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Abstract

Personalized on-demand robots have a vast potential to impact daily life and change how
people interact with technology, but so far this potential has remained largely untapped.
Building robots is typically restricted to experts due to the extensive knowledge, experience,
and resources required. This thesis aims to remove these barriers with an end-to-end system
for intuitively designing robots from high-level specifications. By describing an envisioned
structure or behavior, casual users can immediately build and use a robot for their task.

The presented work encourages users to treat robots for physical tasks as they would treat
software for computational tasks. By simplifying the design process and fostering an iterative
approach, it moves towards the proliferation of on-demand custom robots that can address
applications including education, healthcare, disaster aid, and everyday life.

Users can intuitively compose modular components from an integrated library into complex
electromechanical devices. The system provides design feedback, performs verification,
makes any required modifications, and then co-designs the underlying subsystems to generate
wiring instructions, mechanical drawings, microcontroller code for autonomous behavior,
and user interface software. The current work features printable origami-inspired foldable
robots as well as general electromechanical devices, and is extensible to many fabrication
techniques. Building upon this foundation, tools are provided that allow users to describe
functionality rather than structure, simulate robot systems, and explore design spaces to
achieve behavioral guarantees.

The presented system allows non-engineering users to rapidly fabricate customized robots,
facilitating the proliferation of robots in everyday life. It thereby marks an important step
towards the realization of personal robots that have captured imaginations for decades.

Thesis Supervisor: Daniela Rus, Professor and Director of CSAIL
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Chapter 1

Introduction

If you can dream it, you can do it.

� Walt Disney
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1.1 Vision

Robots have long represented the cutting-edge of technology, weaving their way through

our books, theaters, movies, and above all our imaginations. The idea of customized personal

robots has embedded itself in the heart of many visions of technology and hopes for the future.

It is at the forefront of the intersection between what we know should be possible and what

has not yet been realized.



CHAPTER 1. INTRODUCTION

Figure 1.1: Making personal robots should be as easy as downloading and
customizing a piece of software. Illustrated here is a conception of a novice
user intuitively designing a robot from customizable building blocks.

This gap has mostly been due to a large knowledge barrier imposed by modern processes.

Currently, intricate low-level knowledge and experience regarding the interactions between

electrical, mechanical, and software systems must be leveraged to design and fabricate robots.

This process often involves multiple software packages and computer-assisted technologies,

adding to the list of domain-speci�c training required to build complex electromechanical

systems. Furthermore, the entire time-intensive iterative design �ow frequently begins anew

for each robot as the implementations become specialized for certain tasks. As a result,

robots have become increasingly commonplace in research and industrial settings, where the

necessary knowledge exists and where special-purpose robots are very useful, but they have

not in�ltrated everyday life for mainstream society.

To address this issue, a system is needed that automates the design and fabrication of

robots. Non-engineering users should be able to describe what they want a robot do at

a very high level, and with minimal additional interaction obtain a completed robot that

achieves the task. The presented system works towards this goal by allowing users to design

robots by connecting customizable building blocks from a library � this could lead to robot

12



1.1. VISION

kiosks such as the one envisioned in Figure 1.1, where users can describe and immediately

obtain fully operational robots. On-demand robots could then address a wide variety of

applications including education, disaster search and recovery, healthcare, everyday tasks,

and beyond. If making a robot to solve a physical problem is as easy as downloading an app

to solve a computational problem, then robots can begin to proliferate and improve people's

lives throughout society in ways only limited by creativity.

13
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1.2 Contributions

The presented work brings this future of pervasive on-demand robots closer by enabling

the co-design of electrical, mechanical, and software systems from high-level user speci�ca-

tions. It creates a framework for experts to design parameterized low-level building blocks

encapsulating all necessary design information, and for algorithms to hierarchically compose

these blocks into collections of ever-increasing complexity. This results in a library of robotic

components that casual users can browse, interconnect, and customize.

Using this system, a user describes what the robot should look like and how it should

interact with the environment while the implementation details are autonomously managed

behind the scenes. The system veri�es the design, makes adjustments and completions to

ensure functionality, and ultimately produces a fabricable set of outputs including the robot

structure, electrical layouts, bills of materials, low-level driver code, high-level behavioral

software, smartphone user interfaces, and assembly instructions.

In particular, this work describes the following:

• an end-to-end software system leveraging a modular parameterized element that can
encapsulate all necessary design information such as electrical, mechanical, and soft-
ware data

• algorithms for hierarchically composing these modules into new components of ever-
increasing complexity while retaining and appropriately modifying the encapsulated
design information

• a library of modular robotic components designed in this manner

• algorithms to allow casual users to select parts from this library and intuitively drag
them together to design a robot

• an intuitive graphical design process that merges structure and behavior via informa-
tion �ow among modular components

• algorithms for analyzing user designs to verify functionality, and to address issues by
autonomously inserting or removing components and connections

14



1.2. CONTRIBUTIONS

• algorithms for autonomously compiling a �nalized robot design, speci�ed as a collection
of modules, into fabricable outputs that include:

� electrical layouts and bills of materials

� mechanical �les such as 2D drawings for origami-inspired foldable robots or solid
object �les for 3D printing

� assembly instructions to guide the user through the mechanical fabrication and
electrical wiring

� a customized graphical user interface to wirelessly control each new robot from a
smartphone

� software that can be immediately programmed onto the robot's microcontrollers,
containing low-level driver code as well as high-level control software so the robot
performs the desired autonomous behavior

• a custom serial communication protocol to enable reliable information exchange through-
out mesh networks of interconnected microcontrollers

• higher-level tools that allow the user to start by describing desired robot behaviors
instead of structures

• higher-level tools that provide behavioral simulations and design space explorations for
systems of personalized robots to achieve behavioral guarantees

• sample robots and electromechanical devices designed and fabricated using this system

The core system, the robot compiler, provides an intuitive design interface for robot sys-

tems by encouraging hierarchical compositions of customizable base components that are

drawn from a modularized library. The system then compiles these design speci�cations

into integrated fabricable outputs, co-designing the electrical, mechanical, and software sub-

systems. Various algorithms are implemented to e�ciently achieve this synthesis and to

provide feedback, while a custom serial communication protocol ensures reliable communi-

cation among microcontrollers on the �nal robots. Higher level extensions have then been

added to this core system; these allow novice users to start by describing envisioned behavior,

and provide tools for simulating systems of designed robots and for modifying parameters

to ensure that behavioral guarantees are satis�ed. As a whole, the presented work moves

towards the vision of pervasive customized robots by allowing casual users to intuitively

rapidly prototype novel inexpensive robots.

15



CHAPTER 1. INTRODUCTION

1.3 Software-De�ned Hardware Using a Modular Library

If casual users are to feel comfortable designing and building a robot, then the interface

should mirror those of common services that they already use in other aspects of their lives.

From browsing home decoration catalogs or customizing a new car, to preparing a gourmet

meal or ordering a laptop, people are accustomed to selecting from libraries of options in

order to achieve an overall vision, consulting an expert if necessary. They may also hire

a professional to independently make choices based on a description of the overall vision.

The same paradigm can be applied to creating robots; components of varying complexity,

such as sensors, motors, grippers, or arms, can be chosen from a library to assemble a robot

design while the tedious details are processed behind the scenes. If a user is unsure of

what components to choose or how to connect them, the system may act as the expert by

autonomously making decisions and recommendations. If the system also accepts behavioral

or task descriptions, then the user can simply provide a high-level vision and allow the system

to independently choose components from the library. In this way, a robot can be intuitively

designed without worrying about the underlying engineering challenges. A conception of a

robot kiosk implementing this paradigm can be seen in Figure 1.1.

The long-term objective is therefore to develop a hardware compiler that can automati-

cally design and fabricate a robot to accomplish desired goals from a description of the desired

tasks. Towards this end, the current system modularizes electrical, mechanical, software, and

user interface elements to create a database of parameterized blocks encapsulated in a com-

mon abstraction suitable for hierarchical composition. It allows electrical, mechanical, and

software components to be coupled at the lowest level by experts, and then abstracted into

functionally de�ned blocks usable by novices. From compositions of these blocks, the system

automatically generates complete robot designs including electrical layouts, fabrication �les,

�rmware, software for autonomous behavior, and user interfaces. Higher-level algorithms are

also written on top of this foundation, allowing for intuitive user inputs such as functional

requirements and behavioral descriptions.

16



1.4. DESIGNING ROBOT STRUCTURES USING INFORMATION FLOW

1.4 Designing Robot Structures Using Information Flow

In order to allow users to intuitively design robots, the system should encourage a design

�ow that leverages how people already approach design tasks. Towards this end, the pre-

sented model focuses on describing the �ow and manipulation of information among chosen

components. For example, a designer may focus on how the motion of one component should

in�uence the motion of another component, or on how interacting with a graphical interface

a�ects the robot's behavior. An illustration of this is shown in Figure 1.2; red mechanical

arrows indicate physical connections among parts, thus illustrating the �nal structure, and

green arrows indicate data �ow among parts, thereby illustrating communication and behav-

ior. A concrete example of information �ow using implemented components from the current

system can also be seen in Figure 3.14. By visualizing the �ow of information and actions

in this way, the behavior of the robot as well as the relationships between components can

be made readily apparent without exposing implementation details.

Internally, each component of the database is an encapsulated module that can be con-

ceptually replaced by a parameterized �black box" mapping a set of inputs to outputs. These

ports conceptually transmit information related to the behavior de�ned by that component.

Ports can take on a number of di�erent types, depending on the nature of the informa-

tion transmitted therein. Electrical ports transmit electrical signals, and their connections

are realized by wires or other communication channels. Data ports represent the �ow of

conceptual information such as software values, and their connections are realized by code

functions or variables. Mechanical ports transmit information in the form of spatial position

and orientation, and their connections are realized by physical joints. By providing ports of

di�erent types on the same component, these various subsystems are integrated and designed

simultaneously.

Connecting library components along their interfaces traces a path of information from

a set of inputs to a set of outputs through various transformations. The overall input/out-

put relationship de�nes the functionality of the designed mechanism, while the speci�c path

describes an implementation. Di�erent implementations can achieve the same target func-

17



CHAPTER 1. INTRODUCTION

Figure 1.2: This conceptual illustration indicates a design based on in-
formation �ow using modules from a robot library. Red arrows indicate
mechanical connections, re�ecting the �nal structure; for example, the mo-
tor is connected to the leg which is mounted on the torso. Green arrows
indicate information �ow, and re�ect the communication paths and be-
havior; for example, the hand receives object detection information from
a camera, a gripper closes in response to noise, and pressing a button
activates a motor.

tionality; for example, pressing a user interface button may move the robot forward regardless

of whether the robot uses legs or wheels. Mapping the �ow of both conceptual and physical

information provides a means of visually understanding the overall behavior at a high level,

while directly re�ecting the underlying hierarchical composition.

1.5 Designing Robot Behaviors

Using information �ow among modules to design a robot marks a compromise between

high-level abstractions and low-level details, providing a middle ground for novice and expert

users. Novice users can go a level higher and design from behavioral descriptions, allowing

the system to make autonomous decisions about constructing the information �ow, while

expert users can go a level lower and inspect or create individual components.

18
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To facilitate higher-level abstractions, two extensions have been added to the robot com-

piler. The �rst builds upon the foundation of modular components and algorithms to allow

users to specify desired behaviors. The system generates a �nite state machine controller

from the behavioral description, then aids the user to choose appropriate components and

shape the information �ow. The result is a system that starts with a functional task speci-

�cation and ends with a complete autonomous robot.

A second extension to the robot compiler provides tools for simulating and verifying

behavioral properties of robot systems, as well as for parameter exploration. It leverages a

new programming language designed for controlling robots to grant intermediate users the

ability to program high-level behaviors in a more intuitive manner. It also interfaces with the

robot compiler's library and algorithms, allowing for the creation of robots that achieve the

behavior. The robot compiler also generates kinematic models of these robots that enable

the new extension to simulate their interaction with the environment and with other robots.

In this way, it can verify global behavioral properties for systems of robots, explore di�erent

component parameters to adjust the robot designs, and provide robot controller logic that

will achieve the desired goals.

19
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1.6 Thesis Outline

An outline of the thesis is depicted in Figure 1.3. It begins with a discussion of related

work in Chapter 2. Chapter 3 then provides an overview of the robot compiler software

system, describing the class infrastructure and the subsystems implemented for robotics

applications. Chapter 4 then expands on the issue of automated software generation within

this framework, including how component connections, data networks, user interfaces, and

robot behaviors are realized for each new robot. A novel serial communication protocol is

then presented in Chapter 5, which enables reliable communication between microcontrollers

in mesh networks. Chapter 6 uses all of these tools to synthesize user-speci�ed designs,

perform automated design veri�cation and modi�cation, and produce complete mechanical,

electrical, and software outputs.

Sample robots and other electromechanical devices generated using this system are pre-

sented in Chapter 7. These include origami-inspired printable robots as well as a distributed

robot garden and more general electromechanical devices. Each of these has an associated

user interface, and most of them also demonstrate autonomous behavior.

Extensions to the robot compiler foundation that enable the abstraction of user input

to a higher level are then described. Chapter 8 allows users to start with a functional task

description instead of structural speci�cations. Chapter 9 enables simulation and parameter

determination for multi-robot systems to achieve desired behavioral guarantees.

Finally, Chapter 10 presents potential areas for future work as well as concluding remarks.

Together, these chapters describe an end-to-end system that facilitates the rapid prototyping

of customized personal robots. With it, an important step is taken towards changing how

people view robots and how robots shape everyday life.

20



1.6. THESIS OUTLINE

Figure 1.3: The thesis is divided into chapters that describe the core
robot compiler as well as higher-level extensions implemented on top of
its library and algorithms. It also presents a wide range of robots and
devices created using the end-to-end system.
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Chapter 2

Related Work

The more that you read, the more things you will know.

The more that you learn, the more places you'll go.

� Dr. Seuss

Contents

2.1 Modular Robotics and Design Automation . . . . . . . . . . . . . . . . . 24

2.2 Rapid Prototyping of Robot Structures . . . . . . . . . . . . . . . . . . . 25

2.3 Robot Controllers and Simulation . . . . . . . . . . . . . . . . . . . . . . 26

The system presented in this thesis builds upon work from the realms of rapid fabrication

technologies, modular design methods, functional speci�cations, programming frameworks

for robotic embedded systems, and robotic system speci�cation. Most directly, it joins

and extends previously published work regarding the robot compiler foundation [1�3], the

distributed robot garden system [4], and the robot compiler's integrations with Cornell's

LTLMoP [5] and MIT's React [6].



CHAPTER 2. RELATED WORK

2.1 Modular Robotics and Design Automation

The use of modular methods can greatly simplify, clarify, and speed up system design.

There has been research regarding how to decompose systems into modules [7], and this

paradigm has been widely adopted throughout the software development communities. Mod-

ular design can also be applied to robot creation to achieve similar bene�ts over custom

design [8, 9] and work has even been done to try to automate such a design process [10].

Various commercial products have also been developed that work to make robots modular

and accessible to people of widely varying levels of experience. For example, littleBits [11],

MOSS [12], and VEX [13] o�er a variety of electronic modules that can snap together to

form basic functional products. The user does not need to write any code in order to use

these blocks, but the lack of an option for intuitive programming can be a hindrance when

creating complex systems. Similarly, while the blocks o�er a wide range of functionality, the

electronics are linked to the mechanical structures to an extent that may make it di�cult

to quickly create an arbitrary robot. Another widely used and highly developed modular

system is Lego Mindstorms [14]; this provides a �exible platform with a suite of devices that

all connect directly to a central processor, and a relatively simple programming interface to

allow for more complex designs and increased control.

These research and commercial systems all call upon the use of a discrete set of specially

designed physical modular building blocks, adding expense and limiting the con�guration

space. The system presented in this thesis adapts the modular design method to use o�-the-

shelf electronics and a 2D cut-and-fold fabrication process, enabling a much broader range

of customizability from cheaper raw materials. Furthermore, it helps to automate the design

process by, for example, recommending components and performing basic veri�cations and

modi�cations. The mechanical, electrical, and software designs are synthesized automatically

for each new robot from high-level user descriptions.

While physical structures are often designed in an interactive graphical environment using

CAD software, this has not been readily extended to complex integrated electromechanical

24



2.2. RAPID PROTOTYPING OF ROBOT STRUCTURES

products. Towards this end, there has been work on creating domain speci�c programming

languages to specify hardware designs using software for electrical circuits [15] and rigid

bodies [16]. This software-de�ned-hardware paradigm has also been used to de�ne robotic

designs for simulations using a scripted modular language [10,17]. Finally, recent tools such

as the robot compiler presented in this work and ROSLab [18] make use of the democratization

of rapid prototyping technologies to unify the development of manufacturable robots. The

system presented in this thesis employs a similar design method for user input, while focusing

on physical device creation and directly compiling user designs into fabricable outputs.

2.2 Rapid Prototyping of Robot Structures

There has been a growing body of research related to the rapid fabrication of mechanical

structures using a variety of techniques.

Arbitrary on-demand structures are generally achievable by additive manufacturing using

3D printers, and advances in printer technology have made desktop printers such as [19,

20] available to the general public. However, while complex solid geometries are easily

manufactured with 3D printing, achieving the required compliance and mobility necessary for

general robotic systems is di�cult using most common techniques [21]. Limited workarounds

have been explored [22, 23], but these often lack robustness or reliability. In addition, 3D

printers are typically plagued by long fabrication times � though quicker than conventional

manufacturing processes, parts still take on the order of hours to build.

Mechanical structures can alternatively be realized in an origami-inspired process by

folding patterned 2D sheets into the desired geometry. A variety of substrates are possible,

including cardboard laminates [24], single layer plastic �lm [25], or more exotic materials

such as for small exoskeletons [26] and metallic structures [27]. These designs can be man-

ually folded by hand, folded by embedded or external active stimuli, or passively folded

by controlled environmental conditions [28, 29]. These processes have been used to create

passive 3D structures [28,30] as well as active programmable robots such as insect-like micro-
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robots [26], hexapedal robots [31], and worm robots [32]. The system presented in this paper

employs these origami-inspired fabrication processes to rapidly create inexpensive robots.

Although such 2D fabrication methods have been employed for rapid prototyping, being

able to manufacture devices in a time frame of minutes, creating the fabrication drawings

typically requires careful hand design by experienced engineers. The aforementioned works

used sophisticated 2D CAD programs, generating drawings that were di�cult to visualize as

3D objects, and custom electronic circuitry and software to drive the actuators. The robots

were created as monolithic integrated designs, and so these issues compound as designs

grow in size and complexity. Progress has been made towards simplifying this process, for

example by using manually scripted elements to simplify design iteration [33] or by using a

component-based mechanical design [34]. These works remain within the realm of designing

desired structures, however, rather than abstracting the design input to a task-based level

or integrating electrical and software systems.

There have also been attempts to automate the decomposition of 3D shapes into 2D

fold patterns [35�37]. These tools and algorithms, however, focus mostly on solid objects,

employing various heuristics to generate polyhedra obeying certain rules; compliant and

kinematic structures are not addressed.

2.3 Robot Controllers and Simulation

There has been an increasing interest in the robot community regarding the automatic

construction of provably correct robot controllers from high-level or temporal logic task

speci�cations. These controllers, if successfully synthesized, will behave as speci�ed in the

mission statements.

The synthesis and execution of these controllers from temporal logic speci�cations have

been demonstrated [38, 39]. Work has also been done to address a variety of challenges

regarding the controllers, such as a changing workspace during controller execution [40,
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41], motion planning for robots given temporal goals [42], and generating optimized robot

trajectories from temporal logic task speci�cations [43]. These controllers can also be used

to control multiple robots [44].

The arti�cial intelligence and planning communities also have languages to create func-

tional speci�cations, such as STRIPS [45] or PDDL [46]. Using these planning languages,

functional speci�cation is de�ned and solved with the composition of various actions that

each consist of pre-conditions or post-conditions. As an extension to the robot compiler,

high-level task speci�cations are used to generate provably correct robot controllers for cus-

tomized behaviors. The functional speci�cation system for this work stems mostly from [47].

Given a robot model and its environment, controllers that satisfy high-level task speci�ca-

tions are automatically composed; this controller is then converted to microcontroller code

by the robot compiler and the robot library is used to instantiate a physical robot that

achieves the desired behavior.

There has also been substantial research regarding the behavior of controllers that interact

with the external world, as in the case of cyber-physical systems. A paramount question

for this area is how to handle time. From a theoretical perspective, timed systems are well

studied [48, 49] and the semantics of timed languages such as Giotto [50] have successfully

transferred to embedded systems in industry [51]. However, due to the complexity of the

hardware and software stack, even determining the worst case execution time of a program

can be di�cult [52]. Therefore, few programming languages feature time in their primitives.

Considering more general interactions between a discrete software controller and the con-

tinuous physical world leads to hybrid systems [53�55]. A hybrid system contains both a

discrete part such as a software controller and a continuous part such as a robot subject

to the laws of physics. In the hybrid automata formalism [54], a hybrid system is a �nite

automaton where each state has associated continuous dynamics described by di�erential

equations. The analysis of hybrid systems is a hard problem that is only decidable for sim-

ple subclasses [53, 56�58]. Most of the work on veri�cation of hybrid systems, and more

generally numerical programs, has focused on linear systems or uses linear abstractions.
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Non-linear systems are still an open challenge [59], and the body of work on them is more

limited and more recent [60�63].

From a practical perspective, there exists fully integrated modeling and programming

environments such as Simulink [64] and LabView [51] that provide both simulation and code

generation. Modelica [65] is a language purely for modelling and simulation that can be seen

as a generalization of bond graphs [66] for multi-domain systems such as those incorporating

mechanical, electrical, and hydraulic components. For programming, the Robotic Operating

System (ROS) [67] aims at streamlining the development of high-level software for robots

and has found applications in both academia and industry. For low-level programming,

Wiring [68], based on the concepts of Processing [69], is popular for programming simple

microcontrollers such as Arduinos.

The programming language React works towards addressing many of these concerns re-

garding robot controllers and behavioral programming. Integrated with the robot compiler,

it helps to provide an integrated system within which robots can be simulated, designed,

programmed, and fabricated.
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Chapter 3

Robot Compiler Architecture

It is always wise to look ahead, but di�cult to look further than you can see.

� Winston Churchill
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The robot compiler is a software system with a versatile framework of classes and algo-

rithms for creating and composing components, as well as a growing library of integrated

modules. It enables rapid fabrication of complex devices by automating the co-design of elec-

trical, mechanical, and software subsystems. The following sections outline the architecture

of this system, and describe the robotic subsystems currently implemented.

Some of the concepts presented in this chapter are also discussed in [1�3]
The complete code for the robot compiler can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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3.1 Compiler Overview

The design system is implemented as a Python package, with the designs themselves

de�ned and generated by Python scripts. This software-de�ned-hardware paradigm allows

for general cross-platform compatibility, and inherits many of the bene�ts inherent in soft-

ware development. It provides a great deal of �exibility and adaptability, allowing disparate

electromechanical mechanisms utilizing various fabrication methods to be readily generated

from the same design interface.

The software package implementing the integrated co-design environment is divided into

a few main categories, which are illustrated in Figure 3.1 and listed below:

• classes that de�ne the underlying code architecture of the software-de�ned-hardware,
such as parameterized integrated modules and domain-speci�c synthesizers

• algorithms to compose and instantiate module classes as well as to e�ciently manage
large collections of modules

• utilities and builder applications so that casual users can assemble library components
into higher-order electromechanical designs

• a library of instantiations of these classes, a few written by experts and many hierar-
chically composed by novices

• algorithms to autonomously verify and modify hierarchical designs as well as to gen-
erate complete robot designs from compositions

A few superclasses comprise the basis for the modular component library, and various al-

gorithms act upon them to allow for their hierarchical composition and for design generation.

This provides a general framework for modular design, and the current instantiations focus

on robotic systems; the modules therefore encapsulate electrical, software, and mechanical

information. Combining all subsystems into integrated components facilitates their simulta-

neous co-generation, allowing systems to interact and for robots to be holistically generated.

Since the generated robots are rapidly prototyped and largely reusable, an iterative approach

to personal robotics is encouraged.
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Figure 3.1: The robot compiler foundation consists of expert-de�ned su-
perclasses that can be hierarchically composed into increasingly complex
electromechanical designs by casual users. This creates a library of parts,
each of which can be compiled into fabricable outputs. Suites of included
algorithms operate in each phase of the process. The rapid and intuitive
nature of this process encourages an iterative design approach.

3.1.1 Hierarchical Compositions of Parameterized Modules

The fundamental unit of abstraction in this design system is called a component. This

represents an individual design element that can accomplish a self-contained set of func-

tionality, and provides the required encapsulation to de�ne and create that device. The

simplest components are basic building blocks of electromechanical structures, such as a dis-

crete LED, code method, UI toggle button, or mechanical beam. Expert users can directly

generate these low-level building blocks, while both expert and casual users can hierarchi-

cally connect existing blocks as illustrated in Figure 3.2. These higher-order components

can represent anything from mechanical assemblies and control systems to integrated elec-

tromechanical mechanisms and full robots. Each such hierarchical composition is itself a

component, de�ned by its collection of sub-components, how their interfaces are connected,

and which interfaces from its sub-components are exposed for future connections to the new
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Figure 3.2: Components can be hierarchically composed to easily create
more complex designs. Components contain subcomponents from the li-
brary, de�ne how they interconnect, inherit or constrain their parameters
to new higher-level parameters, and expose their ports for future connec-
tions. This new component can then be added back into the library.

super-component. A design library is initially populated with basic building blocks designed

by experts to provide a core set of functionality, and then expands as users create new

components by connecting existing components along exposed interfaces.

Components can be parameterized, allowing for �ne-tuned design customization. These

parameters de�ne adjustable values that quantitatively but not qualitatively change the func-

tionality of modules. Examples of parameters may include device models, voltages, feedback

loop gains, or geometric dimensions. They allow casual users to customize a component's

behavior without changing its fundamental function. Assigning values to all parameters of

a component fully speci�es that component, and is su�cient to generate fabricable design

�les for manufacturing. New components can inherit parameters from lower in the hier-

archy, de�ne new higher-level parameters, or create relationships and constraints between

parameters. As users select components from the library to design their robot, they can set

parameters of varying abstraction such as material thickness, �nger dimensions, number of

�ngers on a gripper, number of arms on a body, or the payload capacity of a gripping robot.

This paradigm allows a high degree of component reuse, enabling incremental adaptation

from earlier designs. Furthermore, the generated designs take the form of text-based code

scripts, and are therefore easy to share, modify, adapt, and extend using open source tools.
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3.1.2 Co-Design of Robot Subsystems from Modular Compositions

As a user de�nes the desired information �ow by combining electromechanical modules,

subsystem design information is collected behind the scenes to maintain an integrated design

throughout the modular composition hierarchy. Complexity is managed by nesting hierarchi-

cal constructions in an intuitive design abstraction, allowing an inexperienced user to easily

understand and utilize the design process. Ultimately, this high-level assembly of modules

can be directly compiled to generate fabrication speci�cations to manufacture the robot.

Component hierarchies are compiled by the system into a collection of �les necessary for

a user to manufacture the speci�ed design: the mechanical structure is made using 2D or

3D rapid fabrication processes from generated fabrication drawings, the user assembles the

electrical subsystem onto that structure guided by a bill of materials and generated wiring

instructions, and generated software gets loaded onto any microcontrollers. The resulting

robot can be wirelessly controlled from a generated user interface, autonomously controlled

from generated application software, or user-programmed with custom behaviors with help

from a generated control library. A snapshot of this process is shown in Figure 3.3.

The current implementations of the modules focus on origami-style 2D manufacturing

processes, which allow robots to be quickly cut and folded from paper or plastic. The

electronics are assembled into the folded structure according to generated instructions, and

the generated software is loaded directly onto the microcontrollers. This emphasis on rapid

fabrication and prototyping also encourages an iterative design process that integrates well

with the paradigm of designing based on information �ow. A user can design a robot,

fabricate it, test it, and then adjust the design accordingly to make a new robot. The

electronics can be reused across robots, while the mechanical structure is inexpensive and

rapid to produce. This enables the rapid iteration through designs or one-time use robots

often demanded by custom personal robots as well as educational applications.
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Figure 3.3: Once a design is �nalized by choosing and connecting compo-
nents from the library, �nal fabricable outputs are automatically generated
from the collection of modules. Here, an envisioned ant robot is created
using modules from the library, a subset of which is shown. Outputs then
include mechanical �les, such as 2D drawings for origami robots or CAD
�les for 3D-printable objects, electrical layouts and instructions, Arduino
software to control the robot, and an Android user interface.1

1Figure 3.3 is a frame of a video that can be found at http://people.csail.mit.edu/delpreto
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Figure 3.4: The core set of abstract classes include Parameterized for
quantitatively customizing modules, Port for forging connections between
modules, Component for representing a modular element, and Composable
for running domain-speci�c veri�cation and output algorithms. The class
inheritance structure among components and ports facilitates creating new
classes and re�ects subsystem interaction.

3.2 Compiler Classes

The software infrastructure used to implement the modular paradigm is comprised of a

few superclasses that allow for a wide range of instantiations depending on the application.

They provide ways to represent the design topology and its constituent elements, and to

convert that information into �nal electromechanical outputs. The relationships between

the core superclasses are illustrated in Figure 3.4, and descriptions are provided below.
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Parameterized is an abstract class that stores and sets parameters. It stores a dictionary

of parameters and their default values, and handles getting and setting values as well as

renaming or deleting parameters.

Port is an abstract subclass of Parameterized that represents an interface along which

components can be connected. It also provides an infrastructure for verifying whether ports

are allowed to connect to each other, facilitating automated design veri�cation. Subclasses

of Port can be created for each subsystem that extend the veri�cation logic and form an

informative class inheritance structure.

Component is an abstract subclass of Parameterized that represents a parameterized mod-

ular element and contains a set of hierarchically nested interconnected subcomponents. It

stores lists of its subcomponents, interfaces, connections, parameters, which interfaces and

parameters are inherited, constraints among parameters, and design requirements. Each

component is itself a complete design, and creates a tree structure via the subcomponents

and their connections. Similar to ports, the subclasses of Component can form an informative

class inheritance structure that help to illustrate the various integrated subsystems and how

they interact.

Composable is an abstract class that serves to process design information with domain-

speci�c logic for veri�cation and output generation. Composable classes form the software

that de�nes the physical outputs speci�ed by the components, combining the various me-

chanical, electrical, and software subsystems of the electromechanical device. Each subsys-

tem can de�ne a subclass of Composable that stores design information in a way that is

meaningful for its speci�c domain and that facilitates the conversion of information into

�nal outputs. Composable objects then interact with each other during the output phase,

creating an intelligent co-design of integrated electrical, mechanical, and software designs.

Together, these classes and their subclasses form the foundation of an integrated robot

library that can be used to intuitively design complex systems and generate complete outputs.
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Experts can directly create new subclasses, facilitated by the class inheritance structure, and

casual users can compose these blocks into designs of ever increasing complexity without

worrying about the details. The following subsections discuss each of these classes as well as

the library structure in more detail.

3.2.1 The Port Class

The Port class represents a pathway by which information passes to and from compo-

nents in a hierarchical design. Like components themselves, ports inherit from the abstract

Parameterized class and therefore have parameters that can be used to quantitatively cus-

tomize ports during design and implementation. When instantiating a connection between

interfaces of two components, ports can ensure that information logically �ows from one

component into the other.

Port requirements can be used to automatically determine appropriate interfaces to join.

For example, when connecting an analog sensor to a microcontroller, the sensor's electrical

output port must connect to an electrical input port that supports analog readings. Using

the port requirements, the system can automatically select suitable interfaces for the con-

nection. Similarly, the data, electrical, and mechanical subsystems will automatically be

joined as appropriate. Additional rules for port matching can be programmed to provide

more sophisticated design guidance and automation, and can be used to provide veri�cation

of user decisions.

To facilitate these rules for automatic connections and design principles, the Port sub-

classes de�ned by experts form a structure of class inheritance that illustrates how they relate

to each other and to the underlying subsystems. At the most general level, the Port class

allows for the speci�cation of port types to which it should connect and port types to which

it cannot connect, as well as basic rules for the veri�cation and determination of connections.

These principles are represented by a list of allowable mate types, a list of recommended

mate types, and methods called canMate and shouldMate. The Port class' implementation
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of canMate checks if any allowable types have been speci�ed, and if so checks that the given

port's type is a subclass of one of them. The shouldMate method is analogous but uses

the recommended mate types. Subclass implementations of Port can then override these

methods, calling the superclass methods to ensure basic compatibility while also providing

more sophisticated matching criteria. Class inheritance is also encouraged by the superclass

methods; if a subclass adds a recommended or allowable type that is a subtype of one al-

ready stored in the list, the higher-level type will be automatically removed and only the

more speci�c one will be stored.

New types of ports de�ned by experts inherit from existing port types, and can extend

their lists of recommended or forbidden types as well as their rules for verifying and forging

connections. For example, the abstract subclass OutputPort speci�es that it cannot connect

to another OutputPort and recommends connecting to an InputPort, while the abstract

subclass DataPort speci�es that it can only connect to other DataPorts. A slightly more

specialized port type such as DataOutputPort can inherit from both of these, automatically

inheriting both of their connection information. Together, this means that a DataOutputPort

will be mated with, for example, subclasses of DataInputPort. Class inheritance therefore

achieves the desired behavior without requiring any additional e�ort from the designer.

As each subclass can also add additional veri�cation logic, port connection principles can

quickly become quite sophisticated as the hierarchy grows. Examples of ports currently

implementing such an inheritance hierarchy for each subsystem are described in Section 3.3.

3.2.2 The Component Class

Component is a class that embodies the modular paradigm and represents the core building

block of the robot compiler library. It inherits from the abstract class Parameterized, which

allows it to store a list of parameters that may de�ne how the component is con�gured or

how it behaves. The basic information that a component stores, as well as how it supports

hierarchical composition and interacts with the other core classes, is illustrated in Figure 3.4.
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Every component contains the following to de�ne its state and its self-contained hierarchy:

• a list of its interfaces for connecting to other components

• references to its constituent subcomponents

• lists of how its subcomponents are interconnected

• information about how its own parameters and interfaces relate to those of its subcom-
ponents

• a list of which types of Composable are relevant to its required subsystems

• design requirements, such as other components that must be included in the design to
achieve desired functionality

This information represents the interconnected subcomponent hierarchy, and collections

of methods are included that act upon this modular information to allow the Composable

objects to produce �nal design outputs. Not all components will use all subsystems, but

a derived component will use every subsystem used by the subcomponents comprising its

hierarchy.

While a basic building block designed by an expert may not have any subcomponents,

higher-level components are created by nesting and connecting subcomponents and de�ning

relationships between them and the new component. A list of connected subcomponent

ports is stored to represent connections between subcomponents. Certain subcomponent

interfaces can also be �exposed," which means that the new component will inherit that

interface and allow future components to connect to it. Similarly, new parameters can

be added to a component, and subcomponent parameters can be inherited. Instead of

directly inheriting parameters, however, components may also store constraints between

parameters as equations in order to de�ne how con�gurations or behaviors relate to each

other. For example, dimensions of connected subcomponents can be constrained to re�ect

physical limitations, or voltage and current values can be equalized. By expressing the value

of a subcomponent parameter in terms of the values of its parent's parameters, complex

relationships can quickly evolve as the depth of the component hierarchy grows. This allows

for a versatile framework of composing modules and facilitates the percolation of information

throughout the design tree.
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While nesting of subcomponents is a �exible method of hierarchically composing compo-

nents into new designs for both casual users and experts, the Component subclasses written

by experts also represent a hierarchy through a structure of class inheritance. Any compo-

nent may serve as the superclass for a more specialized component, allowing new de�nitions

to inherit rules, parameters, parameter constraints, ports, types, and design principles from

previously designed components. This makes it easier for experts to design new components

since most of the tedious details have already been managed by pre-existing, higher-level com-

ponents. The current library therefore has expert-de�ned abstract subclasses of Component

that represent components from various subsystems such as electrical, software, mechanical,

and combinations thereof. Concrete subclasses of these then represent the basic building

blocks for hierarchical composition. Examples of classes that currently implement such an

inheritance structure are presented in Section 3.3.

The de�nition of a Component comprises lists of interfaces, subcomponents, parameters

with constraints, and connections. Each of these can be converted to textual representations

by using names of subcomponents and their class types, parameter names, string represen-

tations of equations and parameter values, and port names. Thus, a component can be

conveniently stored as a human-readable text �le. The current implementation uses a YAML

�le format [70], which is a human-readable data serialization standard. The Component class

contains methods for saving itself as a yaml �le, and for instantiating itself based on an exist-

ing yaml �le. This provides a convenient way to both de�ne and store derived components.

Typically, experts will de�ne a few abstract and concrete Python subclasses of Component,

and hierarchically derived components that are created as collections of these classes are

simply stored as yaml �les that reference the basic building blocks.
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3.2.3 The Composable Class

Composables are created for each speci�c subsystem to convert the design information

stored by components into �nal output �les. Separating the Composable class from the

Component class allows for distinct design and output phases. This makes computation more

e�cient, since composables need not be instantiated during the design phase and outputs

are only computed once the design is �nalized. The encapsulation of output algorithms in a

separate class inheritance structure also increases the adaptability and generalizability of the

system. Subclasses of the Composable class, inheriting from ones already de�ned within the

appropriate subsystem, enable experts to quickly provide support for new output processes

and formats. For example, one can easily switch between outputting a robot as an origami-

style fold pattern and as a 3D printed solid body, or even fabricate di�erent parts of the

robot using di�erent techniques.

In addition to generating �nal outputs, composables contain methods for analyzing and

validating their respective subsystems. For example, they can check port connections and

component requirements, and add new components or automatically forge new connections.

For an electrical Composable subclass, this may include choosing microcontrollers, assigning

controller pins to devices, and inserting voltage or current converters. This therefore provides

a means to encapsulate subsystem information and allow the system to perform meaningful

automated design feedback and modi�cation. The class inheritance structure also reduces

the e�ort needed by experts to create new classes, since much of the logic and intelligence

can be inherited from existing class de�nitions.

When a component is ready to be processed, it instantiates the Composable classes that

each subcomponent requires and provides it with known design information such as sub-

components, ports, and connections. The composable converts this information into a form

that is useful for its subsystem domain; for example, an electrical composable may only pay

attention to electrical ports and may store connections based on which microcontroller they

eventually a�ect. Composables from various subcomponents are then appended together,

using provided methods for incorporating information from another composable.
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Executing the output method of a composable generates output �les that specify the

creation of the respective subsystem. Electrical output �les include a bill of materials,

circuit diagrams, and wiring instructions to assemble the desired circuit. Software subsystems

include a set of program �les to be loaded onto the central microcontroller for both low-level

control and high-level behaviors, o�-board user interface apps for human control of the robot,

and code libraries that simplify the creation of custom control programs. Mechanical output

�les include a 2D vector drawing that can be directly sent to a laser or vinyl cutter to create

a cut-and-fold structure, and a solid object �le that can be built using a 3D printer.

Although separate composables are created for each subsystem, they do not operate

in isolation. When a design is veri�ed and modi�ed or compiled into �nal outputs, an

iterative process consults each Composable object in turn to produce new information and

possibly edit the design. In this fashion, each composable can impact decisions of each other

composable. By exchanging information among subsystems, an integrated co-design process

is implemented where the electrical, mechanical, and software systems interact with each

other to produce a coherent integrated design. More details about the algorithms embedded

within each Composable subclass will be discussed in Section 6.2 and Section 6.4.
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3.3 Implemented Subsystems and Component Library

The provided class infrastructure can be used for many di�erent modular systems, but

four subsystems for robotic applications upon which the current system focuses are the

electrical, software, data, and mechanical domains. The electrical, software, and mechanical

systems have direct realizations in the �nal robot, while the data subsystem focuses on

passing abstract data between modules to realize desired behavior.

All components and ports created for these subsystems are stored in an integrated library.

An expert-designed basic component may take the form of a Python class inheriting from

Component, or a Python script that instantiates a Component class and then manually spec-

i�es or augments its de�ning elements. Derived components, however, are speci�ed only in

terms of their subcomponent breakdown, and so can be stored in plain text using the YAML

markup language. Derived components can alternatively be created with a Python script,

giving greater con�gurability to an expert user. Currently, both a text-based console inter-

face and a simple graphical interface exist to allow non-expert users to build robotic designs

by intuitively assembling building blocks. A web interface is currently under development.

Figure 3.5: A core set of superclasses has been created for the electri-
cal, data, software, and mechanical subsystems that forms the basis for
concrete subclasses and hierarchical compositions. Class inheritance, in-
dicated by arrows and color-coding, represents the interaction between
subsystems.
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Figure 3.6: Various abstract Port subclasses are provided for creating
connections between subsystem components, as manifested by their in-
heritance structure. Instantiations of the concrete classes can then be
used to create information channels between components.

Figure 3.7: Subclasses of Composable allow each subsystem to assert
domain-speci�c expertise during veri�cation and output phases of the
robot creation process.

The core set of Component superclasses de�ned for the robotic subsystems is illustrated

in Figure 3.5. Similarly, Figure 3.6 illustrates the prominent Port superclasses used by

these components. These expert-de�ned classes provide the building blocks for hierarchical

compositions, and their class inheritance tree illustrates the interaction between subsystems.

For each subsystem, a Composable subclass is also created to process the design informa-

tion with domain-speci�c algorithms. Shown in Figure 3.7, these allow for the interactive

veri�cation and output synthesis of user designs across the integrated domains.
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3.3.1 Electrical Subsystem

Within a hierarchical composition of elements, the electrical subsystem is determined by

the topology of the electrical devices and connections. Each device added to the design may

contain electrical ports, and connections between them represent physical connections that

describe how electrical information �ows throughout the design. Components additionally

containing other types of ports de�ne how the electrical information interacts with other

subsystems on the robot. A library of basic components and methods has been developed

to address the typical electrical needs of a robotic system, namely various forms of sensing,

actuation, processing, communication, and user interfacing.

Information Flow

The sources and sinks of electrical information can reveal the underlying structure of the

design. Devices such as sensors or communication modules can source electrical information,

and devices such as servos or LEDs can sink electrical information. Note that the overall

information �ow does not necessarily start or stop at these devices, but the electrical in-

formation does; for example, a communication module may take in a conceptual value and

convert it to electrical information, and the servo takes in electrical information and con-

verts it to mechanical information. These devices may therefore serve as electrical sources or

sinks while being sinks or sources for other types of information, highlighting the interplay

between subsystems.

Less informative ports such as power connections, and details such as particular microcon-

troller pins used, are abstracted away from the user during the design process. At fabrication

time, the system automatically creates power connections, chooses particular pins and pin

types, and inserts devices such as microcontrollers or power converters if necessary so that

only the informational �ow needs to be considered during design.
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Figure 3.8: A combination of abstract and concrete classes is provided
for creating electrical components. These provide the basis for more so-
phisticated hierarchical compositions or more specialized subclasses. The
class inheritance, indicated by arrows and color-coding, illustrates that
the electrical system closely interacts with the data and software systems.

Library Components and Ports

The expert-de�ned abstract subclass ElectricalComponent inherits directly from Component.

It adds parameters such as voltage and current, and veri�cation logic related to these pa-

rameters, to describe the electrical characteristics. Other subclasses then inherit from this

component, and derived components are created by hierarchically composing such objects.

Both cases allow for the new parameters such as voltage to be inherited or constrained,

ensuring proper electrical functionality. In this way, a library of basic components has been

developed that addresses the typical electrical needs of a robotic system.

The class hierarchy for the electrical subsystem as well as a sampling of some derived

components are shown in Figure 3.8. Some components such as voltage bu�ers may be

solely electrical devices, representing devices such as operational ampli�ers or discrete LEDs.

Most components in the library, however, span other subsystems as well. For example,

microcontrollers include software and driven components include software and data ports.
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Some inherited classes such ServoAngle simply adjust parameters of their parent classes,

while others such as BluetoothTransceiver o�er new functionality. Each of the concrete

classes can be further customized via their parameters, for example by choosing voltage levels

or device models. An example of hierarchical composition is also illustrated by the mounted

servo, which contains a mechanical mount and a driven servo, and by the controlled servo,

which contains a mounted servo and a UI element.

The library has been populated with discrete electronic components that have standard-

ized header connectors, allowing for simple plug-in connections between devices. This elimi-

nates the requirement for custom printed circuit boards (PCBs) to handle electrical intercon-

nects. However, the system does not preclude such design elements � the extensible nature of

the component abstraction can allow an expert designer to implement a PCB Composable to

enable more complex electrical devices and circuits, at the expense of in-home fabricability

for a casual user.

A number of electrical ports, shown in Figure 3.6, have been de�ned that re�ect typical

connections seen in a robotic control system. These inherit from an abstract superclass

ElectricalPort, which can be dynamically con�gured as various types via parameters. In

particular, there are parameters for whether the port is analog or digital, and what type

of protocol it expects (e.g. serial communication, I2C, direct voltages, etc.). The rules

for recommended or forbidden connections are then extended to check these parameters

in addition to the usual checks based on class type. This allows for greater con�guration

�exibility without the need to create a new class for every possible port type. Furthermore, it

allows electrical ports to dynamically change their con�guration, which is particularly useful

for microcontroller ports. The concrete classes shown such as AnalogInputPort can simply

set the protocol and type parameters accordingly, simplifying the creation of these classes

by experts. In addition, the MicrocontrollerPort can store an electrical port object for

each pin along with a list of the possible protocols and types, allowing it to quickly check if

connections to other devices are possible and to change con�gurations as ports are connected.
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(a) Each module features connections for

upstream and downstream modules as well

as three ports for connecting devices such

as servos, LEDs, or digital and analog sen-

sors. These modules are designed to be plug-

and-play and do not require reprogramming

based on location or connected devices.

(b) Modules can be connected together to

form distributed chains, allowing arbitrary

numbers of devices and diverse physical lay-

outs. In this case, two chains have been

added to the brain and devices such as mo-

tors, LEDs, or sensors can then be plugged

into any of the modules' ports.

Figure 3.9: Plug-and-play hardware modules serve as interfaces between
devices and the main controller, expanding the capabilities and allowing
the electrical layout to mirror the mechanical layout.

Hardware Modules

The electrical subsystem is not designed in isolation, and components may directly serve

as interfaces between subsystems by containing ports of di�erent types. Moreover, many elec-

tromechanical devices required to accomplish physical tasks are often distributed throughout

the robot structure. Hardware modules have been developed to facilitate this co-design and

allow the electrical layout to mirror the mechanical structure.

The modularity and scalability of the electrical system is enhanced by plug-and-play

hardware modules that serve as interfaces between electrical devices and the main controller.

Each module uses an ATtiny85 microcontroller to drive three general ports, as shown in

Figure 3.9a. These can be independently con�gured as digital outputs, PWM outputs,

digital inputs, or analog inputs. Since these modules are designed to be plug-and-play, the

code loaded on the modules does not change according to the robot design; on startup, the

main controller sends the modules any necessary design-speci�c data such as what pin types

to use. Communication is established between a module and the main controller via a one-
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wire serial protocol, and messages are then exchanged such that users can attach devices

to the modules as if they were being attached to the main controller. Modules can also be

chained together, as shown in Figure 3.9b, in which case messages are passed along the chain

until they reach the desired module.

In this way, the number of possible devices is no longer limited by the number of pins

on the main controller. This approach also facilitates the physical distribution of devices

across the robot while reducing the wiring complexity, thus allowing the electrical layout

to naturally mirror the mechanical layout and reducing user e�ort during assembly. The

�exible nature of the hardware modules can also be leveraged during automatic design, since

the system can insert them where needed in order to join devices together.

Composable Subclass

The ElectricalComposable class is a subclass of Composable that processes the electrical

subsystem. Its veri�cation methods can check voltage and current requirements as well as

microcontroller requirements. It can choose microcontrollers to use based on the collection

of devices in the design, choose appropriate controller pins for devices, assign controller pin

types, and address power requirements. It can also exchange information with the mechanical

composable to determine if hardware modules would be desirable. Similarly, it interacts with

the data and software composables since the wiring choices will a�ect how data is passed to

and from microcontrollers and what software will need to be generated. At output time, it

produces a bill of materials, circuit diagrams, and wiring instructions for the user.
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3.3.2 Software and Data Subsystems

In general, electrical systems on a robot are controlled by processors such as microcon-

trollers, and thus the design of an electrical subsystem must directly interact with the design

of a software subsystem. This subsystem includes driver �rmware for controlling devices,

higher-level microcontroller code, UI generation, and the ability to automatically generate

code for robot behaviors. With this subsystem, components may pass information such as

desired servo angles or UI slider positions as conceptual data values.

Information Flow

The software and data subsystems maintain an information �ow among themselves and

also create the infrastructure for information �ow between other subsystems. Among them-

selves, subsystem topologies describe how conceptual data values move throughout the de-

sign. For example, UI elements such as toggle buttons or sliders can be information sources,

and variables or UI displays can be information sinks. When coupled with other subsystems,

data and software modules help to convert between information types and facilitate the co-

design process. For example, the value from a UI slider may be converted to a mechanical

output by a servo driver, and microcontrollers can generate code that controls robot devices

or provides higher-level behavior. Data modules are frequently embedded as subcompo-

nents within higher-order derived components, and are frequently automatically inserted by

automated design veri�cation and modi�cation procedures.

An important function of this information �ow is the graphical de�nition of robot behav-

iors. By connecting a servo to a light sensor via a scaling block, for example, a user can

specify that a servo turn on in response to light; the system will automatically insert any

additional blocks and software necessary to implement the desired functionality. User inter-

faces can be similarly de�ned by connecting UI elements directly to physical components,

such as connecting a UI toggle switch to an LED. In this way, robot behaviors can be easily

de�ned in an intuitive manner. For more arbitrary relationships and increased �exibility,
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Figure 3.10: The basic building blocks created for the software and data
subsystems allow information to �ow between components and to generate
control software. They enable data transformations and conversions, robot
behavior via the direct linking of physical and conceptual modules, and
graphical programming capabilities.

graphical programming blocks are also provided to allow intermediate users to graphically

program the robot with arbitrary code that directly connects to the physical components.

For example, an if/else block can be directly connected to a light sensor output for its

conditional criteria. This therefore provides signi�cant versatility and a way for novice users

to generate sophisticated robots.

Library Components and Ports

A collection of abstract Component subclasses are provided in the library as the basis for

software, data, and UI subsystems. Some of these are illustrated in Figure 3.10, and are

described below.

• CodeComponent is an abstract subclass of Component that represents a component with
associated software snippets. It can accept pointers to code �les or folders, as well as
direct string literals of code. This code can contain special tags that will be resolved
to design-speci�c information when the robot designs are �nalized.

• DataComponent is an abstract subclass of Component that represents a component ac-
cepting or outputting conceptual data. It contains data ports, which can be con�gured
to support various protocols such as Bluetooth and various data types such as strings
or integers.
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• Driver is an abstract subclass of both CodeComponent and DataComponent, meant
to represent a component that processes conceptual data and generates appropriate
control software. As such, it has data ports to accept or output data, may perform
data transformations, and stores and generates software snippets. These modules
are frequently bundled with electrical components to represent controllable electrical
devices.

• DataBuffer is an abstract subclass of both CodeComponent and DataComponent that
can be used to convert between various types of data transfer. For example, it may
convert a variable from a string to an integer, or interface between Bluetooth data and
serial data. These often serve as interface blocks between subsystems by converting
between types and protocols, performing data manipulations, or evaluating equations.

• UIComponent is an abstract subclass of both CodeComponent and DataComponent that
represents a User Interface element. It generates and accepts conceptual data, such as
for a text display or a control slider, and stores software snippets for generating the
UI element. It is also parameterized to de�ne, for example, what device is used for the
interface and element-speci�c display con�gurations.

At fabrication time, the entire data network can be analyzed, the code tags resolved

based on the component topology, and the software snippets pooled together; the result

is auto-generated software that re�ects the designed data �ow. The collection of provided

components allows users to obtain robot control software by designing at an abstraction level

with which they are comfortable: expert users can write low-level code directly, intermediate

users can use automatically generated code libraries to aid the writing of custom code, and

novice users can intuitively link ports to specify behaviors and generate a graphical UI.

Controlling Physical Devices At the lowest level, code must be generated that allows

the main controllers to directly interact with physical devices. Towards this end, Driver

classes perform conversions between software, abstract data, and electrical signals; for exam-

ple, a servo driver accepts as input a conceptual data value such as an angle, and contains

a software snippet representing the knowledge of how to realize that value as an electrical

signal. This software can also adapt to the design topology through the use of code tags and

parameters. Drivers are therefore sources for the software subsystem and sinks for abstract

data � they serve as indirect interfaces between the conceptual software realm and the phys-

ical electrical realm. Such examples illustrate that the designed sub-systems are not isolated
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from each other, but rather interact both through the types of information they process and

design parameters that a�ect how the information processing takes place.

Graphically De�ning User Interfaces While hardware drivers are necessary abstrac-

tion barriers between the software and electrical realms, they are often included at a low level

of the design hierarchy and not made transparent to the novice user. Other data sources

such as UI elements, however, can be intuitively included in higher-level designs and allow

humans to become information sources. Towards this end, UIComponent subclasses represent

UI elements such as joysticks, buttons, switches, or sliders. These can accept conceptual data

values that update the user interface display, or generate values that can be processed by

other data blocks and ultimately control actuators or otherwise a�ect the robot's behavior.

In this way, the user interface can be designed in parallel with the robot itself, such that the

design process for the robot subsystems can interact with the design process for its human

interface.

Robot Behavior via Data Manipulation Although drivers and UI elements serve as

conceptual sources by translating data or human interaction into software and thereby enable

direct control of devices, a robot should also be able to operate autonomously. An intuitive

way to design such behavior is to link data sources and sinks together � for example, linking

a distance sensor output to a servo angle input through some simple function can create a

wall-following robot. To facilitate such information �ow, various DataFunction blocks can

manipulate data within the conceptual realm. For example, a simple transformation block

data may accept data from a sensor and scale it to a value that is meaningful to a servo

driver. By serving as an interface between sensors and actuators, this conversion enables

autonomous behavior that is easily described in the design environment. Similarly, data

may be converted from a human-readable version to a machine-readable version, facilitating

human interaction with the �nal design. Thus, the �ow of conceptual data within the design

largely describes the resulting behavior of the robot.
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Robot Behavior via Graphical Programming Data bu�ers and functions allow for the

direct linking of devices throughout the design and the seamless integration of the conceptual

and physical realms, but more advanced users may want to specify robot behaviors in a more

arbitrary manner. Library components are therefore provided which allow for graphically

writing arbitrary code. These blocks include if/else statements, loops, and the declaration

and de�nition of variables or methods. Using these blocks, arbitrary code can be created

to specify robot behavior. Such blocks also include data ports that allow the software to

directly utilize the design's information �ow; for example, a block creating a while loop

may be directly connected to the output of a sensor for use in its conditional expression,

or a readVariable block's output can be connected to an LED input. Details of how the

data signals are converted into software, such as how the sensor value is obtained, can be

encapsulated lower in the hierarchy and thus abstracted away from the user.

Code Generation and Software Sinks The various elements described above translate

conceptual data into software snippets to realize the abstract �ow of data de�ned by the

design. Ultimately, these must be processed and pooled together into coherent packages.

Towards this end, a microcontroller such as an Arduino may be a sink for the drivers'

software, or an Android device may be a sink for the user interface software.

The software snippets written by experts and included in the CodeComponent objects can

use various code tags that are processed once the design is complete. These may include pin

numbers, device indices, counts of other devices in the design, device types, or other design

parameters. These allow experts to write code snippets that are �exible and dependent upon

the �nal design topology. In addition, they may write multiple code snippets and provide

rules for choosing between them based upon design parameters � this allows the software

sources to adjust their generated software according to the type of sink to which they are

ultimately connected.
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Composable Subclass

Once the �ow of software and data is well de�ned, the software sinks can be pooled

together into usable code. The CodeComposable subclass processes the aforementioned code

tags to re�ect the �nal design, generates complete software libraries that can be directly

loaded onto the robot for both human control and autonomous behavior, and generates user

interfaces for devices such as Android smartphones. Meanwhile, the UIComposable performs

checks on the UI elements and synthesizes a �nal interface. The DataComposable similarly

performs veri�cation on the underlying data network to ensure that types and protocols are

appropriate, automatically inserting converters and bu�ers as necessary.

3.3.3 Mechanical Subsystem

Mechanical building blocks de�ne the physical structure and degrees of freedom of the

robot body. They present input/output ports that specify physical positions and orientations

for subsets of the mechanical design that interface with other components or with the environ-

ment. To maintain universality, designs are generated and stored in a process-independent

data structure; process-speci�c plugins can then generate fabrication-ready outputs.

Information Flow

The ports of a mechanical structure describe locations along which additional mechanical

elements can be physically attached; the information that �ows through them is the spatial

con�guration of that patch. For rigid elements, the information that is assigned to the output

port is an a�ne transform applied to the location of the input. For example, a beam can

have one input and one output port, de�ned as the two ends of the beam: the value of the

output port is the location of the input port o�set by the length of the beam.

Mechanical components can be connected along mechanical ports to generate more com-

plex geometries. Depending on the nature of these connections, additional mechanical ports
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Figure 3.11: Structual primitives such as beams and rectangles inherit di-
rectly from Component, while more complex geometries can be created
via composition. They can also be integrated with components from
other subsystems to represent integrated electromechanical devices; here,
a controlled gripper is made by composing a collection of �ngers with the
mounted controlled servo illustrated in Figure 3.8.

may be created in a composition if the resulting geometry has additional unconstrained

degrees of freedom. A simple composite structure may include multiple beams connected

together. In contrast to a primitive beam, this new design is entirely de�ned by its subcom-

ponent structure and therefore can be de�ned graphically instead of using direct Python.

The subcomponent ports are edges, connected by a �exible joint for compliant motion; this

hinge creates an additional mechanical port for the angle of the �exure.

Mechanical components can also include degrees of freedom. In this case, setting an

input value can result in a non-rigid deformation of the mechanical device. This is useful for

generating motions of robotic mechanisms.

Library Components and Ports

A number of components and ports are provided in the library as the foundation for

describing mechanical assemblies. A portion of these is shown in Figure 3.11. These building

blocks can then be hierarchically composed into more complex geometries and structures that

implement desired kinematic and dynamic properties. Furthermore, they are often included

in hierarchical compositions with components from other subsystems, for example to create

a mounted servo or a gripper with associated electronics and actuation.
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(a) A beam geometry can be represented by a face-edge graph that indicates

connections and fold angles.

(b) This generated drawing of a beam

can be sent to a 2D cutter such as a

laser cutter or desktop vinyl cutter.

(c) A 3D solid model can also be gener-

ated, to visualize a folded pattern or to

send to a 3D printer.

Figure 3.12: Mechanical geometries are stored using a face-edge graph
that can be resolved to 2D or 3D fabrication outputs.

Composable Subclass

The mechanical information can be processed at output time to generate fabricable output

�les, and di�erent Composable extensions can be created to provide support for multiple

manufacturing techniques. The current library contains methods for generating 2D vector

drawings for laser cutting, vinyl cutting, or hand cutting that create origami-style foldable

robots. It also contains methods for generating solid-body objects to directly 3D print the

robot parts.

Mechanical geometries are stored using a face-edge graph that can be resolved to both

2D and 3D shapes as required by speci�c fabrication processes. A basic example of this

is the beam in Figure 3.12. The blue squares in the graph of Figure 3.12a represent the

rectangular faces of the beam, connected to each other along folded edges represented by red

circles. The unconnected dashed lines represent connections along which future components

can be attached. A cut-and-fold pattern can be generated from the face graph, requiring

the dotted edge to be replaced by a tab-and-slot connector. A 3D solid model can also

be generated to display the structure resulting from folding the 2D pattern, or to directly

generate a 3D object via 3D printing.
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Figure 3.13: Integrated components can be de�ned by creating connec-
tions among encapsulated subcomponents and then choosing ports and
parameters to expose for higher-level use.

3.3.4 Integrated Components

Because of the common API used by each component, design elements can be integrated

across subsystems. A typical combination connects the electrical output of a driver to

the input of an electromechanical transducer to give a logical actuator element driven by

data signals. Connections such as these that encapsulate various subcomponents and then

expose interfaces for future connections are shown in Figure 3.13. The abstract subclass

DrivenElectricalComponent, which inherits from both Driver and ElectricalComponent,

is also provided to represent this particular case. Higher levels of integration can further

connect the block's data input to a UI data source and the block's mechanical output to

a structural degree of freedom to yield a component representing a self-contained robotic

mechanism.

Integrated designs can be achieved by inheriting from multiple subclasses spanning dis-

tinct subsystems, or by deriving hierarchical compositions. This facilitates the intuitive

representation of complex devices that require electrical, mechanical, data, and software

infrastructure. The Composable classes from each constituent subsystem then interact to

enable an integrated co-design output generation process. This creates an augmented library

of electromechanical modules that also contain associated code and UI elements, providing

the foundation from which users can design a complete robotic system. The library currently
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contains integrated components ranging from actuated grippers and wheels to mounted sen-

sors and complete mobile platforms.

An example of using integrated components to design a two-segment robotic arm with

attached gripper can be seen in Figure 3.14. A novice user only needs to connect the high-

level integrated library components that represent the gripper, an arm segment, and a base.

Behind the scenes, each of these components contains subcomponents and connections that

implement the mechanical, electrical, data, and software subsystems required. Intermediate

or expert users can choose the level of exposure with which they are comfortable, opening up

levels of the hierarchy to view more details. Figure 3.14 chooses a view for the intermediate

user that expands some components while still maintaining a relatively high level.

While Figure 3.14 illustrates the �ow of the mechanical and data systems, similar con-

nections exist for the electrical and software systems. The mechanical connections de�ne the

structure of the robot, while the UI elements directly connected to physical devices allow

for user interface control. Furthermore, data connections among physical devices allow for

autonomous behavior. For example, a user could add a light sensor connected to the joint

servo and a touch button connected to the gripper servo, and customize the DataFunction

blocks encapsulated within each of these to de�ne scalings or other transformations. The

realized robot could then move between two positions in response to light shining on the

light sensor, and open or close its gripper in response to an object activating the touch sen-

sor. In this way, using integrated components allows casual users to cogenerate mechanical

structures, electrical wiring diagrams, behavioral software, and user interfaces.
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3.4 Summary

Through a �exible collection of superclasses and expert-de�ned base classes, the provided

framework supports the creation of complex hierarchical designs in an intuitive manner. This

can be used for many di�erent applications, and subsystems have been implemented that fo-

cus on robotic systems. These o�er functionality such as sensing, processing, communication,

data manipulation, mechanical structures, user interface creation, behavioral de�nition, and

arbitrary graphical programming. Implementation details are managed behind the scenes

by algorithms that will be discussed further in Chapter 6.

Using modules that integrate components from these subsystems, electrical, mechanical,

data, and software systems can be de�ned in parallel by simply connecting ports to graph-

ically represent the desired interactions. Ports from di�erent subsystems can be directly

connected, allowing users to easily express relationships among disparate domains. An in-

cluded GUI enables user interaction with the library in a familiar way, and a more advanced

web-based GUI is under development. By using the modular composition approach, users

can choose an abstraction level with which they are comfortable. They can then quickly

design custom personal robots by focusing on how information �ows throughout the robot

structure and software rather than on implementation details.
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Figure 3.14: Integrated components that contain subcomponents or in-
heritance structures spanning multiple subsystems enable intuitive co-
generation of complex electromechanical devices. Here, an arm with at-
tached gripper is designed from derived components. The mechanical and
data �ows are chosen for illustration, representing the physical structure as
well as the robot's behavior. Other subsystem �ows, such as the electrical
signals, are not pictured here.
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Chapter 4

Software Generation:

The Snippet Model

An idea that is developed and put into action is more

important than an idea that exists only as an idea.

� Edward de Bono
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A key capability of the robot compiler is automatically generating low-level drivers, high-

level autonomous behaviors, and user interface functionality. Accomplishing this task for

arbitrary designs requires a �exible framework for generating controller code that adapts to

chosen topologies as well as a reliable method of exchanging data between controllers. This

chapter addresses these challenges with a software template model where expert-de�ned

snippets embedded in components are automatically pooled together and modi�ed to re�ect

user-driven designs. This approach facilitates rapid creation of on-demand robotic systems by

enabling automatic synthesis of software for both low-level control and high-level behaviors.
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In order to allow complex customized software to be automatically generated for each

new robot, an infrastructure has been created in which a software template is �lled in and

adjusted according to the user-driven design. Experts can de�ne general code templates for

using devices such as microcontrollers, and then write controller-independent code snippets

for controlled devices such as servos. Each new device added to the library that requires

code can add a simple snippet outlining code relevant to itself, and optionally use prede�ned

code tags that enable dynamic adaptation to the design topology such as pin assignments

and the presence of related devices. Algorithms included with the robot compiler can then

pool together code from all components, process them according to the current design, and

create coherent software packages. This �exible framework for processing software yields

complex yet human-readable code to grant robots autonomous behavior and allow end users

to easily write additional code.

Within this template, a collection of methods de�ne how the data subsystem's ports and

connections translate from the user-de�ned information �ow to variables and functions that

can be run by the �nal controller. Towards this end, a message format has been developed

to standardize how ports are addressed and how information �ows through the program �

both from controller to controller on a robot, and between controllers and external devices

such as wireless user interfaces.

4.1 Software Snippets

The software system is based on a collection of expert-de�ned snippets of code. As com-

ponents are inserted and connected, their associated code snippets are �lled in or modi�ed

to re�ect the speci�c design, and then pooled together to create separate software packages

for each controlling device. This approach allows the system to be very �exible and easily

expandable, facilitates automated code processing and generation, and results in �les that

are accessible to human users that may want to expand upon the code.
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For each device that will be executing code in the �nal implemented design, an expert

can include a simple template for the main �le when adding that device to the component

library. As an example, there is currently an abstract subclass of Microcontroller called

Arduino with a code template that simply has empty loop and setup methods. Each

concrete subclass of Arduino, such as ArduinoUno or ArduinoMega, can inherit this main

template while specifying the appropriate numbers of pins and types.

Similarly, each CodeComponent subclass requires code when connected to a controlling

device, and includes code snippets that contain necessary methods or variables. For example,

Servo inherits code from DrivenElectricalComponent then includes snippets for setting an

angle or speed and, if needed, for startup calibration routines. Similarly, the abstract class

Driver inherits from both DataComponent and CodeComponent then adds a code snippet

that de�nes how the conceptual data network is realized in microcontroller code.

While the �les specifying the main loop are controller speci�c, the system encourages every

other code snippet to be independent of the controller with which it will be used. This allows

the same snippets to be pulled from the component regardless of what microcontroller is

chosen by the system or user, greatly increasing adaptability. This is enabled by �les included

in the library called robot_code.cpp and robot_code.h that declare methods and macros for

the main initialization and loop, for reading and setting digital or analog pins, for dealing with

PWM values, for setting pin types, and for other basic functions that are typically used by

programmers when writing code for a microcontroller. Experts then de�ne these methods in

code snippets when adding each new microcontroller to the library. For example, the snippet

of the Arduino class inserts calls to the robot_code's robotLoop and robotSetup methods

into the Arduino loop and setup functions, respectively, and de�nes the setDO macro to call

Arduino's default digitalWrite method. The code snippets of individual components can

then use the microcontroller-independent methods from robot_code, allowing them to run on

any controller that includes those �les. Note that the current system focuses on generating

code for devices that run C++, but it is straightforward to extend this to other languages

in the future.
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Figure 4.1: This is most of a software snippet for the ServoAngle compo-
nent. It supports multiple servos connected to the same controller, adds
a new method for setting the angle of a servo, and inserts code for pro-
cessing data sent to servo data input ports. The code tags, preceded by
@, indicate robot compiler processing directives or placeholders for design-
speci�c information.

Part of a sample snippet can be seen in Figure 4.1 for the ServoAngle component driver,

which controls an angle servo and has a single data input port for the desired angle. Its

associated code snippet declares variables for dealing with multiple servos connected to the

controller, setting the length of the array to a design-speci�c value that corresponds to the

number of servos. It also adds code to initialize these variables when the robot starts and

to set the servos to a home position. A new method is created to set the angle of a servo,

which uses microcontroller-independent functions de�ned in the generalized robot code for

setting a PWM value and converting an angle to a duty cycle. Finally, it adds code to the

processData method that checks if data is being sent to the servo's data input port and

if so sets the servo angle accordingly. The design-speci�c information used in the declara-

tions and in the new method are independent of the particular ServoAngle instance, and

therefore the CodeComposable will detect the duplication and only include this code once.

The initialization and data processing code, however, will be di�erent for each ServoAngle

instance once the tags are resolved � for example, each instance will be connected to a dif-

ferent microcontroller pin and have di�erent data port IDs. The CodeComposable will insert
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Figure 4.2: Software snippets can be included by any subclass of
CodeComponent, and snippets will be inherited from superclasses. Shown
here is the inheritance hierarchy among some prominent CodeComponent
classes, where the overlapping red boxes indicate the snippets that each
one adds.

separate code for each of these once the tags are resolved; for example, the processData

method will contain a branch for each servo. Note that the included comments will make the

�nal software package easier to understand, and can also include device-speci�c identi�ers

and information to better guide intermediate users.

Leveraging the inheritance structure among components described in Chapter 3 allows

new components to inherit a substantial amount of code that will allow for proper func-

tionality, greatly reducing the e�ort needed by experts when de�ning new capabilities. In

addition, new derived components de�ned hierarchically by novice users will automatically

contain all necessary code to function properly since the snippets will be gathered from all of

the constituent subcomponents. Figure 4.2 illustrates some of the main CodeComponent sub-
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classes and the code �les that each one adds to designs. The included code then percolates

throughout the hierarchy; for example, a BluetoothSerialModule will gain the software

functionality of bluetoothSerialModule.cpp, protocol_bluetooth.cpp, and data_�ow.cpp even

though the �rst �le is the only one it directly needs to add � the one that de�nes methods

speci�cally for the serial module. Furthermore, components such as the LED can choose be-

tween code �les to include based upon design-speci�c information, such as whether the user

desires digital or analog control of the LED.

Within all of these �les, code tags can be included that serve as processing directives for

the robot compiler. These allow code snippets to create new methods and declarations or

to insert code into methods that have been created by other components. In addition, code

tags indicate how the robot compiler should adjust the code to make the generated software

speci�c to the new robot. They therefore allow code from di�erent components to a�ect

each other and for the software package to grow organically as code is gathered from across

the design and then holistically processed.

Some of the main template and snippet �les that form the backbone of the generated

software packages are described brie�y below:

Generalized Robot Code (robot_code.cpp, robot_code.h) These �les declare gen-

eralized functions for common microcontroller tasks, allowing future code snippets to be

controller-independent. For example, they include an empty robotLoop function that other

snippets will eventually populate with main control logic and a robotSetup function that

contains code for con�guring pin types by calling the generalized setPinMode function. These

methods can all be extended by future code snippets as needed. They also declare arrays

and variables that are used by the controller-independent framework, as well as methods and

macros that will be de�ned by controller-speci�c �les such as setting and reading pin values.
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Microcontroller-Speci�c Main File (ex. Arduino.ino) This declares methods for

the main setup and loop functions, which are typically empty at this point, in the form

that will be expected by the microcontroller programmer such as the Arduino IDE. It also

includes a code tag that tells the robot compiler that it is the main �le, so appropriate

include statements can be inserted here.

Microcontroller-Speci�c Robot Code File (ex. robot_code_arduino.cpp) These

�les de�ne the generalized robot code functions for a speci�c controller, and insert calls

to the robotLoop and robotSetup methods into the appropriate methods declared by

the microcontroller-speci�c main �le. For example, robot_code_arduino inserts a call to

robotLoop in the loop method. It also de�nes the general robot methods such as those for

con�guring, reading, and setting pins or dealing with PWM values.

Data Flow (data_�ow.cpp) The microcontroller-independent snippet de�nes how the

conceptual data subsystem is realized as code, allowing data to �ow between various ports

to implement user-speci�ed connections and behaviors. This will be described in more detail

below.

Component-Speci�c Code Snippets These are included with each CodeComponent to

de�ne methods and variables used for that particular component. For example, the Servo

class can de�ne methods for setting angles or speeds, the TemperatureSensor can de�ne

methods for communicating with an I2C temperature sensor, and the LineDetector can

include startup calibration routines. These are written using the framework created by the

higher-level microcontroller-independent functions. They can also extend methods created

by other snippets and use code tags that resolve to design-speci�c information such as the

chosen microcontroller pins or data port IDs.
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4.2 Data Network Realization

One of the most important functions of the software template infrastructure is to de�ne

how the conceptual data subsystem is translated into concrete code. This allows ports to

pass information between each other, both internally on a single controller and between

controllers whether wired or wireless. This exchange of information allows the robot to be

controlled from user interfaces, allows intermediate users to write their own behavioral code,

and allows the robot to implement autonomous behavior described by the user-speci�ed

information �ow.

This network is translated into code by the data_�ow.cpp �le included by top-level com-

ponents that inherit from both DataComponent and CodeComponent. The main features of

this �le are described below.

• Declares variables and arrays that are used to de�ne the data network's topology
and connectivity. These include a 2D array describing the data mapping (i.e. port
connections), an array of unique data output port IDs that correspond to those used
in the mapping, and additional preprocessor de�nitions for creating and accessing these
arrays. It also includes an array that speci�es whether each port connection is set to
�auto-poll�; this controls whether data should be retrieved from the output and sent
to the connected inputs on every controller execution loop, or whether data only �ows
in response to some asynchronous trigger such as a UI button press.

• Declares and de�nes the processData method, which loops through every data con-
nection that is set to auto-poll. It gets the most recent data from the output and gives
it to the attached input(s) for processing.

• Inserts a call to the processData method in the main robotLoop function, thus en-
suring that the data connections will be processed once per controller execution loop.

• Declares a getData method meant for data outputs that takes as arguments the output
port ID from which data is being requested and, optionally, the input port ID of the
requester. Component code snippets will add code to this method that checks if their
port is being requested and, if so, performs any necessary operations to return data.

• Declares a second processData method meant for data inputs (distinguished from the
main processData loop by its arguments) that takes as arguments the data to process,
the input port ID that is receiving the data, and, optionally, the output port ID that is
sending the data. Component code snippets will add code to this method that checks
if their port is being targeted and, if so, performs any necessary operations based on
the new data.
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Figure 4.3: The DataFunction block has a code snippet that performs a
user-speci�ed operation on any data sent to its input port, and forwards
the result to ports connected to its output port.

Together, these variables and methods provide a coherent framework for realizing the data

subsystem on the robot. They enable the requesting and receiving of data via output and

input ports, and for automatically processing connected ports once per controller loop. Com-

ponent code snippets then extend these methods to provide device-speci�c implementations

of how data is acquired and processed.

The snippets shown in Figure 4.1 and Figure 4.3 illustrate some sample usages of this

framework. The DataFunction has a single input and a single output, and performs a user-

de�ned data transformation. It implements this behavior via the code snippet shown in

Figure 4.3. It inserts code into the processData method that processes the data according

to a dynamic user-speci�ed transformation and then forwards the result to any ports con-

nected to its output port. Code is also inserted into the getData method, which in turn calls

getData on the port connected to its input before processing it and returning the result.
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Both of these demonstrate how a component can add code to the general data �ow methods

that check whether their particular component is being addressed, and if so perform appro-

priate operations. In addition, they demonstrate how the data �ow methods can be chained

together to create complex behaviors.

This framework for realizing the conceptual data network is controller independent and

very �exible, accommodating arbitrarily complex data topologies subject to the restrictions

of the controller's performance capabilities. A combination of preprocessor directives and

optimizations have been used in the template �les to help make the processing e�cient,

allowing real-time control code to be de�ned by the high-level user speci�cations. Much of

the memory-intensive arrays can also be stored in program memory, freeing the controller's

RAM � this is important for small low-power controllers attempting to implement large data

networks. The controller-speci�c code snippets can include de�nitions for how to store arrays

in program memory, so the data_�ow �le can still be controller independent.

Using this infrastructure, component snippets can include their own logic for getting and

processing data. This may include modifying pin states, adjusting system state, setting

variables, or performing arbitrarily complex logic. It can also include using the getData

and processData methods on other ports, allowing for the chaining of data components; for

example, the main loop can call getData on the output of a data manipulation function block,

which may in turn call getData on the ports connected to each of its inputs. Furthermore,

these connections can be evaluated in a synchronous manner, once per controller execution

loop, or in response to asynchronous triggers such as UI events or wireless communications.

In this way, the method stack can become quite complex and sophisticated logic can be

implemented with these relatively simple methods.
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4.2.1 Data Message Formats

Components' method de�nitions may include logic for dealing with varied communication

protocols such as wireless user interfaces. A message format has been developed that can be

standardized across communication modes on the robot, such as wired serial or Bluetooth.

This allows for sending data between ports on di�erent controllers in a human-readable

manner, and can be extended in the future for increased speed. Superclasses can provide code

snippets that apply the protocol to their particular communication method, and concrete

subclasses can then inherit the general framework and only de�ne device-speci�c methods.

The message format speci�es whether data is being sent or requested, and includes the

port IDs involved in the transfer.

• For sending data, a message will be sent of the form DATA$data$OutputID$InputID$
where the data data is being sent from port OutputID to port InputID. The OutputID
is optional, and the InputID may be a list of hyphen-separated IDs. Additionally,
InputID may be omitted if OutputID is included, in which case it is understood that
all inputs connected to that output should receive the data.

• For requesting data, a message will be sent of the form GET$OutputID$InputID$ where
OutputID is the port from which data is requested and InputID is the port requesting
the data. The InputID is optional. In response to this message, a controller sends
a DATA message in the above format that includes the relevant port IDs; the sent and
received messages are not directly linked, eliminating additional protocol overhead.

It is further asserted that each message will end with a null-termination character, namely \0.

This messaging format can be used by many di�erent communication methods, such as wired

serial, I2C, SPI, or Bluetooth. It can also be easily leveraged by intermediate or expert users

who want to develop applications to directly interface with their robot; a list of the generated

port IDs and their mapping is presented as one of the DataComposable outputs.

An example implementation of this protocol is found in the subset of devices that commu-

nicate via Bluetooth. The most prominent of these components are those that use user inter-

face elements on devices such as smartphones. To de�ne the messaging system for Bluetooth,

the abstract superclass BluetoothTransceiver provides a �le called protocol_bluetooth.cpp
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to declare methods for dealing with Bluetooth communication. It stores state such as whether

or not Bluetooth is connected, which can be useful for switching between autonomous or con-

trolled modes of operations, and for getting and sending data from or to ports via Bluetooth.

Similar to the data_�ow �le, the protocol_Bluetooth �le de�nes a framework that is then

extended by concrete subclasses. The following are the main features of this framework:

• Declares data bu�ers for received messages and state variables for whether Bluetooth
is connected. Inserts code into the robotSetup method to initialize this state.

• Declares and de�nes a getBluetoothData method, which reads data from a Blue-
tooth connection into a data bu�er, and returns whether or not a complete message
is ready to be processed. This method is non-blocking, meaning that it will not wait
for messages to start or �nish. It will simply add any available data to a running
bu�er and return whether or not a null-termination character was received. It lever-
ages getBluetoothChar and bluetoothAvailable methods, which are implemented
by concrete subclasses to deal with particular Bluetooth devices.

• Declares and de�nes a sendBluetoothMessage method, which sends a method over
Bluetooth. It leverages a sendBluetoothChar method that is implemented by con-
crete subclasses to deal with particular Bluetooth devices, and ensures that the proper
message format is used.

• Declares and de�nes a processBluetoothData method, which uses getBluetoothData
to check if a complete message is ready and if so parses the message according to the
standard format. If data is being received, it will call processData on the appropriate
ports. If data is being requested, it will call getData on the desired output port and
send a new message with the returned data using the sendBluetoothMessage method.

• Adds some global state to manage the frequency with which data messages are sent
to particular Bluetooth devices. This is useful for ensuring that message rates are
reasonable, especially when connections involving Bluetooth ports are set to auto-poll
and would therefore try to update on every controller execution loop.

• Inserts a call to processBluetoothData in the main processData method, ensuring
that Bluetooth messages will be processed once per controller execution loop.

This extends the data �ow template to address concerns particular to the wireless ap-

plication, such as asynchronous message arrivals and potential data corruption. Concrete

subclasses of BluetoothTransceiver, including BluetoothSerialModule, only need to de-

�ne device-speci�c methods such as how to send and receive single characters. This allows

the library to be easily enhanced with new devices and protocols with minimal extra e�ort.
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The above description outlines how a controller would deal with incoming messages from

Bluetooth devices that are requesting or sending data. To complete the possible use cases,

components representing the external elements such UI elements also typically allow the

robot to query their output data ports. Their code snippets simply insert code into the main

getData method that checks if their port ID is being requested, and if so sends a data request

message over Bluetooth for the relevant data. It does not, however, wait for a response since

this would incur large delays in the controller execution loop. Instead, it takes advantage of

the fact that the request and data messages do not need to be coupled � it sends a request

and then assumes that the external device will send the data to the desired ports soon. As

described above, the general Bluetooth template includes code for managing the rate with

which these messages are sent, ensuring that the external devices and the microcontroller are

not inundated with messages. When a response data message arrives, it will be processed as

usual and the input ports will receive the necessary data. This means that Bluetooth data

may not be synchronized with data gathered from local ports, but this can be easily dealt

with by snippets that require both external and local data.

Together with the data �ow code, this allows components on the robot to communicate

with o�-board components via Bluetooth. The novice user using the design GUI, or the

intermediate end user writing additional code, need not worry about how the communication

is implemented behind the scenes or even whether the devices are physically connected. They

need only focus on the data �ow throughout the system via various ports.
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4.3 Code Tags: Design-Driven Flexibility

While the above template system creates an extensible method of auto-generating complex

code according to the design's components, this code needs to be adjusted to suit each

unique component topology. To achieve this, a system has been created that allows experts

to include code tags and processing directives in their snippets that will be interpreted and

processed by the robot compiler when generating complete software libraries.

There are two main types of code tags: those that serve as processing directives, and

those that serve as placeholders for design-speci�c information.

Processing Directives start with @@ and include commands such as creating new meth-

ods, inserting code into existing methods, or declaring variables. When the CodeComposable

processes the code �les, it will pool together all declarations into header �les, determine

what methods are created by all components to split their declarations into header �les and

their de�nitions into code �les, and will make desired insertions into existing methods. Pro-

cessing directives can also be more complex, for example including if/else statements that

condition upon design-speci�c information, or including loops whose conditionals and bodies

are dependent upon the design. Some processing directives supported by the current system

and their functions are shown in Table 4.1, where italicized text would be replaced by the

snippet author.

Figure 4.4 shows an example snippet for the UIComponent class that uses some of these

directives. Since it consists of declarations and initializations, the declare directive is used;

this code will therefore be split between header �les and code �les as appropriate. The

uiDataMap tag will resolve to an array initialization that creates a 2D array of port IDs indi-

cating the data port mapping among ports related to the user interface. The uiDescriptions

tag will resolve to a list of strings, each of which describes a UI element in a format under-

standable by the user interface device. To create an array of these strings, the iterate direc-

tive is used to loop through the resulting strings. When processed by the CodeComposable,
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Table 4.1: Sample Processing Directives

Directive Description
@@iterate<tag>
<@ code @>

Evaluates the provided tag, such as the data port mapping, and
then creates a copy of the provided code for each item in the
resulting list. In each of these copies, @iterItem will be replaced
by the current item and @iterIndex will be replaced by the
current item index.

@@if<@condition@>
<@then code@>
<@else code@>

Evaluates the provided condition, which is given as Python code,
and then yields either the code after then or the code after else.
Each of these can themselves contain more tags and directives.

@@file This �le will be included verbatim, without additional process-
ing.

@@fileMain This is the main �le for a microcontroller, so include statements
will be inserted here.

@@declare Declare and initialize methods or variables. When appropriate,
will be split up such that declarations will be added to header
�les and initializations/assignments will be added to code �les.

@@insert
<methodDeclaration>
<code>

Insert the provided code into a method that matches the pro-
vided declaration. Optionally, can specify @prepend or @append
to ensure that the code is inserted at the beginning or end of
the existing method.

@@method
<methodDeclaration>
<code>

Create a new method. A method declaration will be added an
appropriate header �le, and the de�nition will be added to the
corresponding code �le.
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Figure 4.4: The UIComponent class includes a snippet that, among other
operations, declares an array of strings that describe the desired interface.
It leverages the iteration-processing directive to loop through all added
UI elements and add a string to the array for each one; these strings will
then be sent to the UI device such as a smartphone.

this will resolve to an array initialization with a string literal for each UI element; a string

descriptor will be obtained for each item in the list and inserted into a copy of the iteration

code with the iterItem replaced by the string. These strings will be sent to the user in-

terface device, such as an Android smartphone, to dynamically create the desired interface.

This represents a relatively simple yet powerful example of using the processing directives,

and more sophisticated design-dependent logic can easily be implemented as well.

Placeholders for Design-Speci�c Information start with @ and may reference infor-

mation such as port IDs, chosen microcontroller pins, or device counts. They can also take

input arguments, allowing them to become more sophisticated. These will be processed

by the CodeComposable and resolved to �nal values when software packages are generated.

Some tags supported by the current system are shown in Table 4.2. Tags resolving to lists

can be used with the iterate processing directive, but if they are used by themselves then

they will be resolved to C++ compatible array declarations.

Example code snippets that leverage these tags have been shown throughout this section

in Figure 4.1, Figure 4.3, and Figure 4.4.
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Table 4.2: Sample Code Tags

Directive Description
@param<paramName> Evaluates to the value of the Component parameter with

the given name. This enables direct access to user-speci�ed
con�guration parameters.

@portID<portName>,
@dataInputPortID
<portName>,
@dataOutputPortID
<portName>

The port ID assigned to the component port with the given
name. For the latter two, will only look for data input or
output ports. If the port name is omitted, will use the �rst
port found.

@dataInputSourceID
<inputPortName>

The port ID assigned to the data output that is connected
to the data input with the provided name.

@pinNum<portName> The microcontroller pin assigned to the component port
with the given name.

@deviceName The name of this component.

@deviceTypeCount<type> The number of devices of the given Component type con-
nected to this microcontroller.

@pinToDeviceTypeIndex
<pin><type>

The assigned index of the device that connects to the speci-
�ed microcontroller pin number, among the connected de-
vices of the speci�ed Component type. This index may
correspond to the index into a declared array of Servos,
for example.

@dataMappings A 2D list of data port ID mappings, indicating the con-
nected input and output ports. Will be used by the data
�ow code snippet.

@controllerPins A list that indicates the microcontroller pins associated
with each connected Port.

@controllerPinTypes A list indicating the pin type for each microcontroller pin,
such as digital inputs or PWM outputs. This will be used
by the general robot code that con�gures pin types at
startup.

@uiDescriptions A list of strings, each of which describes a UI element in
the design, which can be sent to a UI device such as a
smartphone.
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The commands allow snippets to be very general, supporting multiple components of

the same type on a microcontroller and adapting to di�erent con�gurations. The developed

syntax creates a powerful framework in which experts can write their snippets in a generic yet

straightforward way, allowing a sophisticated software library to be autonomously generated

from basic building blocks to control complex robotic systems.

4.4 Summary

The software and data subsystems provide a foundation for interaction and communica-

tion. They allow information to �ow among disparate subsystems, furthering the co-design

paradigm and allowing users to specify complex behaviors by simply expressing how di�erent

parts of the robot should respond to each other and to the environment. To realize these

relationships, a �exible software template model pools code snippets together from across

the design and modi�es them to re�ect the unique topology. The class inheritance struc-

ture allows subclasses to inherit snippets from their ancestors, and hierarchically composed

components contain all necessary snippets for proper functionality via their subcomponents.

This code can re�ect unique topologies by leveraging code tags and processing direc-

tives. The robot compiler resolves these tags to design-speci�c information, increasing the

applicability and �exibility of each snippet. Furthermore, a standardized message format

is implemented that allows data to be passed between ports regardless of the underlying

communication channel such as wired serial or Bluetooth.

Together, these additions allow the robot compiler to generate low-level control code,

high-level behavioral code, and user interface code for each unique robot. The code and

message format are both human readable, granting intermediate users the options of adding

their own code or communicating with the robot from external devices once the robot is

fabricated. The robot compiler can now not only generate the structure and electrical layout

for the robot, but also provide all necessary control logic and drivers so that the user can

immediately use their robot for the desired task.
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Chapter 5

Custom Serial Communication Protocol

The single biggest problem with communication

is the illusion that it has taken place.

� George Bernard Shaw
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While a framework has been discussed for relaying data between controllers to implement

the desired data network, an e�ective means of transmitting that data needs to be employed.

To address this issue, a custom two-wire clock-driven serial protocol has been designed and

implemented to realize the communication channels created among connected components.

Additional details and code can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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The new protocol allows microcontrollers connected in an arbitrary topology to commu-

nicate via software serial ports while eliminating message collisions, avoiding bu�er over�ow,

reducing data corruption, allowing transmitters to know when transfers fail, and reducing

the need to rely on sensitive timing functions. This protocol requires minimal additional

overhead, and even increases communication speed for longer messages.

In particular, the designed protocol and associated software library achieve the following

without requiring dedicated hardware or more than two wires:

• allow transmissions to be asynchronously initiated by any controller, but maintain
synchronization using a clock signal within each transmission

• ensure that transmissions will only commence if the receiver is ready to receive the
message and has bu�er space to store the entire message

• mitigate simultaneous message collisions by ensuring that a receiver will only ever agree
to receive messages on one serial port at any given time

• reduce the reliance on precise timing functions by using an interrupt-driven protocol
based on a synchronizing clock signal generated by the receiver

• speed up the transmission of longer messages as compared to standard serial UART

• provide support for atomic transmissions of entire messages

• provide methods for transmitting and receiving that are drop-in replacements for ex-
isting software serial libraries, in addition to methods for reliably transmitting and
receiving complete messages even in a complex mesh network

• add the ability to switch a port between the new protocol and the standard protocol,
for compatibility with traditional serial devices

This new library can be used by the robot compiler to allow di�erent kinds of microcon-

trollers to reliably communicate in complex networks via a standardized protocol without

requiring experts to provide such functionality for each new microcontroller added to the

library. Experts should only need to provide helper methods for managing interrupts on

various pins of the controller, and timing functions for small delays that do not need to be

as precise as for standard software serial protocols.
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5.1 Existing Protocols and Chosen Approach

Most microcontrollers that will be used on compact, inexpensive, rapidly fabricated robot

systems will contain a restrictive number of pins and an even more restrictive amount of

hardware dedicated to implementing communication protocols. Since the goal is to enable

multiple simultaneous communication channels, virtual ports will typically have to be used

for communication. These mimic the functionality of hardware ports via code that uses the

main processor rather than dedicated hardware to implement the chosen protocol. This pro-

vides additional �exibility at the cost of consuming processor resources. The chosen protocol

must therefore be e�cient, including only performing computation when transmissions actu-

ally occur, while still minimizing wiring complexity to both reduce pin usage and facilitate

fabrication by novice users.

There are various communication protocols to choose from when transferring data between

controllers. At a high level, data can be transmitted using parallel ports or can be serialized

via time division multiplexing. Approaches leveraging parallel ports signi�cantly increase the

number of wires and thus the physical complexity. Additionally, there are associated timing

di�culties, especially at higher speeds, since all pin values must be read simultaneously.

Issues such as these make serial approaches more attractive for the task at hand.

Serial protocols can either be asynchronous or synchronous, depending on whether a

clock signal is used to maintain synchronization between the transmitter and receiver. A very

popular asynchronous protocol is the Universal Asynchronous Receiver Transmitter (UART),

descriptions of which can be found in [71, 72]. This allows transmissions to be initiated

asynchronously, using start and stop bits to alert the receiver to incoming transfers. Once a

transfer begins, precisely tuned timing is employed to maintain synchronization and ensure

that the receiver reads data during the correct intervals. The protocol is relatively simple and

has minimal setup, making it an attractive option for controller networks with intermittent

messages. However, there are signi�cant challenges when implementing this as a virtual port

rather than using dedicated hardware, and these issues are exacerbated when creating an

auto-generated mesh network of controllers. For example, if multiple software serial ports

83



CHAPTER 5. CUSTOM SERIAL COMMUNICATION PROTOCOL

are in operation on a single-processor microcontroller and data is received simultaneously on

more than one port, all involved messages will likely be irrecoverably corrupted, since the

ports will interfere with each other's timing, or one message will be ignored depending on

the implementation. Furthermore, there is no way of knowing whether a receiver is ready

to receive a message, if their bu�er will over�ow at some point during the transmission, or

if they are currently receiving a message from a di�erent transmitter. Finally, the typical

software serial implementation may be cumbersome to implement in a system that focuses on

auto-generating code in a microcontroller-independent manner, since sensitive timing must

be implemented di�erently for each particular microcontroller; this would lead to extra e�ort

on the part of the experts to provide a serial library for every new controller that they wish

to add to the library.

The timing issues associated with asynchronous protocols can be addressed by including a

synchronizing clock signal, typically on a dedicated wire. For synchronous communications,

data is sent as a continuous stream at a constant rate [73], thus often eliminating the need

for start and stop bits between every byte of data. Popular synchronous protocols such

as SPI or I2C, which are described in [71, 72], can connect many devices together while

using a small number of microcontroller pins and achieving high data rates. The intended

recipients of messages can be indicated by dedicated lines or by assigning addresses to each

device. However, these are master/slave protocols that rely upon a single master initiating

transmissions; a slave device can only send to the master if the master polls the slave for

data. Since the target application discussed here desires that any controller may send data

asynchronously to any other controller, and choosing a master to frequently poll devices

would be computationally expensive and ine�cient, these protocols are not well suited.

Other commonly used synchronous protocols include High-Level Data Link Control (HDLC)

and Manchester encoding. HDLC is often used in Wide Area Networks (WANs), and trans-

ferred frames include �elds for a unique �ag as well as an address and checksums � for a

description of the protocol, see [73]. The �ag is a series of bits that indicate the start and

stop of a transmission, and bit stu�ng is used to ensure that this code does not appear

anywhere else in the data stream. This therefore achieves synchronization, but at the cost
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of signi�cantly increased complexity and overhead that would place heavy demands on the

processor and be ine�cient for sending relatively short messages. Manchester coding embeds

the clock signal within the data stream by encoding bits as level transitions and thus ensures

frequent rising and falling edges. This eliminates the need for a dedicated clock wire, but at

the expense of doubling the required bandwidth and requiring complex decoding circuitry

that implements a digital phase-locked loop [74]. These drawbacks make this an undesir-

able option for an auto-generated network of controllers in which computational cost and

assembly complexity should both be minimized.

Taking the above considerations into account, a protocol is developed here that merges

the simplicity of UART with the synchronization bene�ts of clock-driven protocols. It is

loosely based on the serialization techniques of the standard UART, but adds a clock signal

generated by the receiver in response to a transmitter's start bit. This structure allows

for interrupt-based synchronization throughout data transfers, and also provides a built-in

mechanism by which the receiver constantly acknowledges that it is ready to receive data

and con�rms that bits were successfully gathered. As is typical of synchronous methods,

start and stop bits are unnecessary once a transfer begins, so longer messages can be sent

faster than if standard UART was used. The protocol still only requires two wires, keeping

fabrication complexity low, and is well suited to software implementations since it eliminates

message collisions and has low computational requirements.
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Figure 5.1: Serial communication requires two wires per communication
channel, and data �ows in a �xed direction on each one. The receive pin
(RX) of one controller is connected to the transmit pin (TX) of the other
controller. For normal logic, the voltages are high when at rest.

5.2 Standard UART Serial Protocol

The standard serial protocol traditionally implemented by serial devices is described here,

which will be used as a baseline for evaluating the new protocol and whose serialization

techniques will be leveraged. The communication channel is implemented by two wires that

connect receive (RX) pins and transmit (TX) pins on each device as shown in Figure 5.1. An

interrupt is typically attached to the RX pin on each microcontroller to reduce processing

overhead and ensure timely responses to transmissions. The atomic unit of data transfer is

a byte, so that messages are transmitted by individually transmitting each byte as a new

message; detecting message terminations and verifying integrity is handled by user-de�ned

higher-level logic.

The procedure for transmitting a single byte using the standard asynchronous serial pro-

tocol is illustrated in Figure 5.2. Either device can initiate a transfer, in which bytes are

sent as serialized bits and the receiver and transmitter are not continuously synchronized.

Start and stop bits are required, and a parity bit can be optionally included to provide

some basic error detection. Before the program initiates, both controllers agree on a baud

rate, start and stop bits, parity bits, and whether the transmission will be ordered with the

least signi�cant or most signi�cant bit �rst. For example, a common con�guration is to use

9600 bits per second (bps or baud), start and stop bits each one bit-width long, and no parity

bit. In this case, a single 8-bit data byte requires (8+2) bits× 1 second
9600 bits

≈ 1.04ms to transmit.
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Figure 5.2: The standard UART serial protocol uses a start bit to es-
tablish synchronization, then tuned delay functions during transmission.
An optional parity bit may also be transmitted between bit 7 and the
stop bit. The indicated sequence happens on the transmitter's TX pin;
the receiver's TX pin remains idle throughout the transfer. The baud rate
de�nes the duration of each bit, represented here by tbit.

When implemented as a virtual serial port, with software mimicking the functionality of

a hardware serial port, interrupts are attached to the RX pins and then sensitive timing

functions are used to maintain synchronization throughout a byte. A typical software imple-

mentation, included with the Arduino environment, can be found in [75]. Once the receiver

detects a start signal using an interrupt, it will use a carefully tuned delay function to delay

half of one bit-width. It will then similarly delay a full bit-width between reading each bit

as it assembles the incoming byte. The transmitter will also use a tuned delay function to

determine when to change its TX output value. This means that the receiver will read its

RX pin at the center of each transmitted bit, but only if the interrupt triggers immediately

and if the delay functions on both the transmitter and receiver are precisely tuned to within

about 5% of the ideal delays. This can lead to a variety of complications for virtual serial

ports, some of which are mentioned below:
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• If the timing on either controller is unacceptably erroneous, if signi�cant clock drift
occurs, or if something else occupies the processor's attention during the transfer, then
the synchronization will be lost and the data will be corrupted. This is particularly
troublesome if the microcontroller is using interrupts to monitor other events such as
sensors or timers in addition to the serial communication, since these will interfere with
communication and cause data loss.

• If both devices attempt to send data at the same time, it is likely that the data will be
corrupted or that both messages will be ignored. Depending on the implementation
and assuming a single-processor microcontroller, receiving an interrupt will cause the
transmission process to be paused or interleaved with the receive process. Either option
which will adversely a�ect the timing.

• If multiple serial ports are operating on a controller, then their interrupts will interfere
with each other if messages are received on more than one simultaneously. Depending
on whether interrupts are disabled during interrupt routines, messages will be ignored
or all messages will likely be corrupted due to timing issues.

In all failure modes, the senders will be unaware that their message was not success-

fully received and the receiver may not know that corrupted data is invalid. There are

no checks for such issues integrated within the protocol, so higher-level logic is required to

mitigate collisions, ensure that no other interrupts will interfere with communications, and

check whether data is valid. These algorithms may need to be rewritten for each unique

application that uses serial communication. While this protocol is often su�cient for two

devices communicating intermittently, it becomes troublesome when many microcontrollers

are frequently communicating in a mesh network.

88



5.3. NEW CLOCK-DRIVEN TWO-WIRE SERIAL PROTOCOL

5.3 New Clock-Driven Two-Wire Serial Protocol

The main innovation of the new protocol is to address reliability issues by synchronizing

the transmitter and receiver using a clock signal generated by the receiver in response to an

asynchronously initiated data transfer. Since the transfer is still asynchronous, the processor

is not used unless a transmission is in progress. The clock then synchronizes the two con-

trollers, reducing the reliance on precisely tuned delay functions. Furthermore, having the

receiver generate the clock provides a built-mechanism by which the receiver acknowledges

that it is ready to receive the message.

While the standard protocol technically allows for full duplex operation, meaning that

messages can be sent and received simultaneously, this is not typically true of its software

implementations. Since most microcontrollers used in the target applications have a single

processor, only the receive method or the transmit method can be running at any given time;

both cannot run concurrently, and interleaving the two via threads would corrupt data by

interfering with the sensitive timing. This means that whenever a controller is receiving a

message, its TX pin is unused. The new protocol therefore temporarily re-purposes this pin

to transmit a clock signal for synchronization. This is facilitated by the fact that the receiver

already has this wire con�gured as an output, and the transmitter already has an interrupt

listening on this wire. Using this insight, only two wires are needed between the devices �

the wiring for the new protocol is identical to that depicted in Figure 5.1.

5.3.1 Overview and Properties

The new protocol is illustrated in Figure 5.3. The atomic unit of data transfer can be

either a single byte or a sequence of bytes. If sending a single byte, the data is immediately

sent after an initial handshake. If sending a sequence of bytes, the �rst transferred byte

indicates the length of the incoming sequence to allow the receiver to check that it has

su�cient bu�er space.
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Figure 5.3: The new protocol synchronizes controllers during transmis-
sions with a clock signal generated by the receiver; the top red signal is
generated by the transmitter, and the bottom green signal is generated by
the receiver. The initial three bit-widths establish synchronization, ensure
that both controllers are active and in agreement, and indicates whether
a byte or a message will be transferred.

When the transmitter asynchronously initiates a transfer, the receiver starts generating

a clock pulse on its TX line if it has at least one byte free in its bu�er. Two bit-widths then

elapse as the receiver ensures that the transmitter is still waiting to transmit, and then the

transmitter indicates whether a single byte or a message will be sent. During these three

bit-widths, the transmitter also ensures that the receiver is sending a clock signal. This

initial exchange addresses the possibility of both controllers attempting to initiate a transfer

at the same time; they would each determine that the other is not sending a clock, and

accordingly abort the transfer as failed.

By generating a clock, the receiver acknowledges that it is ready to receive and e�ectively

issues a promise to not respond to any other messages that may arrive on other active
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serial ports during the subsequent communication. If at any point the transmitter does not

receive a clock edge in more than 1.5 bit-widths, it assumes that the receiver has rejected its

request or crashed, and therefore knows that the transfer has failed. The provided higher-

level methods that deal with sending messages can then decide to retry or to abort the

attempt. As a result, complete message transfers can be viewed as atomic in the absence

of microcontroller crashes or similarly anomalous events: either the receiver successfully

receives the entire message, or the message is not transmitted.

A transfer only commences if the receiver is not currently receiving any messages on

other ports, agrees to ignore future requests during the transfer, and has su�cient bu�er

space to receive the byte or message. During the subsequent transmission, the clock signal

synchronizes the controllers such that bits are ready to be read when the receiver reads its

pin. The receiver reads its RX pin just before creating a clock transition, and the transmitter

sets its TX pin to the next level as soon as it detects a transition. Thus, each clock edge

serves as a con�rmation to the transmitter that the receiver received its latest bit. This

also means that the transmitter has nearly an entire bit-width to ensure that its TX pin has

reached steady-state at the appropriate level before the receiver reads it.

If a single byte is being sent, the transmission ends as soon as the last bit is read. If a

message is being sent, the receiver checks that it has enough room in its bu�er for the entire

message and aborts if it does not. Otherwise the transmission continues, with the data bytes

being sent in direct sequence; no start or stop bits are required between message bytes since

the controllers have already been synchronized and the clock maintains that synchronization.

An additional half bit-width is added at the end of each byte, however, to provide a little

extra time for computation at the transmitter and to ensure that both controllers are still

in agreement about their current state.

Since the initial synchronization exchange is 3 bit-widths, and the transferred byte has

8 bits, there is an odd number of bit-widths in the complete transfer and the �nal clock

transition that con�rms the last bit was read will be from low to high using normal logic.

The transfer thus ends in the idle state, and no additional transition is needed to restore
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normal resting levels. Note that this is true for messages transfers as well as single-byte

transfers � since each data byte requires an even 8 bit-widths and no start or stop bits are

needed between message bytes, the entire transfer will contain an even number of clock

transitions regardless of the message length.

In this protocol, the receiver de�nes the timing of the transfer instead of the transmitter.

This is somewhat more intuitive, since the transmitter wants to know that its sent bits are

received and the receiver will be performing computation to store the incoming bits and check

that its bu�er is su�ciently empty. Since clock transitions are important to the protocol

rather than the speci�c direction of the transition, the receiver can generate a clock signal

that has a transition once every bit-width as de�ned by the baud rate; the clock period is

thus twice the length of one bit-width. This means that the protocol does not increase the

bandwidth by including a clock, as is necessary for an approach such as Manchester encoding.

If it had been enforced that each transfer occurs on a rising edge, for example, a half of a bit-

width would need to elapse between transitions and the clock period would be one bit-width,

which greatly increases the demands on the microcontroller's timing resolution. Note that

the receiver uses a tuned delay function to generate the clock signal and the transmitter uses

a tuned delay function to check for timeouts, but the accuracy of this timing is no longer

critical to successful data transmission since both controllers are not simultaneously trying

to accurately time one bit-width. If the clock frequency drifts or is slightly o� from ideal,

the achieved baud rate will be a�ected but the data will still be reliably received since the

transmitter uses interrupts to remain synchronized.

5.3.2 Implementation

A number of particularly interesting implementation issues can be considered when real-

izing this protocol as microcontroller code. One such issue is the e�cient use of processor

power between bit transitions, to ensure that data is ready to be read by the next clock tran-

sition and to facilitate the highest baud rates possible. Towards this end, the transmitter

stores a variable that indicates the bit to be written at the next transition. When a transition
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is detected by the interrupt attached to the RX pin, this variable is immediately written to

the TX pin before any computation is performed. After this is complete, a variable that

masks the byte being sent is shifted and the next bit to transmit is stored. This therefore

moves the computation of the next bit from before the TX pin state is changed to after the

TX pin state is changed � this gives the TX pin a full bit-width to reach steady state and

minimizes the amount of processing that needs to be done between clock transitions. The

more expensive task of storing the next byte to be sent and initializing the mask that selects

the next bit can be performed before the transmitter initiates the communication, or during

the extra half bit-width of time between bytes that the protocol provides.

The transmitter must also be able to detect if at any point the clock signal ceases to be

transmitted, since this indicates that the receiver rejected the request or crashed. Once a

transmission is started, the main transmit method waits in a loop while the interrupt routine

performs the tasks of actually writing the data at the appropriate times and computing the

next bit to be written. This loop can therefore be used to check that the expected amounts

of time are passing between transitions; delay functions that wait approximately half of a

bit-width are used in the loop to check if more than 1.5 bit-widths has elapsed since the last

bit was written by the interrupt routine. If so, it can assume that the clock has stopped and

that the transfer has failed. Note that interrupts can be triggered during the delay functions,

so if the timing is not precise the transfer will still continue as expected.

Regarding the receiver, the protocol indicates that it must essentially promise to not

respond to other data requests for the entire duration of a transmission. This is currently

accomplished by disabling RX interrupts on all other virtual serial ports on the receiver just

before the clock signal starts to be generated. If other controllers try to send data to the

receiver while its interrupts are o�, they will time out as described above since their write

interrupts would not be triggered within 1.5 bit-widths; they would thereby determine that

the receiver rejected their request. At the end of a transmission, either because of successful

transfer or because insu�cient bu�er space is available for a message, the other RX interrupts

are re-enabled.
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If a receiver detects a request when its bu�er is completely full, it will reject it by not

generating a clock signal since it cannot accommodate the data regardless of whether a single

byte or a message is sent. In this case, it also brie�y delays before returning to the user.

This ensures that if the user tries to transmit data from the receiver immediately after a

rejected request, the rejected requester will not interpret the new request as the beginning of

a clock signal. The protocol would still work without this delay, since the initial handshake

would reveal that they are not in agreement, but the delay speeds up rejection since only

the 1.5 bit-width timeout is needed as opposed to three bit-widths.

A single byte is currently used to indicate the length of a message. Interpreted as an

unsigned integer, this implies an inherent message length limit of 255 bytes. Higher-level

methods can be used to split longer messages into smaller chunks if necessary.

5.3.3 Transfer Speed

The increase in reliability comes with a slight speed reduction if sending individual bytes,

since some overhead is added to ensure that the receiver is ready and to convey whether a

single byte or a message is being transferred. Speci�cally, a single-byte transmission requires

11 bit-widths as opposed to the 10 bit-widths required by standard UART with no parity.

However, the new protocol o�ers a speed increase for byte sequences. Start and stop bits

are unnecessary after the initial handshake, reducing the number of bits per message byte.

As a result of these overhead reductions, the time per message byte decreases with increas-

ing message length. More speci�cally, Equation 5.1 gives the total time to send a message

and Equation 5.2 gives the time per message byte. The duration of a bit as de�ned by the

baud rate is represented by t_bit, and N is the number of bytes in the message.

time to send a message = tbit × (3 + 8 + 8.5×N) (5.1)

transmission time per message byte = (8.5× tbit) +
(
tbit × (3 + 8)

N

)
(5.2)
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The additional 3 bit-widths in Equation 5.1 represent the overhead discussed earlier for

initializing a transfer, and the additional 8 bit-widths represent the byte that indicates the

number of bytes in the transmitted sequence. Each message byte requires 8.5 bit-widths

since the receiver waits an additional 0.5 bit-widths before starting the clock pulse for a new

word to ensure that the transmitter saw that the receiver acknowledged the last bit. This

also provides a little extra computation time for the transmitter to prepare the next word,

and ensures that the transmitter always has a full clock period to transition its TX pin to

the next bit level � this can be vital when dealing with high baud rates and relatively slow

microcontroller clocks such as the 8MHz o�ered by an Arduino Pro Mini.

Since the standard protocol must include start and stop bits with every byte, the time per

message byte is a constant 10 bit-widths without parity. Equation 5.3 compares this to the

transfer time for the new protocol. For low values of N , this fraction will be larger than 1

and the transmission time for the new protocol will be longer than for the standard protocol.

However, this fraction will reduce as N increases. If the message has more than 7 bytes, the

transmission time for the new protocol will be shorter than for the standard protocol as

indicated by Equation 5.4. For example, a message of 20 characters will be transmitted in

approximately 90.5% of the time it would have taken with the standard protocol, saving

about 2.0ms at 9600 baud. As the message length continues to increase, Equation 5.3 will

approach a constant 0.85 since the initial synchronization time becomes less signi�cant and

the number of bit-widths per message byte, de�ned to be 8.5, dominates. If 255 bytes are

sent, currently the e�ective maximum message length, it will take approximately 85.4% of

the time taken by standard UART and save about 39.8ms at 9600 baud.

fraction of standard UART time =
tbit × (3 + 8 + 8.5×N)

tbit × (10×N)
= 0.85 +

1.1

N
(5.3)

speed increase if tbit × (3 + 8 + 8.5×N) < tbit × (10×N)⇒ N > 7.3 (5.4)

95



5.3.4 Provided Library

The clock-driven serial protocol is particularly suited to transmitting frequent messages

in a mesh network where many virtual serial ports will be used. Transmissions are initiated

asynchronously and the lines can be left idle when no transmission is ongoing, so the pro-

cessor is only used during communication. Synchronization is established by a brief bit-level

handshake that ensures the receiver and transmitter are in agreement, and a clock signal

maintains synchronization throughout the transmission. The protocol maintains synchro-

nization between transmitter and receiver despite potential interruptions or timing drift,

ensures that receivers are capable of receiving messages prior to transmission, and ensures

that multiple transmissions will not interfere with each other on any given controller.

A library is provided for using this new protocol as a drop-in replacement for existing

software serial libraries. It includes methods for sending and receiving bytes, and also has

new methods related to atomic message transfers. For example, methods are provided that

automatically retry transmissions after �xed or random delays until a certain number of tries

or a certain timeout is reached. In addition, methods are provided for switching between

the new clock-driven protocol and the standard timing-based protocol to support traditional

serial devices such as sensors or Bluetooth serial modules.

The provided library implementing the new serial protocol can be accessed at [76]



5.4. EXPERIMENTS

Figure 5.4: Five Arduino microcontrollers were wired together in a fully
connected con�guration to test the new serial protocol. Each one sent
bytes or messages to each other controller at high rates, retrying when
messages were rejected.

5.4 Experiments

Tests were performed to demonstrate the increased reliability of the clock-driven serial

communication. Beginning with two microcontrollers and a single serial port, the numbers of

ports and controllers were gradually increased to investigate scalability and the application to

interconnected networks with frequent message transfers. Transmissions of single bytes and

of complete messages were both tested. In addition, the baud rate was adjusted to determine

whether the clock synchronization allows for higher communication rates by reducing the

probability of timing errors.

The experimental setup on which the following tests were conducted featured �ve micro-

controllers � three 16MHz Arduino Uno's and two 8MHz Arduino Pro Mini's � connected

in a fully connected network con�guration as shown in Figure 5.4. These controllers will

be referred to below as A through E. Each controller was connected via a two-wire serial

channel to each other controller; each controller therefore had four concurrent software serial

ports running the new protocol. Note that the chosen Arduino boards only provide one
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Figure 5.5: A successful single-byte transmission is recorded between mi-
crocontrollersA and C. The protocol operates as expected, and the period
between clock transitions is 52.0µs as desired for 19200 baud.

hardware serial port, which is used for USB communication, so the illustrated con�guration

requires the use of virtual serial ports. Each controller was programmed to continuously

send bytes or messages to every other controller, using small random delays if their requests

were denied. Each controller also maintained counts of messages successfully transmitted to

each connected receiver. Every message then contained the value of this counter along with

a sender ID to ensure that no messages were missed at the receivers.

5.4.1 Single-Byte Transmissions

The �rst experiment investigated the sending of individual bytes using the new protocol.

Each microcontroller was programmed to send single-byte transmissions to each other mi-

crocontroller, with small random delays ranging from 0 to a few milliseconds. Within this

scenario, the microcontrollers were able to successfully communicate without any corrupted

data; transmitters were informed if a receiver was not ready to receive, and the clock sig-

nal successfully synchronized data transfers. The baud rate was typically held constant at

19200 bps but data was also reliably received at 38400 bps.
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Figure 5.6: Bytes are sent back-to-back between microcontrollers A, B,
and E in various directions. Attempts to send data toA whileA is sending
a byte to E successfully result in aborted transfers.

Figure 5.5 presents an oscilloscope trace of a single-byte transmission with the new pro-

tocol. Microcontroller C initiates the transfer, at which point microcontroller A begins

generating a clock signal. The transmitter keeps its TX line low until the third bit-width,

at which point it sends a high value to indicate that a single byte is being sent. The data is

then sent as eight sequential bits: A reads each bit just before creating a transition, and C

writes the next bit as soon as a transition is detected. The baud rate was set to 19200 bps,

and the cursors indicate that the time between clock transitions is 52.0µs as expected.

A more complex scenario is shown in Figure 5.6, where multiple single-byte transmissions

are recorded. Four successful transfers can be seen between microcontrollersA, B, C, and E,

many of which happen in quick succession. This indicates that directionality can be quickly

reversed in accordance with which controller initiates the transfer. Within each exchange,

the transmitter sends a high value on the third bit-width to indicate that a single byte is

being transferred. Moreover, Figure 5.6 captures some requests that are rejected by the

receiver. Microcontrollers C and D each attempt to send data to A while A is busy sending

a byte to E. Since A is busy, it does not generate a clock signal for C and D, and they thus

know that their requests have been denied and abort the transfer. There is also a rejected

request from A to D, indicating that D is busy communicating over a channel not pictured.

99



CHAPTER 5. CUSTOM SERIAL COMMUNICATION PROTOCOL

Figure 5.7: A message is successfully sent as an atomic transfer from
microcontroller B to A. B indicates that a message is being sent, then
transmits the size of the message, in this case 6 bytes. Since A continues
to send a clock signal, B sends the entire message, in this case �HI 34\0�.

5.4.2 Message Transmissions

In addition to sending individual bytes, experiments were performed where each controller

sent atomic messages to each other controller. Similar to the previous case, messages were

sent with brief random delays on the order of 0 to a few milliseconds.

Figure 5.7 presents an oscilloscope trace of an entire message being successfully trans-

mitted from B to A. B keeps transmitting a low value on the third bit-width to indicate

that a message is being sent, and then the subsequent byte informs A that 6 bytes will be

sent in the message. A then con�rms that its bu�er is su�ciently empty for this message,

and continues generating a clock signal. The message transfer then commences, with bits

being sent on clock transitions and without start or stop bits between bytes. In this case,

the null-terminated message �HI 34\0� is sent as a series of ASCII characters, where the 34

is an incrementing counter to ensure that no messages are missed at the receiver. Note that

since this experiment was only between two controllers, the sender ID was omitted for this

case. As indicated by the oscilloscope cursors, the entire transfer requires approximately

3.240ms, which is within expected error of the 3.229ms that Equation 5.1 predicts given
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that the microcontrollers were con�gured for 19200 baud. The additional 11µs is likely a

combination of the time it takes A's initial interrupt to trigger, slight imperfections of the

timing functions, and measurement error regarding the oscilloscope cursor placement.

In the con�guration with �ve interconnected microcontrollers, a nominal baud rate of

19200 bps was typically used but the maximum rate observed without any errors was 38400 bps.

Higher rates started to reveal a limited amount of intermittent data corruption, likely due to

the slower clock speed of the Arduino Pro Mini, which is 8 MHz as opposed to the 16 MHz of

the Arduino Uno. A similar test was therefore performed with only the Arduino Uno's. In a

fully connected con�guration, all messages were successfully transmitted between these three

controllers with baud rates up to about 57600 bps. The observed baud rates were typically

very close to the nominal baud rates, as indicated by Figure 5.5 and Figure 5.7. As previ-

ously discussed, however, data will still be reliably transferred even if the timing functions

are not as precisely tuned. Cases were observed in which the processors were temporarily

consumed by other tasks and the clock signals were correspondingly distorted, but the data

was still successfully transmitted.

Message Collision and Bu�er Over�ow Avoidance

With all �ve controllers interconnected and sending messages, the protocol successfully

managed collisions and bu�ers, such that all messages were eventually received from all con-

trollers. The numbers of messages received from each other controller was also relatively

evenly distributed on each device, indicating that certain devices were not dominating the

communication channels. The sender IDs and counters included in the messages also indi-

cated that no messages were missed or corrupted at the receivers; there were no instances in

which the protocol assumed a message was delivered successfully when it actually was not.

Figure 5.8 demonstrates the successful mitigation of message collisions that would cause

data corruption on typical software serial port implementations of standard UART. Micro-

controller C attempts to send data to A while A is busy receiving messages from B. Since A

has e�ectively promised B that it would not respond to any other incoming requests during
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Figure 5.8: Microcontroller C attempts to send a message to A while A is
busy receiving a message from B. No clock signal is generated since A has
promised to listen exclusively to B, so C correctly aborts the transfers.

the transfer, it does not generate a clock signal for C so the attempts are aborted. C then

knows that the attempt failed, does not increment its message counter, and tries again after

a short delay. Similarly rejected attempts are seen from A to C, which are likely due to

C being busy attempting to communicate with another microcontroller, performing other

interrupt-driven tasks, or having a full bu�er.

In addition to avoiding corruption due to simultaneous message transmissions on sepa-

rate virtual ports, the protocol also successfully avoided bu�er over�ow. To test this case

explicitly, the code on one microcontroller was altered such that it would only sporadically

read from its bu�er, thus allowing it to �ll up in between �ushes. The bu�er size was also

chosen to be an integer multiple of the message length, ensuring that the bu�er would be-

come completely full. Figure 5.9 presents a segment of such a trial. At the beginning of the

recorded trace, D's attempts to send data to A are all rejected by A. Note that no clock

signal is generated at all, indicating that A's bu�er is completely full � it does not even wait

to learn how many bytes the message contains. At one point, however, A's code reads a

message from the bu�er and thus A can now accept D's transfer request. The message is

then successfully sent as an atomic unit. After the transfer, A's bu�er is once again full and

subsequent requests are again denied.
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(a) Requests to send data from D to A are

immediately denied when A's bu�er is com-

pletely full. This is both before and after the

message transfer, since a single message was

�ushed from A's bu�er and the bu�er size is

chosen to equal the message size.

(b) Since there is no free space in its bu�er,A

does not generate a clock signal at all, i.e. it

does not wait to learn how long D's message

would be. As soon as there is free space,

however, it can respond to incoming requests.

Figure 5.9: The protocol successfully avoids bu�er over�ow by allowing
receivers to reject requests when their bu�ers are full. In this case, A
denies requests from D until a message is �ushed from A's bu�er, at
which point the transfer can proceed.

Another interesting scenario that demonstrates the elimination of corruption due to bu�er

over�ow is captured by Figure 5.10. The middle section of this trace records attempts to

send messages from A to B and from A to C. The receivers' bu�ers are not completely

full, so they generate clock signals and receive the byte that indicates the message length.

They then determine that their bu�ers are not empty enough to hold the entire message,

and cease generating a clock signal. A then detects that a transition was not received within

1.5 bit-widths, and correctly infers that the transfer was denied. The �gure also includes

some rejections of the type previously seen, where the receivers are busy and therefore do

not respond at all.

Using the standard Arduino software serial library in these same con�gurations and with

the same control logic, almost every message experienced some degree of data corruption.

The new protocol therefore successfully mitigates both message collisions and bu�er over-

�ows, providing a reliable method of atomically transferring messages between controllers

without hardware serial ports. In addition, the baud rates achieved are generally higher

than the baud rates that were achieved in tests with the standard library where the control
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Figure 5.10: If a receiver's bu�er has some free space but is not su�ciently
empty to hold the entire message of a prospective transmitter, the attempt
will be aborted after the message length is transmitted.

code was altered such that only one message is transmitted at a time. This is a result of

the decreased reliance on precise software-de�ned timing functions and increased reliance on

interrupts for synchronization.

5.5 Summary

The presented serial protocol allows microcontrollers to communicate over a two-wire

interface using software-de�ned virtual serial ports even in the presence of multiple commu-

nication channels per controller and frequent message collisions. It combines the simplicity of

standard UART with the timing advantages of synchronous clock-driven protocols to reliably

transmit data without heavy reliance on the precision of tuned timing functions. Moreover,

having the receiver generate the clock signal provides a built-in mechanism by which the

transmitter knows that the receiver is ready to accept data and when each bit has been

successfully read. Since the protocol re-purposes the receiver's TX pin for this clock signal,

the communication still only requires two physical wires.
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This approach manages data �ow through complex mesh networks, allowing controllers

to use software serial ports while eliminating data corruption due to message collisions. The

additional overhead incurred for single-byte transmissions is negligible, and transmitting

messages is actually faster as compared to standard UART at the same baud rate if the

message is longer than 7 bytes. Another consequence of this protocol's message transfer is

that byte sequences can be treated as atomic units. This can be very useful for high-level

users, and the library includes methods for sending and receiving messages that automatically

retry upon failure and that automatically incorporate null termination to demarcate messages

within a receiver's bu�er.

Experiments demonstrate that the current implementation operates as expected and suc-

cessfully enables reliable communication in adversarial con�gurations. Message collisions

and bu�er over�ows were avoided even with �ve microcontrollers rapidly sending bytes or

messages in a fully connected con�guration. Achievable baud rates were also generally higher

with the new protocol than with standard software UART, due to the clock signal's synchro-

nization.

This approach therefore facilitates communication among interconnected microcontrollers,

a capability that is vital to the integrated systems designed by the robot compiler. Micro-

controllers can now be inserted throughout a design and connected by serial communication

channels without worrying about managing potential complications; the necessary guarantees

are embedded within the protocol itself at the bit level. This reduces the e�ort required by

experts when adding new microcontrollers to the library, and also grants the robot compiler

additional autonomy and versatility. Together with the software template model, the robot

compiler can now generate complete designs that include not only electrical and mechanical

layouts but also control and communication logic.
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Chapter 6

Design Algorithms: Generating Robots

�Data! Data! Data!� he cried impatiently. �I can't make bricks without clay.�

� Sherlock Holmes
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The provided library of electromechanical modules allows users to intuitively design

robotic systems. Components can be chosen and connected without worrying about imple-

mentation details � the modular infrastructure handles integrated subsystem designs behind

the scenes. As the library expands and more components are chosen, it is important to have

e�cient algorithms to aid the user and generate �nal fabricable outputs.
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Figure 6.1: Suites of algorithms operate on collections of components
throughout various stages of the design process. The dashed lines indicate
iteration loops that may be followed by the user based upon feedback from
integrated tools as the design proceeds. Each successive design phase uses
more computational power, so this �ow also represents a division among
algorithms to make design more e�cient and responsive.

Towards this end, algorithms have been developed to operate on collections of components.

As illustrated in Figure 3.1 and Figure 6.1, they operate in various stages of the design process

and can provide varying levels of feedback to the user. In addition, each successive design

phase provides more sophisticated feedback at the expense of greater computational cost; the

computation is thus compartmentalized and divided into di�erent categories of algorithms

so that they can run at strategic intervals and maintain a responsive design environment.

There are generally four main categories of algorithms included in the robot compiler for

these purposes:

Search Algorithms facilitate quickly selecting a subset of components from a larger col-

lection. These allow users to query the library for components that meet certain criteria,

making the design process faster and smoother. Search algorithms also allow the system

to �nd components that it determines might work well in the design, allowing it to au-

tonomously make design decisions or suggestions.
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Composition and Instantiation Algorithms operate on a design hierarchy to instan-

tiate the chosen components and compose their respective elements. These convert textual

descriptions of components, parameters, constraints, and connections to Python object in-

stances. The result resembles a linked list tree structure that represents the design topology.

This is a middle ground between textual descriptions and the production of �nal output

�les, allowing for additional design veri�cation and completion without the need to perform

computationally intensive output operations.

Design Veri�cation Algorithms analyze a collection of instantiated objects to verify

and possibly edit the design. These can check lower-level requirements such as connected

port compatibilities, or higher-level requirements such as components that depend upon each

other for functionality. When possible, these algorithms autonomously adjust the design to

address issues or otherwise interact with the user. Each subsystem may have veri�cation

processes that a�ect other subsystems, and thus these algorithms are often iterative to

facilitate the co-design structure.

Output Generation Algorithms process the �nal collection of instantiated objects to

produce integrated design outputs. These may include electrical diagrams and instructions,

bills of materials, microcontroller software, UI software, and mechanical fabrication �les.

There are thus a few levels of computation performed as components are composed. Search

algorithms run on textual descriptions alone, or on a limited number of instantiated port

objects. These computations can be run on demand, each time the user makes an action,

or autonomously throughout the process to provide some user veri�cation. At a lower fre-

quency, the system can instantiate components to provide more feedback � verify parameter

constraints, check component requirements and interdependencies, and proccess the hierar-

chy as a whole. This allows the system to make more re�ned suggestions, detect more errors,

and even modify or auto-complete portions of the design. Only at the end of the design, once

everything is �nalized, does the system need to perform the more computationally intensive

task of converting the stored subsystem information into complete output �les.
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6.1 Search Algorithms

As the user creates their design, it is helpful to be able to search the library for appro-

priate components. In addition, the system itself should be able to search the library to

autonomously make suggestions and verify or adjust the design.

Search for components or ports based on class type

One available method for searching the library is to �lter based on component or port

type. For example, a list of all electrical components can be found by retrieving a list of

components that inherit from ElectricalComponent. More sophisticated �ltering can also

be achieved by searching for components with multiple parents, or specifying a desired level

in the ancestry tree. For example, one could request only components whose direct superclass

is ElectricalComponent, or components that inherit from both ElectricalComponent and

CodeComponent anywhere in their ancestry. Similarly for ports, one could request only

DataPorts, or only ports that are Outputs. All of these searches can be re�ned to only

return concrete classes rather than abstract classes, thereby only showing results that can be

directly used by casual users. In this way, a relatively re�ned subset of the original library

can be obtained for presentation to the user or for autonomous analysis.

An advantage of this type of search is that it can be done without instantiating any of

the component classes. The inheritance topology can be determined from the Python meta-

information about the class de�nition without creating an object of the class. This makes

the search much more e�cient, allowing it to more readily deal with a rapidly expanding

library. In the future, a tree representing the class inheritance structure can be stored as

part of the library to facilitate this searching; as new components are created or modi�ed,

the tree is simply adjusted to re�ect the change as necessary. This would amortize the cost

of inheritance analysis and essentially pre-compute the class relationships, allowing desired

class types to be retrieved from the library even faster.
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Search for components based on port types

More re�ned searching can also be achieved by �ltering components based on what ports

they contain. For example, a user or algorithm may want to know all available components

that support a PWM output port, or that can be connected to a selected component. As op-

posed to searching for components on an individual basis, this provides a higher-level design

search that involves multiple components and their connectivity information. It facilitates

organically growing an existing design, makes it easier to �nd suitable devices, and facilitates

both user experience and autonomous design assistance.

The implementation of these searches can be made relatively e�cient. If a desired port

type is provided, and a list of components containing such ports is requested, then the search

can usually be completed without instantiating component classes. This is because most of

the components in the library are stored as textual yaml �les, which include a list of ports

and their class types. Thus, these textual �les can be searched for the desired port type to

�nd a list of suitable components. Components de�ned only as scripts or subclasses would

need to be instantiated, but the Component superclass provides methods for saving itself as

a yaml �le; so components de�ned in this way could be saved as text �les when they are

created, allowing the search to only concern itself with textual representations.

If a desired port is selected and a list of components that can connect to that port is

requested, then the search will need to perform additional work. It will need to instantiate

the selected port, and execute its canMate and shouldMate methods with an instantiated

object of each other known port type. Once a list of compatible ports is found, the previously

described search can be conducted to �nd components with at least one matching port

without instantiating the components themselves. Since in general there are far fewer port

types than component types in the library, this search is still relatively e�cient.

In the future, much of the information required by these searches can be precomputed

and stored in a tree-like data structure. This would enhance the e�ciency of the algorithms

and potentially avoid the need for any object instantiation.
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Search for components based on functionality

Although not yet implemented in the current system, the library could also be searched

based on component function. Some information about the function can be automatically

extracted simply from the component de�nition, such as what types of ports, subcomponents,

and parameters it contains. Furthermore, the components could contain descriptions and

keywords that describe the intended use and function. This meta-information could be

partly user-de�ned, but also partly auto-generated. To some degree, functional descriptions

for new components could be inferred from the meta-information of parent classes as well as

embedded subcomponents.

Search for components based on previous designs

A higher-level search may be able to retrieve components from the library based on de-

signs that have been created in the past. By analyzing a current design and its similarities

to other designs (i.e. other components in the library), likely additions and topologies can

be suggested to the user or automatically chosen to address errors. By allowing the sys-

tem to learn from experience, it could provide more sophisticated aid to the user and even

complete portions of the design on its own, allowing the user speci�cations to remain at an

even more abstract level. This would also allow the library to expand more quickly and

dynamically since the computer could make its own additions to the library with minimal

user involvement.

6.2 Composition and Instantiation Algorithms

Once a user �nds components in the library or creates derived components, they can con-

nect them according to the desired information �ow and compose components hierarchically

to create more complex structures. As components are composed in this way, the system

manages their encapsulated information for each subsystem and ultimately generates the

�nal robot design �les. By allowing each subsystem to be modularly encapsulated in the

components, their designs can be created in parallel and interact with each other.
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As the design is created, it is populated with information such as de�nitions of subcom-

ponents, interfaces, interconnections, parameters, and parameter constraints or functions.

The depth and breadth of the hierarchy can expand very quickly, greatly increasing the

underlying complexity. Storing and modifying instantiated objects throughout this process

could become unwieldy and ine�cient.

To address this issue, the de�nition of a design by connecting and composing components

is done at an abstract level without requiring the instantiation of class objects. The system

can e�ciently manage large designs of increasing hierarchical complexity by only storing the

names of chosen classes, names of ports that the user chooses to connect, selected parameter

values, parameter constraints and expressions, names of inherited interfaces, and so on.

This results in a textual description of the design that can be saved in the YAML �le format.

In addition, it simpli�es the processing required during the design phase and facilitates a

responsive design environment.

To actively make suggestions and participate in the design process, certain information

about objects can be precomputed or a limited number of objects can be temporarily instan-

tiated. This allows the search algorithms to run, and for basic veri�cation to be completed

such as port type compatibility when connections are made.

6.2.1 Design Instantiation

Once a design is speci�ed, it must be instantiated to begin the process of validation or

output generation. Towards this end, the Component class has a method called make that

processes the design hierarchy and creates fully de�ned Python objects for each component.

It also instantiates the required Composable classes and informs them of the design topology

so that they can store this information in a subsystem-speci�c manner. This method has a

few consecutive phases, and is outlined in Algorithm 1.

Through these phases, the textual description of the component hierarchy is processed

and converted into a collection of instantiated Python objects. The connections and subcom-
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ponents are evaluated, the parameter relationships are resolved, and the subsystem design

information is incrementally updated to prepare for outputting �nal design �les. Note that

make is an iterative method, traveling throughout the design tree by calling itself on ev-

ery subcomponent. The nested subcomponents and the connections between subcomponent

ports create a virtual linked list structure that represents the overall design. Once the call to

make terminates, the component has a Composable instance for each subsystem represented

in the design hierarchy, and each such instance has been informed of the design topology and

appended with the Composable instances of parent components as the recursion percolates.

The result is a single Composable instance for each subsystem, and the system is now ready

to begin the veri�cation or output generation processes.

The structure of this method is such that it can process each subcomponent quickly,

simply instantiating the class and its various ports. The information about connectivity,

parameters, and constraints is also evaluated by the Composable objects, being stored in a

manner that will facilitate generating outputs, but a �nal design output is not yet processed.

This means that make can be run periodically as the user is designing to allow for more

in-depth analysis and design feedback while not requiring excessive computation.

6.3 Design Veri�cation Algorithms

Once the design has been instantiated, automated veri�cation and modi�cation can take

place. Towards this end, the makeDesign method of the Component class iteratively al-

lows each Composable instance an opportunity to make design edits until all agree that no

new changes need to take place. This iteration allows each composable to a�ect the other

composables' decisions, facilitating an integrated co-design.

General requirements speci�ed by each component can �rst be evaluated, and the design

can be modi�ed to satisfy them. Algorithm 2 describes how the checkRequirements method

achieves this through an iterative process in which modi�cations by one composable can

spur further changes by other composables through the co-design veri�cation process. In the
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current implementation, the main supported requirement type is that another component of

a speci�ed type be included in the design. For example, a certain user interface may require

that a Bluetooth transceiver be included on the robot; in this case, the system will search

for a concrete class inheriting from the abstract BluetoothTransceiver class and add it to

the design. Connections will be determined later in the process as described below if not

speci�ed by the component requirement.

In addition to evaluating general requirements, each composable can also perform domain-

speci�c veri�cation and modi�cation. The makeDesign method, outlined in Algorithm 3, will

iteratively give each composable object an opportunity to do so. If modi�cations are made,

general component requirements can be rechecked as described above. This sequence is

repeated until no composable makes any changes and all general requirements are satis�ed.

This makeDesign method is therefore a recursive, iterative algorithm that acts upon a

user-speci�ed design to make it ready for �nal compilation. It allows the Composables a

chance to interact with each other while making domain-speci�c decisions. This creates

a co-design environment in which the electrical, mechanical, and software systems can be

designed simultaneously.

6.3.1 Topological Sorting of Composable Objects

Some composables depend upon the work of other composables to behave appropriately

and to make the most intelligent decisions possible. For example, the software composable

should know about all microcontrollers that the electrical composable inserts, and the data

composable should know about all UI devices that will be generating or processing data.

Each Composable subclass can therefore store a list of dependencies, and these dependencies

can be used to create a topological ordering. This topological sorting de�nes the order

in which the composables should be processed when making design choices. For example,

the makeDesign method asks composables for design veri�cation or modi�cation in this

topological order to ensure best results and minimize the number of needed iterations.
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6.3.2 Electrical Subsystem

The ElectricalComposable class will check the design using electrical design guidelines.

For example, it will ensure that connected ports have compatible voltage and current re-

quirements, and that microcontroller pins are con�gured correctly. If an electrical port in

the design is unconnected, it will �nd an available pin on a microcontroller that supports

the desired type and add the new connection. If power supplies are missing, it will choose

an appropriate battery or other source. If a new microcontroller is needed, it will select one

from the library based on the devices that need to be connected. It can either choose to add

independent microcontrollers, or have a central controller command slave controllers such as

the hardware modules described in Section 3.3.1 that are distributed across the robot.

In order to allow inserted microcontrollers to communicate with each other, the electrical

composable can create a Minimum Spanning Tree (MST) of the controllers, and weight the

edges according to the geometrical layout obtained from the mechanical composable. Serial

communication links can then be added along the edges of the tree, creating a connected

grid of controllers while attempting to minimize the amount of wiring. The software serial

library described in Section 5.3 can be used to facilitate robust communications.

To choose microcontroller pins automatically, the ports that need to be connected can be

assembled and then the controller pins can be checked to see if they support being con�gured

as a compatible port according to the canMate and shouldMate methods. Con�gurations

can then be chosen for the connected controller pins, de�ning their state and a�ecting fu-

ture pin connections. While the current implementation uses greedy algorithms to �nd a

matching between unconnected device ports and controller pins, in the future a network �ow

algorithm can be used to �nd all connections at once. A graph can be constructed, using

the unconnected ports and the microcontroller pins, that respects the port compatibility

requirements. Computing a minimum cost maximum �ow on this graph would then calcu-

late all needed connections, or determine that no possible connection topology exists. If the

connections are not feasible, a new microcontroller can be chosen or slave controllers can be

added for increased capacity.
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If two incompatible ports are connected in the design, or no suitable connection between

ports can be found, the ElectricalComposable will automatically search the library for

components that can act as bu�ers by converting the incongruous parameters of the ports

and allowing for a transitive connection. For example, a motor may be connected directly to

a microcontroller output, but the current requirements would probably be mismatched. In

this case, the composable would search the library for a subclass of ElectricalBuffer with

inputs and outputs that can connect to the microcontroller and motor, respectively. In this

case it would �nd a voltage bu�er or motor controller that can drive the motor, depending

on the necessary communication protocol. It would then break the connection between the

motor and microcontroller, and add the new bu�er in between. Similar scenarios can occur

for voltages, in which case step-up or step-down converters would be located, or even for

protocols, such as converting from PWM to analog values or from Bluetooth to wired serial.

If the composable cannot �nd a bu�er that satis�es both sides of the connection, but

does �nd some that satisfy one side, the algorithm will start a tree of possible bu�ers and

iteratively branch the tree outward; the root will always connect to one side of the connection,

and each leaf will represent a di�erent port type that can be reached by some combination of

bu�ers. The tree will then branch out as the library is iteratively searched for new bu�ers to

add to the leaves, until the end port type is reached or no new bu�er can be added. In this

way, arbitrarily long chains of bu�ers may be found to convert between two ports that were

originally incompatible. As a simple example, this may result in a current converter and a

voltage converter in series. This allows the system to be very �exible, and to �nd complex

solutions to design issues.
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6.3.3 Data Subsystem

The DataComposable class will perform checks on the design that are similar to the

electrical composable, but that relate speci�cally to the data network. It will check that all

data ports have unique IDs, which will be used by the software templates and snippets for

passing data between ports. It can also check the overall connection topology, and resolve

errors or data con�icts. For example, two output ports may be connected to the same input

port, which could result in a con�ict at that input port. The composable may choose to

break those connections and insert Multiplexers, allowing for one of the outputs to be

passed to the input according to a third input. The composable can choose an appropriate

control input if known, but can also consult the user for advice or for a design change.

In addition, the composable will check that types and protocols have been fully speci�ed,

and can choose default values if they seem appropriate. It will then check that all connected

ports have compatible data types and protocols. If incompatible ports are connected, or if

two ports need to be connected, it may search the library for DataBuffer subclasses that

can convert between data types or protocols and insert them as needed. The algorithmic

structure to achieve this is the same as described above for the ElectricalComposable, and

may result in a chain of bu�ers to transitively make the desired conversion. A user design

that simply connects a toggle switch on a computer UI to a toggle switch on a smartphone

UI may result in an XBee interfacing between the computer and a microcontroller and a

Bluetooth module interfacing between the microcontroller and the smartphone � all needed

implementation details and devices have been automatically chosen by the system to realize

the abstract information �ow desired by the user. This example also highlights an interaction

between the DataComposable and the ElectricalComposable, since they each need to insert

new devices in response to new modi�cations.

This allows intuitive user speci�cations that span multiple subsystems to be translated

into fabricable designs. For example, a user's entire design may consist of a servo directly con-

nected to a UI slider in order indicate that the servo should be controlled from a smartphone.

When the design is veri�ed, the system will notice that the slider's data output port has a
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Bluetooth protocol speci�ed, but the servo data input has a direct protocol speci�ed; the

system will therefore search for a suitable Buffer, �nd that the BluetoothToDirectBuffer

is appropriate, and add this element as an intermediate in the servo-slider connection. This

new component, in turn, has a requirement that a BluetoothTransceiver be included in the

design. When the main component that started the design veri�cation process re-checks the

design requirements, it will see this as unsatis�ed and insert a new component that inherits

from BluetoothTransceiver � perhaps an instance of the BluetoothSerialModule sub-

class, which represents a Bluetooth chip that connects to a microcontroller via a standard

two-wire serial channel. The ElectricalComposable, meanwhile, will respond to this by

choosing an appropriate microcontroller for the unconnected electrical pins and wiring them

appropriately. Thus the simple user-speci�ed design now has everything needed to control

a servo over Bluetooth from a smartphone UI. The CodeComposable will then generate all

necessary software by pooling together and processing the various code snippets.

6.3.4 Code Subsystem

The CodeComposable has some basic veri�cation to perform on the included software

snippets. For example, it will check that each CodeComponent object in the design has an

associated sink for its software. Typically, this means being connected to a UI device or

a microcontroller. If one is not found, it will see if it is transitively connected to one (i.e.

connected to a component that is connected to a software sink), attempt to �nd a sink

elsewhere in the design that seems appropriate, or add a new one if needed and possible.

During the make phase, the CodeComposable class also begins to pool the software snippets

described in Section 4.1 from various components into a coherent library, but not yet create

the �nal output. This follows the paradigm of dividing labor between the instantiation and

the output generation phases, allowing for preliminary analysis as the user creates the design.
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This �rst stage consists of parsing each software snippet into declarations, methods, and

insertions according to the processing directives described in Section 4.3. These are sorted

into �les and folders according to their associated controller. The result is a folder for

each controller that contains a �le of declarations, a folder of methods, and a folder of

insertions. Each of the two subfolders contains a �le for each relevant method. During

this process, duplicates are eliminated by �rst replacing device-speci�c tags with tags that

uniquely identify the source device, and then checking for code overlap. The replacements

are necessary since two �les with the exact same raw code may ultimately become di�erent

code once the code tags are resolved; for example, the port IDs of two LEDs will be di�erent

but referenced by the same @portID tag.

Once this processing is complete, a skeleton of the code library is obtained and can

be analyzed. This can be particularly useful for users writing code using the graphical

programming blocks described in Section 3.3.2, since those modules can now present lists of

available methods and variables. This information is also now stored in a way that facilitates

parsing by the output generation algorithm, which will process the code tags and create the

�nal software packages.

6.4 Output Generation Algorithms

Once all of the general requirements are satis�ed and each composable can �nd no more

necessary changes, the design is completely speci�ed and the output generation process can

commence. This structure decouples the computation required for output generation from

that required for design instantiation and veri�cation, allowing for a more responsive and

e�cient design environment. It also facilitates the expert creation of new extensions and

plugins to support new processes or outputs.

The output phase is encapsulated in the makeOutputmethod of the Component class. This

essentially calls the makeOutput method of each composable object, in topological order.

This ordering allows the outputs of certain subsystems to depend upon outputs from other
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subsystems, facilitating a co-design process similar to that seen above for the makeDesign

veri�cation phase. This also allows each subsystem to de�ne its own algorithms for creating

�nal outputs, and for multiple possible output formats to be supported. The main outputs

currently implemented within the system are described brie�y below.

6.4.1 Electrical Subsystem

The ElectricalComposable processes the underlying electrical network. Since the au-

tonomous decisions were made during the makeDesign phase, the output phase can simply

focus on generating the desired outputs. Its output �les include a bill of materials detail-

ing what components will be needed, along with links and prices if known. In addition,

it provides circuit diagrams and wiring instructions that the user can use to assemble the

�nal design. Since the modules currently included in the library are plug-in devices, these

instructions are usable by novice users. In the future, the electrical outputs could also

include simulation-ready circuit diagrams that can be run, for example, in LTSpice [77].

Furthermore, while the current system focuses on through-hole components and plug-and-

play devices, future extensions can easily be added to the composable to support generating

PCB layouts and diagrams.

6.4.2 Code Subsystem

The CodeComposable processes the data topology and code components to create all

software necessary to use the robot. It pools together all software snippets stored in the

various components, and analyzes any code tags that reference design-speci�c information.

It gathers this information from the topology acquired during the make and makeDesign

phases, and correspondingly edits the code �les to create coherent packages.

In particular, it will use the folders and �les outputted during the makeDesign phase to

create �nal software packages. A folder was previously created for each controller that will

require code, and the declarations, methods, and insertions were sorted appropriately. In
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addition, device-speci�c code tags were replaced with tags that included unique references to

the desired devices. The makeOutput algorithm now processes these tags, resolving them to

�nal values. It can utilize the search algorithms discussed in Section 6.1 to locate referenced

devices if necessary, and can now calculate information that pertains to the whole design

such as connected ports and numbers of devices of certain types. Note that this information

could not have been known before the makeDesign method was run, since the design was

not yet �nalized. Method insertions can then be written into the �les that store the desired

methods, and the methods and declarations can be written into a �nal software package.

This includes splitting declarations and de�nitions into header (.h) �les and code (.cpp) �les.

The result is a software package that can be compiled and programmed onto each micro-

controller in the design. Separate folders will be made for each controller with all necessary

�les; the user therefore gets complete code packages that can be immediately loaded onto

the robot. The current implementation produces C++ code �les that can be used with the

Arduino software environment for controllers such as Arduino's or ATtiny's, but extensions

can be added in the future to support other languages. The generated code will contain

code for any autonomous behavior speci�ed by the linking of data ports, as well as useful

libraries of functions that make it straightforward for intermediate users to write additional

code for the robot. This process may also include generating code for interfacing with the

hardware modules described in Section 3.3.1, if any are present, by abstracting away the

implementation details from users of the �nal code library.

When the system analyzed the overall topology in the makeDesign phase, it assigned each

port a unique ID. These can then be used as �virtual pin numbers,� as shown in Figure 6.2,

and this list of virtual pins is presented to the user along with the building instructions.

When editing a generated Arduino �le, for example, users can interface with the attached

devices by simply using virtual pin numbers � if a sensor was assigned a virtual pin number

of 3, a user can simply call robot.analogRead(3) whether or not the device is physically

connected to the main controller. The software template and snippets included for the main

controller and for the hardware modules will determine where the device is actually located.

If on the main controller, it will convert the virtual ID to an actual pin number. If on
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Figure 6.2: When the design is veri�ed by the data and code subsystems,
each port is automatically assigned a virtual pin number. The generated
software library allows intermediate users to control the robot using these
IDs, so that knowledge of the implemented con�guration and communi-
cation topology is not required.

an auxiliary module, it will �nd the corresponding module and physical pin, then send the

command along the appropriate module chain. The user can therefore program as they

normally would program an Arduino, and all of the work for interfacing with the actual

electrical layout is done behind the scenes.

In addition, this microcontroller code will be pre-con�gured to work with an Android app

if any such UI elements were included, allowing the smartphone to generate a customized user

interface for the new robot. The system currently uses a pre-written Android app to imple-

ment this capability. The microcontroller con�gures its Bluetooth transceiver, which would

have been automatically added and connected by the composables during the makeDesign

phase, to have an appropriate name such that the app can automatically �nd the device and

establish a pairing. The app then communicates with the controller to determine what user

interface controls should be presented, and the software template and snippets accompany-

ing the UI elements allow the robot to respond appropriately. Some of the snippet code for
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generating the transmitted descriptions was shown in Figure 4.4. The user interface layout

is typically de�ned by user-added elements such as sliders or buttons, but may also be au-

tomatically added to the design by the composables. The user interface is then dynamically

created by the Android app, and the user can intuitively control the robot. Thus, the user

only needs to install a single app on their phone to have a unique interface for every robot

they create.

6.4.3 Mechanical Subsystem

The Mechanical Composable processes the physical structures of the design to create

fabricable output �les. These currently include a 2D vector drawing that can be directly

sent to a laser or vinyl cutter to create a cut-and-fold origami-style structure, as well as a

solid object �le that can be built using a 3D printer. In the future, these processes could

also be chosen on a per-component basis, allowing part of the robot to be folded and part

of the robot to be 3D printed. This may be especially useful, for example, if part of the

robot should be �exible but other parts should be rigid. More extensions can also be added

to support more diverse manufacturing methods. In particular, methods can be employed

that integrate the electrical circuitry with the mechanical structure. This would allow an

entire functional robot to be manufactured at once. It would also take advantage of the

co-design framework established by the composables, leveraging the interaction between the

mechanical and electrical subsystem algorithms.
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6.5 Summary

To deal with a growing collection of hierarchically composed modular elements, a suite

of algorithms has been developed to e�ciently manage and process robot designs. These

include search algorithms for locating desired components and instantiation algorithms for

converting textual representations to executable objects. Veri�cation algorithms also au-

tonomously modify designs and validate functionality, providing the user with feedback and

making independent design choices to reduce user input complexity. Finally, output gener-

ation algorithms create complete robot designs that can immediate create functional robots

for the user's task. These algorithms separate computational requirements in order to reduce

processing overhead, and allow subsystems to interact with each during veri�cation and syn-

thesis phases. Together with the component library, these algorithms create a responsive and

intuitive design environment that allows users to quickly create fully customizable personal

robots without extensive prior experience.
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Algorithm 1 Composition Instantiation

1: procedure make

2: Modify Parameters . experts can override this abstract method to modify
parameters according to application-speci�c rules

3: Resolve Subcomponents . create a dictionary of instantiated subcomponents
from the list of subcomponent names and their class types

4: Evaluate Constraints . evaluate the expressions and constraints de�ned
among parameters, setting the subcomponents' parameters according to
the user-de�ned relationships

5:

6: . At this point, the current component is instantiated and the various constraints
have been evaluated. The following phases recursively make the component
tree, and instantiate and populate the Composable elements.

7:

8: . Evaluate Components:
9: for all subcomponents in the hierarchy do

10: make the subcomponent
11: for all composables required by the subcomponent do
12: if this component already has a composable of that type then
13: Append the subcomponent's composable to this component's composable
14: else
15: Create a new composable object of that type
16: end if
17: end for
18: end for
19:

20: . At this point, the main component has a single instance for each type of Composable
required by at least one subcomponent in its hierarchy. The following
informs them of the design topology for subsystem-speci�c processing.

21:

22: . Process the subcomponents according to domain-speci�c rules
23: for all stored composable objects do
24: Inform the instance of all known subcomponents
25: end for
26:

27: Evaluate Connections . inform each stored Composable instance of the known
connections between subcomponents

28: Assemble . experts can override this abstract method to perform computations
before the �nal output is generated

29: Evaluate Interfaces . inform each Composable instance of the known
interfaces, in particular ones that are unconnected and therefore were not
seen previously when evaluating connections

30:

31: end procedure
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Algorithm 2 Veri�cation and Modi�cation: Check and Satisfy Component Requirements

1: procedure checkRequirements

2: . Check and try to satisfy all general subcomponent requirements
3: for all subcomponents in component hierarchy do
4: for all requirements in this subcomponent do
5: if requirement is not satis�ed by current design then
6: Try to automatically �x the design
7: . For example, search library for and insert a missing component type
8: Alert user if no solution is found
9: end if

10: end for
11: end for
12: . Recursively check requirements throughout the hierarchy
13: for all subcomponents in component hierarchy do
14: Call checkRequirements on this subcomponent
15: end for
16: if all requirements are satis�ed then return True
17: else return False
18: end if
19:

20: end procedure
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Algorithm 3 Veri�cation and Modi�cation: Iterative Domain-Speci�c Analysis

1: procedure makeDesign

2: checkRequirements . Check and try to satisfy all general requirements
3: make . Instantiate Components and Composables
4: designComplete← False
5: Topologically sort Composable objects
6: while designComplete is False do
7: designComplete← True
8: . Allow each Composable to perform domain-speci�c veri�cation and modi�cation
9: for all composables in this component, in topological order do

10: if composable.makeDesign is False then
11: . The Composable modi�ed the design, so another iteration is needed
12: designComplete← False
13: Break the for loop
14: end if
15: end for
16: . Check general requirements, including newly added components
17: designComplete← designComplete and checkRequirements
18: if designComplete is False then
19: . Modi�cations were made, so prepare for another iteration
20: Clear Composable states
21: make . Instantiate any newly added components
22: end if
23: end while
24:

25: end procedure
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Chapter 7

Case Studies: Making Robots!

It's kind of fun to do the impossible.

� Walt Disney
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The library of integrated electromechanical modules and associated algorithms for hierar-

chical composition, veri�cation, design augmentation, communication, and output generation

create an environment in which users can quickly create functional prototypes from abstract

speci�cations. Many di�erent robots and electromechanical systems have been created with

this system to demonstrate its capabilities and dynamically expand the library.

Videos, design �les, details, and more case studies can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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Figure 7.1: A graphical interface is provided for the compiler, which allows
components to be selected from the library and dragged around the design
space. Various levels of detail can be chosen to grant experts �exibility
while still remaining comfortable for novices. All three views shown here
will result in the same design once processed, but they each reveal di�erent
levels of complexity.

Users can currently interface with the system via a basic graphical interface that provides

library �ltering and dragging-and-dropping of components. In addition, all exposed param-

eters of a component can be adjusted to enable customization. As shown in Figure 7.1, it

also allows users to choose their desired level of detail. Experts can view individual port con-

nections and set all details, intermediate users can connect components and let the system

choose the ports, and novice users can simply view the chosen components and let the system

choose the connections. This graphical interface focuses mostly on the electrical and software

subsystems, although a separate interface focusing on the mechanical aspects is currently

under development [78] and can be integrated in the future. More control and �exibility

can be achieved by using a separate textual interface to the system, and intermediate users

can also write Python scripts to de�ne a design component. An online graphical interface is

planned for the future as well.
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In order to realize a custom product to solve a particular task, a user breaks the task

into simple subtasks and identi�es modules from the library to accomplish each one. If a

speci�c item does not exist, a similar one may be adapted or a new module may be composed

from lower-level components. In the end, the design is compiled to generate the required

fabrication �les. Drawings can be sent to a cutter to fabricate the cut-and-fold mechanical

structures, instructions on how to connect and mount the electrical and electromechanical

components are displayed, and the generated software is programmed directly onto the brain

modules. The user then assembles the physical elements to create the �nal desired system.

The result can be controlled by the auto-generated UI or by auto-generated behavioral

software if a desired behavior was speci�ed.

This system is very versatile and capable of producing diverse functional designs. Var-

ious robots are presented here that highlight the co-design of electrical, mechanical, and

software systems. Additional �exibility is also demonstrated by miscellaneous applications

that leverage the electrical and software subsystem outputs to make product prototypes that

automate tasks or provide user assistance.
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7.1 Centralized Robots

The design environment was used to create a variety of di�erent robots with a centralized

control structure. Because the system is process agnostic, any of a number of rapid proto-

typing manufacturing techniques can be used to realize the generated designs. The robots in

this section were all cut from a 0.010 inch (0.25mm) thick polyester sheet using a laser cutter,

vinyl cutter, or scissors, then folded into their �nal 3D geometries. The electronic compo-

nents were incorporated into the structure during the folding process according to generated

layouts and instructions. Generated drawings guide the user along the steps in the folding

process, allowing novice users to fabricate these robots. Generated microcontroller software

was then programmed onto the robots, and the provided Android app could immediately

display a unique control interface. More hands-o� fabrication processes can be used to re-

duce the skill requirements on the user; for example, some similar designs were made using

3D printed structures and origami self-folding laminates in [79]. These techniques could be

incorporated into the robot compiler system in the future.

7.1.1 Two-Wheeled Robot

A two-wheeled mobile robot is shown in Figure 7.2. The robot, nicknamed the Seg, is

speci�ed by three parameters:

• the speci�c microcontroller used and its dimensions (in this case the Arduino Pro Mini)

• the speci�c continuous rotation servos used as drive motors and their dimensions (in
this case Turnigy TGY-1370)

• the desired ground clearance (in this case 25mm)

The user can design a basic Seg from the electromechanical component library by at-

taching two motors with mounts to a central body and a tail for stability as shown in

Figure 7.2a. Each of these modular blocks has nested subcomponents that encapsulate the

necessary information and hide the underlying complexity. For example, the Wheel con-

tains an electrical servo, a mechanical mount, and the wheel structure as well as appropriate
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(a) A novice user can de�ne a two-wheeled

robot by connecting two wheel modules to a

central body. Each of these blocks contain

nested components that de�ne the structure

and electronics, and these could be revealed

in the expert mode of the GUI.

(b) The user design generates an electrical

layout with instructions, software, and a 2D

fold pattern. Here, the robot has been cut

and folded from cardstock paper.

Figure 7.2: A functional two-wheeled robot can be created from a simple
graphical design.

connections. Novice users can connect the high-level components and allow the system to

choose ports and otherwise complete the design, while expert users can select speci�c ports

and adjust all parameters.

Rapid Prototyping Iteration

Following the iterative rapid prototyping paradigm, this wheeled design can be quickly

expanded to address additional user requirements and a new robot can be fabricated. Fig-

ure 7.3 illustrates one such expansion. In addition to the base Seg, the robot now has two

digital LEDs and an RGB LED within which each channel can be set to an analog value.

Furthermore, user interface elements have been added to control the robot from a smart-

phone. The functionality of the robot is de�ned by the �ow of information, so the user simply

connects the UI elements as information sources directly to the drive wheels as mechanical

sinks or to the LEDs as electrical sinks. This will simultaneously de�ne the robot structure,

the robot functionality, and an Android interface. Parameters such as scaling factors, min-

imum and maximum speeds, component names, and UI labels can be set by selecting the

modules and viewing available parameters.
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(a) The Seg design is augmented with two

digital LEDs, an RGB LED, and associated

User Interface elements for controlling the

robot via a smartphone.

(b) The new robot is folded from plastic in-

stead of paper, and has controllable digital

and analog LEDs mounted on its main body.

Figure 7.3: Following the iterative prototyping paradigm, a second
wheeled robot is made that reuses the components of the �rst robot but
adds additional LEDs and uses new materials.

As the design is veri�ed, adjusted, and compiled, this �ow will be broken down and

expanded to make the necessary data conversions and ensure proper functionality. For the

input shown in Figure 7.3a, this includes adding data bu�ers to manage the Bluetooth

protocol, adding a Bluetooth transceiver serial module, choosing a microcontroller, and

determining appropriate microcontroller pins for each connection. This process is facilitated

by the multilayer component hierarchy; for instance, the servo device, motor mount, and

driver components are all wrapped into a single Wheel component that encapsulates the

needed subsystems and exposes relevant ports from its subcomponents.

Since the necessary mechanical, electrical, and software designs are encapsulated within

the components, compilation of the complete design creates mechanical drawings for the

body and wheels as well as code for the central microcontroller. The electrical subsystem

gets resolved into a wiring diagram, software and �rmware snippets from each component

get pooled together and modi�ed to create a software package, and mechanical mounts get

physically linked. Assembly instructions are then displayed to the user, and a smartphone

app can immediately generate the desired custom UI and drive the robot via Bluetooth.
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(a) A user interface is automatically gener-

ated by the Android app that re�ects the

user-speci�ed UI components.

(b) A custom interface was also written that

leverages the generated port IDs and commu-

nication protocol to create a more interactive

experience.

Figure 7.4: The second wheeled robot can be immediately controlled via
an auto-generated Android interface, or a custom interface can be quickly
created using the generated library.

Table 7.1: Design and Performance Metrics for the Two-Wheeled Robot

Metric Result
Approximate design time 1 hr
Approximate fabrication time 20 min
Approximate Cost 20.00 USD
Approximate Weight 42 g
Maximum speed 23 cm/s
Turning radius (both wheels activated) 0 cm
Turning radius (one wheel activated) 4 cm

The new robot, which is now folded from plastic instead of paper, is shown in Figure 7.3b

and the associated user interface is shown in Figure 7.4a. A custom Android interface is also

shown in Figure 7.4b that was written with the aid of the generated library, in particular

leveraging the communication protocol described in Section 4.2.1. A summary of the robot's

characteristics are provided in Table 7.1. All of the electronics from the paper version in

Figure 7.2b can be reused in the new plastic version, and a few LEDs are simply added. Since

plug-in components are used, the assembly is straightforward for a novice user. Additional

functionality including both hardware and software have now been added to a second version

of the robot in minimal time, illustrating the bene�ts of rapid prototyping iteration.
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Graphically De�ned Autonomous Behavior

The design environment is also able to generate autonomous behavioral code for this

robot. Instead of including visual LEDs as described above, a LineDetector can be added

to the basic Seg of Figure 7.2. This sensor comprises an LED and a photoresistor, each

of which is an integrated derived component containing a pure electrical subcomponent, a

software driver, and a mechanical mount. The detector's data output can be connected to

the data input of the integrated Wheel, potentially replacing the previous UI elements as

information sources. Data manipulation blocks can also be used in this connection to de�ne

a mapping from sensor output to motor speed; in this case, one wheel should turn on when

black is detected and the other wheel should turn on when white is detected. The generated

code will now autonomously drive the robot in an edge-following pattern.

Furthermore, UI modules and graphical programming blocks can be inserted to allow

the Android app to control the speed of the edge-following or temporarily pause the robot.

The data outputs from the UI elements can be used to set speed and control variables, and

these variables can be used as sources that control the wheel speeds. Thus, the graphical

programming blocks interface directly with both UI blocks and physical device blocks.

The resulting robot is shown in Figure 7.5a. This iteration has been folded from yet

another substrate, and the line detector is mounted on the bottom of the robot. When

programmed with the auto-generated code, the robot blinks its LED to prompt the user to

place it over black and then over white to calibrate the sensor, and then immediately begins

following the line. This calibration behavior is included by the LineDetector's software

snippet, and the user instructions include details about this process. When the Android app

is opened, it will connect to the robot and, upon communication with the robot, generate the

interface shown in Figure 7.5b. Changing the slider or toggle switch will send a Bluetooth

message to the robot, specifying the appropriate data port, and the local variables created

by the graphical programming blocks will be set; the software snippets from these blocks

inserted the necessary logic to accomplish this into the processData method. The user can

therefore immediately control the speed of the robot or pause its behavior as desired.
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(a) The line-following Seg is folded from clear

plastic and has a light sensor mounted on the

bottom next to a white LED.

(b) User interface elements to control the

robot's speed as well as to pause its behavior

are presented in the Android app.

Figure 7.5: Another iteration of the Seg robot features a line detector.
Programming blocks graphically de�ned its behavior, and the fabricated
robot successfully follows the edge of a line.

Educational Applications

This robot can also be used as a platform to explore custom software development and

teach students about programming. Due to the inexpensive structural materials used, the

reusability of electronics, and the rapid fabrication time, these robots can be easily man-

ufactured in classrooms for many students. Depending on the students' experience levels,

di�erent modes of the graphical interface can be used to expose an appropriate amount of

detail. Due to their ability to directly interact with physical components, the graphical

programming blocks provide an intuitive way to generate arbitrary behavior. Students can

therefore learn to think about logical �ows of programs and immediately translate their ideas

into physical instantiations.

Intermediate users can also leverage the auto-generated code library's methods to write

custom C++ code in the Arduino environment. For example, they could use included meth-

ods to determine if the Android app is currently connected and switch between Android con-

trol and autonomous line-following control. Many of the implementation details are hidden

by the generated helper functions; for example, support is included for virtual pin numbers

as described in Section 6.4. This facilitates the exploration of sophisticated programs by
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casual users. UI elements can also be added to the graphical design that display current

sensor values in real time to allow more interactive results. Furthermore, an advanced user

can use the de�ned communication protocol to write a more aesthetic Android interface for

the robot, such as the virtual joystick shown in Figure 7.4b.

A sample curriculum was developed with this robot, incorporating the design and fabrica-

tion processes as well as the programming and behavior. It introduces �nite state machines

as a way to approach robot programming, and a graphical programming environment is

used to implement these controllers. The curriculum and its associated materials, which

were entered in the AFRON Ultra A�ordable Educational Robot Challenge [80], can be

found in [76, 81]. The Seg won �rst place in the hardware and curriculum categories, and

second place in the software category. During demonstrations, elementary school and high

school students have been very receptive to these ideas and enjoy watching robots implement

their desired behaviors.

7.1.2 Hexapod Walker

An insect-like legged robot can be created using compliant joints to add kinematic degrees

of freedom for a more complex design. Four non-moving legs form a stationary base, while

two other legs are circularly actuated by drive motors to produce a walking gait. The moving

legs remain parallel, and are constrained to move in a plane by �exural four-bar linkages.

The design of this robot was adapted from the earlier Seg design, with many components

directly reused since the electrical and software subsystems are largely the same. This was

enabled by the modular design paradigm, which greatly simpli�ed and sped up the creation

of the hexapod.

An information �ow similar to that of the wheeled robot de�nes the design, with an addi-

tional mechanical component de�ning a four bar linkage translating the circular mechanical

output of the motor shaft into the walking gait of the moving legs. Leg blocks then re-

place the earlier Wheel blocks, and UI sliders can be attached to the legs to control their
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(a) The ant was folded from clear plastic, and

features two central moving legs in between

four stationary support legs.

(b) The Android app generates an interface

that includes the UI blocks for setting the

speed of each leg.

Figure 7.6: A hexapod walker was designed using the system. The graph-
ical design is very similar to the wheeled robot, with legs replacing the
wheels, and the electronic components can be reused.

speed. The resulting structure and smartphone interface can be seen in Figure 7.6. A custom

user interface similar to the one in Figure 7.4b can also be used for Bluetooth control, and

autonomous behavior can be speci�ed if desired.

7.1.3 Manipulator Arm

A markedly di�erent con�guration is created for the multi-segment manipulator arm

shown in Figure 7.8. On this robot, an actuated gripper is positioned by a sequence of

actuated hinge joints. As before, a novice user only needs to concern themselves with the

top-level components for this design; a graphical design yielding the arm is shown in Fig-

ure 7.7, where a number of arm segments and a gripper are connected in series. Parameters

such as names and dimensions can be set by selecting the various components. Figure 7.7

also illustrates the hierarchical composition; for example, each arm segment is an integrated

electromechanical mechanism that contains structural elements such as hinges and beams,

and electrical elements such as LEDs and servos. In the presented design, these even en-

capsulate UI elements such as a single toggle switch to control two LEDs and a slider to

control the joint angle. These modules can be further broken down into their constituent
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Figure 7.7: A robotic arm is de�ned by connecting two actuated hinges
with associated arm segments in series with a gripper and a base. Each
of these high-level blocks hierarchically contain lower-level building blocks
including electrical devices, structural elements, and UI elements.

subsystem blocks, such as �exures and software drivers. A novice user can choose to use

the highest-level view, while intermediate and expert users can choose to see successively

more detail and speci�c port connections. A more exploded view of the information �ow

throughout the arm was previously presented and discussed in Figure 3.14.

When the design is veri�ed, components such as microcontrollers, Bluetooth transceivers,

and power supplies will be automatically added and electrical connections will be automati-

cally chosen. This robot employs the electrical hardware modules described in Section 3.3.1,

such that each actuated hinge and gripper module contains an independent integrated me-

chanical structure, actuator, drive circuit, and control logic. The plug-and-play electrical

modules enable a distributed electrical system along the arm, allowing the electrical system

to mirror the mechanical layout while simplifying user assembly and wiring. Elements such

as LEDs and servos are connected to nearby modules, and modules are connected to each

other with simple 3-wire servo cables. Since the code on these modules does not need to

change, they can be readily reused across prototypes. Some performance metrics of the

fabricated robot are presented in Table 7.2.

Since the high-level blocks in this design contain UI elements, the arm automatically

generates a smartphone UI as shown in Figure 7.9a to allow immediate human control. The
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Figure 7.8: A manipulator arm with two actuated hinges and an actuated
gripper is rapidly prototyped using the integrated design environment.

provided communication protocol, message format, and port ID mapping can also be used to

easily implement a custom interface as shown in Figure 7.9b. In addition, a code library for

the microcontroller was generated that includes a mapping of devices to virtual pins. In this

case, the methods for accessing the virtual pins also transparently send commands to the

various hardware modules, automatically determining the proper module chain and device

index. In this way, intermediate users can write custom control logic for the arm and easily

interface with the devices as if they were connected directly to the main microcontroller.
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(a) A user interface, generated by the UI

modules chosen in the design, allow each de-

vice to be controlled wirelessly.

(b) A custom user interface can be written

using the communication protocol and port

IDs de�ned in the generated microcontroller

software. The red segment is currently being

dragged by the user.

Figure 7.9: The manipulator arm can be immediately controlled using an
auto-generated Android user interface, or a custom interactive interface
can be quickly written.

Table 7.2: Design and Performance Metrics for the Robotic Arm

Metric Result
Approximate design time 1 hr
Approximate fabrication time 30 min
Approximate cost 27.00 USD
Weight 60 g
Maximum joint angle (actuation) ±35 deg
Maximum joint angle (mechanism) ±110 deg
Gripper Strength (on 1.5 cm object) 100 mN

142



Figure 7.10: The distributed robot garden provides an aesthetic platform
for teaching robotics and engineering or demonstrating computer science
algorithms. It features nearly 100 origami �owers that can open and close,
many of which can also light up and change color.

7.2 Distributed Robot Garden

In addition to performing strictly functional tasks, electromechanical systems can capture

the attention and imagination of all audiences by employing motion, light, and other sen-

sory feedback. Towards this end, the robot compiler system has aided the rapid prototyping

design, fabrication, and operation of a robot garden system. This system comprises a hetero-

geneous, distributed, multi-robot swarm, and is a scalable platform on which to demonstrate

and evangelize robotics and computation. The creation of the system employed a number

of rapid design and fabrication tools and techniques to create several distinct robots, which

operate together in a uni�ed aesthetic display. This installation can operate autonomously

or be controlled from an integrated user interface. It can be used as a showcase for robot

design and fabrication processes, a testbed for distributed algorithms, or a launchpad for

technical education.

Some of the concepts presented in Section 7.2 are also discussed in [4]
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Figure 7.11: There are multiple types of �owers in the garden, which are
pneumatically actuated to open close. There are also hexapod walkers
(lower left), and a swimming crane (lower right).

7.2.1 Garden Overview and Infrastructure

The garden, shown in Figure 7.10, consists of nearly 100 printable robotic �owers of eight

di�erent types that can move and change color as well as insect-like robots. The movement

of each �ower is controllable using a printable pneumatic actuator called a pouch motor [82]

that operates by in�ating and de�ating a polyethylene pouch. Some �owers also include

LED lights that allow the �owers to light up and change color. The �owers are organized

into 16 separate garden tiles, and robot behavior can be controlled for individual �owers, for

individual tiles, or for distributed subsets across the entire garden.

In addition to �owers, the garden incorporates other types of printable robots as seen

in Figure 7.11. The hexapod insect discussed in Section 7.1.2 can wander throughout the

garden, and a remotely controlled crane robot swims on a pond in the center of the gar-

den. The swimming robot is an origami crane robot fabricated using a print-and-self-fold

technique [83] and equipped with a permanent magnet for actuation. The design utilizes a

crease pattern proposed in [84], and the self-folding process was carried out in an oven. The

remote magnetic control is achieved by four electromagnetic coils situated under the pond;
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Figure 7.12: The modular electronics mirror the mechanical structure;
each tile is controlled by an Arduino Mega 2560, which interfaces with a
pneumatic pump and up to eight �owers via custom PCBs. Neighboring
Arduinos can communicate via wires serial channels.

each coil is tilted 45 degrees relative to a central symmetric axis [85], enabling the crane

robot to move in an arbitrary direction while �oating on water.

Each of the 16 tiles in the garden can support control of up to eight �owers with LEDs

and pouch motors, and uses an Arduino Mega 2560 microcontroller equipped with additional

custom PCBs designed to service all pump and LED connections. As shown in Figure 7.12,

the electronics are mounted beneath the garden in a modular way that mirrors the physical

distribution of the �owers and tiles.

Each Arduino board can be connected to a Bluetooth chip to allow Bluetooth commu-

nication between the tile and a computer running a Graphical User Interface developed in

Python. In practice, only one tile has this capability activated, and it serves as a connection

point to the wireless controller that locally distributes commands to other tiles.

The Arduino board on each tile is connected via wired serial ports to its orthogonal

neighbors as shown in Figure 7.13, creating a wired mesh network in which each tile is

a node. This communication uses the custom serial protocol described in Section 5.3 in

order to achieve reliable communication without requiring hardware serial ports, which are

limited on the chosen microcontroller. Given the nature of the distributed algorithms, there
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Figure 7.13: Each Arduino can communicate with its orthogonal neighbors
via two-wire serial channels. One tile is also equipped with a Bluetooth
module to communicate with a remote controller such as the provided
GUI. This mesh network enables messages to �ow throughout the garden
and facilitates distributed algorithms.

may be many messages passing throughout the garden and a tile can frequently receive

simultaneous messages from di�erent neighbors. Using the standard software serial protocol,

these scenarios would quickly result in data corruption and loss. The enhanced clock-driven

protocol, however, provides reliable communication over software serial ports and manages

the potential for collisions and simultaneous arrivals on multiple ports.

7.2.2 Visualizing Distributed Algorithms

When the garden is turned on, each node determines which local neighbors are present.

They then collectively decide upon a unique address for each tile. These addresses are used

in future algorithms to route messages through the garden, avoiding obstacles such as the

center tiles that are removed to accommodate the pond. This enables the computer GUI to

send messages to individual tiles via the single Bluetooth-connected tile, and allows complex

distributed algorithms implemented on the garden to create emergent behavior.

The garden can be used to demonstrate distributed behavior, or to depict graph traversal

algorithms and classic computer science concepts in a visually pleasing way by using the

in�ation and coloring of �owers. Currently, the system supports algorithms such as �ood-

Videos of the robot garden can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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Figure 7.14: The garden can e�ectively demonstrate graph coloring algo-
rithms. The tiles communicate with each other to determine a coloring
such that no two adjacent nodes, including diagonals, have the same color.

Figure 7.15: The garden can also accomplish distance coloring, in which
tiles communicate and choose a color for their �owers that indicates how
many �hops� they are from the origin tile.

ing, graph coloring, breadth-�rst search, depth-�rst search, wave propagation, and distance

coloring. Graph coloring and distance coloring are shown in Figure 7.14 and Figure 7.15,

while breadth-�rst search and depth-�rst search are shown in Figure 7.16 and Figure 7.17.

A music mode is also o�ered in which the user can supply an arbitrary music source from

a headphone jack and the garden acts as a real-time volume meter. Each tile determines a

unique volume threshold based on its location in the garden, and one tile samples the music

volume and shares it with the rest of the tiles. Each Arduino then controls its �ower LEDs

in response to the music volume and its unique threshold. The result is an exciting display

that dynamically responds to any musical input by utilizing a distributed algorithm, where

more of the �owers light up in response to louder music.

147



CHAPTER 7. CASE STUDIES: MAKING ROBOTS!

Figure 7.16: A distributed version of breadth-�rst search allows the gar-
den to illustrate searching for a goal tile from a source tile. It gradually
expands its search radius from the source until the goal is found, at which
point the shortest path is also determined and highlighted in green.

Figure 7.17: A distributed version of depth-�rst search illustrates search-
ing for a goal tile from a source tile by traveling as far as possible in
one direction and then backtracking and choosing di�erent directions as
necessary. The located path is then highlighted in green.

7.2.3 Educational Applications

The garden provides compelling aesthetic visualizations of important computer science

concepts, and provides a powerful educational platform. The robot compiler can be used to

generate the basic software library needed for the lower-level functions, as well as provide

assistance with the electrical layout and wiring. In the future, the pouch motor fabrication

process can also be added as a mechanical Composable extension, allowing for complete

integrated designs.
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Figure 7.18: The garden provides an exciting platform that engages young
students and stimulates interest in science and engineering.

This system has been demonstrated to young students, such as the session shown in

Figure 7.18. At events including the Hour of Code [86] and Hubweek [87], as well as smaller-

scale events, interactive experiences with the garden have successfully engaged students'

attention and captured their imaginations. Through such outreach sessions, the garden

demonstrates its potential to visualize important concepts and increase interest in pursuing

scienti�c disciplines.
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In addition to generating fully functional robots, the presented system can be used for

other prototyping tasks that require integrated electrical and software subsystems. A few

applications are presented here that demonstrate the system's versatility and ability to enable

the rapid fabrication of novel designs that help automate everyday tasks.

7.3.1 Wireless Camera Controller

Being able to remotely control cameras can be an indispensable tool when setting up

creative photoshoots, performing time-lapse photography, or taking pictures that include

the photographer. While many Digital Single-Lens Re�ex (DSLR) cameras can be controlled

via an infrared remote, this limits the controllable range and requires that the remote be

pointed directly at the receiver. In order to develop a more useful remote controller, the

robot compiler was used to generate a product that controls the camera via Bluetooth using

an Android app.

A basic graphical layout for a �rst iteration of the design is shown in Figure 7.19a, where

an infrared LED is simply connected to a UI button. This was the only input required by the

system; the Bluetooth transceiver, a microcontroller, and power source were all added to the

design behind the scenes to achieve functionality, and the electrical wiring was automatically

determined as shown in Figure 7.19b. In this case, an ATtiny85 microcontroller was used,

and was connected to both a Bluetooth serial module and an infrared LED. When opening

the Android app, the controller sends the desired UI description and the smartphone screen

is populated accordingly.

A small amount of custom code was then added to the auto-generated microcontroller

code. Instead of simply turning on the infrared LED when a data message is sent to the

LED's input data port, a method was added for pulsing the LED such that it mimics the

pulse sequence performed by the commercial infrared remote.

Videos, documentation, and additional applications can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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(a) The information �ow of the camera con-

troller is simply a UI button connected to an

infrared LED.

(b) The electrical layout includes an AT-

tiny85 microcontroller, the LED, a Bluetooth

serial module, and a battery (not shown).

Figure 7.19: A design for a wireless camera controller can be speci�ed as
just an LED and a UI button, and the implementation details such as
wiring are automatically handled.

Figure 7.20: A more sophisticated Android interface can include elements
for taking multiple pictures and setting delays, while the electrical layout
remains the same. Software blocks are used to set variables based on these
elements, and then control logic is manually inserted.

The result is shown in Figure 7.21a, where the electronics have been packaged into a

custom 3D printed mechanical housing that �ts snugly on top of the camera's lens. Pressing

the auto-generated button on the Android app causes the camera to take a picture by pulsing

the infrared LED.

A second iteration was then implemented that uses the same electronics but enhances the

software. Instead of a simple UI button to take a picture, controls are added for setting an

initial delay, setting the number of pictures to take, and setting the delay between pictures. A

button is also added for video control in addition to a button for picture control; video control

is supported by the commercial remote, and a slight modi�cation was made to the custom
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microcontroller method to implement the altered LED pulse sequence. The graphical design

for this new system is shown in Figure 7.20, and the resulting Android interface is shown in

Figure 7.21b. In this case, the robot compiler was used to create the Android layout and the

communication and port ID infrastructure, as well as to set microcontroller variables based on

the Android interface � the user then leveraged provided library methods for accessing data

ports and the generated variables to write the simple control logic. Another case study that

uses graphical programming blocks to simultaneously generate the interface and the control

code will be discussed below in Section 7.3.3. A custom Android app was also written for

the camera controller that implements the same functionality but in a more visually pleasing

interface, as shown in Figure 7.21c. Since it uses the same message protocol and data ports,

the microcontroller code can be the same when using either app. The electrical layout is the

same as in the �rst iteration, as indicated by the single LED in the graphical design.
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(a) The completed prototype of the Bluetooth camera controller �ts snugly

on top of the lens. The 3D-printed housing contains the electrical compo-

nents, which were wired according to the generated instructions.

(b) An auto-generated Android app al-

lows for taking multiple pictures, setting

delays, and controlling video.

(c) A custom app was also written, us-

ing the generated port IDs, communica-

tion protocol, and code variables.

Figure 7.21: The �nal product allows the user to trigger pictures or video
via Bluetooth using an Android app.

This application used the robot compiler to generate coupled electrical and software out-

puts, while the mechanical structure was built separately. It allowed for the rapid production

of a prototype that addresses a speci�c user challenge, demonstrating some of the bene�ts

of enabling custom on-demand devices for personal applications.
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7.3.2 Wireless Relay Control

The application of the remote camera controller was also extended to a more general

system that remotely turns an arbitrary device on or o�. The graphical design is largely the

same as shown above in Figure 7.19a, but now a UI toggle switch is connected to a relay or

transistor. The Bluetooth devices and microcontrollers are added automatically, and wiring

connections are automatically determined. Following the generated wiring instructions and

using the generated microcontroller code results in a small product that allows for the wireless

control of any electronic device; toggling the UI switch on an Android smartphone toggles

whether the relay or transistor is activated, thus turning on or o� any device that is connected

to the switch. If desired, the robot compiler could also choose appropriate relays based on

user-speci�ed current or voltage requirements.

One potential application of this is shown in Figure 7.22, where electric birthday candles

are now remotely controlled from the Android app. A custom graphical interface was also

written for this project by leveraging the communication protocol implemented by the gen-

erated controller code. This project has been particularly entertaining when the app is used

discretely, making it appear as if the unsuspecting birthday person has �blown out" the elec-

tric candles. In the future, sensors could conceivably be added to the graphical design that

detect a gust of wind, thus automatically turning o� the relay at the opportune moment.

This application is another demonstration of the ability for software-de�ned hardware to

address physical challenges. Just as an app can address a computational challenge, the robot

compiler can help create rapid prototypes that address tasks in the real world.
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(a) Electric candles are connected to batteries through the controlled tran-

sistor. The electronics are hidden beneath a pile of brownies.

(b) Electronics are wired according to

the generated instructions.

(c) A custom Android app is written

that leverages the robot compiler's mes-

sage protocol to communicate with the

generated microcontroller code.

Figure 7.22: The wireless relay control prototype is used to remotely con-
trol electric birthday candles, so that an unsuspecting guest can be con-
vinced to �blow out� the candles and be pleasantly surprised.
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7.3.3 Automated Vacuum Cooker

Using the programming blocks of the graphical GUI, more sophisticated control logic

can be implemented. One application in particular that demonstrates this capability is

generating the electrical layout and control software for an automated sous-vide vacuum

cooker. The goal of this device is to cook food by sealing it in an airtight bag and placing it

in a temperature-controlled water bath. In order to achieve consistent cooking throughout

the food while retaining moisture, the bath temperature is kept lower than for normal cooking

and the food is left in the cooker longer than usual. For this project, the implemented design

consisted of a water bath, a temperature sensor, a heater, and a pump. The heater should

turn on if the water temperature is below a settable threshold, and the pump can be turned

on to ensure an even temperature distribution throughout the bath.

The desired user interaction with this device can take place via two separate interfaces: a

series of physical buttons and an LCD display mounted on the device itself, and an Android

app that mimics these elements to allow for wireless control. This was implemented in

the graphical compiler as shown in Figure 7.23, which uses blocks that represent physical

elements as well as blocks that represent conceptual software elements and programming

blocks. It creates variables for the current and desired temperatures, as well as whether the

heater and pump should be activated. These are then modi�ed or read by the various buttons,

UI elements, and displays, and their values are used as data inputs to the electromechanical

components. An outline of how the desired behavior is achieved with the graphical layout is

described below:

• Global variables are declared for the current and desired temperatures as well as the
current pump state.

• If/Else statements are inserted that condition upon whether the up/down physical
buttons are pressed, and adjust the desired temperature variable accordingly.

• A UI slider is inserted for the desired temperature set-point, connected to a block that
sets the desired temperature variable. The current position data input of the slider is
also connected to a block that reads the desired temperature variable; this feedback
loop allows the app to re�ect any adjustments made by using the device's physical
buttons.
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Figure 7.23: Electrical devices, UI elements, and programming blocks can
be directly connected to concurrently implement both the electrical system
and the behavior of an automated cooker. The design includes a heater, a
pump, a temperature sensor, physical buttons, an Android interface, and
control logic to maintain cooking temperature.

• A UI toggle switch is added to control the pump, and both the toggle switch and a
physical button are set to edit the global pump state variable. The input data port
of the UI switch is also connected to the pump state variable, allowing the switch to
re�ect physical button presses.

• The block representing the pump has its data input wired to the output of a block
that reads the pump state variable.

• The data output of the temperature sensor is connected to a block that sets the current
temperature variable.

• A UI slider is connected to a block that reads the current temperature variable to
indicate the temperature in real time.

• A data manipulation block checks if the current temperature is below the desired
temperature by a certain amount. The output of this data manipulation block is then
connected to the input of the heater.
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Figure 7.24: The cooker contains a water bath, control electronics, actua-
tion, sensing, physical buttons for setting the temperature, and an LCD.
A generated Android app shown here can set the desired temperature,
control the pump, and display the device status in real-time.

This design illustrates the versatility achieved by allowing modules from di�erent subsys-

tems to be directly connected to each other. Programming blocks and data manipulation

blocks can be directly connected to each other and to blocks that represent physical devices.

This allows the user to intuitively translate their conceptual model into the robot compiler

design space; for example, the temperature sensor and buttons are wired to variables, and

variables are wired to heaters and pumps through appropriate functions. UI elements, phys-

ical buttons, textual outputs, graphical outputs, and physical actuators can all be treated

interchangeably to implement desired behavior.

From this design based on information �ow, an electrical layout is generated that includes

an Arduino, a Bluetooth serial module, relays for the heater and pump, the physical buttons,

and the LCD. Software is generated that contains low-level driver code such as interfacing

with the heater and the I2C temperature sensor. The software also contains high-level logic

that will allow the user to set the desired temperature by using the physical buttons or the

Android app, and that will turn on the heater whenever the water gets too cold. The app will

automatically populate itself with a toggle switch for the pump, a slider that sets the desired

temperature and that updates when the physical buttons are pressed on the cooker, and a

slider that indicates the current temperature in real-time. The generated Android interface

is shown in Figure 7.24, which was successfully used to control the fabricated device.

158



7.4. SUMMARY

7.4 Summary

The robot compiler is a �exible system capable of generating complete robot designs from

high-level user speci�cations for a diverse range of applications. Sample robots have been

fabricated by composing modular blocks from the library in ways that represent desired

information �ows, and then following the instructions of the subsequent outputs. Each

one is a customized personal robot that can be immediately used for speci�c tasks. Their

mechanical structures are quick to produce and inexpensive, and their electronics can be

readily reused in new robots. As such, the system greatly facilitates rapid prototyping and

the iterative improvement of new ideas and concepts that can be used for wide ranges of

personal tasks as well as education.

A distributed system has also been presented that aims to create a visually pleasing

platform for the demonstration of computer science concepts. The robot compiler can aid

in the design of such a system, and the result is an engaging educational platform that can

help teach young students about engineering and programming.

Examples of prototypes are also presented for electromechanical products that leverage

the coupled electrical and software outputs, demonstrating the usefulness of the robot com-

piler in everyday life. By providing an intuitive interface for complex systems that encap-

sulates implementation details, physical devices can be rapidly created to address physical

challenges.

The presented case studies demonstrate the paradigm of software-de�ned hardware. Its

associated �exibility and customizability allows real-world physical problems to be treated

the same way as users currently treat computational problems. A library of basic blocks and

methods for creating new ones are provided, but the outputs are only limited by imagination.
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Chapter 8

Higher-Level Algorithms:

Design from Functional Speci�cations

Logic will get you from A to B. Imagination will take you everywhere.

� Albert Einstein
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The robot compiler described so far accepts structural descriptions and behavioral rela-

tionships, then produces integrated electromechanical designs including software. This can

now be used as a foundation on which to develop higher-level systems. One such extension

abstracts the user input even further, generating robots from functional task descriptions.

Some of the concepts presented in this chapter are also discussed in [5]
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The robot compiler has been extended to accept more intuitive initial input, namely

functional speci�cations in the form of relationships between atomic robot action primitives.

Linear Temporal Logic (LTL) is used to formally represent a structured task description,

and the modular robot component library is used to ground its actuation and sensing propo-

sitions to obtain structural speci�cations. Connectivity and parameter relationships are

automatically derived from the generated �nite state machine controller and from the geo-

metric layout. Complete mechanical, electrical, and software designs are then automatically

synthesized that implement the hardware as well as the autonomous behavior.

Some of the main enhancements added on top of the robot compiler platform to make

this possible are outlined below:

• an adaptation of linear temporal logic for robot creation, converting a Structured
English task speci�cation into a control automaton that implements desired behavior

• a process for grounding the propositions of an LTL speci�cation to components from
the robot compiler library to generate a user-guided robot con�guration

• a process for detecting potential behavioral con�icts during the grounding process, and
automatically correcting the LTL speci�cation when possible

• generation of a complete structural speci�cation, including user-guided physical layout
and automated controller synthesis, for the compilation of integrated robot designs

• an implementation of all of the above as an integrated end-to-end system generating
robots from Structured English task descriptions

These enhancements allow users to design from a vision of behavior rather than structure.

They abstract the required input to a more intuitive level for novice users, augmenting the

iterative prototyping loop and enabling more complex robot behaviors.
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Figure 8.1: The system decomposes the design �ow into a series of man-
ageable stages. Blue boxes indicate user tasks. The process can also be-
come iterative at each stage, using feedback from simulation or fabricated
devices to encourage rapid prototyping.

8.1 Design Experience

To facilitate the rapid prototyping of custom robots from a description of desired behavior,

the design �ow has been implemented in a user-friendly environment comprising a suite of

integrated tools that break the process into a series of well-de�ned, computer-aided stages.

An outline of this �ow is illustrated in Figure 8.1. It encourages an iterative process enabled

by rapid prototyping that incorporates feedback from both virtual simulations and fabricated

robots.

To de�ne desired behavior, the user �rst writes a task description in Structured En-

glish [88] that captures the requirements and goals of the robot. Though not to the level of

natural language programming, this allows a casual user to describe rather than command

how the robot should operate through the use of primitive elements called propositions.

These propositions may be, for example, a robot action primitive such as closing a gripper

or a sensing capability such as detecting an object. The collection of necessary proposi-
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tions therefore enumerates the necessary capabilities of the robot, and creates a functional

speci�cation of the robot.

The task description is then a series of logical linkings between these propositions that

essentially describes a state machine in an intuitive manner. This input speci�cation maps

directly into linear temporal logic formulas, which are the inputs to a controller synthesis

algorithm [89]. If there exists a �nite state machine capable of achieving the goals given an

adversarial environment, a controller will be automatically generated. This controller can

be simulated by the user to ensure proper functionality.

The propositions are then used to create a structural speci�cation, which de�nes an in-

formation �ow among components as was previously described in Section 1.4 and Section 3.3

as the user input to the robot compiler. This is constructed by mapping the functional actu-

ator and sensor propositions to parameterized robotic building blocks drawn from the robot

component library. The system �lters the library to recommend components appropriate

to each proposition, aiding the user in grounding the speci�cation. In addition, the system

assesses the mapped propositions for possible behavioral con�icts, correcting the task de-

scription when possible. Depending on the components chosen by the user, a single functional

speci�cation may generate di�erent physical robot con�gurations that accomplish the same

goal. The selected components are then automatically con�gured and connected, though

advanced users can edit and create custom con�gurations. The result is a parameterized

robot design capable of accomplishing the task.

Upon setting desired parameters, the structural speci�cation can be compiled to synthe-

size mechanical fabrication �les, electrical wiring instructions, and software for the custom

robot. The robot controller generated from the functional speci�cation can be analyzed

in simulation, and then autonomously converted to microcontroller code and directly pro-

grammed onto the robot. Once the user has built the robot using the given instructions, the

desired behavior will be exhibited by the created robot.
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Figure 8.2: The desired behavior of a robotic grasper can be cast into
Structured English, from which a �nite state machine is automatically
generated. A functional speci�cation is also naturally extracted as a collec-
tion of propositions. These are shown in bold blue in the task description
and are organized according to type on the left.

The below example will be used throughout the following sections to illustrate various

stages of the design process:

Example Use Case: The user wants to build a robot that can conduct a pick-

and-place grasper task. When the robot receives a request from the user, it will

move to a pick-up location and wait for an object to be presented. The robot

will then pick up the object, return to the original position, release the object,

and inform the user that it has completed the task.

8.2 Desired Behavior to Functional Speci�cation

To create a custom robot from a description of desired behavior, the user starts by writ-

ing a mission speci�cation for the target task. Using the Linear Temporal Logic MissiOn

Planning toolkit (LTLMoP) [90], the user can write a speci�cation in Structured English by

�rst de�ning binary propositions. The translation of Example 8.1 into propositions and

Structured English can be seen in Figure 8.2.
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Propositions, which are abstracted from the robot's location, actions, and environment,

can be divided into four di�erent types:

• Region Propositions: If a map is provided, it can be decomposed into exclusive
regions where each region is one proposition. During controller execution, only one of
the region propositions can be true at any given time, representing the current location
of the robot. In Example 8.1, there are no region propositions for simplicity.

• Sensor Propositions: These propositions relate to the robot's surrounding environ-
ment, and can be thought of as controller inputs. In Example 8.1, the presence of an
object is abstracted into a sensor proposition called seeObject_d that is true when
an object is observed and false otherwise. Note that even though these propositions
describe di�erent sensing capabilities of the robot, they are independent of how this
capability is implemented; the propositions specify the functionality of the component
rather than the actual structural component chosen during the grounding phase. For
example, the detection of an object may be grounded to such components as a push
button, a light sensor, or a vision input. In Example 8.1, userSummons_d is also a
sensor proposition.

• Actuator Propositions: These propositions correspond to possible robot actions,
and can be thought of as controller outputs. In Example 8.1, activating the actua-
tor proposition moveToSource_m speci�es that the robot should move to the pick-up
location, and deactivating the proposition implies that the robot should be at the
drop-o� location. As with sensor propositions, these actions are functional rather
than structural and therefore independent of implementation; for example, a robot
with legs will move di�erently than a robot with wheels but both implementations
could be chosen for a locomotive proposition. In Example 8.1, pickUpObject_m and
indicateComplete_ud are also actuator propositions.

• Custom Propositions: These propositions, directly linked to neither robot sensors
nor actuators, are necessary for specifying more complex behaviors and can be thought
of as controller state. In Example 8.1, once userSummons_d becomes true, the custom
proposition waitingForObject becomes and remains true until pickUpObject_m is
true.

Using these propositions, the user can follow the grammar outlined in [88] to write a task

description in Structured English. The propositions used, along with the task description,

yield a functional speci�cation of the robot that enumerates its required capabilities. A

robot controller can then be generated with the synthesis algorithm in [89]. This correct-

by-construction robot controller, in the form of a �nite state machine, will be automatically

generated using the toolkit if the mission statement from the user is feasible regardless of

how the environment behaves.
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Figure 8.3: The generated �nite state machine can be simulated to ensure
desired behavior and encourage iterative design. Here, the behavior of a
pick-and-place grasper is being simulated.

Once a controller is created, the �nite state machine can be evaluated with an integrated

simulation engine in which sensors can be interactively triggered and the proposition states

can be visualized. A sample visualization of the engine for Example 8.1 is shown in Figure

Figure 8.3. This facilitates an iterative process in which the user can immediately see how

the robot would behave and accordingly adjust the speci�cation or functional requirements.

8.3 Functional Description to Structural Speci�cation

Once a functional description of the robot has been obtained, a physical instantiation

of the robot that achieves the target task must be determined. In particular, the action

and sensing tasks to be performed by the robot can now be grounded to available robot

components to generate a structural speci�cation.

8.3.1 Grounding

To ground the functional propositions to structural components, the grounding editor in

the toolkit was modi�ed from [90] to accommodate robot creation. Shown in Figure 8.4, it

�rst retrieves the library of possible modular robotic components from the robot compiler.

As described in Chapter 3, each component in the library is parameterized for customizabil-

ity and encapsulates the relevant design and fabrication information such as the mechanical
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Figure 8.4: A functional description can be converted to a structural de-
scription by selecting modular components from the robot library for each
action and sensor proposition. Filtered lists of possibilities are automat-
ically provided, and the user can choose to customize them by adjusting
parameters.

structure, electrical properties, and software snippets. The grounder currently divides com-

ponents into three types:

• mechanical components, which require constructed structural elements to interface an
electromechanical transducer with the environment

• device components, which are discrete elements with completely self-contained actions

• UI components, which are purely virtual components that include smartphone interface
elements such as sliders or toggle switches

A user can specify desired possible component types for a proposition by su�xing its name;

based on that su�x, the grounding editor leverages the search algorithms described in Sec-

tion 6.1 to display a �ltered list of allowable components. In Example 8.1, a list of mechanical

actuator components is shown for the proposition pickUpObject_m, while a list of device

and UI actuator components is shown for the actuator proposition indicateComplete_ud.
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The user can then ground each proposition to a port on one of the available components

to realize the desired actions and sensing capabilities. When a component is chosen from

the library, a list of the component parameters is presented so the user can customize the

component if needed, and a list of its ports is presented so that one can be chosen for the

grounding. Through this process, each actuator and sensor proposition is mapped to a port

on a component.

Some possible groundings of the propositions in Example 8.1 are shown in Figure 8.5.

The conversion from functional description to structural speci�cation is aided by the toolkit

but ultimately chosen by the user; the user asserts control over the design according to

personal preference and task-speci�c requirements, such as environmental considerations and

component availability. Since there are often many components that can be grounded to the

same proposition, many di�erent robots can satisfy from the same functional description.

For example, a human-triggered sensor input may be mapped to a button, a microphone,

or a UI element, while an indicator action may be mapped to a light, a buzzer, or a �ag

waver. This approach simpli�es and guides the robot design process for novice users without

restricting expert users.

8.3.2 The Finite State Machine Component

To facilitate the grounding process, a custom component called FiniteStateMachine

has been created that inherits from CodeComponent and DataComponent. This block is

automatically inserted by the grounding editor into the information �ow to represent the

�nite state machine controller that was generated from the Structured English description.

The robot compiler autonomously modi�es this component's parameters as appropriate, and

creates DataInputPorts for each sensor proposition and DataOutputPorts for each actuator

proposition. As groundings are chosen by the user, connections are forged between these

ports and the chosen ports of the appropriate components.
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This block can be viewed as an elaborate data manipulation block; it takes as input

the current state via the sensor proposition ports, and generates an output for each actuator

proposition port. The logic for switching between states based on the current sensor readings

is encapsulated within the �nite state machine via code snippets. The module contains

pointers to templated microcontroller code snippets that provide the framework for running

a �nite state machine on a microcontroller. In particular, it uses the code tags described in

Section 4.3 to inject the following into the auto-generated microcontroller software packages:

• arrays that store the de�ning sensor readings and actuator outputs of each controller
state

• a 2D array that stores the possible successor states for each given current state

• code added to the robotSetup method that sets the initial robot state

• code added to the main processData method that checks if data is being sent to a
sensor proposition input port and, if so, records the new state input

• code added to the robotLoopmethod that computes the next state based on the current
state and the current recorded sensor inputs once per microcontroller execution loop,
and updates the actuator commands by calling processData on the data input ports
connected to each grounded actuator proposition output port

This therefore uses code snippets to extend the software template model described in

Section 4.1 and convert the generated �nite state machine into microcontroller code. Note

that since this is simply another CodeComponent with another code snippet to include, it

works seamlessly with existing data and code components; this allows it to be easily inte-

grated within complex designs that may involve asynchronous wireless data transfers, user

interfaces, data manipulation blocks, or any other component from the robot library.

Such an enhancement demonstrates the �exibility and expandability of the robot compiler.

By creating a single additional subclass, an expert is able to easily add support for an entirely

new integration that greatly expands the compiler's capabilities and further abstracts the

necessary user input.
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8.3.3 Design Feedback and Assumptions

The current process allows a user to map more than one proposition to a single component.

This may be desirable if multiple propositions are intended to dictate di�erent behaviors for

the same component. As an example, the user may ground propositions secureObject and

releaseObject to the same physical gripper, with the intent of having the gripper open when

releaseObject is true and having the gripper close when secureObject is true. However,

a problem may arise if the Structured English speci�cation allows both secureObject and

releaseObject to be true simultaneously, resulting in contradictory commands to the same

physical component. This would prevent the robot from achieving the desired behavior, and

may damage the robot. Note that this especially applies to actuator propositions, since this

corresponds to connecting two output ports to the same input port and thereby shorts the

output ports together. Connecting two sensor propositions to the same component port is

not necessarily problematic, although it might not be an informative design choice since both

propositions will always have identical state.

The grounding interface addresses this issue by evaluating the grounded propositions and

assessing any propositions grounded to the same component. The system then appends

mutual exclusion clauses to the Structured English speci�cation so that the propositions

can never be true simultaneously, and alerts the user to the change so they can ensure that

desired behavior is preserved. This process is demonstrated by the Fetch Robot case study

described in Section 8.5.2. When parsing the speci�cation into complete designs, the robot

compiler will automatically insert Multiplexer components into the data �ow around the

FiniteStateMachine in order to ensure that commands are properly routed.

Propositions of the LTL speci�cation currently assume boolean signals, but some robotic

components employ analog signals. Analog sensors therefore get thresholded before becoming

inputs to the �nite state machine, and binary actuator commands from the controller get

scaled to user-speci�ed analog values. This thresholding and scaling can be accomplished

with data manipulation blocks, which will be automatically inserted into the design by the

robot compiler during the design veri�cation and modi�cation phase.
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Through such interaction, the grounding editor creates a closed-loop design process as

amendments are made to the functional speci�cation based on the structural speci�cation.

Not only does the functional speci�cation a�ect the structural speci�cation, but the struc-

tural speci�cation set by the user a�ects the functional speci�cation.

8.3.4 Mechanical Connections

A structural speci�cation also requires a geometric layout of the physical components to

create a single integrated electromechanical device. Though the design space of geometric

con�gurations can get intractably large, the system once again aids a novice user by present-

ing a reduced set of options to handle general cases. An expert user can bypass the �lter

and create arbitrary mechanical connections constrained only by available interface points

designed to limit component collision.

The mechanical components preferentially presented for grounding are designed to mostly

�t into a rectangular prism bounding box. This allows for physical composition by tiling

the selected components into orthogonal regions. The user can select whether a particular

component belongs in the front, back, left, right, or center of the robot; the system then

iterates through the full list of mechanical components and appends them onto the core

controller module, growing the robot as it goes. Components with parameterized dimensions

get scaled to �t the entire collection.

In a similar manner, the remaining non-mechanical device components such as electrical

sensors get mounted on any exposed face of the robot. The user can specify whether the

device should be facing forwards, backwards, left, right, up, or down, and the system will

mount the device onto the respective structures assembled in the previous step.
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8.4 Structural Speci�cation to Integrated Robot Designs

Once the complete structural speci�cations have been obtained, the robot compiler pro-

cesses the modular design into design �les for the complete robot. These algorithms, includ-

ing composition and instantiation, design veri�cation and modi�cation, and output genera-

tion, have been described in Chapter 6. The result is a set of mechanical fabrication �les,

electrical wiring instructions, microcontroller code, and a user interface.

Since the �nite state machine was implemented as a new Component subclass, no mod-

i�cations need to be made to the robot compiler's veri�cation or output algorithms. The

FiniteStateMachine component behaves as any other component with data ports and code

snippets, allowing the compiler to adjust the design and provide feedback as usual. The

insertions of data manipulation blocks for converting between analog and digital values will

happen automatically if the DataComposable detects a mismatch between connected data

types and searches the library for an appropriate Buffer. The ElectricalComposable will

deal with choosing a microcontroller and determining appropriate pin connections and pin

types. In addition, the conversion of the �nite state machine into microcontroller code was

implemented as a straightforward code snippet, so the CodeComposable will process this

code as usual and the �nal software will implement the desired robot behavior.

As before, the mechanical structure is fabricated using an origami-inspired cut-and-fold

process. The generated fabrication �le gets sent to a desktop vinyl cutter or laser cutter

to be cut from a 2D sheet of plastic, and the user follows the folding instructions and the

generated wiring instructions to fabricate the robot.

Finally, the automatically generated software can be loaded onto the main controller,

ranging from low-level drivers to the implementation of the �nite state machine created

from the LTL speci�cation. The robot can then be simply powered on to achieve the task

goals initially provided by the user, assuming an appropriate grounding scheme was chosen.

173



8.5 Case Studies

Two example tasks were explored to demonstrate the capabilities of the enhanced system.

For each case, the robot compiler generated mechanical fabrication �les in the form of 2D

drawings that could be cut and folded, electrical wiring instructions, microcontroller code

implementing the generated �nite state machine, and an Android interface if appropriate.

The structures were then folded, the electronics added, and the code programmed onto the

microcontrollers. Once complete, the robots immediately performed the desired tasks.

8.5.1 Pick-and-Place Grasper

A sample robot made using this system is a robotic grasper for the task described in

Example 8.1. A robot is desired which, when prompted by the user, moves to a starting

location and waits for an object; when an object is detected, the robot grasps it, moves

to a target location, and noti�es the user. This behavior can be written in a Structured

English description as shown in Figure 8.2, and the generated �nite state machine can be

simulated as shown in Figure 8.3. There are a variety of ways in which this can be grounded

to generate a structural description, and a few such possibilities along with the one chosen

here are depicted in Figure 8.5. Custom propositions represent internal state that do not

become grounded in robot components. During the process of choosing robot components

from the library, various parameters such as arm length or gripper size can be set by the

user according to the task's environment and restrictions.

Once the grounding is complete, the robot compiler generates a fold pattern along with

electrical instructions and Arduino code. The resulting robot is shown in Figure 8.6. After

uploading the generated code, the arm demonstrates the desired behavior. When the user

claps, the robot moves to the source location and waits for an object. It grasps the object

upon detection, moves to the target location, releases the object, and indicates completion

using a buzzer. Table 8.1 presents metrics regarding the robot's design and performance.

Videos, details, and code can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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Figure 8.5: There are numerous components in the library that can im-
plement each functional proposition of the robotic grasper. A few such
mappings are shown here, where solid lines indicate those chosen.

Figure 8.6: A pick-and-place robotic grasper was designed using the pre-
sented system by starting with a desired behavior.

Table 8.1: Design and Performance Metrics for the Robotic Grasper

Metric Result
Approximate design time 30 min
Approximate fabrication time 30 min
Approximate cost 25 USD
Mass 49.4 g
Maximum actuated joint angle ±35 deg
Gripper strength (on 1.5 cm object) 100 mN
Maximum gripper opening 110 mm
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Figure 8.7: The desired behavior of a path-following object fetcher can
be de�ned using Structured English with various propositions. The high-
lighted statements are necessary to enforce a mutual exclusion condition
on propositions grounded to the same physical component, and are auto-
matically generated and added to the functional speci�cation.

8.5.2 Fetch Robot

A second example is a mobile robot with an attached manipulator for retrieving an object

placed along a path. The desired behavior is to follow a path until the object is reached,

secure the object, continue following the path until the goal is reached, release the object, and

indicate completion. This behavior can be written using the Structured English of LTLMoP

as shown in Figure 8.7.

To demonstrate versatility and the potential for rapid prototyping, two di�erent sets of

groundings were implemented for the same functional description. The chosen components

are enumerated in Table 8.2, and the completed robots can be seen in Figure 8.8. Although

they use di�erent approaches and devices, such as line-following versus wall-following, �ags

versus buzzers, touch sensors versus light sensors, or Android UI switches versus microphones,

they both achieve the same abstract path-following and object retrieval behavior. Some

metrics regarding the design and performance of these robots are summarized in Table 8.3.
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Table 8.2: Groundings for the Path-Following Fetch Robots

Functional Proposition Line Follower Wall Follower
Move forward and left Wheel 1 Wheel 1
Move forward and right Wheel 2 Wheel 2
Detect path Line detector Distance sensor
Detect object Touch sensor Light sensor
Detect goal UI toggle switch 1 Microphone
Secure object, release object Gripper Forklift
Indicate object secured UI toggle switch 2 LED
Indicate complete Wheel 1 & Flag Buzzer

Both cases involve two propositions, releaseObject_md and secureObject_md, that are

mapped to the same port of the same component � either Gripper or Forklift depending

on the robot. In addition, the line follower instantiation maps both indicateComplete_md

and leftForward_md to the same wheel servo in order to indicate completion with a �victory

dance� behavior by spinning in a circle or to drive forward as appropriate. LTLMoP detects

these potential con�icts and automatically generates additional statements necessary to en-

force a mutual exclusion condition on the relevant propositions as shown in Figure 8.7. The

user is also noti�ed of this addition, so they can ensure that desired behavior is preserved.

Once programmed with the generated code, both robots performed the desired task. The

code snippets for the sensors also include calibration routines for the sensors. The robot

prompts the user to provide the minimum and maximum values for each sensor, then uses

this information to determine suitable threshold values for converting analog readings to

boolean variables for the state machine inputs. For example, the line follower will be placed

over white and then over black, and the wall follower will be placed near a wall and then far

from a wall. This also grants the user some runtime control over the behavior; for example,

they can adjust how close the robot stays to the wall by adjusting the calibration positions.

The line-following robot design also includes UI elements; the provided Android app

will automatically connect to and communicate with the generated robot via Bluetooth and

display the appropriate user interface. In this case it will contain two toggle switches: one can

be pressed to indicate the goal state and thereby stop the robot, and the other automatically

updates in real-time to re�ect whether the robot has grasped the object.
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(a) This robot follows the path using a line

follower, detects objects using a touch sensor,

grasps objects using a claw, detects the goal

location via user input with an Android UI

switch, and indicates completion via a raised

�ag as well as a victory dance.

(b) This robot follows the path using a wall

sensor, detects objects using a light sensor,

grasps objects using a forklift, detects the

goal location via a user input with a micro-

phone, and indicates completion via a buzzer.

Figure 8.8: Two very di�erent physical instantiations of a fetch robot are
generated for the same task description by choosing di�erent components
to ground the same functional propositions. Both successfully exhibit the
desired abstract behavior.

Table 8.3: Performance of the Path-Following Fetch Robots

Metric Result
Line Follower Wall Follower

Approximate design time 30 30 min
Approximate fabrication time 60 45 min
Approximate cost 30 45 USD
Mass 64.1 72.1 g
Speed 11.1 11.0 cm/sec
Maximum gripper opening 45 N/A mm
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8.6 Summary

The integration of LTLMoP with the robot compiler allows the user to interact with the

system at a more abstract level and design based on desired behavior. Starting with an idea

of how the robot should act, and afterwards deciding what it should look like to enable those

actions, is often a more intuitive approach for novice users than starting with a vision of

what components should comprise the robot.

By providing the user with suggestions and breaking the process into a series of well-

de�ned computer-assisted tasks, casual users are able to generate robots for their tasks. In

addition, the design feedback and the rapid prototyping methods allow this to be an iterative

process; the task descriptions as well as the components and parameters can be adjusted in

response to both simulation and fabricated robots.

With this extension, the robot compiler can address a wider range of users and tasks.

The barrier to entry for robotics is lowered even further, and the generated robots are even

more sophisticated. This therefore marks a signi�cant advancement towards the vision of

customized on-demand personal robots.
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Chapter 9

Higher-Level Algorithms:

Behavioral Veri�cation and Simulation

Life is trying things to see if they work.

� Ray Bradbury
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A second extension to the robot compiler features React, a new programming language

designed for robots. It provides an alternative framework for specifying behaviors, and adds

tools for veri�cation, simulation, and parameter determination that can handle systems of

robots. It thereby furthers the paradigm of treating customized robots as software systems.

The concepts presented in this chapter are also discussed in [6]
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To integrate with the robot compiler, React speci�es the actions that the desired robot

may take as well as sequencing constraints to create a controller program. Each action is then

realized in the �nal assembled robot as an integrated module from the component library,

yielding the required electronic devices, structural elements, and software. This may be done

for multiple robots simultaneously, and overall system-wide behavior can be veri�ed such as

collision avoidance. Parameterized models can be obtained from the robot compiler, and

then both physical parameters and controller parameters can be explored concurrently to

determine a robot structure and a controller that guarantee desirable behavioral properties.

A controller running code generated by React can directly interact with the generated robots

by using the robot compiler's protocol for interacting with data ports.

In this way, React represents a powerful extension for intermediate users. By writing

code in this language, robot structures and controllers can be closely coupled, concurrently

simulated, and adjusted to achieve high-level behavioral goals.

9.1 Overview of the React Language

React is a partly event-driven, partly timed language that focuses on supporting the

development of robot controllers. The basic building blocks of React include �nite state

machines for the control structure, periodic loops, and event handlers. It simpli�es controller

programming with simple, clearly de�ned semantics and domain-speci�c constructs that

eliminate much of the boiler-plate code characterizing other approaches. It is designed as a

domain-speci�c language embedded in a general purpose programming language.

As a domain-speci�c language for programming robots, React simpli�es controller pro-

gramming and closely integrates with design and manufacturing tools to verify the robot

and its controller. It incorporates several expressive and powerful programming constructs

such as periodic control loops [50, 58], event-driven programming [91, 92], and �nite state

machines to modularize computation and analysis. These constructs allow developers to

write concise control logic with clear semantics. React is implemented as a domain-speci�c
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controller ::= Robot ident
variable declaration*
[ initialState ident ]
( handler | task | state )*

state ::= state ident ( handler | task )*
handler ::= sensor type ident stmnt

| on stmnt
task ::= every integer stmnt

stmnt ::= nextState ident
| publish ident expr
| statement in the host language

Figure 9.1: The React syntax includes the base Robot object as well as constructs for
handling states, events, and periodic or event-driven tasks.

language in Scala to facilitate interoperability with existing robotic ecosystems; the runtime

can interface with the Robot Operating System (ROS) [67] through RosJava, or directly

with a microcontroller running code generated by the robot compiler by using the message

protocol described in Section 4.2.1.

React has formally de�ned semantics that enable the use of automated veri�cation tools,

including a model checker and a satis�ability modulo theory (SMT) solver. Instead of ex-

ploring only speci�c execution traces as typically done via simulation, these tools allow an

exhaustive search of the state space, providing better coverage of the possible behaviors at

the expense of a higher computational cost. The model checker returns a complete state

trace in the case of an error, simplifying debugging of the concurrent system since errors

that depend on a speci�c interleaving of events are otherwise hard to reproduce.

9.1.1 Syntax and Semantics

Figure 9.1 presents the abstract syntax of React. As a domain-speci�c language, it only

introduces the domain-speci�c constructs; the host language, Scala, provides the expressions,

statements, and types. Some core features introduced in React are presented below.
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Robots are the base objects in React. Like actors in the actor model [91], robots execute

concurrently and exchange messages as events. A robot connects to and manages a variety

of hardware elements, and is represented by a set of �ve variables:

• a unique identi�er

• the current control state

• a map from identi�ers to values, representing the state of the controller's local variables

• a list of pending events to send

• a set of periodic tasks associating operations with an amount of time remaining until
those operations should be executed

Events and Labels realize the communication between robots, sensors, actuators, and

external inputs. There is a speci�c sensor handler as well as a generic event handler. Both

allow the programmer to provide a partial function that executes each time a received event

matches one of several provided patterns. Events are then associated with topics; with the

ROS runtime, there is a topic for each robot identi�er that carries associated events. Sensor

event handlers, depending on the runtime, require connections to speci�c hardware resources.

A transition between controller states is labeled by an event or a time, and events store

both an identi�er and the information to exchange during the communication.

Periodic Loops are usually used for main control logic that consists of one or more

periodically executed functions. Because React follows the sample-hold controller paradigm,

it does not provide guarded transitions as in some other languages. This approach avoids

anomalies associated with guarded transitions and increases the analyzability of programs.

Finite State Machines o�er modularity within robots by allowing the user to encapsulate

event handlers and controllers within control states. These states are similar to the control

modes of hybrid automata [54], and to those generated by the integration with LTLMoP

discussed in Chapter 8. In React, each robot identi�es an initial state and then the body of

the controller uses a nextState method to transition between control states.
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9.1.2 Evolution of a Single Robot Controller

The model of computation used in React, as is standard in the �eld of reactive systems,

assumes computation is instantaneous so that time elapses only between events. This model

accurately captures the behavior of the system as long as the computations execute quickly

enough to enable the system to meet its periodic loop deadlines. A worst-case execution time

analysis [52] can therefore be used to check the accuracy of the model. Tasks are executed

periodically; a task is rescheduled if the controller stays in the same state upon completion,

but if the controller moves to a new state then that state's tasks are scheduled.

9.1.3 Multiple Robot Controllers

React assumes that time is global and elapses at the same speed for every robot. Even

though real systems are subject to clock drift, global time semantics are required to suc-

cessfully add multiple physical robots to the system. It is also assumed that the number

robots is constant during a single state transition, but that the number of robots may change

between transitions if robots are turned on or o�.

For communication, React uses publish/subscribe semantics similar to broadcast cal-

culi [92]. Every process that can handle a message at the time it is produced will receive

it. When interacting with robots running code auto-generated from the robot compiler, the

message format protocol developed in Section 4.2.1 is used to easily interface with the virtual

data port network.
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9.2 Integration with the Robot Compiler

While React provides a framework for programming existing robots, it can also help drive

the design of custom robots. It can be used to simulate single robots or systems of multiple

robots to validate desired behavior, and can also be used to determine a suitable set of

parameters when de�ning the robot design.

To do so, the robot compiler has been augmented to output a system of equations that

describe the dynamics and kinematics of the user-speci�ed robot. This model is correspond-

ingly parameterized, and details the evolution of the robot state as a function of its control

inputs. In the extracted model, each structural element is represented by a 3D vector for

position and a unit quaternion for orientation. The dimensions of the elements and joints

correspond to equations that appropriately relate the position and orientation variables.

Active elements, such as motors, also have speci�c associated equations.

In React, these models of robots are represented as robots operating in parallel with the

controllers. Compared to a robot controller, a model has only one control state, but has

some additional special variables that represent the position of the robot in space and other

parameters related to physical objects such as speeds and angles of joints. These variable

are updated during the passage of time according to the robot dynamics and kinematics.

React can then be used to create a controller for the robot or system of robots that de�nes

the behavior and the interactions with the environment. This control code is executed

by a central processor overseeing all robots in the system, each of which is running code

automatically generated by the robot compiler as discussed in Chapter 6. Depending on

the components that are selected, each physical robot will receive messages related to its

actuators and periodically send messages related to its sensors by using the message protocol

within the software template model of Section 4.1. Then the model is subject to the same

semantics as a typical robot controller in React, except for the inclusion of the kinematic

and dynamic evolution of the system.
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9.2.1 Systematic Testing and Simulation

The goal of the React veri�cation is to perform an exhaustive, or bounded, exploration of

the system's behaviors to check important properties of interest such as line-following for a

single robot or collision avoidance in a multi-robot system. A model checker is implemented

to check such safety properties, represented as explicit state for the React program. It uses

the dReal SMT solver [93] to reason about the equations generated by the robot compiler,

alternating the discrete transitions of the controller with the continuous evolution of the

robot.

This veri�cation checks two kinds of properties: runtime exceptions such as uncaught

exceptions, and user-de�ned properties such as two robots not colliding. The user must

provide a veri�cation scenario that speci�es the world, including the relevant robots and

objects. To close the system under test, the user must also provide ghost agents that simulate

user input or any other active part of the environment.

Veri�cation is known to be computational hard in general. React is therefore designed

such that it can be e�ciently mapped to hybrid automata, the theoretical foundation of the

veri�cation method. Moreover, it implements the following optimizations:

• Discretization of the world, and use of interval domains for continuous variables [94].
Such an abstraction can deliver an over-approximation or an under-approximation
of the system's behaviors. In React case studies, it has been observed that the
over-approximation leads to a large number of spurious counterexamples; the under-
approximation may miss some errors, but the counter-examples it �nds are more in-
teresting for the development process.

• Commutativity analysis for the events. When multiple events or periodic tasks occur
at the same time, all permutations of those events may need to be explored. To reduce
the number of interleavings that need to addressed, a commutativity analysis between
events is implemented [95].

• Quotient time [96], since the controllers have periodic behaviors. The least common
multiple of the periods of all tasks can be computed to obtain a global period p, and
continuously increasing time t can then be replaced by tmodp.
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9.2.2 Design Synthesis and Parameter Exploration

Beyond veri�cation, the system can also work with parametric models; in this setting,

veri�cation becomes synthesis. Instead of verifying that a �nalized design exhibits a desired

property, parameter values are determined that enable an incomplete model to satisfy the

property. The synthesis algorithm solves both the discrete controller steps and the continuous

part of the model simultaneously using a bounded synthesis. The controller executions are

unfolded into a tree that encodes the possible executions as a logical formula where di�erent

branches of the tree correspond to disjunctions. This controller formula is then conjoined

with the formulas describing the robot's kinematics and with the property of interest, and

the �nal formula is sent as a single query to the solver. If the query is satis�able, then the

solver delivers parameter values that generate a model satisfying the property.

Challenges with this approach include the depth of unrolling, which creates large for-

mulas, and the quanti�er alternation. A limited unrolling depth means that this method

is applicable when short runs are representative of the robot's behaviors. The quanti�er

alternation is in the best case supported by the solver, but otherwise it is possible to use

methods such as the CEGIS algorithm [97].
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Figure 9.2: A two-wheeled robot is equipped with a line detector, consist-
ing of a photoresistor and an LED, and a Bluetooth module. This robot
is wirelessly controlled by a React program to follow the edge of a line.

9.3 Case Studies

This section presents examples of using React and the robot compiler to program, test,

and build robots. Robot control, simulation, veri�cation, and synthesis are demonstrated

through a series of sample applications.

9.3.1 Single-Robot Behavior: Line-Following Robot

The process �ow of using the robot compiler with React is demonstrated by creating a

program that controls the robot in Figure 9.2 and causes it to follow the edge of a line.

The software running on the robot is auto-generated by the robot compiler, and an external

computer runs React control code. The computer controls the robot via Bluetooth by sending

messages to data ports as speci�ed by the software template model's message format.

Figure 9.3 shows the React code that produces the desired line-following behavior. The

Seg turns to the right when it is over a black surface, and turns to the left when it is over a

white surface. Since turning is accomplished by only activating one wheel, the robot pivots

around the opposite wheel and progresses along the line. This is the same behavior that

Videos, details, and the code for React can be found at http://people.csail.mit.edu/delpreto

http://people.csail.mit.edu/delpreto
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class FollowTheLine(port: String) extends Robot(port) {

var onTarget = false

sensor[Bool](lightSensor){case Bool(b) => onTarget = b}

every(100) {

if (onTarget) {

publish(servoLeft, Int16(15))

publish(servoRight, Int16(0))

} else {

publish(servoLeft, Int16(0))

publish(servoRight, Int16(15))

}

}

}

Figure 9.3: This React code causes the Seg robot to follow the edge of a line.

was previously implemented by graphically connecting data ports in Section 7.1.1, but it

is now demonstrated in the context of the new programming language that will be able to

perform additional simulation and veri�cation upon the program. The graphical design used

to generate the physical robot presented here is the same as that previously discussed in

Section 7.1.1, and the generated microcontroller code allows the robot to be controlled via

Bluetooth from the o�-board controller.

The controller in Figure 9.3 extends the class Robot, which takes an argument that de�nes

a namespace when using ROS or a data port ID when controlling an Arduino via the robot

compiler. Inside the controller are variables such as onTarget, an event handler, and periodic

loops. The �rst element is the event handler that receives the readings from the light sensor,

and the identi�er inside parenthesis speci�es how to connect to the sensor. This would be a

ROS topic if using ROS, but in this example is a constant since it is the ID of the sensor's

data output port. These IDs are presented to the user as one of the DataComposable outputs

when the robot compiler processes the design. The next element in the code is a periodic

loop, which in this case sets the motor speeds once every 100ms. As with the sensor, the

values of servoLeft and servoRight are generated by the robot compiler and are IDs of

the actuators' data input ports. Since the chosen Arduino works with 16-bit integers, the

values are wrapped into Int16 messages.
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Figure 9.4: The line-following robot generated by the robot compiler can
be controlled by a central computer running React code, and the simulated
behavior can be compared to the observed behavior of the fabricated robot.
Here, bounding boxes indicate simulation results and video background
subtraction yields experimental results.

By automatically extracting the kinematics and control logic from the model of the robot,

the model checker can analyze and visualize the resultant behavior. Figure 9.4 presents the

analysis results, which took 12 seconds to compute using a discretization of 1mm and which

contains 133,487 states. On the left, the �gure shows the simulated coverage according to

the model checker; a bounding box of the robot is shown for every reachable state. On

the right, the �gure shows the actual coverage of the fabricated robot over a period of ten

minutes; background subtraction is applied to footage recorded by an overhead video camera

to obtain robot locations, and the brightness of the �nal image indicates how often the robot

visited a particular location. By comparing these images, it is evident that the results of the

simulation accurately re�ect the experimental results of the fabricated robot.
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9.3.2 Multi-Robot Behavioral Veri�cation: Avoiding Collisions

React can also be used to verify properties about the behavior of systems that may

contain more than one robot. In addition, these simulations can be used to determine

appropriate parameters for the robot controllers such that the desired property is manifested.

To demonstrate this, a system involving multiple robots is analyzed and veri�ed for a complex

safety property, namely the absence of collisions.

In this experiment, two copies of a wheeled robot with an infrared distance sensor are

generated from the robot compiler as shown in Figure 9.5. The distance sensor is mounted

on a servo and can thus be turned from side to side. As with the previous example, each

robot is fabricated by following designs and instructions generated by the robot compiler,

and the microcontrollers are programmed with the auto-generated software. They are then

controlled via Bluetooth messages by a computer running React.

The controller causes each robot to alternate between two control modes. First, they scan

the area in front and on the sides to determine the closest object by rotating the distance

sensor. Then, depending on the distance of the closest object, they either move forward for

a �xed duration or turn in place for a �xed angle.

Figure 9.5: A two-wheeled robot is equipped with a distance sensor
mounted on a servo. The sensor can be rotated back and forth to sweep a
wide area. React code can be used to control multiple copies of this robot
such that they do not collide with each other or with obstacles.
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Figure 9.6: A counter-example is found by the veri�cation system that
indicates the current parameters may result in the robots colliding.

Figure 9.7: The fabricated robots successfully drove around the arena
without colliding with each or with the walls. Here, the robot images
indicate places where the robots were stopped and using the distance
sensor to scan for obstacles. At point 2, they avoid each other by turning.

In the model checker, a scenario was created with two robots and used to test di�erent

con�gurations of the controller. The scanning breadth of the sensor sweep when the servo

rotates, the speed of locomotion, the distance threshold for moving forward, and the turn-

ing angle are all adjustable in order to determine suitable parameters that ensure collision

avoidance. As a counter-example, Figure 9.6 shows that a collision can occur if the robot

moves too fast for the current safe distance.

Once a satisfactory set of parameters is obtained, the robots are built and used to exper-

imentally con�rm the result. Figure 9.7 shows the two robots in a pen being controlled by

a central controller via Bluetooth. The robots scan the surrounding area for obstacles while

stopped, and then drive forward or turn depending on whether a nearby obstacle was de-

tected. In the compiled �gure, the robot images represent points at which they were stopped.

At point 2, the robots avoid a collision by detecting each other and deciding to turn rather

than drive forward. As desired, the robots successfully explored the area without colliding

with each other or with the walls.

193



CHAPTER 9. BEHAVIORAL VERIFICATION AND SIMULATION

For this experiment, the model checker used a 2m x 2m test environment with a 1 cm

discretization. Each robot had a bounding box of 9 cm x 12 cm. For the collision detected

in Figure 9.6, 24,642 states were explored in 1.7minutes. For the safe case with suitable

parameters, 1,510,525 states were explored in 11.57minutes.

9.3.3 Design Synthesis and Parameter Determination:

Manipulator Arm

The React environment can also be used to determine suitable parameters for the com-

ponents chosen in the robot compiler. In this case, parameters are synthesized for an incom-

plete robot design and for its controller simultaneously. To demonstrate this, a printable

arm composed of three segments was used as shown in Figure 9.8. The goal for the arm is

to repeatedly visit three di�erent target zones; to illustrate the performance, the arm holds

a pencil and traces its path upon a sheet of paper that has the targets marked. The robot

design has the length of each segment as a parameter, and the controller has the commanded

joint angles as parameters.

The system automatically unfolds the controller tree to determine the commands sent to

the motors, unfolds the equations describing the arm's kinematic model over these outputs,

and adds additional constraints that encode the targets to reach.

The experiment was performed with two di�erent models: an arm with two segments (one

revolving joint), and an arm with three segments (two revolving joints). It is not possible to

meet the objective with the �rst con�guration because one joint is not enough to reach the

three targets, and the system quickly veri�es that this is the case. The second con�guration

actually has many solutions, and the system successfully returns one of them. In these

cases, the model has an accuracy of approximately 1mm, and the model generated formulas

with 107 variables and 434 constraints. The solver determined that there was no solution

for the two-segment con�guration in 12 seconds, and found a solution for the three-segment

con�guration in 2.9minutes.
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Figure 9.8: A three-segment plotter arm is used to demonstrate design
synthesis; the lengths of the segments and commanded joint angles are all
parameters that are explored by the system to determine a con�guration
that can reach the indicated three target destinations.

An arm was then fabricated with the parameter values derived by the solver, and used

to experimentally con�rmed that the objectives are satis�ed. The arm shown in Figure 9.8

was fabricated using a 3D printer, and uses a Beaglebone Black as the controller.

9.4 Summary

By integrating the robot compiler with React, its capabilities are extended to include

more sophisticated simulation, veri�cation, and design synthesis. Complex controllers can

be written for single robots or for systems of robots, and the resulting behavior can be

simulated and analyzed. Controller parameters and Component parameters can be explored

simultaneously to generate robots that satisfy desired behavioral guarantees.

In this way, customized personal robots can be rapidly tested and iterated in software and

with physical instantiations. This augments the idea of software-de�ned hardware to include

behavior, making it easier to address physical situations with custom hardware. This can

allow users to generate swarms of rapidly fabricated robots that collectively address a target

task, bringing the goal of on-demand personal robotics closer to reality.
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Chapter 10

Conclusion

The journey of a thousand miles begins with a single step.

� Lao Tzu
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10.1 Future Work

The current system embodies many important advances towards the goal of pervasive per-

sonal robots, but numerous steps remain to be taken. The most basic next step is to expand

the component library by having more users interact with the system. Through the creation

of new robots using the inherently iterative design process, many new hierarchical and base

components will be derived that address new challenges and increase the applicability and

usefulness of the library. Additionally, a larger set of functioning designs provides a stronger

basis upon which the system can make autonomous decisions. Algorithms can be written

that allow the system to learn from user designs, enabling more sophisticated autonomy and

recommendations while making the system's interactions with the user more intuitive.



CHAPTER 10. CONCLUSION

As more robots are created with the system, the iterative paradigm will be applied not

only to each individual robot but also to the system as a whole. More extensive testing will

undoubtedly lead to a more versatile system that addresses currently unforeseen challenges.

This testing will be important for the robot compiler as a whole, and also for developing

the serial communication protocol. The current implementation of the protocol has been

tested on Arduino microcontrollers, and extending this to other platforms will provide an

instructive means of demonstrating its adaptability. More speci�c timing tolerances can also

be determined, and the serial library can be executed in parallel with other interrupt-based

libraries to test how it interacts with other commonly used time-sensitive operations.

One signi�cant application of the robot compiler system that requires additional user

testing is education. The preliminary curriculums developed around some of the printable

robots and the robot garden can be expanded and developed further, covering more topics

and applying to a wider range of experience levels. Customizable on-demand robots have the

potential to signi�cantly impact the engagement of young students with computer science

and engineering, and this avenue should certainly be explored in greater depth and actively

pursued in real classroom settings.

An important direction in which to scale the system as new scenarios are explored will

be adding more output formats and fabrication processes. This may include, for example,

making robots from metal instead of plastic in order to generate stronger robots on larger

scales. This would simply require a few additional plugins to the mechanical composable,

and a few new library components added to the electrical and software systems. In addi-

tion, the electrical platform can be expanded by allowing for more customizable fabrication

techniques such as PCBs, and further exploring the realm of analog circuitry by integrat-

ing simulation tools such as LTSpice. The software generation infrastructure can also be

extended by providing more snippet directives and providing more integrated support for

multiple programming languages.

Finally, the user interaction with the system can be abstracted to an even higher level.

Tools have been discussed that enable the description of tasks and the analysis of behavior,
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but they are not yet at the point of natural language interactions. Developing ways for the

system to reason about behavior and make more intelligent design choices would reduce the

burden on users and allow them to focus on the desired goal to a greater extent. Allowing

people to interact with the robot compiler in the same way they would interact with a human

designer would mark an important turning point in the development of custom robotics and

change the way society interacts with technology on a daily basis.

10.2 Conclusion

The presented system achieves many milestones along the route to pervasive personal

robots. Integrated robot designs can be synthesized from high-level user speci�cations, and

the rapidly fabricated robots can immediately perform target tasks.

The key principle of the system is modularizing robotic elements in a manner that allows

for the encapsulation of all necessary subsystem design information. Using a library of these

modularized robotic components, novice users can compose arbitrarily complex electrome-

chanical devices in an intuitive interface using a paradigm that already exists in other com-

mon customization industries. The implementation details are managed behind the scenes,

with the system automatically maintaining integrated co-design information throughout the

hierarchical component tree. Using domain-speci�c guidelines embedded in the modules, the

system can perform design veri�cation and modi�cation and then generate complete fabrica-

ble outputs. These include electrical layouts and wiring instructions, mechanical drawings,

control software, and user interface software.

General frameworks for software generation and inter-controller communication have also

been developed that enable the rapid generation of complex networks of microcontrollers.

The software template model and associated code snippets allow experts to easily add new

components to the library in a microcontroller-independent manner with minimal amounts

of new code. The robot compiler pools together and modi�es code snippets from throughout

the design to create coherent software packages for the �nal robot.
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A custom serial communication protocol enables mesh networks of microcontrollers by

providing a robust way to exchange data via two-wire software serial ports. This novel proto-

col synchronizes transmitters and receivers using a receiver-generated clock signal, eliminates

message collisions and bu�er over�ows, and speeds up transmissions for longer messages. In-

corporating this protocol into the robot compiler allows the system to automatically insert

controllers throughout the robot design in accordance with the mechanical layout, and to

achieve transparent information �ow throughout the network in a reliable manner.

Numerous case studies illustrate the potential for the robot compiler to produce varied

electromechanical devices for many di�erent tasks, exploring several potential applications of

this system and demonstrating the advantages of co-designing subsystem outputs. Origami-

inspired print-and-fold robots enable inexpensive fabrication and facilitate rapid prototyping.

They can then be controlled by automatic user interfaces or user-added control code. Fur-

thermore, they can be programmed with automatic control code that implements behavior

speci�ed graphically by the user via cross-discipline component connections. These robots

have been used for a variety of applications, including education, and a sample curriculum

has been designed around one of the auto-generated robots for use in classrooms where each

student could have access to a customized robot. The system has also aided the creation of

a large distributed robot garden for the visualization of computer science concepts and the

evangelization of technical education. Finally, the electrical and software subsystems have

been leveraged to produce products that address daily tasks and custom projects that would

otherwise require long design processes repeated for each speci�c application.

Extensions to the robot compiler provide further input abstraction, allowing for an even

more intuitive experience for novice users. Behavioral task descriptions can be provided as

initial input, and the system will guide the user through the process of choosing appropriate

components from the library for instantiation. The LTLMoP program converts this behavior

to a �nite state machine that the robot compiler can implement as microcontroller code,

allowing the generated robot to immediately perform the speci�ed function. Example robots

designed in this way demonstrate the ability of the system to address user-speci�ed tasks,

and for multiple robot con�gurations to accomplish the same abstract behavior.
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10.2. CONCLUSION

Additionally, tools are incorporated for simulation and parameter exploration that can

handle single robots or systems of robots. The React programming language facilitates be-

havioral programming and enables simulations that can demonstrate system-level behavioral

guarantees. Integration with the robot compiler allows for parameter exploration, determin-

ing suitable robot con�gurations and controllers that satisfy desired behavioral guarantees.

Example case studies demonstrate the ability for simulations to match the observed behavior

of generated robots, and for structures and controllers to be modi�ed for a particular task.

Overall, the robot compiler enables rapid generation of customized robots by novice users.

It works towards the goal of on-demand robots in everyday life, where people can think of

robots for physical tasks as they currently think of software for computational tasks. Robots

such as these have captured imaginations for generations, and with current technology we

are on the verge of bringing those fantasies into reality.

Figure 10.1: The robot compiler has successfully produced a wide range of
robots and electromechanical devices. With continued improvement, the
vision of a robot fabrication kiosk may soon be within reach.
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