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Abstract

This thesis analyzes the effects of two algorithms that control the departure of aircraft
at congested airports, with an emphasis on the uncertainty of the underlying pro-
cesses. These algorithms, N-control and dynamic programming, belong to a broader
class of control policies called Pushback Rate Control (PRC) policies that calculate a
pushback rate for departing aircraft based on the state of the airport surface conges-
tion. During times of congestion, these algorithms limit the amount of aircraft on the
airport surface while maintaining departure throughput. This reduces the taxi-out
time of aircraft, resulting in reduced fuel burn and emissions. This thesis introduces
the policies and simulates their performance at LaGuardia Airport while varying two
policy parameters, the length of the prediction interval and the number of predic-
tion intervals, under several types of uncertainty, including the departure schedule
and arrival rate. As will be shown, each policy results in significant taxi-out time
reductions, saving airlines at least 60,000 minutes of taxiing over a 2-month period
with the traditional 15-minute time window simulations. However, when accounting
for the uncertainty in the algorithm inputs or the variation of policy parameters,
the performance of both PRC policies degrades. By accounting for the variation of
policy parameters and the different sources of uncertainty that affect airport surface
management, the main contribution of this thesis provides a realistic analysis of PRC
policies.

Thesis Supervisor: Hamsa Balakrishnan
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Chapter 1

Introduction

In 2014, airlines in the United States operated 7.7 million departures [12] from the
77 Aviation System Performance Metrics (ASPM) airports and consumed 10.3 billion
gallons of fuel [13]. With such a high level of traffic, congestion can occur, resulting
in delays. Specifically, in the taxi-out phase of flight, the average delay across the
entire United States is greater than 5 minutes, with LaGuardia Airport in New York
leading the nation with an average taxi-out delay of more than 12 minutes [5]. During
congestion, these taxi-out delays result from aircraft waiting in the departure queue.
Because the engines are running in the departure queue, these delays have additional
costs in terms of fuel burn and emissions. A widely noted 2008 study by the Joint
Economic committee found that delays in 2007 resulted in 7.07 million metric tons of
CO-, emissions from 740 million gallons of fuel consumed, costing an estimated $1.6
billion [6]. These high costs to both the economy and the environment stem from all
sources of delays, some of which, such as weather and unforeseen maintenance issues,
are unavoidable. However, delays resulting from the length of the departure queue
can be reduced or redistributed through the control of departing aircraft. While the
control of the departure process can limit congestion, careful consideration must be
given to the uncertainty surrounding both airport operations and the control algo-
rithms. The benefits of limiting airport surface congestion must be weighed against
the costs of changing airport operations. Also, the accuracy of control algorithms de-

pends on the accuracy of the data required. The goal of this thesis is the development
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and application of control algorithms that mitigate congestion, while maintaining a

focus on the uncertainty of the overall process.

1.1 Motivation

Congestion occurs when the number of aircraft on the airport surface exceeds an
amount necessary to maintain the departure throughput. The additional aircraft
provide no benefit in terms of departure capacity, so their presence on the surface
simply adds to the cost of congestion. Airport surface management represents one
approach to address the problem of congestion.

Airport surface management controls the aircraft operating at an airport so as
to reduce congestion while maintaining departure and arrival throughput. Several
control algorithms have been developed to mitigate congestion by controlling the rate
at which departing aircraft push back from their gates. These algorithms are called
Pushback Rate Control (PRC) policies. Two of these policies, N-control and dynamic
programming, will be thoroughly examined in this thesis. PRC policies work within
the existing airline schedules by holding certain flights during times of congestion.

While PRC policies seem to be straightforward, many constraints and limitations
surround the implementation of any airport surface management policy. One subset of
these constraints includes the effects of PRC policies on airport operations. Currently,
once aircraft receive authorization from the control tower, departures push back from
their gates, regardless of the state of the airport surface. Aircraft are usually ready to
push back relatively close to their scheduled departure time, which allows for push-
back and maintenance crews to be adequately assigned to flights. Holding an aircraft
through PRC policies has the potential to interfere with the crew schedules, which
could cause further delays. Airlines must be capable of the dynamic scheduling of
aircraft crews that accounts for the possibility of held aircraft due to congestion. Also,
holding aircraft at their gates increases the chance of gate conflicts. Gate conflicts
occur when an arrival lands at an airport and a departure is still at the gate to which

the arrival is scheduled. Because gates are occupied by departures for a longer period
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of time, gate conflicts are more likely to occur during PRC policy implementation.
Because gate conflicts add to airport surface congestion and increased traffic, these
are highly undesirable. The last airport operations constraint is the increase of the
workload of air traffic controllers. Because controllers must implement the policy, the
controllers must learn new procedures in addition to their current duties. The effects
of PRC policies on airlines, gate conflicts, and controllers must be considered.

In addition to the operational constraints, the PRC policies require real-time
and forecasted data from arrivals and departures. The surface traffic level, future de-
partures, future arrivals, airport capacity, and weather all represent variables required
by the PRC algorithms to accurately calculate a departure pushback rate. While the
surface traffic level can be observed, future operations, capacity, and weather must
be predicted. These predictions represent another source of uncertainty. If the algo-
rithm inputs cannot be predicted with an acceptable degree of accuracy, the departure
pushback rate of the PRC policies is not accurate. This could result in poor surface
management because a high pushback rate during congestion could lead to increased
congestion and more delays, while a low pushback rate during with low congestion
could lead to a decrease in departure throughput. Both of these results are undesir-
able, as one is not effective at mitigating congestion, while the other one “starves” the
runway by not maintaining runway utilization.

The last source of uncertainty is the use of PRC policies. PRC policies calcu-
late departure pushback rates that are valid for a certain time window. Historically,
the choice of this time window has been 15 minutes. A 15-minute time window for
the pushback rate usually allows aircraft pushing back in one 15-minute window to
reach the runway by the next 15-minute window. However, there may be reasons to
adjust the length of the time window. A shorter time window leads to more accurate
departure pushback rates because the rates are updated more frequently and fore-
casted data are not projected far into the future. However, a shorter time window
increases the workload for controllers due to the need to frequently update the depar-
ture pushback rate. A longer time window decreases this workload, but at the cost of

less accurate departure pushback rates due to the inaccuracy of predictions further

v
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into the future. This tradeoff is an important consideration for controllers, airlines,
and airports when implementing PRC policies. In addition to the time window, the
time horizon is also of importance for PRC policies. The time horizon is defined as
the number of time windows that a PRC policy “looks ahead” and calculates a push-
back rate for a time window in the future. Most PRC policies use a time horizon of
0, meaning that the PRC policy updates the pushback rate at the end of each time
window. The same tradeoff between accuracy and workload exists for time horizons
as well.

Reducing congestion is a strong motivating factor for this research, but the un-
certainty involved in achieving that goal is arguably just as important. PRC policies
are an effective way to reduce congestion while not decreasing operations or altering
airport capacity. However, implementation of PRC policies introduces potential is-
sues in terms of airport operations and policy accuracy. A thorough examination of
both PRC policies and the associated uncertainties illustrates a complete picture of

the costs and benefits of airport surface management.

1.2 Literature Review

1.2.1 PRC Policies

The two surface management strategies examined in this thesis are the N-control
and dynamic programming PRC policies. These policies lead to reductions in fuel
burn and emissions, minimizing the impact of surface operations, as analyzed by
many studies [21] [22] [16] [10]. Simaiakis et al. develop an N-control simulation
for Boston Logan International Airport and reports important metrics to describe
the effects of airport surface management [21]. They then go on to calculate those
metrics for several major airports and analyze emissions and fuel burn [22]. Ravizza
et al. demonstrate the relationship between airport surface movement and fuel burn
[16]. Khadilkar examines the control of both departures and arrivals on an individual

aircraft basis [10].



Simaiakis [18] [19] lays the foundation for controlling departure processes. He
develops an estimation of airport capacity, unimpeded taxi-out times, and a dynamic
programming algorithm for Boston Logan International Airport. Many of these tech-
niques will be used in this thesis to develop models for LaGuardia Airport and extend
the study of airport surface management to include the variation of policy parameters
and operational uncertainty. Simaiakis also notes that PRC policies are flow-based
approaches to airport surface management, which means that these policies use vir-
tual queues by holding aircraft at their gates. The use of virtual queues were initially
suggested [9] and proposed in separate studies [1]. Feron et al. [9] give a detailed
overview of the conceptual departure control process, culminating in the idea of us-
ing virtual queues to mitigate congestion. Burgain et al. [1] use virtual queues to

minimize a cost function related to passenger wait time.

As for the N-control policy, several studies have developed the theoretical
framework [14] [3] [18] [19] and the implementation procedures are demonstrated in a
case study at Boston Logan International Airport [17]. Pujet et al. [14] introduce an
N-control algorithm while also suggesting the possibility of using dynamic program-
ming to help address some of the uncertainties associated with the N-control policy.
Carr et al. [3] develop a software tool to simulate the departure process at airports
to support the research of airport surface management. Burgain et al. [2] derive a
full-state feedback algorithm to control departures, where the algorithm uses a cost
structure based on the number of aircraft taxiing and the non-utilization of the run-
way. This thesis expounds upon the work of a potential implementation proposed for
LaGuardia Airport [11] [20], in which the authors performed an N-control simulation

for the airport focusing on the length of gateholding times allowed by the algorithm.

For dynaniic programming, a recent paper introduced this method of departure
metering [23]. This method accounts for the underlying uncertainty of the airport
capacity by modeling the state of the airport surface as a semi-Markov process. The
optimal pushback rate is calculated based on a cost of queuing function and the prob-
ability of the airport surface being in a given state. However, the policy still relies

on obtaining an arrival rate and weather prediction to build the model, which intro-
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duces uncertainty. The remaining relevant work with dynamic programming applied
to airport operations only focuses on the optimization of aircraft scheduling. Rathi-
nam et al. [15] propose a dynamic programming approach for the departure schedule
that finds the optimal pushback schedule for a given amount of departing aircraft.
Chandran and Balakrishnan [4] also use a dynamic programming algorithm for the
departure schedule, but they account for the uncertainty and random deviations in-
herent in the departure process. Dell’Olmo and Lulli [7] consider both arrivals and
departures with dynamic programming and the tradeoff and interactions between the

two different types of flights at an airport.

1.2.2 Variation of Policy Parameters

The structure of the PRC policies includes the time window and time horizon. The
length of the time window for which a pushback rate is valid can be changed. Re-
searchers to this point generally set this time window to be 15 minutes, reasoning
" that the time window should roughly equal the lead time of the system [17] [23]. The
lead time of the departure process is the time it takes for the runway to experience
a given pushback rate. A runway experiences a pushback rate when the aircraft sub-
jected to that rate begin to arrive at the runway. Rathinam et al. [15] only calculate
a departure schedule for a given number of aircraft, while Dell’Olmo and Lulli |7]
appear to settle on a time window of 15 minutes for their analysis. Burgain et al. [2]
use a sampling time of 1 minute for their full-state feedback algorithm. In terms of
time horizons, most studies do not look ahead, meaning that the PRC policy updates
the pushback rate at the end of each time window. Longer time horizons would mean
that a PRC policy calculates a pushback rate for a time window further into the

future.

1.2.3 Uncertainty

While the literature review introduces the state of research concerning airport surface

management, the issue of uncertainty remains a crucial problem. The departure
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planner provides a introductory discussion of uncertainty and its role in controlling
the departure process [9]. The sources of uncertainty cited include weather, airline
operations, air traffic operations, and human factors. These sources of uncertainty all
have an effect on the data required by PRC policies to calculate departure pushback
rates. Simaiakis and Balakrishnan demonstrate the uncertainty in the taxi-out time
of aircraft, indicating the taxi-out time is a stochastic process [21]. Others have
used this approach as well {2] [14] [3]. Chandran and Balakrishnan [4] address the

uncertainty that results from perturbations in the departure and arrival schedules.

1.2.4 Contributions of this thesis

This thesis summarizes the research efforts to understand the effects of policy param-
eter variation and uncertainty on PRC policies. The main contributions of this thesis

are:

1. The analysis of policy parameter variation for the length of time windows and
horizons of PRC policies. 15-minute, 30-minute, and 60-minute time windows
are examined to weigh the costs and benefits associated with different time
window lengths. For time horizons, the analysis explores the use of looking
ahead into the future to calculate future departure pushback rates. These “look
aheads” will be for 15-minute time windows. For example, the 0 look-ahead is
equivalent to the 15-minute time window analysis and 1 look-ahead calculates
a departure pushback rate for the 15-minute time window following the current

15-minute time window.

2. The analysis of operational uncertainty stemming from the stochastic departure
and arrival rates in a given time period. Scheduled departure times for aircraft
are rarely met, as aircraft are often ready before or after that time. Arrivals
often arrive before or after their scheduled times as well. PRC policies require
accurate arrival rates for a time window to ensure an accurate departure push-
back rate. Also, PRC policies rely on sustained demand, which is not always

the case at airports.
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3. The development of two PRC policies for LaGuardia Airport with particular
attention paid to gate conflicts. The simulations of these policies include the
potential uncertainties discussed above, providing a more realistic evaluation
of PRC policies. This thesis also discusses other possible constraints that may

accompany the implementation of airport surface management.

1.3 Thesis Organization

This introduction describes airport surface management and the uncertainties asso-
ciated with both PRC policies and airport operations. Chapter 2 gives a thorough
description of the two PRC policies of interest, N-control and dynamic programming.
The algorithm development serves as the foundation for the rest of the thesis. Chapter
3 begins to look at the policy parameter variation of time windows and time hori-
zons. For both PRC policies, the results include a sensitivity analysis for each policy
parameter. Chapter 4 considers the operational uncertainties surrounding departure
and arrival rates. Finally, Chapter 5 concludes the thesis and suggests future research

areas.
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Chapter 2

Pushback Rate Control Policies

Pushback Rate Control (PRC) policies belong to a broader class of techniques related
to airport surface management. The goal of airport surface management is to control
the number of active aircraft on the airport surface so as to reduce congestion. PRC
policies accomplish this by mitigating the rate at which departing aircraft push back
from their gates during times of congestion. This is in direct contrast to current
operations at U.S. airports, which use a first-come, first-served (FCFS) approach for
departing aircraft. When a departure is ready for pushback, the controllers allow
pushback regardless of the state of the airport surface. Therefore, PRC policies shift
the delays incurred by congestion from the airport surface to the departure gate.
Instead of waiting in the runway queue with engines on, an aircraft absorbs the
delay at the gate in a virtual queue with engines off. This reduces the fuel burn
and emissions caused by congestion. However, this also increases the likelihood of
a gate conflict in which an arrival lands while a departure is still parked at the
arrival’s gate. A later section explains the positives and negatives of PRC policies
more closely, with particular attention paid to the actual implementation of these
policies at airports. This section describes and explains two PRC policies of interest,

N-control and dynamic programming.
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2.1 N-Control

N-control is a PRC policy that uses the relationship between the number of departure
aircraft on the airport surface N and the runway throughput in a particular time
window. This relationship is best described through a saturation curve, which is
shown in Figure 2-1 for runway configuration 31|4 at LGA under visual meteorological

conditions (VMC), or segment (31|4; VMC), for a 15-minute window.

. ¥ R — i S S8 SR B B G SRR 1 3 m—eeeme Qptimized Mean
' : : : ! mmmeeee Qptimized Median

runway throughput (AC/15 min)

20 25 30 35 40
surface traffic

Figure 2-1: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for segment (31]4; VMC) with a 15-minute window.

Figure 2-1 contains n pairs of the departure throughput 7°(t) and surface traffic
N (t) for each 15-minute period at LaGuardia Airport for 2013 for the given segment.
The saturation curve is a least-squares regression fit to the data. As described by
Simaiakis [19], the n pairs of N(t) and T'(t) take the form of (@1, 1), .-, (Zn, Yn). The

saturation curve is a non-decreasing function 7' = fiean(N). At each value of N,
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fmean(IN) is found using simple convex optimization:

n .
min Z(g}, - 45)?, (2.1)
i=1
subject to the following constraints:
Ui = fmean(ws),2=1,..,n (2.2)

fmean(i + 1) 2 fmeau(i)vi = O’ Ty (TL - 1) (23)
fmean(i + 1) - fmean(i) S fmean(i) - fmean('i' - 1)71 = 07 sevy (n - 1) (24)

While this solution is for the mean regression, the median regression can also

be found:

k1
min Z [9: — wil, (2.5)
i=1

subject to the following constraints:

ﬂi = fmed(ui),i = 1, .o n (26)
fmed(i + 1) > fmed(i)yi = 0, ey (n — 1) (27)
fmed('i' + 1) - fmed(z) S fmed('i') - fmed(i - 1),?, = 07 nery (TL - 1) (28)

Figure 2-1 has several interesting features. Note the nearly linear relationship
between departure traffic and runway throughput for low levels of departure traffic.
This indicates that, during times of low departure traffic, runway throughput benefits
from an increase in departure traffic. However, the linear relationship does not extend
for higher levels of departure traffic, and runway throughput hits a maximum. In
words, more departure traffic leads to less of an increase in runway throughput until
a certain point, after which runway throughput does not increase. This point, N*,
is called the saturation point, and it is unique to each segment at an airport. For

the N-control policy, an acceptable level of surface traffic N, is chosen around N*.
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The goal of the N-control policy is to maintain surface traffic at or around N* for
a particular segment to maintain maximum departure throughput while decreasing
unnecessary surface congestion. The pushback rate R for a time window is calculated

using the following equation:

R= thrl + Tp - Ncuru (29)

where T, is the predicted throughput for that time window and N, is the number
of departing aircraft taxiing at the beginning of the time window. Calculating pre-
dicted throughput is described below. The N-control policy only controls the rate of
departure aircraft when Ny, > N at the beginning of a time window. Examining
Figure 2-1 reveals a tradeoff in the choice of Ny, For Ngn < N*, the N-control
policy will be used more often, but the departure throughput could be less than the
maximum departure throughput. Using the N-control policy more leads to more taxi-
out time reduction benefits. However, this risks reducing the departure capacity of
the airport, which is very undesirable. For N, > N*, the N-control policy will be
used less often, meaning congestion levels would be higher and the benefits of the

cy decrease. The choice of N, for & particular scgment must account for this

Y ; o, a0 Calil ivVetri LIilh

tradeoff.

Notice the error bars for each value of surface trafic N in Figure 2-1. The satura-
tion curve is the best fit line for each 15-minute period in 2013 at LaGuardia Airport.
However, the standard deviation of throughput around the saturation point is about
2 aircraft. This indicates that factors other than surface traffic affect the departure
throughput. These factors include weather, arrival aircraft, and human factors. Two
of these factors, weather and arrival aircraft, can be used to more accurately predict

departure throughput during times of congestion.

With the machine learning technique of regression trees, departure throughput
can be predicted during times of congestion (Vg > New). Using empirical data, the
regression trees calculate the predicted departure throughput based on the arrival rate

and Route Availability Planning Tool (RAPT) for the next time window. RAPT is a
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tool used to estimate the location and severity of weather in the area surrounding an
airport. RAPT is on a scale of 0 to 3, where 0 indicates no weather and 3 represents
very severe convective weather. A RAPT value is given for several areas around the
airport, as well as 15 minutes into the past and 15 minutes into the future in 5-minute
increments. To get a single value, the RAPT is averaged over all time increments and
all areas around the airport. Because the regression trees only predict throughput
during times of congestion, they capture the uncertainty present in the maximum
departure throughput in Figure 2-1. Figure 2-2 shows an example of a regression tree

for LaGuardia Airport.
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Figure 2-2: Regression tree with predicted departure throughput at the leaves for La-
Guardia Airport for segment (31|4; VMC) with a 15-minute window. “Arr” indicates
the arrival rate for the time window and “RAPT” indicates the single RAPT value

for the time window.

With all of the pieces of the N-control policy introduced, the N-control algorithm
proceeds in the following manner. At the beginning of a time window of arbitrary
length, a controller observes the current departure traffic on the airport surface N,
the single RAPT value, and the expected arrival rate for the time window. If Ny

Ny, the airport departure traffic is greater than the acceptable level of traffic, so

31



the N-control policy controls the pushback rate of departing aircraft for the next time
window. If N, < Ngn, the pushback rate of departing aircraft is not controlled and
pushbacks are FCFS based on scheduled departure time. If N-control is in effect, a
departure pushback rate needs to be calculated. With the RAPT value and arrival
rate, the regression tree for a particular segment calculates the predicted throughput
for that time window. With this, all of the independent variables of Equation 2.9 are

known and the departure pushback rate is found.

For the simulations of the N-control policy, the departure pushback rate creates
equally-spaced pushback slots for departures in that time window. Each departure
is then mapped to a unique pushback slot in the order of their scheduled departure
time. If the number of scheduled departures in a timé window exceeds the number of
pushback slots, the departures without a pushback slot must wait until the next time
window. If the scheduled pushback time for an aircraft is after the pushback slot,
the aircraft pushes back at the scheduled departure time. If the scheduled pushback
time for an aircraft is before the pushback slot, the aircraft is held at the gate until
the pushback slot time arrives. This holding time corresponds to time spent at the
gate with the engines off. Under the FCFS policy, the aircraft spends that holding
time waiting in the departure queue with the engines on. Therefore, the N-control
policy shifts the congestion-induced delay from the departure queue to the gate. This
reduces the total taxi-out time of aircraft and, because the engines are off, fuel burn
is also decreased. This reveals how the benefits of reduced taxi-out time and fuel

burn result from the use of the N-control policy.

For the policy to accuratély simulate airport operations, a reliable taxi-out time for
each aircraft must be found. The total taxi-out time in the simulations consists of two
parts: the unimpeded taxi-out time and time spent waiting in the departure queue.
The unimpeded taxi-out time is the time it takes an aircraft to taxi to the departure
runway when departure traffic is low or nonexistent. So, the simulation uses this as a
proxy for the amount of time it takes an aircraft to reach the departure queue from
each terminal at an airport. Of course, taxi-out times depend not only on the terminal

from which an aircraft departs, but also the gate from which an aircraft departs.
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However, analyzing taxi-out times from each gate is impractical for several reasons.
Certain gates may not have taxi-out times in the dataset. For the gates represented in
the dataset, the sample size may be too small to get an accurate estimate. For these
reasons, the unimpeded taxi-out times from each terminal represent a reasonable

approximation for unimpeded taxi-out times for aircraft.

The calculation of unimpeded taxi-out time requires the taxi-out time during
different levels of surface traffic. For each flight in the Aviation Specific Perfor-
mance Metric dataset (ASPM), the taxi-out time is simply the difference between
the wheels-off time and pushback time. However, the definition of surface traffic for
this application is nontrivial. The number of departing aircraft on the airport surface
almost certaiﬁly changes from the pushback time of an aircraft and the wheels-off
time of that same aircraft. For this reason, adjusted surface traffic Noy serves as the
metric describing the state of the departure traffic. N4 for an aircraft is the sum
of the number of departing aircraft on the airport surface at pushback time and the
number of aircraft that push back after that time but before the original aircraft’s
wheels-off time. This definition indicates that /N,4 represents the maximum number
of departure aircraft that a departure can expect to encounter on the airport surface.
Nggj can also be extracted from ASPM data, so the calculation of unimpeded taxi-out
time can move forward. Simply using the departure traffic at the time of departure

pushback may underestimate the traffic conditions that an aircraft experiences.

Figure 2-3 shows a scatter plot of all flights from Terminals C and D at LGA in
April 2014. Notice the concentration of points for lower levels of adjusted traffic. Taxi-
out times with a lower level of adjusted traffic appear to have less variability than taxi-
out times with higher adjusted traffic. This agrees with intuition. With lower levels of
departure traffic, an aircraft taxiing is more likely to achieve the unimpeded taxi-out

time. With higher levels of departure traffic, an aircraft taxiing may encounter many

impediments on the airport surface.
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Figure 2-3: Scatter plot with taxi-out time as a function of the adjusted traffic for

flights from terminals C and D at LGA. Data from April 2014.

Similar to saturation curves, the scatter plot can be fit using convex optimization
regression. Figure 2-3 contains n pairs of the taxi-out time 7(¢) and adjusted surface
traffic V,q4(¢t) for each flight from Terminals C and D at LaGuardia Airport for April
2014. The n pairs of Nu4(t) and 7(¢) take the form of (x1,31), ..., (€n, yn). The curve
is a non-decreasing function 7 = fiean(Nagj). At each value of Nugj, fmean(Naog) 18

found using simple convex optimization:

n
min Z(!}s — )7, (2.10)

i=1

subject to the following constraints:

?:'1? = fm(:u:n(u-i): = 1 s (211)
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Fmean(E +1) = frmean(?),1 =0, ..., (n — 1) (2.12)

fmean(i + 1) - fmean('i') Z fmecm(i) - fmean(i - 1),2 = 0, sy (n - 1) (213)

While this solution is for the mean regression, the median regression can also be

found:

n
min' S 15— (2.14)
1=1

subject to the following constraints:

Ui = fmea(wi),i=1,..,n (2.15)
Frmed(i +1) > Fmea(d),i =0, ..., (n — 1) (2.16)
fmed(t + 1) = fmea(?) 2 finea(?) — fmea(i —1),i=0,...,(n — 1) (2.17)

Solving for the best fit results in Figure 2-4. The unimpeded taxi-out time is then
‘ the value of this fit when N,4 = 0. This process is repeated for each combination
of runway configurations and terminals. Terminals C & D are combined for this
calculation due to their proximity. Note, the unimpeded taxi-out time calculation
does not include separate results for the different meteorological conditions. While
taxi-out times may differ between VMC and IMC, this analysis assumes that the
unimpeded taxi-out times for the two meteorological conditions remain the same. The
motivation for this assumption mirrors the sample size and reasonable approximation
arguments made for excluding individual gates from the unimpeded taxi-out time

calculations.
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Figure 2-4: Best fit of the empirical data with taxi-out time as a function of the
adjusted traffic for flights from terminals C and D at LGA with runway configuration

22|13. Data from April 2014.

Because aircraft spend more time at the gate under the N-control policy, the
likelihood of a gate conflict increases. Recall that a gate conflict occurs when an
arriving aircraft lands while a departing aircraft still occupies that arrival’s gate. Gate
conflicts are undesirable as they introduce an additional complexity to the airport
surface. Often, the arrival must wait on taxiways or other areas until the departure
is ready for pushback and clears the gate area. However, the additional gate conflicts
caused by the N-control policy consist of departures ready to depart because they
are being held at the gate after their scheduled departure time. To solve the gate
conflict issue, if an arrival lands and is headed to a gate with a departure being held
by the N-control policy, the departing aircraft is immediately cleared for pushback.

This solution ensures that the departure will clear the gate area before the arrival
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reaches the gate.

Gate conflicts only account for one of the costs of implementing an airport sur-
face management policy. This section describes the N-control policy without varying
the policy parameters or accounting for operational uncertainty. These additional

considerations greatly influence the effectiveness of airport surface management.

2.2 Dynamic Programming

The dynamic programming policy models the state of the airport surface as a Markov
process with the state described by the number of aircraft taxiing to the runway
and the number of aircraft queuing at the runway. By modeling the runway service
times as an Erlang distribution[19] with the shape and rate (k, ku), the transition
probabilities over a time window are found by numerically integrating the Chapman-
Kolmogorov equations, which are described below. The runway service time is the
time between successive takeoffs on a runway, meaning that a service time is the time
it takes the aircraft at the head of the queue to leave the airport surface. Dynamic
programming then uses value iteration to find the optimal pushback policy in terms
of the costs of queuing and runway utilization.

The dynamic programming policy contrasts with the N-control policy in the fol-
lowing manner. N-control uses a simple equation to maintain departure surface traffic
at a predetermined level based on empirical data. Dynamic programming models the
runway service time to get a probability distribution of the state of the airport at
some point in the future. With this, and a cost of queuing and runway utilization
function, dynamic programming finds the departure pushback rate that minimizes
costs. While N-control predicts that the state of the airport surface will evolve in
a certain manner, dynamic programming considers all of the potential states of the
airport and the departure pushback rate accounts for the uncertainty in the evolution
of the state of the airport. From this perspective, dynamic programming is a more
robust policy than N-control.

The shape and rate (k, k) of the Erlang distribution of runway service times can
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be found using the method of moments. Each leaf of the regression trees introduced
in Figure 2-2 and described above contains many observations of departure through-
put. Because these empirical observations are Erlang distributed, the event of having
exactly ¢ services during a time period A is a Poisson random variable. The two

moments py and po are:

fors) (i+1)k—1 R , M
. k — ik — y kuAy
m=3G Y #.Q-m : (u_>) (2.18)

=0 j=(i-1)k+1 J

o (i+1)k—1 . . ;
. k—lik — enn (kpA)
oy = § (¢% - E —'k—Jl Ce kb g_f.‘__)_) (2.19)
i=0 g=(i—1)k+1 J

The method of moments, with the condition that the shape & must be a natural
number, is done in the following manner. First, a numerical solution to Equation
2.18 can be found for different values of k. Then, the error of Equation 2.19 is found
for each value of k. These steps repeat until the absolute error increases. Once this
happens, the last shape k& and rate ku describe the Erlang distribution for a given
leaf of a regression tree. The shape &k and rate ku give the lowest absolute error
of Equation 2.19. This is done for each leaf of all of the regression trees. For each
airport, a solution is found for each shape of the Erlang distribution of service times.
These solutions may contain different segments. If so, the rate ku is averaged over
all segments of the same shape &. This is an approximation, but the rates of the
distributions of equal shape do not differ drastically. Therefore, the averaging does
not greatly affect the accuracy of the final solution. This improves upon the work of
Simaiakis [19], which uses one shape and rate for the entire airport.

At the beginning of the time window, the state (r,¢) is observed, where r is the
number of aircraft taxiing to the runway and ¢ is the stages-of-work to be completed
at the runway. The stages-of-work are the product of the number of aircraft queuing
and the shape of the Erlang distribution. The shape and rate have already been
calculated using the methods described above. The runway configuration, weather
conditions, and arrival rate dictate which shape and rate apply. With the state

known at the beginning of the time window (R, Qo) and the runway capacity C, the
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following Chapman-Kolmogorov equations are then solved throughout the entire time
window of length A to get the probability P, 4(A) of the airport surface being in a

given state at the end of the time window:

Py
3 — k P 2.2
dt i (220
P
% = kuFogi1 — kubog, l<g<k
(2.21)
dP, 1 |
*—d—t—g‘ = k,U‘P()’q.i.l + "A—’:"t'Pl,q—k - k/"'PO,q, k S q< kc
(2.22)
dPy ). 1
((i);,c - — tP],k(C—I) — kpPysc (2.23)
dPr,O A r
dt = ,\,/ipr,l A tP'r,O (224)
dF, r
dtq = kpPrgs1 — kpbrg — 17— Fro, l<q<k
(2.25)
dP, r+1 r
dtq = kpP g1 + A— tP’"H»Q—k —kpF g — mpﬁqa k<g<kC-1)
. (2.26)
dP, r+1
dtq - kupr,q«H =+ Z—:;PT‘H»‘F’V - klf'Pr,m k‘(C - 1) <g< kC
(2.27)
dP, r+1
dtw = A tPr+1,k(C—1) — kpPric (2.28)
dPgryo R ‘
—dtO = kpPry1 — A—_OtPRo,o (2:29)
dPR , RO
__dto 9 = kpPpygs1 — (X + K1) Prog, 1<g<k(C-1)
(2.30)
P,
d df;(),q - ku'PRo,fH'l — k,U'PR(),qs, k(C — 1) <g< kC
(2.31)
dps(t),kc — "k’II/PRO’kC (2'32)
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With these transition probabilities, the costs of releasing a number of aircraft
with pushback rate A can be found, with the assumption that aircraft traveling to the
runway queue at the beginning of one time window reach the queue by the start of
the next time window. The minimum cost J*(r, ¢) at each state is given by Bellman’s

equation for the infinite horizon problem with discount factor a:

kC
J*(r.q) = min{e(r, q) + a Zo Prg* (X))} (2.33)
]:

where € is an average cost of a state over a time period and A is the set of all possible
pushback rates. This equation can be solved by value iteration. The pushback rate for

the time window is then given by the pushback rate that minimizes the cost function.

The cost function must penalize both non-utilization of the runway and lengthy
queues. Following the lead of Simaiakis [19], non-utilization of the runway has a
constant cost H, while for ¢ > 0, the cost is a non-decreasing function of ¢. This

leads to the following equation

!H if g =0,
c(q) = (2.34)
L&) ifg>o.

H is chosen by an airport to reflect the true cost of losing capacity by not main-
taining runway utilization. The equation for ¢(¢) is only a function of queue length
and service time shape, so time is not a factor here. Because dynamic programming
accounts for all possibilities for the evolution of the airport state, the cost function
must be combined with the probability that the runway queue is of a certain length.

To add the time component, the vector of these probabilities is

Ry Ro

Pq(Ro, QOa f) = [Z Pr,O(t)a Z Pr,l (t), ceey Z pr,kC’(t)]' (235)
r=0 r=0 r=0

In words, the above equation states that, given that the state of the airport was
(Ro, Qo) at the beginning of the time window, these are the probabilities that the

runway queue consists of ¢ stages-of-work at time t. Now, with the probability of
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runway queue length as a function of time, the product of these probabilities and the
cost function can be summed over an entire time window A to find the expected cost

of each state:

10A—-1

(R0, Qo) = Y 25Pu(Ro, @,i/10) - c(0) (2.36)

i=0

Because Equation 2.35 is sampled 10 times a minute, the summation in Equation
2.36 reflects this sampling. With the expected cost over a time window, Equation
2.33 is solved to find the optimal pushback rate.

The solution over all states for a 15-minute time window can be seen in Figure 2-5
for an Erlang distribution of service times with shape k = 2 at LaGuardia Airport

with a maximum pushback rate of 15 aircraft per 15 minutes.

15

Aircraft Traveling to Runway

0 5 10 15 20 25
Departure Queue

Figure 2-5: Parametric solution of pushback rate with observed values of aircraft
taxiing and departure queue length for a 15-minute time window. Each line is the

optimal pushback rate for the given state, increasing from 0 to 15 from right to left.
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Examining Figure 2-5 provides an intuitive understanding of the underlying math-
ematics of the dynamic programming algorithm. For a low departure queue @ and
departures taxiing Ry, the airport surface is relatively empty and the dynamic pro-
gramming recommends a maximum pushback rate. For high @y and low Ry, the
pushback rate decreases slower with increasing (o when compared to increasing Ry
for high Ry and low p. This makes sense because, with high @y and low Ry, the
queue will likely diminish by the time the recommended pushback rate reaches the
runway queue. If Ry is high and Qg is low, the aircraft taxiing to the queue will replen-
ish the queue before the recommended pushback rate reaches the runway. Therefore,
the pushback rate does not need to be as high in this circumstance. This is reflected
in both the slope and nonlinear characteristics of each parametric solution in Figure
2-5. The intuitive nature of the solution reinforces the methodology of the algorithm.
Also, the solution can be summarized in a clean figure that can be used in imple-
mentation because it contains all possible evolutions of the airport surface, given
Ry and Qp. Because the solution is understandable and general, the complexities of
the dynamic programming algorithm are masked, making potential implementation

possible.

With the pushback rate found, the dynamic programming policy behaves identi-
cally to the N-control policy. Equally-spaced pushback slots form to allow for depar-
tures to be held at their gates. Again, this increases the likelihood of gate conflicts,
and the dynamic programming policy solves this problem in the same manner as the
N-control policy. The two policies do differ in execution. While N-control is only in
effect during times of congestion Ny, > Ngyi, the dynamic programming policy is
always in effect. Because dynamic programming does not rely on a defined airport
congesfion threshold, the algorithm can always minimize the cost function, even if
the airport is not congested. This difference is evident in the resulting benefits of the

two policies as will be seen in the coming chapters.
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2.3 Summary

This chapter introduces, derives, and explains two PRC policies, N-control and dy-
namic programming. N-control aims to maintain departing traffic around an accept-
able value N.,; based on empirical analysis of the relationship between departure
throughput and departure traffic. Dynamic programming seeks to minimize a cost
function that penalizes both long queues and runway starvation by calculating the
probability of the airport being in a certain state at some future time. Each policy
is thoroughly explained and derived so as to illustrate clearly the assumptions and
methodology used to control departure pushbacks. Figure 2-6 provides an illustration

of airport surface management with PRC policies.

Figure 2-6: Flow chart for airport surface management with PRC policies.
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Chapter 3

Variation of Policy Parameters

The PRC policies, N-control and dynamic programming, generate a pushback rate
for departures valid for a given time window. Historically, this time window has
been set to 15 minutes, but varying this time window can lead to advantages and
disadvantages. Also, a pushback rate can be calculated for earlier time windows in
the future by changing the time horizon of the policy. Changing the time window or
time horizon allows an airport or airline to tailor the PRC policy to specific needs and
requirements. Consequently, airports and airlines must understand how varying the
policy parameters affects the performance of PRC policies. This section introduces
the tradeoffs that arise from varying time windows and horizons. Finally, the results
show how the benefits change for different time windows and horizons so that airports
and airlines get an accurate grasp of the effects of varying policy parameters.

Figure 3-1 illustrates the difference between time windows and time horizons.

Time Window

8:00 i 2 3 _____n§:00
‘ | _| Diook Aheads
1 Look Ahead

Tirne Horizon

. 3 Look Aheads

Figure 3-1: Visualization of time windows and time horizons.
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First, consider time windows. For 15-minute time windows, the first row above
the times in the 8:00 hour shows that four pushback rates govern four 15-minute time
windows. These pushback rates are calculated at the beginning of each time window.
Ago is calculated at 8:00, A\is is calculated at 8:15, and so on. For 30-minute time
windows, the second row above the times in the 8:00 hour shows that two pushback
rates govern two 30-minute time windows. These pushback rates are calculated at
the beginning of each time window. Ay is calculated at 8:00, A3 is calculated at
8:30. For 60-minute time windows, one pushback rate governs the entire hour, so Ay
is calculated at 8:00.

Now, consider time horizons. The time horizon of 0 is exactly the same as the
15-minute time window, with four pushback rates governing four time windows, each
calculated at the beginning of a respective time window. For a time horizon of 1, the
pushback rate for a particular time window is calculated one time window in advance.
The second row below the times in the 8:00 hour has arrows that indicate when a
particular pushhack rate is calculated. The pushback rate Agy for the 8:15 - 8:30 time
window is calculated at 8:00, so the arrow begins when the rate is calculated and
leads to the time slot for which this rate is valid. The number of the time horizon
indicates the number of time windows in advance that a pushback rate is caiculated.
Therefore, the time horizon of 3 calculates a pushback rate three time windows in
advance. The pushback rate Agg for the 8:45 - 9:00 time window is calculated at 8:00,
as shown in the third row below the times in the 8:00 hour. The arrow leads from

the time the rate is calculated (8:00) to the time that the rate is valid (8:45).

3.1 Input Data

The data required for the simulation must be pulled from multiple sources. The
ASPM dataset provides flight specific metrics such as pushback time, wheels-off time,
and wheels-on time. While extremely valuable, the ASPM dataset does not contain a
critical piece of information: the gate and terminal assignments of each flight. Gate

and terminal assignments allow for the calculation of unimpeded taxi-out time and
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allow the policy to monitor gate conflicts. Flightstats.com has this data for each
flight, so the PRC policies require the gate and terminal assignments to be integrated
with the rest of the ASPM data. The last dataset contains the weather data, RAPT,
described previously.

Each simulation contains both a baseline case and a metering case. The baseline
case simulates the airport operations by releasing departures from their gates on a
FCFS basis based on scheduled departure times. The metering case simulates the
airport operations using a PRC policy. The benefits of the policy include the taxi-out
time reduction, which is the difference between the taxi-out times in the baseline case
and metering case. Taxi-out time reduction contrasts with gateholding time, which is
the length of time an aircraft is held at a gate beyond the scheduled departure time
due to the PRC policy. Gateholding time is not strictly a cost because aircraft still
belong to the virtual queue with engines off. However, occupying the gate causes more

gate conflicts, while extended gateholding times can lead to passenger discomfort.

3.2 Time Window

3.2.1 Assessment of the Time Window Length

PRC policies calculate a pushback rate for departing aircraft that is valid for a certain
time window. This time window impacts some performance characteristics of the
policy, as Simaiakis et al.[23] note briefly. The length of this time window is a tradeoff
between: accuracy, ease of implementation, and value added to operators (airlines
and controllers). Depending on the main priority of the PRC policy, the time window
should be chosen to achieve a certain goal, which may come at the cost of other
performance characteristics.

For accuracy, the policies become less accurate as the length of the time window
increases. Because the PRC policies calculate the pushback rate at the beginning
of the time window based on the state of the airport surface, a longer time window

means that the pushback rate is valid for a longer period of time. As time gets farther
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away from the beginning of the window, the state of the airport surface changes. This
could cause the pushback rate for a time window to be different from the optimal value
as time increases from the beginning of the window. Also, the quality of the input
data affects the accuracy of the PRC policy. Arrival rates can be predicted somewhat
accurately for a 15-minute time window, but this accuracy diminishes for longer time
windows. Because of this, the pushback rate could be calculated based on incorrect
data.

For implementation, the policies affect the workload of the traffic controller. For
shorter time windows, the controller must keep updating the pushback rate more
frequently. This involves gathering the input data and the calculation of the rate
based on the PRC policy used. This workload decreases with the increase in the
length of the time window because the pushback rate is valid for a longer period of
time. However, as explained above, this decrease in workload comes at the cost of
decreased accuracy.

For the value added by the PRC policy, one must consider both the airlines and
the controllers. In terms of airlines, the time window must be long enough for the
airlines to plan their operations. However, the benefits of the PRC policy decrease as
the time window gets longer due to the decrease in accuracy. Airlines must choose the
right time window length that allows for smooth operations planning with sufficient
benefits. For controllers, the workload variation has already been considered. In
addition, the benefits to traffic control must be substantial enough to justify any

increase in workload.

3.2.2 N-Control

In addition to the usual 15-minute time window length simulation, simulations with
30-minute and 60-minute time windows allow for the exploration of the effects of
lengthening the time window. Time windows shorter than 15 minutes would likely
overload controllers with frequent PRC policy updates, as discussed above. The
results of these three simulations with different time window lengths should reflect

the tradeoffs of varying time windows.



The tools and data must be reconfigured for the longer time window simulations.
The saturation curves change to account for the increase in departure throughput
due to extending the time windows. Also, N,4 is the metric for departure surface
traffic used for the saturation curves. Because the saturation curves change, so must
the regression trees. Each tree is rebuilt, accounting for the larger arrival rates and
predicted departure throughput. Unimpeded taxi-out time remains the same because
the time window has no effect on this metric. With all of the capacity and simulation
tools reconfigured, Equation 2.9 still calculates the departure pushback rate and the
simulation proceeds exactly as before, except with longer time windows.

The results of the simulations for LaGuardia Airport for July-August 2013 can be
seen in Table 3.1. T,, is the taxi-out time reduction in minutes for the metering case
compared to the baseline case, while T}, is the percent taxi-out time reduction for the
metering case compared to the baseline case. The reduction results are compared to
the baseline case in which aircraft push back from their gates as soon as they are
ready.

Table 3.1 clearly shows that as the length of the time window increases, the benefits
decrease in terms of taxi-out time reduction. The 30-minute time window simulation
has 78.6% of the taxi-out time reduction of the 15-minute time window simulation.
The 60-minute time window simulation has 54.7% of the taxi-out time reduction of the
15-minute time window simulation. However, each policy has considerable benefits.

In terms of policy fairness, an airport surface management algorithm must treat
all airlines equally, meaning that no airline can get a vastly disproportionate share
of the benefits. The N-control policy demonstrates fairness by the nearly one-to-one
ratio of the percentage share in taxi-out time reduction and the percentage share
of departures, or market share. The benefits almost directly correlate with market
share. This means that the N-control policy fairly distributes the benefits based on
the size of an airline’s airport opérations. This fairness also exists in the 30-minute
and 60-minute simulations, so varying the time window length does not adversely

affect policy fairness.

Also, each policy maintains roughly a one-to-one ratio of taxi-out time reduction
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to gateholding time. This indicates that a minute of gateholding time will correspond
to a minute of taxi-out time reduction during periods of congestion. This relationship
is important because airlines do not need to invest a large amount of gateholding to
realize a benefit in taxi-out time reduction. The one-to-one ratio here indicates that
the N-control policy directly rewards investments of gateholding time with an equal
benefit of taxi-out time reduction. Again, this ratio remains for the 30-minute and

60-minute simulations.

Table 3.1: Simulation for each time window policy, separated by airline.

Airline | Policy | T)n 1, Reduction | Gateholding | Gateholding | Market
(min) % Share | Time (min) | % Share Share
15 24,981 | 6.6% | 39.2% 25,091 39.3%

1 30 19,693 | 4.8% | 39.3% 19,755 39.4% 38.0%
60 13,720 | 3.3% | 39.3% 13,551 38.9%
15 11,858 | 6.6% | 18.6% 11,831 18.6% v

2 30 9,359 | 4.8% | 18.7% 9,260 18.5% 19.8%
60 6,459 | 3.2% | 18.5% 6,543 18.8%
15 5995 | 7.1% | 9.4% 6,091 9.6%

3 30 4,710 | 5.1% | 94% 4,688 9.4% 8.2%
60 3,368 | 3.6% | 9.7% 3,429 9.8%
15 2,403 | 6.4% | 3.8% 2,401 3.8%

4 30 2,015 |5.0% | 4.0% 2,007 4.0% 4.3%
60 1,326 | 3.2% | 3.8% 1,319 3.8%
15 1,057 | 6.1% | 1.7% 1,067 1.7%

5 30 837 45% | 1.7% 876 1.8% 2.0%
60 654 3.4% | 1.9% 665 1.9%
15 2,505 | 5.9% | 3.9% 2,463 3.9%

6 30 2,040 | 44% | 4.1% 2,142 4.3% 5.1%
60 1,526 | 3.2% | 4.4% 1,492 4.3%
15 1,432 | 5.7% | 2.3% 1,407 2.2%

7 30 1,176 | 4.2% | 2.4% 1,139 2.3% 3.1%
60 853 3.0% | 2.5% 857 2.5%
15 13,542 | 7.1% | 21.2% 13,424 21.1%

8 30 10,315 | 5.0% | 20.6% 10,279 20.5% 19.6%
60 6,968 | 3.3% | 20.0% 7,018 20.1%




3.2.3 Dynamic Programming

The dynamic programming policy can also extend beyond the 15-minute time win-

dow simulation to include 30-minute and 60-minute time windows. The A in the

dynamic programming equations simply changes to match the length of the chosen

time window. Then, the Chapman-Kolmogorov equations must be numerically inte-

grated throughout the new time window. With the data and regression trees adjusted

for the different time window length, the dynamic programming algorithm proceeds

as before. Table 3.2 shows the results of the different time window length simulations.

Table 3.2: Dynamic programming time window simulation results, separated by air-

line.

Airline | Policy T, T, Reduction | Gateholding Gateholding | Market
(min) % Share | Time (min) % Share Share
15 85,581 22.7% 39.6% 89,032 39.5%

1 30 53,806 13.1% 39.6% 56,193 39.5% 38.0%
60 38,228 9.1% 40.8% 43,250 40.3%
15 39,788 22.3% 18.4% 41,705 18.5%

2 30 25,161 12.9% 18.5% 26,315 18.5% 19.8%
60 16,829 8.4% 18.0% 19,620 18.3%
15 20,021 23.6% 9.3% 20,870 9.3%

3 30 12,699 13.8% 9.3% 13,251 9.3% 8.2%
60 9,086 96% 9.7% 10,183 9.5%
15 8,023 214% 3.7% 8,377 3.7%

4 30 4985 12.3% 3.7% 5,297 3. 7% 4.3%
60 3332 8.0% 3.6% 3,716 3.5%
15 3,797 220% 1.8% 3,916 1.7%

5 30 2463 13.2% 1.8% 2,534 1.8% 2.0%
60 1,530 8.0% 1.6% 1,835 1.7%
15 8,370  19.6% 3.9% 8,751 3.9%

6 30 5284 114% 3.9% 5,525 3.9% 51%
60 3,350  7.0% 3.6% 3,892 3.6%
15 1342 171% 2.0% 4,550 2.0%

7 30 2,659  9.6% 2.0% 2,782 2.0% 3.1%
60 1,482 52% 1.6% 1,817 1.7%
15 46,198 24.0% 21.4% 47,989 21.3%

8 30 28,975 13.9% 21.3% 30,282 21.3% 19.6%
60 19,824 9.3% 21.2% 22,947 21.4%

The dynamic program results in Table 3.2 show that the policy benefits degrade
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as the length of the time window increases, following the same trend as the N-control
policy results. The 30-minute time window simulation has 62.9% of the taxi-out time
reduction of the 15-minute time window simulation. The 60-minute time window
simulation has 43.3% of the taxi-out time reduction of the 15-minute time window
simulation. The dynamic programming simulations maintain policy fairness by com-
paring the airline shares of taxi-out time reduction and market share. The one-to-one
ratio of taxi-out time reduction and gateholding time is also present in the dynamic
programming simulations.

Comparing the results of the N-control policy and the dynamic programming
policy simulations highlights some of the differences between the algorithms. The ab-
solute benefits of the dynamic programming policy are much greater than the benefits
of the N-control policy. However, this does not immediately indicate that dynamic
programining is the better policy. Because the dynamic programming algorithm re-
lies on an infinite horizon solution, the dynamic programming algorithm controls
departures at all times, not just during times of congestion like the N-control policy.
Therefore, the dynamic programming algorithm meters many more flights than the
N-control algorithm. This explains the rather large difference in policy benefits.
the differenice in performance of the two PRC policies,
Table 3.3 shows the taxi-out time reduction per metered flight (7.,) in minutes, as

well as the percentage of all flights metered.

Table 3.3: PRC policy variable time window performance comparison (N: N-control,
DP: dynamic programming).

Policy T | % of flights | Policy T, | % of flights
metered metered

N (15 min) | 10.3 | 20.3% DP (15 min) | 12.6 | 56.0%

N (30 min) | 10.4 | 15.8% DP (30 min) | 10.6 | 42.0%

N (60 min) | 9.8 | 11.6% DP (60 min) | 7.8 | 39.5%

Table 3.3 reveals that the dynamic programming policy meters many more flights
than the N-control policy. For the 15-minute time window, most of the difference in
policy performance stems from the additional metering of the dynamic programming

policy, although the average taxi-out reduction of the dynamic programming policy is
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2 minutes greater than the N-control policy. For the 30-minute time window, almost
all of the difference in policy performance is due to the discrepancy in number of
flights metered. For the 60-minute time window, the dynamic programming policy
actually has a smaller taxi-out time reduction than the N-control policy. However, the
additional metering of the dynamic programming policy results in a greater total taxi-
out reduction. The N-control policy maintains a fairly consistent T, with increasing
time window lengths. The T, for N-control varies by no more than half of a minute.
For dynamic programming, the T.. decreases by nearly 5 minutes from the 15-minute
time window simulation to the 60-minute time window simulation. The N-control
policy has more stable policy benefits per metered flight across different time window

lengths compared to the dynamic programming policy.

The differences between the N-control and dynamic programming results mirror
the differences between the two PRC policies. N-control only meters during times of
congestion, while dynamic programming always seeks to minimize the cost function
associated with queuing and runway utilization. The results should also communicate
to airports and airlines that implementing a dynamic programming algorithm will
result in greater benefits, but at the cost of disrupting airport operations with many
metered flights. On the other hand, implementing an N-control algorithm meters
fewer flights than dynamic programming, but the benefits of the policy also decrease.
While dynamic programming might be an ideal solution to a new airport to manage
airport surface operations, N-control may be easier to implement at busier airports
due to the difference in metering frequency. Airports and airlines must consider all
possible effects of implementing each PRC policy, including not only the benefits but

also the impact on airport operations.

Portraying dynamic programming as possibly disruptive may be a bit unfair. The
dynamic programming algorithm has the goal of ensuring the queue length is not ex-
cessive so as to prevent unnecessary fuel burn. The N-control algorithm only monitors
the total number of departing aircraft on the airport surface. While the N-control
algorithm may allow a long queue with few departures taxiing to the queue, the

dynamic programming algorithm penalizes such a situation. By accounting for the
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difference between departures taxiing and departures in the queue, dynamic program-
ming has more detailed information than the N-control algorithm uses. The greater
detail gives the dynamic programming more situations in which to control the rate

of departure pushback.

3.3 Time Horizon

3.3.1 Assessment of the Time Horizon Length

The time horizon length variation has the same tradeoffs associated with the time
window length variation. To reiterate, the time horizon is the number of time windows
before a given time window that a departure rate is calculated. The above analysis for
time window lengths has one departure pushback rate valid for the entire time window.
At the end of a time window, a new departure pushback rate is calculated and the
policy resets. The time horizon in this instance is zero because the PRC policy does
not look ahead to other time windows to calculate other departure pushback rates.

For time horizons greater than zero, a unique departure pushback rate is calculated for

4

subsequent time windows. For a time horizon of 1, the policy calculates a departure *
rate based on the expected state of the variables needed for the time window following
the current time window.

For the N-control policy, the expected change in N, follows directly from an

application of conservation of aircraft on the airport surface. If N/

' 15 the departure

surface traffic one time window into the future, then

Ny = Newr — T, + R, (3.1)

where the variables on the right-hand side of Equation 3.1 are for the current time
window. The weather and arrival rate can also be predicted with acceptable accuracy
multiple time windows into the future, so predicted throughput can also be found.
The accuracy of arrival rate prediction will be the subject of an analysis in the next

chapter. Therefore, all of the elements of Equation 2.9 are known (or estimated),
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resulting in a departure pushback rate for a time window in the time horizon. With
the departure pushback rate, the N-control simmulation proceeds as usual.

For the dynamic programming policy, both the departures taxiing Ry and stages-
of-work in the departure queue )y at the beginning of a time window change through-
out a time horizon. The changes in these variables become straightforward under the
assumption that all aircraft taxiing at the beginning of the previous time window
reach the departure queue by the beginning of the next time window. If Q) corre-
sponds to the stages-of-work one time window into the future, then

Qo

Qo = (5= = Tp + Ro) x k, (3.2)

where the variables on the right-hand side of Equatiou 3.2 are for the current time
window. The departure queue grows by an amount equal to the departures taxiing
at the beginning of the previous time window. The departure queue shrinks by the
predicted throughput for the previous time window. Again, a conservation of aircraft
in the departure queue perspective explains Equation 3.2.

The expected change in R, is more straightforward. If the number of aircraft
expecting to push back in a time window exceeds the departure pushback rate, the
departures taxiing at the beginning of the next time window simply equal the de-
parture pushback rates. If the number of aircraft expecting to push back in a time
window does not exceed the departure pushback rate, the departures taxiing at the
beginning of the next time window are the number of aircraft expecting to push back
in the previous time window. The equations for Ry, the departures taxiing one time

window into the future, are then

R,=Rif R< D, (3.3)
R, =D, if R> D,, (3.4)

where R is the pushback rate of the previous time window and D, is the number

of departures ready to push back in the previous time window. With @ and Rj
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estimated, the dynamic programming simulation proceeds as usual.

3.3.2 N-control

In order to mirror the variable time window analysis, time horizons of length 0, 1, and
3 look ahead 0 minutes, 15 minutes, and 45 minutes into the future, respectively. The
time window length in this analysis remains a constant of 15 minutes. This allows
a direct comparison with the time window analysis to examine the similarities and
differences.

Unlike the variable time window analysis, the tools and data do not need to be
altered for the simulation. Because the time windows remain 15 minutes long, the
saturation curves and regression trees for the 15-minute time window remain valid.
The only alteration of the simulation arises when calculating the expected change of
the departure surface traffic N/,.. Inserting this calculation, described by Equation
3.2, allows for the simulation to operate using time horizons. The expected N/, is
used to calculate the pushback rate for a time window of 0, 15, or 45 minutes instead
of observing the surface traffic, as is done at the beginning of a time window. The
rest of the simulation remains the same.

The results of the time horizon simulations for LGA during the same dates (July
- August 2013) can be seen in Table 3.4. Again, the reduction results are compared
to the baseline case in which aircraft push back from their gates as soon as they are
ready (FCFS).

Table 3.4 clearly shows that as the length of the time horizon increases, the benefits
decrease in terms of taxi-out time reduction. However, the decrease in benefits is less
than the corresponding decrease in benefits in the time window analysis. The time
horizon of 1 simulation has 80.1% of the taxi-out time reduction of the time horizon
of 0 simulation. The time horizon of 3 simulation has 53.0% of the taxi-out time
reduction of the time horizon of 0 simulation. Each policy maintains considerable
benefits.

In extending the time horizon length, the N-control policy maintains both fairness

and the one-to-one ratio of taxi-out time reduction to gateholding time. Because the
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simulations with longer time horizons exhibit the same qualities as the simulations
with longer time windows, the longer time horizons appear to be more favorable than
the longer time windows in terms of taxi-out time reduction benefits. Considering the
differences between time horizons and time windows, the difference in benefits makes
sense. Extending the time window means that one pushback rate is valid for a longer
period of time. Also, predictions of weather and arrival rate must also project further
into the future. Conversely, extending the time horizon means one pushback rate
for each time window in the time horizon, calculated using conservation of departure
aircraft on the airport surface. The same problem with weather and arrival rate
persists. Because the time horizon analysis updates the departure traffic for each
time window, the pushback rate is calculated based on more accurate information

compared to the pushback rate for a long time window.
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Table 3.4: Simulation for each time horizon policy, separated by airline.

Airline | Horizon | T, T, Reduction | Gateholding | Gateholding | Market,
% Share | Time (min) | % Share Share

0 24,981 | 6.6% | 39.2% 25,091 39.3%

1 1 20,008 | 5.3% | 39.2% 20,137 39.4% 38.0%
3 13,374 | 3.6% | 39.6% 13,387 39.6%
0 11,858 | 6.6% | 18.6% 11,831 18.6%

2 1 9,526 | 5.3% | 18.7% 9,481 18.6% 19.8%
3 6,418 | 3.6% | 19.0% 6,436 19.1%
0 5995 | 7.1% | 9.4% 6,091 9.6%

3 1 4,836 | 5.7% | 9.5% 4,890 9.6% 8.2%
3 3,201 | 3.8% | 9.5% 3,297 9.8%
0 2,403 | 6.4% | 3.8% 2,401 3.8%

4 1 1,897 | 51% | 3.7% 1,853 3.6% 4.3%
3 1,157 | 3.1% | 3.4% 1,135 3.4%
0 1,067 | 6.1% | 1.7% 1,067 1.7%

5 1 886 51% | 1.7% 871 1.7% 2.0%
3 527 31% | 1.6% 520 1.5%
0 2505 | 5.9% | 3.9% 2,463 3.9%

6 1 1,942 | 4.6% | 3.8% 1,915 3.8% 5.1%
3 1,273 | 3.0% | 3.8% 1,245 3.7%
0 1,432 | 5.7% | 2.3% 1,407 2.2%

7 1 1,152 | 4.6% | 2.3% 1,145 2.2% 3.1%
3 758 3.0% | 2.2% 740 2.2%
0 13,542 | 7.1% | 21.2% 13,424 21.1%

8 1 10,842 | 5.6% | 21.2% 10,798 21.1% 19.6%
3 7,079 | 3.7% | 21.0% 7,027 20.8%

3.3.3 Dynamic Programming

A time horizon analysis also works with the dynamic programming policy. The anal-

ysis also uses the time horizons of 0, 1, and 3, like the N-control simulations. The

tools and data also do not have to be updated. Only the expected departures taxiing

and stages-of-work in the departure queue must be added into the simulations, and

this is done in the manner described above. The dynamic programming policy then

uses those inputs and proceeds as usual. Table 3.5 shows the results of the variable

time horizon simulations.
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Table 3.5: Dynamic programming time horizon simulation results, separated by air-

line.
Airline | Horizon T, T, Reduction | Gateholding Gateholding | Market
% Share | Time (min) % Share Share
0 85,581 22.7% 39.6% 89,032 39.5%
1 1 75,866 20.1% 39.7% 79,501 39.7% 38.0%
3 59,217 15.7% 39.9% 61,551 39.9%
0 39,788 22.3% 18.4% 41,705 18.5%
2 1 34,872 19.5% 18.3% 36,781 18.4% 19.8%
3 26,922 15.1% 18.1% 28,125 18.2%
0 20,021 23.6% 9.3% 20,870 9.3%
3 1 17,917 21.1% 9.4% 18,793 9.4% 8.2%
13 14,275 16.8% 9.6% 14,822 9.6%
0 8023 21.4% 3% 8,377 37%
4 1 6,947 18.6% 3.6% 7,323 3.7% 4.3%
3 5253 14.0% 3.5% 5,631 3.6%
0 3,797 22.0% 1.8% 3,916 1.7%
5 1 3,347  194% 1.8% 3,479 1.7% 2.0%
3 2,486 14.4% 1.7% 2,567 1.7%
0 8,370  19.6% 3.9% 8,751 3.9%
6 1 7451  175% 3.9% 7,776 3.9% 5.1%
3 5814  13.6% 3.9% 6,020 3.9%
0 1342 171% 2.0% 4,550 2.0%
7 1 3,705 14.6% 1.9% 3,905 2.0% 3.1%
3 2,820 11.1% 1.9% 2,932 1.9%
0 46,198 24.0% 21.4% 47,989 21.3%
8 1 40,968 21.3% 21.4% 42,796 21.4% 19.6%
3 31,593 16.4% 21.3% 32,728 21.2%

Like the variable time window analysis with dynamic programming, the policy

benefits decrease as the time horizon increases. Table 3.5 shows that the total benefits

of the policy with a time horizon of 1 are 88.4% of the total benefits of the policy

with a time horizon of 0. Also, the total benefits of the policy with a time horizon of

3 are 68.7% of the total benefits of the policy with a time horizon of 0. Comparing

these results to the time window analysis with dynamic programming, extending the

time horizon maintains much more of the benefits than extending the length of the

time window. The fairness quality of the PRC policies carries over here, as well as

the near one-to-one ratio of taxi-out time reduction to gateholding time.

The performance per flight across different time horizons is shown in Table 3.6,
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Table 3.6 shows the taxi-out time reduction per metered flight (T m) N minutes, as

well as the percentage of all flights metered.

Table 3.6: PRC policy variable time horizon performance comparison (N: N-control,
DP: dynamic programming).

Policy T | % of flights || Policy Tm | % of flights
metered metered

N (0 time horizon) | 10.3 | 20.3% DP (0 time horizon) | 12.6 | 56.0%

N (1 time horizon) | 9.4 | 17.8% DP (1 time horizon) | 11.9 | 52.6%

N (3 time horizon) | 7.6 | 14.9% DP (3 time horizon) | 10.3 | 47.3%

The results in Table 3.6 reveal the reasons behind the longer time horizons main-
taining more policy benefits than longer time windows. The taxi-out time reduction
per metered flight of longer time horizons decreases nearly 3 minutes for the N-control
policy and more than 2 minutes for the dynamic programming policy. Also, the per-
centage of flights metered does not decrease drastically as the time horizon increases.
This was not the case for the variable time window analysis. However, this difference
is due to the fact that a long time window simulation may miss times of congestion,
but longer time horizon simulations estimate the way in which the surface traffic will
evolve. This results in longer time horizon simulations more likely to identify times
of congestion within a time horizon. Longer time window simulations do not identify
times of congestion within a time window that was not congested at the start of the

time window.

3.4 Gate Conflicts

This section uses the N-control policy to explain the issue of gate conflicts. Because
PRC policies hold aircraft at their gates past their scheduled departure time, the
possibility of increased gate conflicts arises. Gate conflicts occur during normal airport
operations, but PRC policies increase the frequency of gate conflicts. This increase can
be seen in Figure 3-2. This figure shows the average number of gate conflicts per hour
for each airline, with and without metering. Figure 3-3 shows the average number of

gate conflicts per day for each airline by day of the week, with and without metering.
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While metering clearly increases the number of gate conﬂicts, the increase is not
drastic. Figure 3-3 shows that the number of daily gate conflicts increases anywhere
from 0 to 6 per day, depending on the airline and day of the week. The PRC policy
simulations handles gate conflicts in the following manner. If a departure occupies
a gate when an arrival, scheduled for that gate, lands, the departure immediately

pushes back.

Notice the nature of the timing of the gate conflicts in Figure 3-2. For most
airlines, a spike in gate conflicts occurs during the morning rush (10 AM - 12 PM)
and/or afternoon rush (5 PM - 8 PM). Because these rushes correspond to an increase
in airport surface operations, the increase in gate conflicts during these times makes
sense. The timing of gate conflicts in Figure 3-3 is also intuitive. Airports usually
have less traffic on the weekends, and the gate conflicts at LGA also decrease for
nearly each airline on these days compared to the rest of the week. Also, the increase

in gate conflicts due to metering is less severe during the weekends.

The increase in gate conflicts from metering also affects airlines proportionally
in terms of share of gate conflicts without metering. Examining Figures 3-2 and 3-3
reveals this pattern. Delta Airlines and US Airways have the most gate conflicts in the
simulation without metering. The other airlines with low numbers of gate conflicts see
less gate conflicts caused by metering. By not penalizing airlines disproportionately

in terms of gate conflicts, the N-control policy maintains fairness in another sense.
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3.5 Conclusions

This chapter explores the policy parameter variation of time windows and time hori-
zons associated with PRC policies. The time window is the length of time for which
a departure pushback rate is valid, while the time horizon is the number of time win-
dows into the future for which a departure pushback rate is calculated in advance.
The tradeoffs associated with the length of both time windows and time horizons
are policy accuracy, ease of implementation, and value added to operators. Extend-
ing time windows or horizons reduces operator workload resulting from the policy,
but policy accuracy and value also decrease. Shortening time windows or horizons
increases accuracy and value, but operator workload soars. For both N-control and
dynamic programming policies, variable time window and time horizon analyses sim-
ulate the policies at LGA. The results indicate that lengthening the time window
decreases policy benefits more drastically than lengthening the time horizon. These
results reflect that longer time horizon simulations monitor departure surface traffic

more dynamically than longer time window simulations.
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Chapter 4

Operational Uncertainty

Chapter 2 introduces and derives the PRC policies of N-control and dynamic pro-
gramming. Chapter 3 simulates airport operations at LGA using both of the PRC
policies while also exploring the variation of policy parameters, the time window and
time horizon. In addition to this, operational uncertainty also affects the perfor-
mance of PRC policies. As Chapter 2 describes, the PRC policies require input data
to calculate the departure pushback rate. The regression trees need both the arrival
rate and RAPT for the next time window to predict the departure throughput. The
arrival rate and weather for a period in the future are both uncertain. Also, the
departure schedule is uncertain as many factors can cause a departure to be ready
for pushback before or after the scheduled departure time. In order to be considered
for acutal implementation at an airport, PRC policies must maintain effectiveness
when accounting for uncertainty. This chapter considers uncertainty in the departure
schedule and arrival rate for N-control and dynamic programming. Also, building
off of the policy parameter variation analysis, this chapter combines both policy pa-
rameter variation and operational uncertainty to more realistically simulate airport

operations.
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4.1 Departure Schedule

Any person who has flown commercially would likely testify to the uncertainty in the
scheduled departure time of a flight. The departure pushback time of a flight may
change for myriad reasons. Delays occur due to weather, maintenance, congestion
(surface and air), boarding, and ground crew availability, to name a few causes.
While frustrating, these issues arise while operating airports and airlines on a national
and global scale. Also, airlines strive to “turn around” an aircraft quickly, which
means deplaning an arrival aircraft and preparing it for departure as fast as possible.
These efforts sometimes result in a departure aircraft ready to push back before the
scheduled departure time. Both N-control and dynamic programming rely on an
adequate supply of departures ready for pushback in a given time window. If the
available departures are less than the pushback rate, the departure surface traffic
may fall below acceptable levels. If there are many available departures during a time
of low congestion, those departures may cause congestion in the future. As such, PRC

policies need to handle a variable departure schedule.

To explore the performance of the PRC policies with a variable departure schedule,
the simulations must undergo some adjustments. Perturbations can be added to the
scheduled departure times to approximate the small delays incurred by a flight. The
following analysis does not account for larger delays because PRC policies would
likely not operate during times of large delay. For example, during severe weather,
other traffic management programs may be in effect. While large delays can occur for
a small number of flights, those situations closely approximate a normal departure

schedule.

The simulation approximates the perturbations to the flight schedule by assuming
that the perturbations are drawn from a normal distribution with a mean of the
scheduled departure time and a standard deviation of 3.5 minutes. The assumption
of a standard deviation of 3.5 minutes ensures that two standard deviations from
the scheduled departure time roughly encompasses a 15-minute time window. The

perturbation time probability distribution is shown in Figure 4-1.
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Figure 4-1: Probability distribution of the departure time perturbations relative to
the scheduled departure times.

For each flight, a perturbation time is randomly drawn from the probability dis-
tribution in Figure 4-1 and added to the original departure time. The equation for

the new departure time of a flight t* is

t"=1t+t,, (4.1)

where ¢ is the scheduled departure time of the flight and ¢, is the perturbation
time. Equation 4.1 updates the scheduled departure time for each flight in a day.
Then, the simulation of airport operations with the PRC policies proceeds as usual.
Perturbing the departure schedule only results in one different schedule. The re-
sults of the simulation with the original schedule can be compared to the results of the
simulation with the perturbed schedule. However, because the perturbed schedule is

subject to random sampling, the results of the simulation with the perturbed schedule
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are also subject to the random sampling. As such, the variable departure schedule
uses a Monte Carlo method to get a better sense of the results from perturbing the
schedule. The Monte Carlo method simply runs the 2-month LGA simulations with
a PRC policy 50 times, each time with a different perturbed schedule. The results
of each simulation with a perturbed schedule can then be viewed and considered

together relative to the results of the simulation with the original schedule.

4.1.1 N-control Results

Figures 4-2 and 4-3 contain the results of the N-control Monte Carlo method simula-
tions with the schedule perturbations for a 15-minute time window and time horizon
of 0. Figure 4-2 shows the total taxi-out benefits for each of the 50 simulations from
the Monte Carlo method. Figure 4-3 shows the percent taxi-out reduction, separated
by airline, for each of the 50 simulations from the Monte Carlo method. Figure 4-2
provides an illustration of the total policy benefits, while 4-3 reveals the distribution

of savings a given airline can expect due to a variable departure schedule.

15-Minute Time Window

Frequency

55 5.6 5.7 5.8 5.9 6 6.1 6.2

Taxi-out Reduction (min) 10"

Figure 4-2: Frequency of total taxi-out reduction benefits for the N-control 50 Monte

Carlo method simulations.
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Figure 4-3: Percent taxi-out reduction by airline for the N-control 50 Monte Carlo

method simulations.

Recall that the total taxi-out reduction for the 15-minute time window, 0 time
horizon N-control simulations for LGA for Summer 2013 is 63,773 minutes. The
mean total taxi-out reduction from the 50 Monte Carlo method simulations is 57,326
minutes. This indicates that the departure schedule uncertainty reduces the N-control
policy benefits to 90.7% of the policy benefits in the case with no uncertainty. Also,
Figure 4-3 shows that all airlines can expect a percent taxi-out reduction between
5% and 7% compared to their operations without metering, even with a variable
departure schedule. Because the total and airline benefits remain comparable to the
benefits in the case with no uncertainty, the N-control policy performs well when

accounting for a variable departure schedule.

4.1.2 Dynamic Programming Results

The dynamic programming policy simulations have the same departure schedule as

the N-control policy simulations, so the variable departure schedule analysis for dy-
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namic programming uses the same departure time perturbation method described by
Equation 4.1. Figures 4-4 and 4-5 contain the results of the dynamic programming
Monte Carlo method sinulations with the schedule perturbations for a 15-minute
time window and time horizon of 0. These figures correspond to Figures 4-2 and 4-3
for the N-control variable departure schedule analysis to allow for direct comparison
between PRC policies.

Recall that the total taxi-out reduction for the 15-minute time window, 0 time
horizon dynamic programming simulations for LGA for Summer 2013 is 216,120 min-
utes. The mean total taxi-out reduction from the 50 Monte Carlo method simulations
is 203.880 minutes. This indicates that the departure schedule uncertainty reduces
the dynamic programming policy benefits to 94.3% of the policy benefits in the base-
line case. Figure 4-5 shows that all airlines can expect a percent taxi-out reduction
comparable to their operations without metering, even with a variable departure
schedule. Like the N-control policy. the dynamic programming policy performs well

when accounting for a variable departure schedule.

15-Minute Time Window

Frequency

0
1.98 2 2.02 2.04 2.06 2.08 21
Taxi-out Reduction (min) % 10°

Figure 4-4: Frequency of total taxi-out reduction benefits for the dynamic program-

ming 50 Monte Carlo method simulations.
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Figure 4-5: Percent taxi-out reduction by airline for the dynamic programming 50

Monte Carlo method simulations.

When accounting for a variable departure schedule, the total taxi-out reduction
for both N-control and dynamic programming remains within 10% of the total taxi-
out reduction of the simulations with no uncertainty. This bodes well for the possible
implmentation of PRC policies. Examining the driving forces behind the comparable
performances of the simulation with no uncertainty and a variable departure simula-
tion provides further comprehension of the results. The departure time perturbations
simply shuffle the departure schedule, causing some 15-minute windows to have more
or fewer departures. This spreads the departure times out more throughout the day
when, in reality, many flights may have departure times clustered together. During
peak hours, many flights have departure times very close together, causing congestion.
Spreading out departure times, even with small purturbations, can slightly decrease
this cause of congestion.

While allowing for a variable departure schedule makes the simulations more re-
alistic, weather and arrival predictions remain constant. These variables affect the

predicted throughput for a time window, so the PRC policies must perform well with
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uncertainty in these variables. To account for arrival rate uncertainty, the following

section details an uncertainty analysis with a variable arrival rate.

4.2 Arrival Rate

The number of arrivals landing at an airport in a given time window is uncertain. The
scheduled arrival time of an aircraft changes due to many of the reasons that affect
the scheduled departure time, including weather and congestion. Instead of scheduled
arrival times, a tool called the Flight Status Monitor (FSM) forecasts the number of
arrivals that will be ready to land for time windows into the future. The tool that
gives the FSM predictions for LGA is the Airport Arrival Demand Chart (AADC)
via the FAA website

8]. Figure 4-6 shows an example of the AADC predictions for

LGA.
AlrgeET A rivEh Derasid it R Version 2.1
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Figure 4-6: Airport Arrival Demand Chart for LGA on 3/12/2015. The bars indicate
how many aircraft will be approaching LGA for landing during each 15-minute time

window.
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Notice the horizontal line and the vertical line marked with an arrow in Figure 4-6.
The horizontal line indicates the arrival capacity, which is 9 aircraft per 15 minutes
in this example. The vertical line indicates the current time. The bars to the left
of this line show how many aircraft actually landed during a 15-minute time period.
The bars to the right of this line show the forecasts for 15-minute time windows into
the future.

With this information, the predicted arrivals for the next 15, 30, and 60 minutes
can be extracted. If the predicted number of arrivals is above the capacity, the
predicted arrivals is set to the capacity. The prediction accuracy analysis that follows
establishes the perturbations for the variable arrival rate analysis. The AADC data

has been gathered over a four month period from January - April 2015.

4.2.1 15-minute Predictions

Figure 4-7 shows the distribution of the difference between AADC arrival predictions

and the actual arrivals for 15-minute windows.

15-minute Time Windows

Frequancy
i
T
2

o
T
i

Predicted - Actual Amrivals

Figure 4-7: Predicted minus actual arrivals at LGA for the next 15-minute window.

The distribution in Figure 4-7 contains 95 data points, with a sample mean of

0.25 and a sample standard deviation of 1.56. The mean and Figure 4-7 show that
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the 15-minute predictions tend to over-predict slightly. The distribution seems ap-
proximately normal, except for the slight bias towards over-prediction. Bootstrapping
the sample gives confidence intervals for the mean and standard deviation. A 95%
confidence interval for the mean is [-0.0673, 0.5497], and a 95% confidence interval

for the standard deviation is [1.3459, 1.7621].

Similar to the departure schedule perturbations, an arrival rate perturbation is
drawn from a normal distribution with mean 0 and standard deviation of 1, an ap-
proximation to Figure 4-7. Because arrival rates express the number of aircraft to
land in a certain time window, the arrival rate perturbation rounds to the nearest

whole number. The new arrival rate a* then becomes

o = a+a, (4.2)

where a is the original arrival rate and a,, is the arrival rate perturbation. Equation
4.2 updates all of the original arrival rates for each time window. From there, the
simulation of airport operations with PRC policies proceeds as usual. Again, because

perturbing the arrival rate only results in one different arrival schedule, the Monte

Carlo method rung the simulation 50 times, each time wit

The results then provide a distribution of expected policy performance by accounting

for arrival uncertainty.

4.2.2 N-control Results

Figures 4-8 and 4-9 contain the results of the N-control Monte Carlo method sim-
ulations with the arrival rate perturbations for a 15-minute time window and time
horizon of 0. Figure 4-8 shows the total taxi-out benefits for each of the 50 simula-
tions from the Monte Carlo method. Figure 4-9 shows the percent taxi-out reduction,
separated by airline, for each of the 50 simulations from the Monte Carlo method.
Figure 4-8 provides an illustration of the total policy benefits, while 4-9 reveals the

distribution of savings a given airline can expect due to a variable arrival rate.
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Figure 4-8: Frequency of total taxi-out reduction benefits for the N-control 50 Monte

Carlo method simulations with arrival rate uncertainty.
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Recall that the total taxi-out reduction for the 15-minute time window, 0 time
horizon N-control simulations for LGA for Summer 2013 is 63,773 minutes. The
mean total taxi-out reduction from the 50 Monte Carlo method simulations is 63,536
minutes. This indicates that the arrival rate uncertainty reduces the N-control policy
benefits to 99.6% of the policy benefits in the case with no uncertainty. Also, Figure
4-9 shows that all airlines can expect a percent taxi-out reduction between 5% and
7% compared to their operations without metering, even with a variable arrival rate.
Because the total and airline benefits remain virtually identical to the benefits in the
case with no uncertainty, the N-control policy performs well when accounting for a
variahle arrival rate. Relative to the variable departure schedule, the variable arrival

rate barely impacts the results of the simulations.

4.2.3 Dynamic Programming Results

The dynamic programming policy simulations have the same arrival schedule as the
N-controi policy simulations, so the variable arrival rate analysis for dynamic pro-
gramming uses the same arrival rate perturbation method described by Equation 4.2.
Figures 4-10 and 4-11 contain the results of the dynamic programming Monte Carlo
method simulations with the arrival rate perturbations for a 15-minute time window
and time horizon of 0. These figures correspond to Figures 4-10 and 4-11 for the
N-control variable arrival rate analysis to allow for direct comparison between PRC

policies.

Recall that the total taxi-out reduction for the 15-minute time window, 0 time
horizon dynamic programming simulations for LGA for Summer 2013 is 216,120 min-
utes. The mean total taxi-out reduction from the 50 Monte Carlo method simulations
is 215,938 minutes. This indicates that the arrival rate uncertainty reduces the dy-
namic programming policy benefits to 99.9% of the policy benefits in the case with

no uncertainty.
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Figure 4-10: Frequency of total taxi-out reduction benefits for the dynamic program-

ming 50 Monte Carlo method simulations with arrival rate uncertainty.
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Figure 4-11: Percent taxi-out reduction by airline for the dynamic programming 50

Monte Carlo method simulations with arrival rate uncertainty.

Figure 4-11 shows that all airlines can expect a percent taxi-out reduction compa-

rable to their operations without metering, even with a variable arrival rate. Like the
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N-control policy, the dynamic programming policy performs well when accounting
for a variable arrival rate. With the N-control policy maintaining 99.6% of policy
benefits and the dynamic programming policy maintaining 99.9% of policy benefits,

the arrival rate uncertainty does not significantly affect the PRC policy performance.

4.3 Overall Uncertainty

Section 4.1 isolates and examines the uncertainty in the departure schedule. Section
4.2 does the same for the uncertainty in the arrival rate. To make the simulations more
realistic, one simulation can contain these two uncertainty sources. By accounting
for both of these common types of uncertainty, the simulation provides more realistic
results, revealing the effects of the overall uncertainty.

The methods for perturbing the departure schedule and arrival schedule mimic
the methods used in Section 4.1 and 4.2. Equations 4.1 and 4.2 change the departure
schedule and arrival rate, respectively. Again, with a perturbed departure schedule
and arrival rate, the simulations continue as usual. The Monte Carlo method runs

the overall uncertainty simulations 50 times.

4.3.1 N-control Results

Recall that the total taxi-out reduction for the 15-minute time window, 0 time horizon
N-control simulations for LGA for Summer 2013 is 63,773 minutes. The mean total
taxi-out reduction from the 50 Monte Carlo method simulations is 58,246 minutes.
This indicates that the overall uncertainty reduces the N-control policy benefits to
91.3% of the policy benefits in the case with no metering. Figure 4-12 shows the
N-control policy benefits disribution for the 50 simulations, while Figure 4-13 shows
the percent taxi-out reduction distribution for each airline.

Comparing the overall uncertainty results to the departure and arrival uncertainty
results shows that the departure uncertainty dominates. Relative to the policy ben-
efits with no uncertainty, the departure uncertainty simulations have 90.7% of the

benefits, while the overall uncertainty simulations have 91.3% of the benefits. This
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follows directly from the individual uncertainty analyses where the arrival rate un-

certainty had very little effect on the policy benefits.
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Figure 4-12: Frequency of total taxi-out reduction benefits for the N-control 50 Monte

Carlo method simulations with overall uncertainty.
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Figure 4-13: Percent taxi-out reduction by airline for the N-control 50 Monte Carlo

method simulations with overall uncertainty.
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4.3.2 Dynamic Programming Results

Recall that the total taxi-out reduction for the 15-minute time window, 0 time hori-
zon dynamic programming simulations for LGA for Summer 2013 is 216,120 minutes.
The mean total taxi-out reduction from the 50 Monte Carlo method simulations is
203,423 minutes. This indicates that the overall uncertainty reduces the dynamic
programming policy benefits to 94.1% of the policy benefits in the case with no un-
certainty. Figure 4-14 shows the dynamic programming policy benefits distribution
for the 50 simulations, while Figure 4-15 shows the percent taxi-out reduction dis-
tribution for each airline. Like the N-control results with overall uncertainty, the
departure schedule uncertainty drives the reduction in policy benefits and the arrival
rate uncertainty has little effect on the results. Relative to the policy benefits with no
uncertainty, the departure uncertainty simulations have 94.3% of the benefits, while
the overall uncertainty simulations have 94.1% of the benefits. Again, this intuitive

result follows directly from both individual uncertainty simulations.

15-Minute Time Window
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Figure 4-14: Frequency of total taxi-out reduction benefits for the dynamic program-

ming 50 Monte Carlo method simulations with overall uncertainty.
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Figure 4-15: Percent taxi-out reduction by airline for the dynamic programming 50

Monte Carlo method simulations with overall uncertainty.

4.4 Variation of Parameters with Uncertainty

The operational uncertainty analysis above only considers 15-minute time windows
with a time horizon of 0. This enables a closer look at the results, but the operational
uncertainty can be added to simulations with variable policy parameters. For each
PRC policy, the departure, arrival, and overall uncertainty analyses extend to time
windows and time horizons of different lengths. The following sections present the
total taxi-out reduction across all airlines for each different simulation of both PRC

policies.

4.4.1 Arrival Rate Predictions

For the arrival rate uncertainty analysis, the arrival rate perturbation came from
fitting a normal distribution to the predicted minus actual arrival rates at LGA. To
extend the arrival rate analysis to longer time windows, the arrival rate predictions for

these time windows must have a corresponding uncertainty. Because the time horizons
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only consider 15-minute time windows, the arrival rate perturbations for each time
window in a time horizon equal the arrival rate perturbations for 15-minute time

windows.

30-minute Predictions

Figure 4-16 shows the distribution of the difference between AADC arrival predictions

and the actual arrivals for 30-minute windows.
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Figure 4-16: Predicted minus actual arrivals at LGA for the next 30-minute window.

The distribution in Figure 4-16 contains 90 data points, with a sample mean of
0.58 and a sample standard deviation of 2.21. The mean and Figure 4-16 shows that
the 30-minute predictions tend to over-predict slightly, more so than the 15-minute
predictions. The distribution seems approximately normal, except for the slight bias
towards over-prediction, as well as a high upper tail. Bootstrapping the sample gives
confidence intervals for the mean and standard deviation. A 95% confidence interval
for the mean is |0.1393, 1.0463], and a 95% confidence interval for the standard
deviation is [1.9129, 2.4807]. As an approximation to Figure 4-16, the arrival rate
perturbation is drawn from a normal distribution with mean 0 and standard deviation

of 2.



60-minute Predictions

Figure 4-17 shows the distribution of the difference between AADC arrival pre-

dictions and the actual arrivals for 60-minute windows.
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Figure 4-17: Predicted minus actual arrivals at LGA for the next 60-minute window.

The distribution in Figure 4-17 contains 71 data points, with a sample mean of 1.17
and a sample standard deviation of 3.59. The mean and Figure 4-17 shows that the
60-minute predictions tend to over-predict slightly, more so than the 15-minute and
30-minute predictions. The distribution seems approximately normal. Bootstrapping
the sample gives confidence intervals for the mean and standard deviation. A 95%
confidence interval for the mean is [0.3394, 1.9974|, and a 95% confidence interval
for the standard deviation is [2.7116, 4.3431]. As an approximation to Figure 4-17,
the arrival rate perturbation is drawn from a normal distribution with mean 0 and

standard deviation of 4.

4.4.2 N-control Results

Figures 4-18 and 4-19 summarize the taxi-out reduction with operational uncertainty

for both the time window and time horizon variability, respectively.
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Figure 4-18: Total taxi-out reduction for the July-August 2013 LGA N-control time

window simulations.
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Figure 4-19: Total taxi-out reduction for the July-August 2013 LGA N-control time

horizon simulations.
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The case with no uncertainty for each time window and time horizon length rep-
resents the one simulation done in Chapter 3. The uncertainty cases for each time
window and time horizon represent the average taxi-out reduction of 50 Monte Carlo
Method simulations. Figure 4-18 shows the decrease in taxi-out reduction with in-
creasing time-window lengths. The departure uncertainty dominates the decrease in
taxi-out reduction compared to the arrival rate uncertainty. The arrival rate has very
little effect on the taxi-out reduction results. The same trends can be seen in Fig-
ure 4-19. However, the decrease in taxi-out reduction is less severe compared to the
decrease in Figure 4-18. This shows that extending the time window lengths has a
larger negative effect on taxi-out reduction compared to extending the length of the
time horizon. This trend, also seen in Chapter 3, also extends to the simulations that

include uncertainty.

4.4.3 Dynamic Programming Results

Figures 4-20 and 4-21 summarize the taxi-out reduction with operational uncertainty

for both the time window and time horizon variability, respectively.
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Figure 4-20: Total taxi-out reduction for the July-August 2013 LGA dynamic pro-

gramming time window simulations.



psX10 |l No Uncertainty
[ IDeparture Uncertainty
[JArrival Uncertainty
ol Bl Overall Uncertainty
E
c :
2 1.5F - 7 ]
.o L i1 %
() .
o 5 -
5 1} i | B
(o] i .
= F
]
.
0.5r I o ]
0

0 Look Aheads 1 Look Ahead 3 Look Aheads

Figure 4-21: Total taxi-out reduction for the July-August 2013 LGA dynamic pro-

eramiming time horizon simulations.

The case with no uncertainty for each time window and time horizon length rep-
resents the one simulation done in Chapter 3. The uncertainty cases for each time
window and time horizon represent the average taxi-out reduction of 50 Monte Carlo
Method simulations. Figure 4-20 shows the sharp decrease in taxi-out reduction with
increasing time window lengths. Like the I5-minute time window analysis, the de-
parture schedule uncertainty has a larger effect on taxi-out reduction than does the
arrival rate uncertainty. The overall uncertainty analysis results virtually match the
departure schedule uncertainty analysis results for all time window lengths. While
the 15-minute and 30-minute time window simulations have a decrease in taxi-out
recduction due to departure schedule uncertainty, the 60-minute time window simula-
tion has a slight increase in taxi-out reduction. The slight increase may be due to the
spreading out of the departure schedule through perturbations. The perturbations
could result in more flights being metered compared to the original schedule. Figure
4-21 shows the gradual decrease in taxi-out reduction with incresing time horizon

length. The longer time horizon results also indicate the larger effect of the departure
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schedule uncertainty compared to the arrival rate uncertainty.

4.5 Conclusions

This chapter introduces operational uncertainty to the PRC policy simulations. Both
the departure schedule and arrival rates at airports are uncertain, so PRC policies
must perform well under such conditions. The simulations account for these uncer-
tainties by perturbing the departure schedule and arrival rate. The Monte Carlo
method runs the simulations many times with perturbations to provide a distribution
of the effects of operational uncertainty.

The results show that the departure schedule uncertainty has a larger effect on
policy benefits than does the arrival rate uncertainty. For both N-control and dynamic
programming, the departure schedule uncertainty has less of a negative influence on
the results as the time window length increases. In fact, for the 60-minute time
window dynamic programming simulation, the departure schedule uncertainty slightly
increases the taxi-out reduction. For the time horizon simulations, the influence of
each uncertainty remains proportional to the policy benefits with no uncertainty.
The arrival rate uncertainty has virtually no effect on taxi-out reduction for any

simulation.
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Chapter 5

Conclusion

This thesis presents two PRC policies, N-control and dynamic programming, and
explores the robustness of the policies through the variation of parameters and op-
erational uncertainty. The N-control policy monitors the airport surface traffic and
only meters departures when the departure traffic exceeds a defined capacity for each
segment. The dynamic programming policy models the state of the airport surface as
the number of departures in the runway queue and the number of departures taxiing
to the runway. With a distribution of runway service times and a cost of queuing func-
tion, the optimal pushback rate for a time window is found through value iteration.
The N-control policy is more straightforward, making possible implementation more
likely. The dynamic programming policy is more sophisticated and the pushback rate
accounts for the underlying uncertainty of the evolution of airport surface traffic.
Policy parameters, namely the lengths of the time windows and time horizons,
affect the pushback rate calculation. The time window governs the length of time for
which one pushback rate remains valid. The time horizon governs the number of time
windows into the future for which a pushback rate is found in advance. Historically,
for airport surface management policies, the time window has been set to 15 minutes
and the time horizon has been set to 0. However, airlines and airports may need
to alter these parameters to tailor a PRC policy for implementation. Therefore, the
effects of the variation of parameters on policy performance must be known. Lastly,

the PRC policies require the input of operational data, such as the departure schedule
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and arrival rate of aircraft. The uncertainty in these data sources also has a direct

effect on policy performance.

5.1 Summary of results

5.1.1 Variation of Parameters

Simulations of the both PRC policies with time windows of 15, 30, and 60 minutes ran
airport operations at LGA for July-August 2013. As the length of the time window
increases for the N-control policy, the policy benefits of taxi-out reduction decrease.
Relative to the benefits of the 15-minute time window simulations for the N-control
policy, the 30-minute time window simulation has 78.6% of the total taxi-out time
reduction and the 60-minute time window simulation has 54.7% of the total taxi-out
time reduction. This trend agrees with intuition as one pushback rate, calculated
based on airport conditions at the beginning of a tune window, remains valid for a
longer period of time. The same trend can be seen in the dynamic programming
policy results. Relative to the benefits of the 15-minute time window simulations for
the dynamic programming policy, the 30-minute time window simulation has 62.9%
of the total taxi-out time reduction and the 60-minute time window simulation has
43.3% of the total taxi-out time reduction. However, note that the absolute benefits of
the dynamic programming policy are considerably greater than the absolute benefits
of the N-control policy.

Also, simulations of both PRC policies with time horizons of 0, 1, and 3 ran
operations at LGA for July-August 2013. Again, as the length of the time horizon
increases for the N-control policy, the policy benefits of taxi-out reduction decrease.
However, compared to the time-window simulations, the rate of decrease in policy
benefits is lower for increasing time horizons. Relative to the benefits of the 0 time
horizon simulations for the N-control policy, the 1 time horizon simulation has 80.1%
of the total taxi-out time reduction and the 3 time horizon simulation has 53.0% of the

total taxi-out time reduction. The dynamic programming policy exhibits a smaller
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taxi-out reduction decrease for longer time horizons. Relative to the benefits of the
0 time horizon simulations for the dynamic programming policy, the 1 time horizon
simulation has 88.4% of the total taxi-out time reduction and the 3 time horizon
simulation has 68.7% of the total taxi-out time reduction. However, note that the
absolute benefits of the dynamic programming policy are considerably greater than

the absolute benefits of the N-control policy.

5.1.2 Operational Uncertainty

Because PRC policies meter the rate of departure pushbacks, the departure schedule
is a crucial input to simulations. As such, uncertainty in the departure schedule
changes the departure demand for pushbacks in a given time window. In this thesis,
perturbing the departure schedule with random samples from a normal distribution
approximates the departure schedule uncertainty. Also, the Monte Carlo method
runs the simulations 50 times, each with a different perturbed departure schedule.
For the 15-minute time window N-control simulations with departure uncertainty,
the mean total taxi-out reduction is 90.7% of the total taxi-out reduction from the
15-minute time window simulation with no uncertainty. For the 15-minute time
window dynamic programming simulations with departure uncertainty, the mean total
taxi-out reduction is 94.3% of the total taxi-out reduction from the 15-minute time
window simulation with no uncertainty. The decrease in taxi-out reduction, relative
to the baseline simulations, is greater for the N-control policy, but departure schedule
uncertainty reduces taxi-out reduction benefits between 5% and 10% for both PRC
policies.

The N-control policy uses the arrival rate in a time window to find the predicted
throughput through regression trees, which then enters into the calculation for the
departure pushback rate. The dynamic programming policy also uses the arrival rate
in a time window to find the predicted throughput, but this information enters into
the departure pushback rate calculation through the distribution of service times. The
uncertainty in arrival rate predictions is shown by the difference between the actual

arrival rate and the predicted arrival rate by the AADC. Similar to the departure
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schedule perturbations, the simulations perturb the arrival rates by a random sample
from a normal distribution, an approximation of the predicted minus actual arrival
rate distribution. Also, the Monte Carlo method runs the simulations 50 times, each
with different perturbed arrival rates for each time window. However, the arrival rate
uncertainty has little effect on the taxi-out reduction. For the 15-minute time window
N-control simulations with arrival uncertainty, the mean total taxi-out reduction is
99.6% of the total taxi-out reduction from the 15-minute time window simulation with
no uncertainty. For the 15-minute time window dynamic programming simulations
with arrival uncertainty, the mean total taxi-out reduction is 99.9% of the total taxi-
out reduction from the 15-minute time window simulation with no uncertainty. These

reductions in benefits are not significant.

5.1.3 Overall Uncertainty

Naturally, the variation of parameters analysis and operational uncertainty analysis
can coinbine to provide a complete picture of the factors that affect the performance
of a PRC policy. Considering this, Tables 5.1 and 5.2 summarize the total taxi-
out reduction relative to a comparable simulation with no uncertainty. That is, for
each time window or time horizon analysis, the operational uncertainty analysis is
performed, as was done for the 15-minute time window, 0 time horizon case. Tables
5.1 and 5.2 provide more detail to the information presented in Figures 4-18, 4-19,
4-20, and 4-21. Clearly, the trends discussed in the overall uncertainty analysis arise
for longer time windows and time horizons, with the exception of the 60-minute time
window for the dynamic programming policy. This exception needs to be explored
further. One possible explanation is that the departure schedule perturbations spread
departure times throughout an entire 60-minute time window. This could create

sustained demand for longer periods, leading to more metering.
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Table 5.1: Overall Uncertainty Analysis for the N-control Policy.

Time Window Analysis | 15-minute | 30-minute | 60-minute
No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty | 90.7% 90.6% 92.8%
Arrival Uncertainty 99.6% 100.0% 101.0%
Overall Uncertainty 91.3% 90.4% 91.9%
Time Horizon Analysis | 0 1 3

No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty | 90.7% 91.4% 93.1%
Arrival Uncertainty 99.6% 99.9% 93.3%
Overall Uncertainty 91.3% 91.2% 87.7%

Table 5.2: Overall Uncertainty Analysis for the Dynamic Programming Policy.

Time Window Analysis | 15-minute | 30-minute | 60-minute
No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty | 94.3% 95.3% 109.0%
Arrival Uncertainty 99.9% 100.0% 100.5%
Overall Uncertainty 94.1% 95.7% 110.5%
Time Horizon Analysis | 0 1 3

No Uncertainty 100.0% 100.0% 100.0%
Departure Uncertainty | 94.3% 94.9% 95.8%
Arrival Uncertainty 99.9% 99.6% 99.8%
Overall Uncertainty 94.1% 94.5% 95.5%

5.2 Contributions of this thesis

Reflecting on the contributions of this thesis in Chapter 1, the main items proposed
have been achieved. The variation of parameters analysis presents the policy perfor-
mance with different time windows and time horizons. Also, the tradeoffs that arise
when choosing policy parameters involve policy performance, accuracy, and person-
nel workload. Combining the results of this analysis with operational constraints and
requirements, a PRC policy can be tailored t>o achieve the required benefits while
satisfying the needs of airports and airlines.

The operational uncertainty analysis addresses the problem of the reliability of

input data. The departure schedule and arrival rate represent just two operational
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uncertainties that affect the performance of PRC policies. The analysis shows a
negative effect on performance for departure uncertainty, while arrival uncertainty
has a negligible effect on performance. Again, this information gives airports and
airlines a realistic expectation of policy performance when exposed to the realities of

the airport industry.

5.2.1 Future work

While this thesis serves as the introduction to the problem of uncertainty surround-
ing airport surface management, much can still be accomplished in this area. This
analysis can be extended to include both other airports and other PRC policies. LGA
is a notoriously congested airport, serving as an interesting case study for this anal-
ysis. However, this analysis must be repeated for smaller and less congested airports
to explore the policy performance in the presence of less congestion. Also, other
PRC policies may address the problem adequately while being easier to implement
in reality.

Considering possible implementation, field trials remain a necessary component
of this research. While the N-control policy has been tested in the field, the dynamic
programming policy needs to be implemented to learn more about the challenges
of implementing a more complicated PRC policy. Field test performance can then
be compared to these simulation results. Any similarities or differences will provide

- further insight into the complexities of implementation.

This thesis gives an overview of the policy parameters and uncertainty sources
that affect the performance of PRC policies. This thesis has not considered all of the
outside forces that affect policy performance. In terms of policy parameters, the choice
of N* clearly affects the performance of the policy because that definition establishes
periods of congestion. A sensitivity analysis on N* would show how the policy benefits
change. The dynamic programming algorithm in this thesis groups segments by their
Erlang distribution shape. This is an assumption, but a more thorough analysis
could have a unique Erlang distribution for each leaf of each regression tree. While

this author believes that approach may be too granular, examining the results would
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confirm or deny that assumption.

On the operational uncertainty side, the weather is an obvious uncertainty not
examined in this thesis. A study of RAPT values over time compared to the actual
weather could give a good approximation to weather uncertainty. Alternatively, the
simulations could be done assuming constant clear weather (all RAPT values equal
to 0). Then, further simulations could increase the constant RAPT value by 0.5 or 1.
The results of that exercise would show the affect 6f weather on policy performance.
If the effects are large, the uncertainty analysis of weather would be very valuable.

Another important aspect of airport surface management is the scheduling and
availability of ground crews. Using a virtual queue works well in simulations, but
when that queue increases, an adequate ground crew schedule may not be possible.
Adding a ground crew constraint to the simulations would provide a more realistic
sense of the severity of this problem. Instead of one value of gateholding time, the
time spent at the gate would be split into two categories: gateholding time due to the
policy and pushback delay due to the unavailability of the ground crew. Assumptions
must be made about the number of crews and the time of travel between different
gates, but such an algorithm would be a great addition to this research.

To conclude, the driving force behind these ideas for future work is the need to
convince a,irlihes and airports to adopt airport surface management policies. Quite a
bit of inertia must be overcome before implementation becomes a reality. Care was
taken in this thesis to present all of the positives and negatives of PRC policies. Even
accounting for operational uncertainty, the PRC policies reduce taxi-out time signif-
icantly. If these results continue to hold by accounting for more realistic simulations
that include ground crew or weather uncertainty, PRC policy implementation should

be in the future of the aviation industry.
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Appendix A

LGA Saturation Curves and

Regression Trees
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Figure A-1: Departure throughput versus departure aircraft taxiing at LaGuardia

Airport for the 31|4; IMC segment.
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Figure A-2: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (31]|4; IMC) segment with a 15-minute window.

A.0.3 22[31; VMC

e Optimized Mean
e Optimized Median
~ — - Error Bar

14_........:.v..‘.............t.......... ...... ST

runway throughput (AC/15 min)

surface traffic

Figure A-3: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 22|31; VMC segment.
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Figure A-d: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (22|31; VMC) segment with a 15-minute window.
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Figure A-5: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 22|31; IMC segment.
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Figure A-6: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (22|31; IMC) segment with a 15-minute window.
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Figure A-7: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 31]31; VMC segment.
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Figure A-8: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (31|31; VMC) segment with a 15-minute window.
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Figure A-9: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 31|31; IMC segment.
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Figure A-10: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (31]31; IMC) segment with a 15-minute window.
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Figure A-11: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 4|31; VMC segment.
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Figure A-12: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4|31; VMC) segment with a 15-minute window.
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Figure A-13: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 4|31; IMC segment.
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Figure A-14: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4]31; IMC) segment with a 15-minute window.
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Figure A-15: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 22|13; VMC segment.
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Figure A-16: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (22|13; VMC) segment with a 15-minute window.
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Figure A-17: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 22|13; IMC segment.
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Figure A-18: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (22|13; IMC) segment with a 15-minute window.
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Figure A-19: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 4|13; VMC segment.
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Figure A-20: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4|13; VMC) segment with a 15-minute window.
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Figure A-21: Departure throughput versus departure aircraft té.xjing at LaGuardia
Airport for the 4|13; IMC segment.
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Figure A-22: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4|13; IMC) segment with a 15-minute window.
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Figure A-23: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 4|4; VMC segment.
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Figure A-24: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4]4; VMC) segment with a 15-minute window.
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Figure A-25: Departure throughput versus departure aircraft taxiing at LaGuardia
Airport for the 4|4; IMC segment.

109



Figure A-26: Regression tree with predicted departure throughput at the leaves for
LaGuardia Airport for the (4]4; IMC) segment with a 15-minute window.
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