

These operating conditions have a direct impact on the dynamics of the observ-

able features that relate to the health state of the rotor, and by extension the evolution

of the health state, itself.
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1.1.3 Inter-Modal Transitions

We can view the GT system as one which dwells and transitions between finitely many

OMs. The system dwells in exactly one state at any given time and it can transition

from one state to another when a trigger condition is satisfied, based on the active

transition law/kernel at any given time. As stated above, there exists a correspondence

between the OMs and the operating condition of gas turbine. The transition law

between different operating conditions must accommodate non-autonomous, as well

as autonomous/stochastic transitions.

The system may transition between different operating conditions autonomously

based on some probability distribution, as well as non-autonomously due to forced

transitions that may occur because the state of the system (i.e. specific observed

signals) reaches a pre-specified abnormal threshold, or due to a planned event that

must take place a pre-specified time, which triggers a jump. We can define the

transition law which causes the switches between modes as a Markov process.

1.2 Gas Turbine Reliability

The GT is governed by an operation concept (OC), which dictates how the machine

should ideally perform its startups, normal operation, and shutdowns sequences.

Degradation of the machine can be viewed as occurring when the machine operates in

conditions that are very different from the OC.

1.2.1 Operation Concept

The machine is fired up when the first combustor, called the Environmental (EV) com-

bustor, starts its operation. Pilot flames are used in the EV burners for initiating the

combustion of fuel (gas) mixed with air. At 20 % of base load, the EV burners switch

to premix operation, and a second combustor, called the Sequential Environmental

(SEV), is ignited. At 40 % load, the stators (Variable Inlet Guide Vanes (VIGV)) are

13



opened, and more fuel is supplied to the two combustors. The exhaust temperature of

the turbine is kept constant by controllers, until full load is reached. This is achieved

by means of a small increase in the combustor temperature with the VIGV fully open.

Optimal operating conditions of the EV burners range from 25 % load to the full load.

The EV combustor is an annular combustion chamber with 30 burners. Combustion air

enters the cone through air inlet slots while the fuel is injected through a series of fine

holes in the supply pipe. The gaseous pilot fuel and the liquid fuel are injected through

nozzles at the cone tip. This ensures that the fuel and air spiral into a vortex form

and are mixed. The annular design provides an even temperature profile, resulting in

improved cooling, longer blade life and lower emissions. The SEV combustor consists

of 24 diffusor-burner assemblies, followed by a single, annular combustion chamber

surrounded by convection-cooled walls. The exhaust gas from the high-pressure (HP)

turbine enters the SEV combustor through the diffusor area. Due to the elevated

temperatures of the HP turbine exhaust, the fuel-air mixture ignites autonomously.

Finally, the low-pressure (LP) turbine operates at the tail end of the machine.

As the GT transitions from minimum-load to part-load to base load levels, various

temperature limits are utilized in order to actuate appropriate controls to maintain

GT efficiency and performance levels. These temperature limits are defined by the

OC of the GT; see Fig. 1-2 where these limits are denoted TIT, TIT2 , TAT, and

TAT2 . Essentially, these limits are the ideal levels of the aggregate temperatures of

different subcomponents of the machine as a function of the power loading.

1.2.2 Rotor Degradation

As the GT gets older, most components begin to show signs of degradation. Under-

standing the degradation patterns of parts which are not easily replaceable-such as

the rotor shaft-is of crucial importance, because they tend to be the most integral

and expensive components. The principal components of a rotor are the shaft, disk,

bearings, and seals. The bearings support the rotating components of the system and
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stabilize the rotor vibration, while the seals prevent undesired leakage flows inside the

machines of the processing or lubricating fluids [3].

Rotors can begin to degrade in many ways. The condition of the rotor is dependent

on two major factors: creep and low-cycle fatigue (LCF). Due to constant loads, there

is a risk of creep, which manifests itself in the propagation of cracks within the rotor.

When the temperatures pass a certain percentage of the melting point of the material,

the probability of creep is high. Furthermore, high temperature gradients, caused by

poor casing insulation can lead to elastic rotor bending.

Additionally, LCF accelerates the degradation of the rotor, when it must undergo

high amplitude, low frequency strains. This occurs mainly when the system is turned

on and shut down multiple times in a short period of time [3]. The rapid switching

between different electricity production levels shifts the rotation axis of the shaft by

moving the mass center of the rotor. This leads to an increase in rotor vibration [4].

In addition to LCF, long exposure to high levels of mechanical stresses cause rotor

shaft deterioration due to creep deformation. Creep also initiates cracks on the surface

of the rotor. Under high temperature and pressure loadings that are typical of a GT,

risk of creep induced deterioration increases. When the temperature surrounding the

rotor surpasses 40 % of the melting point of the rotor, the probability of creep is

especially high 12]. Other components of GT such as the disk, bearings, and seals are

also subject to damage due to creep.

Rotor degradation dynamics are tied to the different OMs because the behavior of the

GT varies drastically under different OMs. Dynamics of the rotor temperature signal

differs when the system dwells in different OMs, and change depending on how the

turbine transitions between each of these OMs. Specifically, as the turbine transitions

from periods of normal operation characterized by loads of approximately 400 MW,

to periods of suboptimal operation, to periods when the machine is being shut off, the

16



dynamics of temperature that the rotor faces change. Thus, we can view the rotor

temperature, as a time-evolving signal, whose dynamics are governed by the OM in

which it dwells.

The mechanistic models of creep and LCF indicate that the variability of loads

(stresses) and temperatures in various OMs contribute to progressive deterioration. In

our work, random switching rates between the OMs are indicative of the variability in

loads on GT. To determine the modes and mode-switching rates, the power output

signal from the GT is used. To model the intra-day dynamics, the temperature of the

cooling air that circulates in the ducts around the rotor is chosen as the proxy of the

rotor temperature.

1.3 Related Work

Many publications have proposed various data-driven methods for estimating degra-

dation trajectories of various subsystems within gas turbines. Yet, past research

has dealt mostly with health state trajectory estimation of compressor blades and

bearings. Statistical methods such as Monte Carlo, HMMs, neural networks, Gaussian

mixture models, and various artificial intelligence methods using fuzzy logic have

been used for estimation and prediction purposes [4,51. Venturini et. al presented a

prognostic methodology, which estimates remaining useful life of GTs using statistical

techniques, by estimating the propensity of a turbine to transition from an "operable"

to "inoperable" state [5]. By sampling the intervals of time that the turbine remained

in any one of these states, Weibull distributions are generated, from which simulations

are conducted to compute the probability of dwelling in the operable mode. In contrast,

the methods we describe automatically learns the number of OMs, without having to

a priori posit a number of states. This allows for model flexibility.

The transition matrix/kernel, which governs how OMs switch among one another

can be defined deterministically or probabilistically, depending on the application.
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Since the OMs in which the GT dwells are tied to random fluctuations induced by

the bulk electricity market, we posit a model in which the OMs switch according to a

probabilistic relation. This facet has been explored in existing literature which apply

Piecewise Deterministic Markov Processes (PDMPs) for reliability prognostics [7,8,9].

Davis introduced as the most general class of continuous-time Markov processes which

include both discrete valued and continuous valued processes, except diffusion [7]. A

PDMP consists of two components: a discrete component and a continuous component.

Here, the OMs take discrete values and the rotor temperature is the continuous valued

solution of a OM-dependent difference equation. At discrete moments in time, the

discrete valued component may switch or jump to according to specified relation.

Numerous system identification methods are also available for parameter estimation of

intra-OM models [10,11]. Morari et al. propose a method of identifying hybrid systems

that are assumed to be piecewise affine (PWA). In this case, the OMs map to a finite

sequence of polyhedra which partition the space in which the continuous variable take

values [10]. Within each of these polyhedra, an affine difference equation governs

the evolution path of the continuous variable. And, the transition law is completely

determined by the system reaching the boundary of the polyhedra. The algorithm

that Morari et al. proposes makes use of support vector machines, and clustering

in order to estimate the intra-OM models and the transition law (boundaries of the

polyhedra).

1.4 Contributions & Outline

The pragmatic goal of this work is to understand both modeling approaches (NBP

and HDP) and comment on how both differ in estimation and prediction power of

the condition of critical assets (e.g., rotors, stators, casings) of large machines such as

gas turbines, steam turbines, and generators. The operational flexibility of GenCos

can be significantly affected if they have limited visibility on the rate at which their

critical assets are deteriorating. In recent years, GenCos world-wide are developing

18



a sense of urgency toward prognostic assessment of their generation fleet. The main

reason of this urgency is the fact that although the frequency of complete failure of

critical assets might be quite low, their replacement costs and delivery times can range

from months to years. Ignoring the early indicators of deterioration can lead to huge

unexpected economic losses. Moreover, if a large-side generation unit faces disruption

due to a failure of a critical asset, the GenCo may even loose its strategic position in

the competitive wholesale market.

Especially important is to be able to account for the supply-demand shocks and

non-stationarity in production trends [1]. For example, the power plants are expected

to have the capability to execute quicker start-up times and switch between one

operating point to another when another generator trips and creates a sudden loss

of supply. The push for flexible ramp-up and ramp-down schedules is even higher in

markets that are gradually accommodating new renewable energy sources. Additional

impositions on large machines such as compliance with environmental standards (e.g.,

cap on emissions) will make their future operating environment even more stringent.

Thus, we expect that the machines' critical assets will be subject to new loadings and

new temperature and pressure variations. This, in turn, will directly effect their rate

of deterioration. Due to the aforementioned reasons, utilizing the available data for

building accurate dynamical models of deterioration indicators (i.e., the condition) is

an important task, as confirmed by many business leaders in large-scale electricity

production [1].

Previous work in modeling deterioration of machine components has primarily focused

on replaceable components (e.g., blades within turbine's compressors) [4, 51. Since

these components have shorter lifetimes, the available condition monitoring data

can capture their deterioration rates, starting from the time of their installation to

the time of their replacement. Major GT manufacturers (e.g., Alstom, GE Energy,

Siemens, United Technologies) are fairly specific in recommending the maintenance

plans of replaceable components. However, estimating deterioration rates of rotating
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components such as rotor shaft is not straightforward, as they typically have much

longer lifetimes (20-30 years). Hence, data on their actual failure rates is not readily

available. GT manufacturers conduct laboratory tests on these assets during design

phase, but there is no direct way to conduct tests on these assets once they are

installed in an operational machine. Thus, currently there is no practical procedure to

estimate the remaining useful life (RUL) of GT rotors.

In chapter 2, we present necessary background on the three models that we will be

presenting. The chapter begins with a brief overview of probability distributions

and mixture models, followed by structures of parametric and nonparametric hid-

den Markov models (HMM). In chapter 3, we present the non-Bayesian parametric

HMM for rotor degradation. A new detrending method is presented that allows for

dimensionality reduction of the HMM emission variable. In chapter 4, we present

two Bayesian nonparametric models. The first model is a semi-Markov model, and

is able to estimate dwell times in different operating modes, using the exponential

distribution. The second model uses an Switching Linear Dynamical System (SLDS)

emissions model, which is able provide a richer model structure. In chapter 5, we

posit metrics for degradation that are later used to validate all three models, and

compare performance. Calculations and comparisons of the cumulative deterioration

estimated over the time are presented. The chapter concludes with a discussion of

different prediction algorithms, which are tested on the sixth year of data. Finally,

concluding remarks end the thesis in chapter 6.

The main contributions of this thesis are the three models. Model 1 is the parametric

non-Bayesian hidden Markov model (NBP-HMM). In model 1, each day is classified

as an operating mode (OM) by the HMM with a detrended intra-day power signal

as the emission. For this model, the number of OMs is assumed to be 3. Model 2

is the nonparametric Bayesian hidden semi-Markov model (HDP-HSMM). In model

2, each day is classified as an operating mode (OM), but the emissions are now the

complete intra-day power signals, distributed multivariate gaussian. For this model,
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the number of OMs learned by the model itself, utilizing an imbedded Dirichlet process.

For models 1 and 2, once the OMs are learned, a linear regression model is fit for

the cooling air temperature signal, for each OM. Using the residuals from the fitted

regression model, deterioration levels are estimated.

Model 3 is the nonparametric Bayesian HMM with a switching linear dynamical

system emission model (HDP-SLDS-HMM). In model 3, each day is classified as an

operating mode (OM), but the SLDS emission structure allows for simultaneous fitting

of intra-day temperature signal. Thus, the regression model is not needed to estimate

degradation for model 3, as it was necessary for models 1 and 2.
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Chapter 2

Parametric & Nonparametric Models

2.1 Background

This chapter begins by describing common probability distributions that will be

used as basic building blocks for the models that we consider in this thesis. This

is followed by descriptions of more complex probabilistic graphical models that will

ultimately be tailored specifically for the application of GT reliability. For all of

the models described, both Bayesian and non-Bayesian forms exist. In a Bayesian

framework, appropriate prior distributions are placed on model parameters, while in a

non-Bayesian framework, parameters are assumed to be fixed.

2.. . rXJLaicLiUy JuDstIibU tiosU11b

A. Categorical

The categorical distribution is a generalization of the Bernoulli distribution, and is

also called a "discrete distribution" [17]. It is a distribution that describes the result

of a random event that can take on one of k possible outcomes, with the probability

of each outcome separately specified. If x is a random variable distributed categorical,

with parameters (Pi, . .. ,pA), such that E~ pi = 1, then x E {1, . . . , k}

and
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k

p) = pX=i] (2.1)
i=1

Here, [x = i] denotes the Iverson bracket, where

[x = i] = oteri (2.2)
0 otherwise

B. Binomial/ Multinomial

The binomial distribution is the distribution governing the number of successes for

one of just two categories in n independent Bernoulli trials, with the same probability

of success on each trial [17]. The multinomial distribution is the generalization of

the binomial distribution, where each trial results in exactly one of some fixed finite

number k possible outcomes, with probabilities (p1, ... ,Pk), such that i=1 pi = 1. If

the random variables xi indicate the number of times outcome number i is observed

over the n trials, the vector x = (X1 ,..., Xk) follows a multinomial distribution with

parameters n and p, where p = (P1,. .. ,Pk), where

k

p(x) = p(X, .! ..! ,k)ip (2.3)

If n = 1, the categorical distribution is obtained.

C. Dirichlet

The Dirichlet distribution is a family of continuous multivariate probability dis-

tributions parameterized by a vector of positive reals [131. It is the multivariate

generalization of the beta distribution. Dirichlet distributions are very often used as

prior distributions in Bayesian statistics, and is the conjugate prior of the categorical

distribution and multinomial distribution. The Dirichlet distribution of order k > 2
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with parameters a = (ai, ... , aK) > 0 has the following probability density function

I k 
-f(x) = f(i,.. . , X) = B> f iax ~ (2.4)

Here, B(a) is the multinomial beta function, which is expressed through the gamma

function as

B~a) - ______

B( (=) =)1 (2.5)
]p'(Ek_1 Cei)

The infinite-dimensional generalization of the Dirichlet distribution is the Dirichlet

process, which will be described in more detail later in this chapter.

D. Multivariate Gaussian

The multivariate Gaussian distribution is a generalization of the univariate Gaussian

distribution [17]. The multivariate Gaussian distribution is said to be "non-degenerate"

when the symmetric covariance matrix E is positive definite. In this case, the k-

dimensional a Gaussian-distributed random variable x = (xi,... ,x) with mean

vector p and covariance E has probability density

1 (1
f(x) = f(X1, xk) = exp I--(X - )E-1 (X - i) (2.6)

,/(27r)kII 2

E. Exponential

The exponential distribution is the probability distribution that describes the inter-

arrival time between different events in a Poisson process. The Poisson process is a

stochastic process in which events occur independently at the same average rate [17].

It is the continuous analog of the geometric distribution, and is notedly memoryless.

The probability density function (pdf) of an exponential distribution is

f(x; A) Ae >0 (2.7)
0 x < 0
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2.1.2 Mixture Model

A mixture model is best explained by thinking about a system from which taking

measurements is a simple procedure [131. In some cases, the state of the system,

at the time when the measurement is taken is known. Yet, for real-world systems,

which are complex, the state of the system is usually unknown. Given a sequence

of measurements {yi, Y2, .. -, YN}, a mixture model posits that the data points are

sampled from a finite (or countably infinite) mixture of unobserved states z taking

values in K = {1, 2,... , K}. In the case of parametric/finite mixture models, the

cardinality of K is assumed known. In the case of nonparametric mixture models,

the theoretical cardinality is assumed to be countably infinite, yet empirically a finite

number of states will exist. Because the states are unobserved, the data points

are used to infer two major qualities of the system. Firstly, each observation is

modeled as a random variable, with an underlying distribution coupled with a unique

state. Thus, given the observations, parameters governing the underlying distribution

can be inferred. And, secondly, the mixture model assumes a prior on the relative

importance of each state, which must be inferred, as well. Finally, given knowledge

of an observations generating state, the data are assumed to be independent. The

exhibit below outlines a Bayesian parametric mixture model.
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Bayesian Parametric Mixture Model

K: Number of states (mixture components) {zi,. . . , ZN} K {1, ... , K}
N: Number of measurements {Y,... YN} E Rn

F: Probability distribution governing observation yi

Ok: Parameter governing distribution of observations emitted from kth state

8k: Mixture weight for kth state. B = (i3, ... , 6K)

A: Hyper-parameter governing prior distribution of B



H(-y): Prior distribution with hyper-parameter of 0 k for all k E E

2.2 Parametric Models

2.2.1 Finite Hidden Markov Model

The hidden Markov model (HMM) prescribes a probability distribution over a sequence

of observations [13]. The first assumption of the model is that the sequence of

observations yt are sampled at discrete times t C {1, .. ., T}. The second assumption is

that the sequence of observations, commonly referred to as "emissions", are produced

from a hidden/latent process zt, at discrete times t. The third assumption is that

the hidden process observes the Markov property. The fourth assumption is that

the observations in the emission process are independent, conditional on the hidden

p r ocs, o 0- nam L. ely

P(Yt I ZI:T, Y1:T) = P(Yt I Zt) (2.14)

With these four assumptions, we can write the joint probability distribution as

T

p(Y1:T, Z1:T) = p(z1 )p(y1 I z1) ]IJp(zt I ztI)p(yt | Zt) (2.15)
t=2

With the model specified, the goal is to use data to infer the parameters of the HMM.

The parameters are a triple {F, ir, ~ro}, the emissions distribution parameters (i.e,
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Ok ~ H(7) (2.8)
B ~ Dirichlet(A) (2.9)

zi ~ Categorical(B) (2.10)

yi zi = k ~ F(Ok) (2.11)

Z0k=l1 ;#>kOVkEk (2.12)
k

(2.13)



{pk, Ek}, for Gaussian distributed emissions) , the K x K time-invariant transition

matrix governing the hidden process dynamics, and the initial distribution for the

hidden process, respectively. The exhibit below outlines a Bayesian parametric hidden

Markov model.

I I

Figure 2-1: Hidden Markov Model
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Bayesian Parametric Hidden Markov Model

K: Number of states (mixture components) {z1, .. . , ZT} E K = {1, ... , K}

(1, ... , T): Sequence of measurements {yi,... yT} E Rn

F: Probability distribution governing observation yt

Ok: Parameter governing distribution of observations emitted from kth state

irOk: Initial probability of kth state. ro = (iroi,... rOK)

irk: Transition probability distribution of state k. ik = (irkl, - ,kK)

A: Hyper-parameter governing prior distribution of B

H(-y): Prior distribution with hyper-parameter of Ok for all k E K

Ok ~ H(-f) (2.16)

irk, _rO ~ Dirichlet(A) (2.17)

Z1 I iro ~ -ro (2.18)

zt I zt_1 = k ~ rk (2.19)

yt I zt = k - F(k) (2.20)

rok = 1; frok > 0 V k E K (2.21)
k

kkj=I irkj 0 V j E (2.22)

(2.23)



2.2.2 Hidden Semi-Markov Model

Although the parametric HMM is capable of modeling a variety of data structures, it

has deficiencies. One of the main drawbacks of the HMM is its Markovian assumption.

This assumption posits a model in which the latent states observe strictly geometrically

distributed dwell times. Depending on the application, this assumption may or may not

hold. This limitation leads to improving the HMM to the hidden semi-Markvov model

(HSMM) 118]. There are many types of HSMMs, differing on assumptions made about

how durations in states are distributed. We will limit our discussion to the "explicit

duration" HSMM, in which each state's dwell duration is given an explicit distribution.

The workings of an HSMM are very similar to the HMM, except for an additional

random variable which models the amount of time a state is dwelled in, denoted

Dt. The distribution of Dt is state-dependent. When the state is entered (using the

Markov chain assumptions identical to the HMM), the duration time is drawn from

the distribution assigned to the particular state. The system dwells in this state

until expiration and the process repeats. Similar to the HMM, at each time step that

the system dwells in a particular state an observation is generated, depending on a

state-specific emission probability distribution.

The HSMM has three layers/sequences of random variables. The first layer is a

sequence of "super-states" z,. Each super-state takes a discrete value. The index s is

at a strictly lower frequency than t, and encapsulates a series of time steps {tI,.. , t }

The next layer is the "label" sequence xt. Xt takes on the value of the corresponding

time's super-state. The final layer is the "emission" sequence yt, which is generated by

a state-specific emission probability distribution. It is assumed that the HSMM has

no self-transitions, so that Dt can be interpreted easily. The exhibit below outlines a

Bayesian parametric hidden semi-Markov model.
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Parametric Hidden Semi-Markov Model

K: Number of states (mixture components) {X1, .. . , XT} E K = {1,.. . , K
(1,.. . , T): Sequence of measurements {yi, .. . yT} E Rn
(1,.. ., S): Sequence of "super-states" {z, ... ZS} C K
(1,.. ., S): Sequence of durations {D 1 , .. . Ds} E R
F: Probability distribution governing observation yt

Ok: Parameter governing distribution of observations emitted from kth state

Wk: Parameter governing distribution of dwell time for kth state

irk: Transition probability distribution of state k. 11k = (rkl, ... ,kK)

H(-y): Prior distribution with hyper-parameter of Ok for all k E K
G: Prior distribution of Wk for all k E K

Ok ~ H(')
irk, _R0 ~ Dirichlet(A) (2

zi Fro ~ ro (

z. I z._1 k ~ Fr (

DI, z, - G(w,.)

t2 =tl + DS -1(

Xtl:t2 = Z(

yt I xt = k ~ F(Ok)

_k I i k0k > 0 V k E IC(
k

--k=1; rkj 0 V j EK (

.24)

.25)

2.26)

2.27)

2.28)

2.29)

2.30)

2.31)

2.32)

2.33)

2.3 Nonparametric Models

2.3.1 Dirichlet Process

The Dirichlet process (DP) is a distribution over a function space, where the functions

are probability measures. The defining characteristic of this family of probability

measures, is that each of these probability measures have a countably infinite support.

More precisely, a DP, denoted DP(-, H) is a distribution on probability measures on
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Figure 2-2: Hidden Semi-Markov Model

a measurable space E. It is defined by a base measure H on E and concentration

parameter -y. Consider a finite partition { 1, ... , 8K} of E, such that:

Uk= 8E = E (2.34)

E8 n E8 = 0 for i = j (2.35)

Then, probability measure Go on E is a draw from a DP if its measure on every finite

partition follows a Dirichlet distribution, such that:

(Go(e1), ... Go(EK)) I -y, H ~ Dirichlet(yH(e1), ... ., H(Ek)) (2.36)

Here E is to be interpreted as a parameter space (i.e., each element 0 E E is a

unique parameter). Each element 0 E E is assumed to be in a unique partition set

ek E E which is H-measurable. Observe then that (-H(e 1),... ,7 -yH(34)) are a set

of probabilities, weighted by y, where Ek H(Ek) = 1 and H(Ek) ;> 0 for all k. For

every finite partition, H and -y (through this weighted set of probabilities) fixes a

Dirichlet distribution (a probability measure over discrete probability measures with

support being the partition set indexes).

Go can be thought of weighting regions of E "proportional" to H. One can think
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of fixing different finite partitions of E. Go maps each partition of length K to a

K-dimensional vector whose elements sum to one, and are all non-negative. Also, if

one fixes set ek E G, and fix different partitions containing O,, it is expected that the

average value that Go gives to ek will be H(ek). In fact, E[Go(Ek) I HI = H(ek) [19].

A "stick-breaking" construction, devised by Sethuram is a pedagogical description of

the DP which will now be briefly presented. Go is a random probability measure dis-

tributed DP(H, -y). A question that arises is given a sequence of samples {1, ... ,'

where N -+ oo, how does the posterior distribution of Go change. It will turn out that

as the number of samples limits to oo, Go will only have non-zero mass on finitely many

points. The reason is because as more and more samples are produced, the posterior

weighs the base measure less and less (i.e. new parameters stop being spawned),

while previously spawned parameters are revisited more frequently. Sethuram proved

that a realization of Go - DP(H, -y) is actually a discrete probability measure with

probability one [221. Let {I&J i be a probability mass function on a countably infinite

set where the discrete probabilities are defined as follows:

Dirichlet Process: Stick-breaking Construction

N: Number of measurements {Yi,... YN} E Rn

H(A): Base Measure with hyper parameter A
-y: Concentration parameter

A3 : Weight for kth component; {z1, ... , ZN} E = {1, 2, ... }
6O: Parameter governing distribution of observations emitted from kth component

vk: Auxiliary variable for kth component
F: Probability distribution governing observation yj
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Figure 2-3: Dirichlet Process

2.3.2 Hierarchical Dirichlet Process

A Hierarchical Dirichlet process (HDP) is an extension of a Dirichlet process, used to

model groups of data, which are assumed to be generated from a common process,

yet have idiosyncrasies unique to each group. This structure is induced by defining

different group-specific distributions, which will all be generated by a single Dirichlet
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6 0,: Unit-mass measure concentrated at 6 k

Vk I Beta(1, 7) (2.37)
k-1

=8 Vkfl(1 - v3 ) (2.38)
j=1

Ok H, A - H(A) (2.39)

Go= 0k (2.40)
k=1

Go is denoted as # (i.e., "/3 GEM(y)"). Observations are generated:

/ ~ GEM(-y) (2.41)

zi 0 -~ # (2.42)

Yi I Zi, { _ }'~ ~ F(Oz1) (2.43)
(2.44)



process. Each group-specific distribution Gj (for the jth group).

Gj - DP(a, Go) V j = {1,..., J} (2.45)

All of the groups are tied together by the same Dirichlet process Go.

Go ~ DP(y, H) (2.46)

Given this structure, if one fixes the set A E e, it is expected that the average measure

that Gj will give A will the amount that Go gives to A will be Go(A). In fact, for

every A C e, E[Gj(A) I Go] = Go(A).

The Stick-breaking construction of the HDP is now presented. Let {y1, ... , yjNI-} be

the set of observations for group j. This extends the stick-breaking representation

from the previous section for the hierarchical case. The key fact about an HDP is

that the atoms 0 k are shared not only within groups, but also between groups. Go

establishes an unbounded support of parameters, from which the J groups share their

support. In fact, there exists a non-zero probability the different G share support

points. This is possible because all of the groups are tied to Go. The exhibit below

outlines the Stick-breaking construction of the HDP.

Hierarchical Dirichlet Process: Stick-Breaking Construction

Go(y, H(A)) : Dirichlet process with parameters a, H(A)

1.: Weight for kth component, k E IC = {1, 2, . .. }
Ok: Parameter governing distribution of observations emitted from kth component

-| GEM(-y) (Go= E 00k) (2.47)
k=1

Ok I H, A ~ H(A) k = 1,2,... (2.48)

J: Number of groups, j E J = {l,.. . , J}
Gj : Dirichlet process with parameters a,,3
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Figure 2-4: Hierarchical Dirichlet Process

Teh, et al. metaphorically compares the HDP structure to a "Chinese restaurant

franchise" (CRF) [21]. The CRF is made up of J restaurants, each corresponding to

an HDP group. Within each restaurant is an infinite buffet of dishes corresponding to

parameters {0k}e . This set of dishes is common among all restaurants.

Each customer, corresponding to observation yji is pre-assigned to a given restaurant

determined by that customer's group j. Upon entering the jth restaurant in the CRF,

34

irjk: Weight for kth component of jth group

G7= Zir.ok) j=1,...,J (2.49)
t=1

-ri I a, / DP(a, /) (2.50)

Nj: Number of measurements for jth group {y, ... yjNj R nR

zji: Indicator random variable signifying component of yji, {zj1, ... , zjNJ} c C

F: Probability distribution governing observation yj

Zyi -F(~ 3  (2.51)

yji { je}, Zj ~ F(Ozj,) (2.52)



the customer, corresponding to data point yji (ith customer in the jth restaurant) sits

at one of the currently occupied tables with probability proportional to the number of

people sitting at that table (this distribution is denoted irj) or creates a new table

T+1 (within the jth restaurant) with probability a. The table that customer yji ends

up sitting at is denoted tji.

Whenever a customer is the first customer to sit at a table (implying it is a newly

spawned table), in any of the J restaurants, the customer goes to the buffet line and

chooses from the current set of K dishes, corresponding to {Ok }Ki1 with probability

proportional to to the number of times dish k has been selected across all tables in

the franchise or orders a new dish with probability -y (this distribution is denoted #).

Once the dish is selected, it is fixed for that table. Once the dish being served at

the table tji (denoted by parameter Okjt..) seating yji is known, yji is generated by a

distribution F with parameter 9 y

2.3.3 HDP-HMM

Teh, et. al. also presented a formulation of HMMs, extending the HDP (called

"HDP-HMM") as a prior distribution on transition matrices over countably infinite

state spaces [211. In the traditional HDP, explained in the previous section, the data

points yji are pre-partitioned into J groups. Once partitioned, depending on their

group-specific DP Gj, a parameter 0ji, is chosen, deeding on weights Irk, induced by

Gj. The support of parameters is common across all group-specific DPs.

In contrast, the HDP-HMM posits an equivalence between the groups and parameters.

To clarify, assume the previous state zt_1 = k'. k' designates the distribution from

which zt will be chosen, i.e. Zt - irk. Given G0, yt is generated by F(O,,). So, now, the

groups are equivalent to the parameters, unlike the traditional HDP. To denote this

significance, we now subscript the parameters 6 with j, instead of k, as done previously.

One serious limitation of the standard HDP-HMM is that it inadequately models the
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temporal persistence of states. Fox subsequently introduced an extension: sticky HDP-

HMM, which reduces an HDP-HMM's tendency to rapidly switch between states [191.

This is accomplished by augmenting the HDP-HMM to include a parameter K that

increases the probability of self-transition and a separate prior on this parameter.

Below, we present an exhibit that outlines the HDP-HMM.

HDP-HMM

,3: Dirichlet process with parameters -y, H(A)
Oj: Parameter governing distribution of observations emitted from jth component,
(The group and component index sets are now equal: J = K = {1, 2, ... })
i~rj: Dirichlet process with parameters a, 3 (state-specific transition distribution
for state j)
(1, . . . , T): Sequence of measurements {yi, ... yT} c Rn

zt: Indicator random variable signifying component of yt, {zi, ... , ZT} E K
F: Probability distribution governing observation yt

/ 1 - ~ GEM(-y) (2.53)
Oj I H, A ~ H(A) j = 1, 2, ... (2.54)

~rj 13, a.~ DP(a, 3) (2.55)

zt I {7-}1,zt1 ~ 'rz t= 1 .... , T (2.56)

Yt I {61 } _11 , zt r F(6z) t 1, ... , T (2.57)

Sticky HDP-HMM

K : Self-Transition bias parameter

7r 13|, a, r.-DP a+K) a+ ,i j=1,2,... (2.58)
a+K

2.4 Inference

Bayesian methods for parameter inference are adopted from two perspectives. The first

perspective is based on domain knowledge of the problem. Here, some prior knowledge

of the parameters are known. Typically, this would entail a fixed distribution of the
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parameters, known as a prior. In this setting, bayesian inference is straightforward,

since it combines information gathered from data, likelihood to "update" the prior ,

producing a posterior distribution over the parameters. This posterior distribution is

somehow "better" than the prior, since it takes into account the data points.

There is also the pragmatic perspective. Here, the prior distribution over parameters

is used to make inference tractable. The issue of tractable inference often motivates

the use of conjugate priors. in which the prior and posterior distributions are of

the same form (i.e. in exponential family). Along with tractability, the Bayesian

framework allows for models to flexible, namely hierarchical, with multiple layers. In

this case, priors do not inherently contain information, but their parametric form

will be tailored for tractability. This is why hyper parameters, parameters govern-

ing the distributions of the parameters governing the prior are typically inferred, as well.

Bayesian inference, gets its name from Bayes' rule. We see how important conditional

distributions are by examination of this rule. In fact, the likelihood and posterior

distributions are both conditional distributions. Typically, the assumptions a proba-

bilistic model makes in regards to conditional distributions about the random variables

involved, can be easily depicted using graphical models. Graphical models use nodes

to represent random variables and parameters in the probabilistic model and vertices

to depicted probabilistic relations between them. We will also see that the structure

of the conditional dependencies between the random variables and the parameters

of the model is precisely what computational methods such as Gibbs sampling take

advantage of to iteratively compute parameter estimates.

2.4.1 Weak Limit Approximation

In terms of Gibbs sampling the posterior distributions of the Dirichlet process, it is

desirable to maintain a finite approximation to the Dirichlet process mixture model.

One approach to producing such a finite approximation is simply to terminate the

Stick-breaking construction after some portion of the stick has already been broken
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and assign the remaining weight to a single component. This approximation is referred

to as the truncated Dirichlet process.

Let us assume that there are L components in a finite mixture model and we place a

finite-dimensional, symmetric Dirichlet prior on these mixture weights:

1 -y - Dir(7/L, . . ,y/L) (2.59)

Let G , = = / 3k6,0. Then, it can be shown that for every measurable function f
integrable with respect to the measure H, this finite distribution GL converges weakly

to a countable infinite distribution Go distributed according to a Dirichlet process

[191.

p(zi = k I z\i, 7) = - (2.60)
N -1 +

for each instantiated cluster k. The probability of generating a new cluster is given

the remaining mass 7

Another method, motivated by the convergence guarantee of the equation above is to

consider the degree L weak limit approximation to the Dirichlet process where L is

a number that exceeds the total number of expected mixture components. Both of

these approximations, encourage the learning of models with fewer than L components

while allowing the generation of new components, upper bounded by L, as new data

are observed [24].

As with the Dirichlet process, the HDP mixture model has an interpretation as the

limit of a finite mixture model. Placing a finite Dirichlet prior on 3 induces a finite

Dirichlet prior on wrj. As L -+ oo, this model converges in distribution to the HDP

mixture model [24]. Inference algorithms for the weak limit approximation of the

HDP allows for computational ease and efficiency. Given truncation level L, the weak
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limit approximation is as follows,

3 1 -y - Dir(y/L, . ., 7/L) (2.61)

(a#,, . . ., a + , . . . , aL) (2.62)
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Chapter 3

Non-Bayesian Parametric Model

A non-Bayesian parametric (NBP) HMM (model 1) which will be used to estimate

the degradation rate of a GT rotor, is now presented. In order to model the evolution

of rotor deterioration, a simple model of the the working environment that GenCo's

gas turbines face on any given day must first be established. GenCo supplies bulk

electricity to the wholesale electricity market, creating a stochastic environment with

two main sources of randomness. The first random component is the portion of the

demand of the counter-parties that GenCo must supply. The second component is

the aggregate internal (known only to GenCo) variables-these include company set

thresholds within which the machine must operate, as well as maintenance actions

that the machine must undergo. Even though this last component is endogenous, it is

nonetheless random, as subsystem failure may occur irregularly.

The impact of both of these forces on the rotor must be mathematically defined.

First, notice that these forces affect the evolution of the subsystem at two different

frequencies. The uncertainty in the demand manifests at a much lower frequency due

to the wholesale market structure. This frequency is assumed to be twenty-four hours

(day t) . In contrast, the uncertainty in the endogenous factors operates at a higher

frequency. This frequency is set to five minutes (intra-day time r, with 288 total time

units intra-day).
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Figure 3-1: Three types of intra-day power-output signals

There are two assumptions, underlying the three models we present in this chapter

and the next.

Assumption 1: The aggregation of random exogenous and endogenous factors affecting

the machine is summarized by the power output of the machine. Exogenous factors

include stochastic demand and endogenous factors include stochastic malfunctions

that the machine observes. In other words, the power output of the machine on day

t is an approximation for the operating conditions witnessed, and hence there is a

correspondence between OMs and the intra-day power output signature.
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According to exploratory data analysis, different groups of days observe similar intra-

day power-output dynamics. This provides a reason for understanding the dependence

of the degradation on day t on the power-output dynamics (corresponding to a specific

OM). Figure 3-1 shows three types of power signatures, observed during year 1 of the

dataset. The intra-day median values are plotted, with 1 standard deviation bands.

We see in Panel 1, the power loading is stable for long duration of the day. This in

stark contrast to Panel 3, which shows that the machine's power output is low. Thus,

the set of days can be naturally bifurcated into different OMs, corresponding to their

power output signatures proximity to the ideal operation concept. In this case, the

three power signatures in Figure 3-1 can be interpreted as coming from days observing

"normal" operation (Panel 1), "semi-normal" operation (Panel 2), and "abnormal"

operation (Panel 3). The OMs are abbreviated as {N, S, A}, respectively.

Assumption 2: The deterioration level of the machine on day t is related the degree of

abnormality the cooling air temperature dynamics are undergoing on that day. The

level of abnormality is calculated with respect to a base level. The base level of the

cooling air temperature dynamics is the kind of dynamics that the machine "should"

be witnessing on day t. Since the base level may change with time, we subdivide the

data into ordered groups (called "quarter-years"), so that the base level adjusts with

time.

Imbedded in the model, are parameters that must be learned: the cardinality of

the OM set, the transition matrix governing inter-OM switches, and the model

parameters governing the intra-OM degradation evolution. Because of the structure of

the parameters that must be estimated, it makes sense that we adopt the framework

of an NBP-HMM with parameters (i,, Fi), for each quarter-year pair ij [131. F

denotes a multivariate Gaussian emission probability density structure. The problem

of estimating the cardinality of the OM set is also mitigated in this chapter by

positing that three OMs exist {N, S, A}, based on exploratory data analysis. Using

42



nonparametric Bayesian techniques, explored in the next chapter, this assumption will

be removed, and the number of OMs will automatically be estimated, using the data.

3.1 Power Output Detrending

To estimate how the deterioration of the rotor evolves while dwelling in a particular

OM, we must first classify day t's residence in a particular OM zt. As stated in the

previous section, the OM of a particular day is signified by its power-output signature

ut. We would like to use the power-output signature of a particular day as the emission

of the HMM, in order to learn the OM for that day, using the Expectation-Minimization

algorithm for inference. Yet, the large dimensionality of ut, and the relatively small

number data points in the first five years (1420 days) poses a problem. Hence, we

reduce the dimensionality of ut, by projecting it to a four-dimensional vector vt, by

de-trending using the following linear regression [14]:

288
UtT = Vt1 + Vt2T + Vt3T 2 + vt4Ir - - | + et,

2 (3.1)
e-r ~ N(0,o ).

A separate regression model of the form Equation 3.1 is run for each day, where

T E {1, ... , 288} is the intra-day time index. For day t, there are 288 observations (as-

sumed to be independently Gaussian distributed with variance ap). Each observation

is made up of tuple: feature vector (r, T
2  

- 8 ) and independent variable (power

signature for time r) Utr.

Since day t's power signal is regressed on different degree polynomials of time, along

with shifts, and an intercept term, the signature imbedded in the intra-day power

signal is captured in the weights vt. After adding a sufficient number of polynomials,

and shifted polynomials to the regression, the intra-day power signal will be detrended

leaving only white noise, i.e. et, - N(O, o) [14]. The regressors in Equation 3.1

extract different trends imbedded in the signal. -r extracts the rate at which the signal
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is changing linearly with time. T2 : extracts signal accelerations as time increases. And,

IT - 28: extracts if the signal exhibits different dynamics during the middle of day

verse the day's start and end.

Equation 3.1 is actually a specified version of a much more general detrending regression

model. Let a shifted polynomial basis be defined as (T - k)g where T denotes time,

k denotes a shift, and g denotes the degree. And, let a shifted agnostic basis be

defined as IT - hi, where h denotes the shift. The polynomial basis extract trends that

emanate from the end points of the time horizon from a given signal. The agnostic

basis extracts trends that emanate from the center of the time horizon. The shifts for

both cases, allow for trend extraction that begin away from the end points, or away

from the center. Using these two bases, a signal can be efficiently detrended using the

following procedure.

Power-Output Detrending Procedure

1. Given data ut for day t
2. Define the polynomial bases as (T- k)g for k 1,...,K;, g = 1, ... , G
3. Define the shift bases as IT- h for k = 1,...,H
4. The mapping is constructed by imposing the following linear regression:

Ut,- ~" (( T - k)g + ( vhlT - hi + et, (3.2)
k=O g=O h=O

et-r ~ N(0, ot2) (3.3)

5. Extract compressed signature vt

3.2 Degradation Model

Having fit the NBP-HMM for each quarter-year, each day is labeled by an OM, thus

bifurcating quarter-year days into separate OM "types". In order to isolate amount of
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degradation that occurs on day t, how the cooling temperature typically behaves on

day t's OM type, must be modeled. To accomplish this, for each group (corresponding

to OM) of days, a separate linear regression model is fit, with the cooling air tempera-

ture being the independent variable. Each model is meant to explain away portions

of the variance of the temperature that are correlated with two feature variables:

the fluctuations in the power signal and second, those trends that are characterize

residence in a particular OM (which are modeled by polynomials of time).

A set of residuals is obtained for each day, from the appropriate regression model.

The residual is the amount by which the temperature is deviating or fluctuating away

from its expected/typical behavior, given that it belongs to a particular OM. Hence,

the residual is a metric the level of abnormal or atypical behavior of the temperature,

making it a proxy for the degradation. The terms "idiosyncratic component" and

"residual" will be used interchangeably. For the ij quarter-year, we posit the following

regression model:

Ytr = 1xz:=z}m + /2Ut, + e r (3.4)
z=1

where

ML = Tf + f2 T2 + OZd -8| (3.5)tT 11 12 131 2

and

1pZt=Z} = . (3.6)
0 if zt =/ Z

The right side of Equation 3.4 has three terms. The first term is the "OM factor". It is

made up of two parts: an indicator function defined in Equation 3.6 and the OM factor

, defined in Equation 3.5. The indicator function groups all of the days of the

same OM in quarter-year ij. The OM factor is described by a set of time-dependent

polynomials, and is intended to extract the variability of temperature due to dwelling

a particular OM. The indicator variable activates the correct z E {1, ... ,Q I } given
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Viterbi's classification of day t. The second term is the power loading factor use. We

would like to isolate variance in the temperature that is not explained by the elevated

or deflated levels of the power loading. The last term is the idiosyncratic term: et,.

The purpose of using this regression model is to procure statistics of the distribution

of this term, controlling for the first two factors. Sample estimates of the first two

statistics of this distribution will provide insights into the deterioration levels of the

rotor. Standard Ordinary Least Squares procedure are used for parameter estimation

[16]. The exhibit below outlines the full model presented in this chapter.

Parametric Degradation Model

Ok: Parameter governing distribution of observations emitted from kth component,
IK = {1, 2,).. ., K})

~rk: State-specific transition distribution for state j
(1,.. . , T): Sequence of temperature measurements {yi,. .. yT} R 288

(1, ... , T): Sequence of power output measurements {U 1 , . . UT} E R2 88

(1,..., T): Sequence of features extracted from {Ut}T_ 1 , {b1 ,... b4} E R4

zt: Indicator random variable signifying component of ut, {zi, ... , ZT} E IC

Zt I {Ir,}{_ 1 , Zt_1 _ 7~ rz_ t = 1,. .. , T (3.7)

bt I {6k4'k1, Zt ~ r(ft,, Ezt) t =1 ,...,I T (3.8)
I Il

Yti I utr; t E Qjj ~r l{z=z}m4 + 3 2Utr, ) (3.9)
z=1

Degradation Level

dtr: Deterioration level at time r on day t: (ytr - Zl{z=}i + 2ut)

Dt: Total deterioration level at time on day t

d IT I t C Qj- ~AF(O, o2) (3.10)
288

Dt= dr (3.11)
r=1
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3.2.1 Forced Jumps

In this section, we briefly explain how the NBP-HMM model can be extended to

not only include stochastic transitions between different OMs, but also forced tran-

sitions that occur due to a temperature set point variable O-t hitting a guard condition.

Denoting k, k' as two different OMs, we can also model models forced jumps between k

and k' by Pk,k. These forced transitions occur when the temperature set point signals

?,t deviate from the operating concept. In general, the levels at which the forced jump

activates, known as "guard-lines" can be defined with respect to a function g(' 1-t).

If the guard-line is hit by g(,t), the OM will be forced to transition, affecting the

dynamics of the temperature signal yrt. From a practical point of view, these forced

jumps can be used to model trips.

If we define F to be the threshold that governs the forced jump and E > 0 to be the

required "distance" required to activate a jump, then we can define a new transition

kernel in the following way:

Pkk -Pk,k', if 17 - gO < C (3.12)

T if IF - g( bot ) > c and t = T

Pk,k' = 1 iff k = k* (3.13)

As mentioned above, the guard-lines can be defined for a general function of the

temperature set point 'rt. Using exploratory data analysis, one can derive different

statistics such as such as mean, variance, and slope of OPt before a trip occurs to

see which statistic is most correlated with trip occurrence. In our analysis of 10 trip

events, we found that the distributions of the mean of 4 rt before trips, verses the

mean of Ot under normal conditions were significantly different, allowing use the

mean of ?Pt as g(-).
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Figure 3-2: Example of g(-). Left set corresponds to High Load Trips. Right set

to Low Load Trips. g(-) is the mean of the TAT signal, 2 hours before the trip.

Red/Blue=Trip, White=Normal.

In Figure 3-2, we show the different mean values for each trip condition, and cor-

responding normal condition, for both trips at high loads and low loads. For each

trip event, we calculate the mean value using the data of Ort up to 2 hours before

the trip. We group together the 10 most recent normal days prior to the trip day,

and calculate the mean value of the averaged O't signal across these 10 days. In

Figure 3-2, the high load trip events are ordered by time. One can see that over time

for high load trips, the means of both normal and trip conditions decrease. Out of

these 10 trips, all are trips at high loads, except for trips number 3, 4, 10, which are

at low loads, leading to their bar plots being flipped with respect to the others. This

information can be used to declare a P that minimizes the error of modeling a trip

occurrence incorrectly. In this case, F may be specified as a decreasing function of time.

In this framework, the system may transition between different OMs both au-

tonomously based on some probability distribution, at the daily frequency, as well as

non-autonomously due to forced jumps at intra-day frequency.
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Chapter 4

Two Bayesian Nonparametric Models

4.1 HDP-HSMM

Johnson and Willsky introduced a Bayesian nonparametric (HDP) version of the

HSMM, which we will refer to as model 2 [201. It extends the HDP-HMM in cases

where strict Markovian assumptions need to be relaxed. The HDP-HSMM is able to

learn models in which the dwell times within different modes are not assumed to be

geometric. Additionally, the nonparametric nature of the model allows for the number

of hidden OMs to be learned. Furthermore, because the Markovian assumption is

relaxed, rapidly switching dynamics are also mitigated [24].

For these reasons, a degradation model based on the HDP-HSMM is a natural enhance-

ment of the NBP-HMM described in the previous chapter. Although, the mathematical

model is now Bayesian, with an additional semi-Markov dwell-time assumption, the

model remains basically the same as the parametric HMM model. Like the NBP-HMM,

the HDP-HSMM is used to bifurcate the set of days into different OMs, based on the

power output signal.

Let there be a particular interval of days indexed by s: D = (tl,..., t2). Let z, E 1C

denote the particular OM the system dwells in during the interval D*. For the purposes
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of the degradation model, D, = 1D* is assumed to be distributed Exponential(A,,).

D, = k Exponential(Ak). (4.1)

Figure 4-1: HDP-HSMM

Let t E D*, ut E RT be the power output signal, xt c IC denote the OM, and z, denote

the super-state (i.e., xt = z,). The powers signal, ut is assumed to be governed by a

multivariate Gaussian distribution with OM-dependent parameters (p2x, Et).

yt I xt, z. = k - .J(pk, Ek) (4.2)

In other words, the GT is assumed to be in different OMs during different intervals of

days. The length of time it remains in an OM, depends on a OM-specific parameter

Ak. Upon expiration, the system switches to another OM according to a Markov

chain. Finally, it is assumed that each day the system resides in a particular OM, the

power output is generated by a multivariate Gaussian distribution with OM-dependent

parameters. In order to calculate the degradation of the rotor on a particular day, the

idiosyncratic component of the temperature for each day is calculated just like in the

NBP-HMM case. For the ij quarter-year, we once again posit the following linear

regression model:

Ytr = 1{zt=z}mtz + 82Utr + et, (4.3)
z=1
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HDP-HSMM Degradation Model

# : Dirichlet process with parameters -y, H(A)

Ok: Parameter governing distribution of observations emitted from jth component,
(The group and component index sets are now equal: K = {1, 2, ... })

irk: Dirichlet process with parameters a!, (state-specific transition distribution
for state k)
(1,... , T): Sequence of labels {x1,..., XT} C K
(1,.. . , S): Sequence of " super-states" {z,... ZS} E
(1,..., S): Sequence of durations {D,... Ds} E R
(1, ... , T): Sequence of temperature measurements {Y, ... YT} c R288

(1,... , T): Sequence of power output measurements {u 1 , ... UT} E R 10

zt: Indicator random variable signifying component of ut, {zi, ... , zT} E K

z I j {7-}1, z_1  ~ wr,_ t = 1, ... , T (4.4)

ut I {I} ', zt ~ t(pz,, Ez) t = 1, ..., T (4.5)

ytr | ut; t E Qj- ( 1{ztzlmQ+ 2utTc.fJ (4.6)
z=i

OM Dwell Time

D, I z., = k - Poisson(Ak) (4.7)

Degradation Level

IQ 3Ij
dt,: Deterioration level at time T on day t: Yt7r - E l{zt=z}mnr + 2Utr)

Dt: Total deterioration level at time on day t

dIT It C Qjj , A(O, ai) (4.8)
288

Dt =Z dtr (4.9)
r=1
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4.2 HDP-SLDS-HMM

Both the NBP-HMM (model 1) and HDP-HSMM (model 2) can be computationally

viewed as a three-step algorithm. The first step classifies each day as a particular OM.

The second step groups together days by OM-type and fits a regression model for the

cooling air temperature for each group. The final step calculates the daily residuals as

an estimate for the degradation level.

The HDP-HMM with switching linear dynamical system (SLDS) emissions (model 3)

allows for the first two steps to be combined. Since the OM is never directly measured,

it is assumed to be latent, as in the previous cases. But, now, it will be inferred

using observations from two correlated variables, instead of one. The OM for day t is

denoted zt, which takes values in discrete set C, whose empirical cardinality will be

learned using the estimation procedure.

Assumption 1 (HDP-SLDS-HMM): The aggregation of random exogenous and en-

dogenous factors affecting the machine is summarized by the relationship between the

cooling temperature and power output of the machine. How sensitive the cooling air

temperature dynamics are to power output dynamics is indicative of the OM. The

level of sensitivity will be numerically encapsulated by matrix A.

The HDP-SLDS-HMM posits a two-level SLDS emission model. The first level posits

that the power output for day t, denoted ut, conditional on zt = k is related to ut_ 1

by a matrix A(k) with OM -dependent additive Gaussian noise et(k). The second layer

relates the temperature signal yt to ut by fixed matrix C and additive Gaussian noise

Wt.

zt ~'. 7zt_ (4.10)

ut = A(zt)ut_ 1 + et(zt) (4.11)

Yt = Cut + Wt (4.12)
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HDP-SLDS-HMM Degradation Model

6 : Dirichlet process with parameters -y, H(A)

9k = (A (k)(k)): Parameter governing distribution of observations emitted from
Jth component, (The group and component index sets are now equal: = C -
{1,2, ... })
irj: Dirichlet process with parameters a, 6 (state-specific transition distribution
for state j)
{zt};_1: Sequence of latent discrete variables, zt E IC

13 1 y GEM(-y) (4.13)

Oj I H, A ~ H(A) j 2, ... (4.14)

Irj 1 6, a DP(a,/3) (4.15)
zt {J7r}',zt _ ~ = 1,... ,T (4.16)

E(k): Noise covariance matrix for OM k
A(k): Sensitivity matrix for OM k

{yt}'_i: Sequence of temperature time series vectors, yt G Rc

{ Ut} 1 : Sequence of power output time series vectors, Ut E RI7

Ek ~ IW(no, SO) (4.17)

A (k) ~ MNIW(.ft, k, Ek) (4.18)

Yt I {Okk=1, Xt, Zt = k ~ A(A(k)xt, E(k)) t 1,...,T (4.19)

Degradation Level

dt1 : Deterioration level at time r on day t: Ytr - Ytr
Dt: Total deterioration level at time on day t

dtr I t E Q jV A(0, o, 2) (4.20)
288

Dt = dr (4.21)
T=1
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Chapter 5

Reliability Prognostics

In this chapter, results from the NBP-HMM (model 1), HDP-HSMM (model 2), and

HDP-SLDS-HMM (model 3) are presented. Out of the six years of data, the first five

years are used in model development, and the last years data is used for prediction.

The first section outlines the metrics that will be used to validate and compare all

three models in section 2. The third and fourth sections present the main deterioration

results, and analysis of model 3. The final section introduces prediction models that

are used to predict degradation rates during the sixth year.

5.1 Deterioration Metrics

In order to understand the level of degradation, estimated by a particular model,

the mean and the standard deviation of the absolute value of the model residuals

is isolated. For model 1, the power signature is first detrended using the procedure

introduced in chapter 3. Using this detrended signal sequence, the OM sequence is

estimated for each day in the first five years (~ 1420 days). For each OM, a separate

linear regression model is fit for the cooling air temperature. Then, by subtracting

the fitted values from the. observed values, we recover a vector of residuals. For model

2, the same procedure is done, except no detrending takes place. Instead, the entire

intra-day power signal is taken as an emission for the nonparametric HSMM. For

model 3, the emission for each each day is taken to be a tuple made up of the power
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signature and cooling air temperature signature. The OM sequence is learned for each

day, along with the fitted cooling air temperature values. Thus, no separate regression

model is needed to produce residuals for model 3.

For day s, we define the level of daily deterioration D8 , volatility of daily deterioration:

V,,, and the cumulative deterioration C, below. As a reminder, T is the number of

time steps in a given day: 288.

T

DS = estI (5.1)
t=1

T

V= TZ (lest - Ds)2 (5.2)

C= Dk (5.3)
k<s

The definition presented in Equation 5.1 implies that the daily deterioration is the

average level of abnormal temperature fluctuation witnessed during a given day. The

volatility level V, is the degree of fluctuation of the temperature, which is indicative of

deterioration. These metrics capture the effect of two main causes of rotor degradation:

creep and LCF. By obtaining the absolute value of the residuals, the deterioration

level accounts for both positive and negative deviations from the expected temperature

range.
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5.2 Model Validation

For model 1, which is parametric, three latent states are pre-posited corresponding

to normal, semi-normal, and abnormal OMs. In contrast, model 2 (with a five-

state approximation) learned three different states, and model 3 (with a ten-state

approximation) learned six states. The first three states of model 3, and the three

states of model 2 correspond to the normal, semi-normal, and abnormal OMs of model

1. In Figure 5-1, columns 1,2,3 correspond to models 1,2,3 respectively. The first

row plots the intra-day mean power signature for the normal OM, the second for the

semi-normal OM, and the third for the abnormal OM. We notice that for all three

models, these three OMs share very similar characteristics.

Figure 5-1: Mean power signature, with .5 standard deviation bands

All three models produce accurate predictions in light of non-stationary behavior of

GT operating conditions. The non-stationary arises due to fluctuations due to seasonal

changes, supply-demand shocks, internal/sub-component states, and maintenance

actions - all of which vary across all five years of data. Figure 5-2 shows the fitted

values for cooling air temperature from all three models. Notice, the models, along

with the actual temperature dynamics change drastically not only across year, but
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within each year. Specifically, between years 2 and 3 the cooling air temperature

observed unstable dynamics, yet was relatively stable dynamics during year 4. All

three models produced results which fitted with the true temperature readings very

closely. Since the models produce good fits to the data under varying regimes, we can

conclude that over fitting is not taking place. In fact, the dependence of the OM in

the model, allows for a robust fit.
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Figure 5-2: Model 1,2,3 fitted models for cooling air temperature across first 5 years

Figure 5-3 depicts the percentage of days the GT dwells in a particular OM for each
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year for model 1(T), model 2 (M), and model 3 (B). For models 1 and 2, the results

are very similar. For model 3, a high percentage of the days were classified as normal.

For all three models, we see that across the time horizon, the system transitions out of

dwelling in abnormal OMs to normal OMs. Specifically, the GT witnessed many days

in abnormal operation during the first two years. The last three years were relatively

normal, in comparison. These results agree with Figure 5-2. Particularly, years one

and two show an unstable cooling air temperature signal, while year four shows a

stable temperature signal.

YW

1 2 3 4 6

Figure 5-3: OM classification: Normal=Light Grey; Semi-Normal=White; Abnor-

mal=Dark Grey; Other=Black
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5.3 Deterioration Results
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Figure 5-4: Evolution of Rotor Temperature, D8 , V, Cumulative Sum of D, across all

5 years (all graphs are subsampled every 10 days)

In Figure 5-4, we show three subfigures. Each subfigure has 3 lines, corresponding the

models 1,2,3. The first subfigure graphs deterioration, D, as a function of time, the

second graphs volatility V,, and the final subfigure graphs the cumulative deterioration

C,. The first result is that both volatility, V, and deterioration, D, are highly corre-

lated, implying that both volatility and magnitude of deterioration evolve together in
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time. We see that for all three models, D, values spike during years one, two, and

four, whereas years three and five have relatively low levels of deterioration. For V,,

model 1 has overall lower levels than model 2. In particular, for model 1, V, spikes

during year two and four, while for model 2, we observe peaks during years one, two,

and four.

The second result is that high dwell times in abnormal and semi-normal modes are

correlated with high deterioration levels. From Figure 5-3, it is seen that in year two,

there is an increase of the number of days in which the GT dwells in the abnormal

OM. Additionally, in the panel of Figure 5-2 corresponding to year four, notice that

during quarter two, the rotor temperature exhibits high variance. Hence, the dwell

time in the abnormal OM is positively correlated with high deterioration. In addition,

there is a correspondence between all three models with respect to the dwell times in

semi-normal OM (Figure 5-3) with elevated deterioration levels in years one and five.

Note that the observed deterioration levels, when the GT dwells in this OM are not

as high as when dwelling in the abnormal OM.

The third result is about the rate at which the deterioration evolves across the time

horizon. In the final panel of Figure 5-4 we show how the cumulative deterioration Q'

(ref. Equation 5.1) evolves over time for all three models. The important takeaways

from these graphs are the different rates at which the deterioration accumulates, during

each of the five years. We note that the maximum deterioration accumulation for all

models occurs in year two. During years one and two, the slopes are relatively higher

than the latter three years indicating higher rates of deterioration. Although models 1

and 2 observe similar deterioration and volatility graphs, across the five years, model

3, observes peaks of deterioration and volatility at differing times. The reason is due

to the three new OMs that model 3 detects. In fact, deterioration levels detected by

model 3 are due in part to the the existence of the new OMs, as we discuss further in

the next section.
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A Poisson process is assumed to govern the dwell times for the OMs in model 2

(HDP-HSMM). The exponential distribution, with parameter A is the probability

distribution that describes the time between events in a Poisson process. In Table 5.1,

we list the estimated A for each of the OMs, for each of four data groups. The

values estimated correspond to the percentage dwell times depicted in Figure 5-3. In

particular, for data group four, corresponding approximately to year five , for the

abnormal OM, A = 70.6715, meaning that in year five, the amount of time spent upon

entering the abnormal OM is extremely short (- 1/70.6715 days).

Data Group I OM A

1 N 7.609
A 8.4065

2 N 3.8512
S 0.833
A 70.6715

3 N 5.2688
S 2.8638

4 N 17.9668
A 2.963

Table 5.1: A for each OM for each data group (model 2

5.4 HDP-SLDS-HMM Results

A weak-limit approximation to model 3 (HDP-SLDS-HMM), with a ten-OM truncation

is also fit to the five year data set. Although ten OMs were learned, approximately six

OMs had significantly different characteristics. Also, in contrast to the models 1 and 2,

the emissions of the HDP-SLDS-HMM is a switching linear dynamical system (SLDS),

instead of the power output. Each of the six OMs represent a distinct relationship

(by matrix A) between the power output and the cooling air temperature. Figure 5-5

shows six rows of figures, corresponding to each of the OMs learned. The left figure

of each row depicts the mean power output signatures with .5 standard deviation

bands. The right figure depicts the mean cooling air temperature signatures, also
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with .5 standard deviation bands. The mean power signatures of the first three OMs,

corresponding to Figure 5-5 (panel (L) of rows 1-3) map directly to the "normal",

"semi-normal", and "abnormal" days, which were learned by models 1 and 2, as well.

The cooling air temperature signatures (panel (R) of rows 1-3) are also distinct in

each of these OMs. During normal days, the temperature is stable and high. On

semi-normal days, the temperature signature is stable, and decreases through the day.

On abnormal days, the temperature signature is stable, yet low, throughout the day.

In addition to these three OMS, the HDP-SLDS-HMM detects three new OMs, corre-

sponding to Figure 5-5 (rows 4-6). Although, all three of these mean power signatures

reach the ideal power output level ( .75), at some point during the day, each of these

three OMs are very volatile compared to the normal, semi-normal, and abnormal OMs.

Furthermore, the temperature signatures corresponding to these three OMs follow

a very similar "ramp-up" trajectory. The temperature signature of the fourth OM

(Figure 5-5: panel 2, row 4) takes almost three-fourths of the day to ramp up after

reaching ideal levels. The temperature signature of the fifth OM (Figure 5-5: panel

2, row 5) takes almost one-fourth of the day to ramp up after reaching ideal levels,

but then tapers off towards day-end. Finally, the temperature signature of the sixth

OM (Figure 5-5: panel 2, row 6) takes almost one-fourth of the day to ramp up after

reaching ideal levels.

Although the HDP-SLDS-HMM detects a larger variety of OMs, the percentages

of dwell time in the normal, semi-normal, and abnormal OMs are still the highest

with 79.6%, 9.2%, 6% respectively. Dwell times in the three new OMs, combined

account for less than 5% of the days. In terms of the degradation, the residuals

calculated on days residing in OM 4, are very high compared to the average value of

residuals with this model. The mean residual value for OM 4 is 293.7, whereas the

global mean value of residuals is 44.1. For days in OM 4, we see that the cooling air

temperature remains in non-ideal level for most of the day. Additionally, the step-

like signature in combination with the variance of the signal lead to high residual levels.
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Figure 5-5: HDP-SLDS-HMM OM mean power signatures (left column) with corre-
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5.5 Prognostics

The validity and prediction power of the NBP-HMM (model 1) is now developed using

the first five years of data using an out-of-sample data set: the sixth year of data. The

results are presented using 70 day "quarters" of the sixth year. Unlike the first five

years, the sixth year witnessed a disproportionately high number of normal OM days,

as shown in Figure 5-6 (panel 4), with the exception of the first quarter. In line with

this observation, the daily deterioration level D, was generally low as can be seen in

Figure 5-6 (panel 2), compared to the levels of deterioration witnessed during years

1-5. Spikes of degradation levels are observed, which manifest at those times when

the machine switched from normal to abnormal OMs.
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OMP~a.1

ftGO

Figure 5-6: Fitted NBP-HMM regression model (panel 1); D, (panel 2); Cumulative

Sum of D, (panel 3); Viterbi OM classification dwell percentages for the sixth year

(panel 4) (subsampled every 10 days)

Two methods to perform online prediction of the rotor temperature were tested. The

first method used a model bank ', each learned using in-sample data from quarter-year
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ij. To simplify notation, we index each quarter-year's model p by j (i.e., j = 1, ... , 20).

We subdivide the sixth year of data into overlapping 35 70-day windows, indexed by w

(i.e., w = 1, ... , 35). The overlap is ten days. For each window, we fit the NBP-HMM

presented above. Using the fitted model, we procure the OM labels for last twenty

days of the window, and calculate a three dimensional vector pw, where the three

dimensions correspond to the proportion of normal, semi-normal, abnormal OM days

witnessed during window w's last twenty days. The dimensions of this vector are

indexed by i (i.e., i = 1, ... , 3). Then, the optimal model for window W, p*(w) is

procured by computing the following min-max optimization.

p*(w) = arg min maxp' -Ipt (5.4)

This is followed by forward simulating p*(w) ten days, setting w's last days OM classi-

fication as the initial condition. The predictions, for each of these ten day "chunks"

are shown in Figure 5-7 (panel 1). The predictive power of the method is calculated

by computing the mean absolute error (MAE) for each 10 day chunk (Figure 5-7 panel

3). As can be seen, the predictive power diminishes towards the end of the sixth year.

This is expected since the model bank uses models only from the first five years, and

does not update within the sixth year. Yet, for the first fifteen quarters, the errors are

relatively low and stable.

The first method presented performs poorly towards the second-half of year six,

because none of the models in P provide a good fit to the dynamics observed in the

windows, which arise. To account for this weakness, a second method is formulated

which uses the most recent fitted model to forward simulate. The results are presented

in Figure 5-7 (panel 2). A drastic improvement in the models stability is seen. Across

most of the windows for the year, especially, towards the second half of year six, the

MAE is lower than the first methods.
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Figure 5-7: Predicted temperature time series using method 1 (panel 1); predictions

using method 2 (panel 2); comparison of mean absolute errors (panel 3); (subsampled

every 200 data points)
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For the HDP-SLDS-HMM (model 3), we can perform rolling prediction of the power

signal for the sixth year of data, as well. Similar to the procedure used with model

1, we can split the sixth year of data into blocks of 70-10 days. The first 70 days of

every block is used to fit a model, and the adjacent 10 days are used for prediction.

We can predict the power signal for 10 day blocks, by simulating the hidden state

evolution using the learned transition matrix, and then use the mean power signals as

predictions. Preliminary results indicate the trend of the power signal is well predicted

by this procedure. Yet, when the power signal reaches extremities, the prediction

power decreases.

67



Chapter 6

Concluding Remarks

The NBP-HMM, HDP-HSMM, and HDP-SLDS-HMM approaches presented in this

thesis produce robust estimates of abnormal behavior of temperature signals, whose

dynamics are governed by non-stationary dependent variables. The combination of

dynamical models and classical linear regression provides a robust procedure that can

be used to solve a variety of problems, even outside of reliability analysis. Inherent in

all three models was the HMM, which efficiently models the dynamics governing the

switch rates between OMs. In the NBP-HMM and HDP-HSMM, regression models

were successful in isolating the deterioration within OMs, controlling for factors

affecting the subsystem. The BNP-HSMM eliminated the procedure of pre-positing

the OM-cardinality, by subsuming it into the Bayesian framework, and allowed for OM

dwell time analysis. Results for both models were very similar, shedding light on the

overall stability of the approach. The final model explored was the HDP-SLDS-HMM,

which detected six OMs. Each of the OMs encapsulated different power-temperature

relationships. All three models can be extended to include other critical assets of

the GT. Furthermore one can use the modeling framework to do stochastic control,

including optimal design of condition-based maintenance. Finally, the information

on degradation rates can be used by GenCo to do generation planning, to aid in

scheduling its power generation in the face of demand fluctuations in the wholesale

market, given that the volatility in generation schedules has a direct impact on the

rate at which turbine parts deteriorate.
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