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Abstract

This thesis analyzes the effects of two algorithms that control the departure of aircraft
at congested airports, with an emphasis on the uncertainty of the underlying pro-
cesses. These algorithms, N-control and dynamic programming, belong to a broader
class of control policies called Pushback Rate Control (PRC) policies that calculate a
pushback rate for departing aircraft based on the state of the airport surface conges-
tion. During times of congestion, these algorithms limit the amount of aircraft on the
airport surface while maintaining departure throughput. This reduces the taxi-out
time of aircraft, resulting in reduced fuel burn and emissions. This thesis introduces
the policies and simulates their performance at LaGuardia Airport while varying two
policy parameters, the length of the prediction interval and the number of predic-
tion intervals, under several types of uncertainty, including the departure schedule
and arrival rate. As will be shown, each policy results in significant taxi-out time
reductions, saving airlines at least 60,000 minutes of taxiing over a 2-month period
with the traditional 15-minute time window simulations. However, when accounting
for the uncertainty in the algorithm inputs or the variation of policy parameters,
the performance of both PRC policies degrades. By accounting for the variation of
policy parameters and the different sources of uncertainty that affect airport surface
management, the main contribution of this thesis provides a realistic analysis of PRC
policies.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

In 2014, airlines in the United States operated 7.7 million departures [121 from the

77 Aviation System Performance Metrics (ASPM) airports and consumed 10.3 billion

gallons of fuel [13J. With such a high level of traffic, congestion can occur, resulting

in delays. Specifically, in the taxi-out phase of flight, the average delay across the

entire United States is greater than 5 minutes, with LaGuardia Airport in New York

leading the nation with an average taxi-out delay of more than 12 minutes [5]. During

congestion, these taxi-out delays result from aircraft waiting in the departure queue.

Because the engines are running in the departure queue, these delays have additional

costs in terms of fuel burn and emissions. A widely noted 2008 study by the Joint

Economic committee found that delays in 2007 resulted in 7.07 million metric tons of

CO 2 emissions from 740 million gallons of fuel consumed, costing an estimated $1.6

billion [6]. These high costs to both the economy and the environment stem from all

sources of delays, some of which, such as weather and unforeseen maintenance issues,

are unavoidable. However, delays resulting from the length of the departure queue

can be reduced or redistributed through the control of departing aircraft. While the

control of the departure process can limit congestion, careful consideration must be

given to the uncertainty surrounding both airport operations and the control algo-

rithms. The benefits of limiting airport surface congestion must be weighed against

the costs of changing airport operations. Also, the accuracy of control algorithms de-

pends on the accuracy of the data required. The goal of this thesis is the development
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and application of control algorithms that mitigate congestion, while maintaining a

focus on the uncertainty of the overall process.

1.1 Motivation

Congestion occurs when the number of aircraft on the airport surface exceeds an

amount necessary to maintain the departure throughput. The additional aircraft

provide no benefit in terms of departure capacity, so their presence on the surface

simply adds to the cost of congestion. Airport surface management represents one

approach to address the problem of congestion.

Airport surface management controls the aircraft operating at an airport so as

to reduce congestion while maintaining departure and arrival throughput. Several

control algorithms have been developed to mitigate congestion by controlling the rate

at which departing aircraft push back from their gates. These algorithms are called

Pushback Rate Control (PRC) policies. Two of these policies, N-control and dynamic

programming, will be thoroughly examined in this thesis. PRC policies work within

the existing airline schedules by holding certain flights during times of congestion.

While PRC policies seem to be straightforward, many constraints and limitations

surround the implementation of any airport surface management policy. One subset of

these constraints includes the effects of PRC policies on airport operations. Currently,

once aircraft receive authorization from the control tower, departures push back from

their gates, regardless of the state of the airport surface. Aircraft are usually ready to

push back relatively close to their scheduled departure time, which allows for push-

back and maintenance crews to be adequately assigned to flights. Holding an aircraft

through PRC policies has the potential to interfere with the crew schedules, which

could cause further delays. Airlines must be capable of the dynamic scheduling of

aircraft crews that accounts for the possibility of held aircraft due to congestion. Also,

holding aircraft at their gates increases the chance of gate conflicts. Gate conflicts

occur when an arrival lands at an airport and a departure is still at the gate to which

the arrival is scheduled. Because gates are occupied by departures for a longer period
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of time, gate conflicts are more likely to occur during PRC policy implementation.

Because gate conflicts add to airport surface congestion and increased traffic, these

are highly undesirable. The last airport operations constraint is the increase of the

workload of air traffic controllers. Because controllers must implement the policy, the

controllers must learn new procedures in addition to their current duties. The effects

of PRC policies on airlines, gate conflicts, and controllers must be considered.

In addition to the operational constraints, the PRC policies require real-time

and forecasted data from arrivals and departures. The surface traffic level, future de-

partures, future arrivals, airport capacity, and weather all represent variables required

by the PRC algorithms to accurately calculate a departure pushback rate. While the

surface traffic level can be observed, future operations, capacity, and weather must

be predicted. These predictions represent another source of uncertainty. If the algo-

rithm inputs cannot be predicted with an acceptable degree of accuracy, the departure

pushback rate of the PRC policies is not accurate. This could result in poor surface

management because a high pushback rate during congestion could lead to increased

congestion and more delays, while a low pushback rate during with low congestion

could lead to a decrease in departure throughput. Both of these results are undesir-

able, as one is not effective at mitigating congestion, while the other one "starves" the

runway by not maintaining runway utilization.

The last source of uncertainty is the use of PRC policies. PRC policies calcu-

late departure pushback rates that are valid for a certain time window. Historically,

the choice of this time window has been 15 minutes. A 15-minute time window for

the pushback rate usually allows aircraft pushing back in one 15-minute window to

reach the runway by the next 15-minute window. However, there may be reasons to

adjust the length of the time window. A shorter time window leads to more accurate

departure pushback rates because the rates are updated more frequently and fore-

casted data are not projected far into the future. However, a shorter time window

increases the workload for controllers due to the need to frequently update the depar-

ture pushback rate. A longer time window decreases this workload, but at the cost of

less accurate departure pushback rates due to the inaccuracy of predictions further
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into the future. This tradeoff is an important consideration for controllers, airlines,

and airports when implementing PRC policies. In addition to the time window, the

time horizon is also of importance for PRC policies. The time horizon is defined as

the number of time windows that a PRC policy "looks ahead" and calculates a push-

back rate for a time window in the future. Most PRC policies use a time horizon of

0, meaning that the PRC policy updates the pushback rate at the end of each time

window. The same tradeoff between accuracy and workload exists for time horizons

as well.

Reducing congestion is a strong motivating factor for this research, but the un-

certainty involved in achieving that goal is arguably just as important. PRC policies

are an effective way to reduce congestion while not decreasing operations or altering

airport capacity. However, implementation of PRC policies introduces potential is-

sues in terms of airport operations and policy accuracy. A thorough examination of

both PRC policies and the associated uncertainties illustrates a complete picture of

the costs and benefits of airport surface management.

12 Literature Review

1.2.1 PRC Policies

The two surface management strategies examined in this thesis are the N-control

and dynamic programming PRC policies. These policies lead to reductions in fuel

burn and emissions, minimizing the impact of surface operations, as analyzed by

many studies [211 [221 [161 [101. Simaiakis et al. develop an N-control simulation

for Boston Logan International Airport and reports important metrics to describe

the effects of airport surface management [21]. They then go on to calculate those

metrics for several major airports and analyze emissions and fuel burn [221. Ravizza

et al. demonstrate the relationship between airport surface movement and fuel burn

[161. Khadilkar examines the control of both departures and arrivals on an individual

aircraft basis [101.
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Simaiakis [18] [19] lays the foundation for controlling departure processes. He

develops an estimation of airport capacity, unimpeded taxi-out times, and a dynamic

programming algorithm for Boston Logan International Airport. Many of these tech-

niques will be used in this thesis to develop models for LaGuardia Airport and extend

the study of airport surface management to include the variation of policy parameters

and operational uncertainty. Simaiakis also notes that PRC policies are flow-based

approaches to airport surface management, which means that these policies use vir-

tual queues by holding aircraft at their gates. The use of virtual queues were initially

suggested [9] and proposed in separate studies [1]. Feron et al. [9] give a detailed

overview of the conceptual departure control process, culminating in the idea of us-

ing virtual queues to mitigate congestion. Burgain et al. [1] use virtual queues to

minimize a cost function related to passenger wait time.

As for the N-control policy, several studies have developed the theoretical

framework [14] 13] [181 119] and the implementation procedures are demonstrated in a

case study at Boston Logan International Airport [17]. Pujet et al. [14] introduce an

N-control algorithm while also suggesting the possibility of using dynamic program-

ming to help address some of the uncertainties associated with the N-control policy.

Carr et al. [3] develop a software tool to simulate the departure process at airports

to support the research of airport surface management. Burgain et al. [2] derive a

full-state feedback algorithm to control departures, where the algorithm uses a cost

structure based on the number of aircraft taxiing and the non-utilization of the run-

way. This thesis expounds upon the work of a potential implementation proposed for

LaGuardia Airport [11] [20], in which the authors performed an N-control simulation

for the airport focusing on the length of gateholding times allowed by the algorithm.

For dynamic programming, a recent paper introduced this method of departure

metering [23]. This method accounts for the underlying uncertainty of the airport

capacity by modeling the state of the airport surface as a semi-Markov process. The

optimal pushback rate is calculated based on a cost of queuing function and the prob-

ability of the airport surface being in a given state. However, the policy still relies

on obtaining an arrival rate and weather prediction to build the model, which intro-

23



duces uncertainty. The remaining relevant work with dynamic programming applied

to airport operations only focuses on the optimization of aircraft scheduling. Rathi-

nam et al. 1151 propose a dynamic programming approach for the departure schedule

that finds the optimal pushback schedule for a given amount of departing aircraft.

Chandran and Balakrishnan 14] also use a dynamic programming algorithm for the

departure schedule, but they account for the uncertainty and random deviations in-

herent in the departure process. Dell'Ohno and Lulli [7] consider both arrivals and

departures with dynamic programming and the tradeoff and interactions between the

two different types of flights at an airport.

1.2.2 Variation of Policy Parameters

The structure of the PRC policies includes the time window and time horizon. The

length of the time window for which a pushback rate is valid can be changed. Re-

searchers to this point generally set this time window to be 15 minutes, reasoning

that the time window should roughly equal the lead time of the system [171 [23]. The

lead time of the departure process is the time it takes for the runway to experience

a given pushback rate. A runway experiences a pushback rate when the aircraft sub-

jected to that rate begin to arrive at the runway. Rathinam et al. [151 only calculate

a departure schedule for a given number of aircraft, while Dell'Olmo and Lulli [7J

appear to settle on a time window of 15 minutes for their analysis. Burgain et al. [2]

use a sampling time of 1 minute for their full-state feedback algorithm. In terms of

time horizons, most studies do not look ahead, meaning that the PRC policy updates

the pushback rate at the end of each time window. Longer time horizons would mean

that a PRC policy calculates a pushback rate for a time window further into the

future.

1.2.3 Uncertainty

While the literature review introduces the state of research concerning airport surface

management, the issue of uncertainty remains a crucial problem. The departure
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planner provides a introductory discussion of uncertainty and its role in controlling

the departure process 191. The sources of uncertainty cited include weather, airline

operations, air traffic operations, and human factors. These sources of uncertainty all

have an effect on the data required by PRC policies to calculate departure pushback

rates. Simaiakis and Balakrishnan demonstrate the uncertainty in the taxi-out time

of aircraft, indicating the taxi-out time is a stochastic process [211. Others have

used this approach as well 12] 114] [3]. Chandran and Balakrishnan [4] address the

uncertainty that results from perturbations in the departure and arrival schedules.

1.2.4 Contributions of this thesis

This thesis summarizes the research efforts to understand the effects of policy param-

eter variation and uncertainty on PRC policies. The main contributions of this thesis

are:

1. The analysis of policy parameter variation for the length of time windows and

horizons of PRC policies. 15-minute, 30-minute, and 60-minute time windows

are examined to weigh the costs and benefits associated with different time

window lengths. For time horizons, the analysis explores the use of looking

ahead into the future to calculate future departure pushback rates. These "look

aheads" will be for 15-minute time windows. For example, the 0 look-ahead is

equivalent to the 15-minute time window analysis and 1 look-ahead calculates

a departure pushback rate for the 15-minute time window following the current

15-minute time window.

2. The analysis of operational uncertainty stemming from the stochastic departure

and arrival rates in a given time period. Scheduled departure times for aircraft

are rarely met, as aircraft are often ready before or after that time. Arrivals

often arrive before or after their scheduled times as well. PRC policies require

accurate arrival rates for a time window to ensure an accurate departure push-

back rate. Also, PRC policies rely on sustained demand, which is not always

the case at airports.
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3. The development of two PRC policies for LaGuardia Airport with particular

attention paid to gate conflicts. The simulations of these policies include the

potential uncertainties discussed above, providing a more realistic evaluation

of PRC policies. This thesis also discusses other possible constraints that may

accompany the implementation of airport surface management.

1.3 Thesis Organization

This introduction describes airport surface management and the uncertainties asso-

ciated with both PRC policies and airport operations. Chapter 2 gives a thorough

description of the two PRC policies of interest, N-control and dynamic programming.

The algorithm development serves as the foundation for the rest of the thesis. Chapter

3 begins to look at the policy parameter variation of time windows and time hori-

zons. For both PRC policies, the results include a sensitivity analysis for each policy

parameter. Chapter 4 considers the operational uncertainties surrounding departure

and arrival rates. Finally, Chapter 5 concludes the thesis and suggests future research

areas.
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Chapter 2

Pushback Rate Control Policies

Pushback Rate Control (PRC) policies belong to a broader class of techniques related

to airport surface management. The goal of airport surface management is to control

the number of active aircraft on the airport surface so as to reduce congestion. PRC

policies accomplish this by mitigating the rate at which departing aircraft push back

from their gates during times of congestion. This is in direct contrast to current

operations at U.S. airports, which use a first-come, first-served (FCFS) approach for

departing aircraft. When a departure is ready for pushback, the controllers allow

pushback regardless of the state of the airport surface. Therefore, PRC policies shift

the delays incurred by congestion from the airport surface to the departure gate.

Instead of waiting in the runway queue with engines on, an aircraft absorbs the

delay at the gate in a virtual queue with engines off. This reduces the fuel burn

and emissions caused by congestion. However, this also increases the likelihood of

a gate conflict in which an arrival lands while a departure is still parked at the

arrival's gate. A later section explains the positives and negatives of PRC policies

more closely, with particular attention paid to the actual implementation of these

policies at airports. This section describes and explains two PRC policies of interest,

N-control and dynamic programming.
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2.1 N-Control

N-control is a PRC policy that ises the relationship between the iiiiiiiber of departure

aircraft on the airport surface N and the ruiiway throughput ii a particular time

wiiidow. This relatiouship is best described through a saturation ciirve. which is

shown in Figure 2-1 for runway configuration 3114 at LGA under visial imeteorological

conditions (VMC). or segment (31 4; VMC), for a 15-minute window.
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Figure 2-1: Departure throughput versuiis dei)arture aircraft taxiing at LaGunardia

Airport For segnict (31I4; VMC ) with a li-miuIte window.

Figure 2-1 contains a pairs of the departure throughput T(t) and surface traffic

N(t) for each 15-niinute period at LaGuardia Airport for 2013 for the given segment.

The saturation curve is a least-squares regression fit to the data. As described by

Simaiakis 191, the a pairs of N(t) and T( t) take the form of (X I y1).,, y9) The

satulration cuirve is a non-decrcasing function T = f1,,(N). At each vadue of N,



fmean(N) is found using simple convex optimization:

minZ(yi - yi) 2 , (2.1)
i=1

subject to the following constraints:

y = fmean(Ui), = 1, ... , n (2.2)

fmean(i + 1) > fmean(i), i = 0, ..., (n - 1) (2.3)

fmean(i + 1) - fmean() < fmean(i) - fmean(i - 1), i = 0,..., (n - 1) (2.4)

While this solution is for the mean regression, the median regression can also

be found:

n

mil l - yij, (2.5)
i= 1

subject to the following constraints:

yi = fmed (i), i=,..,n (2.6)

fmed(i + 1) > fmed(i), i = 0, ... ,(n - 1) (2.7)

fmed(i + 1) - fmed(') K fmed () - frned ( - 1), i = 0, ... , (n 1) (2.8)

Figure 2-1 has several interesting features. Note the nearly linear relationship

between departure traffic and runway throughput for low levels of departure traffic.

This indicates that, during times of low departure traffic, runway throughput benefits

from an increase in departure traffic. However, the linear relationship does not extend

for higher levels of departure traffic, and runway throughput hits a maximum. In

words, more departure traffic leads to less of an increase in runway throughput until

a certain point, after which runway throughput does not increase. This point, N*,

is called the saturation point, and it is unique to each segment at an airport. For

the N-control policy, an acceptable level of surface traffic Nctr is chosen around N*.
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The goal of the N-control policy is to maintain surface traffic at or around N* for

a particular segment to maintain maximum departure throughput while decreasing

unnecessary surface congestion. The pushback rate R for a time window is calculated

using the following equation:

R = Ntr + T -- Ner,, (2.9)

where T is the predicted throughput for that time window and N"', is the number

of departing aircraft taxiing at the beginning of the time window. Calculating pre-

dicted throughput is described below. The N-control policy only controls the rate of

departure aircraft when N, > Ncti at the beginning of a time window. Examining

Figure 2-1 reveals a tradeoff in the choice of Ntr. For Net,, < N*, the N-control

policy will be used more often, but the departure throughput could be less than the

maximum departure throughput. Using the N-control policy more leads to more taxi-

out time reduction benefits. However, this risks reducing the departure capacity of

the airport, which is very undesirable. For Nct, > N*, the N-control policy will be

used less often, meaning congestion levels would be higher and the benefits of the

prliwy decrease. The chvice -f eAT . for a particular sgment must account for this

tradeoff.

Notice the error bars for each value of surface traffic N in Figure 2-1. The satura-

tion curve is the best fit line for each 15-minute period in 2013 at LaGuardia Airport.

However, the standard deviation of throughput around the saturation point is about

2 aircraft. This indicates that factors other than surface- traffic affect the departure

throughput. These factors include weather, arrival aircraft, and human factors. Two

of these factors, weather and arrival aircraft, can be used to more accurately predict

departure throughput during times of congestion.

With the machine learning technique of regression trees, departure throughput

can be predicted during times of congestion (Neiir > Netz). Using empirical data, the

regression trees calculate the predicted departure throughput based on the arrival rate

and Route Availability Planning Tool (RAPT) for the next time window. RAPT is a
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tool used to estuinate the location ant ScvrXUity of weatthLer iII thc ara surrounding ali

airport. RAPT is on a scale of w to ) wh)le iicates no weather and 3 reptisents

very severe coiivective weather. A IRAPT value is given for sevral areas around tle

airport. as well as 15 ininutes into the past and 1.5 mnlintes Into ti future in 5-niute

increienits. To get a silie value, the BAPT Is averaged over all time i i ucrete it's al(d

all areas around tie airport. Because the e1gressioi trees only predict tliroughput

during tinies of collgestioll. tlley captIire the licertaui1ty preselt III the ilaxilinill

depai rt ure throughplit iiI Figure 2-1. Figure 2-2 shows an exainple of a regression tree

for LaGiardia Airport.

Arr < 4.5 Arr >= 4.5

RAPT 0.6 RAPT >= 0.6
11

Arr < 9.5 Arr >= 9.5
8

9 10

Figure 2-2: Regrssii tree with predicted depjrttire throIghpu it at the leaves for La-

Gtan ia A 0irpt t fr stgiet 11 N&IC) with a 15-.nun itt wi ow w Arr' inldicates

the arrival rate for the tilat vuidow and "BAFT" iltdicates the single IAPT value

for the t~ine wiiidv.

With all of the piec-es of the N-control policy introduced- the N-control algoritlini

proceds ill tHie fol wing imanner. At the beginnilig of a time wiltdow of arbit rary

length, a controtler otserves the current departure traffic oii t le airport surface Ne,

the sin'-le RiAPT valu , and t expected arrival rate foa the tinle widow. I NA >

, the aniport departure trAnic is greater than the acceptathble hwcv of traflit, so
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the N-control policy controls the pushback rate of departing aircraft for the next time

window. If N.,. <_ Nri., the pushback rate of departing aircraft is not controlled and

pushbacks are FCFS based on scheduled departure time. If N-control is in effect, a

departure pushback rate needs to be calculated. With the RAPT value and arrival

rate, the regression tree for a particular segment calculates the predicted throughput

for that time window. With this, all of the independent variables of Equation 2.9 are

known and the departure pushback rate is found.

For the simulations of the N-control policy, the departure pushback rate creates

equally-spaced pushback slots for departures in that time window. Each departure

is then mapped to a unique pushback slot in the order of their scheduled departure

time. If the number of scheduled departures in a time window exceeds the number of

pushback slots, the departures without a pushback slot must wait until the next time

window. If the scheduled pushback time for an aircraft is after the pushback slot,

the aircraft pushes back at the scheduled departure time. If the scheduled pushback

time for an aircraft is before the pushback slot, the aircraft is held at the gate until

the pushback slot time arrives. This holding time corresponds to time spent at the

gate with the engines off. Under the FCFS policy, the aircraft spends that holding

time waiting in the departure queue with the engines on. Therefore, the N-control

policy shifts the congestion-induced delay from the departure queue to the gate. This

reduces the total taxi-out time of aircraft and, because the engines are off, fuel burn

is also decreased. This reveals how the benefits of reduced taxi-out time and fuel

burn result from the use of the N-control policy.

For the policy to accurately simulate airport operations, a reliable taxi-out time for

each aircraft must be found. The total taxi-out time in the simulations consists of two

parts: the unimpeded taxi-out time and time spent waiting in the departure queue.

The unimpeded taxi-out time is the time it takes an aircraft to taxi to the departure

runway when departure traffic is low or nonexistent. So, the simulation uses this as a

proxy for the amount of time it takes an aircraft to reach the departure queue from

each terminal at an airport. Of course, taxi-out times depend not only on the terminal

from which an aircraft departs, but also the gate from which an aircraft departs.
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However, analyzing taxi-out times from each gate is impractical for several reasons.

Certain gates may not have taxi-out times in the dataset. For the gates represented in

the dataset, the sample size may be too small to get an accurate estimate. For these

reasons, the unimpeded taxi-out times from each terminal represent a reasonable

approximation for unimpeded taxi-out times for aircraft.

The calculation of unimpeded taxi-out time requires the taxi-out time during

different levels of surface traffic. For each flight in the Aviation Specific Perfor-

mance Metric dataset (ASPM), the taxi-out time is simply the difference between

the wheels-off time and pushback time. However, the definition of surface traffic for

this application is nontrivial. The number of departing aircraft on the airport surface

almost certainly changes from the pushback time of an aircraft and the wheels-off

time of that same aircraft. For this reason, adjusted surface traffic Nadj serves as the

metric describing the state of the departure traffic. Nag for an aircraft is the sum

of the number of departing aircraft on the airport surface at pushback time and the

number of aircraft that push back after that time but before the original aircraft's

wheels-off time. This definition indicates that Nadj represents the maximum number

of departure aircraft that a departure can expect to encounter on the airport surface.

Nadj can also be extracted from ASPM data, so the calculation of unimpeded taxi-out

time can move forward. Simply using the departure traffic at the time of departure

pushback may underestimate the traffic conditions that an aircraft experiences.

Figure 2-3 shows a scatter plot of all flights from Terminals C and D at LGA in

April 2014. Notice the concentration of points for lower levels of adjusted traffic. Taxi-

out times with a lower level of adjusted traffic appear to have less variability than taxi-

out times with higher adjusted traffic. This agrees with intuition. With lower levels of

departure traffic, an aircraft taxiing is more likely to achieve the unimpeded taxi-out

time. With higher levels of departure traffic, an aircraft taxiing may encounter many

impediments on the airport surface.
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taxi-out times for T-C&D in April 2014
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fmean(i + 1) > fmean(i), i = 0, ... , (n - 1) (2.12)

fmean(i + 1) - fmean() > fmean(i) - fmean(i - 1), i = 0, ... , (n - 1) (2.13)

While this solution is for the mean regression, the median regression can also be

found:

n

minl J'i - yi l, (2.14)
i= 1

subject to the following constraints:

Qi = fmed (Ui),= 1, ... ,fn (2.15)

fmed(i + 1) > fmed(i), i = 0, ... , (n - 1) (2.16)

fmed(i + 1) - fmed(i) fmed(i) - fmed(i - 1), = 0, ... , (n - 1) (2.17)

Solving for the best fit results in Figure 2-4. The unimpeded taxi-out time is then

the value of this fit when Nad = 0. This process is repeated for each combination

of runway configurations and terminals. Terminals C & D are combined for this

calculation due to their proximity. Note, the unimpeded taxi-out time calculation

does not include separate results for the different meteorological conditions. While

taxi-out times may differ between VMC and IMC, this analysis assumes that the

unimpeded taxi-out times for the two meteorological conditions remain the same. The

motivation for this assumption mirrors the sample size and reasonable approximation

arguments made for excluding individual gates from the unimpeded taxi-out time

calculations.
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taxi-out times in April 2014
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Figure 2-4: Best fit of the empirical data with taxi-out time as a function of the

adjusted traffic for flights from terminals C and D at LGA with runway configuration

22|13. Data from April 2014.

Because aircraft spend more time at the gate under the N-control policy, the

likelihood of a gate conflict increases. Recall that a gate conflict occurs when an

arriving aircraft lands while a departing aircraft still occupies that arrival's gate. Gate

conflicts are undesirable as they introduce an additional complexity to the airport

surface. Often, the arrival must wait on taxiways or other areas until the departure

is ready for pushback and clears the gate area. However, the additional gate conflicts

caused by the N-control policy consist of departures ready to depart because they

are being held at the gate after their scheduled departure time. To solve the gate

conflict issue, if an arrival lands and is headed to a gate with a departure being held

by the N-control policy, the departing aircraft is immediately cleared for pushback.

This solution ensures that the departure will clear the gate area before the arrival
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reaches the gate.

Gate conflicts only account for one of the costs of implementing an airport sur-

face management policy. This section describes the N-control policy without varying

the policy parameters or accounting for operational uncertainty. These additional

considerations greatly influence the effectiveness of airport surface management.

2.2 Dynamic Programming

The dynamic programming policy models the state of the airport surface as a Markov

process with the state described by the number of aircraft taxiing to the runway

and the number of aircraft queuing at the runway. By modeling the runway service

times as an Erlang distribution[191 with the shape and rate (k, ky), the transition

probabilities over a time window are found by numerically integrating the Chapman-

Kolmogorov equations, which are described below. The runway service time is the

time between successive takeoffs on a runway, meaning that a service time is the time

it takes the aircraft at the head of the queue to leave the airport surface. Dynamic

programming then uses value iteration to find the optimal pushback policy in terms

of the costs of queuing and runway utilization.

The dynamic programming policy contrasts with the N-control policy in the fol-

lowing manner. N-control uses a simple equation to maintain departure surface traffic

at a predetermined level based on empirical data. Dynamic programming models the

runway service time to get a probability distribution of the state of the airport at

some point in the future. With this, and a cost of queuing and runway utilization

function, dynamic programming finds the departure pushback rate that minimizes

costs. While N-control predicts that the state of the airport surface will evolve in

a certain manner, dynamic programming considers all of the potential states of the

airport and the departure pushback rate accounts for the uncertainty in the evolution

of the state of the airport. From this perspective, dynamic programming is a more

robust policy than N-control.

The shape and rate (k, ky) of the Erlang distribution of runway service times can
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be found using the method of moments. Each leaf of the regression trees introduced

in Figure 2-2 and described above contains niany observations of departure through-

put. Because these empirical observations are Erlang distributed, the event of having

exactly i services during a time period A is a Poisson random variable. The two

moments pi and P2 are:

- (i+1)k-1 k - (ktA)J) (2.18)
Pi = (i - k e .A . )(.

i=O j=(i-1)k+1

00 (i+1)k-1

2 (i2. zk - . -A. p ) (2.19)
i=O j=(i-1)k+1

The method of moments, with the condition that the shape k must be a natural

number, is done in the following manner. First, a numerical solution to Equation

2.18 can be found for different values of k. Then, the error of Equation 2.19 is found

for each value of k. These steps repeat until the absolute error increases. Once this

happens, the last shape k and rate kp describe the Erlang distribution for a given

leaf of a regression tree. The shape k and rate ky give the lowest absolute error

of Equation 2.19. This is done for each leaf of all of the regression trees. For each

airport, a solution is found for each shape of the Erlang distribution of service times.

These solutions may contain different segments. If so, the rate ky is averaged over

all segments of the same shape k. This is an approximation, but the rates of the

distributions of equal shape do not differ drastically. Therefore, the' averaging does

not greatly affect the accuracy of the final solution. This improves upon the work of

Simaiakis [191, which uses one shape and rate for the entire airport.

At the beginning of the time window, the state (r, q) is observed, where r is the

number of aircraft taxiing to the runway and q is the stages-of-work to be completed

at the runway. The stages-of-work are the product of the number of aircraft queuing

and the shape of the Erlang distribution. The shape and rate have already been

calculated using the methods described above. The runway configuration, weather

conditions, and arrival rate dictate which shape and rate apply. With the state

known at the beginning of the time window (Ro, Qo) and the runway capacity C, the
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following Chapman-Kolmogorov equations are then solved throughout the entire time

window of length A to get the probability P,q(A) of the airport surface being in a

given state at the end of the time window:

(2.20)di =o kpPo,1
dt

dPoq = kIPo,q+1 - kpPo,q,
dt

1 < q < k

(2.21)

kpPoq+1 + P1,qk - A
S-t

1
A -- t Pk(c-1) - kpPo,kc

k p~r,1 - Pr'O

ptPoq, k < q < kC

(2.22)

(2.23)

(2.24)

1 q < k- klpPrq - A - t Pr,q,

(2.25)

r
At Pr,q, k < q < k(C - 1)

(2.26)

r-+ 1
+ r - I Pr+1,q-k - kpPr,q,A -t

k(C - 1) < q < kC

A - t Pr+1,k(C-1) - kplPr,.kC

kpPR,q I

kpPRO,q+1

A-PRo,0

- + + ky)PRO,q,

(2.27)

(2.28)

(2.29)

1 < q: k(C - 1)

(2.30)

k/pPRO,q+1 - klpPiAq,,, k(C - 1) < q < kC

(2.31)

(2.32)dtPRkC = -kpPRO,kc
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With these transition probabilities, the costs of releasing a number of aircraft

with pushback rate A can be found, with the assumption that aircraft traveling to the

runway queue at the beginning of one time window reach the queue by the start of

the next time window. The minimum cost J (r, q) at each state is given by Bellman's

equation for the infinite horizon problem with discount factor a:

kC

J*(r,q) = min{T(r, q) + a Pr,J*(A,j)} (2.33)
j=0

where T is an average cost of a state over a time period and A is the set of all possible

pushback rates. This equation can be solved by value iteration. The pushback rate for

the time window is then given by the pushback rate that minimizes the cost function.

The cost function must penalize both non-utilization of the runway and lengthy

queues. Following the lead of Simaiakis [191, non-utilization of the runway has a

constant cost H, while for q > 0, the cost is a non-decreasing function of q. This

leads to the following equation

c(q) = (2.34)

[(q 1)2 if q > 0.

H is chosen by an airport to reflect the true cost of losing capacity by not main-

taining runway utilization. The equation for c(q) is only a function of queue length

and service time shape, so time is not a factor here. Because dynamic programming

accounts for all possibilities for the evolution of the airport state, the cost function

must be combined with the probability that the runway queue is of a certain length.

To add the time component, the vector of these probabilities is

RO Ro Ro

Pq(RoI Qo, t) = [E Psro W), Pr,1(t), ..., Pr,kC(t)]. (2.35)
r=O r=O r=O

In words, the above equation states that, given that the state of the airport was

(RO, Qo) at the beginning of the time window, these are the probabilities that the

runway queue consists of q stages-of-work at time t. Now, with the probability of
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runway queue length as a function of time, the product of these probabilities and the

cost function can be summed over an entire time window A to find the expected cost

of each state:

t(Ro, Qo) = Z pq(Ro, Qo, i/10) -c(q). (2.36)
i=O

Because Equation 2.35 is sampled 10 times a minute, the summation in Equation

2.36 reflects this sampling. With the expected cost over a time window, Equation

2.33 is solved to find the optimal pushback rate.

The solution over all states for a 15-minute time window can be seen in Figure 2-5

for an Erlang distribution of service times with shape k = 2 at LaGuardia Airport

with a maximum pushback rate of 15 aircraft per 15 minutes.
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Figure 2-5: Parametric solution of pushback rate with observed values of aircraft

taxiing and departure queue length for a 15-minute time window. Each line is the

optimal pushback rate for the given state, increasing from 0 to 15 from right to left.

41

0

3

6
9

15

I . . I



Examining Figure 2-5 provides an intuitive understanding of the underlying math-

ematics of the dynamic programming algorithm. For a low departure queue Qo and

departures taxiing Ro, the airport surface is relatively empty and the dynamic pro-

gramming recommends a maximum pushback rate. For high Qo and low RO, the

pushback rate decreases slower with increasing Qo when compared to increasing RO

for high Ro and low Qo. This makes sense because, with high Qo and low RO, the

queue will likely diminish by the time the recommended pushback rate reaches the

runway queue. If Ro is high and Qo is low, the aircraft taxiing to the queue will replen-

ish the queue before the recommended pushback rate reaches the runway. Therefore,

the pushback rate does not need to be as high in this circumstance. This is reflected

in both the slope and nonlinear characteristics of each parametric solution in Figure

2-5. The intuitive nature of the solution reinforces the methodology of the algorithm.

Also, the solution can be summarized in a clean figure that can be used in imple-

mentation because it contains all possible evolutions of the airport surface, given

RO and Qo. Because the solution is understandable and general, the complexities of

the dynamic programming algorithm are masked, making potential implementation

possible.

With the pushback rate found, the dynamic programming policy behaves identi-

cally to the N-control policy. Equally-spaced pushback slots form to allow for depar-

tures to be held at their gates. Again, this increases the likelihood of gate conflicts,

and the dynamic programming policy solves this problem in the same manner as the

N-control policy. The two policies do differ in execution. While N-control is only in

effect during times of congestion Nur > Ntri, the dynamic programming policy is

always in effect. Because dynamic programming does not rely on a defined airport

congestion threshold, the algorithm can always minimize the cost function, even if

the airport is not congested. This difference is evident in the resulting benefits of the

two policies as will be seen in the coming chapters.
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2.3 Summary

This chapter litroduct s, derives, ad explai118 two PRC liuies, N-control amd dv-

lin11ic prograniuning. N-control aims to imamitaill depart ilg traffic around an accept-

able value N,1,1 hased oil uiipirical analysis of t he relationaship etweenl departure

throughplit and departure traffic. Dynai1ic progranrinig s5eks to iIi/IIniz a cost

function that penahzes both long queues a(1nd runwvy starvation by uaculating t lit'

probability of thc airport being I I a certain state at some futur tiie. Each potiCY

is thoroughly explajied i1nd derived so as to illustrate cearly the assiuiiptions and

I111t(hlodologv used to control depature pushbacks. FiUre 2provides an ill ustrationi

of airport surface manageinent wvithl PR( policIs.
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Chapter 3

Variation of Policy Parameters

The PRC policies, N-control and dynamic programming, generate a pushback rate

for departures valid for a given time window. Historically, this time windlow has

been set to 15 minutes, but varying this time window can lead to advantages and

disadvantages. Also, a pusliback rate can be calculated for earlier tine windows in

the future by changing the time horizon of the policy. Changing the time window or

time horizon allows an airport or airline to tailor the PRC j)olicy to specific needs and

requirements. Consequently, airports and airlines must understand how varying the

policy parameters affects the performance of PRC policies. This section introduces

the tradeoffis that arise from varying time windows and horizons. Finally, the results

show how the benefits change for different time windows and horizons so that airports

and airlines get an accurate grasp of the effects of varying policy parameters.

Figure 3-1 illustrates the difference between time windows and time horizons.
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Fhiurei3-1: Visualization of time wxindlows and time horizonls.
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First, consider time windows. For 15-minute time windows, the first row above

the times in the 8:00 hour shows that four pushback rates govern four 15-minute time

windows. These pushback rates are calculated at the beginning of each time window.

A 00 is calculated at 8:00, A 15 is calculated at 8:15, and so on. For 30-minute time

windows, the second row above the times in the 8:00 hour shows that two pushback

rates govern two 30-minute time windows. These pushback rates are calculated at

the beginning of each time window. A00 is calculated at 8:00, A30 is calculated at

8:30. For 60-minute time windows, one pushback rate governs the entire hour, so A 00

is calculated at 8:00.

Now, consider time horizons. The time horizon of 0 is exactly the same as the

15-minute time window, with four pushback rates governing four time windows, each

calculated at the beginning of a respective time window. For a time horizon of 1, the

pushback rate for a particular time window is calculated one time window in advance.

The second row below the times in the 8:00 hour has arrows that indicate when a

particular pushback rate is calculated. The pushback rate A 00 for the 8:15 - 8:30 time

window is calculated at 8:00, so the arrow begins when the rate is calculated and

leads to the time slot for which this rate is valid. The number of the time horizon

indicates the number of time windows in advance that a pushback rate is calculated.

Therefore, the time horizon of 3 calculates a pushback rate three time windows in

advance. The pushback rate A00 for the 8:45 - 9:00 time window is calculated at 8:00,

as shown in the third row below the times in the 8:00 hour. The arrow leads from

the time the rate is calculated (8:00) to the time that the rate is valid (8:45).

3.1 Input Data

The data required for the simulation must be pulled from multiple sources. The

ASPM dataset provides flight specific metrics such as pushback time, wheels-off time,

and wheels-on time. While extremely valuable, the ASPM dataset does not contain a

critical piece of information: the gate and terminal assignments of each flight. Gate

and terminal assignments allow for the calculation of unimpeded taxi-out time and
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allow the policy to monitor gate conflicts. Flightstats.com has this data for each

flight, so the PRC policies require the gate and terminal assignments to be integrated

with the rest of the ASPM data. The last dataset contains the weather data, RAPT,

described previously.

Each simulation contains both a baseline case and a metering case. The baseline

case simulates the airport operations by releasing departures from their gates on a

FCFS basis based on scheduled departure times. The metering case simulates the

airport operations using a PRC policy. The benefits of the policy include the taxi-out

time reduction, which is the difference between the taxi-out times in the baseline case

and metering case. Taxi-out time reduction contrasts with gateholding time, which is

the length of time an aircraft is held at a gate beyond the scheduled departure time

due to the PRC policy. Gateholding time is not strictly a cost because aircraft still

belong to the virtual queue with engines off. However, occupying the gate causes more

gate conflicts, while extended gateholding times can lead to passenger discomfort.

3.2 Time Window

3.2.1 Assessment of the Time Window Length

PRC policies calculate a pushback rate for departing aircraft that is valid for a certain

time window. This time window impacts some performance characteristics of the

policy, as Simaiakis et al. [231 note briefly. The length of this time window is a tradeoff

between: accuracy, ease of implementation, and value added to operators (airlines

and controllers). Depending on the main priority of the PRC policy, the time window

should be chosen to achieve a certain goal, which may come at the cost of other

performance characteristics.

For accuracy, the policies become less accurate as the length of the time window

increases. Because the PRC policies calculate the pushback rate at the beginning

of the time window based on the state of the airport surface, a longer time window

means that the pushback rate is valid for a longer period of time. As time gets farther
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away from the beginning of the window, the state of the airport surface changes. This

could cause the pushback rate for a time window to be different from the optimal value

as time increases from the beginning of the window. Also, the quality of the input

data affects the accuracy of the PRC policy. Arrival rates can be predicted somewhat

accurately for a 15-minute time window, but this accuracy diminishes for longer time

windows. Because of this, the pushback rate could be calculated based on incorrect

data.

For implementation, the policies affect the workload of the traffic controller. For

shorter time windows, the controller must keep updating the pushback rate more

frequently. This involves gathering the input data and the calculation of the rate

based on the PR.C policy used. This workload decreases with the increase in the

length of the time window because the pushback rate is valid for a longer period of

time. However, as explained above, this decrease in workload comes at the cost of

decreased accuracy.

For the value added by the PRC policy, one must consider both the airlines and

the controllers. In terms of airlines, the time window must be long enough for the

airlines to plan their operations. However, the benefits of the PRC policy decrease as

the time window gets longer due to the decrease in accuracy. Airlines must choose the

right time window length that allows for smooth operations planning with sufficient

benefits. For controllers, the workload variation has already been considered. In

addition, the benefits to traffic control must be substantial enough to justify any

increase in workload.

3.2.2 N-Control

In addition to the usual 15-minute time window length simulation, simulations with

30-minute and 60-minute time windows allow for the exploration of the effects of

lengthening the time window. Time windows shorter than 15 minutes would likely

overload controllers with frequent PRC policy updates, as discussed above. The

results of these three simulations with different time window lengths should reflect

the tradeoffs of varying time windows.
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The tools and data must be reconfigured for the longer time window simulations.

The saturation curves change to account for the increase in departure throughput

due to extending the time windows. Also, Ndj is the metric for departure surface

traffic used for the saturation curves. Because the saturation curves change, so must

the regression trees. Each tree is rebuilt, accounting for the larger arrival rates and

predicted departure throughput. Unimpeded taxi-out time remains the same because

the time window has no effect on this metric. With all of the capacity and simulation

tools reconfigured, Equation 2.9 still calculates the departure pushback rate and the

simulation proceeds exactly as before, except with longer time windows.

The results of the simulations for LaGuardia Airport for July-August 2013 can be

seen in Table 3.1. Tm is the taxi-out time reduction in minutes for the metering case

compared to the baseline case, while T, is the percent taxi-out time reduction for the

metering case compared to the baseline case. The reduction results are compared to

the baseline case in which aircraft push back from their gates as soon as they are

ready.

Table 3.1 clearly shows that as the length of the time window increases, the benefits

decrease in terms of taxi-out time reduction. The 30-minute time window simulation

has 78.6% of the taxi-out time reduction of the 15-minute time window simulation.

The 60-minute time window simulation has 54.7% of the taxi-out time reduction of the

15-minute time window simulation. However, each policy has considerable benefits.

In terms of policy fairness, an airport surface management algorithm must treat

all airlines equally, meaning that no airline can get a vastly disproportionate share

of the benefits. The N-control policy demonstrates fairness by the nearly one-to-one

ratio of the percentage share in taxi-out time reduction and the percentage share

of departures, or market share. The benefits almost directly correlate with market

share. This means that the N-control policy fairly distributes the benefits based on

the size of an airline's airport operations. This fairness also exists in the 30-minute

and 60-minute simulations, so varying the time window length does not adversely

affect policy fairness.

Also, each policy maintains roughly a one-to-one ratio of taxi-out time reduction
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to gateholding time. This indicates that a minute of gateholding time will correspond

to a minute of taxi-out time reduction during periods of congestion. This relationship

is important because airlines do not need to invest a large amount of gateholding to

realize a benefit in taxi-out time reduction. The one-to-one ratio here indicates that

the N-control policy directly rewards investments of gateholding time with an equal

benefit of taxi-out time reduction. Again, this ratio remains for the 30-minute and

60-minute simulations.

Table 3.1: Simulation for each time window policy, separated by airline.

Airline Policy Tm T Reduction Gateholding Gateholding Market
(min) % Share Time (min) % Share Share
15 24,981 6.6% 39.2% 25,091 39.3%

1 30 19,693 4.8% 39.3% 19,755 39.4% 38.0%
60 13,720 3.3% 39.3% 13,551 38.9%
15 11,858 6.6% 18.6% 11,831 18.6%

2 30 9,359 4.8% 18.7% 9,260 18.5% 19.8%
_ 60 6,459 3.2% 18.5% 6,543 18.8%

15 5,995 7.1% 9.4% 6,091 9.6%
3 30 4,710 5.1% 9.4% 4,688 9.4% 8.2%

60 3,368 3.6% 9.7% 3,429 9.8%
15 2,403 6.4% 3.8% 2,401 3.8%

4 30 2,015 5.0% 4.0% 2,007 4.0% 4.3%
60 1,326 3.2% 3.8% 1,319 3.8%
15 1,057 6.1% 1.7% 1,067 1.7%

5 30 837 4.5% 1.7% 876 1.8% 2.0%
60 654 3.4% 1.9% 665 1.9%
15 2,505 5.9% 3.9% 2,463 3.9%

6 30 2,040 4.4% 4.1% 2,142 4.3% 5.1%
60 1,526 3.2% 4.4% 1,492 4.3%
15 1,432 5.7% 2.3% 1,407 2.2%

7 30 1,176 4.2% 2.4% 1,139 2.3% 3.1%
60 853 3.0% 2.5% 857 2.5%
15
30
60

7,08,2.1
6,968 [.3.3%

21.2%
20.6%
20.0%
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3.2.3 Dynamic Programming

The dynamic programming policy can also extend beyond the 15-minute time win-

dow simulation to include 30-minute and 60-minute time windows. The A in the

dynamic programming equations simply changes to match the length of the chosen

time window. Then, the Chapman-Kolmogorov equations must be numerically inte-

grated throughout the new time window. With the data and regression trees adjusted

for the different time window length, the dynamic programming algorithm proceeds

as before. Table 3.2 shows the results of the different time window length simulations.

Table 3.2: Dynamic programming time window simulation results, separated by air-
line.

Airline Policy T, Tm Reduction Gateholding Gateholding Market
(min) % Share Time (min) % Share Share
15 85,581 22.7% 39.6% 89,032 39.5%

1 30 53,806 13.1% 39.6% 56,193 39.5% 38.0%
60 38,228 9.1% 40.8% 43,250 40.3%
15 39,788 22.3% 18.4% 41,705 18.5%

2 30 25,161 12.9% 18.5% 26,315 18.5% 19.8%
60 16,829 8.4% 18.0% 19,620 18.3%
15 20,021 23.6% 9.3% 20,870 9.3%

3 30 12,699 13.8% 9.3% 13,251 9.3% 8.2%
60 9,086 9.6% 9.7% 10,183 9.5%
15 8,023 21.4% 3.7% 8,377 3.7%

4 30 4,985 12.3% 3.7% 5,297 3.7% 4.3%
60 3,332 8.0% 3.6% 3,716 3.5%
15 3,797 22.0% 1.8% 3,916 1.7%

5 30 2,463 13.2% 1.8% 2,534 1.8% 2.0%
60 1,530 8.0% 1.6% 1,835 1.7%
15 8,370 19.6% 3.9% 8,751 3.9%

6 30 5,284 11.4% 3.9% 5,525 3.9% 5.1%
60 3,350 7.0% 3.6% 3,892 3.6%
15 4,342 17.1% 2.0% 4,550 2.0%

7 30 2,659 9.6% 2.0% 2,782 2.0% 3.1%
60 1,482 5.2% 1.6% 1,817 1.7%
15 46,198 24.0% 21.4% 47,989 21.3%

8 30 28,975 13.9% 21.3% 30,282 21.3% 19.6%
60 19,824 9.3% 21.2% 22,947 21.4%

The dynamic program results in Table 3.2 show that the policy benefits degrade
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as the length of the time window increases, following the same trend as the N-control

policy results. The 30-minute time window simulation has 62.9% of the taxi-out time

reduction of the 15-minute time window simulation. The 60-minute time window

simulation has 43.3% of the taxi-out time reduction of the 15-minute time window

simulation. The dynamic programming simulations maintain policy fairness by com-

paring the airline shares of taxi-out time reduction and market share. The one-to-one

ratio of taxi-out time reduction and gateholding time is also present in the dynamic

programming simulations.

Comparing the results of the N-control policy and the dynamic programming

policy simulations highlights some of the differences between the algorithms. The ab-

solute benefits of the dynamic programming policy are much greater than the benefits

of the N-control policy. However, this does not immediately indicate that dynamic

programming is the better policy. Because the dynamic programming algorithm re-

lies on an infinite horizon solution, the dynamic programming algorithm controls

departures at all times, not just during times of congestion like the N-control policy.

Therefore, the dynamic programming algorithm meters many more flights than the

N-control algorithm. This explains the rather large difference in policy benefits.

get a better sense of thedifr in performance of the two PRC policies,

Table 3.3 shows the taxi-out time reduction per metered flight (Tm) in minutes, as

well as the percentage of all flights metered.

Table 3.3: PRC policy variable time window performance comparison (N: N-control,
DP: dynamic programming).

Policy T % of flights Policy Tm % of flights
metered metered

N (15 min) 10.3 20.3% DP (15 min) 12.6 56.0%
N (30 min) 10.4 15.8% DP (30 min) 10.6 42.0%
N (60 min) 9.8 11.6% DP (60 min) 7.8 39.5%

Table 3.3 reveals that the dynamic programming policy meters many more flights

than the N-control policy. For the 15-minute time window, most of the difference in

policy performance stems from the additional metering of the dynamic programming

policy, although the average taxi-out reduction of the dynamic programming policy is
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2 minutes greater than the N-control policy. For the 30-minute time window, almost

all of the difference in policy performance is due to the discrepancy in number of

flights metered. For the 60-minute time window, the dynamic programming policy

actually has a smaller taxi-out time reduction than the N-control policy. However, the

additional metering of the dynamic programming policy results in a greater total taxi-

out reduction. The N-control policy maintains a fairly consistent Tm with increasing

time window lengths. The tm for N-control varies by no more than half of a minute.

For dynamic programming, the t, decreases by nearly 5 minutes from the 15-minute

time window simulation to the 60-minute time window simulation. The N-control

policy has more stable policy benefits per metered flight across different time window

lengths compared to the dynamic programming policy.

The differences between the N-control and dynamic programming results mirror

the differences between the two PRC policies. N-control only meters during times of

congestion, while dynamic programming always seeks to minimize the cost function

associated with queuing and runway utilization. The results should also communicate

to airports and airlines that implementing a dynamic programming algorithm will

result in greater benefits, but at the cost of disrupting airport operations with many

metered flights. On the other hand, implementing an N-control algorithm meters

fewer flights than dynamic programming, but the benefits of the policy also decrease.

While dynamic programming might be an ideal solution to a new airport to manage

airport surface operations, N-control may be easier to implement at busier airports

due to the difference in metering frequency. Airports and airlines must consider all

possible effects of implementing each PRC policy, including not only the benefits but

also the impact on airport operations.

Portraying dynamic programming as possibly disruptive may be a bit unfair. The

dynamic programming algorithm has the goal of ensuring the queue length is not ex-

cessive so as to prevent unnecessary fuel burn. The N-control algorithm only monitors

the total number of departing aircraft on the airport surface. While the N-control

algorithm may allow a long queue with few departures taxiing to the queue, the

dynamic programming algorithm penalizes such a situation. By accounting for the
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difference between departures taxiing and departures in the queue, dynamic program-

ming has more detailed information than the N-control algorithm uses. The greater

detail gives the dynamic programming more situations in which to control the rate

of departure pushback.

3.3 Time Horizon

3.3.1 Assessment of the Time Horizon Length

The time horizon length variation has the same tradeoffs associated with the time

window length variation. To reiterate, the time horizon is the number of time windows

before a given time window that a departure rate is calculated. The above analysis for

time window lengths has one departure pushback rate valid for the entire time window.

At the end of a time window, a new departure pushback rate is calculated and the

policy resets. The time horizon in this instance is zero because the PRC policy does

not look ahead to other time windows to calculate other departure pushback rates.

For time horizons greater than zero, a unique departure pushback rate is calculated for

subsequent time windows. For a time horizon of 1, the policy calculates a departure

rate based on the expected state of the variables needed for the time window following

the current time window.

For the N-control policy, the expected change in Nu follows directly from an

application of conservation of aircraft on the airport surface. If N,,,, is the departure

surface traffic one time window into the future, then

Nur = Ncur - T + R, (3.1)

where the variables on the right-hand side of Equation 3.1 are for the current time

window. The weather and arrival rate can also be predicted with acceptable accuracy

multiple time windows into the future, so predicted throughput can also be found.

The accuracy of arrival rate prediction will be the subject of an analysis in the next

chapter. Therefore, all of the elements of Equation 2.9 are known (or estimated),
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resulting in a departure pushback rate for a time window in the time horizon. With

the departure pushback rate, the N-control simulation proceeds as usual.

For the dynamic programming policy, both the departures taxiing RO and stages-

of-work in the departure queue Qo at the beginning of a time window change through-

out a time horizon. The changes in these variables become straightforward under the

assumption that all aircraft taxiing at the beginning of the previous time window

reach the departure queue by the beginning of the next time window. If Q' corre-

sponds to the stages-of-work one time window into the future, then

Q k = ( -Tp + Ro) x k, (3.2)

where the variables on the right-hand side of Equation 3.2 are for the current time

window. The departure queue grows by an amount equal to the departures taxiing

at the beginning of the previous time window. The departure queue shrinks by the

predicted throughput for the previous time window. Again, a conservation of aircraft

in the departure queue perspective explains Equation 3.2.

The expected change in Ro is more straightforward. If the number of aircraft

expecting to push back in a time window exceeds the departure pushback rate, the

departures taxiing at the beginning of the next time window simply equal the de-

parture pushback rates. If the number of aircraft expecting to push back in a time

window does not exceed the departure pushback rate, the departures taxiing at the

beginning of the next time window are the number of aircraft expecting to push back

in the previous time window. The equations for R', the departures taxiing one time

window into the future, are then

R' = R if R < D, (3.3)

R' = Dr if R > Dr, (3.4)

where R is the pushback rate of the previous time window and D, is the number

of departures ready to push back in the previous time window. With Q' and R'
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estimated, the dynamic programming simulation proceeds as usual.

3.3.2 N-control

In order to mirror the variable time window analysis, time horizons of length 0, 1, and

3 look ahead 0 minutes, 15 minutes, and 45 minutes into the future, respectively. The

time window length in this analysis remains a constant of 15 minutes. This allows

a direct comparison with the time window analysis to examine the similarities and

differences.

Unlike the variable time window analysis, the tools and data do not need to be

altered for the simulation. Because the time windows remain 15 minutes long, the

saturation curves and regression trees for the 15-minute time window remain valid.

The only alteration of the simulation arises when calculating the expected change of

the departure surface traffic N'.. Inserting this calculation, described by Equation

3.2, allows for the simulation to operate using time horizons. The expected N',. is

used to calculate the pushback rate for a time window of 0, 15, or 45 minutes instead

of observing the surface traffic, as is done at the beginning of a time window. The

rest of the simulation remains the same.

The results of the time horizon simulations for LGA during the same dates (July

- August 2013) can be seen in Table 3.4. Again, the reduction results are compared

to the baseline case in which aircraft push back from their gates as soon as they are

ready (FCFS).

Table 3.4 clearly shows that as the length of the time horizon increases, the benefits

decrease in terms of taxi-out time reduction. However, the decrease in benefits is less

than the corresponding decrease in benefits in the time window analysis. The time

horizon of 1 simulation has 80.1% of the taxi-out time reduction of the time horizon

of 0 simulation. The time horizon of 3 simulation has 53.0% of the taxi-out time

reduction of the time horizon of 0 simulation. Each policy maintains considerable

benefits.

In extending the time horizon length, the N-control policy maintains both fairness

and the one-to-one ratio of taxi-out time reduction to gateholding time. Because the
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simulations with longer time horizons exhibit the same qualities as the simulations

with longer time windows, the longer time horizons appear to be more favorable than

the longer time windows in terms of taxi-out time reduction benefits. Considering the

differences between time horizons and time windows, the difference in benefits makes

sense. Extending the time window means that one pushback rate is valid for a longer

period of time. Also, predictions of weather and arrival rate must also project further

into the future. Conversely, extending the time horizon means one pushback rate

for each time window in the time horizon, calculated using conservation of departure

aircraft on the airport surface. The same problem with weather and arrival rate

persists. Because the time horizon analysis updates the departure traffic for each

time window, the pushback rate is calculated based on more accurate information

compared to the pushback rate for a long time window.
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Table 3.4: Simulation for each time horizon policy, separated by airline.
Airline Horizon Tm Tp Reduction Gateholding Gateholding Market

% Share Time (min) % Share Share
0 24,981 6.6% 39.2% 25,091 39.3%

1 1 20,008 5.3% 39.2% 20,137 39.4% 38.0%
3 13,374 3.6% 39.6% 13,387 39.6%
0 11,858 6.6% 18.6% 11,831 18.6%

2 1 9,526 5.3% 18.7% 9,481 18.6% 19.8%
3 6,418 3.6% 19.0% 6,436 19.1%
0 5,995 7.1% 9.4% 6,091 9.6%

3 1 4,836 5.7% 9.5% 4,890 9.6% 8.2%
3 3,201 3.8% 9.5% 3,297 9.8%
0 2,403 6.4% 3.8% 2,401 3.8%

4 1 1,897 5.1% 3.7% 1,853 3.6% 4.3%
3 1,157 3.1% 3.4% 1,135 3.4%
0 1,057 6.1% 1.7% 1,067 1.7%

5 1 886 5.1% 1.7% 871 1.7% 2.0%
3 527 3.1% 1.6% 520 1.5%
0 2,505 5.9% 3.9% 2,463 3.9%

6 1 1,942 4.6% 3.8% 1,915 3.8% 5.1%
3 1,273 3.0% 3.8% 1,245 3.7%
0 1,432 5.7% 2.3% 1,407 2.2%

7 1 1,152 4.6% 2.3% 1,145 2.2% 3.1%
3 758 3.0% 2.2% 740 2.2%
0 13,542 7.1% 21.2% 13,424 21.1%

8 1 '10,842 5.6% 21.2% 10,798 21.1% 19.6%
3 7,079 3.7% 21.0% 7,027 20.8%

3.3.3 Dynamic Programming

A time horizon analysis also works with the dynamic programming policy. The anal-

ysis also uses the time horizons of 0, 1, and 3, like the N-control simulations. The

tools and data also do not have to be updated. Only the expected departures taxiing

and stages-of-work in the departure queue must be added into the simulations, and

this is done in the manner described above. The dynamic programming policy then

uses those inputs and proceeds as usual. Table 3.5 shows the results of the variable

time horizon simulations.
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Table 3.5: Dynamic programming time horizon simulation results, separated by air-
line.
Airline Horizon Tm Tp Reduction Gateholding Gateholding Market

% Share Time (min) % Share Share
0 85,581 22.7% 39.6% 89,032 39.5%

1 1 75,866 20.1% 39.7% 79,501 39.7% 38.0%
3 59,217 15.7% 39.9% 61,551 39.9%
0 39,788 22.3% 18.4% 41,705 18.5%

2 1 34,872 19.5% 18.3% 36,781 18.4% 19.8%
3 26,922 15.1% 18.1% 28,125 18.2%
0 20,021 23.6% 9.3% 20,870 9.3%

3 1 17,917 21.1% 9.4% 18,793 9.4% 8.2%
3 14,275 16.8% 9.6% 14,822 9.6%
0 8,023 21.4% 3.7% 8,377 3.7%

4 1 6,947 18.6% 3.6% 7,323 3.7% 4.3%
3 5,253 14.0% 3.5% 5,531 3.6%
0 3,797 22.0% 1.8% 3,916 1.7%

5 1 3,347 19.4% 1.8% 3,479 1.7% 2.0%
3 2,486 14.4% 1.7% 2,567 1.7%
0 8,370 19.6% 3.9% 8,751 3.9%

6 1 7,451 17.5% 3.9% 7,776 3.9% 5.1%
3 5,814 13.6% 3.9% 6,020 3.9%
0 4,342 17.1% 2.0% 4,550 2.0%

7 1 3,705 14.6% 1.9% 3,905 2.0% 3.1%
3 2,820 11.1% 1.9% 2,932 1.9%
0 46,198 24.0% 21.4% 47,989 21.3%

8 1 40,968 21.3% 21.4% 42,796 21.4% 19.6%
3 31,593 16.4% 21.3% 32,728 21.2%

Like the variable time window analysis with dynamic programming, the policy

benefits decrease as the time horizon increases. Table 3.5 shows that the total benefits

of the policy with a time horizon of 1 are 88.4% of the total benefits of the policy

with a time horizon of 0. Also, the total benefits of the policy with a time horizon of

3 are 68.7% of the total benefits of the policy with a time horizon of 0. Comparing

these results to the time window analysis with dynamic programming, extending the

time horizon maintains much more of the benefits than extending the length of the

time window. The fairness quality of the PRC policies carries over here, as well as

the near one-to-one ratio of taxi-out time reduction to gateholding time.

The performance per flight across different time horizons is shown in Table 3.6,
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Table 3.6 shows the taxi-out time reduction per metered flight (Tm) in minutes, as

well as the percentage of all flights metered.

Table 3.6: PRC policy variable time horizon performance comparison (N: N-control,
DP: dynamic programming).

Policy T'm % of flights Policy Tm % of flights
metered metered

N (0 time horizon) 10.3 20.3% DP (0 time horizon) 12.6 56.0%
N (1 time horizon) 9.4 17.8% DP (1 time horizon) 11.9 52.6%
N (3 time horizon) 7.6 14.9% DP (3 time horizon) 10.3 47.3%

The results in Table 3.6 reveal the reasons behind the longer time horizons main-

taining more policy benefits than longer time windows. The taxi-out time reduction

per metered flight of longer time horizons decreases nearly 3 minutes for the N-control

policy and more than 2 minutes for the dynamic programming policy. Also, the per-

centage of flights metered does not decrease drastically as the time horizon increases.

This was not the case for the variable time window analysis. However, this difference

is due to the fact that a long time window simulation may miss times of congestion,

but longer time horizon simulations estimate the way in which the surface traffic will

evolve. This results in longer time horizon simulations more likely to identify times

of congestion within a time horizon. Longer time window simulations do not identify

times of congestion within a time window that was not congested at the start of the

time window.

3.4 Gate Conflicts

This section uses the N-control policy to explain the issue of gate conflicts. Because

PRC policies hold aircraft at their gates past their scheduled departure time, the

possibility of increased gate conflicts arises. Gate conflicts occur during normal airport

operations, but PRC policies increase the frequency of gate conflicts. This increase can

be seen in Figure 3-2. This figure shows the average number of gate conflicts per hour

for each airline, with and without metering. Figure 3-3 shows the average number of

gate conflicts per day for each airline by day of the week, with and without metering.
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While metering clearly increases the number of gate conflicts, the increase is not

drastic. Figure 3-3 shows that the number of daily gate conflicts increases anywhere

from 0 to 6 per day, depending on the airline and day of the week. The PRC policy

simulations handles gate conflicts in the following manner. If a departure occupies

a gate when an arrival, scheduled for that gate, lands, the departure immediately

pushes back.

Notice the nature of the timing of the gate conflicts in Figure 3-2. For most

airlines, a spike in gate conflicts occurs during the morning rush (10 AM - 12 PM)

and/or afternoon rush (5 PM - 8 PM). Because these rushes correspond to an increase

in airport surface operations, the increase in gate conflicts during these times makes

sense. The timing of gate conflicts in Figure 3-3 is also intuitive. Airports usually

have less traffic on the weekends, and the gate conflicts at LGA also decrease for

nearly each airline on these days compared to the rest of the week. Also, the increase

in gate conflicts due to metering is less severe during the weekends.

The increase in gate conflicts from metering also affects airlines proportionally

in terms of share of gate conflicts without metering. Examining Figures 3-2 and 3-3

reveals this pattern. Delta Airlines and US Airways have the most gate conflicts in the

simulation without metering. The other airlines with low numbers of gate conflicts see

less gate conflicts caused by metering. By not penalizing airlines disproportionately

in terms of gate conflicts, the N-control policy maintains fairness in another sense.
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3.5 Conclusions

This chapter explores the policy parameter variation of time windows and time hori-

zons associated with PRC policies. The time window is the length of time for which

a departure pushback rate is valid, while the time horizon is the number of time win-

dows into the future for which a departure pushback rate is calculated in advance.

The tradeoffs associated with the length of both time windows and time horizons

are policy accuracy, ease of implementation, and value added to operators. Extend-

ing time windows or horizons reduces operator workload resulting from the policy,

but policy accuracy and value also decrease. Shortening time windows or horizons

increases accuracy and value, but operator workload soars. For both N-control and

dynamic programming policies, variable time window and time horizon analyses sim-

ulate the policies at LGA. The results indicate that lengthening the time window

decreases policy benefits more drastically than lengthening the time horizon. These

results reflect that longer time horizon simulations monitor departure surface traffic

more dynamically than longer time window simulations.
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Chapter 4

Operational Uncertainty

Chapter 2 introduces and derives the PRC policies of N-control and dynamic pro-

gramming. Chapter 3 simulates airport operations at LGA using both of the PRC

policies while also exploring the variation of policy parameters, the time window and

time horizon. In addition to this, operational uncertainty also affects the perfor-

mance of PRC policies. As Chapter 2 describes, the PRC policies require input data

to calculate the departure pushback rate. The regression trees need both the arrival

rate and RAPT for the next time window to predict the departure throughput. The

arrival rate and weather for a period in the future are both uncertain. Also, the

departure schedule is uncertain as many factors can cause a departure to be ready

for pushback before or after the scheduled departure time. In order to be considered

for acutal implementation at an airport, PRC policies must maintain effectiveness

when accounting for uncertainty. This chapter considers uncertainty in the departure

schedule and arrival rate for N-control and dynamic programming. Also, building

off of the policy parameter variation analysis, this chapter combines both policy pa-

rameter variation and operational uncertainty to more realistically simulate airport

operations.
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4.1 Departure Schedule

Any person who has flown commercially would likely testify to the uncertainty in the

scheduled departure time of a flight. The departure pushback time of a flight may

change for myriad reasons. Delays occur due to weather, maintenance, congestion

(surface and air), boarding, and ground crew availability, to name a few causes.

While frustrating, these issues arise while operating airports and airlines on a national

and global scale. Also, airlines strive to "turn around" an aircraft quickly, which

means deplaning an arrival aircraft and preparing it for departure as fast as possible.

These efforts sometimes result in a departure aircraft ready to push back before the

scheduled departure time. Both N-control and dynamic programming rely on an

adequate supply of departures ready for pushback in a given time window. If the

available departures are less than the pushback rate, the departure surface traffic

may fall below acceptable levels. If there are many available departures during a time

of low congestion, those departures may cause congestion in the future. As such, PRC

policies need to handle a variable departure schedule.

To explore the performance of the PRC policies with a variable departure schedule,

the simulations must undergo some adjustments. Perturbations can be added to the

scheduled departure times to approximate the small delays incurred by a flight. The

following analysis does not account for larger delays because PRC policies would

likely not operate during times of large delay. For example, during severe weather,

other traffic management programs may be in effect. While large delays can occur for

a small number of flights, those situations closely approximate a normal departure

schedule.

The simulation approximates the perturbations to the flight schedule by assuming

that the perturbations are drawn from a normal distribution with a mean of the

scheduled departure time and a standard deviation of 3.5 minutes. The assumption

of a standard deviation of 3.5 minutes ensures that two standard deviations from

the scheduled departure time roughly encompasses a 15-minute time window. The

perturbation, time probability distribution is shown in Figure 4-1.
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Figure 4-1: Probability distribution of the departure time perturbations relative to

the scheduled departure times.

For each flight, a perturbation time is randomly drawn from the probability dis-

tribution in Figure 4-1 and added to the original departure time. The equation for

the new departure time of a flight t* is

t* = t + tP, (4.1)

where t is the scheduled departure time of the flight and tp is the perturbation

time. Equation 4.1 updates the scheduled departure time for each flight in a day.

Then, the simulation of airport operations with the PRC policies proceeds as usual.

Perturbing the departure schedule only results in one different schedule. The re-

sults of the simulation with the original schedule can be compared to the results of the

simulation with the perturbed schedule. However, because the perturbed schedule is

subject to random sampling, the results of the simulation with the perturbed schedule
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the 15-minute predictions tend to over-predict slightly. The distribution seems ap-

proximately normal, except for the slight bias towards over-prediction. Bootstrapping

the sample gives confidence intervals for the mean and standard deviation. A 95%

confidence interval for the mean is [-0.0673, 0.5497, and a 95% confidence interval

for the standard deviation is [1.3459, 1.7621].

Similar to the departure schedule perturbations, an arrival rate perturbation is

drawn from a normal distribution with mean 0 and standard deviation of 1, an ap-

proximation to Figure 4-7. Because arrival rates express the number of aircraft to

land in a certain time window, the arrival rat'e perturbation rounds to the nearest

whole number. The new arrival rate a* then becomes

a + ap, (4.2)

where a is the original arrival rate and a, is the arrival rate perturbation. Equation

4.2 updates all of the original arrival rates for each time window. From there, the

simulation of airport operations with PRC policies proceeds as usual. Again, because

perturbing the arrival rate only results in one different arrival schedule, the Monte

Carln method runs the simulation 50 times, each time with a different arrival schedule.

The results then provide a distribution of expected policy performance by accounting

for arrival uncertainty.

4.2.2 N-control Results

Figures 4-8 and 4-9 contain the results of the N-control Monte Carlo method sim-

ulations with the arrival rate perturbations for a 15-minute time window and time

horizon of 0. Figure 4-8 shows the total taxi-out benefits for each of the 50 simula-

tions from the Monte Carlo method. Figure 4-9 shows the percent taxi-out reduction,

separated by airline, for each of the 50 simulations from the Monte Carlo method.

Figure 4-8 provides an illustration of the total policy benefits, while 4-9 reveals the

distribution of savings a given airline can expect due to a variable arrival rate.
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Recall that the total taxi-out reduction for the 15-minute time window, 0 time

horizon N-control simulations for LGA for Summer 2013 is 63,773 minutes. The

mean total taxi-out reduction from the 50 Monte Carlo method simulations is 63,536

minutes. This indicates that the arrival rate uncertainty reduces the N-control policy

benefits to 99.6% of the policy benefits in the case with no uncertainty. Also, Figure

4-9 shows that all airlines can expect a percent taxi-out reduction between 5% and

7% compared to their operations without metering, even with a variable arrival rate.

Because the total and airline benefits remain virtually identical to the benefits in the

case with no uncertainty, the N-control policy performs well when accounting for a

variable arrival rate. Relative to the variable departure schedule, the variable arrival

rate barely impacts the results of the simulations.

4.2.3 Dynamic Programming Results

The dynamic programming policy simulations have the same arrival schedule as the

N-control policy simulations, so the variable arrival rate analysis for dynamic pro-

gramming uses the same arrival rate perturbation method described by Equation 4.2.

Figures 4-10 and 4-11 contain the results of the dynamic programming Monte Carlo

method simulations with the arrival rate perturbations for a 15-minute time window

and time horizon of 0. These figures correspond to Figures 4-10 and 4-11 for the

N-control variable arrival rate analysis to allow for direct comparison between PRC

policies.

Recall that the total taxi-out reduction for the 15-minute time window, 0 time

horizon dynamic programming simulations for LGA for Summer 2013 is 216,120 min-

utes. The mean total taxi-out reduction from the 50 Monte Carlo method simulations

is 215,938 minutes. This indicates that the arrival rate uncertainty reduces the dy-

namic programming policy benefits to 99.9% of the policy benefits in the case with

no uncertainty.
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N-control policy, the dynamic programming policy performs well when accounting

for a variable arrival rate. With the N-control policy maintaining 99.6% of policy

benefits and the dynamic programming policy maintaining 99.9% of policy benefits,

the arrival rate uncertainty does not significantly affect the PRC policy performance.

4.3 Overall Uncertainty

Section 4.1 isolates and examines the uncertainty in the departure schedule. Section

4.2 does the same for the uncertainty in the arrival rate. To make the simulations more

realistic, one simulation can contain these two uncertainty sources. By accounting

for both of these common types of uncertainty, the simulation provides more realistic

results, revealing the effects of the overall uncertainty.

The methods for perturbing the departure schedule and arrival schedule mimic

the methods used in Section 4.1 and 4.2. Equations 4.1 and 4.2 change the departure

schedule and arrival rate, respectively. Again, with a perturbed departure schedule

and arrival rate, the simulations continue as usual. The Monte Carlo method runs

the overall uncertainty simulations 50 times.

4.3.1 N-control Results

Recall that the total taxi-out reduction for the 15-minute time window, 0 time horizon

N-control simulations for LGA for Summer 2013 is 63,773 minutes. The mean total

taxi-out reduction from the 50 Monte Carlo method simulations is 58,246 minutes.

This indicates that the overall uncertainty reduces the N-control policy benefits to

91.3% of the policy benefits in the case with no metering. Figure 4-12 shows the

N-control policy benefits disribution for the 50 simulations, while Figure 4-13 shows

the percent taxi-out reduction distribution for each airline.

Comparing the overall uncertainty results to the departure and arrival uncertainty

results shows that the departure uncertainty dominates. Relative to the policy ben-

efits with no uncertainty, the departure uncertainty simulations have 90.7% of the

benefits, while the overall uncertainty simulations have 91.3% of the benefits. This
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4.3.2 Dynamic Programming Results
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60-minute Predictions

Figure 4-17 shows the distributiori of the diffieee betweeni AADC arrival pre-

dictiolls and. the actual arrivals for 60-liinute winidows.
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The case with no incertainty for eaii time windk1w an1(d 411e horizoii length rep-

resents thi 01W siiilationi dlie il Chapter 3. The certainaiaty cases for each time

w1indow ant11d titie horizoii riiprselnt the average taxi-out reductioi of 50 Monte Carlb

Method simiuLitiois. Filure 4-18 shows the decrease 11 taxi-out reduction with in-

creasing tie-window lengths. The departure uncertainltyl domliates the decreas ill

taxi-out reductioii compared to the arixval rate uncertaiity. The arrival rate has very

little effelt on the taxi-out reductioi results. The sanme trends cani be seen in Fig-

1e(, 4-19. However, the decreas inl taxi-out reduietioii is less severe (omlipared to the

decrease in Figure 4-18. This sinOws that extending tIhe time window lengths has a

targer negative effect oil taxi-out rehiction compared to extedilng the length of the

time lorizlon. This tremd, also seen ii Chapter 3, also extends to the si imilations that

il1ude uncertamity.

4.4.3 Dynamic Prograinm iig Results

Figures 4-20 and 4-21 sllnmnar Ize the taxi-out reluctioll with operation( 1al uncertaity

for b)th the time window and time horizon variability, respectively.
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Figure 4-20: Totai taxi-oiit red1ctio11 for the .hily-August 2013 LGA dymic 1)1-
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schedule uncertainty compared to the arrival rate uncertainty.

4.5 Conclusions

This chapter introduces operational uncertainty to the PRC policy simulations. Both

the departure schedule and arrival rates at airports are uncertain, so PRC policies

must perform well under such conditions. The simulations account for these uncer-

tainties by perturbing the departure schedule and arrival rate. The Monte Carlo

method runs the simulations many times with perturbations to provide a distribution

of the effects of operational uncertainty.

The results show that the departure schedule uncertainty has a larger effect on

policy benefits than does the arrival rate uncertainty. For both N-control and dynamic

programming, the departure schedule uncertainty has less of a negative influence on

the results as the time window length increases. In fact, for the 60-minute time

window dynamic programming simulation, the departure schedule uncertainty slightly

increases the taxi-out reduction. For the time horizon simulations, the influence of

each uncertainty remains proportional to the policy benefits with no uncertainty.

The arrival rate uncertainty has virtually no effect on taxi-out reduction for any

simulation.
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Chapter 5

Conclusion

This thesis presents two PRC policies, N-control and dynamic programming, and

explores the robustness of the policies through the variation of parameters and op-

erational uncertainty. The N-control policy monitors the airport surface traffic and

only meters departures when the departure traffic exceeds a defined capacity for each

segment. The dynamic programming policy models the state of the airport surface as

the number of departures in the runway queue and the number of departures taxiing

to the runway. With a distribution of runway service times and a cost of queuing func-

tion, the optimal pushback rate for a time window is found through value iteration.

The N-control policy is more straightforward, making possible implementation more

likely. The dynamic programming policy is more sophisticated and the pushback rate

accounts for the underlying uncertainty of the evolution of airport surface traffic.

Policy parameters, namely the lengths of the time windows and time horizons,

affect the pushback rate calculation. The time window governs the length of time for

which one pushback rate remains valid. The time horizon governs the number of time

windows into the future for which a pushback rate is found in advance. Historically,

for airport surface management policies, the time window has been set to 15 minutes

and the time horizon has been set to 0. However, airlines and airports may need

to alter these parameters to tailor a PRC policy for implementation. Therefore, the

effects of the variation of parameters on policy performance must be known. Lastly,

the PRC policies require the input of operational data, such as the departure schedule
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and arrival rate of aircraft. The uncertainty in these data sources also has a direct

effect on policy performance.

5.1 Summary of results

5.1.1 Variation of Parameters

Simulations of the both PRC policies with time windows of 15, 30, and 60 minutes ran

airport operations at LGA for July-August 2013. As the length of the time window

increases for the N-control policy, the policy benefits of taxi-out reduction decrease.

Relative to the benefits of the 15-minute time window simulations for the N-control

policy, the 30-minute time window simulation has 78.6% of the total taxi-out time

reduction and the 60-minute time window simulation has 54.7% of the total taxi-out

time reduction. This trend agrees with intuition as one pushback rate, calculated

based on airport conditions at the beginning of a time window, remains valid for a

longer period of time. The same trend can be seen in the dynamic programming

policy results. Relative to the benefits of the 15-minute time window simulations for

the dynamic programming policy, the 30-minute time window simulation has 62.9%

of the total taxi-out time reduction and the 60-minute time window simulation has

43.3% of the total taxi-out time reduction. However, note that the absolute benefits of

the dynamic programming policy are considerably greater than the absolute benefits

of the N-control policy.

Also, simulations of both PRC policies with time horizons of 0, 1, and 3 ran

operations at LGA for July-August 2013. Again, as the length of the time horizon

increases for the N-control policy, the policy benefits of taxi-out reduction decrease.

However, compared to the time-window simulations, the rate of decrease in policy

benefits is lower for increasing time horizons. Relative to the benefits of the 0 time

horizon simulations for the N-control policy, the 1 time horizon simulation has 80.1%

of the total taxi-out time reduction and the 3 time horizon simulation has 53.0% of the

total taxi-out time reduction. The dynamic programming policy exhibits a smaller
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taxi-out reduction decrease for longer time horizons. Relative to the benefits of the

0 time horizon simulations for the dynamic programming policy, the 1 time horizon

simulation has 88.4% of the total taxi-out time reduction and the 3 time horizon

simulation has 68.7% of the total taxi-out time reduction. However, note that the

absolute benefits of the dynamic programming policy are considerably greater than

the absolute benefits of the N-control policy.

5.1.2 Operational Uncertainty

Because PRC policies meter the rate of departure pushbacks, the departure schedule

is a crucial input to simulations. As such, uncertainty in the departure schedule

changes the departure demand for pushbacks in a given time window. In this thesis,

perturbing the departure schedule with random samples from a normal distribution

approximates the departure schedule uncertainty. Also, the Monte Carlo method

runs the simulations 50 times, each with a different perturbed departure schedule.

For the 15-minute time window N-control simulations with departure uncertainty,

the mean total taxi-out reduction is 90.7% of the total taxi-out reduction from the

15-minute time window simulation with no uncertainty. For the 15-minute time

window dynamic programming simulations with departure uncertainty, the mean total

taxi-out reduction is 94.3% of the total taxi-out reduction from the 15-minute time

window simulation with no uncertainty. The decrease in taxi-out reduction, relative

to the baseline simulations, is greater for the N-control policy, but departure schedule

uncertainty reduces taxi-out reduction benefits between 5% and 10% for both PRC

policies.

The N-control policy uses the arrival rate in a time window to find the predicted

throughput through regression trees, which then enters into the calculation for the

departure pushback rate. The dynamic programming policy also uses the arrival rate

in a time window to find the predicted throughput, but this information enters into

the departure pushback rate calculation through the distribution of service times. The

uncertainty in arrival rate predictions is shown by the difference between the actual

arrival rate and the predicted arrival rate by the AADC. Similar to the departure
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schedule perturbations, the simulations perturb the arrival rates by a random sample

from a normal distribution, an approximation of the predicted minus actual arrival

rate distribution. Also, the Monte Carlo method runs the simulations 50 times, each

with different perturbed arrival rates for each time window. However, the arrival rate

uncertainty has little effect on the taxi-out reduction. For the 15-minute time window

N-control simulations with arrival uncertainty, the mean total taxi-out reduction is

99.6% of the total taxi-out reduction from the 15-minute time window simulation with

no uncertainty. For the 15-minute time window dynamic programming simulations

with arrival uncertainty, the mean total taxi-out reduction is 99.9% of the total taxi-

out reduction from the 15-minute time window simulation with no uncertainty. These

reductions in benefits are not significant.

5.1.3 Overall Uncertainty

Naturally, the variation of parameters analysis and operational uncertainty analysis

can combine to provide a complete picture of the factors that affect the performance

of a PRC policy. Considering this, Tables 5.1 and 5.2 summarize the total taxi-

out reduction relative to a comparable simulation with no uncertainty. That is, for

each time window or time horizon analysis, the operational uncertainty analysis is

performed, as was done for the 15-minute time window, 0 time horizon case. Tables

5.1 and 5.2 provide more detail to the information presented in Figures 4-18, 4-19,

4-20, and 4-21. Clearly, the trends discussed in the overall uncertainty analysis arise

for longer time windows and time horizons, with the exception of the 60-minute time

window for the dynamic programming policy. This exception needs to be explored

further. One possible explanation is that the departure schedule perturbations spread

departure times throughout an entire 60-minute time window. This could create

sustained demand for longer periods, leading to more metering.
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Table 5.1: Overall Uncertainty Analysis for the N-control Policy.

Time Window Analysis 15-minute 30-minute 60-minute

No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty 90.7% 90.6% 92.8%
Arrival Uncertainty 99.6% 100.0% 101.0%
Overall Uncertainty 91.3% 90.4% 91.9%

Time Horizon Analysis 0 1 3
No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty 90.7% 91.4% 93.1%
Arrival Uncertainty 99.6% 99.9% 93.3%
Overall Uncertainty 91.3% 91.2% 87.7%

Table 5.2: Overall Uncertainty Analysis for the Dynamic Programming Policy.

Time Window Analysis 15-minute 30-minute 60-minute

No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty 94.3% 95.3% 109.0%
Arrival Uncertainty 99.9% 100.0% 100.5%
Overall Uncertainty 94.1% 95.7% 110.5%

Time Horizon Analysis 0 1 3
No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty 94.3% 94.9% 95.8%
Arrival Uncertainty 99.9% 99.6% 99.8%
Overall Uncertainty 94.1% 94.5% 95.5%

5.2 Contributions of this thesis

Reflecting on the contributions of this thesis in Chapter 1, the main items proposed

have been achieved. The variation of parameters analysis presents the policy perfor-

mance with different time windows and time horizons. Also, the tradeoffs that arise

when choosing policy parameters involve policy performance, accuracy, and person-

nel workload. Combining the results of this analysis with operational constraints and

requirements, a PRC policy can be tailored to achieve the required benefits while

satisfying the needs of airports and airlines.

The operational uncertainty analysis addresses the problem of the reliability of

input data. The departure schedule and arrival rate represent just two operational
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uncertainties that affect the performance of PRC policies. The analysis shows a

negative effect on performance for departure uncertainty, while arrival uncertainty

has a negligible effect on performance. Again, this information gives airports and

airlines a realistic expectation of policy performance when exposed to the realities of

the airport industry.

5.2.1 Future work

While this thesis serves as the introduction to the problem of uncertainty surround-

ing airport surface management, much can still be accomplished in this area. This

analysis can be extended to include both other airports and other PRC policies. LGA

is a notoriously congested airport, serving as an interesting case study for this anal-

ysis. However, this analysis must be repeated for smaller and less congested airports

to explore the policy performance in the presence of less congestion. Also, other

PRC policies may address the problem adequately while being easier to implement

in reality.

Considering possible implementation, field trials remain a necessary component

of this research. While the N-control policy has been tested in the field, the dynamic

programming policy needs to be implemented to learn more about the challenges

of implementing a more complicated PRC policy. Field test performance can then

be compared to these simulation results. Any similarities or differences will provide

further insight into the complexities of implementation.

This thesis gives an overview of the policy parameters and uncertainty sources

that affect the performance of PRC policies. This thesis has not considered all of the

outside forces that affect policy performance. In terms of policy parameters, the choice

of N* clearly affects the performance of the policy because that definition establishes

periods of congestion. A sensitivity analysis on N* would show how the policy benefits

change. The dynamic programming algorithm in this thesis groups segments by their

Erlang distribution shape. This is an assumption, but a more thorough analysis

could have a unique Erlang distribution for each leaf of each regression tree. While

this author believes that approach may be too granular, examining the results would
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confirm or deny that assumption.

On the operational uncertainty side, the weather is an obvious uncertainty not

examined in this thesis. A study of RAPT values over time compared to the actual

weather could give a good approximation to weather uncertainty. Alternatively, the

simulations could be done assuming constant clear weather (all RAPT values equal

to 0). Then, further simulations could increase the constant RAPT value by 0.5 or 1.

The results of that exercise would show the affect of weather on policy performance.

If the effects are large, the uncertainty analysis of weather would be very valuable.

Another important aspect of airport surface management is the scheduling and

availability of ground crews. Using a virtual queue works well in simulations, but

when that queue increases, an adequate ground crew schedule may not be possible.

Adding a ground crew constraint to the simulations would provide a more realistic

sense of the severity of this problem. Instead of one value of gateholding time, the

time spent at the gate would be split into two categories: gateholding time due to the

policy and pushback delay due to the unavailability of the ground crew. Assumptions

must be made about the number of crews and the time of travel between different

gates, but such an algorithm would be a great addition to this research.

To conclude, the driving force behind these ideas for future work is the need to

convince airlines and airports to adopt airport surface management policies. Quite a

bit of inertia must be overcome before implementation becomes a reality. Care was

taken in this thesis to present all of the positives and negatives of PRC policies. Even

accounting for operational uncertainty, the PRC policies reduce taxi-out time signif-

icantly. If these results continue to hold by accounting for more realistic simulations

that include ground crew or weather uncertainty, PRC policy implementation should

be in the future of the aviation industry.
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Appendix A

LGA Saturation Curves and

Regression Trees
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Figure A-1: Departure throughput verss departure aircraft taxiing at LaGuardia

Airport for the 3114; IMC segment.



Figure A-2: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (3 14; IMC) segment with a 15-mninute window.
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Figure A-3: Departure tlroughput versus departure aircraft taxiing at LaGuardia

Airport for the 2231; VMC segment.
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Figure A-4: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (22131; VMC) segment with a t5-minute window.
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Figure A-5: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 22131; IMC segment.
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Figure A-N: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (22131; IMC) segment with a 15-ininute window.
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Figure A-7: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 31131; VMC segment.
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Figure A-8: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (3131; VMC) segment with a 15-minute window.
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Figure A-9: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 31131; IMC segment.
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Figure A-10: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airp)rt for the (31131; 1MC) segment with a 15-minute window.
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Figure A-11: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 4131; VMC segment.
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Figure A-12: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (4131; VMC) segment with a 15-ininute window.
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Figure A-13: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 4131; IMC segment.
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Figure A- 14: Regression tree with pre(dicted departure throughput at the leaves for

LaGuardia Airport for the (4131; IMC) segment with a 15-minute window.
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Figure A-15: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 22113; VMC segnent.

104



I U U

F~r< U flY)

Arr< i35A~vv~l~

I lb

3 )L>? [ =

Figure A-16: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (22 13; VMC) segment with a 15-miuite window.
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Figure A-17: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 22 13; IMC segment.
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Figure A-18: Regress ion tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (221-3; IMC) seginent with a 15-minute window.
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Figure A-19: Departure througliput versus departure aircraft taxiing at LaGuiardia

Airport for the 413; VMC seginent.
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Figure A-20: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (4113; VMC) segment with a 15-minte window.
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Figure A-21: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 413; IMC segment.
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Figure A-22: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (4 13; YIC) segment with a 15-minute window.
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Figure A-23: Departur throughput versus dpArtiiur aircraft taxing at LaGuardia

Airport for the 44; VMC seginetit.

108

RPFT 03 AF '1 -1=+- 0 0- il



-~ a ~ - aaa

0 2A~T>~040 15

4 it

Figure A-24: Regression tree with predicted departure throughput at the leaves for

LaGuardia Airport for the (414; %VMC) segment with a 15-iinnute window.
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Figure A-25: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 414; IMC segnent.
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Figure A-26: Regression tree with predicted departure throughput at the leaves for

laEtardia Airport for the (414; IMJC) segment with a 15-ninute window.
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